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RESUMO

INÁCIO, Andrei de Souza. Contribuições para a descrição de vídeos em um cenário de
mundo aberto utilizando técnicas de aprendizado profundo. 2023. 150 f. Tese (Doutorado
em Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica Federal do Paraná.
Curitiba, 2023.

A tarefa de descrição de vídeos representa um desafio significativo para as áreas de Visão
Computacional e Inteligência Artificial, pois envolve a tradução do conteúdo visual de vídeos
em linguagem natural. Apesar dos avanços significativos alcançados por meio de técnicas de
aprendizado profundo, as abordagens existentes geralmente executam essa tarefa em um contexto
de mundo fechado, presumindo que todas as ações e conceitos possíveis em uma cena, bem
como o vocabulário, sejam conhecidos antecipadamente. No entanto, em aplicações do mundo
real, novas ações e objetos podem surgir inesperadamente, exigindo novos vocabulários para
descrever esses conceitos. Portanto, uma abordagem desejável para a descrição de vídeos em um
ambiente de mundo aberto é aquela que pode descrever eventos conhecidos, detectar eventos
desconhecidos e se adaptar incrementalmente para aprender a descrever esse conjunto de eventos
desconhecidos, sem esquecer os eventos já aprendidos. Esta tese apresenta contribuições para o
problema da descrição de vídeos em um cenário de mundo aberto. O primeiro método proposto
é um sistema denominado OSVidCap, que visa descrever eventos conhecidos realizados por
humanos em vídeos. O segundo método é uma abordagem de aprendizado incremental para a
descrição de vídeos, permitindo a adaptação do modelo existente para aprender novas classes
incrementalmente. Dois novos conjuntos de dados e um protocolo de avaliação foram criados
para avaliar as abordagens de descrição de vídeo em um contexto de mundo aberto. Os resultados
experimentais obtidos com estes conjuntos de dados demonstraram a eficácia dos métodos
propostos.

Palavras-chave: Descrição de Vídeos. Aprendizado Profundo. Aprendizado Incremental. Visão
Computacional. Aprendizado de Mundo Aberto.



ABSTRACT

INÁCIO, Andrei de Souza. Contributions to the video captioning in an open world scenario
using deep learning techniques. 2023. 150 p. Thesis (PhD in Graduate Program in Electrical
Engineering and Industrial Informatics) – Universidade Tecnológica Federal do Paraná. Curitiba,
2023.

Video captioning poses a significant challenge within the Computer Vision and Artificial Intelli-
gence domains. It involves the challenging task of translating the visual content of videos into
natural language descriptions. Despite significant advancements achieved through deep learning
techniques, existing approaches usually perform such a task in a closed-world scenario, assuming
all actions, concepts presented in a scene, and vocabulary are known in advance. However, new
actions and objects may emerge unexpectedly in real-world applications, and new vocabulary
may be necessary to describe those concepts. Therefore, an ideal video captioning approach for
an open-world environment should be able to describe known events, detect unknown ones, and
adapt incrementally to learn how to describe new events without forgetting what it has already
learned. This thesis presents contributions to the video captioning problem in an open-world
scenario. The first method, called OSVidCap, was proposed to describe concurrent known events
performed by humans in videos and can deal with unknown ones. The second proposed method
is an incremental learning approach for video captioning, designed to adapt an existing model to
learn new events incrementally. Two novel datasets and a protocol for evaluating video captioning
approaches in an open-world scenario are presented. Experimental results conducted on these
datasets demonstrate the effectiveness of the proposed methods.

Keywords: Video Captioning. Deep Learning. Incremental Learning. Computer Vision. Open
World Learning.
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1 INTRODUCTION

The high availability of low-cost image and video acquisition equipment has signifi-

cantly changed people’s lives. Digital videos and images play an essential role in our society

by facilitating communication and sharing information. Besides, such visual content has revolu-

tionized various areas, including surveillance, environmental monitoring, health, business, and

education.

Understanding and describing the visual content of images and videos in natural lan-

guage is a challenging task in Computer Vision (CV). For this purpose, sophisticated techniques

are required to process the diversity of human and object appearances in different environments

and their relationships over time.

Video events are high-level semantic concepts humans perceive in a video se-

quence (LAVEE et al., 2009). Each concept consists of an entity (human, object, action, or

scene attributes) that occupies a specific position in a frame and may vary in size, color, and

shape. Moreover, these visual contents can perform different actions and be described at different

granularities and abstraction levels.

The video description task (or video captioning) has become a hot topic in CV. An

approach that accurately describes video events may be used in various applications such as

human-robot interaction, video indexing, assistance to the visually impaired, sign language

understanding, and general-purpose video surveillance (AAFAQ et al., 2019).

Current deep learning techniques have achieved state-of-the-art performance in several

CV problems. They have effectively learned discriminative spatiotemporal features from raw

data to solve several complex tasks, such as object detection and classification (BOCHKOVSKIY

et al., 2020; LIU et al., 2020; DIWAN et al., 2022), human action recognition (KONG; FU,

2022; ZHANG et al., 2019; SINGH; VISHWAKARMA, 2019; GUTOSKI et al., 2021a), video

summarization (SOBUE et al., 2019), semantic image segmentation (INÁCIO; LOPES, 2020),

and video understanding (BUDVYTIS et al., 2019). However, a step beyond the simple categori-

cal classification of objects and actions in scenes is to describe events in human-comprehensible

language.

The video description task requires solving many problems simultaneously, including

object detection and classification, Human Action Recognition (HAR), visual relationships

between humans and objects, and Natural Language Processing (NLP). Many studies have
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recently achieved impressive results in the video captioning task using Deep Learning (DL)

techniques (ULLAH; MOHANTA, 2022; YAN et al., 2022a; ISLAM et al., 2021; AMIRIAN et

al., 2020; AAFAQ et al., 2019).

Despite the efforts and progress, the video description task is still an open problem.

Existing approaches using DL methods are limited to a fixed list of activities provided in the

training corpus. They have focused on generating a holistic description of short-length videos

with only one primary action happening in the video. However, videos may have concurrent

activities in practical applications, such as safety monitoring and surveillance. Humans can

perform many different actions and create new movements and hand gestures.

A more realistic approach is to assume an open-set assumption for describing activities,

which can adequately describe known events and deal with unknown ones. It is worth mentioning

that the concept of “unknown class” came from open-set recognition, and it is different from

the “unseen class”, which came from zero-shot learning. The “unknown class” indicates a

class without any information about it, and there are neither training instances nor other side

information, including labels in the testing set. The “unseen class” denotes the class with no

instances available in the training set but with semantic information available about it (GENG et

al., 2020).

The scenario mentioned above becomes even more challenging due to the lack of

knowledge about unknown classes during training (OZA; PATEL, 2019). Therefore, in addition

to detecting unknown events, some approach is necessary to incrementally learn how to describe

this set of unknown events without forgetting the events already learned.

The ability of DL models to update or increment their capabilities when faced with new

data is called incremental learning, and it is also an open problem (BELOUADAH et al., 2021).

In such approaches, the main challenge is the catastrophic forgetting problem (McCLOSKEY;

COHEN, 1989), which is the performance deterioration of previously learned knowledge while

learning new data. Such performance deterioration is a consequence of the stability–plasticity

dilemma suffered by neural networks, which consists of a trade-off between learning new

information (plasticity) and maintaining old knowledge (stability) (MERMILLOD et al., 2013).

The main focus of this research is to provide some theoretical and methodological

contributions to overcome these challenges in the video description in an open-world scenario.

The problem definition and goals that guided this thesis are presented in the following sections.
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1.1 PROBLEM DEFINITION

The central problem addressed in this work involves analyzing and understanding

complex visual data from videos and generating a natural language sentence that describes a

given video event within an open-world scenario.

DL methods have achieved state-of-the-art results in the video description task due to

the availability of large datasets. Most methods are trained in a supervised manner and rely on the

closed-set assumption. The vocabulary used to describe videos is obtained from the descriptions

used during the training step. Thus, videos with actions and concepts never seen during training

could not be adequately described. When faced with unknown events, such approaches usually

produce hallucinations, such as sentences describing concepts and actions that do not appear in

the video.

The open-set setting assumes the co-existence of known and unknown classes. However,

new things always appear, as well as novel classes may appear. The open-world scenario

introduces a continual learning paradigm that extends the open-set condition by assuming that

new semantic classes are gradually introduced at each incremental time step. Such approaches in

an open-world scenario have to detect unseen classes during the inference step and also learn

incrementally based on the new classes in the old model (CHEN; LIU, 2018).

Class-incremental learning is a paradigm designed for environments where new classes

may emerge at any time (ZHU et al., 2017). Unlike the classification task, in which the output

consists of a set of disjoint labels to be predicted, the output in the video captioning task is a

sequence of words.

In this context, video captioning approaches within the open-world scenario must

effectively detect unseen classes during inference and adapt incrementally by incorporating new

classes into the existing model. This strategy is crucial to ensure accurate descriptions of events,

avoiding the generation of inaccurate captions when facing unknown events. Furthermore, it is

essential to expand the vocabulary used by the models with new words to adequately describe

novel events and concepts.

One aspect that makes the video description task in the open-world context more

challenging than the classification task is the overlapping vocabulary used to describe distinct

video scenes. Different events usually contain a common vocabulary (articles, prepositions, nouns,

and verbs). Furthermore, the presence of synonyms and homonyms can affect training. This
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nature makes the task of class-incremental learning in video captioning even more challenging

and complex.

Hence, the following questions arose during the research process: “Can a video descrip-

tion framework be designed to describe in natural language concurrent known video events in

different contexts and deal with the unknown ones? What strategies could be employed to en-

hance the framework’s ability to learn and describe unknown events?” To answer these questions,

the following hypothesis is proposed: Deep Learning techniques can detect and recognize video

events, learn relevant features, and generate a sequence of words that can semantically describe

concurrent events in videos in an open-set scenario. Furthermore, video captioning approaches

can employ incremental learning to acquire the capability to describe novel events over time

progressively.

1.2 OBJECTIVES

The general objective of this work is to propose methods for generating natural language

descriptions of videos within the context of an open-world scenario. To clarify the approaches

and contributions of this thesis, the general objective can be divided into more specific ones:

1. To propose a method to describe, in natural language, single and concurrent known events

occurring in videos.

2. To investigate and devise a method to detect and recognize unseen and unknown events.

3. To investigate and devise a method to incrementally learn how to describe the unknown

events detected.

4. To create new datasets for training the proposed models.

5. To validate the proposed approaches with public datasets.

1.3 DOCUMENT STRUCTURE

This Thesis is organized as follows. Chapter 2 presents theoretical aspects of video

processing and DL methods, including the related works found in recent literature. Chapter 3

describes in detail the proposed methods. Chapter 4 reports the experiments, results obtained, and

their respective discussion. Finally, Chapter 5 presents general conclusions and considerations
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about the study and proposals for future work. Moreover, Appendix A presents a list of related

works analyzed during the thesis period.
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2 THEORETICAL ASPECTS AND THE STATE OF THE ART

This chapter presents the theoretical aspects of the leading models used and developed

in this work. First, a brief introduction about Computer Vision (CV), Open-World Machine

Learning, Deep Learning (DL), Incremental Learning, and Natural Language Processing (NLP)

are presented, contextualizing them. Finally, a systematic mapping study regarding the works

related to this thesis is presented.

2.1 COMPUTER VISION AND VIDEO PROCESSING

CV is a research field concerned with creating machines to see and understand the world

from digital images and videos (BRUNELLI, 2009). CV can also be understood as the host of

techniques to acquire, process, analyze, and understand complex higher-dimensional data, such

as images and videos (JAHNE; HAUßECKER, 2000).

Video processing remains a challenging task, as it involves considering spatial and

temporal information to understand objects and activities (JELODAR et al., 2019). A video

consists in a sequence of scenes, wherein each scene consists of one or more shots. These shots,

in turn, are composed of individual frames. Each frame comprises a matrix of pixels, which

is the small element of an image. Figure 1 illustrates a hierarchical structure representing the

logical organization of a video. Typically, a standard video camera provides a video rate of 30

frames per second, which may vary according to the application.

The lack of correspondence between the low-level information extracted from raw

images or videos, which is merely an ensemble of pixels, and the high-level meaning associated

with them is called the semantic gap (PERLIN; LOPES, 2015). In common sense, CV techniques

are designed to narrow the semantic gap problem and process visual information automatically.

With the DL techniques recently introduced, several approaches have achieved the

state of the art in many fields of study, including image classification, video classification, and

action recognition (POUYANFAR et al., 2018). The use of DL for video processing has also

provided several solutions for real-world applications, including surveillance systems (HG; S,

2020), human action recognition (SAHOO; ARI, 2019), health monitoring (PRATI et al., 2019),

traffic monitoring (JAIN et al., 2019), and many more.



20

Figure 1 – Video content hierarchy.

Source: Rashmi e Nagendraswamy (2021).

2.2 OPEN-WORLD MACHINE LEARNING

Traditional supervised machine learning follows a closed-world assumption, in which

models are trained to select the most likely class from a closed set. However, given the dynamic

and open nature of the real world, new classes may emerge unexpectedly. This phenomenon

leads to the concept referred to as “open set” problem (SCHEIRER et al., 2013). In this scenario,

samples with classes that were not seen during training are presented in the testing phase.

According to Geng et al. (2021), the recognition task should consider four categories of

classes as follows:

• Known-Known (KK): classes with labeled training samples, and even have corresponding

side-information, such as semantic or attribute information.

• Known-Unknown (KU): classes that are unknown to the classifier during training, but may

appear during testing.

• Unknown-Known (UK): classes with no available samples in training but with seman-

tic/attribute information available.

• Unknown-Unknown (UU): classes never seen in training and without any semantic-

information during training.
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Traditional models are classified within the KK category, operating under the assumption

that both the training and testing data are known. In cases where the model explicitly incorporates

"Other classes" or a detector trained with unclassified negative samples, it falls under the KU

category. Zero-shot learning approaches predominantly concentrate on the UK category, aiming

to recognize classes not faced during the training phase while leveraging the shared semantic

information between KK and UK classes. Open set recognition encompasses a scenario where

the model must accurately classify KK classes while simultaneously handling new classes not

presented during training and lacking semantic information UU. In such instances, the classifier

should be able to reject samples originating from the UU category.

A step beyond the open-set scenario, wherein the model only rejects samples from

the UU category, lies the open-world scenario. In such a scenario, the model can detect and

continuously learn new classes that emerge during testing (BENDALE; BOULT, 2015). Figure 2

illustrates a comparison between supervised machine learning and open-world machine learning.

Traditional supervised machine learning involves using known instance labels during the training

and inference stages. It follows the closed-set assumption, wherein the model assumes it knows

all existing labels. When presented with unknown instances, it classifies them considering the

known label categories. In the context of Open-world machine learning, the model can accurately

classify instances belonging to the known classes while effectively rejecting the unknown ones.

Such unknown instances can be labeled, and the model can be updated incrementally to learn

these new classes.

Figure 2 – Comparison between traditional and open-world machine learning approaches

Source: Inspired by Parmar et al. (2023).
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The open-world machine learning problem was formally defined by (BENDALE;

BOULT, 2015; PARMAR et al., 2023) as follows:

Let Z+ be the classes labeled by positive integers and Λ𝑡 ∈ Z+ is the set of labels for

known classes at time 𝑡. Let zero label (0) temporarily mark data as unknown. Therefore, Z

includes both known and unknown labels. Let 𝑥 ∈ R𝑟 be the features (𝑟 is the dimension of 𝑥),

and 𝑓𝑦(𝑥) is the recognition function; that is, if the 𝑓𝑦(𝑥) > 0, then instances are marked as a

known class and if 𝑓𝑦(𝑥) ≤ 0, then instances are marked as an unknown class, where 𝑦 ∈ Z. The

solution to recognize any instance in an open-world scenario can be given as a tuple [𝐹,𝜑,𝑣,𝐿,𝐼]

with:

• 𝐹 (𝑥) : R𝑟 → Z as a multi-class open set recognition function that uses a vector function

𝜑(𝑥) of 𝑖 per-class measurable recognition functions 𝑓𝑖(𝑥), and a novelty detector 𝑣(𝜑) :

R𝑖 → [0,1].

• 𝐿(𝑥) : R𝑑 → N+ is a labeling process applied to novel unknown data 𝑈𝑡 from time 𝑡,

resulting labeled data 𝐷𝑡 = {(𝑦𝑖,𝑥𝑗)} where 𝑦𝑗 = 𝐿(𝑥𝑗)∀𝑥𝑗 ∈ 𝑈𝑡. Assuming the labeling

finds 𝑚 new classes, then the set of known classes becomes Λ𝑡+1 = Λ𝑡 ∪ {𝑖+ 1, ...𝑖+𝑚}.

• 𝐼𝑡(𝜑;𝐷𝑡) : (𝐹 )𝑖 → (𝐹 )𝑖+𝑚 is an incremental learning function to scale, learn and add new

recognition functions 𝑓𝑖+1(𝑥)...𝑓𝑖+𝑚(𝑥).

Ideally, all these steps should be automated. However, in this thesis, the labels for the

detected unknown classes are obtained through manual human labeling. The learning process in

open-world machine learning can be defined into three steps (PARMAR et al., 2023):

• Step 1: At time t, a multi-class classifier model 𝑀𝑡 built by a learner on all previous classes

𝑆𝑡 = 𝑠1, 𝑠2, ..., 𝑠𝑡. 𝑀𝑡 can classify seen classes 𝑠𝑖 ∈ 𝑆𝑡 or reject them as unseen classes

and put them in a rejection set 𝑅𝑒. The 𝑅𝑒 may have instances of more than one new or

unknown class.

• Step 2: The system can identify the hidden classes 𝑐 in 𝑅𝑒 and prepare training sets from

this data to find unknown classes.

• Step 3: The model 𝑀𝑡 will learn from the updated training dataset and be updated to a

new model 𝑀𝑡+1.
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Many approaches have been proposed in recent years to tackle the open-world problem

across various research fields, including computer vision, image processing, and natural language

processing (PARMAR et al., 2023). However, it is still an open problem due to the unpredictable

nature of the upcoming events.

Apart from the open-world definition presented, a brief discussion of related topics

found in Yang et al. (2021b) is introduced, which helps clarify the scope of this thesis:

• Open-set scenario: In such a problem, the classifier is required to accurately classify

test samples from known classes and reject test samples from unknown classes, both

simultaneously.

• Domain Adaptation/Domain Generalization: In such a problem, also known as the

domain shift problem, the distribution changes, and the classifier is expected to continue

accurately classifying the same class set. The main difference between DA and DG is

that while DA requires additional but few training samples from the target domain, DG

exclusively considers the original source domain data for adaptation and generalization.

• Open-set domain adaptation: The traditional Domain Adaptation problem assumes that

the source and target domains belong to the same set of classes. In contrast, the concept of

open-set domain adaptation introduces the scenario where the source and target domains

share only a subset of object classes, with the majority of samples in the target domain

belonging to classes not represented in the source domain.

• Out-of-distribution: Refers to the problem where a model faces samples during inference

that are significantly different from the dataset on which the model was trained.

• Zero-shot learning: The model is trained with known classes similar to a traditional

closed-set assumption. However, the test set contains unknown classes, and it is expected

that the model can classify not only the known classes but also the unknown test samples

with the help of additional information, such as label relationships.

2.3 DEEP LEARNING

DL is a machine learning field that enables computers to learn from experience and

understand the world in terms of a hierarchy of concepts (GOODFELLOW et al., 2017). It is not

a recent technology, but it was made possible and popularized by the advent of fast Graphics
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Processing Units (GPU) that enables massively parallel computation (CARRIO et al., 2017). DL

algorithms are composed of multiple hierarchical hidden layers between the input and output

layers that extract increasingly abstract features from the input data.

Over the years, several different deep learning architectures have been pro-

posed (SCHMIDHUBER, 2015), such as Convolutional Neural Networks (CNN), Fully Convo-

lutional Network (FCN), RNN, Long Short-Term Memory (LSTM). CNN is the most popular

model, and achieves impressive performance in feature extraction. RNN is a natural choice for

sequence modeling tasks. Some of these models are the foundations and inspirations for the

conception of this work and are presented in the following subsections.

2.3.1 Artificial Neural Network

An Artificial Neural Network (ANN) consists of parallel, connected arithmetic units,

called neurons, designed to store experimental knowledge and make it available. They are

inspired in the human brain in two aspects: first, the knowledge is obtained from the environment

through a learning process; second, connections between neurons, known as synaptic weights,

are used to store the knowledge (HAYKIN, 1999).

An ANN is composed of several neurons organized in layers. Each neuron computes a

linear function (weighted sum of the input x) followed by an activation function. Optionally, a

bias b can be added to adjust the output. Figure 3 depicts the basic computation of the neuron.

The activation function is a non-linear function used to decide whether the information processed

by a given neuron is relevant to the output or it should be ignored. The usual activation function

used is the hyperbolic tangent (tanh).

The Feedforward Neural Network FNN, also called Multi-Layer Perceptron (MLP),

is a class of ANN trained to map a given input x to a category y. It defines a mapping y =

𝑓(𝑥;𝜃) and learns the value of the parameter 𝜃 that results in the best function approximation

(GOODFELLOW et al., 2017).

A typical FNN consists of neurons organized in an input layer, one or more hidden

layers, and an output layer. Each neuron of a given layer can be connected to one or more neurons

to the next layer. A fully connected layer is a layer in which all inputs are connected to every

activation unit of the next hidden layer. Figure 4 presents an example of an FNN with two hidden

layers.

Before training, the network weights are often initialized with random values. The
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Figure 3 – Non-linear model of a neuron.

Source: Haykin (1999).

Figure 4 – Example of an FNN with two hidden layers.

Source: Developed by the author.

training is then performed in three steps: First, a given input x flows forward through the hidden

units, producing the output predicted y. Then, the error between the predicted and the expected

result is calculated. Finally, the weights and bias adjustment are carried out using an iterative

gradient descent-based optimization algorithm called backpropagation. These steps are performed

several times to minimize the error between the predicted and the expected output.



26

2.3.2 Convolutional Neural Network

CNN is a type of FNN proposed by Fukushima (1980) and employs linear transforma-

tions called convolution layer, pooling layers, and fully connected layers to compute a hierarchy

of features from the raw input data such as images or videos (LECUN et al., 1998). They were

popularized by Lecun et al. (1998) to achieve excellent performance in the task of handwritten

digit image classification. The convolution and pooling layers work together to compute abstract

features, and a fully connected layer is usually presented at the end of the architecture and works

as a classifier. Figure 5 depicts an example of the CNN architecture.

Figure 5 – Architecture of LeNet-5 for digit recognition.

Source: Lecun et al. (1998).

The convolutional layer consists of a kernel, also called a filter, which is a small matrix

trained on the data. The kernel slides over the pixels of the image and computes a weighted

sum of the pixels, resulting in an output feature map. In addition to the kernel size, other hyper-

parameters that can be defined are the number of filters to be used in the convolution operation;

the stride, which is the number of pixels the kernel will be translated at a time; and padding,

which expands the input data artificially around the border to compute a feature map over all

pixels and maintain the input shape. An activation function, usually the Rectified Linear Unit

(ReLU) or tanh, is applied to the convolution output. Figure 6 shows an example of a 3 × 3

kernel applied to a 5× 5 image.

A pooling layer consists of an operation used to modify the output dimensionality. It sum-

marizes the outputs of neighboring groups of neurons in the same kernel map (KRIZHEVSKY

et al., 2012). It is used between convolutional layers to downsample the data representation and,

consequently, the parameters learned. Similar to the convolution layer, the pooling is performed

by a small window size that slides over the data to select the maximum value. The hyperpa-

rameters defined in this operation are the window size, stride, and padding. This operation is
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Figure 6 – Example of neural network convolution operation.

Source: Developed by the author.

known as max-pooling. There are other variants of pooling, such as min-pooling, which selects

the minimum value in a given pooling step, and average-pooling, which computes the pixel value

average presented in the windows in each pooling step. Figure 7 depicts an example of max and

average polling.

Figure 7 – Example of neural network pooling operation.

Source: Developed by the author.

The fully connected layer takes the result of the last convolution or pooling process and

performs a classification decision. The output layer contains a neuron for each possible label and

outputs a vector representing the class probabilities for each label.

A serious problem faced when training a CNN is overfitting, a phenomenon that occurs

in a model that learns too well on the training data, including noise and specific peculiarities,

rather than finding a general predictive rule (DIETTERICH, 1995).

To overcome this problem, dropout (SRIVASTAVA et al., 2014) is usually employed. It

consists of dropping randomly some neurons during the training step, according to a pre-defined

probability. This technique prevents the co-adaptation of neurons and improves the performance

and generalization of the model.

L1 and L2 regularization are also techniques used to prevent overfitting (NG,

2004). They consist of a regularization term added to the cost function that penalizes large

weights/parameters.
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The data augmentation technique suggested by Krizhevsky et al. (2012) can also be

used to avoid overfitting. It consists of artificially enlarging the dataset using transformations to

produce new images from the original images.

2.3.3 Recurrent Neural Network

RNN is a family of neural networks for processing sequential data (GOODFELLOW et

al., 2017). This architecture has the ability to selectively pass information across sequence steps

while processing sequential data one element at a time, allowing to model input and/or output

consisting of sequences of elements that are not independent (LIPTON et al., 2015). A basic

architecture of the RNN, also called Vanilla RNN, is depicted in Figure 8.

Figure 8 – Example of RNN architecture that maps an input sequence of 𝑥 values to a corresponding sequence
of output 𝑜 values.

Source: Developed by the author.

Given a sequence of inputs (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑇 ), a standard RNN computes a sequence

of outputs (𝑦1, 𝑦2, 𝑦3, ..., 𝑦𝑇 ) by iterating the following equations.

ℎ(𝑡) = tanh(𝑊ℎ(𝑡−1) + 𝑈𝑥(𝑡) + 𝑏) (1)

𝑜(𝑡) = 𝑉 ℎ(𝑡) + 𝑐 (2)

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜(𝑡)) (3)

where W, U and V are weight matrices, b and c are bias vectors, ℎ(𝑡−1) is the previous state and

𝑥(𝑡) is the input at the instant 𝑡.

The RNN training is performed using the Backpropagation Through Time (BPTT)

algorithm, which consists of performing a forward propagation pass moving left to right through
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time, followed by a backward propagation pass moving right to the left. The final loss is computed

by performing the sum of the losses over all the time steps.

Despite being suitable for many applications, including sequence recognition and

time-series prediction, RNN faced difficulties in performing tasks with long-term dependen-

cies (BENGIO et al., 1994). The well-known exploding and vanishing gradient problems happen

during the training step when the gradients are propagated back in time to the initial layer. To

overcome these problems, many variants of the RNN have been proposed. The most popular

approaches are LSTM and Gated Recurrent Unit (GRU).

2.3.4 Long Short-Term Memory

The LSTM (HOCHREITER; SCHMIDHUBER, 1997; GERS et al., 1999) architecture

consists of a set of memory blocks. Each block contains a memory cell and three gate units

responsible for memory manipulation. The input gate provides a way to add information into the

state cell. The forget gate provides a way to reset the cell and thus ignore previous information.

When activated, the output gate decides which information will be made available to the output

and the hidden state of the block. The memory block structure of the LSTM is illustrated in

Figure 9.

Figure 9 – Example of LSTM architecture that maps an input sequence of 𝑥 values to a corresponding
sequence of output 𝑜 values.

Source: Yu et al. (2017).

The detailed calculations of the LSTM model is presented as follows:

ℎ𝑡 = tanh(𝐶𝑡) * 𝑜𝑡 (4)

𝐶𝑡 = 𝜎(𝑓𝑡 * 𝐶𝑡−1 + 𝑖𝑡 * 𝑐𝑡) (5)
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𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 + ℎ𝑡−1𝑊

𝑔) (6)

where 𝑈 𝑔 and 𝑊 𝑔 are weight matrices, 𝑥𝑡 is the input at time 𝑡, ℎ𝑡−1 is the previous state, and 𝑓𝑡,

𝑖𝑡, and 𝑜𝑡 are the forget, input and output gates, respectively.

The detailed calculations of unit gates are as follows:

𝑓𝑡 = 𝜎(𝑥𝑡𝑈
𝑓 + ℎ𝑡−1𝑊

𝑓 + 𝑏𝑓 ) (7)

𝑖𝑡 = 𝜎(𝑥𝑡𝑈
𝑖 + ℎ𝑡−1𝑊

𝑖 + 𝑏𝑖) (8)

𝑜𝑡 = 𝜎(𝑥𝑡𝑈
𝑜 + ℎ𝑡−1𝑊

𝑜 + 𝑏𝑜) (9)

where 𝑈 𝑓 , 𝑈 𝑖, 𝑈 𝑜,𝑊 𝑓 ,𝑊 𝑖,𝑊 𝑜 are weight matrices, 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 are bias vector, and 𝜎 denotes

the sigmoid activation function. The LSTM has been shown extremely successful in many

applications, such as Action Recognition, Sentiment Analysis, Video Description, and others.

2.4 INCREMENTAL LEARNING

Traditional supervised Machine Learning (ML) techniques assume that all the data

needed to train the models is available during the training stage. After training, such models are

deployed for inference with fixed parameters and take the assumption that the data distribution

will not change. However, in real applications, the data distribution may change over time, which

is referred to as the concept drift phenomenon (LU et al., 2019b).

Depending on the study hypothesis, different terms have been used to refer to studies

related to incremental learning, and using such terms is not always consistent (GEPPERTH;

HAMMER, 2016). Incremental Learning (IL), also called lifelong learning or continuous learn-

ing, refers to an ML paradigm where new data is used in the learning process while the system is

operating (CHEN; LIU, 2018).

Such a strategy may be required for several reasons, including the high computational

cost of obtaining a large number of samples before the learning process; the learning algorithm

can not deal if directly applied to all the available training data; new examples become available

over time; the data itself is time-dependent; deal with nonstationary distribution, adapting to the

changes in underlying data distributions (concept drift) (GENG; SMITH-MILES, 2009).
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The objective of IL is to train a model from a set of tasks incrementally, where each

task has data with associated labels. According to van de VEN et al. (2022), the supervised IL

methods can be categorized into three scenarios:

• Task-Incremental Learning. Each task may contain data from a different set of classes,

and the algorithm knows (in both the training and testing stages) which task must be

performed.

• Domain-incremental Learning. Each task contains data from classes presented in previ-

ous tasks. The structure of the algorithm is always the same for all tasks. Only the input

distribution data changes over the tasks.

• Class-incremental Learning. Each task contains data from different classes, and the

algorithm has to incrementally learn to discriminate a growing number of classes over

time. In this scenario, the task identifier is not provided, and the model must be able to

distinguish between all classes from all tasks during inference time.

According to (MASANA et al., 2023), the class-incremental learning problem can be

formally defined as follows:

Let 𝑇 = [(𝐶1, 𝐷1), (𝐶2, 𝐷2), (𝐶3, 𝐷3), ..., (𝐶𝑛, 𝐷𝑛)] be a set of pairs, where each pair

(𝐶𝑡, 𝐷𝑡) represents a task 𝑡. In each task 𝑡, 𝐶𝑡 = {𝑐𝑡1, 𝑐𝑡2, ..., 𝑐𝑡𝑛𝑡} is a set of classes and 𝐷𝑖 is the

training data for the that task 𝑡.

At each incremental learning step, a model 𝑀𝑡 is trained using the data 𝐷𝑡. After, the

performance of model 𝑀𝑡 is evaluated from the union of all previous tasks up to task 𝑡. This

union is denoted as ∪𝑡𝑖=1𝐶
𝑖.

Figure 10 depicts an example of a class-incremental learning classifier model. First, the

model base is trained to classify cars and motorcycles (Task 1). Then, the resulting model is

updated to learn helicopters (Task 2). Finally, the model is also updated to learn airplanes (Task

3). Notice that, in a class-incremental learning scenario, the architecture must be incremented to

incorporate the class of new tasks, and the last trained model (Task 3) should classify all classes

trained in previous tasks.

In the Deep Learning context, many researchers have studied the class-incremental

learning problem (MASANA et al., 2023). The main challenge is dealing with the catastrophic

forgetting problem (McCLOSKEY; COHEN, 1989; RATCLIFF, 1990). Such a phenomenon is

characterized by the abrupt loss of knowledge about previous tasks after training the model to



32

Figure 10 – Example of class-incremental learning system.

Source: Developed by the author.

predict a new task. The weights in the network importance for previous tasks are changed to

meet the objectives of task B (KIRKPATRICK et al., 2017). In addition, class-IL approaches

face the challenge of learning and distinguishing new classes from previously learned ones.

2.4.1 Class-incremental learning methods

Different algorithms have been proposed for the Incremental Learning task and can be

categorized in three families (De LANGE et al., 2022) as summarized below.

Replay Methods. This family of methods primarily relies on utilizing a portion of

data or features from previous tasks to mitigate the issue of catastrophic forgetting. These

approaches typically involve storing a subset of exemplars per class, which are then reused as

inputs for rehearsal or employed to constrain the optimization of the loss function for the new

task. This helps prevent interference from previous tasks and allows retaining previously learned

information. The main drawback of such methods is storing sample data in memory to represent

previous distribution data, which demands extra computation resources.

Regularization-based methods. This family of methods includes regularization

terms in the loss function to mitigate catastrophic forgetting while learning new data. Sev-

eral approaches have been proposed in this category, such as Elastic Weight Consolidation

(EWC) (KIRKPATRICK et al., 2017), and Learning without Forgetting (LwF) (LI; HOIEM,

2018). The main difference among them is how they estimate the parameter importance in the

model to calculate the penalty included in the loss function.

Parameter isolation methods. This family of methods explores techniques to isolate

and freeze network parameters partially, trying to avoid forgetting previous tasks. In such a

strategy, the network model may be fixed or with dynamic architecture by increasing the depth

and complexity. An example of one approach that explores such techniques is the HAT(SERRA
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et al., 2018). It employs an attention mechanism to learn how important the network weights are

during a training session for a given task. Then, when training new tasks, the update of important

network parameters of previous tasks can be constrained based on such attention masks.

2.5 THE EXTREME VALUE MACHINE

The Extreme Value Machine (EVM) was initially proposed by Rudd et al. (2018) to

perform open-set classification, offering a robust solution to the challenges posed by classifying

instances that do not belong to any predefined class. Its fundamental concept lies in modeling each

class in the training set using a set of extreme vectors. These extreme vectors are associated with

a Probability of Sample Inclusion (Ψ), which determines the likelihood of a sample belonging to

a specific class.

The key concept of EVM is the use of margin distributions, which is the distribution of

the half margin distances of the training data. In the original formulation, one can consider x𝑖

as a training sample and 𝑦𝑖 the corresponding label. Considering x𝑖 and x𝑗 , where ∀𝑗, 𝑦𝑗 ̸= 𝑦𝑖,

x𝑗 can be considered the nearest point to x𝑖 and, in this case, the margin estimate for the pair

(x𝑖,x𝑗) is given by m𝑖𝑗 = ||x𝑖 − x𝑗 || /2.

The m𝑖𝑗 value can be computed for the 𝜏 nearest points and the distribution of the

margins is estimated with those points using the Extreme Value Theorem (EVT). The EVT states

that the minimum values of x𝑖 is given by a Weibull distribution (RUDD et al., 2018). The

probability of inclusion Ψ for a point x′ is given by

Ψ(x𝑖,x
′, 𝜅𝑖, 𝜆𝑖) = exp

(︂
−‖x𝑖 − x′‖

𝜆𝑖

)︂𝜅𝑖

, (10)

in which ‖x𝑖 − x′‖ is the distance between x′ and x𝑖, 𝜆𝑖 and 𝜅𝑖 are the Weibull’s shape and scale

parameters.

Each Ψ is considered an EVT rejection model and Ψ(x𝑖,x
′, 𝜅𝑖, 𝜆𝑖) corresponds to the

probability that a sample is not beyond the negative margin. Even though a sample has zero

probability around the margin, the model can also be extended to support soft margins. The

probability that a point x′ belongs to class 𝐶𝑙, where 𝑙 is the class index, is given by Equation 11:

�̂� (𝐶𝑙|x′) = argmax𝑖:𝑦𝑖=𝐶𝑙
Ψ(x𝑖,x

′, 𝜅𝑖, 𝜆𝑖). (11)

Finally, the classification function is:

𝑦* =

{︃
argmax𝑖:𝑦𝑖=𝐶𝑙

�̂� (𝐶𝑙|x′), if �̂� (𝐶𝑙|x′) ⩾ 𝛿

unknown, otherwise
, (12)
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in which 𝛿 is a threshold responsible for defining the boundary between known and open-space.

According to Gutoski et al. (2021a), many redundant [x𝑖,Ψ(x𝑖,x
′, 𝜅𝑖, 𝜆𝑖)] pairs can

be discarded with minimal impact on performance to reduce the size of the model. For further

details about the EVM, including the mathematical foundations, can be found in the original

paper by Rudd et al. (2018).

2.6 TRIPLET INFLATED 3D NEURAL NETWORK

The Triplet Inflated 3D Neural Network (TI3D) is a Deep Metric Learning Neural

Network introduced by Gutoski et al. (2021a). It uses the Inflated 3D Convnet (I3D) as the

base model to build a cosine triplet loss network. The TI3D learns a feature mapping such that

intra-class distances are small and inter-class distances are large.

The TI3D takes three inputs: Anchor, Positive, and Negative. For the human action

recognition task, the Anchor (𝑎) represents a video of any given action, the Positive (𝑝) represents

a video of the same action, and the Negative (𝑛) represents a video of a different action, both

w.r.t. the anchor. Given 𝑁 (𝑎,𝑝,𝑛) triplets, the Triplet loss function 𝐿 is defined by:

𝐿Θ =
𝑁∑︁
𝑖=1

[︁
Θ(𝑓(x𝑎

𝑖 ),𝑓(x
𝑝
𝑖 ))−Θ(𝑓(x𝑎

𝑖 ), 𝑓(x
𝑛
𝑖 )) + 𝛼

]︁
+
. (13)

in which 𝑖 is the triplet index, 𝑓(x𝑎), 𝑓(x𝑝), 𝑓(x𝑛) are the Anchor, Positive and Negative

embeddings, respectively, 𝛼 is the margin parameter, and Θ denotes the cosine distance between

two vectors x𝑖 and x𝑗:

Θ(x𝑖,x𝑗) = 1− x𝑖 · x𝑗

‖ x𝑖 ‖ ‖ x𝑗 ‖
. (14)

Additionally, the symbol + indicates the operator 𝑚𝑎𝑥(𝛽,0), for 𝛽 = Θ(𝑓(x𝑎
𝑖 ),𝑓(x

𝑝
𝑖 ))−

Θ(𝑓(x𝑎
𝑖 ), 𝑓(x

𝑛
𝑖 )) + 𝛼, which imposes 𝐿Θ ≥ 0 for every 𝑓(x𝑎

𝑖 ),𝑓(x
𝑝
𝑖 ) and 𝑓(x𝑎

𝑖 ), 𝑓(x
𝑛
𝑖 ) pairs,

since 𝑚𝑎𝑥(𝛽,0) = 0, ∀ 𝛽 ∈ R | 𝛽 < 0. This loss function attempts make the cosine distance

between Anchor and Positive samples smaller than the distance between the Anchor and Negative

instances by, at least, a margin of 𝛼. Alternatively, it will force examples of the same class to be

mapped closer than examples of different classes (or even previously unknown examples).

2.7 NATURAL LANGUAGE PROCESSING

Natural Language Processing (NLP) is the subfield of Computer Science concerned

with the use of computational techniques to learn, understand, and produce human language
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content (HIRSCHBERG; MANNING, 2015).

Traditional NLP approaches focused on developing hand-coded rules and algorithms

to process natural language (NG; ZELLE, 1997). Currently, most approaches for NLP are

corpus-based learning based on statistical methods, or other automated learning techniques over

corpora of natural language examples to automatically induce suitable language-processing

models (OTTER et al., 2021). NLP is employed in several real-world applications, including

text classification, machine translation, chatbots and virtual assistants, sentiment analysis, and

text generation.

The raw text used as input in natural language processing systems requires some

preprocessing steps before it can be used for analysis. The most frequent methods used for

preprocessing include:

• Tokenization consists of splitting the input text, which is a sequence of characters, into

subunits called tokens. The tokenizer methods are usually based on rules, punctuation, or

white spaces.

• Stop words consists of removing words considered irrelevant for a given approach. For

example, in a classification problem, frequent words such as a, the, after, and there are

unlikely to be useful.

• Stemming is a type of text normalization, in which the variant words forms (e.g. trouble,

troubling, troubled) are reduced to their root form (troub).

• Lemmatization consists of converting words (e.g., was, meeting, cars) in their base or

dictionary form (e.g., be, meet, car), known as the lemma.

• Parts of speech tagging consists of assigning parts of speech to each word, such as noun,

verb, adjective, etc.

Similar to images, which can be mathematically modeled by analog or digital signals,

text data also can be modeled as numbers to be automatically processed by computers (LI;

YANG, 2018).

The one-hot embedding is the easiest way to represent a word in a discrete vector. In

this method, each word has an index in the vocabulary set and is represented as a 1-D vector

made up of zeros, with a 1 in the corresponding dimension for the word. The main drawbacks
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faced by the one-hot embedding are the lack of semantic between words and a phenomenon

called the curse of dimensionality, which is related to the large dimension size of the vectors.

Bag-of-Word (BoW) model is another way to extract text representation often used

in NLP. It learns a vocabulary from all the sentences (or documents) and then models each

sentence (or document) by computing the occurrence of words (DEEPU et al., 2016). The BoW

is commonly used in text classification tasks. The main drawback is that it does not take into

account the word order or the similarity between different words.

Word embeddings are real-valued word representations able to capture lexical semantics

and trained on natural language corpora (BAKAROV, 2018). Many techniques can be used

to learn a word embedding from text data, including GLOVE (PENNINGTON et al., 2014),

Word2Vec (MIKOLOV et al., 2013), fasttex (MIKOLOV et al., 2018) and Embedding Layer, a

learnable linear mapping that maps each word onto a low dimensional latent space. The main

drawbacks of the word embeddings are that some cannot deal with unknown or out-of-vocabulary

words and the lack of interpretability of the real values that make up the embedded vectors.

Despite this, the pre-trained word embeddings available for free on the internet have proven to

be invaluable for improving performance in natural language analysis tasks, which often suffer

from a paucity of data (QI et al., 2018).

2.8 STATE OF THE ART

Following the guidelines proposed by Kitchenham (2004), a systematic literature review

was initially conducted to review and analyze the strategies developed for the video description

problem. Such a review encompassed studies published between 2017 and 2020. Then, the most

relevant studies were included in this literature review. The data sources, IEEE Xplore, ACM

Digital Library, Springer Link, and Science Direct, were considered for this literature review due

to their relevance in computing and vision computation. Besides, Google Scholar was also used

to search for promising in-progress works or articles published outside the computing domain,

which may significantly contribute to this work.

The papers were classified into three main topics, which are described in the following

subsections, one presenting current state-of-the-art methods, one for the existing datasets used to

train and evaluate those proposed models, and one for evaluation metrics employed in the video

description task.
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2.8.1 Video Description methods

Early proposed methods for the video description task started with template-based

methods in which the Subject(S), Verb(V), and Object(O) were detected and then used in a

sentence template (BARBU et al., 2012; ROHRBACH et al., 2013; KRISHNAMOORTHY et

al., 2013). Although these methods could generate descriptions based on grammar, they did not

consider the spatial and temporal associations between entities. Moreover, the obtained output

variety suffers because of the implicit limitation (AMARESH; CHITRAKALA, 2019). Inspired

by the rapid development of DL techniques in the CV and NLP areas, video description research

has become a hot topic. The video description approaches based on DL methods are mainly

designed in the encoder-decoder architecture. The encoder usually combines 2D CNN, 3D CNN,

and LSTM that converts the input video into a feature vector representation of fixed length. The

decoder is usually an LSTM or GRU that generates a sequence of words.

Venugopalan et al. (2015b) proposed one of the first approaches based on deep neural

networks for the video captioning task. A variant of AlexNet, pre-trained on a subset of the

ImageNet dataset, was used to extract visual features from frames. Then, the mean pooling

method was employed, resulting in a single vector representing the entire video. Finally, two

stacked LSTM were used to generate the sentence.

The first end-to-end approach was proposed by Venugopalan et al. (2015a). The authors

also used CNN to extract features from frames, but instead of performing a mean pooling in the

features, they used an LSTM to consider salient and temporal features in the encoder. Similar

to Venugopalan et al. (2015b), they also used an LSTM as a decoder to generate the sequence

of words. These models performed better than the previous approaches at the time, and they

could generate sequences effectively without any templates. However, their approaches did

not adequately capture temporal information from the video, and important objects were not

described. Also, their strategies could only generate descriptions for short clips with one action

per clip.

Since then, several approaches based on the encoder-decoder framework using DL

methods have been proposed. They commonly use pre-trained deep learning models, such as

VGGNet (SIMONYAN; ZISSERMAN, 2015) or ResNet (HE et al., 2016), to extract spatial

features from frames. These features are usually combined across the frames by an average

pooling or max-pooling operation, resulting in a single fixed-length feature vector representation
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for a short video clip. Besides, the C3D (TRAN et al., 2015) or I3D (CARREIRA; ZISSERMAN,

2017) models, pre-trained in large datasets such as the Sports-1M (KARPATHY et al., 2014) or

Kinetics (KAY et al., 2017), are used to extract temporal features. Using pre-trained models on

large datasets provides a strong visual representation of objects, actions, and scenes depicted in

the video (VENUGOPALAN et al., 2015b). The use of multimodal data, such as visual, audio,

motion, and textual information, was also explored in some works (JIN et al., 2016; DU et al.,

2019). Due to the higher improvement achieved by such approaches, multimodal data is often

adopted nowadays.

Despite achieving satisfactory results, applying pooling methods to frames may discard

useful information presented in specific frames. To tackle such issue, many approaches have

been proposed to use attention mechanisms to dynamically select spatial and temporal features

focusing on important frames and regions inside them, providing meaningful visual evidence for

caption generation (TU et al., 2017; SONG et al., 2017; AAFAQ et al., 2019; FRANCIS; HUET,

2019; YAN et al., 2020; AHMED et al., 2021; GHADERI et al., 2022; JI et al., 2022).

The attention mechanism has improved the video captioning task, suggesting that this

method can improve descriptions by obtaining more representative and high-quality features for a

given video. Although such approaches generate better descriptions using attention mechanisms,

they can be misused and degrade overall visual caption performance when applied to non-

visual words (e.g., conjunctions and articles). Most of the words generated by video captioning

approaches are non-visual, and their relevance depends on the previously generated one. Thus,

the use of attention mechanisms to align target words with corresponding visual content is

exploited by some approaches (XIAO; SHI, 2018; GAO et al., 2020a; TU et al., 2021). They

employ attention mechanisms to select visual features and video attributes (semantic concepts

generated by a model previously trained) to decide whether the words generated at a time step

depend on visual or contextual information.

Another issue when describing videos in natural language is dealing with edited videos,

including movie ones. Such videos may have scene transitions that can be segmented into short

scenes. Although temporally consistent, they have different appearances, which may affect

feature extraction. Baraldi et al. (2017), Sah et al. (2020) explore such an issue by proposing

boundary detection mechanisms to consider different segments during description generation.

Despite the impressive performance obtained by these methods, they most often suffer

from the hallucination of actions or objects, i.e., the model mentions objects that are not in the
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input video. Hallucinations in video captioning approaches may be caused by inadequate visual

features extracted from pre-trained models, improper influences of source and target contexts

during multi-modal fusion, or exposure bias in the training strategy Ullah e Mohanta (2022).

To overcome the hallucination problem, Zhou et al. (2019) proposed a grounding-

based video description approach integrating a region detection pipeline to better explain the

video descriptions. The authors also introduce the ActivityNet Entities dataset, which provides

entity-level bounding box annotations on the ActivityNet Captions dataset. Nevertheless, such

alignments were inaccurate in representing the interactions and relationships amongst objects

and actions presented in videos.

Unlike Zhou et al. (2019), which focused on object hallucinations, Lu e Gao (2022)

proposed a scene-graph guidance method to better overcome hallucination problems by consider-

ing objects and actions. The method combines video features and scene-graph representation

with a two-layer LSTM structure with attention mechanisms to generate video descriptions.

The use of Graph Neural Network (GNN) for representing a video scene as a graph and

exploring the relationship between entities and region proposals was also investigated (ZHANG;

PENG, 2020; PAN et al., 2020; ZHANG et al., 2020a; LU; GAO, 2022; LI et al., 2022b).

In Zhang e Peng (2020), the authors proposed the object-aware spatio-temporal graph

approach. The encoder module consists of three sub-modules to capture temporal relation,

spatial relation, and the global context. The Temporal Relation component captures the temporal

trajectory of each detected object through the video frames using a bidirectional temporal graph.

The Spatial Relation component employs Graph Convolutional Network (GCN) to process spatial

relations and obtain meaningful features that encode intra-frame interactive information. The

global context is extracted using a Convolutional GRU. The decoder module consists of two

GRU with attention mechanisms for temporal and spatial relation information, respectively. It

utilizes Vector of Locally Aggregated Descriptors (VLAD) representations of objects and frames,

and another GRU is employed to generate the description.

Zhang et al. (2020a) also computed the relationship between objects by representing

the video as a graph. In their approach, each object detected in a video frame was modeled

as a node, and the relationship between objects was learned during the training process using

the GCN model. The description generation consisted of an LSTM with attention mechanisms

under the guidance of the Teacher-Recommended Learning (TRL), which integrates External

Language Model (ELM) during the decoder step. The models using graph model representation



40

have presented promising results by recognizing more detailed objects and their relationships.

In Krishna et al. (2017), it was introduced the Video Dense Captioning dataset to the

new task called dense-captioning events. Unlike the video captioning task, which contains only

one main activity to be described, dense-video captioning aims to detect many actions in a

video and generate a sentence for each video segment. The ActivityNet dataset covers a wide

range of complex human activities and averages 3.65 events per video. Their proposed approach

involves detecting and identifying all events in a given video and describing them in natural

language. Their proposed approach uses Deep Action Proposals (DAP) (ESCORCIA et al., 2016)

to localize temporal event proposals and a caption module based on LSTM to generate a sentence

for each event proposal.

Building from the idea of video-dense captioning, Li et al. (2018) proposed a unified

approach to detect temporal events and then generate a sentence for each detected event by jointly

training them in an end-to-end manner. The Temporal Event Proposal (TEP) integrates three

components (event classification, temporal coordinate regression, and descriptiveness regression)

to produce a set of event proposals with scores for the presence of an event and descriptiveness

in the proposals. The candidate proposals were then ranked, and the Sentence Generator module,

based on LSTM, was trained using reinforcement learning techniques to enhance captioning.

To tackle the temporal dependency between events in a video, Mun et al. (2019)

proposed a framework that explicitly models temporal dependency across events in a video

and leverages visual and linguistic context from prior events for coherent storytelling. The

event proposal network is based on Single-Stream Temporal (SST) action proposals (BUCH

et al., 2017), which provides a representation of each predicted proposal. Then, the proposed

Event Sequence Generation Network (ESGN) selects a series of correlated events and adaptively

determines the number and order of events. Finally, the Sequential Captioning Network (SCN)

employs a hierarchical RNN to generate the captions. This suggests that the order of proposal

events is essential to generate coherent and accurate descriptions.

Zhang et al. (2020b) proposed a Graph-based Partition-and-Summarization (GPaS)

framework, which generates sentences from short video segments and summarizes them in one

sentence. The Bidirection Single-Stream Temporal (Bi-SST) model proposed by Wang et al.

(2018b) was used to predict temporal proposals for possible actions. Each predicted proposal

is partitioned into small video segments to extract visual and textual features for a satisfactory

description. These descriptions are then summarized using both visual and textual features. The
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summarization module uses GCN and LSTM to explore the relationship of words across semantic

levels and generate a single sentence for the proposal event. This way, the summarization explores

different levels of semantic meanings and can help generate better sentences.

A deep learning model architecture called Transformer, initially proposed by Vaswani

et al. (2017), has been employed to tackle various NLP problems and was also adapted to the

video captioning task. The transformer architecture consists of an encoder-decoder structure.

The encoder takes an input sequence and processes it by applying self-attention mechanisms,

allowing the model to weigh the importance of different words or tokens based on their context

within the sequence. On the other hand, the decoder generates the output sequence by attending

to the relevant parts of the input sequence. The key component of the transformer architecture is

the self-attention mechanism, also known as scaled dot-product attention. It computes attention

scores between all pairs of words in a sequence and uses these scores to weigh the contributions

of each word during the encoding or decoding process. This attention mechanism enables the

model to focus on relevant information and improve its ability to understand and generate

coherent sequences.

Motivated by the high computational cost faced by RNNs and their difficult of capturing

long term dependencies, (ZHOU et al., 2018b) proposed a Transformer-based approach for the

dense video captioning task. They proposed a unified end-to-end approach, composed of three

components: a video encoder, a proposal decoder, and a captioning decoder. The video encoder is

composed of multiple self-attention layers, a type of attention mechanism that allows the inputs

to interact with each other and find out to whom they should pay more attention. The Temporal

Action Proposal (TAP) module, based on ProcNets (ZHOU et al., 2018a), was designed to detect

actions in long videos. The captioning decoder module uses Transformers (VASWANI et al.,

2017) to generate a sentence for each event proposal.

Chen et al. (2018) proposed a Two-View Transformer (TVT) model for video captioning

to learn sequential data based on Transformer instead RNN. In particular, fusion blocks are

designed and Transformers exploit information from motion, audio, and spatial features with

attention mechanisms. Experimental results showed that the Transformer with the fusion features

proposed achieved competitive performance with the state-of-the-art approaches.

Since Transformer has been used in video captioning and has also achieved state-of-the-

art results on Neural Machine Translation (NMT) task(MARUF et al., 2021), many researchers

have recently studied the use of transformers in the video captioning task (LIN et al., 2022;
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MAN et al., 2022; LI et al., 2022; YANG et al., 2021a). Despite the promising and competitive

results achieved by Transformer, many papers published in recent years still employ LSTM to

generate captions, as can be seen in Appendix A.

The approaches presented so far hold the closed-set assumption that all possible events

are known during the train or test phase. However, new human actions may arise over time in

real-world dynamic environments.

Wang et al. (2019b) introduced the zero-shot video captioning task, which aims to

describe out-of-domain videos of unseen activities. The proposed Topic-Aware Mixture of

Experts (TAMoE) explores external sources, e.g., Wikipedia and WikiHow, to transfer the

knowledge learned from seen topics to unseen topics and thus. Although such an approach may

describe unseen videos during training, they fail to describe videos unrelated to the known topics

used in training. Moreover, the vocabulary used to describe videos is fixed and may not properly

describe such videos with unknown actions.

An open world scenario, where actions and objects are created at will, requires an

approach to recognize known classes seen during the training stage accurately and deal with

unknown classes not seen during the training or validation stage and without specific vocabulary

in the corpus. In this sense, a video description approach is desired to describe known events

correctly and incrementally learn unknown events. This thesis proposes a method for video

captioning approach in an open-world scenario. To the best of our knowledge, there have been no

studies for the video description task in an open world setting up to this point. Table 1 presents

an overview of video description methods described in this section.
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Table 1 – Summary of video captioning studies. S denotes Spatial features, T denotes Temporal features, R denotes visual Relations, MM denotes Multimodal, NV
denotes Novel Actions, EDL denotes Event Detection and Localization, OW denotes Open-World, and LM denotes Language Model.

N. Author/Year S T R MM NV EDL OW LM Dataset
1 Venugopalan et al. (2015b) AlexNet variant LSTM MSVD
2 Venugopalan et al. (2015a) VGG-16 optical flow LSTM MSVD, MPII-MD, MVAD
3 Jin et al. (2016) VGG-16 C3D * LSTM MSR-VTT
4 Baraldi et al. (2017) ResNet-50 C3D, LSTM GRU M-VAD, MPII-MD e MSVD
5 Krishna et al. (2017) C3D * LSTM ActivityNet Captions
6 Song et al. (2017) ResNet-152 LSTM MSR-VTT, MSVD
7 Tu et al. (2017) Faster R-CNN, GoogLeNet C3D LSTM MSR-VTT, MSVD
8 Chen et al. (2018) ResNet-152, NasNet I3D * Transformer MSR-VTT, MSVD
9 Li et al. (2018) C3D * * LSTM ActivityNet

Captions
10 Xiao e Shi (2018) Inception-V3 LSTM * LSTM MSVD
11 Wang et al. (2018b) C3D * LSTM ActivityNet Captions
12 Zhou et al. (2018b) ResNet-200 optical flow * Transformer ActivityNet Captions,

YouCook2
13 Aafaq et al. (2019) IRv2 C3D * GRU MSR-VTT, MSVD
14 Du et al. (2019) ResNet-152 C3D, optical

flow
* LSTM MSR-VTT, MSVD

15 Francis e Huet (2019) ResNet-152 I3D LSTM MSR-VTT, MSVD
16 Mun et al. (2019) C3D, GRU * LSTM ActivityNet Captions
17 Pei et al. (2019) ResNet-101 ResNeXt-101 GRU MSR-VTT, MSVD
18 Wang et al. (2019b) I3D, LSTM * * LSTM ActivitiNet Captions, MSR-

VTT
19 Zhou et al. (2019) Faster R-CNN, ResNeXt-

101, ResNet-101
LSTM LSTM ActivityNet-Entities

20 Gao et al. (2020a) Resnet-152 C3D LSTM MSVD/MSR-VTT/LSMDC
21 Pan et al. (2020) Faster R-CNN, ResNet-101 I3D STG Transformer MSR-VTT, MSVD
22 Sah et al. (2020) ResNet-152 optical flow * LSTM M-VAD, MSR-VTT, MSVD
23 Yan et al. (2020) GoogLeNet, Resnet-152 C3D * LSTM MSR-VTT, MSVD
24 Zhang e Peng (2020) ResNet-200 VLAD, Con-

vGRU
GCN GRU MSR-VTT, MSVD

25 Zhang et al. (2020a) Faster R-CNN (features),
IRv2

C3D GCN LSTM MSVD/MSR-VTT/Vatex

26 Zhang et al. (2020b) C3D, LSTM * LSTM ActivityNet Captions



44

N. Author/Year S T R MM NV EDL OW LM Dataset
27 Ahmed et al. (2021) VGG-16, InceptionV3,

Xception, faster R-CNN
I3D LSTM MSR-VTT, MSVD

28 Perez-Martin et al. (2021) ResNet-152 ECO, d
R(2+1)D

* LSTM MSR-VTT, MSVD

29 Ryu et al. (2021) ResNet-101 ResNext-101, LSTM MSR-VTT, MSVD
30 Tu et al. (2021) VGG, ResNet-152 * LSTM MSVD, MSR-VTT
31 Yang et al. (2021a) ResNet-101 ResNeXt-101 Transformer MSR-VTT, MSVD
32 Lin et al. (2022) I3D * Transformer MSVD, MSR-VTT, VATEX,

TVC, YouCook2
33 Man et al. (2022) ResNet-200, BN-Inception optical flow * Transformer ActivityNet, YouCook2, and

VideoStory
34 Ghaderi et al. (2022) Swim video

transform
* Transformer MSR-VTT, MSVD, Vatex

35 Ji et al. (2022) Inception-V4 LSTM MSR-VTT, MSVD
36 Li et al. (2022b) IRv2, ResNet-152 optical flow,

I3D
GCN * LSTM Charades, MSR-VTT,

MSVD
37 Li et al. (2022) IRv2 I3D LSTG Transformer MSR-VTT, MSVD
38 Lu e Gao (2022) ResNet-152, ResNet-200 GCN * LSTM ActivityNet Captions, Cha-

rades
39 Ullah e Mohanta (2022) ViTL, Faster-RCNN C3D LSTM MSR-VTT, MVSD
40 Ours ResNet-101,

InceptionResnet-v2
ResNeXt-
101, I3D

* * LSTM MSR-VTT-subet, Liris, Ac-
tivityNet Captions

Source: Developed by the author.
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2.8.2 Datasets for Video Captioning

An important aspect of machine learning methods is the existence of labeled datasets

used for training purposes. In the context of the video captioning task, a dataset with a massive

number of videos with one or more different descriptions per video is desired. This section

presents the datasets most used or cited in the studies found during the literature review.

ActivityNet Captions (KRISHNA et al., 2017) dataset contains 20,000 videos taken

from the ActivityNet dataset (HEILBRON et al., 2015), in which each video has, on average,

3.65 temporally localized sentences and a total of 100k sentences. It was proposed to the dense

video captioning task, which aims to generate multiple informative and diverse sentences for a

video containing short, long or even overlapping events.

Charades (SIGURDSSON et al., 2016) dataset provides 27,847 descriptions of 9,848

videos. Each video has an average length of 30 seconds in 15 types of indoor scenes. There are

also available 66,500 temporally localized intervals for 157 action classes and 41,104 labels

for 46 object classes. It was proposed for activity understanding, including action classification,

localization, and video descriptions.

Large Scale Movie Description Challenge (LSMDC) (ROHRBACH et al., 2017) dataset

is based on MPII Movie Description (MPII-MD) and Montreal Video Annotation Dataset (M-

VAD). There are two versions of the dataset: LSMDC 15, which contains 118,114 sentences

of 118,081 clips from 200 movies, and was made available in a challenge held in conjunction

with the International Conference on Computer Vision (ICCV) in 2015; and the LSMDC 16,

which contains 128,118 sentences of 128,085 clips from 200 movies, and was made available

in a challenge held with the European Conference on Computer Vision (ECCV) in 2016. The

dataset is available for download with restricted access, for scientific or research use only, by

signing the Agreement term available on the challenge website.

M-VAD (TORABI et al., 2015) contains 55,904 sentences of 48,986 clips from 92

video movies. The authors provide an official training/validation/test split, consisting of 38,949,

4,888, and 5,149, respectively. The dataset is available for download with restricted access, for

scientific or research use only, by signing the Agreement term available on the challenge website.

MPII-MD (ROHRBACH et al., 2015) contains 68,375 sentences of 68,337 clips from

94 video movies. The dataset is also available for download with restricted access, for scientific

or research use only, by signing the Agreement term available on the challenge website.
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MSR-VTT (XU et al., 2016) contains 200,000 sentences of 10,000 clips from 7,180

videos. With an average of 20 different sentences per clip, it is publicly available on the internet,

and it is the second most used dataset available. The authors suggest splitting the original dataset

into three independent subsets: 6,513 videos for training, 497 videos for validation and 2,990

videos for testing.

Microsoft Research Video Description Corpus (MSVD) (CHEN; DOLAN, 2011) con-

tains 70,028 sentences of 1,970 clips. It is also publicly available on the internet, and it is

the most used dataset for training and evaluating video captioning methods. The commonly

training/validation/test split firstly proposed by Guadarrama et al. (2013) consists of 1,200, 100,

and 670, respectively.

Vatex (WANG et al., 2019a) contains 412,690 sentences, in both English and Chinese

languages, of 41,269 clips taken from the Kinetics-600 dataset (KAY et al., 2017). The authors

provide an official training/validation/test split, consisting of 25,991, 3,000, and 6,000, respec-

tively. Also, a secret test set with 6,278 human-annotated captions was held out for challenge

purposes.

TACos-Multilevel (ROHRBACH et al., 2014) contains 52,593 descriptions of 14,105

video clips about person’s cooking procedures. It provides three levels of detailed descriptions

for complex videos: one sentence for a coplex event; short sentence for a video segment; and

detailed description for each step of the cooking procedures.

YouCook2 (ZHOU et al., 2018a) contains 15,400 sentences of video clips in 2000 long

untrimmed videos downloaded from YouTube which are all instructional cooking recipe videos;

It is the largest task-oriented, instructional video dataset in the vision community.

Although the UET-Surveillance (DILAWARI; KHAN, 2019), Sports Video Narrative

Dataset (YAN et al., 2022), SVCDV (QI et al., 2018), and TrecVid 2016 (SALEEM et al.,

2019), TVC(LEI et al., 2020) , VideoStory(GELLA et al., 2018), SVN(YAN et al., 2022), and

EmVidCap(WANG et al., 2021) datasets were used by some approaches found in the literature,

as shown in Table 1, they were not considered for this research because they currently are not

available or were proposed for specific tasks different than video captioning task.

LSMDC is the largest dataset in terms of number of videos (118,081) with one sentence

for each video. On the other hand, the ActivityNet Captions has a much larger vocabulary

(50 times more different words in the corpus), as summarized in Table 2. The vocabulary size

usually indicates a higher diversity of objects, actions and information details and, therefore,
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can be used to describe, with more diversity, the video scenes. However, they usually are sparse

and unbalanced and therefore, may produce more noise in the alignments. A small vocabulary

tends to have similar syntactic structure and can also lead to diverse descriptions using different

combinations of words.

Table 2 – Datasets used for evaluating video description approaches.
Dataset Domain N. Videos clips N. Sentences Vocabulary
ActivityNet Captions Social Media 20,000 100,000 1,348,000
Charades Daily Activities 9,848 27,847 4,144
LSMDC Movies 118.081 118,114 25,610
M-VAD Movies 48,986 55,904 17,609
MPII-MD Movies 68,337 68,375 24,549
MSR-VTT Open 10,000 200,000 29,316
MSVD Open 1,970 70,028 13,010
TACoS-MultiLevel Cooking 14,105 52,593 2,000
YouCook2 Cooking 2,000 15,400 2,600
Vatex Open 41,269 412,690 35,609

Source: Developed by the author.

Although large datasets are available for the video description task, the most used

datasets are MSVD and MST-VTT. They are challenging enough by containing descriptions of

open-domain videos and have a small vocabulary, achieving more easily satisfactory results.

ActivityNet Captions contains untrimmed videos from YouTube with annotated tempo-

ral sentences. Each sentence covers one segment of the video, describing various occurring events.

These events can occur over long or short periods of time. It also has an overlap of 10% of the

temporal descriptions, indicating the presence of concurrent events. The main dataset limitation

is that only C3D features for visual frames are provided. Although there are downloadable video

URLs, many of them are unavailable. Moreover, the testing set labels are not publicly available,

and the performance is usually reported on the validation set.

Similar to ActivityNet Captions, the YouCook2 dataset was also created from Youtube

Videos and has the same limitation regarding video availability. The authors only make available

preprocessed frame features extracted by the ResNet network. Also, the descriptions of 210

testing videos are unavailable, and the validation set is often used to report the performance.

2.8.3 Metrics for video captioning evaluation

A video shot can be described in different ways and with different levels of detail.

Therefore, automatically evaluating a generated sentence is a challenging task.
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Figure 11 – Taxonomy of evaluation metrics.

Source: Developed by the author.

This section analyzes the automatic evaluation metrics commonly employed in the

video caption task. In addition, some metrics are also presented that were explicitly proposed

for image captioning, but that can also be useful and promising for the video captioning task.

The taxonomy and summary of evaluation metrics presented in this Section were published in

(INÁCIO, 2023).

The analyzed metrics can be divided into two primary categories: reference-based

and reference-free. Then, each category can additionally be split into learned and hand-crafted

subcategories. The hand-crafted approaches employ deterministic similarity measures between a

candidate and the reference sentences or the input visual content (video or image). The learned

methods usually require training a (neural network) model to predict the likelihood of a candidate

caption being a machine or human-generated description.

In the proposed taxonomy, we also consider the way these metrics encode the sentences

to compute the similarity score, which can be divided into four main ways:

1. Word-matching: when n-grams are compared;

2. Scene-graph: when sentences are encoded as a scene-graph prior to comparison;

3. Word embedding: when using a pre-trained word-embedding to encode sentences;

4. Feature composition: when different features are considered.

Moreover, some metrics also include visual content (concepts captured in images) to

measure the similarity. They were also categorized in the proposed taxonomy.
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2.8.3.1 Reference-based metrics

Existing datasets for video captioning consist of a set of videos paired with captions in

natural language, usually written by humans, which describe their visual content. Most metrics

used for evaluating video captioning approaches are based on those sentence references. Thus,

given a candidate sentence generated by the approach, the metrics evaluate the sentence by

measuring its similarity against a set of reference sentences associated with a given visual

content. A brief description of the reference-based metrics is presented below.

BLEU (PAPINENI et al., 2002) is a metric proposed for automatic translation to

measure the proximity of the reference generated with one or more reference human description.

It is based on modified 𝑛-grams precision and it is usually computed for n-grams of size 1 to

4 and it is reported as a percentage value. The grammatical correctness or intelligibility is not

considered. BLEU is calculated as follows:

𝐵𝑃 =

⎧⎨⎩ 1, if 𝑐 > 𝑟

exp1− 𝑟
𝑐 , if 𝑐 <= 𝑟

(15)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 * exp(
𝑁∑︁

𝑛=1

log(𝑝𝑛)

𝑁
) (16)

where BP is a brevity penalty to penalize candidate sentences longer than their references, 𝑐 is the

length of a candidate sentence, 𝑟 is the length of a reference sentence, 𝑁 is the length of n-grams,

and 𝑝𝑛 is the geometric average of the modified 𝑛-grams. A high score in this metric may be

associated with a large number of references. According to Denkowski e Lavie (2010 apud

SELJAN et al., 2012), BLEU scores above 0.30 generally reflect an understandable sentence,

and above 0.50 reflect good and fluent candidate sentences.

METEOR (LAVIE; AGARWAL, 2007) is also a metric initially proposed for automatic

translation and designed to address the weakness observed in the BLEU metric, including the

lack of recall, the use of higher-order 𝑛-grams, the lack of explicit word-matching between

candidate and reference sentences, and the use of geometric averaging of 𝑛-grams. It consists of

creating alignment between unigrams from candidate and reference sentence. Each unigram from

the candidate can have zero or one mapping to a unigram from the reference sentence. The metric

is based on the precision, recall, and harmonic mean and consists of creating alignment between

unigrams from candidate and reference sentence. The word matching supports morphological
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variants including stemming, and synonyms. Once the alignment is computed, the score is

computed as follows:

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 0.5 * ( 𝑐

𝑢𝑚

) (17)

𝐹𝑚𝑒𝑎𝑛 =
10𝑃𝑅

𝑅 + 9𝑃
(18)

𝑀𝐸𝑇𝐸𝑂𝑅 = 𝐹𝑚𝑒𝑎𝑛 * (1− 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) (19)

where c is the number of adjacent unigrams between candidate and reference sentence, 𝑢𝑚 is the

number of unigrams mapped, 𝑃 is the precision (ratio between the number of unigrams from

the candidate found in reference over the number of unigram of the candidate sentence ), 𝑅 is

the recall (ratio between the number of unigrams from the candidate found in reference over the

number of unigrams of the reference sentence). METEOR score provides a better correlation

with human judgments than the BLEU score.

CIDEr (VEDANTAM et al., 2015) is a consensus-based metric originally proposed

for image captioning and measures the similarity of a generated sentence against a majority

of a set of ground truth sentences written by humans. It employs morphological variations by

changing each word in its stem or root form to resolve word-level correspondences. Then, the

Term Frequency-Inverse Document Frequency (TF-IDF) is performed for each 𝑛-gram. Finally,

the average cosine similarity is computed between the candidate and the reference sentences, as

follows.

𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖,𝑆𝑖) =
1

𝑚
*
∑︁
𝑖=1

𝑔𝑛(𝑐𝑖).
𝑔𝑛(𝑠𝑖𝑗)

||𝑔𝑛(𝑐𝑖)||.||𝑔𝑛(𝑠𝑖𝑗||
(20)

𝐶𝐼𝐷𝐸𝑟(𝑐𝑖,𝑆𝑖) =
𝑁∑︁

𝑛=1

𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖,𝑆𝑖)

𝑁
(21)

where 𝑔𝑛(𝑐𝑖) and 𝑔𝑛(𝑠𝑖𝑗) corresponds to all n-grams of length 𝑛 from candidate and reference

sentences, respectively, and ||𝑔𝑛(𝑐𝑖)|| and ||𝑔𝑛(𝑠𝑖𝑗)|| are the magnitude of the vectors 𝑔𝑛(𝑐𝑖) and

𝑔𝑛(𝑠𝑖𝑗), respectively.

The CIDEr-D is a variation of CIDEr commonly used to evaluate video description

approaches. In this metric, the stemming step was removed, a Gaussian penalty based on the

difference between candidate and reference sentence lengths was introduced, and added clipping
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to the 𝑛-gram counts in the CIDEr numerator. These modifications aims to avoid sentences with

high scores but with poor results when judged by humans.

ROUGE (LIN, 2004) is a metric proposed initially to determine the quality of summa-

rization. It consists of four different variations: ROUGE-N (N-gram Co-Occurrence Statistics),

ROUGE-L (Longest Common Subsequence A), ROUGE-W (Weighted Longest Common Sub-

sequence), and ROUGE-S (Skip-Bigram Co-Occurrence Statistics). ROUGE-L is used for Video

Descriptions, and it is applied in two different levels: sentence-level and summary-level. It

computes the recall and precision scores of the Longest Common Subsequences (LCS) between

a sentence X of length 𝑚 and a sentence Y of length 𝑛. The similarity between two sentences is

given as follows:

𝑅𝑙𝑐𝑠 =
𝐿𝐶𝑆(𝑋, 𝑌 )

𝑚
(22)

𝑃𝑙𝑐𝑠 =
𝐿𝐶𝑆(𝑋, 𝑌 )

𝑛
(23)

𝐹𝑙𝑐𝑠 =
1 + 𝛽2𝑅𝑙𝑐𝑠𝑃𝑙𝑐𝑠

𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠

(24)

where LCS(X, Y) is the length of the longest common subsequence between X and Y, and 𝛽 is a

weighting factor that specifies different importance to precision and recall and is usually set to a

value of 1.2 (CHEN et al., 2015).

Semantic Propositional Image Caption Evaluation (SPICE) (ANDERSON et al.,

2016) is the most recent metric proposed for image captioning. It was designed to tackle the

limitations of the existing automatic evaluation metrics based on 𝑛-grams, such as BLEU,

METEOR, and CIDEr. These metrics usually assigns a low score to a generated sentence that

conveys almost the same meaning of the reference but has no words in common.

The caption quality is computed based on the F1-score using a graph-based semantic

representation called scene graph, which uses a dependency parse tree to encode objects, their

attributes, and relationships. These encoded concepts are organized as tuples containing one,

two, or three elements. The similarity between tuples in two scene graph is computed as follows:

𝑆𝑃𝐼𝐶𝐸(𝑐, 𝑆) =
2.𝑃 (𝑐,𝑆).𝑅(𝑐, 𝑆)

𝑃 (𝑐, 𝑆) +𝑅(𝑐,𝑆)
(25)
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where 𝑃 (𝑐,𝑆) is the precision of the matching tuples, and 𝑅(𝑐, 𝑆) is the recall of the matching

tuples. During the match analysis between tuples, synonym, and lemmatization techniques are

considered to allow the match of words with different inflection forms.

BLEU, METEOR, ROUGE, and SPICE range from 0 to 1, with 1 as identical to the

references. CIDEr ranges from 0 to 10, with 10 as identical to the reference.

Word Mover’s Distance (WMD) is a distance measure proposed by Kilickaya et al.

(2017) to calculate the dissimilarity between two text documents. It was inspired by the “Earth

Mover’s Distance”, employing a solver of the “transportation problem”.

This metric aimed to assess the semantic distance between documents by representing

the words as word embedding vectors. It calculates the minimum distance that words in one

document should travel to the words in another document.

This metric was not designed for image or video captioning evaluation. However, it has

been used to evaluate image captioning approaches (LAINA et al., 2019) and, over time, it has

inspired the development of other metrics.

WEmbSim. Similar to WMD, WEmbSim (SHARIF et al., 2020) uses word embeddings

to encode the words in an embedding space. Then each sentence is represented by a feature

vector computed using the Mean of Word Embeddings (MOWE). Then, the distance between

two sentences is computed by the cosine distance. This metric was designed to automatically

evaluate image captioning systems in terms of system-level performance. Similar to SPICE,

WEmbSim neglects fluency and focuses only on semantics and may fail to distinguish sentences

with the same words in different ordering.

Bidirectional Encoder Representations from Transformers Score (BERTScore) (Z.

et al., 2020) is an automatic metric for machine translation and image captioning systems. Tokens

are represented by contextual embeddings using the Bidirectional Encoder Representations

from Transformers (BERT) model (DEVLIN et al., 2019), which can generate different vector

representations for the same word in different sentences. Then, the pairwise cosine similarity is

computed, and a greedy matching procedure is used to maximize the matching similarity score.

SeMantic and linguistic UndeRstanding Fusion (SMURF) (FEINGLASS; YANG,

2021) is an automatic evaluation metric that combines a novel semantic evaluation algorithm

Semantic Proposal Alikeness Rating using Concept Similarity (SPARCS) and novel fluency

evaluation algorithms Stochastic Process Understanding Rating using Typical Sets (SPURTS)

and Model-Integrated Meta-Analysis (MIMA) for both caption-level and system-level analysis. A
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Transformer-based model such as BERT or Robustly optimized BERT approach (RoBERTa) (L.

et al., 2019) is used to extract features from texts and capture both the syntax and morphology of

the text.

VIsual Fidelity for Image Description EvaLuation (VIFIDEL) (MADHYASTHA et

al., 2019) is inspired by the WMD metric and estimates the faithfulness of a generated caption

concerning the content of a given image. It measures the similarity between label objects detected

in the image and the words in the generated descriptions using WMD. It also can be used with

reference descriptions when available.

Text-to-Image Grounding based metric for image caption Evaluation

(TIGEr) (JIANG et al., 2020) is a metric proposed for evaluating image captioning systems that

consider both image content and sentence references.

The metric uses a pre-trained image-text grounding model to compute features from an

image-sentence pair in a common semantic space, indicating the similarity between image and

sentence. The final score is computed by combining two metric systems: Region Rank Similarity

(RRS) and Weight Distribution Similarity (WDS).

Relevance, Extraness, Omission (REO). Unlike other metrics that compute a numeric

score that indicates the quality of a candidate sentence or video captioning system, REO provides

an informative assessment. This measure was introduced by Jiang et al. (2019) and evaluates the

quality of captions, generating scores from three different perspectives: Relevance, Extraness,

and Omission. Similar to the TIGEr metric, REO first extracts features from images and sentences

(reference and candidate) using a pre-trained model to build a multimodal semantic space. The

relevance score is computed by the cosine similarity distance between the candidate and reference

features. Extraness and Omission scores are calculated by performing an orthogonal projection

of image features and reference sentence features. A final score can be computed by averaging

the three aforementioned scores.

Vision-and-Language BERT Score (ViLBERTScore) (LEE et al., 2020) was inspired

by the excellent performance of word-embedding techniques, especially the BERTScore model,

in many text-generation tasks. It computes image-conditioned embeddings for each token using

Vision-and-Language BERT (ViLBERT) (LU et al., 2019a) from both generated and reference

texts. A cosine similarity among the pair of tokens from the candidate and reference caption

is computed. The greedy matching process between these tokens is expressed via the cosine

similarity of their embeddings. The best matching token pairs are used for computing precision,



54

recall, and F1-score.

Learning to Evaluate Image Captioning (LEIC) (CUI et al., 2018) is a learning-based

discriminative evaluation metric trained to distinguish between human and machine-generated

captions. The predicted and reference captions (when available) and images are encoded as

feature vectors and then fed into a softmax classifier, which outputs the probability of being a

human-written or machine-generated description.

Fidelity and Adequacy ensured Image caption Evaluation metric (FAIEr) (WANG

et al., 2021) is another learning-based metric to evaluate the fidelity and adequacy of captions

generated by image caption systems. It employs the same scene graph parser used by SPICE to

represent sentences as a textual scene graph. To build a visual scene graph, an object detector

is used to detect and extract features of objects from an image. Each object detected is a graph

node, and the relationship-level representation is encoded using a GCN. Visual and reference

scene graphs are fused together by using an attention mechanism. The final score is computed by

measuring the similarity between two scene graphs at the object and relationship levels.

Neural Network based Evaluation Metric (NNEval) (SHARIF et al., 2018) is also

a learning-based metric proposed to evaluate image captioning systems. This metric considers

lexical and semantic information using a composition of well-established metrics such as BLEU,

METEOR, CIDEr, SPICE, and WMD. Instead of directly using candidate and reference sentences

to train the metric, the set of composed features of the scores generated by each individual metric

is considered. Then, the feature vector is used to feed a feed-forward neural network, which

outputs the probability of an input sentence being human-generated.

Learned Composite Metric for Caption Evaluation (LCEval) (SHARIF et al., 2019)

is an extension of the NNEval metric. It is also a learning-based metric made up of different

computed metrics. However, unlike NNEval, which combines all features into a feature vector,

LCEval creates three feature subgroups based on the lexical, semantic, and syntactic properties.

The lexical features include BLEU, METEOR, ROUGE-L, and CIDEr. The semantic features

consider SPICE, WMD, and MOWE. Finally, the syntactic features are extracted using the Head

Word Chain Matches (HWCM), which captures the syntactic similarity between sentences using

the tree structure of the sentences.
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2.8.3.2 Reference-free metrics

Due to the known limitations of the existing metrics based on reference sentences,

mainly regarding the difficulty of obtaining several possible ways of describing the same visual

content, some reference-free metrics were recently proposed. In such metrics, visual and textual

features are extracted using pre-trained neural network models for the image-text matching task.

Then, a similarity score is computed. A brief description of the reference-free metrics studied is

described below.

Contrastive Language-Image Pre-training Score (CLIPScore) was introduced by

(HESSEL et al., 2021) for assessing image captioning systems without reference sentences.

It uses the Contrastive Language-Image Pre-training (CLIP) (RADFORD et al., 2021) model,

a cross-modal retrieval model pre-trained on a dataset comprising 400M pairs of images and

captions, to extract features from images and candidate sentences. Then, the final score is

computed by measuring the cosine similarity between features. Besides, the metric can be

extended to incorporate references when available.

Unreferenced Metric for Image Captioning (UMIC) (LEE et al., 2021) is also a

free-reference metric proposed to evaluate the quality of sentences generated by image captioning

systems. It uses image features extracted from the UNiversal Image-TExt Representation learning

(UNINTER) (CHEN et al., 2020), a pre-trained model to predict alignment between images and

texts. The model is trained to distinguish between the reference sentences and negative captions

using synthetic negative samples.

Embedding Matching-based Score (EMScore) (SHI et al., 2022) is a free-reference

metric proposed for evaluating video captioning approaches. It uses the pre-trained image-

language model CLIP, mentioned before, to extract video and text embeddings. The final score

is computed by combining a fine-grained score using a sum of cosine similarities between

frames and word embeddings, and a coarse-grained score using the similarity between the

global embeddings of the video and the candidate caption. The reference sentences can also be

considered as an extended metric called EMScore_ref.
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3 PROPOSED VIDEO DESCRIPTION METHODS

This Chapter presents the methods proposed for performing video descriptions in an

open-world scenario. As discussed in Section 1.1, a video description approach in an open-world

scenario may be able to describe known events, detect unknown events, and learn unknown new

events by updating the existing model without re-training the whole model from scratch.

The first Section of this Chapter presents a method for performing video descriptions

in an open-set scenario. The main objective is to describe concurrent known events and detect

unknown ones. The method and results of this Section were published in (INÁCIO et al., 2021).

The second Section of this Chapter presents an incremental learning method for the

video description approach. The proposed method focuses on updating the existing method

to learn how to describe unknown events without forgetting the known ones. Note that it is

essential to provide descriptions in natural language for the detected unknown videos before the

incremental learning training stage. We assume that this task will be accomplished by human

intervention.

3.1 VIDEO DESCRIPTION IN AN OPEN-SET SCENARIO

3.1.1 Introduction

This Section presents a novel open-set video captioning framework that aims to describe,

in natural language, both single and concurrent events occurring in a video. The proposed

approach is based on the encoder-decoder framework and uses an open-set action recognition

model to detect unknown actions, thus avoiding incorrect descriptions and hallucinations. It

also uses a detection-and-tracking-object-based mechanism followed by a background blurring

method to define the targets and recognize the concurrent actions to be described. Additionally,

we employ the TI3D proposed by (GUTOSKI et al., 2021a), which uses deep metric learning,

and the EVM (RUDD et al., 2018) as the open-set classifier. The remainder of this Section is

organized as follows. Section 3.1.2 presents the proposed method in detail, and Section 3.1.3

presents the evaluation protocol employed in the experiments.
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Figure 12 – An overview of the OSVidCap framework.

Source: Developed by the author.

3.1.2 The proposed method

This Section presents a framework proposed for video description in an open-set

scenario called OSVidCap. It comprises five main modules: Target Detection and Localization

(TDL), Features extraction, Open set module, Encoder, and Caption Generation. The overall

architecture of the method is presented in Figure 12 and detailed as follows.

3.1.2.1 Target Detection and Localization (TDL)

Detecting multiple concurrent events in a given video is essential to adequately describe

them in natural language. The TDL module consists of a mechanism designed to detect and track

significant moving objects in a given video, which are considered the main concepts of the event.

The output of this module consists of video segments for each moving object detected with a

blurred background.

More specifically, the TDL module detects and tracks humans but is easily adaptable to

other moving objects (such as animals and vehicles). We employ the Yolo-v4 (BOCHKOVSKIY

et al., 2020) to detect humans and track them using the Deep SORT method (WOJKE et al., 2017).

The human-human or human-object interaction is captured when they overlap in consecutive

frames. In such cases, the entities are considered a single region of interest in the final video

segment.

Finally, inspired by Tsai et al. (2020), we use a background blur method to guide the

sentence generator module to focus on each region of interest in each video segment while

generating the sentences.
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3.1.2.2 Feature extraction

When describing human actions, it is important to consider details of the person, place,

and action performed (SHIGETO et al., 2020). Thus, the Encoder module comprises four main

classes of features extracted from a given input video, as shown in Figure 12. All these features

were extracted using off-the-shelf models, pre-trained on large datasets, which proved to be

beneficial for video captioning tasks (VENUGOPALAN et al., 2015b), detailed as follows:

• Scene type features: A sample of 16 evenly-spaced frames per video was used to extract

the max-pooling features from the last convolutional layer using the VGG model pre-

trained on the Places365 dataset 1. The final representation is a 512-dimensional feature

vector.

• Spatial Features: For extracting spatial features, we follow (YANG et al., 2021a) and used

the ResNet-101 model (HE et al., 2016; RYU et al., 2021), pre-trained on the Imagenet

dataset. From a sample of 16 equally spaced frames, we extracted a 2048-dimensional

semantic feature vector of each frame from the last pooling layer. Then, an average pooling

operation was performed, resulting in the final feature vector of dimension 2048.

• Temporal Features: Following (YANG et al., 2021a; RYU et al., 2021), The ResNeXt-101

with 3D convolutions (HARA et al., 2018), pre-trained on the Kinetics dataset (KAY et al.,

2017), was used to extract a 2048-dimensional semantic feature vector for every 16 frames

(with 50% of overlap) and then, followed an average pooling to obtain a final vector with

2048 features.

• Human body skeleton features: We used the ST-GCN model (YAN et al., 2018), pre-

trained on the Kinetics dataset, to extract meaningful complementary information for the

spatial and temporal features. This is a graph-based model for modeling dynamic skeletons

extracted with the OpenPose toolbox (CAO et al., 2017). It is aimed at capturing motion

information in dynamic skeleton sequences. We performed a global max-pooling operation

over all the skeleton sequences to obtain a single 256-dimension feature vector for a given

video. Combining skeleton features with spatial and temporal features was intended to

improve the performance in action recognition and, consequently, in the descriptions of

the videos (LI et al., 2020).
1 Weights available at https://github.com/GKalliatakis/Keras-VGG16-places365.git
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Except for the scene-type features extracted from the original video frames, all other

features were computed with the video segment processed by the TDL module. All of these

features are employed in the encoder model to compute the final vector representation of the

features.

3.1.2.3 Open set module

This module is based on the EVM model, which is described in Section 2.5 and uses

features extracted from the TI3D, described in Section 2.6, for detecting unknown events.

Following the training strategy proposed by Gutoski et al. (2021a), semi-hard and

hard triplets were mined for each training epoch. Semi-hard triplets are defined as triplets

in which the distance between the Anchor and Positive is smaller than the distance between

the Anchor and Negative videos, but this distance is smaller than the margin parameter, i.e.,

Θ(𝑓(x𝑎), 𝑓(x𝑝)) < Θ(𝑓(x𝑎), 𝑓(x𝑛)) < Θ(𝑓(x𝑎), 𝑓(x𝑝))+𝛼. Hard triplets are defined as triplets

in which the distance between the Anchor and Positive is larger than the distance between the

Anchor and Negative, i.e., Θ(𝑓(x𝑎), 𝑓(x𝑝)) > Θ(𝑓(x𝑎), 𝑓(x𝑛)). This triplet mining strategy

ensures that only triplets with a positive loss w.r.t. Eq. 13 are used during training.

The TI3D network was trained for 20 epochs, updating the triplets every epoch using

the hard and semi-hard triplets. The learning rate was set to 0.02, the margin parameter to 0.2,

and the batch size to 256. The TI3D network was initialized with the weights of the I3D network.

Then, the EVM was trained using features from training videos extracted using the

TI3D network. The output of the module supports the caption generation by signalling whether

the action belongs to a known or unknown class. For the EVM, the tail size 𝜏 was set to 10%

of the number of samples in the train set, the cover threshold for model reduction was set to

0.5, and the probability of inclusion (𝛿) to 0.5. These parameters were empirically set, based on

previous experiments on the datasets used in this study.

3.1.2.4 Encoder

This block aims to derive a feature vector representing the essential concepts to predict

the next word for describing the ongoing action in the video. All the previous features extracted

from the video were mapped into a common high-level abstract space by a FCN with ReLU

activation function, as depicted in Figure 12.
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Before Feature Fusion (FF) step, we fuse the output processed by the Open Action

Recognition component with the processed Temporal Features (F𝑡𝑝) to consider the unknown

action information. Notice that the processed Place-type features (F𝑝), Spatial features (F𝑠𝑝), and

Human body skeleton features (F𝑠𝑘) were remained to preserve essential information for caption

generation, such as information about the place-type and number of people detected in the scene.

The output calculation of the encoder module provided by the FF can be formulated as

follows:

F𝑝 = Φ(W1 * U𝑝 + b1), (26)

F𝑠𝑝 = Φ(W2 * U𝑠𝑝 + b2), (27)

F𝑠𝑘 = Φ(W3 * U𝑠𝑘 + b3), (28)

F𝑡𝑝 = Φ(W4 * U𝑡𝑝 + b4)⊗O𝑢𝑘, (29)

FF = F𝑝 ⊙ F𝑠𝑝 ⊙ F𝑠𝑘 ⊙ F𝑡𝑝, (30)

in which W1, W2, W3, and W4 are weight matrices; U𝑝, U𝑠𝑝, U𝑠𝑘, and U𝑡𝑝 are features from the

input modules: scene type, spatial, human body skeleton, and temporal, respectively; b1, b2, b3,

and b4 are the bias vectors; Φ denotes the ReLU activation function; ⊗ denotes element-wise

multiplication operator; * is the convolution; ⊙ is the concatenation operator; and O𝑢𝑘 denotes

the feature vector provided by the TDL module.

3.1.2.5 Caption Generation

This module consists of the sentence generation and uses two LSTM, a variant of

RNN, which works better with long-term dependencies. The first LSTM encodes the preceding

sequence of words 𝑆 = 𝑠0, 𝑠1, . . . , 𝑠𝑡−1. The second LSTM predicts the next word based on the

output of the first LSTM combined with visual features computed by the Encoder module. The

LSTM calculation formula used in this work is given by the following equations:

h𝑡 = 𝑡𝑎𝑛ℎ(C𝑡) * o𝑡, (31)

C𝑡 = 𝜎(f𝑡 * C𝑡−1 + i𝑡 * �̃�𝑡), (32)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(x𝑡U𝑔 + h𝑡−1W𝑔), (33)

in which U𝑔 and W𝑔 are weight matrices; x𝑡 is the input at time 𝑡; h𝑡−1 is the previous state; and

f𝑡, i𝑡, and o𝑡 are the forget, input and output gates, respectively. The calculations of unit gates are:

f𝑡 = 𝜎(x𝑡U𝑓 + h𝑡−1W𝑓 + b𝑓 ), (34)
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i𝑡 = 𝜎(x𝑡U𝑖 + h𝑡−1W𝑖 + b𝑖), (35)

o𝑡 = 𝜎(x𝑡U𝑜 + h𝑡−1W𝑜 + b𝑜), (36)

in which U𝑓 , U𝑖, U𝑜, W𝑓 , W𝑖, and W𝑜 are weight matrices, b𝑓 , b𝑖 and b𝑜 are bias vectors, and

𝜎 denotes the sigmoid activation function.

3.1.3 Evaluation Protocol

The captions generated by the proposed framework were evaluated using automatic met-

rics frequently used for comparison with the state-of-the-art methods: BLEU (PAPINENI et al.,

2002), METEOR (LAVIE; AGARWAL, 2007), ROUGE-L (LIN, 2004), and CIDEr (VEDAN-

TAM et al., 2015). Although these metrics have limitations and new promising metrics have

been proposed recently, as presented in Section 2.8.3, such metrics are widely accepted in the

literature to report the efficacy of video description approaches. All metrics were computed

using the COCO-caption API (CHEN et al., 2015). BLEU is a metric based on n-grams pre-

cision modified and measures the predicted sentence proximity with one or more reference

descriptions. Following most previous works for video captioning (AAFAQ et al., 2019), we

used four-grams with the BLEU metric, which is referred to as BLEU-4. METEOR is based

on the precision, recall, and harmonic mean and consists of creating an alignment between

uni-grams from candidate and reference sentences. The word matching supports morphological

variants including stemming and synonyms. CIDEr is a consensus-based metric and measures the

similarity of a generated sentence against a majority of a set of ground-truth sentences. It employs

morphological variations by changing each word in its stem (or root form) to resolve word-level

correspondences. ROUGE-L computes the recall and precision scores using the LCS technique

and tends to reward long sentences with high recall. In our experiments, BLEU, METEOR, and

ROUGE metrics were normalized to range from 0 to 100, with 100 as identical to the reference

sentence. CIDEr ranges from 0 to 1000, with 1000 as identical to the reference.

3.2 VIDEO DESCRIPTION IN A CLASS-INCREMENTAL LEARNING SETTING

3.2.1 Introduction

Incremental learning techniques aim to continuously learn new tasks over time without

forgetting previous ones. In such a scenario, the dataset used for training is divided into a series
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of tasks, with the learner only having access to the data of a single task during each training

session. In contrast to incremental learning tasks that require a task-ID to perform predictions,

class-incremental learning must be capable of distinguishing between all classes from all tasks at

inference time, as it lacks access to the task-ID (MASANA et al., 2023).

Most class-incremental learning studies focus on the classification problem (BE-

LOUADAH et al., 2021), and little attention has been given to sequential problems. The proposed

method presented in this section addresses the problem of video description in class-incremental

learning settings. Unlike the classification task, which contains a set of disjoint labels, the video

captioning task contains a sequence of words, such as articles, verbs, nouns, and others, with

many of these words being shared among tasks. Additionally, synonymous and homonymous

words may be present in different tasks, making such tasks more challenging.

The method presented in this section is based on the OSVidCap framework, which uses

the LSTM network. To tackle the catastrophic forgetting problem often faced by DL models,

attention masks are employed to identify the essential set of neurons in each layer of the caption

generator for each task and deactivate them while learning new tasks. Figure 13 presents a

high-level overview of the proposed approach.

Firstly, the dataset is split into tasks, with each task containing samples from one or

more classes. Here, classes are considered a set of related activities that share characteristics

or attributes, allowing grouping and categorizing data instances based on their similarities and

assigning them to specific class labels. For instance, classes could include activities such as make-

up, dancing, cooking, and talking on the phone. Additionally, each task contains its vocabulary,

comprising shared words among tasks and task-specific words exclusively used within that

particular task.

Then, the model is sequentially trained from task 𝑡 = 1 to 𝑛. When training the first

task, the input and output layers are initialized based on the vocabulary size of the current task.

Before training a new task (𝑡 > 1), the network is expanded to accommodate new knowledge

from the current task. Additionally, specific neurons are frozen based on their relevance from

previous tasks, computed using the attention mask mechanism described in detail in Section

3.2.2. When completing the training for a task 𝑡, the performance is reported using the testing

data of the current task. Furthermore, it also reported the performance in previous tasks to assess

the forgetting rate.
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Figure 13 – High-level overview of the proposed class-incremental learning approach.

Source: Developed by the author.

3.2.2 Model Architecture

The proposed method adopts the same encoder-decoder architecture used in the OS-

VidCap framework described in Section 3.1.2. The encoder step extracts video features using

four off-the-shelf models pre-trained on large datasets. The extraction of scene and skeleton

features follows the protocol outlined in Section 3.1.2.2. For Spatial features, we sample n

equally-spaced frames from a given video and employ the InceptionResnet-v2 (SZEGEDY et

al., 2017), pre-trained on the Imagenet dataset, to extract a set of features 𝑉𝑛 = 𝑣0, 𝑣1, 𝑣2, ..., 𝑣𝑛,

where 𝑛 is the number of sampled frames. Then, an average pooling operation was performed

into 𝑉𝑛, resulting in a final feature vector of dimension 1536. Following previous studies (WANG

et al., 2018c; DENG et al., 2022), it was selected 𝑛 = 40 frames. For temporal features, the I3D

network (CARREIRA; ZISSERMAN, 2017), pre-trained on the Kinetics dataset (KAY et al.,

2017), was used to extract a 1024-dimensional feature vector of each video. Finally, a linear
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projection is applied to the concatenated feature vector for dimensionality reduction purposes,

resulting in a final vector of size 512.

The decoder is similar to that proposed by DEL CHIARO et al. (2020), which was

inspired by the Hard Attention to the Task (HAT) approach (SERRA et al., 2018) and extends

the LSTM network by incorporating attention masks to overcome the catastrophic forgetting

problem. The proposed approach differs from DEL CHIARO et al. (2020) in four main aspects:

i) the proposed method is designed for the video captioning task and, therefore, considers

video features as the input; ii) the proposed architecture is dynamically expanded to learn new

knowledge from the new task; iii) We did not use the binary mask in the classifier; iv) during

the inference time, the proposed method does not consider the task-ID and must, therefore, be

capable of describing a given video with all available vocabulary. Figure 14 provides an overview

of the proposed approach.

The proposed approach extends the LSTM network by incorporating two attention

masks to control the use of network neurons for a given task. The computation of these attention

masks is performed as follows:

m𝑥 = 𝜎(𝑠A𝑥𝑡
𝑇 ) (37)

mℎ = 𝜎(𝑠Aℎ𝑡
𝑇 ) (38)

where 𝜎 refers to the sigmoid activation function, 𝑡 is a one-hot task vector, 𝐴𝑥 and 𝐴ℎ are

embedding matrices, and 𝑠 is a positive scaling factor. The 𝑠 parameter is linearly annealing

during training, as suggested by Serra et al. (2018), and is defined as 𝑠 = 1
𝑠𝑚𝑎𝑥

+(𝑠𝑚𝑎𝑥− 1
𝑠𝑚𝑎𝑥

) 𝑏−1
𝐵−1

,

where 𝑏 is the batch index and 𝐵 is the total number of batch for the epoch. 𝑠𝑚𝑎𝑥 was empirically

defined as 400.

The final computation process in the decoder step, considering the attention masks, is

defined by the equations presented below:

h𝑡 = 𝑡𝑎𝑛ℎ(C𝑡) * o𝑡, (39)

C𝑡 = 𝜎(f𝑡 * C𝑡−1 + i𝑡 * �̃�𝑡), (40)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(m𝑥x𝑡U𝑔 + mℎh𝑡−1W𝑔), (41)

where 𝜎 and 𝑡𝑎𝑛ℎ are the sigmoid and hyperbolic tangent activation function, respectively; m𝑥

and mℎ are attention masks for input and hidden state layers, respectively; U𝑔 and W𝑔 are weight
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Figure 14 – Overview of the video captioning approach with an attention-based mechanism for preventing
the catastrophic forgetting problem.

Source: Developed by the author.

matrices; x𝑡 is the input at time 𝑡; h𝑡−1 is the previous state; and f𝑡, i𝑡, and o𝑡 are the forget, input

and output gates, respectively. The calculations of unit gates are:

f𝑡 = 𝜎(m𝑥x𝑡U𝑓 + mℎh𝑡−1W𝑓 + b𝑓 ), (42)

i𝑡 = 𝜎(m𝑥x𝑡U𝑖 + mℎh𝑡−1W𝑖 + b𝑖), (43)

o𝑡 = 𝜎(m𝑥x𝑡U𝑜 + mℎh𝑡−1W𝑜 + b𝑜), (44)

in which U𝑓 , U𝑖, U𝑜, W𝑓 , W𝑖, and W𝑜 are weight matrices, b𝑓 , b𝑖 and b𝑜 are bias vectors
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3.2.2.1 Model Architecture Expansion

When training a new task 𝑡, the architecture must be expanded to incorporate new

knowledge, including task-specific words. To accomplish this objective, a new Embedding layer

𝐸𝑛𝑒𝑤 is created to encode both old and new words, considering the vocabulary introduced by the

new task 𝑡. If the internal memory capacity of the decoder model is considered insufficient to

accommodate new knowledge, a dynamic expansion takes place by assessing the availability of

neurons for future tasks. When the number of available neurons falls below a certain threshold,

denoted as 𝑘, the internal memory is increased by 𝑑. Here, 𝑘 and 𝑑 were empirically defined.

When the internal memory is expanded, the masks 𝑚ℎ are also expanded. Finally, a new classifier

𝐶𝑛𝑒𝑤 is created, considering the vocabulary introduced in the task. All expanded layer weights

of model 𝑀𝑡 are initialized with all shared model weights trained in task 𝑀𝑡−1. Algorithm 1

summarizes updating the model to train a new task.

Algorithm 1 – Model architecture expansion for training new tasks.
inserir 𝑐𝑢𝑟𝑉 𝑜𝑐𝑎𝑏← current task vocabulary list
inserir 𝑜𝑙𝑑𝑉 𝑜𝑐𝑎𝑏← previous task vocabulary list
inserir 𝐿𝑆𝑇𝑀 ← current decoder model
1: Set 𝑛𝑒𝑤𝑉 𝑜𝑐𝑎𝑏 as intersection of 𝑐𝑢𝑟𝑉 𝑜𝑐𝑎𝑏 and 𝑜𝑙𝑑𝑉 𝑜𝑐𝑎𝑏
2: create new embedding layer 𝐸𝑛𝑒𝑤 whit 𝑛𝑒𝑤𝑉 𝑜𝑐𝑎𝑏 size
3: initialize weights of 𝐸𝑛𝑒𝑤 with shared weights of 𝐸
4: set 𝑘 as a threshold value
5:
6: set 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 to 1− [𝑚ℎ.𝑠𝑢𝑚()/𝑚ℎ.𝑙𝑒𝑛()]
7: se 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 < 𝑘 então
8: create 𝐿𝑆𝑇𝑀𝑛𝑒𝑤 with size increased by 𝑑
9: initialize weights of 𝐿𝑆𝑇𝑀𝑛𝑒𝑤 with shared weights of 𝐿𝑆𝑇𝑀

10: create new mask 𝑚ℎ𝑛𝑒𝑤 considering 𝐿𝑆𝑇𝑀𝑛𝑒𝑤.ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒
11: initialize weights of 𝑚ℎ𝑛𝑒𝑤

with shared weights of 𝑚ℎ

12: finaliza se
13:
14: create new classifier 𝐶𝑛𝑒𝑤 with size of 𝑛𝑒𝑤𝑉 𝑜𝑐𝑎𝑏
15: initialize weights of 𝐶𝑛𝑒𝑤 with shared weights of 𝐶

Source: Developed by the author.

3.2.2.2 Training Process

The attention masks used in the proposed method aim to preserve the knowledge

accumulated by the network, conditioning the gradients according to the cumulative attention

from all the previous tasks. Such masks are only considered in the backward computation process

when task 𝑡 > 1 is learned, as depicted in Figure 13. Therefore, before training a task 𝑡 > 1, the
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cumulative attention vector of the masks is recursively computed as follows:

m<𝑡
𝑥 = 𝑚𝑎𝑥(m𝑡−1

𝑥 ,m<𝑡−1
𝑥 ) (45)

m<𝑡
ℎ = 𝑚𝑎𝑥(m𝑡−1

ℎ ,m<𝑡−1
ℎ ) (46)

During the network training process of a task 𝑡 > 1, the gradient 𝑔 of layer 𝑙 is computed,

taking into account the attention masks, as follows:

g′

𝑙,𝑖𝑗 = [1−𝑚𝑖𝑛(m𝑡
𝑙,𝑖,m𝑡

𝑙,𝑗)]g𝑙,𝑖𝑗 (47)

where 𝑖 refers to the 𝑖-th element of vector 𝑚𝑙 at task 𝑡 and 𝑗 is the 𝑗-th element of vector 𝑚𝑙 at

task 𝑡; such a equation is applied in both 𝑚𝑥 and 𝑚ℎ masks. Such a computation prevents large

changes to the important weights for previous tasks.

Moreover, the gradient compensation procedure described in Serra et al. (2018) is

applied to help train the task-embedding matrices 𝐴𝑥 and 𝐴ℎ, as defined below.

q′

𝑙,𝑖𝑗 =
𝑠𝑚𝑎𝑥[𝑐𝑜𝑠ℎ(𝑠𝐴𝑥,𝑖𝑡

𝑇 ) + 1]

𝑠[𝑐𝑜𝑠ℎ(𝐴𝑥,𝑖𝑡𝑇 ) + 1]
𝑞𝑙,𝑖 (48)

for numerical stability, we clamp |𝑠𝐴𝑥,𝑖𝑡
𝑇 | ≤ 50 and |𝑠𝐴ℎ,𝑖𝑡

𝑇 | ≤ 50.

The model is trained using the cross-entropy loss, denoted as ℒ𝐶𝐸 , combined with a

regularization term ℒ𝑎 to encourage low network usage and preserve the availability of some

neurons for future tasks. The final loss is computed as follows:

ℒ = ℒ𝐶𝐸 + ℒ𝑎 = −
∑︁

𝑙𝑜𝑔(𝑝*𝑡 |𝑝*1,...,𝑝*𝑡−1, 𝑉 ) + 𝜆

∑︀
𝑖𝑚

𝑡
𝑥,𝑖(1−𝑚<𝑡

𝑥,𝑖)∑︀
𝑖(1−𝑚<𝑡

𝑥,𝑖)
+ 𝜆

∑︀
𝑖 𝑚

𝑡
ℎ,𝑖(1−𝑚<𝑡

ℎ,𝑖)∑︀
𝑖(1−𝑚<𝑡

ℎ,𝑖)
(49)

where 𝑝* refers to the probability of the ground truth word at the time step 𝑡, 𝑉 is the

video feature representation, and 𝜆 is a regularization constant that controls the capacity spent

on each task. A larger 𝜆 promotes a reduced allocation of neurons to the current task, thereby

increasing the number of remaining neurons available for future tasks. As suggested by DEL

CHIARO et al. (2020), 𝜆 was set to 5000.

3.2.3 Evaluation Protocol

Three metrics are frequently employed when evaluating class-incremental learning

approaches on classification tasks: average accuracy, forgetting, and intransigence (MASANA et
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al., 2023). In this section, we use these metrics to report the conducted experiments. However,

instead of assessing the model’s performance using the accuracy measure, the METEOR metric

was used. Such a decision was motivated by its widespread use in the literature for video

captioning tasks since it considers morphological variations and synonyms. The METEOR

metric was computed using the Common Objects in Context (COCO)-caption API (CHEN et al.,

2015)

Average accuracy (LOPEZ-PAZ; RANZATO, 2017) measures the overall performance

of the model on all 𝑡 tasks. After learning each task t, all classes seen so far are evaluated using the

latest model. Thus, the 𝑎𝑡,𝑘 ∈ [0,1] denotes the performance of task 𝑘 after learning task 𝑡 (𝑘 ≤ 𝑡).

The overall learning process can be measured by Equation 50 to compare the performance

of different approaches with a single value. A higher 𝐴𝑡 implies a better approach. Although

the term “average accuracy” is used in this thesis, the performance evaluation employed the

METEOR metric instead of conventional accuracy measurement in the classification task. The

METEOR metric is widely employed in the literature for evaluating video captioning approaches.

𝐴𝑡 =
1

𝑡

𝑡∑︁
𝑖=1

𝑎𝑡,𝑖 (50)

Forgetting measure (CHAUDHRY et al., 2018) estimates the model’s forgetting rate

concerning previous tasks after learning a new task. It is calculated by Equation 51, which

considers the difference between the maximum performance obtained in the previous tasks and

the performance in the current task.

𝑓𝑘
𝑗 = max

𝑙∈1,...,𝑘−1
𝑎𝑙,𝑗 − 𝑎𝑘,𝑗∀𝑗 < 𝑘 (51)

Note that 𝑓 𝑡
𝑘 ∈ [−1,1] quantifies forgetting and can be negative when the performance

of task 𝑘 after training task 𝑡 is higher than obtained while training previous tasks. Equation 52

computes the average forgetting 𝐴𝐹 of all old tasks. A lower 𝐴𝐹𝑘 implies less forgetting on

previous tasks.

𝐴𝐹𝑘 =
1

𝑘 − 1

𝑘−1∑︁
𝑗=1

𝑓𝑘
𝑗 (52)

Intransigence measure (CHAUDHRY et al., 2018) assesses the inability of a model to

learn new tasks by comparing its performance against a reference model. The equation for the

intransigence measure is defined as follows:
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𝐼𝑘 = 𝑎*𝑘 − 𝑎𝑘,𝑘 (53)

where 𝑎*𝑘 denotes the accuracy of the hold-out set of the 𝑘-th task on the reference model trained

with dataset
⋃︀𝑘

𝑙=1 = 𝐷𝑙, and 𝑎𝑘,𝑘 denotes the performance of the model on the 𝑘-task trained

incrementally; The 𝐼𝑘 may range from -1 to 1, where a higher 𝐼𝑘 indicates that the model do not

perform well on new tasks. Notice that 𝐼𝑘 < 0 implies a positive influence of previous tasks on

the current task 𝑘. The average intransigence can be computed as follows:

𝐴𝐼𝑡 =
1

𝑡

𝑡∑︁
𝑘=1

𝐼𝑘 (54)

where 𝐼𝑘 can be computed using the Equation 53.

This study did not consider other metrics proposed for incremental learning tasks,

including Forward/Backward Transfer of knowledge (MAI et al., 2022). Using such metrics in

the class-incremental learning problem is not helpful as the increment of new classes in new

tasks drops the performance and does not contribute to such metrics (MASANA et al., 2023).



70

4 EXPERIMENTS, RESULTS AND DISCUSSION

This Chapter presents the experiments conducted to evaluate the proposed methods

described in Section 3. The Chapter is divided into two Sections: the first presents the results of

the method proposed in Section 3.1, which introduces an approach for describing known video

events and recognizing unknown events. The second Section focuses on the method presented in

Section 3.2 for video captioning within a class-incremental learning setting.

4.1 VIDEO DESCRIPTION METHOD IN AN OPEN-SET SCENARIO

In this Section, experiments were performed to evaluate the OSVidCap, as presented in

Section 3.1. The main objective of such experiments is to evaluate the performance in describing

concurrent known events in a given video and detecting unknown events. Also, the performed

experiments aim to evaluate the influence of different features, such as the Human body skeleton

and Place-type features, to understand fine-grained actions frequently performed in specific

environments.

4.1.1 Datasets

There are a few datasets publicly available for video captioning task (AAFAQ et al.,

2019). The most used datasets in the literature are MSVD (CHEN; DOLAN, 2011) and MSR-

VTT (XU et al., 2016), containing a wide variety of open domain short videos. Each video has

only a single main activity and multiple sentences with different details describing the video.

Despite the availability of annotated datasets for the video captioning task, none of

them contains specific information about the action performed in each video, such as an action

categorization. This information is essential in detecting and recognizing known and unknown

events in an open-set scenario. Also, they do not contain concurrent events happening in the

same video.

To overcome the above-mentioned limitations, we improved the LIRIS human activities

dataset (WOLF et al., 2014) with captions and temporal annotations of new actions. Furthermore,

we evaluate the generalization of our method on the large-scale ActivityNet Captions dataset.
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Both datasets are detailed as follows and are made available for further studies1.

4.1.1.1 LIRIS human activities dataset

The LIRIS human activities dataset was proposed by Wolf et al. (2014) for recognizing

complex and realistic actions in videos and was made available for the Human Activities Recog-

nition and Localization (HARL) competition at the 2012 International Conference on Pattern

Recognition (ICPR). The full dataset contains 828 actions (including discussing, telephone

calls, giving an item, etc.) performed by 21 different people in 10 different classes. Each action

performed in a video contains spatial annotations in a bounding box and temporal information

(the beginning and end of the action). It was organized into two independent subsets: the D1

subset, with depth and grayscale images, and the D2 subset, with color images. The dataset also

has unannotated actions, such as walking, running, whiteboard writing, book leafing, etc. The

D2 subset contains 365 temporal annotated actions from 167 videos, and each action consists of

one or more people performing one or more different activities.

We improved the dataset by providing natural language descriptions for the D2 subset

of the LIRIS human activities dataset, allowing their use in the evaluation of video captioning.

As stated by Vedantam et al. (2015), the number of reference sentences directly affects the

accuracy of automated metrics. Also, those authors affirm that using five different sentences

gives a substantial performance boost compared to only one sentence. Therefore, we provided

five different descriptions for each video segment, as presented in Figure 15.

Table 3 presents the proposed dataset concerning the number of video segments and

vocabulary size.

Table 3 – Overview of LIRIS dataset classes. Vocab. denotes the number of vocabulary; N.Videos denotes the
number of videos.

N Category Vocab. N. Videos
1 talks to second person 29 41
2 gives something to someone 24 20
3 puts/pick something 37 66
4 leave/enter place 27 91
5 try enter unsuccessfully 24 25
6 unlock door and enter it 28 24
7 leave something 23 23
8 shaking hands 25 39
9 typing / using computer 24 43
10 talks on the phone 24 23

Source: Developed by the author.

1 http://labic.utfpr.edu.br/datasets/UTFPR-OSVidCAP.html

http://labic.utfpr.edu.br/datasets/UTFPR-OSVidCAP.html
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Figure 15 – Example of a video clip and the ground-truth sentences created for each human activity in the
LIRIS human activities dataset. Blue and brown captions correspond to two different concurrent
activities performed by different actors.

Source: Developed by the author.

Besides, we extracted 116 video segments in 15 different unannotated actions from the

original videos to be used as unknown classes. Each new video segment was also annotated with

spatial, temporal, and description information.

4.1.1.2 ActivityNet Captions dataset

The ActivityNet Captions dataset (KRISHNA et al., 2017) is a large dataset proposed

for dense-captioning events, which involves both detecting and describing events in a video.

It contains 20,000 videos split into around 50%, 25%, 25% for training, validation, and

testing set, respectively. All videos were taken from the ActivityNet Dataset (HEILBRON et al.,

2015), a benchmark for video classification and detection, which covers 200 classes of activities.

The dataset also has an overlap of 10% of the temporal descriptions, thus indicating the presence

of concurrent events. Each video is annotated with a series of temporally localized descriptions.

Although the ActivityNet Captions dataset is available for download as a collection of

YouTube video links, many of these videos are no longer available for download, as reported in
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previous works (IASHIN; RAHTU, 2020), and only the pre-computed C3D features provided

by the authors are not helpful in our experiments. Thus, we used 12,714 videos that were still

available for download. Videos shorter than 3 seconds were disregarded due to the small number

of extracted frames. As our approach focused on describing entire videos and not detecting a

series of events, we used the ground-truth event proposals to extract 34,934 video clips for each

temporarily localized description provided in the annotations.

While ActivityNet Captions was originally designed for dense video captioning, we

adapt it to the open-set scenario by including action annotations to evaluate the generality of the

proposed method in a large-scale dataset. Due to the considerable effort required to annotate

each video clip manually, these annotations were collected from the ActivityNet dataset based

on the video name, which is the same in both datasets. Each resulting action class contains, on

average, 114 videos for training and 55 videos for testing. Table 4 summarizes the ActivityNet

Captions used in this study. The action annotations were used to split videos into known and

unknown classes to detect known and unknown actions.

Table 4 – Overview of ActivityNet Captions dataset classes. Vocab. denotes the number of vocabulary;
N.Videos denotes the number of videos.

# Category Vocab. N. Videos
1 Applying sunscreen 422 125
2 Archery 480 172
3 Arm wrestling 576 209
4 Assembling bicycle 427 158
5 Baking cookies 542 207
6 Ballet 480 150
7 Bathing dog 332 118
8 Baton twirling 599 303
9 Beach soccer 462 172

10 Beer pong 572 205
11 Belly dance 378 157
12 Blow-drying hair 365 133
13 Blowing leaves 417 173
14 BMX 594 244
15 Braiding hair 424 166
16 Breakdancing 532 184
17 Brushing hair 334 124
18 Brushing teeth 341 114
19 Building sandcastles 458 168
20 Bullfighting 387 106
21 Bungee jumping 446 124
22 Calf roping 408 212
23 Camel ride 420 174
24 Canoeing 592 244
25 Capoeira 573 240
26 Carving jack-o-lanterns 402 139
27 Changing car wheel 518 173
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N Category Vocab. N. Videos
28 Cheerleading 597 213
29 Chopping wood 411 175
30 Clean and jerk 444 201
31 Cleaning shoes 397 129
32 Cleaning sink 378 128
33 Cleaning windows 427 121
34 Clipping cat claws 345 149
35 Cricket 391 123
36 Croquet 457 161
37 Cumbia 446 175
38 Curling 503 170
39 Cutting the grass 515 207
40 Decorating the Christmas tree 385 155
41 Disc dog 500 284
42 Discus throw 499 211
43 Dodgeball 443 169
44 Doing a powerbomb 362 139
45 Doing crunches 361 111
46 Doing fencing 527 183
47 Doing karate 471 152
48 Doing kickboxing 463 170
49 Doing motocross 471 162
50 Doing nails 577 182
51 Doing step aerobics 439 192
52 Drinking beer 314 87
53 Drinking coffee 430 108
54 Drum corps 473 193
55 Elliptical trainer 412 158
56 Fixing bicycle 509 182
57 Fixing the roof 469 155
58 Fun sliding down 353 164
59 Futsal 591 292
60 Gargling mouthwash 312 88
61 Getting a haircut 490 212
62 Getting a piercing 392 145
63 Getting a tattoo 452 152
64 Grooming dog 507 190
65 Grooming horse 454 172
66 Hammer throw 465 181
67 Hand car wash 475 208
68 Hand washing clothes 417 137
69 Hanging wallpaper 586 190
70 Having an ice cream 428 145
71 High jump 454 173
72 Hitting a pinata 527 212
73 Hopscotch 432 176
74 Horseback riding 551 188
75 Hula hoop 465 128
76 Hurling 578 249
77 Ice fishing 400 149
78 Installing carpet 461 142
79 Ironing clothes 319 106
80 Javelin throw 389 158
81 Kayaking 532 214
82 Kite flying 354 127
83 Kneeling 483 209
84 Knitting 343 136
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N Category Vocab. N. Videos
85 Laying tile 456 138
86 Layup drill in basketball 382 141
87 Long jump 473 168
88 Longboarding 700 307
89 Making a cake 780 278
90 Making a lemonade 549 254
91 Making a sandwich 523 178
92 Making an omelette 359 126
93 Mixing drinks 468 224
94 Mooping floor 426 175
95 Mowing the lawn 494 190
96 Paintball 542 178
97 Painting 460 171
98 Painting fence 419 164
99 Painting furniture 351 105

100 Peeling potatoes 300 95
101 Ping-pong 467 145
102 Plastering 461 170
103 Plataform diving 442 161
104 Playing accordion 391 149
105 Playing badminton 374 153
106 Playing bagpipes 446 171
107 Playing beach volleyball 370 128
108 Playing blackjack 401 153
109 Playing congas 550 301
110 Playing drums 505 250
111 Playing field hockey 483 186
112 Playing flauta 381 136
113 Playing guitarra 445 205
114 Playing harmonica 459 168
115 Playing ice hockey 488 179
116 Playing kickball 352 140
117 Playing lacrosse 409 161
118 Playing piano 346 125
119 Playing polo 478 182
120 Playing pool 461 181
121 Playing racquetball 341 152
122 Playing rubik cube 364 161
123 Playing saxophone 440 174
124 Playing squash 430 172
125 Playing ten pins 508 208
126 Playing violin 496 208
127 Playing water polo 530 232
128 Pole vault 534 191
129 Polishing forniture 401 107
130 Polishing shoes 380 132
131 Powerbocking 609 230
132 Preparing pasta 569 251
133 Preparing salad 527 202
134 Putting in contact lenses 380 148
135 Putting on makeup 466 190
136 Putting on shoes 327 108
137 Rafting 628 309
138 Raking leaves 317 109
139 Removing curlers 361 100
140 Removing ice from car 445 165
141 Riding bumper cars 398 230
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N Category Vocab. N. Videos
142 River tubing 548 233
143 Rock climbing 496 146
144 Rock-paper-scissors 342 98
145 Rollerblading 624 213
146 Roof shingle removal 447 138
147 Rope skipping 615 264
148 Running a marathon 536 190
149 Sailing 515 188
150 Scuba diving 596 244
151 Sharpening knives 482 189
152 Shaving 407 156
153 Shaving legs 378 141
154 Shot put 472 173
155 Shoveling snow 462 170
156 Shuffleboard 459 175
157 Skateboarding 504 153
158 Skiing 628 257
159 Slacklining 544 257
160 Smoking a cigarette 292 109
161 Smoking hookah 344 114
162 Snatch 502 164
163 Snow tubing 510 245
164 Snowboarding 583 245
165 Spinning 432 178
166 Spread mulch 323 90
167 Springboard diving 382 165
168 Starting a campfire 461 162
169 Sumo 494 154
170 Surfing 506 274
171 Swimming 455 159
172 Swinging at the playground 413 184
173 Table soccer 446 164
174 Tai chi 490 163
175 Tango 518 217
176 Tennis serve with ball bouncing 365 140
177 Throwing darts 465 205
178 Trimming branches or hedges 442 166
179 Triple jump 504 206
180 Tug of war 470 201
181 Tumbling 460 158
182 Using parallel bars 538 276
183 Using the balance beam 533 297
184 Using the monkey bar 388 167
185 Using the pommel horse 417 197
186 Using the rowing machine 381 156
187 Using uneven bars 362 142
188 Vacuuming floor 397 146
189 Volleyball 402 132
190 Wakeboarding 627 247
191 Walking the dog 520 183
192 Washing dishes 493 195
193 Washing face 414 150
194 Washing hands 425 148
195 Waterskiing 582 244
196 Waxing skis 493 157
197 Welding 445 159
198 Windsurfing 416 180
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N Category Vocab. N. Videos
199 Wrapping presents 513 199
200 Zumba 412 147

Source: Developed by the author.

4.1.2 Implementation Details

The proposed OSVidCap framework uses an encoder-decoder architecture. Therefore,

both the encoder and caption generation (decoder) modules were trained end-to-end. Before

training, all captions were tokenized and converted to lowercase. Sparse words occurring less

than three times in the training set were replaced with the unknown token. The fasttext (BO-

JANOWSKI et al., 2017) word embedding pre-trained on the Common Crawl Corpus was used

to embed features into a 300-dimensional feature vector. It provides much more powerful and

effective low-dimensional word representations for video captioning than other techniques, such

as sparse one-hot encoding vectors (AAFAQ et al., 2021).

During the training step, a begin-of-sentence and end-of-sentence token were added

to the sentence to deal with varying lengths. Also, an unknown tag was used to replace sparse

words. We input the begin-of-sentence token into our Caption Generation Module to start the

description generation process during the test step. Then, previously generated words are used as

input to produce the following words until the max sentence length or the end-of-sentence token

is achieved. In our experiments, the max sentence length was set as 19 and 25 for the LIRIS

and ActivityNet Captions dataset, respectively. Zero padding is applied if the sentence is shorter

than the maximum number of words. The Beam Search method was employed to select the best

sentence and avoid local optima. In our experiments, the beam size 𝑘 was set to 3.

We empirically set the hidden state LSTM with 512 units and applied dropout with a

rate of 0.5 on the input and output of the LSTM. The Adam algorithm, with a learning rate of

5 × 10−5 was used for optimization. The cross-entropy loss was used to train our model. All

experiments were implemented using Tensorflow2 and Keras3 library.

To demonstrate the effectiveness of the proposed method, we have conducted experi-

ments on two datasets (LIRIS human activities and ActivityNet Captions dataset) to analyze the

influence of the open set module and compare the video caption performance with related works.
2 https://www.tensorflow.org/
3 https://keras.io/
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Due to the small number of videos and known actions in the LIRIS dataset, we performed

a 5-fold cross-validation procedure to assess the OSVidCap performance. The same training and

testing set of each cross-validation fold was used to train the open set module. In addition, to

evaluate the effectiveness of the proposed approach in detecting unknown events, the testing set

included 116 videos with unknown actions, as described in Section 4.1.1.1.

The performance of OSVidCap for known events on the ActivityNet Captions Dataset

was performed using the standard data split4. Since this dataset was made available as a challenge,

the test set was not provided with the ground truth. Thus, we follow the previous works (IASHIN;

RAHTU, 2020; ZHOU et al., 2018b) and report the results on the validation set. The effectiveness

of the proposed approach in detecting unknown events was also performed using a 5-fold cross-

validation procedure. Each fold contains known videos of 40 actions for the training and testing

set, as explained in Section 4.1.1.2. We also included 𝑣𝑟 random videos from other classes as

unknown actions in the testing set. The 𝑣𝑟 was defined as the same number of videos presented

in the training set to avoid imbalanced data.

4.1.3 Quantitative Results

In this section, the performance evaluation of the proposed method is presented and

compared with two existing approaches.

Semantic Grouping Network (SGN) (RYU et al., 2021) exploits the use of semantic

groups based on meanings such as people, objects, or actions rather than frame by frame for

understanding a video. It is comprised of four main components: (i) a Visual Encoder component

that aims to extract visual features from video frames; (ii) a Phrase Encoder that produces phrase

representations from words by using the self-attention mechanism; (iii) a Semantic Grouping

which employs a semantic aligner to align the video frames with phrases; and (iv) a Decoder

based on LSTM with temporal attention.

Non-Autoregressive Coarse to-Fine (NACF) model (YANG et al., 2021a) proposes

a coarse-to-fine captioning procedure using a bi-directional self-attention-based network as

caption generator. For improving caption quality, the decoder method is decomposed into two

stages. First, a coarse-grained “template” is generated. Then, dedicated decoding algorithms

generate fine-grained descriptions by filling in the generated “template” with suitable words and

modifying inappropriate phrasing via iterative refinement.
4 https://cs.stanford.edu/people/ranjaykrishna/densevid/
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For a fair comparison, all the methods utilize the ResNet-101 and ResNext-101 features

as input, and the reported results were obtained using Microsoft COCO caption evaluation

tool (CHEN et al., 2015). Furthermore, all approaches were set with the same maximum sentence

length and minimum word frequency during training.

Table 5 presents a comparison performance of the OSVidCap with existing approaches

on LIRIS human activities dataset. It can be noticed that our model OSVidCap(S+T) achieved

better performance in terms of ROUGE-L and CIDEr and competitive performance in terms of

BLEU and METEOR. Also, our model OSVidCap(S+T+SK+P) surpasses the compared approaches

by 4.9% of BLEU-4, 5.1% of METEOR, 4.3% of ROUGE-L, and 9.3% of CIDEr. This suggests

that our approach can better describe concurrent events in videos. In addition to spatial (S) and

temporal (T) features, the model considered Human body skeleton (SK) extracted from human

movements and Place-Type (P) features extracted from places. This points out that specialized

features can be essential to better describe similar actions or actions according to the context

(place). Such feature enrichment provides essential information to distinguish some actions,

such as shaking hands and giving a small item to a second person. Also, the place type gives

meaningful semantic information, as some actions tend to happen in specific places.

Table 5 – Comparison Performance of video captioning on the LIRIS human activities dataset. 5-fold cross-
validation results are presented in terms of BLEU-4 (B), METEOR (M), ROUGE-L(R), and CIDEr
(C). S denotes Spatial features. T denotes temporal features. SK denotes Skeleton features. P denotes
Place features.

Model B M R C
NACF (YANG et al., 2021a) 66.27 46.94 80.52 323.66
SGN (RYU et al., 2021) 62.08 44.38 76.95 298.06
OSVidCap (S+T) 65.28 46.49 80.69 330.65
OSVidCap (S+T+SK) 69.50 49.31 84.05 351.19
OSVidCap (S+T+SK+P) 69.54 49.34 83.78 354.04

Source: Developed by the author.

Table 6 presents the video captioning comparison on the ActivityNet Captions dataset.

It can be noticed that the proposed approach also achieved better or competitive results across

all metrics, showing robust generalization to other contexts and scenarios. It is also noteworthy

that the values of the metrics presented in Table 6 are significantly lower than those presented in

Table 5 due to the complexity of the datasets, as reported in Section 4.1.1.2. The performance

reported on this dataset is similar to those reported in recent literature (IASHIN; RAHTU, 2020;

DENG et al., 2021). Note that, despite using the same dataset to report the results, they are not

comparable with the presented approach, as the videos and features used for training, validation,

and testing are different.
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Table 6 – Video Captioning Performance on the ActivityNet Captions validation set. Results are presented in
terms of BLEU-4 (B), METEOR (M), ROUGE-L(R), and CIDEr (C). S denotes Spatial features, T
denotes temporal features, SK denotes Skeleton features, and P denotes Place features.

Model B M R C
NACF (YANG et al., 2021a) 2.20 8.16 20.44 23.78
SGN (RYU et al., 2021) 3.90 9.72 20.38 29.69
OSVidCap (S+T) 4.19 9.71 20.98 28.54
OSVidCap (S+T+SK) 4.30 9.96 21.26 30.50
OSVidCap (S+T+SK+P) 4.32 9.98 21.33 29.84

Source: Developed by the author.

In both datasets, the use of Place-type features did not show significant improvements.

This may indicate that previously used features can also describe this visual information or are

irrelevant to the video description task.

In Table 7, one can observe the evaluation performance of the open-set module in

detecting known and unknown actions on the LIRIS human activities Dataset. Results are

presented in a 5-fold cross-validation procedure. The proposed method achieved satisfactory

results in detecting known and unknown classes with an average F1-Score of 86.2%.

Table 7 – Open-Set Module on LIRIS Captions dataset.
F1-Score Precision Recall

Unknown Known Unknown Known Unknown Known
1 89.0% 92.0% 85.0% 86.00% 100.0% 100.0% 74.0%
2 86.0% 90.0% 81.0% 84.0% 96.0% 98.0% 70.0%
3 83.0% 90.0% 77.0% 81.0% 100.0% 100.0% 63.0%
4 88.0% 92.0% 84.0% 85.0% 100.0% 100.0% 76.0%
5 85.0% 91.0% 80.0% 83.0% 100.0% 100.0% 67.0%

AVG 86.2% 91.0% 81.4% 83.8% 99.2% 99.6% 70.0%
Source: Developed by the author.

Table 8 shows the evaluation performance of the open-set module in detecting known

and unknown actions on the ActivityNet Captions dataset. Five experiments with different

numbers of the known classes in a cross-validation procedure were performed. The proposed

method achieved satisfactory results in detecting known and unknown classes with an average

F1-Score of 79.80% when ten classes were considered as known actions.

Table 8 – Open-Set Module on ActivityNet Captions dataset.
Known
classes k-Fold Average F1-Score Average F1-Score Average Precision Average Recall

Unknown Known Unknown Known Unknown Known
10 20 79.80% 79.20% 80.60% 84.10% 76.95% 75.15% 85.15%
20 10 77.10% 76.20% 78.10% 81.40% 74.00% 71.80% 82.90%
25 8 75.50% 75.38% 76.30% 78.63% 73.75% 69.00% 82.63%
40 5 73.60% 72.60% 74.60% 77.20% 71.00% 68.60% 79.00%
50 4 72.50% 71.25% 73.75% 75.50% 69.50% 67.50% 77.50%

Source: Developed by the author.
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It can also be seen in Table 8 that the average precision of the unknown class is about

9% higher than the known class, and the average recall of the known class is 13% higher than

the unknown class. This shows that the proposed approach achieves better results in detecting

unknown classes than known classes. The automatic annotation process of video actions on the

ActivityNet Captions dataset, as described in Section 4.1.1.2, also produced some annotation

noises during the training and testing process. These noises can be considered a performed action

with a different label or even a video without human actions.

Figure 16 depicts an example of a video presented in the dataset. It can be observed

that the video has different events with different start and end times. The automatic annotation

process set the action class “Removing ice from car” to all video clips. However, in this example,

only two video clips are related to the annotated action. Therefore, the degradation in the average

precision metric of the known class may have been caused by the presence of these annotation

noises. When considering new actions as known classes, the average F1-Score decreased due to

the cumulative annotation errors provided by the automatized annotation process, as reported

below.

Table 9 reports the impact of the open-set component on the video descriptions generated

by the proposed approach. The results reported in the LIRIS dataset used the same data in a

cross-validation procedure as used to report the results in Table 7. For reporting the results on

the ActivityNet Captions dataset, we also used the 5-fold cross-validation applied in Table 8.

Table 9 – Influence of the open set module in the OSVidCap approach. S denotes Spatial features. T denotes
temporal features. SK denotes Skeleton features. P denotes Place features.

Dataset Model B M R C F1-score
OSVidCap (S+T) 77.8 56.1 87.9 381.1

86.2%LIRIS OSVidCap (S+T+SK) 80.9 57.3 89.1 385.8
dataset OSVidCap (S+T+SK+P) 80.2 57.2 89.1 385.9

OSVidCap (S+T) 16.2 16.8 38.7 68.0
73.6%ActivityNet Captions OSVidCap (S+T+SK) 15.6 16.8 39.1 70.0

dataset OSVidCap (S+T+SK+P) 16.5 16.9 39.2 72.9
Source: Developed by the author.

These results are significantly higher when compared with those reported in Tables 5

and 6 because, in this experiment, we considered videos in the test set with unknown activities.

For these videos, the model is supposed to generate descriptions such as “a person is performing

an unknown action”.

The experiments with unknown actions in the testing set suggested that Place-type

features did not lead to a significant improvement. However, these features are important to
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Figure 16 – Example of events temporally localized in the video with independent start and end times,
resulting in some events occurring concurrently in the ActivityNet Captions dataset.

Source: Developed by the author.

understand scenes in which the information about the place type is relevant, for example, to

describe whether the person is entering or leaving an office or writing a whiteboard in a classroom.

In the testing set used to report the experiments in Table 9, several videos from unknown classes

were included to evaluate the proposed open set module. Therefore, the overall influence of the

Place-type features has quantitatively decreased due to the small number of sentences that require

such features. To the best of our knowledge, this is the first work to address the video captioning

task in an open-set world by generating captions of known events present in the training set and

dealing with unknown events not previously seen.
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4.1.4 Qualitative Results

In Figure 17, we illustrate three examples of video descriptions generated by the

baselines method SGN and NACF and the proposed OSVidCap. Figure 17a depicts a scene with

two sequential actions. First, a man in a striped t-shirt talks to a woman in front of a whiteboard.

Then, another man in a black t-shirt enters the room and gives an item to the man in a striped

t-shirt. Figure 17b shows two concurrent events. While a man and a woman are handshaking,

another man is leaving baggage unattended. Finally, in Figure 17c, three events take place in the

video. At the same time, a man is performing an unknown action. Another man leaves an item in

the letterbox cabinet and then enters the room.

For the examples of Figure 17, our approach described concurrent actions better than

the baselines. In Figure 17a, the OSVidCap correctly described the ongoing action but wrongly

represented the color of the t-shirt, suggesting that the model did not learn this information from

the input features. Possibly, more specific features should fix this issue.

In Figure 17b, we can observe that the compared approaches could not detect the shake

hands action, suggesting the importance of using human body features in describing human

action videos. Also, they fail to detect and describe concurrent actions in videos.

We can realize the importance of the open set module in the situation considered

in Figure 17c). While the OSVidCap detected an unknown action performed by a man and

correctly described it as such, the compared approaches generated a wrong description. It is

worth highlighting that this action was previously labeled as unknown and did not appear in the

training set.

4.1.5 Discussion

Most artificial intelligence methods for video captioning rely on the closed-set world

assumption. Existing methods based on a closed-set world can adequately describe only the

temporal events previously seen during the training step. Unless they are trained with all existing

events and actions of interest, they will not be able to recognize unknown events found in videos

in the wild. Furthermore, most current video description approaches focus only on single actions

occurring at a time, while concurrent events may take place in the real world.

The experimental results presented in this section provide evidence of the effectiveness

of the proposed framework in accurately describing concurrent events within a given video, as
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Figure 17 – Qualitative example of generated descriptions on the LIRIS dataset.

Source: Developed by the author.

well as detecting unknown events. Furthermore, the findings highlight the importance of using

different features as input, such as the Human body skeleton and Place-type features, which

prove to be highly relevant for understanding fine-grained actions that are often performed in

specific environments.

Despite the excellent results achieved by the OSVidCap, we observed that it could

provide a more detailed description of people, including the type and color of the clothes. This

enrichment of details can play an important role in surveillance applications. The TDL module
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could detect individual humans or objects of interest and simple interactions between them by

capturing the overlapping region among objects. However, the proposed module may fail to

capture more complex human interactions.

The video captioning task in the open-set scenario is an open problem and not well-

explored in the literature. The lack of appropriate datasets for the video captioning task in an

open-set scenario may limit the development of new approaches. To address this limitation, new

annotations of unknown actions have been contributed to the LIRIS human activities dataset.

These annotations may serve as a valuable benchmark for the video captioning task in an open-set

scenario, providing an alternative to evaluate and compare performance between state-of-the-art

approaches. Moreover, a split for the ActivityNet Captions dataset was also proposed, considering

the video description task in an open-world scenario.

4.2 VIDEO DESCRIPTION IN A CLASS-INCREMENTAL LEARNING SETTING

This section presents a series of experiments conducted to assess the efficacy of the

proposed video description method in learning previously detected unknown video events using

a class-incremental learning approach, as presented in Section 3.2. First, we provide a brief

description of the datasets employed in these experiments, along with implementation details.

Subsequently, we present the experiments organized into five subsections, each focusing on a

research question that motivated its implementation, followed by an in-depth discussion of the

findings.

4.2.1 Datasets

A class-incremental learning evaluation protocol involves splitting up a dataset with

a set of tasks, where each task corresponds to a set of classes that are disjoint from the classes

in other tasks, whether previous or future (MASANA et al., 2023). Such a split is feasible in

datasets for the classification task as the predicted classes are a single label.

Splitting an existing dataset for video captioning into disjoint tasks is not feasible due

to a significant amount of shared vocabulary across different classes. This includes repeated

usage of pronouns, articles, and nouns. To evaluate video captioning approaches within a class-

incremental learning scenario, it is essential for each task to introduce novel and distinct words

that are unseen in previous tasks. To the best of our knowledge, no datasets are available with
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such characteristics for training video captioning approaches in a class-incremental learning

scenario.

For this purpose, we use the proposed LIRIS human activities dataset, which is presented

in Section 4.1.1.1, as a controlled dataset. The videos in this dataset are classified into ten distinct

classes, representing different human actions. Each class contains specific words related to the

corresponding task, allowing their use in a class-incremental learning scenario.

Although the LIRIS dataset can be used to assess the performance of the proposed

method, a larger and open dataset is essential for generalization assessment. Using existing

larger datasets for the video captioning task (such as MSR-VTT and ActivityNet Captions) is

challenging due to the vocabulary overlap between classes and the high variability of actions

and scenes. Therefore, we create a new dataset based on the MSR-VTT dataset, called here as

MSR-VTT-subset, described in the following subsection.

4.2.1.1 MSR-VTT-subset dataset

The MSR-VTT Dataset is widely used to evaluate the performance of video captioning

approaches, as described in Section 2.8.2. Although it covers a comprehensive list of 20 cate-

gories, it is not feasible to split the videos into tasks for training a video captioning approach

in a class-incremental learning setting due to word overlap among categories. For example, a

video categorized in the music category contains content from a music video clip with different

associated reference sentences, such as “a girl band singing a song and playing musical instru-

ments” and “a man on a motorcycle talking to a woman”. Despite the differences in the semantic

meaning of the sentences, both can be considered correct and used to describe the video. The

first sentence considers both audio and visual information, describing the entire video, while the

second one focuses on the visual information of a small video segment.

As discussed previously, a dataset with disjoint vocabulary among tasks is required

for testing video captioning approaches in a class-incremental learning scenario. Therefore,

to address this issue, we created a subset of the MSR-VTT dataset, called MSR-VTT-subset,

consisting of 20 action categories, each containing some disjoint words for its respective task.

Such a dataset was created by filtering videos from the original dataset based on captioning

words representing the scene. Table 10 presents a list of categories along with their corresponding

vocabulary and the number of videos available. It is important to note that the dataset is imbal-

anced, which reflects the distribution of activities or events in the real world. This imbalance is
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a common characteristic in many real-world applications, where certain activities occur more

frequently or have more available data compared to others.

Table 10 – Overview of MSR-VTT-subset dataset classes. Vocab. denotes the number of vocabulary; N.Videos
denotes the number of videos.

N Category Vocab. N. Videos
1 playing baseball 862 58
2 cooking 1678 252
3 cutting/slicing 508 25
4 car driving 1447 143
5 dancing 1938 286
6 drinking 800 48
7 playing guitar 785 95
8 gun 819 50
9 kissing 648 39
10 make up 1121 99
11 minecraft 567 37
12 motorcycle 889 65
13 playing piano 396 35
14 playing basketball 432 29
15 playing videogame 918 91
16 rinding a horse 520 29
17 soccer 914 94
18 stroller 446 58
19 trampoline 274 27
20 wrestling 847 114

Source: Developed by the author.

4.2.2 Implementation Details

Before training the proposed approach, all captions were tokenized and converted to

lowercase. Sparse words occurring less than three times in the training set were replaced with

the unknown token. During the training step, a begin-of-sentence and end-of-sentence token was

added to each sentence to handle varying lengths.

During the testing phase, the video content was fed into the Caption Generation Module

to initiate the description generation process. Previously generated words were then used as

input to generate subsequent words until the maximum sentence length or the end-of-sentence

token was reached. In our experiments, the maximum sentence length was set as 19 and 20 for

the LIRIS dataset and MSR-VTT-subset dataset, respectively. Zero padding was applied if a

sentence was shorter than the maximum number of words. In the experiments conducted in this

study, each task was considered a video category of the dataset.

The hidden state of the LSTM was empirically set to 1024. The Adam algorithm was

employed for optimization, using a learning rate of 4× 10−4. All experiments were implemented
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using the PyTorch5 library and trained on a TITAN-XP GPU.

4.2.3 Experiment 1: Comparison between Approaches

The experiment presented in this section was motivated by the following question: “How

does the proposed class-incremental learning technique compare to other techniques in terms

of performance and forgetting, specifically considering its ability to retain previously learned

knowledge while accommodating new classes?”.

In such an experiment, it was set 𝑘 = 0 in the Algorithm 1. Consequently, the model

expansion process solely involves updating the input and output layers to incorporate new

vocabulary. The impact of internal memory expansion was evaluated in Section 4.2.7.

The proposed method was compared with two recurrent network-based continual

learning methods provided by DEL CHIARO et al. (2020), which facilitated the comparison

with existing methods. Moreover, two baseline methods were implemented as lower and upper

bounds, as suggested by De LANGE et al. (2022), and are described as follows.

• Finetune: It is a technique used in machine learning to adapt a pre-trained model to a new

task or dataset. In a class-incremental learning scenario, this technique involves taking a

pre-trained model from task t-1 and training it on a new task without any regularization

technique. This approach is considered the lower bound of performance as it trains each

task without implementing any strategy to prevent catastrophic forgetting, representing the

minimum desired performance.

• EWC: Such an approach estimates the importance of each weight in a neural network

using the Fisher information matrix, which quantifies how much each weight influences

the loss function. By incorporating a penalty term based on the importance estimates into

the loss function during training, EWC tries to selectively preserve important weights

while allowing others to be more adaptable. More details about the method can be seen in

(KIRKPATRICK et al., 2017).

• Recurrent Learning without Forgetting (Rec-LwF): It employs knowledge distillation

on the LSTM decoder, involving both the teacher and student networks. At each decoding

step, the teacher network (representing the decoder of the previous tasks) and the student
5 https://pytorch.org/
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network (representing the decoder of the new task) are provided with data from the new

task and share a common word embedding. The output probabilities from the student

network LSTM are compared with those predicted by the teacher network. A distillation

loss ensures the student network does not deviate from the teacher. This process focuses

on mitigating catastrophic forgetting, enabling the student network to preserve previously

acquired knowledge while adapting to the demands of the new task, thereby facilitating

the continuity of learning. More details about the distillation loss can be found in DEL

CHIARO et al. (2020).

• Joint: This baseline combines the training data from all tasks and optimizes a single model

to learn useful representations for all tasks. While it allows the network to learn shared

representations that capture common patterns and features across different tasks, it may

face challenges in finding a balance between optimizing for shared representations and

maintaining task-specific performance. This baseline can provide a reference performance

target (upper bound).

Table 11 shows the average accuracy of the proposed method on the LIRIS dataset. It is

worth mentioning that, as described in Section 3.2.3, despite using the term ’average accuracy,’

the METEOR metric was employed instead of accuracy as it is widely used to evaluate the

performance of video description systems. The proposed method achieved superior scores in

60% of the tasks and, on average, outperformed the upper-bound model (Joint). Furthermore,

the proposed model did not reach any scores lower than the Finetune, which serves as the lower

bound. Compared to the Finetune approach, EWC consistently achieved equal or superior scores

in the first six tasks, and the Rec-LWF demonstrated better performance during the intermediate

tasks. Nevertheless, the Finetune approach achieved a similar average score due to its higher

performance on the final task.

Table 11 – Average accuracy after learning the last task on the LIRIS dataset.
Model/task 1 2 3 4 5 6 7 8 9 10 Avg
Finetune 0.29 0.16 0.19 0.24 0.13 0.17 0.20 0.25 0.30 0.50 0.24
EWC 0.29 0.21 0.19 0.25 0.14 0.17 0.18 0.23 0.35 0.43 0.24
Rec-LwF 0.20 0.20 0.18 0.36 0.29 0.24 0.27 0.30 0.23 0.18 0.24
Joint 0.55 0.67 0.41 0.48 0.47 0.64 0.52 0.43 0.63 0.61 0.54
Proposed Method 0.99 0.98 0.43 0.44 0.67 0.46 0.25 0.53 0.61 0.65 0.60

Source: Developed by the author.

The evolution of the performance along the incremental learning process on the LIRIS

dataset is presented in Figure 18. It can be noted that the proposed approach outperforms
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the baseline methods in all incremental stages. The EWC and Rec-LwF approaches achieved

comparable performance to the Finetune method.

Figure 18 – The average accuracy during the class-incremental learning training process on the LIRIS dataset

Source: Developed by the author.

The proposed method demonstrated a nearly-zero forgetting rate on the LIRIS dataset,

as shown in Table 12. In comparison, the compared methods exhibited high forgetting rates. The

Finetune and EWC methods achieved average forgetting rates of 0.39 and 0.38, respectively,

while Rec-LwF achieved a forgetting rate of 0.27.

Table 12 – Forgetting measure on the LIRIS dataset.
Model/task 1 2 3 4 5 6 7 8 9 Avg
Finetune 0.70 0.83 0.25 0.19 0.43 0.38 0.27 0.28 0.21 0.39
EWC 0.70 0.78 0.25 0.17 0.40 0.37 0.22 0.28 0.22 0.38
Rec-LwF 0.79 0.79 0.16 0.07 0.08 0.28 0.25 0.02 0.01 0.27
Proposed Method 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00

Source: Developed by the author.

Table 13 presents the performance of the proposed method when evaluated on the

MSR-VTT-subset dataset after learning all the tasks. The proposed model outperformed the

compared methods in 75% of the tasks and achieved an overall score 8% higher than the Joint

method, considered upper-bound. Also, the Joint method achieved the best accuracy in tasks 11,

16, 17, and 19, and the Finetune method achieved the best accuracy in task 20.

Table 13 – Average Accuracy after learning the last task on the MSR-VTT-subset dataset.
Model/task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Finetune 0.11 0.13 0.10 0.14 0.11 0.12 0.20 0.13 0.12 0.08 0.14 0.16 0.21 0.12 0.16 0.14 0.15 0.12 0.15 0.38 0.15
EWC 0.12 0.15 0.12 0.13 0.12 0.12 0.16 0.13 0.11 0.12 0.11 0.13 0.19 0.08 0.11 0.18 0.13 0.17 0.14 0.32 0.14
Rec-LwF 0.09 0.08 0.13 0.09 0.11 0.08 0.10 0.07 0.08 0.07 0.06 0.11 0.13 0.08 0.07 0.11 0.08 0.08 0.11 0.24 0.10
Joint 0.15 0.22 0.18 0.34 0.24 0.18 0.25 0.17 0.17 0.24 0.28 0.22 0.37 0.27 0.45 0.24 0.28 0.39 0.28 0.34 0.26
Proposed Method 0.24 0.25 0.28 0.37 0.27 0.19 0.34 0.22 0.27 0.26 0.24 0.36 0.39 0.30 0.53 0.15 0.16 0.41 0.15 0.19 0.28

Source: Developed by the author.
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Figure 19 illustrates the evolution of the average accuracy along the incremental learning

process on the MSR-VTT-subset dataset. Similarly, on the LIRIS dataset, the EWC approach

achieved comparable performance to the FineTune method. In contrast, the Rec-LwF approach

decreased performance with the growing number of tasks. This deterioration becomes more

pronounced after task 10.

Figure 19 – The average accuracy during the class-incremental learning training process on the MSR-VTT-
subset dataset

Source: Developed by the author.

In line with the findings reported in Table 12, the proposed method also achieved

a nearly zero forgetting rate on MSR-VTT-subset dataset. The Finetune and EWC methods

achieved average forgetting rates of 0,18 and 0,15, respectively, while Rec-LwF achieved a

forgetting rate of 0,08.

Table 14 – Forgetting measure on the MSR-VTT-subset dataset.
Model/task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Avg
Finetune 0.10 0.13 0.14 0.19 0.15 0.05 0.16 0.04 0.13 0.15 0.12 0.21 0.22 0.20 0.53 0.18 0.11 0.31 0.21 0.18
EWC 0.06 0.16 0.12 0.22 0.11 0.02 0.16 0.08 0.12 0.15 0.12 0.13 0.15 0.08 0.52 0.17 0.07 0.18 0.17 0.15
Rec-LwF 0.11 0.11 0.13 0.22 0.08 0.02 0.07 0.05 0.06 0.07 0.06 0.05 0.07 0.06 0.08 0.09 0.09 0.06 0.10 0.08
Proposed Method 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Source: Developed by the author.

Figure 20 presents the interplay between Forgetting (stability) and Intransigence (Plas-

ticity) measures, providing valuable insights into potential challenges related to the stability-

plasticity dilemma. A model demonstrating low forgetting and low intransigence implies it can

effectively learn new tasks while retaining previously acquired knowledge. Notably, the proposed

approach demonstrated superior performance with nearly zero forgetting and negative intransi-

gence in both datasets. The EWC and Finetune methods also achieved a negative intransigence

score but high forgetting. In contrast, the LwF method showed high intransigence and forgetting.
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Figure 20 – Interplay between Forgetting and Intransigence

Source: Developed by the author.

4.2.3.1 Discussion

The experimental results conducted on the LIRIS and MSR-VTT-subset datasets, de-

picted in Figures 18, 19, and 20, and presented in Tables 11 and 13 demonstrated that the

proposed method consistently learned new tasks incrementally while maintaining performance in

previously learned tasks. Furthermore, it outperformed the Joint method, which is considered an

upper bound. This finding may indicate that the proposed model demonstrates superior capability

in learning new tasks incrementally.

According to Santos et al. (2023), the combination of class imbalance and overlap

features is one of the most challenging issues in machine learning. When training the model in a

hold-out manner with combined classes, it needs to learn how to differentiate between classes

and handle variations and overlaps in their feature spaces. Moreover, imbalanced datasets can



93

lead to biased learning, where the model becomes more proficient at predicting the dominant

class but struggles with the minority class. The superior score achieved by the proposed method

over the Joint method in both LIRIS and MSR-VTT datasets may indicate that it could deal

adequately with such problems by focusing on learning task-specific patterns at each training

step.

In Table 11, it is noticed that the proposed method achieves better accuracy (0.60)

compared to other methods and even surpasses the Joint method on the LIRIS dataset, showcasing

exceptional performance on certain tasks. Additionally, the proposed method outperforms other

approaches in half of the tasks. In the MSR-VTT-subset dataset, it achieved better accuracy in

75% of the tasks. However, both the EWC and Rec-LwF approaches have slightly lower average

performance compared to the lower bound model Finetune.

Catastrophic forgetting is a critical problem in class-incremental learning. As the model

learns new tasks, there is a potential risk of either forgetting previously acquired knowledge

or experiencing a significant decrease in performance. To address this challenge, the proposed

method used attention-based masks as detailed in Section 3.2. These masks assign higher weights

to important features or contextual information related to the current task, thereby preserving

knowledge about previously learned tasks.

Although the Rec-LwF method achieved a similar average accuracy to the Finetune

method in the LIRIS dataset, as presented in Table 11, it consistently outperformed across the

tasks. The low average accuracy score can be attributed to the difficulty faced in learning the last

task. Moreover, as presented in Table 12, it achieved a lower average forgetting rate of 0.27, in

contrast to the Finetune method with a rate of 0.39. This finding also suggests that Rec-LwF tends

to retain more information on average. The results further indicate that earlier tasks generally

exhibit higher forgetting rates, emphasizing the challenge of preserving information from earlier

stages.

The proposed method also outperforms the compared approaches in the MSR-VTT-

subset dataset with an average accuracy of 0.28. This finding suggests that the proposed approach

is also suitable for handling incremental learning tasks on large open datasets.

In terms of the forgetting rate, the proposed method achieved low forgetting rates for

all tasks on both datasets. This observation suggests that the proposed model has the potential

to mitigate the issue of catastrophic forgetting by retaining previously learned information

when new tasks are introduced. Furthermore, this finding demonstrates the high stability of the
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proposed method in class-incremental learning training. Rec-LwF also achieved lower forgetting

rates compared to both EWC and Finetune methods, suggesting its superior ability to mitigate

the issue of forgetting. However, it also achieved a low accuracy score, demonstrating difficulties

in learning new classes incrementally.

The proposed method achieved a zero forgetting rate; nevertheless, experiments con-

ducted on the MSR-VTT-subset dataset highlighted challenges in learning multiple tasks. Specif-

ically, the proposed method faced difficulties in effectively learning new classes after task 15,

as shown in Table 13. To retain knowledge from the previous tasks, it uses masks to constrain

the network capacity. However, as the number of tasks increases, the capacity of the model to

acquire new knowledge may become saturated. To address this issue, additional experiments

were conducted to assess memory growth, and the findings are reported in Sections 4.2.6 and

4.2.7.

Notably, the accuracy scores achieved by the proposed method on the controlled LIRIS

dataset surpass those achieved on the MSR-VTT-subset dataset. The variation in such scores

can be explained by many distinctive factors. Firstly, the LIRIS dataset has a smaller number

of videos and a more controlled vocabulary size, which limits the range of linguistic variations.

Additionally, the environmental conditions under which the actions are performed in the LIRIS

dataset demonstrate minimal variation, including only indoor scenes with consistent lighting

conditions and the small number of individuals performing the actions in videos. In contrast, the

MSR-VTT-subset dataset contains more complex videos and has a higher vocabulary diversity.

Regarding the trade-off between intransigence and forgetting, the proposed approach

achieved the lowest score in both metrics, having the smallest distance from (0,0). Such a finding

may suggest it can adequately solve the class-incremental learning challenges. However, as

discussed earlier, the capacity of the model to acquire new knowledge may reach saturation over

time, and the essence of the intransigence score may not be fully captured. To investigate such a

limitation, additional experiments will be presented and discussed in the next sections.

4.2.4 Experiment 2: Analysis of the Impact of the Initial Task Size on the Results

The experiments presented in this Section were motivated by the following research

question: “Does the proposed method demonstrate superior performance when learning multiple

classes in the initial task before gradually learning new classes, or does it achieve superior results

by focusing on learning one class per task at a time?”.
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In this experiment, the training process involved iterative steps for each dataset, with the

proposed model being trained multiple times using different dataset splits. The overall accuracy

was computed for each iteration, which was repeated a total of 𝑛− 1 times, where 𝑛 represents

the total number of classes present in the dataset. Initially, the model was trained on individual

tasks, with each task containing only one class. Subsequently, the initial task was gradually

expanded to include additional classes in the following iterations. For instance, in the second

trained model, the first task included the first two classes, while the remaining classes were

learned incrementally, with one class per subsequent task. This incremental learning approach

continued as subsequent models were trained, progressively incorporating an additional class

into the initial task with each iteration until it incorporated 𝑛− 1 classes. Finally, in the last stage,

only one class remained to be learned incrementally. This sequential and progressive training

methodology was implemented to evaluate whether the model achieves better performance

when initially trained with many classes in the first task and subsequently learns fewer tasks

incrementally or if better performance is achieved by initially training the first task with a small

number of classes and gradually incorporating new classes.

To assess the performance in these experiments, the Average Accuracy metric was used,

as defined in Section 3.2.3. However, the accuracy measurement was replaced by the METEOR

metric in our experiments, as it serves as a standard evaluation metric widely employed for video

captioning assessment. As suggested by Masana et al. (2023), when dealing with tasks involving

diverse numbers of classes, a class frequency weighted version is applied. Consequently, the

average accuracy was calculated considering the number of classes in each task during the model

evaluation.

Similar to Experiment 1, we set 𝑘 = 0 in Algorithm 1. Thus, the model expansion

process solely involves updating the input and output layers to incorporate new vocabulary.

Figure 21 illustrates the overall performance of the proposed model with respect to the

number of classes in the first task. In the LIRIS dataset, the model exhibits a significantly higher

performance of 0.60 when initially trained with a single class per task. However, the performance

gradually decreases as the number of classes in the initial task increases. The performance ranges

from 0.60 to 0.45 for 1 to 9 classes in the initial task. On the other hand, in the MSR-VTT-subset

dataset, the model starts with a performance of 0.28 for a single class per task. The performance

remains relatively stable for the first nine interactions, ranging between 0.27 and 0.29. However,

the performance gradually declines from the 9th class onwards, reaching 0.21 for 19 classes in
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the initial task.

Figure 21 – Average accuracy concerning the number of classes in the initial task.

Source: Developed by the author.

4.2.4.1 Discussion

The experimental results obtained from the LIRIS and MSR-VTT-subset datasets

demonstrated that the proposed method performed better when trained with one class in the

initial task before incrementally learning new tasks. This observation suggests that by training the

model with individual classes per task, the proposed method can effectively focus on learning the

distinctive characteristics of each class, leading to improved overall performance. On the other

hand, when the proposed method was trained with multiple classes in the initial task, the average

accuracy measure decreased. This finding also suggests that complexity and overlap among

classes may pose challenges in distinguishing and generalizing patterns associated with each

class. Moreover, more classes increase the risk of misclassification and confusion between similar

classes, making the model learning process even more difficult. Overall, these findings highlight

the importance of the proposed method in incrementally learning each class individually. By
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focusing on one class at a time, the proposed model can mitigate the challenges of simultaneously

learning multiple classes, thereby achieving better performance.

4.2.5 Experiment 3: Impact of Task Order on Overall Model Performance

The experiments presented in this Section were motivated by the following question:

“Does the ordering of classes influence the overall performance of the proposed method?”. The

proposed method learns a sequence of tasks throughout the training process. These tasks can

show significant differences in visual content or linguistic patterns employed to describe the

scenes. Thus, six experiments were conducted to assess the influence of the task order on the

performance of the proposed model. Similar to the previous experiments, it was set 𝑘 = 0 in

Algorithm 1 as the model expansion process in this experiment involves updating the input and

output layers to incorporate new vocabulary.

First, the similarity between tasks was computed by measuring the distance between

task centroids, treating each task as a cluster, and considering each reference sentence as data

belonging to a cluster. Sentence-BERT (SBERT6) framework, which is based on the BERT model

(DEVLIN et al., 2019), was used to encode sentences into semantic embedding feature vectors

(REIMERS; GUREVYCH, 2019). After encoding all the sentences, the centroid of each task

was calculated by taking the mean of the features. The final similarity score was computed by

employing the cosine similarity metric. Figure 22 presents the computed similarity matrices of

classes for both LIRIS and MSR-VTT-subset datasets.

Based on the similarity matrices presented in Figure 22, six task sequences were created

for each dataset. These sequences were created by considering the similarity, dissimilarity, and

vocabulary size of the tasks. Considering the significant computational resources required to

conduct experiments with all the different possible orders, two empirical sequences were defined

for similar tasks (Sim1 and Sim2) and two for dissimilar tasks (Diss1 and Diss2). Note that the

similarity and dissimilarity of the videos were computed based on the descriptions associated

with each video task, and the sequences were defined based on the first task in the sequence.

Also, each task within the sequences contains only one class, as presented in Sections 4.1.1.1

and 4.2.1.1. Furthermore, the task sequences, namely Descending Vocabulary Size (DVS) and

Ascending Vocabulary Size (AVS) were defined, considering the vocabulary size of the tasks as

outlined in Tables 3 and 10. The motivation behind the last two task sequences was to assess
6 https://www.sbert.net/
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Figure 22 – Similarity matrix based on reference sentence similarity.

Source: Developed by the author.

the performance of the proposed method in two distinct scenarios: one where the initial tasks

contain a wide-ranging and diverse vocabulary and the other where the model is fed with only a

limited set of words during each task.

Table 15 presents the experimental results obtained from the LIRIS dataset. It can be

noted that the ordering of classes does influence the performance of the proposed method. The

AVS and Diss2 sequences reached the highest average accuracy of 0.77, followed by Sim1 order

with a score of 0.72, Sim2 with a score of 0.67, and Diss1 with a score of 0.63. On the other

hand, the DVS order achieved the lowest average accuracy of 0.59.

When analyzing the scores of the tasks across different sequences, it is noteworthy

that specific tasks (such as T3, T4, and T8) achieved a consistent score with minimal variation

throughout the sequences. Conversely, tasks T2, T5, T6, T9, and T10 displayed substantial score

variations across different task sequences. Additionally, when the T7 task was trained at the end

of the sequence, there was a significant decrease in the average accuracy score.
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Table 15 – Average accuracy on the LIRIS dataset in different task sequences. M denotes the METEOR score
achieved after training the last task.
Sim1 M Sim2 M Diss1 M Diss2 M DVS M AVS M

T1 0.99 T4 0.46 T7 0.47 T1 0.99 T3 0.42 T7 0.47
T2 0.98 T6 0.54 T9 1.00 T7 0.47 T1 0.99 T9 1.00

T10 0.96 T5 0.96 T8 0.53 T5 0.96 T6 0.53 T10 0.65
T4 0.51 T1 0.98 T4 0.49 T8 0.52 T4 0.45 T2 0.98
T3 0.42 T2 0.98 T6 0.55 T2 0.94 T8 0.54 T5 0.96
T5 0.96 T10 0.53 T5 0.92 T9 1.00 T5 0.59 T8 0.70
T6 0.59 T3 0.42 T1 0.72 T10 0.96 T2 0.98 T4 0.59
T8 0.52 T8 0.55 T2 0.66 T6 0.94 T10 0.53 T6 0.94
T9 1.00 T7 0.60 T10 0.53 T3 0.40 T9 0.60 T1 0.99
T7 0.29 T9 0.66 T3 0.39 T4 0.53 T7 0.22 T3 0.40
avg 0.72 avg 0.67 avg 0.63 avg 0.77 avg 0.59 avg 0.77

Source: Developed by the author.

Table 16 presents the experimental results conducted on the MSR-VTT-subset dataset

for the six distinct sequences. It is worth highlighting that the scores obtained in this dataset are

considerably lower in comparison to those presented in Table 15. This disparity can be attributed

to the complexity and diversity of video content and the notably more extensive vocabulary

contained within the MSR-VTT-subset dataset, resulting in a more challenging dataset in contrast

to the LIRIS dataset.

Table 16 – Average accuracy on the MSR-VTT-subset dataset in different task sequences. M denotes the
METEOR score achieved after training the last task.
Sim1 M Sim2 M Diss1 M Diss2 M DVS M AVS M

T8 0.22 T1 0.24 T19 0.38 T18 0.42 T5 0.28 T19 0.38
T6 0.15 T14 0.26 T2 0.26 T5 0.27 T2 0.27 T13 0.40
T9 0.29 T17 0.28 T17 0.25 T2 0.26 T4 0.38 T14 0.25

T10 0.31 T20 0.39 T18 0.44 T4 0.38 T10 0.28 T18 0.42
T5 0.26 T15 0.64 T1 0.19 T15 0.66 T15 0.58 T3 0.25
T7 0.38 T11 0.26 T4 0.38 T8 0.22 T17 0.25 T16 0.26

T13 0.40 T5 0.27 T13 0.37 T7 0.36 T12 0.35 T11 0.16
T15 0.60 T7 0.35 T20 0.44 T16 0.39 T1 0.20 T9 0.15
T11 0.26 T13 0.41 T12 0.27 T3 0.25 T20 0.41 T7 0.36
T1 0.21 T9 0.25 T14 0.25 T13 0.43 T8 0.22 T6 0.14

T14 0.22 T10 0.24 T3 0.15 T12 0.32 T6 0.20 T8 0.15
T17 0.30 T6 0.17 T11 0.16 T17 0.24 T7 0.36 T20 0.43
T20 0.43 T3 0.14 T16 0.16 T9 0.23 T9 0.24 T1 0.14
T16 0.17 T2 0.27 T7 0.36 T20 0.20 T11 0.16 T12 0.17
T12 0.18 T8 0.15 T10 0.24 T6 0.17 T16 0.25 T17 0.17
T4 0.38 T4 0.27 T15 0.56 T19 0.19 T3 0.17 T15 0.37
T3 0.16 T12 0.15 T9 0.19 T14 0.22 T18 0.20 T10 0.19
T2 0.14 T16 0.16 T8 0.15 T11 0.15 T14 0.24 T4 0.17

T19 0.18 T19 0.20 T5 0.14 T10 0.19 T13 0.28 T2 0.17
T18 0.27 T18 0.31 T6 0.15 T1 0.16 T19 0.18 T5 0.15
Avg 0.28 Avg 0.27 Avg 0.28 Avg 0.29 Avg 0.27 Avg 0.24

Source: Developed by the author.

The overall average accuracy presented in Table 16 ranges from 0.24 to 0.29, indicating
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a consistent and minimal discrepancy between them. However, it is worth noting that the scores

of the tasks show variations based on their respective order within the training sequence. For

instance, tasks T5, T13, T18, and T19 demonstrated higher performance scores when trained

at the initial positions within the task sequence, but their performance notably declined when

trained at the latter stages of the sequence. It can also be noted that the performance of the

proposed method decreases after task 10 within the AVS sequence. It can also be noted in Table

16 that the T6 task achieved consistently low scores across various task sequences, even when

trained within the initial tasks. On the other hand, the T15 task achieved a high score even when

trained at the end of the sequence.

4.2.5.1 Discussion

According to the experimental results, the average accuracy varied according to the task

orders. In the LIRIS dataset, results show the score achieved by the proposed method ranged

from 0.59 to 0.77, demonstrating that the order of the tasks affects the overall score on such

dataset.

Moreover, it was noted that the similarity or dissimilarity between classes could not be

considered the only aspect that influences the performance of the model. Such findings suggest

that other aspects beyond similarity or dissimilarity between tasks also influence the performance

of the proposed model.

To better understand the score variations achieved by the proposed approach across

different task sequences, a qualitative analysis was also conducted. Figure 23 depicts the captions

generated by the proposed method for three distinct videos obtained from the LIRIS dataset

across task sequences with the reference sentences provided by the dataset for each video.

Notably, the proposed method generated some captions that were identical to those presented in

the reference sentence list.
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Figure 23 – Qualitative analysis of generated descriptions on the LIRIS dataset int different task sequences.

Source: Developed by the author.

Figure 23A shows a randomly selected video from the T7 task. It can be observed that
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the proposed method predicted incorrect sentences for the analyzed video within the Sim1 and

DVS task orders. Task T7, positioned at the end of such sequences, notably achieved low scores

of 0.29 and 0.22, respectively. These results indicate that the model faced difficulties in effective

learning and describing the videos associated with this task in these specific task orders. Moreover,

the generated descriptions for this video in the remaining task sequences correctly described

the action but included incorrect details regarding soft biometrics, specifically clothing color.

Similar findings can be observed in Figure 23C, further highlighting the difficulty of the model

in learning and describing this particular aspect accurately. To address this limitation, potential

strategies could involve incorporating more specific features into the model or considering a

post-processing step to incorporate the soft biometrics information into the predicted sentence.

Figure 23B shows a randomly selected video presented in Task T9. It can be noted

that the proposed method could generate captions identical to one of the reference sentences in

almost all task orders. However, for the DVS order, which achieved a score of 0.59, as presented

in Table 15, the model predicted a sentence with an incorrect action for the given video. While

an accurate description was generated in the Sim2 order, the score obtained was 0.66, and both

of these tasks were learned at the end of the task sequence. This observation may suggest that the

proposed model is more prone to learn new patterns and vocabulary from novel tasks when they

are learned at the beginning of the sequence. Nevertheless, surprisingly, the T9 task achieved its

highest score in order Sim1 when trained near the end of the sequence. This outcome indicates

that the proposed model faces additional challenges beyond task order to efficiently learn new

tasks, particularly when confronted with a substantial number of sequential tasks.

In Figure 23C), it can be noted that the proposed method consistently demonstrated

proficiency in accurately describing the action depicted in the video. However, it struggled to

provide precise descriptions of the soft biometrics information, specifically about gender and

clothing details. Notably, within the Sim1 and Diss2 sequences, where clothing information was

not described, the corresponding scores obtained (as indicated in Table 15) were comparatively

higher than those obtained in sequences where clothing descriptions were inaccurately provided.

This observation demonstrates the sensitivity of the metric when evaluating short sentences,

wherein slight variations of a few words significantly impact the computed score. Moreover,

this finding aligns with the findings reported by (INÁCIO, 2023), highlighting the limitations of

widely-used metrics in video captioning evaluation concerning their ability to assess the semantic

aspects of sentences accurately.
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Similar to the findings from the LIRIS dataset, the results obtained from the MSR-VTT-

subset dataset, as presented in Table 16, show that certain tasks, specifically T5, T13, T18, and

T19, achieved higher scores when trained at the beginning of the task sequence. However, their

performance notably declined when trained toward the final of the sequence.

This empirical observation suggests that the proposed method may face challenges in

learning many sequential tasks. It can also be noted that the performance of the proposed method

decreases after 10-th task within the AVS sequence. This observation may raise a limitation

capacity of the model to effectively acquire new knowledge when confronted with tasks that

involve a substantial amount of new vocabulary.

The use of attention masks may contribute to this capacity limitation. As the proposed

model learns new tasks, the masks retain information regarding the importance of neurons in de-

scribing previous tasks. Consequently, when exposed to new tasks characterized by considerable

new vocabularies, the available memory for learning new knowledge may be constrained. Such a

limitation is explored in the following experiments.

In Table 16, it can also be noted that the T6 task achieved consistently low scores across

various task sequences, even when trained within the initial tasks. This may suggest that the

proposed method could not properly learn such a task. On the other hand, the T15 task achieves a

high score even when trained at the end of the sequence, indicating that it was an easily learnable

task and demanded minimal computation effort from the model.
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Figure 24 – Qualitative analysis of generated descriptions on the MSR-VTT-subset dataset in different task
sequences.

Source: Developed by the author.
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A qualitative analysis was also performed based on the results obtained from the MSR-

VTT-subset to examine the task score variations in different sequences. Figure 24 presents a

qualitative analysis of the descriptions generated by the proposed method for three selected

videos obtained from the MSR-VTT-subset dataset across different task sequences.

In Figure 24A, it is noticed that the proposed method did not generate a fluent sentence

(highlighted in red) for the analyzed videos in the sequences Diss1 and AVS. For both task

sequences, the model learned them in the final sequence, confirming that the proposed method

may not deal with many tasks sequentially, probably due to memory limitation. The same finding

can be seen in AVS sequence of Task T2 in Figure 24B.

Figure 24B and 24C present sentences highlighted in red that, although fluent, do

not accurately describe the corresponding videos. These sentences belong to sequence tasks

learned in the final sequence, demonstrating that the proposed method may face challenges in

learning many new tasks, potentially due to the limited memory capacity discussed previously.

By preserving the knowledge learned in previous tasks, the method emphasizes stability rather

than plasticity, suggesting it may face a challenge in effectively balancing the stability-plasticity

dilemma.

Based on the observed findings in this experiment regarding the potential limitations of

memory in the incremental learning of new tasks, the experiments presented in the following

sections were conducted to address this issue.

4.2.6 Experiment 4: Initial memory size

The experiments presented in this section were motivated by the following question:

“How does the size of the internal memory affect the overall performance of the proposed

method?”. Based on the experimental results presented in Section 4.2.5, a potential limitation

of the proposed method has been identified concerning its memory size, as the method showed

difficulty in learning many new tasks sequentially.

Experiments were performed with six different memory sizes: 512, 1024, 2048, 4096,

5120, and 6144. Figure 25 presents the average accuracy on both LIRIS and MSR-VTT-dataset

dataset.
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Figure 25 – Average accuracy across various memory sizes.

Source: Developed by the author.

For the LIRIS dataset, the model exhibits relatively stable performance within the

memory size range from 512 to 2048. The highest average accuracy (0.66) is achieved with a

memory size of 4096, indicating that this dataset does not necessitate higher memory capacity to

learn the patterns adequately. Conversely, the MSR-VTT-subset dataset achieved lower scores

with memory sizes of 512 and 1024 but demonstrated stable performance from 2048 to 6144.

Its peak average accuracy (0.32) is achieved with a memory size of 2048, signifying that this

dataset requires greater memory capacity to learn the patterns effectively. This may suggest

that the optimal memory size may vary depending on the dataset and the specific tasks being

performed. Furthermore, both datasets demonstrate varying sensitivity to changes in memory

size, with some memory capacities leading to significant fluctuations in performance scores.

However, both datasets show relatively consistent performance patterns across memory sizes,

indicating robustness to some extent.
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4.2.6.1 Discussion

The memory capacity of a machine learning model plays a key role in its learning

capabilities, generalization performance, and predictive abilities. The experimental results pre-

sented in Figure 25 show that the proposed model achieved superior performance on the LIRIS

dataset when using a memory size 4096. In contrast, the performance declined when training the

model with larger memory sizes. This observation highlights the potential risks associated with

employing a large memory model with a small dataset, namely the phenomenon of overfitting.

Overfitting occurs when a model becomes excessively specialized to the training data, resulting

in reduced performance on unseen data and hindered generalization capabilities. Employing a

large memory in machine learning models introduces additional complexity, primarily in the

form of increased parameters. Consequently, training such a model with limited data can pose

challenges, as the high capacity of the model may only be effectively beneficial with a sufficient

amount of data to capture meaningful patterns and relationships.

On the other hand, the proposed method achieved better performance on the MSR-VTT-

subset dataset when it was trained with a larger memory size (2048). As the MSR-VTT-subset

dataset is larger and more diverse in video content and vocabulary compared to the LIRIS dataset,

a larger memory capacity becomes necessary to achieve superior performance. While a larger

memory capacity can offer advantages in such a dataset, some concerns should be observed

regarding model architecture, optimization techniques, and high demand for computational

resources.

Finding a balance between model complexity and available resources is crucial for

achieving optimal performance scores during machine learning model training. The experiments

conducted in this Section provide evidence that internal memory size can significantly impact

overall performance. Determining the appropriate memory size poses a challenge, as it requires

careful consideration of the size and complexity of the dataset being used.

4.2.7 Experiment 5: Dynamic memory expansion

These experiments aim to tackle the limitation pointed out in the previous experiments

regarding the possible difficulty of the proposed method in learning many new tasks incrementally.

The question that motivated the experiments in this section is: “Does increasing the memory

of the proposed method improve its capacity to learn new tasks? How and at what stages of
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the training process should the memory expansion be implemented to optimize the learning

performance?”. The underlying premise is that the model requires additional memory capacity

to acquire new task-specific knowledge when faced with a new task. Thus, the memory of the

proposed model can be expanded by a size of 𝑠, as proposed in Algorithm 1, before starting to

learn a new task.

The experiments were conducted using four distinct settings: two settings employing

linearly increasing memory with 𝑠 = 10 and 𝑠 = 50 before training a new task 𝑡 > 1, and two

settings employing dynamic memory expansion with 𝑠 = 10 and 𝑠 = 50. It is important to

note that, in the experiments involving linearly increasing memory, the threshold 𝑘 was set to

1 to ensure consistent memory expansion before training a new task, regardless of the model’s

capacity to acquire new knowledge.

Table 17 presents the average accuracy and average forgetting of the proposed method

in five different memory expansion settings for various initial memory sizes, using the LIRIS and

MSR-VTT-subset dataset. Notably, significant improvements in the performance of the proposed

method were observed in comparison to the “no memory expansion” scenario, even with a slight

increase in the forgetting rate resulting from the memory expansion process.

In the LIRIS dataset, the highest score achieved was 0.76, using an initial memory

size of 512 and employing dynamic memory expansion by 10, following the process described

in the Algorithm 1. Conversely, for the MSR-VTT-subset dataset, best results were achieved

with an initial memory size of 2048 and employing memory expansion either linearly by 10 or

dynamically by 10 or 50. While comparable results were observed with initial memory sizes of

5120 and 6144, a slightly higher standard deviation was observed in those scores, indicating

more variation in the individual performance of tasks in those scenarios.

4.2.7.1 Discussion

The experimental results show that memory expansion significantly enhanced the

performance of the proposed approach. In particular, the model trained with an initial memory

size of 512, combined with dynamic memory expansion increments of 10, achieved the highest

overall score on the LIRIS dataset. These findings indicate that in a small and controlled dataset,

such as the LIRIS dataset, the proposed model achieved lower computational costs by initially

starting with a smaller memory size, such as 512, and expanding it on demand.

Regarding the model with an initial memory size of 4096 trained on the LIRIS dataset,
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Table 17 – Average accuracy and Average forgetting, with Standard Deviation, in five different memory
expansion settings in different initial memory sizes.

Initial
Memory Setting Liris MSR-VTT-subset

Avg. Acc. Forgetting Avg. Acc. Forgetting

512

No memory expansion 0.65 ± 0.33 0.00 ± 0.00 0.23 ± 0.08 0.00± 0.00
Linear expansion by 10 0.68 ± 0.23 0.07 ± 0.17 0.28 ± 0.07 0.02 ± 0.02
Linear expansion by 50 0.73 ± 0.24 0.11 ± 0.18 0.30 ± 0.06 0.01 ± 0.02

Dynamic expansion by 10 0.76 ± 0.23 0.01 ± 0.02 0.24 ± 0.08 0.05 ± 0.06
Dynamic expansion by 50 0.68 ± 0.23 0.09 ± 0.14 0.30 ± 0.07 0.02 ± 0.02

1024

No memory expansion 0.60 ± 0.24 0.00 ± 0.00 0.26 ± 0.07 0.00 ± 0.00
Linear expansion by 10 0.69 ± 0.25 0.00 ± 0.04 0.31 ± 0.07 0.02 ± 0.03
Linear expansion by 50 0.60 ± 0.20 0.10 ± 0.19 0.30 ± 0.07 0.02 ± 0.02

Dynamic expansion by 10 0.66 ± 0.24 0.04 ± 0.10 0.31 ± 0.05 0.02 ± 0.02
Dynamic expansion by 50 0.67 ± 0.24 0.03 ± 0.10 0.30 ± 0.07 0.03 ± 0.04

2048

No memory expansion 0.64 ± 0.25 0.00 ± 0.00 0.32 ± 0.07 0.00 ± 0.00
Linear expansion by 10 0.65 ± 0.23 0.00 ± 0.00 0.32 ± 0.06 0.02 ± 0.02
Linear expansion by 50 0.60 ± 0.21 0.00 ± 0.01 0.30 ± 0.06 0.03 ± 0.04

Dynamic expansion by 10 0.67 ± 0.23 0.01 ± 0.03 0.32 ± 0.06 0.01 ± 0.01
Dynamic expansion by 50 0.65 ± 0.24 0.00 ± 0.01 0.32 ± 0.06 0.01 ± 0.02

4096

No memory expansion 0.66 ± 0.23 0.00 ± 0.00 0.29 ± 0.07 0.00 ± 0.00
Linear expansion by 10 0.61 ± 0.21 0.00 ± 0.00 0.31 ± 0.07 0.01 ± 0.01
Linear expansion by 50 0.59 ± 0.21 -0.01 ± 0.02 0.31 ± 0.07 0.01 ± 0.02

Dynamic expansion by 10 0.62 ± 0.20 0.00 ± 0.00 0.31 ± 0.08 0.02 ± 0.03
Dynamic expansion by 50 0.61 ± 0.21 0.00 ± 0.00 0.31 ± 0.08 0.03 ± 0.03

5120

No memory expansion 0.56 ± 0.15 0.00 ± 0.00 0.31 ± 0.07 0.00 ± 0.00
Linear expansion by 10 0.55 ± 0.16 0.00 ± 0.01 0.30 ± 0.07 0.01 ± 0.02
Linear expansion by 50 0.57 ± 0.16 0.00 ± 0.01 0.31 ± 0.07 0.01 ± 0.02

Dynamic expansion by 10 0.58 ± 0.16 0.00 ± 0.01 0.32 ± 0.07 0.01 ± 0.02
Dynamic expansion by 50 0.63 ± 0.21 -0.01 ± 0.02 0.30 ± 0.06 0.02 ± 0.03

6144

No memory expansion 0.56 ± 0.17 0.00 ± 0.00 0.30 ± 0.07 0.00 ± 0.00
Linear expansion by 10 0.56 ± 0.16 0.00 ± 0.01 0.30 ± 0.07 0.02 ± 0.01
Linear expansion by 50 0.60 ± 0.21 0.00 ± 0.01 0.30 ± 0.06 0.02 ± 0.02

Dynamic expansion by 10 0.51 ± 0.06 0.01 ± 0.01 0.32 ± 0.07 0.01 ± 0.02
Dynamic expansion by 50 0.52 ± 0.08 0.00 ± 0.02 0.30 ± 0.07 0.02 ± 0.02

Source: Developed by the author.

the memory expansion strategy did not improve the performance.

Regarding the models with initial sizes of 4096, 5120, and 6144, the memory growth

models obtained marginally better results than those obtained with fixed memory size. Such

findings indicate that the increased model complexity, introduced by larger memory sizes, may

have a limited impact on learning a small dataset. However, further analysis and experimentation

are necessary to fully understand the relationship between memory size, model complexity, and

dataset size.

The proposed memory expansion method also notably enhanced the performance of

the proposed method when trained on the MSR-VTT-subset dataset with small initial memory

sizes, such as 512 or 1024. However, as the initial memory size exceeded 1024, the improvement

became less significant. This observation may suggest that when training the proposed method
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using a larger and more complex dataset, defining a higher initial memory size may be necessary

to learn novel tasks effectively.

Regarding the average rate of forgetting, it can be observed that memory expansion

led to an increase in the forgetting rate, mainly in the case of trained models with lower initial

memory sizes (512 or 1024). Despite this increase, the improvement achieved in the overall

performance outweighed the impact of heightened forgetting rates. This finding indicates that the

advantages of memory expansion in improving the model’s capacity to learn new tasks outweigh

the potential drawback of increased forgetting, especially for models trained with limited initial

memory.

According to the experimental results, no clear relationship was observed between the

initial memory size and the memory expansion method (linear or dynamic), nor the extent of

expansion on both datasets. However, it is worth noting that higher scores in the LIRIS dataset

were achieved with a smaller initial memory. In contrast, in the MSR-VTT-subset dataset, the

proposed method achieved its best performance when trained with a larger initial memory. This

observation further supports the result obtained in Section 4.2.6, which indicates that a large

dataset with diverse vocabulary requires a higher memory capacity to enhance pattern learning.
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5 CONCLUSIONS AND FUTURE WORK

It is a matter of fact that most artificial intelligence methods rely on the closed-set

assumption. The same also holds for the specific case of automatic video description systems.

Existing methods based on a closed-set perspective can describe only the temporal events

previously seen during the training step. Unless one trains models using datasets that contain all

the existing events and actions of interest, their ability to recognize unknown events within videos

in uncontrolled environments will be limited. Furthermore, it will be difficult for models to learn

and adapt to these unknown events after training. In addition, most current video description

approaches focus only on single actions co-occurring, while concurrent events may occur in the

real world.

In Chapter 1, the research questions were introduced, namely, “Can a video description

framework be designed to describe in natural language concurrent known video events in different

contexts and deal with the unknown ones? What strategies could be employed to enhance the

framework’s ability to learn and describe unknown events?” Along with the development of this

thesis, we investigated and proposed novel methods to detect and describe concurrent events in

an open-set scenario (Section 3.1), as well as a video captioning approach in a class-incremental

learning scenario (Section 3.2). The experiments of Chapter 4 showed promising insights. The

findings from these experiments indicate that developing a deep learning-based approach to

address the video description problem in an open-world environment is feasible, even considering

the potential emergence of new actions and vocabularies beyond the initially trained model.

The results obtained demonstrate the effectiveness of the model for dealing with unknown

events. Additionally, the proposed incremental learning method for video captioning provides a

perspective on how a deep learning model can systematically acquire the capability to describe

incrementally new and unknown events over time.

The general objective of this thesis, referred to as “To propose methods for the semantic

description of videos in an open world scenario,” has been accomplished through the development

of the methods proposed in Chapter 3. The OSVidCap (INÁCIO et al., 2021) framework

presented in Section 3.1 describes both simple and concurrent events, including detecting

unknown events. Such a framework can easily be extended to incorporate different features

from different modalities, including audio and features representing the relationship between

objects. The class incremental learning method presented in Section 3.2 allows the model to learn
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new knowledge incrementally without requiring complete retraining. Although the incremental

learning method proposed employs a similar encoder/decoder structure as OSVidCap, it cannot

be asserted that it is applicable in an open-world scenario. Such a limitation arises from the

dependence of the Open-set module on an EVM, making it impossible to adapt to the context of

incremental learning. Addressing this challenge would require enhancing the open-set module

introduced in OSVidCap with a mechanism capable of incrementally learning unknown classes.

This issue was left for future work.

The specific objective #1 (see Chapter1), “To propose a method to describe, in natural

language, single and concurrent known events occurring in videos,” was achieved through the

proposed Target Detection and Localization (TDL) mechanism within the OSVidCap framework.

This mechanism detects diverse events that co-occur in a video, allowing the description of all

concurrent events detected.

The specific objective #2, “To investigate and devise a method to detect and recognize

unseen and unknown events,” is an integral aspect of this thesis, as it prevents the model

from generating inaccurate descriptions when confronted with unknown events. This goal was

accomplished by implementing the “open set module” in the OSVidCap framework, which

enables the framework to deal effectively with unknown events. Likewise, the aim of the specific

objective #3, “To investigate and devise a method to incrementally learn how to describe the

unknown events detected,” was also achieved through the approach proposed in Section 3.2. The

proposed method enhanced the model’s ability to describe new events incrementally.

Moreover, the accomplishment of the specific objective #4, “To create new datasets for

training the proposed models, if necessary,” was achieved by creating new datasets, as detailed in

Sections 4.1.1 and 4.2.1. The lack of adequate datasets in the literature encouraged the creation of

these datasets, which have been made publicly available to allow comparisons and benchmarking

with other approaches.

Finally, the specific objective #5, “Validate the proposed approaches in public datasets,

if applicable,” was achieved through a series of experiments conducted with the proposed model,

as presented in Chapter 4. These experiments were divided into two parts. The first part, described

in Section 4.1, assessed the description of videos containing simple and concurrent human actions

within an open-world context. In this context, the model was required to describe human actions

occurring in the videos while detecting and disregarding unknown actions to prevent inaccurate

descriptions. The obtained results demonstrate the model’s ability to describe known actions
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accurately and effectively detect and ignore unknown actions, with the model correctly indicating

that such action was unknown. The second part of the experiments, described in Section 4.2,

aimed to evaluate the proposed video captioning approach in a class incremental learning setting.

The results demonstrated the proposed approach’s ability to learn new knowledge with minimal

or no forgetting of previously learned information. Moreover, the proposed memory expansion

method proved essential to the model for acquiring new knowledge, particularly when confronted

with numerous new classes.

Despite having achieved the proposed objectives, some areas for improvement were

identified during the validation process of the model.

Based on the results and discussions presented, a potential limitation in the proposed

approach is the need for more detailed descriptions of the people detected in the videos, such as

clothing types or hair color. This challenge arises from the natural variation in word frequency

within the training vocabulary, resulting in limited exposure of these specific vocabularies

to the model during training. One potential solution to this issue is to employ specialized

network models specifically designed to capture such details and to use a post-processing step to

incorporate them into the generated descriptions.

Regarding the proposed incremental learning method, a limitation can be cited as the po-

tential demand for memory expansion when acquiring new tasks. These additional computational

resources may need to be more sustainable in specific applications. While dynamic memory

expansion presents an alternative for such situations, it still requires significant computational

resources when learning many new tasks.

Also, the proposed Open-set module in the OSVidCap framework is limited, as it

cannot perform incremental learning. This limitation arises from using the EVM, which performs

incremental learning by fitting different models to the new data. However, as discussed by

Gutoski et al. (2021b), the EVM is limited to fixed feature representations. Since we used

features from the TI3D model, continuously learning updated (dynamic) feature representations,

the EVM cannot be used in an incremental learning context.

Designing a generic method capable of describing a wide range of human actions

remains challenging. The complex visual environment and dynamics of temporal structures,

including occlusion, fine-grained activities, and tiny-size objects frequently essential for scene

description, contribute to the complexity of this video description task.

One of the main barriers in training a generic deep learning model is the need for huge
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datasets for the video captioning task. The availability of large-scale datasets with comprehen-

sive annotations is crucial for effectively training such approaches and achieving satisfactory

performance levels. Thus, efforts should be focused on creating new datasets and employing

semi-automatic annotation methods to mitigate the labor-intensive nature of manual annotation.

Another relevant point is the several metrics commonly used to evaluate video captioning

systems. They all have limitations in capturing the nuances of language generation, semantic

understanding, and contextual relevance. These metrics often rely on simplistic measures, such

as BLEU and METEOR, which assess superficial lexical similarities but need to evaluate the

quality and coherence of the generated captions comprehensively. Moreover, these metrics may

exhibit high sensitivity to sentence length, leading to biased evaluations in favor of shorter

captions. Additionally, existing metrics face challenges in assessing the overall meaning and

context of the generated descriptions, making it difficult to distinguish between semantically

accurate captions and those merely superficially similar to the ground truth. Thus, developing

more sophisticated and context-aware evaluation metrics is essential for a more accurate and

comprehensive assessment of video captioning systems.

In conclusion, developing new video description strategies remains essential, especially

in an open-world scenario, as these models can adapt and learn from new data over time.

Continued research and innovation in this field will pave the way for significant advances in

real-world applications, resulting in more effective and accurate video description methods with

broader applicability.

5.1 RESEARCH CONTRIBUTIONS AND PUBLISHED PAPERS

Throughout the course of this thesis, many significant contributions have been made

and can be summarized as follows:

• A novel video captioning framework to recognize and describe concurrent actions/activities

humans perform in an open-set scenario.

• A novel open-set mechanism to detect out-of-domain videos of unseen activities.

• A taxonomy of the existing metrics for video captioning.

• The advantages, shortcomings, and challenges of existing video captioning metrics are

identified and discussed.
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• A class-incremental learning method for the video captioning task.

• Two novel datasets and protocols for evaluating video captioning in an open-world scenario.

The following paragraphs provide a chronological overview of the published papers

that have emerged from this thesis.

In the initial years, I collaborated on works as the main author or co-author to the papers

Berno et al. (2019), Brilhador et al. (2019), Inácio et al. (2019), and Inácio et al. (2019), which

laid the groundwork for exploring ML and DL areas. These early papers provided a foundational

understanding and led to the main focus of this thesis – Contributions to Video Captioning in an

open-world scenario.

Although unrelated to the thesis’s central theme, the paper Inácio e LOPES (2020)

enriched my research interests by proposing a method for clothing segmentation. Valuable

perspectives were provided that complement the overall understanding of my work and can be

explored in future works to enrich the generated description.

Advancing further, papers Inácio et al. (2021a) and Inácio et al. (2021b) delved into

counting people in videos and explaining video anomalies through natural language, respectively.

While tangential to the thesis’s central theme, they provided insights into video processing and

understanding and NLP, both essential topics for this thesis.

The paper Inácio et al. (2021) holds a central position in my research as it aligns closely

with the thesis’s theme. It presents the OSVidCap framework for video captioning in an open-set

scenario, presented in Sections 3.1 and 4.1, shaping the direction of my research and guiding

subsequent studies.

Furthermore, the effort in Inácio (2023) extended beyond the primary focus of this thesis.

This publication presents a comprehensive survey of promising and existing automatic evaluation

metrics relevant to the Video Captioning task. Section 2.8.3 presents the examined metrics and

discusses the insights acquired from this paper. The paper organizes the existing knowledge

in this domain and critically evaluates the advantages and disadvantages of each metric under

consideration. This work has significantly enhanced the comprehension of evaluation metrics,

allowing for an expansion of the research scope. Furthermore, it has laid the foundation for future

works on this topic.

Furthermore, a paper focusing on Incremental Learning Video Captioning is currently

in progress. This work aims to present the method described in Section 3.2 and the results

presented in Section 4.2, holding great potential to significantly contribute to the existing body
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of knowledge in the field. Rigorous data analysis and experimentation are employed and provide

valuable insights into Incremental Learning in Video Captioning

5.2 FUTURE WORK

During the development of this thesis, several areas for potential improvement and

further investigation have emerged. Future research should focus on expanding the proposed

approach to enhance the quality and comprehensiveness of the generated descriptions. This

enrichment is crucial in applications requiring detailed information regarding humans and objects,

such as surveillance and human monitoring. The primary challenge in this effort lies in extracting

visual concepts essential for enhancing the description. For instance, soft biometric traits can be

incorporated to boost human descriptions, while attributes such as color, make, and model can

be used to enhance vehicle descriptions. To address this challenge, off-the-shelf models could be

employed to extract specific information. Thus, a module within the OSVidCap framework could

be developed to integrate this detailed information into the overall sentence structure, ensuring

high fluency and grammatical accuracy.

Future research should also focus on improving the open-set module in OSVidCap to

perform incremental learning. Also, recent approaches have been proposed to solve the EVM

limitations in this context (GUTOSKI et al., 2021b; KOCH et al., 2022) and can be further

explored to enhance the adaptability and performance of the system.

Future research should also focus on developing new datasets for video captioning in

an open-world environment. The lack of high-quality datasets for this specific scenario might

restrict the exploration and advancement of new methods and applications. Additionally, most

existing datasets contain only English captions, while datasets with captions described in other

languages are very scarce. Thus, future work could also consider designing a video captioning

dataset in Portuguese.

The evaluation of video description systems commonly relies on metrics based on n-

gram overlap to measure the similarity between the generated and reference sentences. However,

these metrics face difficulties in assessing the sentences’ semantic aspects. EMScore is the only

metric specifically proposed for the video description task, aiming to measure the similarity

between a sentence and the visual content of a video. However, it has been found to have certain

drawbacks, as outlined by Inácio (2023). Therefore, further research should develop novel

metrics that focus on the semantic analysis of the generated sentences.
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In recent years, the Transformer architecture has been successfully explored, demonstrat-

ing superior performance across various natural language processing tasks. As a potential avenue

for future investigation, researchers may explore using transformers for the video captioning task

in a class-incremental learning fashion. This line of investigation could also involve exploring the

use of transformer architectures to combine visual and audio information from videos through

multimodal fusion techniques. Additionally, researchers can explore class-incremental learning

(CIL) approaches, including dynamic architectures, rehearsal methods, or knowledge distillation,

to adapt transformer models for class-incremental learning. By conducting further research in

this area, researchers can investigate and develop effective strategies for integrating transformer

models into video captioning tasks in a class-incremental learning scenario, thereby enhancing

the accuracy and quality of the generated captions.
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SELJAN, S.; BRKIĆ, M.; VIČIĆ, T. BLEU Evaluation of Machine-Translated English-Croatian
Legislation. In: Proc. of the Eighth International Conference on Language Resources and
Evaluation (LREC). Istanbul, Turkey: European Language Resources Association (ELRA),
2012. p. 2143–2148.

SERRA, J.; SURIS, D.; MIRON, M.; KARATZOGLOU, A. Overcoming catastrophic forgetting
with hard attention to the task. In: International Conference on Machine Learning. Vienna,
Austria: [s.n.], 2018. p. 4548–4557.

SHARIF, N.; WHITE, L.; BENNAMOUN, M. et al. NNEval: Neural network based evaluation
metric for image captioning. In: Proc. of the European Conference on Computer Vision
(ECCV). [S.l.: s.n.], 2018. p. 37–53.

SHARIF, N.; WHITE, L.; BENNAMOUN, M. et al. LCEval: Learned composite metric for
caption evaluation. International Journal of Computer Vision, v. 127, n. 10, p. 1586–1610,
2019.



136

SHARIF, N.; WHITE, L.; BENNAMOUN, M. et al. WEmbSim: A simple yet effective
metric for image captioning. In: Proc. of IEEE Digital Image Computing: Techniques and
Applications. [S.l.: s.n.], 2020. p. 1–8.

SHEN, Z.; LI, J.; SU, Z.; LI, M.; CHEN, Y.; JIANG, Y.; XUE, X. Weakly supervised dense
video captioning. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Honolulu, Hawaii: [s.n.], 2017. p. 5159–5167.

SHI, X.; CAI, J.; JOTY, S.; GU, J. Watch it twice: Video captioning with a refocused video
encoder. In: Proc. of the 27th ACM International Conference on Multimedia. New York, NY,
USA: ACM, 2019. p. 818–826.

SHI, Y.; YANG, X.; XU, H. et al. EMScore: Evaluating video captioning via coarse-grained and
fine-grained embedding matching. In: Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2022. p. 17929–17938.

SHIGETO, Y.; YOSHIKAWA, Y.; LIN, J.; TAKEUCHI, A. Video caption dataset for describing
human actions in Japanese. In: Proc. of the 12th Language Resources and Evaluation
Conference. Marseille, France: [s.n.], 2020. p. 4664–4670.

SIGURDSSON, G. A.; VAROL, G.; WANG, X.; FARHADI, A.; LAPTEV, I.; GUPTA, A.
Hollywood in homes: Crowdsourcing data collection for activity understanding. In: Proc. of the
European Conference on Computer Vision (ECCV). Amsterdam: Springer International
Publishing, 2016. p. 510–526.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale
image recognition. In: Proc. of the IEEE 6th International Conference on Learning
Representations (ICLR). San Diego, USA: [s.n.], 2015. p. 1–14.

SINGH, T.; VISHWAKARMA, D. K. Human activity recognition in video benchmarks: A
survey. In: RAWAT, B.; TRIVEDI, A.; MANHAS, S.; KARWAL, V. (Ed.). Advances in Signal
Processing and Communication. Singapore: Springer, 2019. p. 247–259.

SOBUE, R.; NAKAZAWA, M.; CHAE, Y.; STENGER, B.; YAMASHITA, T.; FUJIYOSHI, H.
Cooking video summarization guided by matching with step-by-step recipe photos. In: Proc. of
the 16th International Conference on Machine Vision Applications (MVA). [S.l.: s.n.], 2019.
p. 1–6.

SONG, J.; GAO, L.; GUO, Z.; LIU, W.; ZHANG, D.; SHEN, H. T. Hierarchical LSTM with
adjusted temporal attention for video captioning. In: Proc. of the Twenty-Sixth International
Joint Conference on Artificial Intelligence (IJCAI). [S.l.: s.n.], 2017. p. 2737–2743.



137

SONG, J.; GUO, Y.; GAO, L.; LI, X.; HANJALIC, A.; SHEN, H. T. From deterministic to
generative: Multimodal stochastic RNNs for video captioning. IEEE Transactions on Neural
Networks and Learning Systems, v. 30, n. 10, p. 3047–3058, 2019.

SONG, P.; GUO, D.; CHENG, J.; WANG, M. Contextual attention network for emotional video
captioning. IEEE Transactions on Multimedia, p. 1–11, 2022.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A. et al. Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine Learning Research, v. 15, n. 1, p.
1929–1958, 2014.

SUIN, M.; RAJAGOPALAN, A. An efficient framework for dense video captioning. In: Proc.
of the 34th AAAI Conference on Artificial Intelligence. New York, USA: [s.n.], 2020. p.
12039–12046.

SZEGEDY, C.; IOFFE, S.; VANHOUCKE, V. et al. Inception-v4, Inception-ResNet and the
impact of residual connections on learning. Proc. of the 31st AAAI Conference on Artificial
Intelligence, v. 31, n. 1, Feb. 2017.

TANG, P.; WANG, H.; LI, Q. Rich visual and language representation with complementary
semantics for video captioning. ACM Transactions on Multimedia Computing,
Communications, and Applications, New York, NY, USA, v. 15, n. 2, jun. 2019.

TORABI, A.; PAL, C.; LAROCHELLE, H.; COURVILLE, A. Using descriptive video services
to create a large data source for video annotation research. In: preprint arXiv: 1503.01070.
[S.l.: s.n.], 2015. p. 1–7.

TRAN, D.; BOURDEV, L.; FERGUS, R.; TORRESANI, L.; PALURI, M. Learning
spatiotemporal features with 3D convolutional networks. In: Proc. of the IEEE International
Conference on Computer Vision (ICCV). Santiago, Chile: [s.n.], 2015. p. 4489–4497.

TSAI, J.; HSU, C.; WANG, W.; HUANG, S. Deep learning-based real-time multiple-person
action recognition system. Sensors, v. 20, n. 17, p. 4758, 2020.

TU, Y.; ZHANG, X.; LIU, B.; YAN, C. Video description with spatial-temporal attention. In:
Proc. of the 25th ACM International Conference on Multimedia. Mountain View, USA:
[s.n.], 2017. p. 1014–1022.

TU, Y.; ZHOU, C.; GUO, J. et al. Enhancing the alignment between target words and
corresponding frames for video captioning. Pattern Recognition, v. 111, p. 107702, 2021.

ULLAH, N.; MOHANTA, P. P. Thinking hallucination for video captioning. In: Proc. of the
Asian Conference on Computer Vision (ACCV). [S.l.: s.n.], 2022. p. 3654–3671.



138

van de VEN, G. M.; TUYTELAARS, T.; TOLIAS, A. S. Three types of incremental learning.
Nature Machine Intelligence, Nature Publishing Group, v. 4, n. 12, p. 1185–1197, 2022.

VASWANI, A.; SHAZEER, N.; PARMAR, N. et al. Attention is all you need. In: Proc. of the
31th Conference on Neural Information Processing Systems (NeurIPS). Long Beach, USA:
[s.n.], 2017. p. 1–11.

VEDANTAM, R.; ZITNICK, C. L.; PARIKH, Devi. CIDEr: Consensus-Based Image
Description Evaluation. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Boston, USA: [s.n.], 2015. p. 4566–4575.

VENUGOPALAN, S.; ROHRBACH, M.; DONAHUE, J.; MOONEY, R.; DARRELL, T.;
SAENKO, K. Sequence to sequence-video to text. In: Proc. of the IEEE International
Conference on Computer Vision (ICCV). Boston, USA: [s.n.], 2015. p. 4534–4542.

VENUGOPALAN, S.; XU, H.; DONAHUE, J. et al. Translating videos to natural language
using deep recurrent neural networks. In: Proc. of the Conference of the North American
Chapter of the Association for Computational Linguistics. Denver, USA: [s.n.], 2015. p.
1494–1504.

WANG, B.; MA, L.; ZHANG, W. et al. Reconstruction network for video captioning. In: Proc.
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt
Lake City, USA: [s.n.], 2018. p. 7622–7631.

WANG, B.; MA, L.; ZHANG, W.; JIANG, W.; WANG, J.; LIU, W. Controllable video
captioning with POS sequence guidance based on gated fusion network. In: Proc. of the
IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: [s.n.],
2019. p. 2641–2650.

WANG, D.; SONG, D. Video captioning with semantic information from the knowledge base.
In: Proc. of the IEEE International Conference on Big Knowledge (ICBK). Hefei, China:
[s.n.], 2017. p. 224–229.

WANG, H.; GAO, C.; HAN, Y. Sequence in sequence for video captioning. Pattern Recognition
Letters, v. 130, n. 1, p. 327 – 334, 2020.

WANG, H.; LIN, G.; HOI, S. C. H.; MIAO, C. Cross-modal graph with meta concepts for video
captioning. IEEE Transactions on Image Processing, v. 31, p. 5150–5162, 2022.

WANG, Hanli; TANG, Pengjie; LI, Qinyu; CHENG, Meng. Emotion expression with fact
transfer for video description. IEEE Transactions on Multimedia, IEEE, v. 24, p. 715–727,
2021.



139

WANG, H.; XU, Y.; HAN, Y. Spotting and aggregating salient regions for video captioning. In:
Proc. of the 26th ACM International Conference on Multimedia. New York, NY, USA:
ACM, 2018. p. 1519–1526.

WANG, J.; JIANG, W.; MA, L.; LIU, W.; XU, Y. Bidirectional attentive fusion with context
gating for dense video captioning. In: Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Salt Lake City, USA: [s.n.], 2018. p. 7190–7198.

WANG, J.; WANG, W.; HUANG, Y. et al. Hierarchical memory modeling for video captioning.
In: Proc. of the 26th ACM international conference on Multimedia. [S.l.: s.n.], 2018. p.
63–71.

WANG, J.; WANG, W.; HUANG, Y. et al. M3: Multimodal Memory Modelling for Video
Captioning. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Salt Lake City, USA: [s.n.], 2018. p. 7512–7520.

WANG, S.; YAO, Z.; WANG, R. et al. FAIEr: Fidelity and adequacy ensured image caption
evaluation. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). [S.l.: s.n.], 2021. p. 14050–14059.

WANG, X.; WU, J.; CHEN, J. et al. VaTeX: A large-scale, high-quality multilingual dataset
for video-and-language research. In: Proc. of the IEEE/CVF International Conference on
Computer Vision (ICCV). Seoul, Korea: [s.n.], 2019. p. 4581–4591.

WANG, X.; WU, J.; ZHANG, D. et al. Learning to compose topic-aware mixture of experts for
zero-shot video captioning. In: Proc. of the 33rd AAAI Conference on Artificial Intelligence.
Honolulu, Hawaii: [s.n.], 2019. v. 33, p. 8965–8972.

WANG, Y.; HUANG, G.; YUMING, L. et al. MIVCN: Multimodal interaction video captioning
network based on semantic association graph. Applied Intelligence, Springer, v. 52, n. 5, p.
5241–5260, 2022.

WEI, R.; MI, L.; HU, Y.; CHEN, Z. Exploiting the local temporal information for video
captioning. Journal of Visual Communication and Image Representation, USA, v. 67, n. C,
p. 102751, 2020.

WOJKE, N.; BEWLEY, A.; PAULUS, D. Simple online and real-time tracking with a deep
association metric. In: Proc. of the IEEE International Conference on Image Processing
(ICIP). Beijing, China: [s.n.], 2017. p. 3645–3649.

WOLF, C.; LOMBARDI, E.; MILLE, J. et al. Evaluation of video activity localizations
integrating quality and quantity measurements. Computer Vision and Image Understanding,
v. 127, p. 14 – 30, 2014.



140

WU, B.; NIU, G.; YU, J. et al. Towards knowledge-aware video captioning via transitive visual
relationship detection. IEEE Transactions on Circuits and Systems for Video Technology,
v. 32, n. 10, p. 6753–6765, 2022.

WU, X.; LI, G.; CAO, Q. et al. Interpretable video captioning via trajectory structured
localization. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Salt Lake City, USA: [s.n.], 2018. p. 6829–6837.

XIAO, H.; SHI, J. Video captioning using hierarchical multi-attention model. In: Proc. of the
2nd International Conference on Advances in Image Processing. New York, USA: ACM,
2018. p. 96–101.

XIAO, H.; SHI, J. Video captioning with adaptive attention and mixed loss optimization. IEEE
Access, v. 7, p. 135757–135769, 2019.

XIAO, H.; SHI, J. Video captioning with text-based dynamic attention and step-by-step learning.
Pattern Recognition Letters, v. 133, n. 1, p. 305 – 312, 2020.

XIAO, H.; SHI, J. Diverse video captioning through latent variable expansion. Pattern
Recognition Letters, v. 160, p. 19–25, 2022.

XIAO, H.; XU, J.; SHI, J. Exploring diverse and fine-grained caption for video by incorporating
convolutional architecture into LSTM-based model. Pattern Recognition Letters, v. 129, n. 1,
p. 173 – 180, 2020.

XIAO, X.; ZHANG, Y.; FENG, R. et al. Video captioning with temporal and region graph
convolution network. In: Proc. of the IEEE International Conference on Multimedia and
Expo (ICME). London, UK: [s.n.], 2020. p. 1–6.

XU, H.; LI, B.; RAMANISHKA, V. et al. Joint event detection and description in continuous
video streams. In: Proc. of the IEEE Winter Applications of Computer Vision Workshops
(WACVW). Waikoloa Village, Hawaii: [s.n.], 2019. p. 25–26.

XU, J.; MEI, T.; YAO, T.; RUI, Y. MSR-VTT: A large video description dataset for bridging
video and language. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, USA: [s.n.], 2016. p. 5288–5296.

XU, J.; WEI, H.; LI, L. et al. Video description model based on temporal-spatial and channel
multi-attention mechanisms. Applied Sciences, v. 10, n. 12, p. 1–18, 2020.

XU, J.; XU, T.; TIAN, X. et al. Context gating with short temporal information for video
captioning. In: Proc. of the International Joint Conference on Neural Networks (IJCNN).
Budapest, Hungary: [s.n.], 2019. p. 1–7.



141

XU, J.; YAO, T.; ZHANG, Y.; MEI, T. Learning multimodal attention LSTM networks for video
captioning. In: Proc. of the 25th ACM International Conference on Multimedia. New York,
NY, USA: [s.n.], 2017. p. 537–545.

XU, N.; LIU, A.; WONG, Y.; ZHANG, Y.; NIE, W.; SU, Y.; KANKANHALLI, M. Dual-stream
recurrent neural network for video captioning. IEEE Transactions on Circuits and Systems
for Video Technology, v. 29, n. 8, p. 2482–2493, 2019.

XU, W.; MIAO, Z.; YU, J. et al. Bridging video and text: A two-step polishing transformer for
video captioning. IEEE Transactions on Circuits and Systems for Video Technology, v. 32,
n. 9, p. 6293–6307, 2022.

XU, Y.; YANG, J.; MAO, K. Semantic-filtered soft-split-aware video captioning with
audio-augmented feature. Neurocomputing, v. 357, n. 1, p. 24 – 35, 2019.

XUE, P.; ZHOU, B. Exploring the spatio-temporal aware graph for video captioning. IET
Computer Vision, v. 16, n. 5, p. 456–467, 2022.

YAN, C.; TU, Y.; WANG, X. et al. STAT: Spatial-temporal attention mechanism for video
captioning. IEEE Transactions on Multimedia, v. 22, n. 1, p. 229–241, 2020.

YAN, L.; MA, S.; WANG, Q. et al. Video captioning using global-local representation. IEEE
Transactions on Circuits and Systems for Video Technology, v. 32, n. 10, p. 6642–6656,
2022.

YAN, L.; WANG, Q.; CUI, Y. et al. GL-RG: Global-local representation granularity for video
captioning. In: Proc. of the 31st International Joint Conference on Artificial Intelligence,
(IJCAI). [S.l.: s.n.], 2022. p. 2769–2775.

YAN, S.; XIONG, Y.; LIN, D. Spatial temporal graph convolutional networks for skeleton-based
action recognition. In: Proc. of the 32nd AAAI Conference on Artificial Intelligence. [S.l.:
s.n.], 2018.

YAN, Y.; ZHUANG, N.; NI, B. et al. Fine-grained video captioning via graph-based
multi-granularity interaction learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, v. 44, n. 2, p. 666–683, 2022.

YANG, B.; ZOU, Y.; LIU, F.; ZHANG, C. Non-autoregressive coarse-to-fine video captioning.
In: Proc. of the 35th AAAI Conference on Artificial Intelligence. [S.l.: s.n.], 2021. p.
3119–3127.

YANG, J.; ZHOU, K.; LI, Y.; LIU, Z. Generalized out-of-distribution detection: A survey.
ArXiv, arXiv:2110.11334, 2021.



142

YANG, Z.; XU, Y.; WANG, H. et al. Multirate multimodal video captioning. In: Proc. of the
25th ACM International Conference on Multimedia. New York, NY, USA: [s.n.], 2017. p.
1877–1882.

YE, H.; LI, G.; QI, Y. et al. Hierarchical modular network for video captioning. In: Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.],
2022. p. 17939–17948.

YU, J. J. Q.; LAM, A. Y. S.; HILL, D. J.; LI, V. O. K. Delay aware intelligent transient stability
assessment system. IEEE Access, v. 5, p. 17230–17239, 2017.

Z., Tianyi; K., Varsha; W., Felix et al. BERTScore: evaluating text generation with BERT. In:
Proc. 8th International Conference on Learning Representations. [S.l.: s.n.], 2020. p. 1–43.

ZHANG, H.; ZHANG, Y.; ZHONG, B. et al. A comprehensive survey of vision-based human
action recognition methods. Sensors, v. 19, n. 5, p. 1–20, 2019.

ZHANG, J.; PENG, Y. Hierarchical vision-language alignment for video captioning. In: Proc. of
the International Conference on Multimedia Modeling. Thessaloniki, Greece: [s.n.], 2019. p.
42–54.

ZHANG, J.; PENG, Y. Video captioning with object-aware spatio-temporal correlation and
aggregation. IEEE Transactions on Image Processing, v. 29, n. 1, p. 6209–6222, 2020.

ZHANG, X.; GAO, K.; ZHANG, Y. et al. Task-driven dynamic fusion: Reducing ambiguity
in video description. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). [S.l.: s.n.], 2017. p. 6250–6258.

ZHANG, Z.; SHI, Y.; YUAN, C. et al. Object relational graph with teacher-recommended
learning for video captioning. In: Proc. of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). [S.l.: s.n.], 2020. p. 13278–13288.

ZHANG, Z.; XU, D.; OUYANG, W. et al. Show, tell and summarize: Dense video captioning
using visual cue aided sentence summarization. IEEE Transactions on Circuits and Systems
for Video Technology, v. 30, n. 9, p. 3130–3139, 2020.

ZHANG, Z.; XU, D.; OUYANG, W. et al. Dense video captioning using graph-based sentence
summarization. IEEE Transactions on Multimedia, v. 23, p. 1799–1810, 2021.

ZHAO, B.; LI, X.; LU, X. CAM-RNN: Co-attention model based RNN for video captioning.
IEEE Transactions on Image Processing, v. 28, n. 11, p. 5552–5565, 2019.



143

ZHAO, H.; GUO, L.; CHEN, Z. et al. Research on video captioning based on multifeature
fusion. Computational Intelligence and Neuroscience, v. 2022, p. 1–14, 2022.

ZHENG, Q.; WANG, C.; TAO, D. Syntax-aware action targeting for video captioning. In: Proc.
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.:
s.n.], 2020. p. 13096–13105.

ZHENG, Y.; ZHANG, Y.; FENG, R. et al. Stacked multimodal attention network for
context-aware video captioning. IEEE Transactions on Circuits and Systems for Video
Technology, v. 32, n. 1, p. 31–42, 2022.

ZHONG, M.; ZHANG, H.; WANG, Y. et al. BiTransformer: augmenting semantic context in
video captioning via bidirectional decoder. Machine Vision and Applications, Springer, v. 33,
n. 5, p. 77, 2022.

ZHOU, L.; KALANTIDIS, Y.; CHEN, X. et al. Grounded video description. In: Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA:
[s.n.], 2019. p. 6578–6587.

ZHOU, L.; XU, C.; CORSO, J. J. Towards automatic learning of procedures from web
instructional videos. In: Proc. of the 32nd AAAI Conference on Artificial Intelligence. New
Orleans, USA: [s.n.], 2018. p. 7590–7598.

ZHOU, L.; ZHOU, Y.; CORSO, J. J. et al. End-to-end dense video captioning with masked
transformer. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Salt Lake City, EUA: [s.n.], 2018. p. 8739–8748.

ZHU, Y.; JIANG, S. Attention-based densely connected LSTM for video captioning. In: Proc.
of the 27th ACM International Conference on Multimedia. New York, NY, USA: [s.n.],
2019. p. 802–810.

ZHU, Y.; TING, K. M.; ZHOU, Z. New class adaptation via instance generation in one-pass
class incremental learning. In: Proc. IEEE International Conference on Data Mining
(ICDM). New Orleans, USA: [s.n.], 2017. p. 1207–1212.



APPENDIX



145

APPENDIX A – DETAILED LIST OF THE RELATED VIDEO DESCRIPTION

WORKS

Table 18 presents a list of related works analyzed during the period of the thesis.
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Table 18 – Summary of video captioning studies present in the literature. S denotes Spatial, T denotes Temporal, R denotes Visual Relations, MM denotes Multimodal,
NV denotes Novel Actions, EDL denotes Event Detection and localization, LM denotes Language Model

N. Author/Year S T R MM NV EDL LM Dataset
1 Venugopalan et al. (2015b) AlexNet variant LSTM MSVD
2 Venugopalan et al. (2015a) VGG-16 optical flow LSTM MSVD, MPII-MD, M-VAD
3 Baraldi et al. (2017) ResNet-50 C3D, LSTM GRU MSVD, MPII-MD, M-VAD
4 Gao et al. (2017) Inception-v3 LSTM LSTM MSVD, MSR-VTT
5 Krishna et al. (2017) C3D * LSTM ActivityNet Captions
6 Liu et al. (2017) VGG16 LSTM * LSTM MSVD, MPII-MD, MSR-

VTT
7 Nian et al. (2017) VGG16, ResNet-152 LSTM * LSTM MSVD, MPII-MD, M-VAD,

MSR-VTT
8 Pan et al. (2017) VGG-19 C3D * LSTM MSVD, M-VAD, MPII-MD
9 Shen et al. (2017) VGG-16, ResNet-50 C3D, LSTM * * LSTM MSR-VTT
10 Song et al. (2017) ResNet-152 LSTM MSVD, MSR-VTT
11 Tu et al. (2017) Faster R-CNN,

GoogLeNet
C3D LSTM MSVD, MSR-VTT

12 Wang e Song (2017) Faster R-CNN, VGG-
16

LSTM * LSTM MSVD

13 Xu et al. (2017) GoogLeNet C3D * LSTM MSVD, MSR-VTT
14 Yang et al. (2017) ResNet-200 C3D * GRU MSR-VTT
15 Zhang et al. (2017) VGG-19,

GoogLeNet-bu4k
C3D LSTM MSVD, MSR-VTT

16 Chen et al. (2018a) ResNet-152 LSTM GRU MSVD, MSR-VTT
17 Chen et al. (2018b) VGG-16 LSTM LSTM MSVD
18 Chen et al. (2018) ResNet-152, NasNet I3D * Transformer MSVD, MSR-VTT
19 Daskalakis et al. (2018) VGG16 LSTM MSVD
20 Duan et al. (2018) C3D * GRU ActivityNet Captions
21 Li et al. (2018) C3D * * LSTM ActivityNet Captions
22 Liu et al. (2018) Mask R-CNN,

ResNet-101
LSTM MSVD, MSR-VTT

23 Oura et al. (2018) VGG-16 LSTM * NeuralTalk2 MSVD, MSR-VTT
24 Pu et al. (2018) C3D LSTM M-VAD, MSVD, MSR-VTT
25 Qi et al. (2018) VGG-16 C3D LSTM MSVD, MSR-VTT, SVCDV
26 Wang et al. (2018) Inception-V4 LSTM MSVD, MSR-VTT
27 Wang et al. (2018a) ResNet-200,

GoogLeNet
GRU + VLAD GRU MSVD, M-VAD
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N. Author/Year S T R MM NV EDL LM Dataset
28 Wang et al. (2018b) C3D * LSTM ActivityNet Captions
29 Wang et al. (2018d) VGG-16, Inception-

V3, GoogLeNet
C3D * LSTM MSVD, MSR-VTT

30 Wu et al. (2018) ResNet-152 LSTM Charades, MSVD
31 Xiao e Shi (2018) Inception-V3 LSTM * LSTM MSVD
32 Zhou et al. (2018b) ResNet-200 optical flow * Transformer ActivityNet Captions,

YouCook2
33 Aafaq et al. (2019) IRv2 C3D * GRU MSVD, MSR-VTT
34 Babariya e Tamaki (2019) VGG16 LSTM LSTM MSVD
35 Barati e Chen (2019) C3D * LSTM ActivityNet Captions,

TACoS-Multilevel
36 Bin et al. (2019) VGG16 LSTM LSTM MSVD, MSR-VTT
37 Chen et al. (2019) ResNet-152 LSTM GRU MSVD, MSR-VTT
38 Chen et al. (2020b) ResNetXt ECO * LSTM MSVD, MSR-VTT
39 Chen et al. (2019) Inception-Resnet C3D * LSTM MSVD, MSR-VTT
40 Chen e Jiang (2019) Inception-ResNet-

V2
C3D * LSTM MSVD, MSR-VTT

41 Dong et al. (2019) ResNet-101 LSTM LSTM MSVD, MSR-VTT
42 Du et al. (2019) ResNet-152 C3D, optical flow * LSTM MSVD, MSR-VTT
43 Fang et al. (2019) Inception-V3 C3D FCN based ap-

proach
MSVD, MSR-VTT

44 Francis e Huet (2019) ResNet-152 I3D LSTM MSVD, MSR-VTT
45 Guo et al. (2019) ResNet-152 LSTM * LSTM MSVD, MSR-VTT
46 Hou et al. (2019) Inception-Resnet-V2 C3D * POS+ConvCap ActivityNet Captions,

MSVD, MSR-VTT
47 Hu et al. (2019) Faster-RCNN,

ResNet-152
C3D LSTM Charades, MSVD

48 Jin et al. (2019) Inception-ResNet-
V2

I3D * LSTM MSVD, MSR-VTT

49 Lee (2019) Inception-v4 I3D * LSTM MSR-VTT
50 Lee e Kim (2019) Inception-V4,

ResNet-200
C3D,I3D * LSTM MSVD, MSR-VTT

51 Li et al. (2019) ResNet-152 ResNeXt-101 LSTM MSR-VTT
52 Li et al. (2019) ResNet, GoogLeNet C3D LSTM MSVD, MSR-VTT
53 Li e Gong (2019) Inception-ResNet-

V2
LSTM LSTM MSVD, MSR-VTT

54 Mun et al. (2019) C3D, GRU * LSTM ActivityNet Captions
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N. Author/Year S T R MM NV EDL LM Dataset
55 Olivastri et al. (2019) Inception-ResNet-

V2
LSTM LSTM MSVD, MSR-VTT

56 Pei et al. (2019) ResNet-101 ResNeXt-101 GRU MSVD, MSR-VTT
57 Saleem et al. (2019) ResNet-152, VGG16 C3D LSTM Trecvid 2016, UET- Surveil-

lance
58 Shi et al. (2019) ResNet-152 GRU * LSTM MSVD, MSR-VTT
59 Song et al. (2019) ResNet-152 LSTM MSVD, MSR-VTT
60 Tang et al. (2019) GoogLeNet, ResNet-

101, ResNet-152
LSTM LSTM MSVD, MSR-VTT

61 Wang et al. (2019) Inception-ResNet-
V2

C3D, I3D POS+LSTM MSVD, MSR-VTT

62 Wang et al. (2019b) I3D, LSTM * * LSTM ActivitiNet Captions, MSR-
VTT

63 Xiao e Shi (2019) Inception-v3 LSTM LSTM MSVD, MPII-MD
64 Xu et al. (2019) ResNet-152 3D ResNet (R3D) GRU MSVD, MSR-VTT
65 Xu et al. (2019) C3D * LSTM ActivityNet Captions,

TACoS-Multilevel
66 Xu et al. (2019) GoogLeNet LSTM * LSTM MPII-MD, MSVD, MSR-

VTT
67 Xu et al. (2019) ResNet-50 3D ResNetXt-101 * LSTM MSVD, M-VAD, MSR-VTT
68 Zhao et al. (2019) GoogLeNet, VGG-16 C3D LSTM Charades, MSVD, MPII-

MD, MSR-VTT
69 Zhang e Peng (2019) GoogLeNet, MSDN LSTM MSVD
70 Zhou et al. (2019) Faster R-CNN,

ResNeXt-101,
ResNet-101

LSTM LSTM ActivityNet-Entities

71 Zhu e Jiang (2019) VGGNet C3D LSTM MSVD, MSR-VTT
72 Chen et al. (2020a) ResNeXt-101 ECN GRU MSVD, MSR-VTT
73 Cherian et al. (2020) Faster R-CNN +

ResNet-101
I3D * LSTM MSVD, MSR-VTT

74 Fang et al. (2020) ResNet-152 LSTM Transformer V2C
75 Gao et al. (2020a) Resnet-152 C3D LSTM LSMDC, MSVD, MSR-VTT
76 Gao et al. (2020b) ResNet-152 C3D * GRU MSVD, MSR-VTT
77 Hemalatha e Sekhar (2020) ResNet-152 C3D * LSTM MSVD, MSR-VTT
78 Iashin e Rahtu (2020) I3D * * Transformer ActivityNet Captions
79 Nabati e Behrad (2020) ResNet-152 LSTM MSVD, MSR-VTT
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N. Author/Year S T R MM NV EDL LM Dataset
80 Pan et al. (2020) Faster R-CNN,

ResNet-101
I3D STG Transformer MSVD, MSR-VTT

81 Sah et al. (2020) ResNet-152 optical flow * LSTM MSVD, M-VAD, MSR-VTT
82 Suin e Rajagopalan (2020) ResNet-200 LSTM * Transformer ActivityNet Captions
83 Wang et al. (2020) ResNet-200 GRU GRU MSVD, M-VAD
84 Wei et al. (2020) ResNet-152 C3D LSTM Charades, MSVD, MSR-

VTT
85 Xiao et al. (2020a) Inception-v3 LSTM * LSTM MSVD, MSR-VTT
86 Xiao et al. (2020b) Faster R-CNN,

Inception-V3
C3D TGN GRU MSVD, MSR-VTT

87 Xiao e Shi (2020) Inception-v3 C3D * LSTM MSVD, MSR-VTT
88 Xu et al. (2020) Inception-V3 LSTM LSTM MSVD, MSR-VTT
89 Yan et al. (2022) Faster R-CNN, VGG-

16
KNN-
Graph +
CNN

* LSTM SVN

90 Yan et al. (2020) GoogLeNet, Resnet-
152

C3D * LSTM MSVD, MSR-VTT

91 Zhang et al. (2020a) Faster R-CNN (fea-
tures), IRv2

C3D GCN LSTM MSVD, MSR-VTT, VATEX

92 Zhang e Peng (2020) ResNet-200 VLAD, ConvGRU GCN GRU MSVD, MSR-VTT
93 Zheng et al. (2020) Faster R-

CNN,Inception-
ResNet-V2

C3D * LSTM MSVD, MSR-VTT

94 Zhang et al. (2020b) C3D, LSTM * LSTM ActivityNet Captions
95 Ahmed et al. (2021) VGG-16, Incep-

tionV3, Xception,
faster R-CNN

I3D LSTM MSVD, MSR-VTT

96 Bai et al. (2021) IRV2 I3D GNN LSTM MSVD, MSR-VTT
97 Chen et al. (2021) IRV2 I3D LSTM MSVD, MSR-VTT
98 Ji e Wang (2021) Resnet50 LSTM MSR-VTT
99 Jin et al. (2021) Inception-ResNet-

V2
I3D * Transformer MSVD, MSR-VTT

100 Liu et al. (2021) GoogLeNet, Incep-
tion

TCB LSTM MSVD, MSR-VTT

101 Perez-Martin et al. (2021) ResNet-152 ECO, d R(2+1)D * LSTM MSVD, MSR-VTT
102 Qi e Yang (2021) ResNet-152 BiGRU, MH-Att GRU MSVD, MSR-VTT
103 Ryu et al. (2021) ResNet-101 ResNext-101, LSTM MSVD, MSR-VTT
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N. Author/Year S T R MM NV EDL LM Dataset
104 Tu et al. (2021) VGG, ResNet-152 * LSTM MSVD, MSR-VTT
105 Yang et al. (2021a) ResNet-101 ResNeXt-101 Transformer MSVD, MSR-VTT
106 Zhang et al. (2021) ResNet-200 * * LSTM+GCN ActivityNet Captions,

YouCook2
107 Ghaderi et al. (2022) Swim video transform * Transformer MSVD, MSR-VTT, Vatex
108 Ji et al. (2022) Inception-V4 LSTM MSVD, MSR-VTT
109 Lin et al. (2022) I3D * Transformer MSVD, MSR-VTT, VATEX,

TVC, YouCook2
110 Li et al. (2022b) IRv2, ResNet-152 optical flow, I3D GCN * LSTM Charades, MSVD, MSR-

VTT
111 Li et al. (2022) IRv2 I3D LSTG Transformer MSVD, MSR-VTT
112 Lu e Gao (2022) ResNet-152, ResNet-

200
GCN * LSTM ActivityNet Captions, Cha-

rades
113 Man et al. (2022) ResNet-200, BN-

Inception
optical flow * Transformer ActivityNet Captions,

YouCook2, and VideoStory
114 Ullah e Mohanta (2022) ViTL, Faster-RCNN C3D LSTM MSR-VT, MVSD
115 Chen et al. (2022) IRV2 I3D LSTM MSVD, MSR-VTT
116 Deng et al. (2022) IRV2 I3D * LSTM MSVD, MSR-VTT
117 Ji et al. (2022) S3D * Transformer YouCook2, ActivityNet Cap-

tions
118 Jin et al. (2022) IRV2 I3D * Transformer MSVD, MSR-VTT
119 Li et al. (2022a) ResNet-152 GRU * GRU MSVD, MSR-VTT
120 Peng et al. (2022) ResNeXt ECO GCN * LSTM MSVD, MSR-VTT
121 Song et al. (2022) ResNet-101 ResNext-101 LSTM MSVD, EmVidCap-S,

EmVidCap
122 Wang et al. (2022) ResNext ECHO GAT * LSTM MSVD, MSR-VTT
123 Wang et al. (2022) ResNeXt ECO GCN * LSTM MSVD, MSR-VTT
124 Wu et al. (2022) IRv2 C3D GCN * LSTM MSVD, MSR-VTT
125 Xiao e Shi (2022) IRv2 C3D, LSTM * LSTM MSVD, MSR-VTT
126 Xu et al. (2022) ResNeXt ECO Transformer MSVD, MSR-VTT
127 Xue e Zhou (2022) ResNet-101 TSM-101 GCN LSTM MSVD, MSR-VTT
128 Yan et al. (2022b) ResNeXt Res3D LSTM MSVD, MSR-VTT
129 Ye et al. (2022) IRv2 C3D * LSTM MSVD, MSR-VTT
130 Zhao et al. (2022) ResNet I3D * LSTM MSVD, MSR-VTT
131 Zheng et al. (2022) IRv2, ResNeXt-101 C3D * GRU MSVD, MSR-VTT
132 Zhong et al. (2022) ResNet-152, IRv2 I3D Transformer MSVD, MSR-VTT
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