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RESUMO

AGUIAR, Everton Luiz de. Contribuições para NILM baseadas em redes convolucionais
profundas.. 2023. 152 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) –
Universidade Tecnológica Federal do Paraná. Curitiba, 2023.

O monitoramento não intrusivo de cargas elétricas (NILM) consiste em determinar o perfil de
consumo de energia elétrica de cada carga de uma unidade consumidora sem a necessidade de
utilizar sensores independentes para cada uma dessas cargas. As aplicações de NILM ajudam o
consumidor a economizar energia e auxiliam no planejamento da rede de distribuição. Desde
2015 foram propostos diversos métodos de extração de características para NILM baseados
em Aprendizado Profundo, os quais alcançaram resultados do estado-da-arte para classificação
e desagregação de cargas. Apesar disso, os resultados obtidos pelos métodos baseados em
Deep Learning são dependentes da quantidade de dados de treinamento, e as arquiteturas
das redes profundas são determinadas empiricamente. Tendo isso em vista, esse documento
propõe frameworks para extrair e selecionar features utilizando a Transformada Scatering
para classificar sinais NILM, tanto cargas individuais quanto cargas agregadas. Nós também
introduzimos uma nova arquitetura multi-label e multi-tarefas de rede convolucional para NILM,
cujos filtros não são aprendidos e sim determinados analiticamente por meio de wavelets. Os
resultados de classificação do método proposto superam os métodos do estado-da-arte para
vários cenários de teste, destacando-se os cenários com dataset reduzido. Nós também propomos
uma abordagem expandida para NILM, na qual incluímos dados de geração distribuída (DG)
fotovoltaica (PV) agregados com as cargas elétricas. Criamos um novo dataset público contendo
DG-PV e dados NILM, e realizamos um estudo de ablação para avaliar tanto a influência da
presença de microinversores PV na classificação das cargas agregadas quanto a influência da
presença de cargas agregadas na identificação de microinversores PV na rede de distribuição.

Palavras-chave: NILM. Redes Convolucionais Profundas. Transformada Scattering. Atrás Do
Medidor. Geração Distribuída.



ABSTRACT

AGUIAR, Everton Luiz de. Contributions to NILM Based on Deep Convolutional Networks..
2023. 152 p. Thesis (PhD in Engenharia Elétrica e Informática Industrial) – Universidade
Tecnológica Federal do Paraná. Curitiba, 2023.

Non-intrusive monitoring of electrical loads (NILM) determines the profile of electrical energy
consumption of each load of a consumer unit without the need to use independent sensors for
each of these loads. NILM applications help the consumer save energy and assist in planning the
distribution network. Since 2015, several feature extraction methods for NILM based on Deep
Learning have been proposed, which have achieved state-of-the-art results for classification and
disaggregation. Despite this, the results obtained by methods based on deep learning depend on
the amount of training data, and the architectures of deep networks are empirically determined.
With that in mind, this document proposes frameworks to extract and select features using the
Scattering Transform to classify NILM signals, both individual loads and aggregated loads. We
also introduce a new multi-label and multi-task convolutional network architecture for NILM,
whose filters are not learned but analytically determined through wavelets. The classification
results of the proposed method surpass the state-of-the-art techniques for several test scenarios,
highlighting the scenarios with a reduced dataset. We also propose an expanded approach to
NILM, including distributed generation (DG) photovoltaic (PV) data aggregated with electrical
loads. We create a new public dataset containing DG-PV and NILM data, and perform an ablation
study to evaluate both the influence of the presence of PV microinverters on the classification of
aggregated loads and the influence of the existence of aggregated loads on the identification of
PV microinverters in the distribution power grid.

Keywords: NILM. Deep Convolutional Networks. Scattering Transform. Behind The Meter.
Distributed Generation.
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1 INTRODUCTION

Non-intrusive load monitoring (NILM), initially presented by Hart (1992), consists in

extracting stratified information for each appliance in a house from the observation of electrical

quantities (voltage, current, or power) aggregated to the energy delivery point. Figure 1a shows

a typical connection diagram of two houses (houses A and B) in the distribution network B.

Power transformers connect the distribution networks (A and B) to the transmission lines. The

high-power power plants are connected to the transmission lines employing step-up power

transformers. House B has a Smart-Meter, an electronic measuring device that monitors the

total consumption of the residence, in addition to the value of voltage and electric current at the

house’s entrance. Also, let us consider in Figure 1a that, at a given instant of time, the residents

of House B have the microwave oven, the washing machine, and the hair dryer turned on at the

same time (representation in green), and that the electric iron and shower are turned off. NILM

consists of, for example, determining which loads are connected at that instant when only the

aggregate electric current is known (Current Sensor, in Figure 1). Fig 1b illustrates how this

process is done: a waveform of the aggregate electric current (sum of all charges at a given

instant of time) is applied to a pre-trained machine learning model to identify which individual

appliances generated the analyzed aggregate signal.

Two important tasks regarding NILM are disaggregation and classification. The dis-

aggregation task separates each load curve (current or power, typically) from an aggregated

single signal (in most cases located at the switchboard). The classification task corresponds

to identifying which appliances are turned on/off and when these events happened from an

aggregated single electrical signal.

There are event-based and non-event-based methods applied to NILM. Events are state

changes for each appliance present in the aggregate current or power signal (LU; LI, 2020).

The event-based methods that implement NILM comprise four basic steps (SADEGHIAN-

POURHAMAMI et al., 2017): Preprocessing, Event Detection, Feature Extraction, and Load

Identification. Normalization, subsampling, denoising, and division of training, testing, and

validation sets are normally performed in the preprocessing step. The event detection step is

responsible for determining the connection instants of each electrical load that integrates the

aggregate signal, and it allows signal disaggregation. Disaggregated electrical signals enter

the feature extraction step. Feature extraction methods determine the power signature of each
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Figure 1 – Typical non-intrusive load monitoring approach inserted with distribution, transmission, and
generation stages.
(a) House B, with an aggregated current measure, connected to the distribution and

transmission networks through power transformers.
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(b) A typical aggregated current waveform, applied to a trained model
to identify the loads.

Machine Learning ModelAggregated Current

Source: Own authorship.

individual electrical signal. These power signatures allow a classification model to be trained in

the final load identification step. Finally, the load identification step determines which loads are

present in the input aggregate signal. We dedicate Chapter 2 to discuss in detail each of these

steps.

One of the most relevant stages of feature extraction is defining the power signature

(PS). PS is a particular representation that characterizes the behavior of each appliance based

on the features. The PS depends on the chosen feature extractor. The first works that discussed

power signatures considered only changes (events) that occurred after a time interval in the

aggregate power curve that was in a steady state. These approaches were limited to linear loads
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and restricted to loads with an operating regime with varying power (electric irons, heaters,

etc.). It was challenging with these early methods to determine the PS of switched or non-linear

electronic circuits (LAUGHMAN et al., 2003).

In addition to the early methods that have already been mentioned, one can obtain the

PS through the features extracted from the electrical time signal (voltage, current, or energy).

Based on the idea proposed in Sadeghianpourhamami et al. (2017), one can categorize the

feature extractors into Conventional Physical Definitions (CPD), Time-Frequency Analysis

(TFA), Voltage-Current (VI) Trajectories, or, more recently, Deep Convolutional Networks based

methods.

The CPD-based feature extractors are simpler to implement but have poor discriminabil-

ity and less capability of extracting transient information (HART, 1992). TFA feature extractors

are more discriminant than CPD since they generally deal with high-frequency data but are time-

shifting covariant, having a dependency on event detection (BURRUS et al., 1998). However,

they are normally dependent on event detection techniques (SADEGHIANPOURHAMAMI et

al., 2017). Finally, Deep Convolutional Networks (DCN) feature extractors have been getting

attention in the last years because the extracted features are highly discriminative, and they are

not engineered (no need for pre-knowledge about the appliances) (KELLY; KNOTTENBELT,

2015a).

One can find many architectures based on DCN in recent literature (as of 2015) to

address the NILM problem. In general, these architectures are classified according to the data

sampling frequency. We define sampling frequencies below 50Hz as Low Frequencies and above

50Hz as High Frequencies, as defined in Basu et al. (2016). Several works use low frequency

datasets to train CNN architectures for disaggregation or NILM classification (CHEN et al.,

2018; CHEN et al., 2020; MORADZADEH et al., 2021; CHEN et al., 2020; MASSIDDA et

al., 2020; KASELIMI et al., 2019). One can find high frequency strategies using deep CNN

in (HOUIDI et al., 2020; WU; WANG, 2019; BAETS et al., 2018; FAUSTINE; PEREIRA,

2020a; FAUSTINE; PEREIRA, 2020b; HIMEUR et al., 2021; YANG et al., 2020; MORÁN et al.,

2020; LAZZARETTI et al., 2020; MUKAROH et al., 2020). According to Shannon’s theorem,

the maximum representable frequency component of a continuous signal in its discrete version,

for perfect reconstruction, is half the sampling frequency. This assumption helps high-frequency

feature extraction methods to define more discriminative load signatures, which makes the choice

of this type of method more appropriate for NILM.
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Some of the main limitations with the architectures based on DCN applied to NILM

are: (i) The proposed architectures generally do not integrate detection, disaggregation, and

classification, i.e., the network performs only one or two of these tasks. The exception is the

research presented in Nolasco et al. (2022); (ii) As they use deep learning techniques, these

solutions demand a large amount of data for training; (iii) DCN approaches to NILM can be

considered “black boxes” in some respects. The network architecture (e.g., the number of layers,

size of convolutional filters, and type of regularization) are parameters determined empirically;

(iv) The computational effort grows with the increase in the number of coefficients (weights) of

the learned convolutional filters.

Mallat (2012) proposed the Scattering Transform (ST) and defined a time-frequency

representation of a one-dimensional signal. ST has an architecture analogous to a Convolutional

Neural Network (CNN). However, in the ST, the filter coefficients are not trained but are

analytically determined using wavelets. In addition, the structure of the ST (number of layers

and convolutional filters) can also be determined analytically. As a consequence, ST needs less

training data than CNN for classification tasks (AGUIAR et al., 2021b; BRUNA; MALLAT,

2012).

Typical works related to NILM restrict the analysis to residential electrical loads. Few

recent works, like Jaramillo et al. (2020), Jaramillo et al. (2021b), Jaramillo et al. (2021c),

Jaramillo et al. (2022), Jaramillo et al. (2023), include PV in the context of NILM. Parallel to

this, due to the increasing penetration of photovoltaic (PV) distributed generation (DG) in homes,

the Behind the Meter (BTM) estimation is a known problem in Power Systems (ERDENER et

al., 2022). BTM estimation consists of disaggregating from the net load the energy generated by

a PV unit that is not seen by the electricity utility. To the best of our knowledge, no published

works address BTM estimation in NILM context using DCN.

The non-observability of micro and mini DG systems by the electricity concessionaire

raises some prospects for technological solutions and practical applications that could result

from the union between BTM and NILM: (i) Systems embedded connected to prosumers,

sharing stratified data with the energy concessionaire via an integrated management system; (ii)

Prepaid electricity consumption pricing systems, based on the information from the integrated

management system, given by smart meters with load disaggregation and generation in real-time.

From another point of view, future applications of NILM and BTM in industrial energy

management systems for classification, disaggregation, and detection of electrical loads and DG
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could be very promising, given the impact of the industrial sector on energy consumption. Such

applications are limited, however, by the unavailability of data or the difficulty of data acquisition

in the industrial environment.

The characteristics of the ST, the promising results of the DCN applied to NILM, and

the research gap related to combining the concepts of NILM with BTM estimation encouraged

us to develop this thesis. This thesis proposes a series of contributions to NILM using DCN. We

begin by presenting the general concepts of NILM, and in chapter 3, we propose new feature

extractors for individual loads using the ST. After that, in chapter 4, we extend the approach

to feature extraction and NILM classification of aggregate loads. In chapter 5, we propose a

new architecture with ST to replace CNN in a multi-task application. Finally, in chapter 6, we

propose a new dataset for NILM including PV data, in addition to a complete ablation study

regarding merging NILM with BTM estimation.

1.1 GENERAL OBJECTIVE

The main objective of this work is to propose a new approache to feature extraction

and a new network architecture applied to non-intrusive load monitoring in the presence of

distributed generation.

1.2 SPECIFIC OBJECTIVES

Also, the the following specific objectives can be highlighted:

1. To propose a new framework for feature extraction (power signature) of NILM signals

applying the Scattering Transform;

2. To study and evaluate theoretical aspects of Scattering Transform, verifying its advantages

and possible limitations;

3. To evaluate publicly available datasets for comparison of results;

4. To propose, evaluate and compare the results of different feature selection techniques

based on Scattering Transform for NILM;

5. To evaluate the separability of the classes obtained with the features extracted from

Scattering Transform;
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6. To disaggregate and classify NILM aggregated signals with the Scattering Transform;

7. To compare results obtained from proposed frameworks to the state-of-the-art approaches

results;

8. To improve state-of-the-art classification scores;

9. To propose a novel architecture that replaces the traditional Convolutional Neural Networks

by Scattering Transform to reach disaggregation and multi-label classification at once;

10. To design and implement a new experimental setup to collect data from appliances and

distributed generation;

11. To construct a novel high-frequency dataset mixing electrical loads with distributed gener-

ation;

12. To evaluate the proposed dataset with state-of-the-art classification methods;

13. To propose an ablation study to evaluate the influence of distributed generation in the

aggregated loads classification and the influence of the electrical loads in the distributed

generation classification;

14. To elaborate scientific papers and submit them to relevant Journals.

1.3 STRUCTURE OF THIS DOCUMENT

We organize this document as follows:

• Chapter 2 presents the theoretic foundations regarding NILM. Section 2.1 discusses

each step of the typical framework applied to NILM. Section 2.2 presents the Scattering

Transform, the main mathematical tool we use to improve the DCN-based feature extractors.

Finally, we reserve Section 2.3 exclusively to discuss the related works regarding the feature

extractors based on DCN;

• Chapter 3 introduces a framework to extract features of individual electrical loads with

Scattering Transform. We discuss each step of the proposal in Section 3.1. We explain six

proposed feature selection techniques in Subsection 3.1.4. We present the experimental

setup in Section 3.2, the comparisons with state-of-the-art approaches in Section 3.3, and

the chapter conclusions in Section 3.4;
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• Chapter 4 expands the analysis of Chapter 3 to aggregated loads, and evaluates clas-

sification performance of Scattering Transform with two publicity aggregated datasets.

Section 4.1 presents the proposed classification strategy, and each step of this proposal.

Section 4.2 presents the experimental setup and the classification results obtained from

the proposed framework. Section 4.3 presents the discussions about the obtained results,

and compares them with related works in a more detailed approach than Chapter 3. The

conclusions of Chapter 4 are highlighted in Section 4.4;

• Chapter 5 presents a novel architecture for NILM multi-label classification and disaggrega-

tion called ST-NILM, based on Scattering Transform. We detail each stage of the proposed

ST-NILM architecture in Section 5.1. We present and discuss the results of ST-NILM in

Section 5.3, and make the chapter conclusions in Section 5.4;

• Chapter 6 presents an interconnection between NILM and BTM estimation. Section 6.2

presents a novel high-frequency public dataset with aggregated appliances and PV dis-

tributed generation data, and Section 6.3 presents a complete ablation study on the influence

of PV generation on the loads classification and vice-versa;

• Chapter 7 points to the overall conclusions, future works, and the open challanges for the

sequence of this work.

Figure 2 shows a visual map of the structure of this document, highlighting the most

relevant Sections and Subsections of the index.

1.4 PUBLICATIONS

Table 1 shows the list of publications produced in the course of the author’s doctoral

research. Table 1 also shows the chapter of this document related to each of these publications.

1.5 REPOSITORIES PRODUCED AS A RESULT OF THIS WORK

We have produced two public repositories, on GitHub, as a result of this work:

• ST-NILM Repository: Available at https://github.com/LucasNolasco/ST-NILM, and pre-

sented in detail in Chapter 5;

https://github.com/LucasNolasco/ST-NILM
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• DG-NILM-V1 Repository: Available at https://github.com/evertoneie/DG-NILM, and pre-

sented in detail in Chapter 6.

https://github.com/evertoneie/DG-NILM
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Journal paper Published Energies MDPI Chapter 4
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Conference
paper

Published XV Congresso
Brasileiro de In-
teligência Computa-
cional

Chapter 3
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Journal paper Published Learning & NonLin-
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Journal paper Under Re-
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Dataset and Load Identifica-
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voltaic Distributed Genera-
tion

Journal paper Under Re-
view

IEEE Transactions on
Smart Grids

Chapter 6
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2 THEORETICAL ASPECTS AND RELATED WORKS

This chapter is dedicated to discussing the most important theoretical aspects used

throughout this document and presenting recent related works, emphasizing the potential contri-

butions of this research in the literature. In Section 2.1, we discuss the theoretical aspects regard-

ing all the stages of NILM and some important general related works. Section 2.2 presents the

Scattering Transform mathematical formulation, properties, and an analogy with Convolutional

Neural Networks (CNN). We present in Section 2.3 a review of state-of-the-art feature-extraction

methods used in NILM, considering that the state of the art in terms of feature extraction are the

methods based on deep learning. Section 2.4 presents the definitions of Distributed Generation

and Behind the Meter Estimation, relating these definitions to NILM. We cover the leading frame-

works to classify and detect distributed generation in the NILM context in the Subsection 2.4.1

and the main datasets with NILM and distributed generation in Subsection 2.4.2. Section 2.5

presents the potential contributions of this research in the literature.

2.1 THEORETIC ASPECTS ABOUT NILM

NILM methods consist of discovering segmented information for each electrical ap-

pliance connected to a common point without measuring the individual electrical quantities of

each appliance. Disaggregation and classification are performed from an aggregate electrical

signal, which corresponds to the sum of the electrical currents of each electrical load connected

to the common bus. Figure 3 shows a typical structure of the NILM methods proposed in the

state-of-the-art.

Figure 3 – Typical NILM Fremework.

Preprocessing

Database

Data Acquisition
Hardware

Event Detection Feature Extraction Load Identification

Source: Own authorship.
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We present, in the following Subsections, the stages of the general diagram in figure 3.

2.1.1 Preprocessing

The electrical signals for NILM tasks can be obtained from public datasets and dedicated

acquisition hardware. Generally, these data from the datasets and the acquisition system are

not properly formatted for the NILM task. The preprocessing stage in Figure 3 then consists of

standardizing these input signals so that the particular NILM task can be executed appropriately.

Some sub-tasks of the preprocessing stage are:

• Clipping of signals at adequate time intervals;

• Subsampling;

• Normalization;

• Denoising;

• Training, testing and validation subsets splitting (for supervised learning).

The choice of preprocessing subtasks depends on the nature of the data and may vary

depending on the particular NILM task. We highlight below, in summary, the preprocessing

strategies applied in each part of this work:

• In the Chapter 3, we apply subsampling, normalization, and clipping to prepare the COOLL

dataset (PICON et al., 2016) for the classification task (AGUIAR et al., 2021a);

• In Chapter 4, the preprocessing consists of cutting two distinct regions of the original

aggregated signal. One closed to the event (transient region) and another far from the event

(steady-state region) for the turn-on and turn-off instants in the LIT-SYN (RENAUX et

al., 2020) dataset. For this case, we also use subsampling and normalization.

• In Chapter 5, we cut the aggregated input data and put these cut signals as inputs of the

shared network;

• In Chapter 6, we generate segments from the original acquisition windows, considering

several consecutive samples without load events after a specific event occurrence.
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2.1.2 Event Detection

The event detection step identifies the time instants in which electrical loads are con-

nected to the electrical grid. In cases of supervised learning, there is availability of a set of

training examples in which there is previous information on the time instants in which the loads

are connected or disconnected. Besides that, the event identification method must be able to

generalize detection to new unknown examples (test set).

The main types of event detection methods for NILM, based on the classification

presented in Liu (2019), are:

• Expert Heuristics Models: Hart (1992) presented a method based on standard deviation.

Alcala et al. (2017) introduced an envelope-based extraction method. Expert heuristics

models presented similar performance to the probabilistic models, without any training

process (LIU, 2019). However, these methods were limited to low-frequency datasets;

• Probabilistic Models: Luo et al. (2002) presented an event detection method based on

Generalized Likelihood Ratio (GLR). Berges et al. (2011) also proposed a GLR-based

event detection method, and improved the model proposed in (LUO et al., 2002). Yang et al.

(2014) proposed an event detection method based on Goodness of Fit (GOF). Experimental

results indicated that the false-positive performance of GOF based event detection model

was better than that of the expert heuristics methods, but the variations in the temporal

power signal that happen in the real world affect the results of the probabilistic models (LIU,

2019);

• Template Matching Models: LEEB et al. (1995) proposed to detect the events using tem-

plate power signals. Shaw et al. (2008) used a template with Euclidian Distance. Basu

et al. (2015) applied Dynamic Time-Warping to detect the events, and Liu et al. (2017)

improved this proposal by applying Variant of Dynamic Time-Warping for events detec-

tion. Template matching event detection methods can be expanded to become appliance

classification methods, but the distance information dependence can be a problem with

these methods. For example, two similar signals out of phase can present a large Euclidean

distance, impairing detection (LIU, 2019);

• Hybid Models: Zheng et al. (2018) proposed a Density-Based Spatial Clustering of appli-

cations with Noise (DBSCAN) event detection strategy. Afzalan et al. (2019) proposed and
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automatized DBSCAN method. Baets et al. (2018) improved the GOF method proposed

by Yang et al. (2014). Zhao et al. (2016) proposed an adaptive event detection strategy

based on Graph Signal Processing (GPS). Wild et al. (2015) proposed an event detection

method based on active search. Hybrid detection models presented improvements of other

methods (mainly probabilistic) but increased computational costs (LIU, 2019).

Once the switching instants of each electrical charge are known, some disaggregation

methods can be used to determine the individual electrical signals from the aggregated signal.

However, first, the feature extraction must be performed, detailed as follows.

2.1.3 Feature Extraction

The feature extraction stage shown in Figure 3 maps a vector of one-dimensional signal

x ∈ R𝑛𝑥 into a feature space f ∈ R𝑛𝑓 , where 𝑛𝑥 is the number of samples of each signal and 𝑛𝑓

is the number of features.

The number of features and the meaning of each feature depend on the selected ex-

traction method. For the classification task, the primary function of the feature extractor is to

unscramble patterns in x so that the class separation is more evident in f .

As we discussed in the Introduction, based on Sadeghianpourhamami et al. (2017), we

categorize the feature extractors into (i) Conventional Physical Definitions; (ii) Time-Frequency

Analysis; (iii) Voltage-Current (VI)-Trajectories. In the last five years, however, the scientific

community has presented many feature extractors based on deep Convolutional Networks, which

we number as category (iv). We dedicate Section 2.3 exclusively to discussing the related works

regarding this type of feature extractor. Figure 4 shows the main categories of feature extractors

presented in the literature. Besides that, we will also dedicate the Section 2.2 to introduce the

Scattering Transform, which is the time-frequency feature extraction method used by us in our

recent publications.

The first NILM feature extractors were based on the electrical characteristics of the

signals. As shown in the Figure 4, in Powers et al. (1991) and Hart (1992) the authors used the

average powers obtained directly from the voltage and current curves. The authors decomposed

the current harmonic coefficients and used them as features in Bouhouras et al. (2019). Similarly,

in Dong et al. (2013), the authors used THDi (Total Harmonic Distortion of Current) to define the

feature map. In (LIU et al., 2018), the admittance was used as a parameter to define the NILM
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Figure 4 – NILM Feature Extractor Categorization.
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feature extractor. Deluno Garcia et al. (2020) proposed a heterogeneous approach for obtaining

real-world data and extracting features from these data. The feature extraction stage was made

with Conservative Power Theory (CPT). Although the hardware proposed by Deluno Garcia et

al. (2020) allows sampling frequencies above 15kHz, the features were calculated in windows
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of 256 samples, corresponding to a 60Hz. Souza et al. (2022) proposed a strategy to obtain

the most representative features for classifying electrical charges from high-frequency NILM

datasets. The authors used power theories and active-reactive power (PQ) indicators to extract

features and collinearity to obtain representative feature filters. The authors obtained a reduced

set of low-frequency features from the high-frequency dataset, and the classification results

(F1-Score above 95%) obtained with the reduced set of features (11 features or less) proposed

by Souza et al. (2022) surpassed the state-of-the-art results. Despite the good classification

results and the notable reduction of computational complexity in training, the authors did not

present discussions regarding load detection.

Time-frequency-based feature extractors use time-frequency transforms to define the

features space. Well known time-frequency transform are: Wavelet Transform (BURRUS et al.,

1998), Short-Time Fourier Transform (STFT) (SEJDIC et al., 2009) and S-Transform (LIN;

TSAI, 2014). One can find feature extractors for NILM applying Wavelet Transform Coefficients

in SU et al. (2011), Gray and Morsi (2015), and Guo et al. (2020). The main disadvantage of these

feature extraction methods is the dependency on the switching (turn-on or turn-off of each appli-

ance) time. Some classical feature spectral extraction methods, such as the STFT (SEJDIC et al.,

2009), were time-shifting invariant representations but were not stable to time-warpings (MAL-

LAT, 2012). Based on auto-correlation, the Wigner-Ville (SCHOLL, 2021) distribution has finer

resolution than methods based on wavelets both for time and frequency but presents cross-terms.

Cross-terms can be confused with auto-terms and penalty classification. The Hilbert-Huang

transform (HHT) is based on Empirical Mode Decomposition (EMD); therefore, its base is

expandable, allowing a good representation with physical meaning for non-stationary processes.

However, the adaptive and empirical nature of HHT undermines a firm theoretical founda-

tion (HUANG; SHEN, 2014). Methods based on Mel-Spetrograms (DAVIS; MERMELSTEIN,

1980) extracted features more closely related to human perception of sound, but their partic-

ular filter bank structure may not adequately represent electrical signals. Two reassignable

Synchrosqueezing approaches were presented by Daubechies et al. (2011) and Oberlin et al.

(2014). Authors in Daubechies et al. (2011) proposed the Synchrosqueeed Wavelet Transform

(SSWT), which was based on the Continous Wavelet Transform (CWT). They added CWT

components with the same instantaneous frequency to obtain a more focused representation.

The method Daubechies et al. (2011) considerably decreased the dimensionality of the CWT

representation but depended on prior knowledge of the nature of the input signal. Also, unlike
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ST, method (SSWT) Daubechies et al. (2011) was a time-shifting variant representation. The

authors at (OBERLIN et al., 2014) proposed a synchrosqueezing method based on the STFT,

named Fourier-Based Synchrosqueezing Transform (FSST). The approach of Oberlin et al.

(2014) outperformed existing time-frequency analysis techniques in terms of its ability to extract

detailed information about the frequency content of a signal. However, unlike ST, FSST was

not stable to time warpings. Recently Michau et al. (2022) proposed the Denoising Sparse

Wavelet Network (DeSpaWN) method, composed of a cascade architecture using a deep learning

framework. The DeSpaWN method, unlike SSWT Daubechies et al. (2011), did not need a

prior, as the coefficients were learned, and hard-thresholding allowed for a sparse representation.

DeSpaWN, however, requires training a reduced number of parameters, unlike ST. Gauthier

et al. (2022) proposed the Parametric Scattering Network (PSN), a version of ST with learned

coefficients. PSN achieved state-of-the-art results for classifying two-dimensional signals, but

applicability to time series was not addressed by the authors.

Several authors used the VI trajectories to determine extractors of NILM features. These

strategies map electrical signals onto a Cartesian plane of voltage and current. From this mapping,

a 2D image is obtained, and from this image, the features for NILM are extracted. In Liu (2019),

the authors use area, asymmetry, and looping detection to determine features. In Hassan et al.

(2014), the authors use the slope of the middle segment, the curvature of the mean line, and

self-intersection. Baets et al. (2018) determined a weighted pixelated image for each electrical

signal, and these images were placed at the input of a convolutional neural network (CNN),

which performed the classification. Mulinari et al. (2019) proposed new features from VI images

taken from both transient and steady-state periods.

Mallat (2012) proposed the Scattering Transform (ST) to define a time-frequency

representation of a one-dimensional signal. ST has an architecture analogous to a Convolutional

Neural Network (CNN). However, in the ST, the filter coefficients are not trained but are

analytically determined using wavelets. In addition, the structure of the ST (number of layers

and convolutional filters) can be also determined analytically. As a consequence, ST needs less

training data than CNN for classification tasks (AGUIAR et al., 2021b; BRUNA; MALLAT,

2012). ST is invariant to time-shiftings and stable to time-warpings, and these properties are

particularly interesting for classifying electrical charges (AGUIAR et al., 2021b). ST dealt with

the time-shifting variance of the wavelet transform, improving pattern recognition tasks results

by reducing variability (BRUNA; MALLAT, 2012). The structure of ST is analogous to the
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well-known Convolutional Neural Network (CNN). Deep CNN-based feature extractors for

NILM have been proposed in the last years, as we show in Section 2.3.

2.1.4 Load Identification

The Load identification step determines which loads are present in the aggregated signal,

taking the features as input. Generally, classification models with machine learning are used for

this stage. Some classical methods used for load identification are k-Nearest-Neighbors, Decision

Tree, Support Vector Machine (SVM), Ensemble Method, and Linear Discriminant Analysis

(LDA) (CHERKASSKY; MULIER, 1998; VAPNIK, 1998), briefly detailed as follows:

• k-Nearest-Neighbors: this method classifies the test example by comparing it to the

training dataset. The comparison is based on the Euclidean distance (CHERKASSKY;

MULIER, 1998). This method fully relies on the distances between test samples and

the training set, and due to that, it can be considered one of the simplest classification

approaches (CHERKASSKY; MULIER, 1998). However, it requires the storage of all

training examples, which may be a limitation for embedded systems with more restrictive

memory requirements (LAZZARETTI et al., 2020).

• Decision Tree: this method employs several concatenated binary splits arranged in a tree

structure. Each split (node of the tree) refers to a particular feature and the corresponding

parameter value for the comparison. In the test stage, the example is evaluated at each

node of the tree, and the corresponding class is the majority class in the leaf node. The

training process and the related splits are based on the Information Gain (CHERKASSKY;

MULIER, 1998).

• Support Vector Machine: this classifier was proposed to maximize the separation margin

between pairs of classes, based on a linear model (hyperplane) (VAPNIK, 1998). One of

the significant advantages of the SVM formulation is that it can be formulated as a convex

optimization. Besides, the problem can be defined in terms of the dot product between

the features. Therefore, by using the kernel trick, the dot product can be replaced by a dot

product kernel in feature space using the kernel, allowing nonlinear separation between

classes (CHERKASSKY; MULIER, 1998). Here, we used the Gaussian kernel to evaluate

nonlinear separations.
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• Ensemble Method: this method combines different weak learner models by averaging the

output of individual classifiers, improving the final accuracy (CHERKASSKY; MULIER,

1998). It is important to note that weak models usually have a poor individual response

in terms of accuracy. However, combining the various classifiers tends to improve over-

all accuracy. One example is the random forest method that combines several decision

trees to compose a final classification. The ensemble normally uses the following weak

models: AdaBoostM1, AdaBoostM2, Bag, GentleBoost, LogitBoost, LPBoost, LSBoost,

RobustBoost, RUSBoost, Subspace, and TotalBoost (CHERKASSKY; MULIER, 1998).

• Linear Discriminant Analysis: The LDA is a linear classifier that employs hyperplanes

to differentiate data from two different classes. It assumes a normal distribution with

an equal covariance matrix and equal priors for both classes. With that, the separating

hyperplane is defined by reducing the dimensionality in such a way that it maximizes the

separation between classes and minimizes the intraclass variance. So, its complexity and,

consequently, overfitting is reduced (CHERKASSKY; MULIER, 1998).

Another strategy to identify the aggregated loads is to use multi-label classification

archit-ectures, as presented in Nolasco et al. (2022). In multi-label approaches, an instance can be

associated with multiple labels (READ et al., 2011). Figure 5 compares traditional (multi-class)

methods with multi-label methods for identifying electrical loads.

Figure 5 – Comparison between traditional and multi-label load identification methods.
(a) Traditional load identification diagram.

Disaggregation

Label A

Label B

Label C

Features
Extraction

Load
Identification

(b) Multi-label load identification diagram.
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Source: Own authorship.

Note in Figure 5a, that traditional methods apply a disaggregation step to the aggregated

signal �̂�, in order to define the individual electrical signals 𝑥1,𝑥2,𝑥3. The features vectors 𝑓1,𝑓2,𝑓3
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are related to 𝑥1,𝑥2, and 𝑥3, respectively, in Figure 5a. Each individual features vector will be

labeled one by one after passing through the classifier (load identification) stage.

We show a scheme of multi-label approach in Figure 5b. In figure 5b, the aggregated

signal �̂� enters directly in the feature extractor, without going through the disaggregation step

shown in the figure 5a. The output of the feature extractor is the aggregated vector of features 𝑓 ,

which also enters directly into the classification stage (load identification). Finally, the aggregated

signal �̂� is labeled with three different classes: A, B, and C.

The NILM problem can also be addressed using multi-task learning (MTL) models.

Caruana (1997) defines MTL as a mechanism that uses training tasks in parallel while using

a shared representation. MTL allows for inductive transfer between tasks, improving learning

performance on the current task (CARUANA, 1997). Figure 6 presents an example block diagram

of an MTL approach with three tasks. Note that each task shares the same features (𝑓 extracted

from signal �̂�. In deep learning applications, MTL consists of learning the weights of the features

extractors simultaneously.

Figure 6 – Diagram of a multi-task learning (MTL) approach.
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Source: Own authorship.

We apply traditional classification methods for NILM in Chapters 3 and 4. We propose

a multi-label and multi-task approach for NILM in Chapter 5.

2.2 SCATTERING TRANSFORM

As we showed in section 2.1.3, the state-of-the-art presents several promising time-

frequency approaches for feature extraction. Given that, we choose ST for the following reasons:

(i) The time-shifting invariance and the time-warping stability properties are interesting for

classifying appliances of the same category but different brands; (ii) The compact support and
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time-frequency resolution of the wavelets allow the loads detection; (iii) The exponential decay

of the energy of the ST coefficients across the layers allows representing NILM signals with

fewer coefficients than other time-frequency approaches; (iv) The non-trained and deterministic

characteristics of ST allows a physically meaningful interpretation of the feature space.

Consider a set of features determined by the representations of two signals 𝑓 and 𝑔. Let

Φ(𝑓) and Φ(𝑔) representations of the signals 𝑓 and 𝑔 signals, respectively. Then, the Euclidean

distance 𝑑(𝑓,𝑔), defined by 𝑑(𝑓, 𝑔) = ||Φ(𝑓)− Φ(𝑔)|| must be small for elements of the same

class and large for elements of different classes (BRUNA; MALLAT, 2012). The similarity

measure between Φ(𝑓) and Φ(𝑔) depends on the inner product of the two representations. The

central question of the classification is to define a good kernel1, which allows for a reliable

measurement of similarity (MALLAT, 2012).

Consider a discrete-time signal 𝑥[𝑛], a translated signal 𝑥𝑐[𝑛] = 𝑥[𝑛 − 𝑐], 𝑐 ∈ N

and a deformed (time-warped) signal 𝑥𝑑[𝑛] = 𝑥[𝑛 − 𝜏 [𝑛]], 𝜏 [𝑛] ∈ N from the same type of

electrical appliance. In real cases, two signals from the same appliance may both be translated

and deformed. This occurs, for example, when the same load is switched on at different times in

the same sampling window (translation) or when there is measurement noise (time-warping).

The classifier should be invariant to translation and also to the small time-warping.

Let a wavelet Ψ𝜆[𝑛] be defined by Ψ𝜆[𝑛] = 𝜆Ψ[𝑛], where Ψ[𝑛] is the discrete time

mother wavelet, 𝜆 = 2−𝑗𝑄, 𝑄 is the number of wavelets per octave, 𝑛 is an integer that represent

the 𝑛-th sample, and 𝑗 is the scale factor. So the wavelet transform of 𝑥[𝑛] is:

𝑊𝑥[𝑛] = {𝑥[𝑛] * Φ[𝑛],𝑥[𝑛] *Ψ𝜆[𝑛]}𝜆. (1)

The wavelet transform has the following advantages: (i) it is stable for small-time

deformations; (ii) it is well located both in time and in frequency, but it has the disadvantage of

being a time-shifting variant. This happens because the Wavelet transform is calculated using

convolutions (BURRUS et al., 1998). To solve that problem, Mallat et al. (MALLAT, 2012) used

the coefficients module, followed by the average in time:

{|𝑥[𝑛] *Ψ𝜆| * Φ[𝑛]}𝜆, (2)

being Φ[𝑛] a low-pass filter that implements the average. The modulus and average operators

guarantee the time-shifting invariance, but results in loss of information (BRUNA; MALLAT,

2012; MALLAT, 2012).
1 Let an operator f that takes elements from set A to set B, which preserves the form (homeomorph). The kernel

of this operator f is the inverse image of 0 ∈ 𝐵.
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Mallat (2012) proposed applying successive modulus and average operations to new

layers of convolutions with wavelets starting from {|𝑥 *Ψ𝜆| * Φ(𝑡)}𝜆. This gives rise to the

Scattering Path, in discrete time, of sequence 𝑥[𝑛], given by:

𝑆𝑚[𝑛,𝜆1,𝜆2, . . . ,𝜆𝑚] = ||𝑥[𝑛] *Ψ𝜆1| *Ψ𝜆2 | · · · *Ψ𝜆𝑚 | * Φ[𝑛], (3)

depending on the order 𝑚 and the frequency scales 𝜆1, . . . ,𝜆𝑚.

The total number of coefficients for the Scattering transform of a discrete signal 𝑥 is

𝑄𝑚𝑙𝑜𝑔𝑚𝑁𝑠, being 𝑁𝑠 the total number of samples of 𝑥.

Figure 7 shows the structure of the ST graphically. The blue arrows in Figure 7 represent

the convolution operation with the low-pass filter Φ𝑇 . The set of all coefficients obtained as a

result of the average operation (the tip of the arrows in Fig 7) composes the Scattering Transform.

The discrete electrical signal 𝑥[𝑛] passes through the first layer of convolutions with the wavelets

Ψ𝑞,𝑖 = Ψ1,𝑖. The subscript 𝑖 is the frequency scale of the first filter bank. The convolution module

is taken at each tree node in the first layer. The output of each node in the first layer is used to

calculate the second level of the convolutional network.
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Figure 7 – Scattering Transform Structure.

Source: Based on (ANDÉN et al., 2019)

At the second layer, the convolution of |𝑥 *Ψ1,𝑖| with a second set of wavelets, Ψ2,𝑘

results in a new set of coefficients. The index 𝑘 represents the second frequency scale of the

transform (𝑞 = 2), implemented by the second filter bank. Each second layer node comes from

convolution-modulus with Ψ2,𝑘.

The cutoff frequency of Φ𝑇 is half the bandwidth on the 𝐽-th sub-band. We propose

to use the results of those convolutions to construct features used for classification. We detail

extracting and selection features with the Scattering Transform in Subsection 3.1.3 of Chapter 3,

Subsection 4.1.4 of Chapter 4, and Subsection 5.1.2.2 of Chapter 5.

2.2.1 Properties of Scattering Transform

The ST proposition is based on building a representation invariant to time-shifting. The

convolution 𝑥 *ΨΛ is covariant to time-shifting. To make it invariant, one could directly apply
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the average, but
∫︀
(𝑥 *ΨΛ)𝑑𝑡 = 0; therefore, the average is also zero, making the representation

uninformative. To make it informative, Mallat (2012) shows that we must apply a nonlinearity to

𝑥 * ΨΛ before making it invariant. Among the possible nonlinearities, Mallat (2012) uses the

modulus and presents it axiomatically as the only option.

The scattering transform is contractive. This means that with each iteration of average

and modulus, the data get closer. This property comes from the fact that, given two complex

numbers 𝑎 and 𝑏, then |𝑎|+ |𝑏| ≥ |𝑎+ 𝑏|.

Given the signs 𝑥 and 𝑦, and their transforms 𝑆𝑥 and 𝑆𝑦, then the contraction property

is:

||𝑆𝑥− 𝑆𝑦|| ≤ ||𝑥− 𝑦|| . (4)

The transform norm scattering, defined by ||𝑆𝑥||2, is equal to the sum of all output

signals from each of the layers shown in the figure 7, that is:

||𝑆𝑥||2 =
∑︁
𝑝∈𝒫

||𝑆[𝑝]𝑥||2 . (5)

Another property is that scattering preserves signal energy, i.e.:

||𝑆𝑥||2 = ||𝑥||2 . (6)

Furthermore, the scattering transform is stable to small perturbations, so that:

||𝑆𝑥− 𝑆𝑥𝜏 || ≤ 𝐶 𝑠𝑢𝑝 |∇𝜏(𝑡)| ||𝑥|| . (7)

Note that the interpretation of the Equation 7 is that the distance between the transform

of a signal 𝑥 and a distorted signal 𝑥𝜏 is not zero, but has the size of the perturbation. This shows

the stability of the transformation against deformation.

2.2.2 Analogy between Scattering Transform (ST) and Convolutional Neural Networks (CNN)

Although ST and CNN are different structures, with different distributions of numbers

of filter components and energy concentration in the layers and topology, the fact that the two

share a convolutional core (the convolution operation itself) encourages us to draw an analogy

between the two.

We explain here the structural differences between classical CNN and ST. The typical

structure of a CNN comprises, as shown in Figure 8a, an input layer followed by one or more
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stages of activation, convolutional, and pooling layers (subsampling) (KIRANYAZ et al., 2021).

The discrete convolution operation applied in each feature extraction stage takes an input signal

𝑥[𝑘],𝑘 ∈ N and results (KHAN et al., 2018) in the sequence 𝑠ℎ[𝑘], given by:

𝑠ℎ[𝑘] =
∞∑︁

𝑎=−∞

𝑥[𝑎]𝜔ℎ[𝑘 − 𝑎] = 𝑥[𝑘] * 𝜔ℎ[𝑘]. (8)

The sequence 𝜔ℎ[𝑘] contains the convolutional filters (or kernels) coefficients for the

ℎ-𝑡ℎ convolutional filter of the related feature extraction stage. These filter coefficients are

generally learned in the training process (KHAN et al., 2018; KIRANYAZ et al., 2021). The

pooling stage, on the other hand, applies the non-linear operator Γ to 𝑠ℎ[𝑘] (typically Γℎ is the

maximum value or average value), and decreases the dimension of 𝑠ℎ[𝑘].

Figure 8 – Typical simplified structures of Convolutional Networks. We show both CNN and ST structures
with only one convolutional layer. Both approaches may have other topologies based on the basic
building blocks presented in this figure.

(a) Simple CNN-based classification Structure.
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(b) First order ST-based classification structure.
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Source: Own authorship.

Unlike CNN, the ST convolutional layer filters, represented by Ψ𝑛, 𝑛 ∈ [1 : ℎ], in Figure

8b are already predetermined by wavelets (BURRUS et al., 1998), and therefore there is no need

for training. Besides that, both CNN and ST structures have non-linearities Layers. In Figure

8a, CNN presents a pooling Layer and in Figure 8b, ST has a modulus and an average layers.

The modulus and the average provide to ST the stability to small time-warpings and local time-

shifting invariance properties, but there is a loss of information (MALLAT, 2012). To recover the
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lost information, the modulus layer output must be convoluted with a new set of wavelet filters,

at a different scale (MALLAT, 2012). These properties are detailed in Subsection 2.2.1.

2.2.3 Observations about Scattering Transform

The Scattering Transform consists of convoluting an input signal with a set of

wavelets (MALLAT, 2012) and then applying modulus and average operator to the convolutional

stage output. Figure 8b represents the average operator by Φ𝑇 .

The Discrete Time Wavelet Transform (DWT), the core of ST, maps an one-dimensional

discrete signal 𝑥[𝑛] into a two-dimensional array of coefficients using a multirate digital filter

bank (BURRUS et al., 1998). Consider that 𝑛𝑥 is the number of samples of 𝑥, 𝜙[𝑛] is the

scaling function, 𝜓[𝑛] is the mother wavelet, 𝑐𝑘 is the 𝑘-th scaling coefficient, and 𝑑𝑗,𝑘 is the

detail coefficient for the scale 𝑗 and the discrete-time 𝑘. The mother wavelet is translated by

𝑘 and scaled by 𝑗, and this gives both ST and DWT good localization in time and frequency

domains (BURRUS et al., 1998). The multiresolution filter banks approach is suitable for

computational implementation of DWT (BURRUS et al., 1998).

The Scattering transform is based on the continuous wavelet transform (CWT). We

commonly use filter banks to implement the discrete version of the Wavelet transform (BURRUS

et al., 1998). These filter banks decompose the input signal into other filtered signals. Each

DWT filter bank consists of a low-pass filter (which results in approximation coefficients) and a

high-pass filter (which results in detail coefficients). The DWT implementation uses frequency

scales multiples of 2, and there is subsampling. This leads to the fact that the filter passbands of

each layer of the DWT are multiple pairs of the previous layers. The consequence is that there is

only one convolutional filter in the range of one octave of frequency for the DWT.

Unlike DWT, the computational implementation of CWT assumes a number of convolu-

tional filters greater than 1 for an octave interval. The greater the number of convolutional filters

per octave, the closer to the theoretical CWT the implementation will be.

Scattering is based on CWT, but computational practical implementations are discrete.

In the computing context, when we refer to a CWT, we are talking about a technique in which

there is more than one wavelet per octave (each time the frequency doubles), and in which there

is a single sample displacement between the wavelets in the time domain (minimum shift on the

time axis).

The Q parameter defines the number of wavelets per octave for each Scattering filter



44

bank. Each layer of the ST has a bank of filters, and therefore a set 𝑄𝑖 of wavelets per octave

for the i-th layer. Complex wavelets such as Morlet are preferable to CWTs as they carry phase

information. As the CWT is the basis of the ST, this conclusion is also reasonable for the ST.

CWTs have constant Q, and it makes the bandwidth of each filter that compose the bank

proportional to the center frequency. Consequently, we conclude that filters with higher center

frequencies have greater bandwidth (less frequency localization), and filters with lower center

frequencies have smaller bandwidth (better frequency localization). Due to the time/frequency

reciprocity, the higher frequency wavelets have a better location in time, and those with a lower

frequency have a worse location in time.

Each filter bank has 𝑄𝑖 center frequencies, separated by logarithmic intervals (not

linear). The reason for this stems from the issue of the constant quality factor. For CWT (and ST,

therefore), the interval is a multiple of 2
1
𝑄𝑖 .

The difference between CWT and ST occurs by the ST invariance range. While CWT

has logarithmic intervals between the center frequencies for the entire spectrum, ST has to ensure

that the time support of the lowest frequency filters does not exceed the invariance range. The

consequence is that algorithms must detect this limitation and impose linear spacing for lower

frequencies (the lower the frequency, the tighter the passband, and the greater the temporal

support, because of time-frequency duality).

The three transforms (CWT, DWT and ST) are implemented through convolutions

with wavelets. The CWT and DWT transforms are time-shifting variants, since 𝑥[𝑛] * Ψ ̸=

𝑥[𝑛− 𝑘] *Ψ, 𝑘 ∈ N (BURRUS et al., 1998; MALLAT, 2012). On the other hand, for the case

of ST, it is a time-shifting invariant representation. Such invariance comes from the successive

averaging operations of each set of coefficients of each layer (MALLAT, 2012).

Table 2 compares DWT, CWT, and ST, given what we expose in this Section. Note

that sparsity is related to the redundancy of the representation. CWT has more coefficients (and

more sparsity) than DWT, as DWT only takes the power of two discrete scales from the mother

wavelets (BURRUS et al., 1998). One can truncate ST in a particular order level and then control

the number of transform coefficients (sparsity). Because of these considerations, we consider in

Table 2 that CWT has high sparsity, DWT has low sparsity, and ST has intermediate sparsity.

Table 2 – Comparison among CWT, DWT and ST.
Method Sparsity Time-shifting invariance Computational Complexity
CWT High No High
DWT Low No Low
ST Mid Yes Low
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2.3 WORKS RELATED TO FEATURES EXTRACTION WITH DEEP CONVOLUTIONAL

NETWORKS

The relationship between Feature Extraction for NILM and Deep Convolutional Net-

works started with the work of Kelly and Knottenbelt (2015a). In that work, the authors proposed

three deep networks for NILM, applied to a low-frequency dataset. Each proposed architecture

had a dedicated output network to classify each load. The authors proposed: (i) an architecture

based on recurrent networks (bidirectional LSTM + CNN); (ii) Denoising Autoencoder; (iii)

Regress Start Time, End Time, and Power. The three proposed networks extract NILM features

and also perform disaggregation. In strategies (i) and (ii), padding and sliding windows are used,

and strategy (iii) uses a probabilistic output for each appliance’s power demand, converting this

to a single vector per appliance.

Since Kelly and Knottenbelt (2015a), many other papers proposed deep Convolutional

Network architectures for feature extraction for NILM tasks. Several works used low frequency

datasets to train CNN architectures for NILM feature extraction (CHEN et al., 2018; CHEN et al.,

2020; MORADZADEH et al., 2021; CHEN et al., 2020; MASSIDDA et al., 2020; KASELIMI

et al., 2019). In Chen et al. (2018), for instance, the authors proposed a sequence-to-sequence

1D-CNN architecture for NILM with superior disaggregation results for high power loads,

but with an inability to disaggregate low power loads. Similarly, in Chen et al. (2020), a low-

frequency load disaggregation architecture called CAEBN-HC was proposed, which was based

on 1D-CNN with batch normalization (BN) and Hill Climbing (HC). The authors extracted

the temporal features with a CNN, applying BN to avoid explosion or vanishing gradient in

the training process. HC was applied to adjust the hyperparameters, and the results obtained

were promising, i.e., from 7 to 10W of Mean Absolute Error (MAE). However, the authors

only addressed the disaggregation of few loads with high power and did not present results in

terms of low power and several aggregated loads. Chen et al. (2020) addressed the intention to

use data augmentation to improve the results with more aggregated loads. In Moradzadeh et al.

(2021), the authors proposed a deep CNN architecture for NILM classification, with accuracy

results greater than 96% for the REDD dataset. Moradzadeh et al. (2021) proposed to classify

appliances of households not included in the training stage, but the disaggregated load curves

were not available, and the results are limited to low-frequency REDD dataset only for three

selected loads.
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The SCANnet proposed in Chen et al. (2020) used Context-Aware Feature Integration,

which is a map of additional features used to learn the contextual information for NILM disag-

gregation. The disaggregation results, Mean Absolute Error (MAE) in the range of 9-16W, were

comparatively superior to the literature but limited to only six electrical loads with relatively high

power, and dependent on data augmentation with Wasserstein Generative Adversarial Network

(WGAN). The work proposed in Massidda et al. (2020) presented a CNN architecture called

TP-NILM for load classification. The authors used electrical power as an input signal for the

CNN. The feature extraction technique only detected whether the appliance is active and what

was its average consumption in that mode. A stage called temporal pooling, which aggregates

the features of different resolutions, was added in Massidda et al. (2020), which improved the

temporal context. Both disaggregation and classification were performed in Massidda et al.

(2020). The accuracy results were up to 97% for seen classes and up to 78% for previously

unseen ones. The approach discussed in Massidda et al. (2020), on the other hand, is based on

a multi-label strategy to classify multiple loads in the UK-DALE dataset. However, only three

electrical appliances were simultaneously analyzed. A Multi-Channel Recurrent Tapped Delay

Line CNN network (MR-TDLCNN) was proposed in Kaselimi et al. (2019), with training and

testing in the AMPds dataset. The authors used three input channels on a CNN for disaggregation:

active and reactive power, and current. This approach increased the discriminability, and the

MAE results varied between 4.8W and 18W. The drawback was the need for more input data

w.r.t. the other compared methods due to the overall size of the architecture.

In Zhou et al. (2021b), the authors applied a spatial clustering using density-based for

applications with noise to classify different load curves. The idea of combining expert knowledge

and deep learning models led up to 95% accuracy, overcoming other state-of-the-art deep learning

methods. However, the method in Zhou et al. (2021b) needed a multi-feature method to transform

the 1D load data into 2D matrix data. Authors in Matindife et al. (2021) proposed a 2D CNN

structure that recognizes the load status. The proposed method used Gramian angular fields

(GAFs) for encoding appliance low-frequency power series (1D) to an image (2D). The authors

produced their own dataset and, consequently, proper comparisons are hampered.

The CNN-Long Short Term Memory (LSTM) hybrid model proposed in Zhou et al.

(2021a) overcame CNN and LSTM methods for UK-DALE dataset in terms of accuracy (up to

98.87%). Despite these good results, the proposed CNN-LSTM method presented a much longer

test time than CNN and LSTM (1031𝜇𝑠 vs 23𝜇𝑠 and 27𝜇𝑠 respectively). Furthermore, CNN-
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LSTM needed a large amount of data for training to avoid overfitting, besides the performance

depended on the depth of the neural network. Ding et al. (2021) proposed a disaggregation

method independent of the depth of the CNN. The proposed method was based on multiple

overlapping sliding windows that avoid overfitting and gradient vanishing in NILM. Authors

in Ding et al. (2021) introduced a new extension of CNN called inception structured CNN to

deal with NILM. F1-Score results (up to 70.7%) and the accuracy (up to 76.7%) overcame other

deep learning methods when considering different sliding windows, but the proposed structure is

complex and has a large set of trained filters. A comprehensive up-to-date review of deep models

applied to low-frequency NILM can be found in Huber et al. (2021).

Although low sampling frequency data are easily obtained directly from smart me-

ters, the extracted features are not as discriminative as those obtained with high-frequency

datasets (RUANO et al., 2019). Discriminative features for low power consumption appliances

or transient features for devices containing switched static converters, for instance, cannot be

achieved with low-frequency methods. In the sequence, we present methods that use data with

high sampling frequency to overcome those limitations.

In different feature extraction methods, a 2D feature image is generated from the one-

dimensional NILM signal, allowing the use of well-known image processing and deep learning

techniques for NILM classification. In (HOUIDI et al., 2020), the 2D image was generated

by a time-frequency STFT. The spectrogram was applied as the input of a CNN, particularly

designed for that work. The good location both in time and frequency allowed to deal with

non-stationary multi-component signals, but some classification accuracy results were below

the average of other methods, i.e., around 70% for the PLAID dataset. A similar approach is

presented in (WU; WANG, 2019), in which spectrograms obtained from an STFT were used

as input of the CNN. The strategy was devised to filter out background noise caused by other

loads in the target load. In (BAETS et al., 2018), the 2D representation was weighted pixelated

VI images, obtained from the normalized VI curve in steady-state. The image was then inserted

as the entry of a CNN, which performs the classification. The overall F1-Score was also below

the average of the other compared methods (<78%), and the authors needed to use 2 datasets

together (PLAID and WHITED) to reach those results. (MULINARI et al., 2022) proposed to

use the 2D Fourier transform to extract features from the VI curve of electric loads. FSscores

of up to 97.7% were achieved by (MULINARI et al., 2022), but the proposed method did not

contemplate load detection and disaggregation.
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Two multi-label approaches were presented in (FAUSTINE; PEREIRA, 2020a)

and (FAUSTINE; PEREIRA, 2020b). Both have the advantages of being multi-label classi-

fication strategies, presented as alternative approaches to the traditional 2D image applied to the

input of a CNN. In (FAUSTINE; PEREIRA, 2020b), a transition event is first located, followed

by the Fryze Power Theory (STAUDT, 2008) in the aggregated current to extract the features

together with a similarity matrix based on the Euclidean distance to reinforce the discriminabil-

ity. A 2D image is then generated, being the input of a CNN with multi-label classification.

In (FAUSTINE; PEREIRA, 2020a), on the other hand, a multi-label approach was proposed to

improve the classification of loads of the same type but different brands. Given one cycle of the

voltage and current, a Weighted Recurrent Graph (WRG) generates a 2D image for posterior

classification. Accuracy results were better than other baseline methods that produce 2D images

from V-I trajectories, but still lower than those presented in (FAUSTINE; PEREIRA, 2020b)

(both for PLAID dataset). Moreover, results of (FAUSTINE; PEREIRA, 2020a) were obtained

from submetered data (i.e., not aggregated).

Accuracy results above 98% were obtained in (HIMEUR et al., 2021), which presented

a technique called 2D phase encoding (2DPEP) to generate a 2D image from the NILM signal.

Using time-domain feature extractors, the authors overcame state-of-the-art classification metrics

for several distinct datasets based on sliding windows. Despite these promising results, authors

in (HIMEUR et al., 2021) had a high dependency on the event detection algorithm and the

proposed approach used other classification methods based on classical Machine Learning,

increasing the complexity. Authors in (CHEN et al., 2022) proposed both temporal and spectral

to define a dual power signature for each load. Each PS, represented as 2D image, enters a DCN

structure followed by a fully connected network. The F1-Score results overcame VI method, but

the authors did not compare these results with another CNN-based approach. Furthermore, the

proposal of (CHEN et al., 2022) was not time-shifting invariant.

In Yang et al. (2020), a discrete wavelet transform to obtain a 2D image from the

aggregated current signal is proposed. The authors used the image as an input to a sequence-to-

sequence CNN. The wavelet transform has the advantage of time-warping stability, but the data

used in Yang et al. (2020) was submetered, and not naturally aggregated. The same limitation

found in Yang et al. (2020) was noted in Morán et al. (2020). Particularly in Morán et al. (2020),

the authors employed a deep convolutional autoencoder to extract features from individual

hospital loads. Nevertheless, there is no disaggregation since the CNN input is obtained from a
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submetering network. In Lazzaretti et al. (2020), a multi-agent strategy was proposed to improve

NILM classification, achieving accuracy results above 95% on LIT-dataset. Although this result

was superior to the related literature, applying the multi-agent strategy in realistic cases may be

compromised due to the high computational complexity. The authors in Mukaroh et al. (2020)

also presented a CNN-based classification model for NILM, reaching 92% global accuracy on

LIT-dataset, but with limitations in the feature extraction for loads with similar transitory shapes.

A real-time CNN-based method proposed in Athanasiadis et al. (2021) reached up

to 99.2% accuracy, with a 100Hz sampling frequency data. This method used a three-stage

structure: (i) Event detection; (ii) CNN Classification; and (iii) Power estimation, applying

machine learning to detect the turn-on events and an heuristic algorithm to estimate the real time

power. However, there were some limitations, such as: (i) Authors used a private dataset, which

reduces reproducibility; (ii) Only three appliances of greater power consumption were used in

the tests; (iii) The algorithm had problems in identifying loads with steep step-up transients.

Authors in Gomes and Pereira (2020) applied a pinball loss function (PB) to different

DCN architectures, and compared the results with the mean squared error (MSE) loss function.

Authors performed experiments with manually summed data and native aggregated data. Both

with pinball loss function and MSE, all results were better with the sum of loads. As the DCN

was not time-shifting invariant, authors in Gomes and Pereira (2020) reported problems with

time-shifting signals. Authors in Jia et al. (2021) extracted features with bidirectional dilated

convolution networks, increasing the length of receptive fields. Although the results outperformed

other methods, the authors did not address the computational cost of training, and the non-causal

attribute of the extractor did not allow real-time application. Both Hwang and Kang (2022)

and Laouali et al. (2022) applied Long Short Term Memory (LSTM) to disaggregate NILM

loads. Hwang and Kang (2022) and Laouali et al. (2022) presented promising applications for

real-time. However, the lack of reproducibility of the private dataset of Laouali et al. (2022),

the average F1-Score below 90% of Laouali et al. (2022) and the low-frequency data features

discriminability are challenging to overcome.

Nolasco et al. (2022) proposed the DeepDFML architecture that integrated disaggrega-

tion, event detection, and multi-label classification. The DeepDFML had a shared DCNN stage,

with three fully connected sub-networks, each one for one specific task. The authors proposed

new metrics, as the work was pioneering in solving all three tasks at once. The authors needed

external methods to generate more training data (data augmentation) despite the promising
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results – state-of-the-art for LIT dataset.

Chen et al. (2022) proposed two signatures for each appliance: one temporal and other

spectral. The authors converted disaggregated 1D signals of voltage and current into images and

defined those images as the signature of each load. Both temporal and Spectral signatures, 2D

images, were inputs of two CNN structures, followed by a shared fully connected layer. The

F1-Score validation results overcame VI and weighted recurrence graph methods, but the authors

did not compare their proposal with other state-of-the-art CNN-based methods. Furthermore, the

authors depended on the single load switching point detection (time-shifting covariant).

In Aguiar et al. (2021b), we expanded the analysis of Aguiar et al. (2021a) to multiple

aggregated loads, using LIT-SYN dataset and Scattering Transform-based feature extractors. We

compile the methodology and the results presented in Aguiar et al. (2021b) in Chapter 4.

We proposed in Aguiar et al. (2023) a framework based on Scattering Transform to

extract features and classify electrical loads signals from COOLL Dataset Picon et al. (2016)

and obtained state-of-the-art results for this dataset.

2.4 LINKING NILM, DISTRIBUTED GENERATION AND BEHIND THE METER ESTI-

MATION

Our work also addresses the identification and classification of photovoltaic inverters

(PV inverters) connected to the secondary distribution network. The secondary distribution

network is connected to the low voltage windings of the distribution transformer, corresponding,

in Paraná, to 220V RMS for the two-phase system and 127V RMS for the single-phase system.

Our study considers a typical residence with a nominal voltage supply of 220V RMS.

We also consider a photovoltaic (PV) distributed micro-generation (DG) source in this residence.

In Brazil, distributed generation units with an installed capacity of less than 75kW are called

“micro-generation”. We show this type of connection in figure 9.

Figure 9 shows a house with several appliances connected to a common connection

point (PCC). This PCC comprises a circuit breaker distribution board, voltage surge protection

devices (DPS), and other protective elements. The AC output of the photovoltaic generation is

also connected to the PCC. The photovoltaic generation unit installed in the house, shown in

blue in the figure 9, is composed of photovoltaic panels and a photovoltaic micro-inverter. The

micro-inverter is a static converter that converts the continuous output voltage of the photovoltaic

panels into alternating voltage, synchronized with the voltage in the PCC.
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Figure 9 – Typical house with PV distributed generation.
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The power flow in the network shown in figure 9 is represented by unidirectional and

bidirectional arrows. Inside the house, electrical loads consume energy, so the arrows point

from the PCC to them. On the other hand, PV generation only supplies energy to the grid,

and therefore the arrow points to the PCC. Between the PCC and the Smart Meter, there is a

two-way link. That means that both the PV generation can supply power to the utility grid and

the utility can deliver power to the house. Likewise, the smart meter (typically installed on the

pole at the utility’s delivery point) connects to the distribution transformer. The distribution

transformer converts the secondary distribution voltage (220V two-phase or 127V single-phase)

into the primary distribution voltage (typically 13.8kV). This link between the smart meter and

distribution transformer can also have a two-way power flow. Finally, the distribution transformer

connects to the distribution secondary voltage network. Although it is not explicit in figure 9,

the secondary voltage distribution network is connected to the National Integrated System (SIN)

through transmission transformers located in specific substations.

Figure 9 also shows that measurements by the utility take place after the PCC and,

therefore, outside the house. This means the utility does not have direct, real-time access to

separate data on load consumption and the amount of instantaneous generation of the PV

generation units. This feature motivated several literature research lines, generally called “Behind

the Meter" Estimation (BTM). One of the main objectives of the BTM is to determine, from the

concessionaire’s point of view, the consumption of electrical loads and the energy production of

the PV generators separately for each residence.

On the other hand, we saw in Section 2.1 that the most common definitions and
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classifications in the context of NILM were made concerning electrical appliances. Given the

BTM problem, the increased penetration of distributed generation in the distribution network,

and what we have already discussed about NILM, we feel encouraged to expand the concepts of

NILM to the case of consumption units that produce energy, or prosumers. The primary Brazilian

regulation for prosumers is ANEEL Normative Resolution number 1,059 of February 2023.

In general terms, ANEEL Normative Resolution 1,059 of February 2023 establishes the

following:

• The installed power limits to define distributed micro and mini generation;

• The primary forms of energy considered as distributed generation;

• The procedures for installation, commissioning, and billing of micro and mini distributed

generation;

• Guidelines for concessionaires and prosumers, given the possibilities of power flow inver-

sion caused by prosumers;

• Transition rules from old regulations.

The high penetration of distributed generation in the distribution system can lead to

some management, planning, and interconnection problems in the distribution network, such as:

• Aspect 1: Dimensioning of network protection systems;

• Aspect 2: Islanding detection;

• Aspect 3: Voltage control on substation buses;

• Aspect 4: Harmonic content;

• Aspect 5: Identification of Power flow inversion;

• Aspect 6: Clandestine connections of distributed generation units.

Our efforts for merging NILM to BTM estimation could potentially contribute to

mitigating the problems related to the six aspects above.
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2.4.1 Frameworks to classify and detect DG in the NILM context

Most micro and mini generation photovoltaic units are residential and are located behind

the meter (BTM). Photovoltaic (PV) generation units of the BTM type may not be individually

observable by the distribution or transmission systems. This occurs for the following reasons: (i)

not every residential PV unit has the measurement of the electric current or generated power; (ii)

there are privacy issues in data sharing; (iii) energy utilities may not have access to individual

smart meters data. With this in mind, the disaggregation (or forecasting) of photovoltaic energy

(BTM photovoltaic forecasting) is presented. A complete and up-to-date review on the topic is

presented by Erdener et al. (2022).

The area of PV forecasting is active in the literature and consists precisely in predicting

energy generation curves for PV BTM units. Lin et al. (2022) categorize the methods for

forecasting PV BTM into data-based and model based. Model based are dependent on specific

information of each PV unit (model, power, and physical characteristics). In contrast, data-based

needs local measurement units, quality, and availability of measurement data locations of each

unit.

Existing methods up to (LIN et al., 2022) considered data availability from each

prosumer by a centralized system. The problem with this is the privacy of each prosumer’s

data. To deal with this, Lin et al. (2022) proposed a probabilistic method that does not use

private information from each prosumer to train the prediction model but federated learning. The

Federated Learning Bayesian neural network (FL-BNN) is implemented in a decentralized way,

respecting the federated learning framework.

Federated learning involves training a global model without sharing private data from

individual installations. Training is carried out locally in a decentralized manner. FL-BNN is a

regression problem that intends to discover the net load and the generation load of unobservable

prosumers (those that do not have smart meters).

Brown et al. (2021) proposed a pioneering method of PV generation disaggregation

based on real and censored measurements of smart meters. A censored measurement occurs

when the PV unit generates more than the household consumption; consequently, the smart meter

reading is zero. This is a limitation presented by the authors for the precise measurement of

smart meters when there is BTM generation. The method proposed by Brown et al. (2021) was

able to disaggregate the consumption of BTM PV generation in homes (locally) using real data
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from smart meters at low frequencies. For this, the authors used two combined datasets.

In Wang et al. (2022), the authors expanded the disaggregation analysis in PV to

cases where prosumers also have a storage system. Such systems are named hybrid rooftop solar

battery systems (HRSBS). The authors mentioned that it would be easy to obtain the disaggregated

powers simply by measuring the current of the battery and the PV system. However, this is not

feasible in most cases, either because of the cost or legal issues related to privacy. The only

information available is the smart meter energy curve, so the authors used net load to disaggregate.

A weakness of Wang et al. (2022) method is the reliability of context data (observable data),

which are available in a restricted scenario of high PV penetration. Another weakness of the

work is the reliability of a physical model to generate energy storage data (as if it were a data

augmentation). Wang et al. (2022) applied three feature vectors (PV generation, Load, and

Battery Storage System feature vectors) as input to an optimization problem. In this way, the

authors determined the disaggregated signals.

The method proposed in (PAN et al., 2022) clustered the net load curves of the PV units

together with the irradiance data. A model sensitive to energy consumption was developed from

the temperature of days with similar irradiation. The authors improved by almost six percent

the accuracy compared to state-of-the-art methods. Pan et al. (2022) main contribution was to

propose an unsupervised disaggregation method that relies heavily on observable data (climatic

and electrical) and not on proxy and physical modeling.

Wu et al. (2022) proposed an unsupervised disaggregation method on the neighborhood

scale (an entire area of Taiwan). They proposed a fuzzy algorithm with four steps. First, they

perform a pre-processing of the data. Later they clustered the PV installations. Next, they

proposed a method for selecting the most representative PV points. Finally, they used the

historical data of the most representative PV places to build a fuzzy model to estimate the PV

generation in the cluster or region.

The authors in Abbood and Benigni (2018) used data-driven modeling to create a

dynamic model of a PV microinverter without knowing the device’s internal characteristics (such

as topology, control, drive, etc.). The authors used neural networks from an FFT, trained with

data emulated by a Power Hardware in the Loop. Despite having modeled the microinverter, the

purpose in Abbood and Benigni (2018) was not precisely to extract the device’s power signature

but to contribute to commercial emulation tools. Furthermore, the lack of real data compromised

the obtained results.
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Mason et al. (2020) proposed an unsupervised regression model to disaggregate the

generated power and the azimuthal angle of the panels in units of PV generation. The authors

achieved a mean absolute error of 2.09% for disaggregation, but disaggregation and load detection

were not performed.

Authors proposed in (JARAMILLO et al., 2020) an extension of the typical NILM

approaches conventionally used for electrical loads to identify residential DG. Jaramillo et al.

(2020) determined the PV DG signature from PMU data and proposed a statistical features

extractor along with an SVM classifier. Jaramillo et al. (2020) used a dataset that does not have

transient information but synchrophasors at 50Hz: They measured both PV and loads currents

and determined the grid current by simple subtraction. They used a sliding window of 50 samples

(1s). From this windowed sample, the authors extracted the statistical features. The authors

obtained F1-Scores of up to 96.16% but did not compare these results with other methods in

the literature. The classification model had low dimensionality (5 variables), but the temporal

window resolution was low (1s), and the method did not detect loads individually.

Jaramillo et al. (2021b) proposed a regression method to disaggregate the consumption

curve of a residential PV system from the low voltage distribution power bar. Jaramillo et al.

(2021b) used the SMART (BARKER et al., 2012) public dataset. The authors achieved mean

absolute errors of 5.2%, but the model had the following limitations: (i) low sampling frequency

(1s); (ii) lack of comparison with other methods in the literature; (iii) Evaluation of feature

extraction with kNN and RF only, and other methods were not presented in the paper.

According to Jaramillo et al. (2021c), there is a lack of observability in power dis-

tribution systems due to the increased penetration of DG and electric cars (EV), and NILM

methods can help fill this gap. The authors proposed a method to identify both PV generation

and EV consumption in low-voltage distribution buses and disaggregate the DG electrical profile

pattern. They used the phasor data from the IEEE European Low Voltage test Feeder low voltage

standard bars, using kNN for classification. The authors achieved F1-Scores of up to 92% but

with the following limitations: (i) The 100W threshold used for noise may be considered too high

for residential units with low consumption; (ii) The low sampling frequency (1/60Hz) limited

the detection time resolution for the method, in addition to impairing the classifier’s sensitivity

to transient events; (iii) the method used more than one time-series to extract features (active,

reactive, apparent power, voltage and current), increasing the dependence on data acquisition.

Jaramillo et al. (2023) extended the work done in Jaramillo et al. (2021c), increasing the pen-
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etration of PV, including the random forest and multilayer perceptron classifiers, optimizing

the hyperparameters of the classifiers, including statistical variables, in addition to testing three

methodologies for selection of features. The authors proposed a new method for extracting the

electrical signature of DG and EV applied at low voltage, obtaining up to 93% of F1-score for

PV detection.

The methods proposed by (JARAMILLO et al., 2021b; JARAMILLO et al., 2021c;

JARAMILLO et al., 2020; JARAMILLO et al., 2023) used classification and regression frame-

works made with classic machine learning methods, not addressing deep learning strategies for

DG classification or disaggregation. Deep learning methods have achieved state-of-the-art results

for NILM in classifying and disaggregating electrical loads. These facts encourage us to apply

NILM methods to DG using deep learning.

In order to expand the previous works by (JARAMILLO et al., 2020) and (JARAMILLO

et al., 2021b), the authors proposed in (JARAMILLO et al., 2022) a framework that contemplated

both the disaggregation and the classification of EV and PV, using an ANN as a classifier for both

tasks, in addition to the inclusion of statistical variables of active power as features. The authors

achieved state-of-the-art results for both classification (99% F1-score for PV identification) and

disaggregation (11% MAE considering the PV as target), but the proposed method presented the

following limitations: (i) The approach considered neither load classification nor load detection;

(ii) The sampled data, at low frequency, limited the time resolution in event detection; (iii)

the authors did not test other features extraction methods besides the statistical one (frequency

domain or time-frequency); (iv) the authors did not address other state-of-the-art frameworks for

classification and disaggregation based on deep learning.

Goncalves et al. (2022) proposed a strategy to generate a dataset with residential and

PV data. From the few available external examples, the (GONCALVES et al., 2022) method

allows the creation of training examples for both loads and DG. Despite being a practical method,

which excludes the need for expensive and time-consuming measurements, the need for real

high-frequency NILM and PV data is a problem for validating classification methods trained and

tested by the generated dataset.

Jaramillo et al. (2021a) used an SVM classifier to detect aggregated appliances’ on/off

state and a 3.5kWp PV system from a residential installation in the United Kingdom. The authors

obtained current and voltage samples from an OpenPMU module and got synchro phasors. The

methodology of Jaramillo et al. (2021a) consisted in: (i) preprocessing the data, downsampling
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the original sample rate (12.8kHz) to the synchro phasors frequency (50Hz); (ii) extracting

features from a moving windows containing 50 samples of synchro phasors sampled at 50Hz;

(iii) obtain five statistic features from the synchro phasors; (iv) train an SVM classifier with a

Gaussian kernel; (v) predict if each test sample has PV status "turned on" or "turned off. Despite

being a pioneer work in obtaining the PV system signature, the work of Jaramillo et al. (2021a)

leaves some gaps: (i) the proprietary dataset does not allow the reproduction of the results for

comparison with other methods in future works; (ii) there is no standardization in the procedures

for obtaining measurements; (iii) despite being computationally efficient, the proposed method

is poorly discriminative, as it uses data sampled at low frequency.

2.4.2 Public NILM datasets related to DG

We have reserved this Subsection for discussing the primary public datasets for NILM

related to DG. Typically one could classify the NILM datasets as High Frequency (represented

by the letter H, with a sampling frequency higher than 50Hz, as defined in Basu et al. (2016)) or

Low Frequency (represented by the letter L, with a sampling frequency lower than 50Hz, also

as defined in Basu et al. (2016)). Besides that, Angelis et al. (2022) classified the datasets for

NILM into three categories: residential (R), industrial (I), and commercial (C). Since the first

publication of NILM methods by Hart (1992), most public datasets have been residential. A few

examples of NILM datasets have Distributed Generation (typically PV) data.

Even with the storage capacity limitation, high sampling frequency datasets allow a

more discriminative classification since the features extracted from them contain more transient

information (AGUIAR et al., 2021b). On the other hand, datasets with a low sampling frequency,

even though they are not so discriminative, allow for looking at features with longer time windows

(long-term properties). Considering these considerations, we create Table 3, which presents the

main characteristics of high and low-frequency datasets related to residential, commercial, and

industrial loads and cases with DG data.

Both low (L) and high-frequency (H) datasets previously published in the literature for

NILM raised the following limitations:

• Most of the datasets presented only electrical measurements of residential appliances and

did not present data from distributed generation;

• High-frequency datasets generally had short samples (less than 10s), while datasets with
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Table 3 – Primary public datasets available in the literature. We highlight the following characteristics: Sam-
pling Frequency Class (SFC) as High-Frequency (H) or Low-Frequency (L); Type, as Residential
(R), Commercial (C), Industrial (I), Photovoltaic (PV) or the possible combinations; The time
period that the dataset was obtained; The presence or absence of Multiple Sampled Loads (MSL);
The aggregated appliance sampling frequency (AS); The individual device sampling frequency
(DS); The total number of appliances (NoA); The total number of buildings where the data was
obtained (B.) and the Electrical Characteristics (Charac.) measured (the active power P, reactive
power Q, apparent power S, current I, voltage V, energy E and electromagnetic interference EMI)

Reference Name SFC Type Period MSL AS DS NoA B. Charac.
Kolter (2011) REDD H R 119 days yes 15kHz/

0.5kHz
0.33Hz 92 6 P,V,I

Anderson et al.
(2012)

BLUED H R 1 week yes 12kHz 60Hz 50 1 P,Q,V,I

Gao et al. (2014) PLAID H R 1-20s yes 30kHz 30khz 1876 65 V,I
Kelly and Knotten-
belt (2015b)

UK-Dale H R 2247 days yes 16kHz
&
167Hz

1Hz 109 5 P,Q,S,V,I

Shin et al. (2019) ENERTALK H R 1714 days yes 15Hz 15Hz 75 22 P,Q
Gulati et al. (2014) HFED H R+C – yes 10kHz-

5MHz
– 24 1 EMI

Picon et al. (2016) COOLL H R 840 wave-
forms (6s
each)

no – 100kHz 42 1 V,I

Ribeiro et al. (2016) SustData H R 10 days yes 12.8kHz 0.5Hz 17 1 V,I,Q
Kahl et al. (2016) WHITED H R+I 5123

wave-
forms (5s
each)

no – 44.1kHz 110 1 V,I

Kriechbaumer and Ja-
cobsen (2018)

BLOND H R 50-213
days

yes 50-
250kHz

50kHz 53 1 V,I

Renaux et al. (2020) LIT H R – yes 15.6kHz 15.6kHz 26 1 V,I
Klemenjak et al.
(2020)

SYND L R 180 days yes 5Hz 5Hz 21 1 P

Batra et al. (2014) COMBED L C 1 month yes 33.3mHz 33.3mHz – 8 P,I
Martins et al. (2018) IMD L I 111 days yes 1Hz 1Hz 8 1 P,Q,S,V,I
Bischof et al. (2018) HIPE L I 92 days yes 0.2Hz 0.2Hz 10 1 P,Q,S,V,I
Hebrail (2012) UCI L R 4 years yes 16.7mHz 16.7mHz 9 1 P,Q,V,I
Makonin et al. (2013) AMPds L R 360 days yes 16.7mHz 16.7mHz 20 1 P,Q,

S,V,I
Nambi et al. (2015) DRED L R 6 months yes 1Hz 1Hz 12 1 P
Beckel et al. (2014) ECO L R 8 months yes 1Hz 1Hz 45 6 P,V,I
Makonin et al. (2013) AMPdsV2 L R 720 days yes 16.7mHz 16.7mHz 20 1 P,Q,S,V,I
Murray et al. (2017) REFIT L R 2 years yes 0.125Hz 0.125Hz 177 20 P
Parson et al. (2016) Dataport L R+C 4 years yes 16.7mHz 16.7mHz 8598 722 P,S
Barker et al. (2012) SMART L R+PV 3 months yes 1Hz/

0.2Hz
1Hz/
0.2Hz

25 3 P,Q

Zimmermann et al.
(2012)

HES L R+PV 1 year/1
Month

yes 8.33mHz 8.33mHz 251 26 E

Reinhardt et al.
(2012)

Tracebase L R 1 day yes 1Hz 1Hz 158 1 P

Batra et al. (2013) iAWE L R 73 days yes 1Hz 1Hz 63 1 P,Q,S,V,I
Monacchi et al.
(2015)

GREEND L R 3-6
months

yes 1Hz 1Hz – 7 P

Makonin et al. (2018) RAE L R 72 days yes 1Hz – – 2 V,I,P,Q,S
This Work DG-

NILM
H R+PV open set yes 1kHz 1kHz 4 1 V,I
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longer samples had low sampling frequency.

In Chapter 6, we propose a new dataset with the following advantages related to previous

published datasets:

• The proposed dataset has high frequency aggregated measurements, adding multiple

appliances with distributed generation;

• We present high-frequency samples of long duration (more than 10s);

• To evaluate the dataset, we present classification and disaggregation results with state-of-

the-art NILM methods.

2.5 CONTRIBUTIONS

Bearing in mind the limitations and research gaps presented so far, the main contribu-

tions of this work are:

1. New feature extraction and selection methods for NILM using ST;

2. State-of-the-art classification results for both load disaggregation and individual electrical

loads using ST;

3. Proposal for a new convolutional network architecture, more computationally efficient and

less dependent on large datasets, with untrained filters using ST;

4. Ablation study on ST parameters variations on classification performance;

5. Construction of dedicated hardware for NILM and DG data collection;

6. Proposal for a new public dataset with aggregated data on electrical loads and PV dis-

tributed generation;

7. Ablation study on the impact of DG penetration on electrical loads classification and the

impact of the aggregated loads on the DG identification.

We highlight contribution 7 (Ablation study on the impact of DG penetration on

electrical loads classification and the impact of the aggregated loads on the DG identification) as

the most significant contribution of our study.
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3 FEATURE EXTRACTION WITH SCATTERING TRANSFORM FOR NON-

INTRUSIVE LOAD MONITORING

We discussed in previous chapters that:

• In recent years, several feature extraction methods have been proposed for NILM using

Deep Convolutional Networks;

• A recurring problem encountered in this type of method is the necessity to a large amount

of data for training, once the network weights are trained;

• The Scattering Transform has an architecture analogous to CNN, but it does not have

trained weights (wavelets analytically determine them).

With these considerations in mind, we propose in this chapter a framework based on ST

for extracting features for NILM. We also propose six ways to select the features resulting from

the ST in this proposed framework. We tested classification models on the COOLL (PICON et

al., 2016) dataset and obtained state-of-the-art results for that dataset. We tested our framework

under reduced and subsampling dataset conditions. Furthermore, we present in this chapter,

a study of the class separability, taking the reduced order features obtained by the proposed

framework using the t-SNE (MAATEN; HINTON, 2008) method for dimensionality reduction.

3.1 PROPOSED FRAMEWORK

Figure 10 shows the proposed classification framework for NILM using Scattering

Transform. The following steps constitute the proposed framework: (i) Pre-processing, (ii) Fea-

ture Extraction, (iii) Classification, and (iv) Evaluation of Results. In the following Subsections,

we initially detail the dataset used, and later we will discuss each of the steps of the proposed

framework (Figure 10).
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Figure 10 – Proposed framework for NILM Classification. Our proposed framework could be used in other
applications by replacing the COOLL dataset with another database.
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3.1.1 COOLL Dataset

Considering that the features extracted from high-frequency data are more discriminative

than low-frequency data (RUANO et al., 2019), we chose the Controlled On/Off Loads Library

dataset (COOLL), proposed in (PICON et al., 2016). The COOLL dataset has submetered

instantaneous current records from 42 different electrical appliances at a sampling frequency of

100kHz. Each electric load has 20 samples of 6s duration, at 100kHz, totaling 840 samples, as

presented in Table 4.

Figure 11 shows the original current waveform from the Drill 1 single appliance. The

red curve in figure 11 indicates the anottated turn-on and turn-off events of the appliance.

3.1.2 Preprocessing

The filter banks that implement the ST are multi-scale operators, and their implemen-

tation uses downsampling by two. For each downsampling by two, one of every two samples

in the time domain is discarded, and the sampling frequency drops by half. For this reason, we

changed the sampling frequency of the original input signal, coming from the COOLL dataset in
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Table 4 – COOLL Dataset: Description of the appliances and categories.
Class
Num-
ber

Appliance Category Class
Num-
ber

Appliance Category

1 Drill 1

Drills

22 Paint Stripper 1 Paint Strippers
2 Drill 2 23 Planer 1 Planers
3 Drill 3 24 Router 1 Routers
4 Drill 4 25 Sander 1

Sanders5 Drill 5 26 Sander 2
6 Drill 6 27 Sander 3
7 Fan 1 Fans 28 Saw 1

Saws

8 Fan 2 29 Saw 2
9 Grinder 1 Grinders 30 Saw 3
10 Grinder 2 31 Saw 4
11 Hair Dryer 1

Hair Dryers

32 Saw 5
12 Hair Dryer 2 33 Saw 6
13 Hair Dryer 3 34 Saw 7
14 Hair Dryer 4 35 Saw 8
15 Hedge Trimmer 1

Hedge Trimmers
36 Vacuum Cleaner 1

Vacuum Cleaners

16 Hedge Trimmer 2 37 Vacuum Cleaner 2
17 Hedge Trimmer 3 38 Vacuum Cleaner 3
18 Lamp 1

Lamps

39 Vacuum Cleaner 4
19 Lamp 2 40 Vacuum Cleaner 5
20 Lamp 3 41 Vacuum Cleaner 6
21 Lamp 4 42 Vacuum Cleaner 7

Figure 11 – Example of a Drill 1 waveform from the COOLL dataset, highlighting the times when the turn-on
and turn-off events occurred.
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the downsampling stage. The signal resulting from this step has a sampling frequency that is a

power of 2 (8 192Hz), which makes the filter banks of the Scattering Transform feasible. After

downsampling, we changed the dataset based on five different scenarios:

• Scenario 1 (SC1): Different number of cycles for the signal window, with turn-on events

detection;
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• Scenario 2 (SC2): Different number of cycles for the signal window, without turn-on

events detection;

• Scenario 3 (SC3): Different number of examples per class;

• Scenario 4 (SC4): Different sampling frequency;

• Scenario 5 (SC5): Whole signal-length, at 8 192Hz of sampling frequency.

3.1.3 Feature Extraction of Individual Loads

We apply the Scattering Transform to extract features for NILM signals. We explain the

mathematical definitions needed to clarify the Scattering transform in Subsection 2.2.

3.1.4 Feature Selection Techniques

We determine the features matrix employing six different strategies, briefly described

below and detailed as follows:

• Method A: by taking the average of first order-path Scattering coefficients;

• Method B: by taking the energy of the first order-path Scattering Coefficients;

• Method C: by taking all the first order-path Scattering Coefficients;

• Method D: concatenating the averages of the first-order paths with the averages of the

second-order paths;

• Method E: concatenating the energies of the first-order paths with the energies of the

second-order paths;

• Method F: concatenating all first-order coefficients with all second-order coefficients.

3.1.4.1 Method A: Averages of first order-path Scattering coefficients

Let 𝑆1,𝑖 = |𝑥 *Ψ1,𝑖| * Φ the first order-path coefficients of the 𝑖-th sub-band. Then, we

compute the features by the averaging method (𝐴1,𝑖), for the i-th sub-band, as

𝐴𝑖 =
1

𝑁

𝑁∑︁
𝑚=1

𝑆1,𝑖[𝑚], (9)
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where 𝑁 is the number of coefficients at the 𝑖-th sub-band. We define the set of selected features

for Method A as:

𝒜 = {𝐴𝑖 : 𝑖 = 1, · · · ,𝐽} , (10)

in which 𝐽1 is the number of sub-bands at the first layer.

3.1.4.2 Method B: Energies of the first order-path Scattering Coefficients

The Method B of feature selection consists of taking the energy of the first order-path

Scattering Coefficients. We compute the energy of the first-order coefficients, 𝐵𝑖, as:

𝐵𝑖 =
𝑁∑︁

𝑚=1

𝑆2
1,𝑖[𝑚], (11)

where 𝑁 is the number of coefficients at the 𝑖-th sub-band. Then, we use the 𝐵𝑖 to select features

for each example. We define the set of selected features for Method B as:

ℬ = {𝐵𝑖 : 𝑖 = 1, · · · ,𝐽1} , (12)

in which 𝐽1 is the number of sub-bands at the first layer.

3.1.4.3 Method C: All the first order-path Scattering Coefficients

For Method C, we apply all the first order-path Scattering Coefficients as features. Let

𝒞 be all the set of all first-order Scattering Coefficients, given by concatenating each first order

sub-band Scattering Coefficients, as follows:

𝒞 = {𝑆1,𝑖 : 𝑖 = 1, · · · ,𝐽1} , (13)

in which 𝐽1 is the number of sub-bands at the first layer.

3.1.4.4 Method D: Concatenation of the first order and second order-path averages of the

Scattering Coefficients.

Let 𝑆2,𝑖,𝑘 = ||𝑥 *Ψ1,𝑖| *Ψ2,𝑘| * Φ be the second order-path coefficients of the 𝑖 first

order sub-band and 𝑘 second order sub-band. Then, for Method D, we compute (𝐷𝑖,𝑘), as:

𝐷𝑖,𝑘 =
1

𝑀

𝑀∑︁
𝑚=1

𝑆2,𝑖,𝑘[𝑚], (14)
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in which 𝑀 is the number of coefficients at the 𝑖-th sub-band from first layer and 𝑘-th sub-band

from second layer. Hence, we define the features vector for Method D as:

𝒟 = 𝒜 ∪ {𝐷𝑖,𝑘 : 𝑖 = 1, . . . ,𝐽1; 𝑘 = 1, . . . ,𝐽2} , (15)

in which 𝐽2 is the total number of second-order wavelets filters.

3.1.4.5 Method E: Concatenation of the first order and second order-path averages of the

Scattering Coefficients.

Let 𝑆2,𝑖,𝑘 = ||𝑥 *Ψ1,𝑖| *Ψ2,𝑘| * Φ be the second order-path coefficients of the 𝑖 first

order sub-band and 𝑘 second order sub-band. Then, for Method E, we compute (𝐸𝑖,𝑘), as:

𝐸𝑖,𝑘 =
𝑀∑︁

𝑚=1

𝑆2
2,𝑖,𝑘[𝑚], (16)

in which 𝑀 is the number of coefficients at the 𝑖-th sub-band from first layer and 𝑘-th sub-band

from second layer. Therefore, we define the features vector for Method E as:

ℰ = ℬ ∪ {𝐸𝑖,𝑘 : 𝑖 = 1, . . . ,𝐽1; 𝑘 = 1, . . . ,𝐽2} , (17)

in which 𝐽2 is the total number of second-order wavelets filters.

3.1.4.6 Method F: All first and second-order Scattering Coefficients

For Method F, we compose the feature vector ℱ by taking all the first and all the second

order-path Scattering Coefficients, as follows:

ℱ = {𝑆1,𝑖 : 𝑖 = 1, . . . ,𝐽1} ∪ {𝑆2,𝑖,𝑘 : 𝑖 = 1, . . . ,𝐽1; 𝑘 = 1, . . . ,𝐽2} . (18)

3.1.5 Classification

We perform the classification task considering the scenarios presented in Subsection

3.1.2 and the strategies of feature selection presented in Subsection 3.1.4. The training and test

sets are separated from the feature matrix, and the label vector, i.e., 80% were used to train the

classifier from the total number of instances and 20% for testing with a five-fold cross-validation.

We train the classification models using Ensemble Method (ENS), which presents

the best results for different NILM evaluations, as presented in (LAZZARETTI et al., 2020).
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This method comprises a set of classifiers whose individual decisions are combined in some

way – normally averaging – to classify new examples. In classification methods, ensembles are

often much more accurate than the individual classifiers that make them up (CHERKASSKY;

MULIER, 1998). Ensemble classification combines a set of trained weak learner models. It

can predict ensemble responses for new data by aggregating predictions from its weak learners.

This method can use different algorithms for sequential learning (weaker learning models), such

as AdaBoostM1, AdaBoostM2 Bag, GentleBoost, LogitBoost, LPBoost, LSBoost, RobustBoost,

RUSBoost, Subspace, and TotalBoost.

After training the classification model, we perform the prediction with the test subset

(for each scenario). Let 𝑛𝑐 be the number of classes of the dataset. For COOLL, 𝑛𝑐 = 42. The

prediction, for each experiment, results in a M𝑛𝑐×𝑛𝑐 confusion matrix:

M =

⎡⎢⎢⎢⎣
𝑎1,1 . . . 𝑎1,𝑛𝑐

... . . . ...

𝑎𝑛𝑐,1 . . . 𝑎𝑛𝑐,𝑛𝑐

⎤⎥⎥⎥⎦ , (19)

whose rows represent the predicted classes and the columns represent the actual classes. From the

confusion matrix we calculated two performance metrics: F1-Score and Accuracy. The F1-Score,

for each i-th class, is defined by

F1-Score𝑖 =
2× Recall𝑖 × Precision𝑖

Recall𝑖 + Precision𝑖

, (20)

in which

Precision𝑖 =
𝑎𝑖,𝑖∑︀𝑛𝑐

𝑘=1 𝑎𝑖,𝑘
, (21)

and

Recall𝑖 =
𝑎𝑖,𝑖∑︀𝑛𝑐

𝑘=1 𝑎𝑘,𝑖
. (22)

The accuracy for each class is

Accuracy𝑖 =
TP𝑖 + TN𝑖

TP𝑖 + TN𝑖 + FN𝑖 + FP𝑖

, (23)

in which FN𝑖 = (
∑︀𝑛𝑐

𝑘=1 𝑎𝑘,𝑖) − 𝑎𝑖,𝑖, TN𝑖 = (
∑︀𝑛𝑐

𝑘=1 𝑎𝑘,𝑘) − 𝑎𝑖,𝑖, TP𝑖 = 𝑎𝑖,𝑖, and FP𝑖 =

(
∑︀𝑛𝑐

𝑘=1 𝑎𝑖,𝑘)− 𝑎𝑖,𝑖.

From the F1-Score𝑖 and Accuracy𝑖 per class, we calculate the macro F1-Score and

macro Accuracy by the expressions:

F1-Scoremacro =
1

𝑛𝑐

𝑛𝑐∑︁
𝑖=1

F1-Score𝑖, (24)
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Table 5 – Scenarios and experimental cases details.
Number of 60Hz Cycles

Scn. Case 𝑁𝑏𝑒𝑓𝑜𝑟𝑒 𝑁𝑎𝑓𝑡𝑒𝑟 Total time
per example

Examples
per class

Samples
per exam-
ple

Total of ex-
amples

Fs
[Hz]

SC1 1 5 5 166.67ms
20

1 365
840 8 1922 10 10 333.33ms 2 731

3 20 20 666.67ms 5 461
SC2 1

0

5 83.33ms

20

683

840 8 1922 10 166.67ms 1 365
3 50 833.33ms 6 827
4 100 1.67s 13 653

Number of Cycles:
SC3 1

240 4s
10

32 768
420

8 1922 15 630
3 20 840

SC4 1 240 4s 20 16384 840 4 096
2 4s 8 192 2 048

SC5 1 360 6s 20 49 152 840 8 192

and

Accuracymacro =
1

𝑛𝑐

𝑛𝑐∑︁
𝑖=1

Accuracy𝑖. (25)

For simplification purposes, we refer to F1-Scoremacro and Accuracymacro as F1-Score

and Accuracy, respectively, in the next Sections.

3.2 EXPERIMENTAL ANALYSIS

We use the library Wavelet Scattering, from Matlab® r2021, to implement the Scattering

transform. We show in this Section the results obtained from the five scenarios derived from the

COOLL dataset and described in Subsection 3.1.2. We performed the experiments using both

the proposed method (ST) and the Discrete Wavelet Transform (DWT) as a baseline comparison.

The investigations follow the structure of Figure 10. The choice of DWT as a baseline is because

both ST and DWT are based on wavelet filters (BURRUS et al., 1998). We modify the input

signal from the original dataset for all experiments to analyze the performance metrics for the

classification process. The modifications are detailed in Table 5.

First, we present the setup of the Scattering Transform for the experiments. Then, we

show the setup of the DWT baseline extraction method. We present the classification results and

discussions at the end of this Section.
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3.2.1 Scattering Transform (ST) Experimental Setup

For the feature extraction, we parameterized the ST as follows:

• Sampling Frequency (Fs): 8 192Hz for Scenarios SC1, SC2, SC3, and SC5. 4 096Hz and

2 048Hz for SC4;

• Number of Layers (m): 2 layers;

• Number of Filter Banks: 2;

• Number of wavelets per-octave, or Quality Factor (Q): 8 for first layer, and 1 for second

layer;

• Type of Wavelet Filters: Complex Morlet.

3.2.2 Discrete Wavelet Transform (DWT) Baseline Experimental Setup

For DWT, we use ten layers of detail signals. For each layer, we compute the energy

of the wavelet coefficients. Then, we use the ten energies of each detail layer as features for

the baseline classification model. We add to these features the energy of the approximation

coefficients (BURRUS et al., 1998), totaling 11 features for DWT baseline. The algorithm we

use for DWT implementation is based on Meyer (1993), Mallat (1989), Daubechies (1990),

implemented by function wavedec, on Matlab® r2021.

3.2.3 Feature Extraction and Classes Separability: Qualitative Analysis

We are interested in showing the class separability when using ST for feature extraction

and comparing the results with the features obtained with the Wavelet baseline. We use the t-SNE

method, proposed in Maaten and Hinton (2008), to visualize the features, which were originally

in the high-dimensional domain, in the Cartesian plane (dimension 2).

We apply both ST and Wavelet baseline to extract features from each example, each

scenario, and each case presented in the table 5. Once this is done, we apply the t-SNE method to

reduce high-dimensional features to the (2D) plane. We use 𝑃𝑒𝑟𝑝 = 30 for the t-SNE experiments.

As a result, we obtain a 2D representation for each case, scenario, and feature selection method.

We choose the case of scenario 5 to show in Figure 12(a-d) because it represents the full dataset.
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Also, we show only Methods A, B, and C in Figure 12 because these cases obtained better visual

separation than Methods D, E, and F, in addition to having fewer features in original space

(before t-SNE). Figure 12(a-d) shows the regions of interest, in which there is a more significant

intersection between classes for each method of extracting and selecting features.

The numbers indicated in Figure 12 correspond to the classes with the highest correlation

in the feature space. Each of these class numbers corresponds to a specific appliance in the

COOLL dataset, as shown in Table 4.

Figure 12 – Analysis of the separability between classes, using the t-SNE method. We obtain the figures
12(b), 12(c) and 12(d) with Methods A, B and C for feature selection, respectively. The figure 12(a)
was obtained with the traditional Wavelet transform. We noticed that the classes are considerably
more separated in the Scattering Transform figures.

(a) Scenario 5, with
Traditional
Wavelet (baseline)
for Feature Selec-
tion.
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Method A for Fea-
ture Selection.

23
10

3

33 31

15 17

164 6
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Source: Own authorship.

The appliances involved in the separability analysis of Figure 12 correspond to class

numbers 3 (Drill 3), 4 (Drill 4), 6 (Drill 6), 10 (Grinder 2), 15 (Hedge Trimmer 1), 16 (Hedge

Trimmer 2), 17 (Hedge Trimmer 3), 23 (Planer 1), 24 (Router 1), 28 (Saw 1), 31 (Saw 4), 32

(Saw 5), 33 (Saw 6), and 35 (Saw 8) from Table 4. We observe that classes 3, 4, and 6 belong to

the Drills category and classes 15, 16, and 17 to the Hedge Trimmer category. This behavior also

occurs with the other Feature Selection Methods, as one can observe in Figs. 12(b), 12(c), 12(d) .

Classes 28, 31, 32, 33, and 35 belong to the Saw category.

From Figure 12(a), one can observe that appliances 16 and 17 are located distant

from each other, despite being from the same category (Hedge Trimmer). We obtain the same

conclusion from 3 and 4 (Drills). In Figure 12(a), the Saws 28, 32, and 35 are close to each

other, but there are intersections. The other Saw (35) is separated from 28 and 32. 24 (Router

1) and 35 (Saw 5) are appliances with completely different operation principles, but they are
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overlapped in Figure 12(a). 10 (Grinder 2) and 23 (Planer 1) are close in all sub-figures, unlike

16 (Hedge Trimmer 2) and 17 (Hedge Trimmer 3), which are far from each other. There is an

evident intersection among 3 (Drill 3), 10 (Grinder 2), and 28 (Saw 1), which belong to different

categories. The same occurs with 6 (Drill 6), 28 (Saw 1), and 33 (Saw 6).

Figs. 12(b), 12(c) and 12(d) have fewer overlapping regions than Figure 12(a). In

Figure 12(b) the pairs 23 (Planer 1) and 10 (Grinder 2), 3 (Drill 3) and 15 (Hedge Trimmer 1), 4

(Drill 4) and 16 (Hedge Trimmer 2) are close to each other, but there is no overlap. On the other

hand, there is an intersection between 33 (Saw 6) and 31 (Saw 4).

One can notice that the appliances 23 (Planer 1) and 10 (Grinder 2) are better separated

when using Method B in Figure 12(c) than when using other methods in Figs. 12(a), 12(b)

and 12(d). There is an intersection between appliances 31 (Saw 4) and 33 (Saw 6) with Method

B, but the separability is better than Methods A and the Traditional Wavelet.

The separation of 3 (Drill 3) and 15 (Hedge Trimmer 1) is more prominent with Method

C in Figure 12(d) than Methods A, B, and the Traditional Wavelets. Furthermore, 31 (Saw 4)

and 33 (Saw 6) are not intersected, and the separation between the appliances 3 and 15 is much

more evident than the other cases shown in Figs. 12(a), 12(b), 12(c) and 12(d).

In summary, the conclusions of the separability analysis are:

• The intersection regions between appliances are less frequent in ST selection methods;

• The tested ST-based feature selection methods showed similar visual separability charac-

teristics;

• Separability between appliances of the same category was met with ST methods.

3.2.4 Results and Discussions

We follow the structure of Figure 10 and trained five classification models for each

experiment. We use different training-test sets for each one of those classification models (five-

fold cross-validation). Then, we perform the prediction five times for the Ensemble classifier,

one for each different training-test set. Finally, we compute F1-Score and Accuracy for each

trained model and each class. With these metrics, we calculate the macro F1-Score and Macro

Accuracy.

Initially, we evaluate the influence of the feature selector type on classification metrics.

For that, we perform the experiments according to Figure10 of each scenario and each case of
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Tab.5 using the six feature selection methods presented in the Subsection 3.1.4. For each Feature

Selection Method (A to F), we average the macro F1-Scores for all cases and Scenarios. Hence,

we show these Global F1-Scores (all cases average metric) in Figure 13.

Figure 13 – Average of the macro F1-Scores for each method and feature extractor. One can note that ST
overcame the Wavelet Baseline for all proposed Feature Selection Methods. There is no significant
variation among the obtained global F1-Scores when we modify the selection Method.
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Source: Own authorship.

The results in Figure 13 show that global F1-Score values (the average of all

𝐹1− 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜 from all cases and all scenarios) do not depend on the method. In other

words, there is no significant variation of Global F1-Score among all blue bars.

We show in Table 6, a comparison of the classification results obtained with each feature

selection method for the five analyzed scenarios. We obtain the value of each bar in this figure

by averaging all 𝐹1− 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜, for each case, in the relative scenario.

Table 6 – Comparison of the average F1-Score for each Scenario considering different feature selection
methods. We obtain each of the bars in this figure by averaging the 𝐹1− 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜 of all cases in
each Scenario. We notice that even the maximum variation of F1-Score is relatively small (0.06%).
This indicates that the global classification result is independent of the feature selection method.

Method A Method B Method C Method D Method E Method F
Scn. F1-Score F1-Score F1-Score F1-Score F1-Score F1-Score
SC1 99.98 % 99.98 % 99.98 % 99.99 % 99.98 % 99.98 %
SC2 99.95 % 99.96 % 99.98 % 99.98 % 99.76 % 99.98 %
SC3 100.00 % 99.99 % 99.99 % 100.00 % 99.99 % 99.99 %
SC4 99.99 % 99.99 % 99.99 % 99.99 % 99.98 % 99.99 %
SC5 99.98 % 99.98 % 99.98 % 100.00 % 100.00 % 99.98 %

We can observe in Table 6 that there is less than 0.06% variation of F1-Score in

the classification, regardless of the scenario and the feature extraction method. Such a low
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difference in the classification metric reinforces the argument that the performance of the ST for

classification in the COOLL dataset is independent of the evaluated feature selection methods.

We show in Figure 14, the global F1-Score results for each feature selection method,

considering Scenarios 1 and 2. The objective of these experiments is to verify the influence of

event detection on classification results. We obtain the blue bars in Figure 14 from the average

of the 5-folds of case 1, Scenario 1 (in which case there are five cycles before the turn-on

annotation and five cycles after the turn-on annotation, totaling ten cycles). We obtain the red

bars of Figure 14 by averaging the 5-folds of case 2 of Scenario 2.

Figure 14 – Comparison of F1-Score between ST with event detection (Scenario 1, case 1, represented with
blue bars) and ST without event detection (Scenario 2, case 2, represented with red bars) for
different feature selection methods. The existence or not of event detection does not significantly
interfere in the F1-Score obtained with the ST since the variation between the blue and red bars
in the graph is less than 0.05%. In the figure, we also represent, in yellow, the mean value of the
F1-Score obtained with the DWT (Wavelet Baseline).
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Source: Own authorship.

One can observe from Figure 14 that the proposed ST framework overcomes the DWT

baseline for all Methods of features selection analyzed. The minimum increase of F1-Score of

ST over the baseline is 2.46%, when comparing ST without detection with the baseline applying

Method A for feature selection. Besides that, the maximum variation between ST With and

ST Without Detection is 0.07%, which indicates that the classification results were practically

independent concerning the turn-on time-stamp.

So far, observe that:

• F1-Score does not significantly vary when using the different proposed ST feature selection

methods;
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• The F1-Scores with the ST surpass the results of the Wavelet baseline for all the cases

tested;

• The position in time (time-stamp) at which the load is turned on does not significantly

interfere with the classification results.

From Subsection 3.1.4, one can observe that Method A and Method B produce smaller

features vectors. This implies simpler training stages, smaller overall complexity, and faster

processing time. Considering that we verified in Figs. 13, 14 and Table 6 that the classification

performance does not vary substantially with the feature selection method, we follow the

experiments considering Method B for detailed analysis in Subsection 3.2.4.1.

3.2.4.1 Detailed Experiments with Method B

Table 7 shows detailed results obtained with Method B. We obtain these results consid-

ering the 5-fold classification models, with different examples for training and validation. We

take the average of these five folds for each case and scenario. We also calculate accuracy for

comparison purposes.

Table 7 – Macro Accuracies and F1-Scores for all Scenarios and cases with Method B.
Accuracy F1-Score

Scn. Case Description ST DWT ST DWT
SC1 1 5 cycles 99.84% 99.84% 96.48% 96.48%

2 10 cycles 99.98% 99.98% 99.48% 99.67%
3 20 cycles 99.98% 99.94% 99.51% 98.65%

SC2 1 5 cycles 99.50% 99.75% 88.61% 94.53%
2 10 cycles 99.83% 99.89% 96.24% 97.25%
3 50 cycles 99.92% 99.89% 98.14% 97.58%
4 100 cycles 99.92% 99.88% 98.40% 97.27%

SC3 1 10 examples 99.98% 99.95% 99.37% 98.73%
2 15 examples 99.95% 99.89% 99.02% 97.46%
3 20 examples 99.98% 99.95% 99.64% 98.83%

SC4 1 2048Hz 99.97% 99.76% 99.35% 94.67%
2 4096Hz 99.98% 99.83% 99.67% 96.12%

SC5 1 6s samples 99.95% 99.91% 98.86% 98.02%

Figure 15(a) shows that with the smaller cycle window (10 cycles), both DWT and ST

have the same accuracy (99.84%) and F1-Score (96.48%). For 20 cycles window, both methods

present the same accuracy (99.98%), but DWT shows slightly better F1-Score than ST (99.66%

vs. 99.48%). On the other hand, with 40 cycles, the ST method shows marginally better accuracy

than DWT (99.98% vs. 99.94%). In this case, ST presents a significantly better global F1-Score

than DWT (99.51% vs. 98.55%).
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Figure 15 – Macro Accuracy (ACC) and Macro F1-Score (FS) results for different experimental Scenarios
using Scattering Transform with Method B (ST) and Discrete Wavelet Transform (DWT) feature
extractors.

(a) Scenario 1 (SC1) Results: F1-Score (FS) and accu-
racy (ACC) with different number of cycles of the
time window surrounding the turn-on event.

(b) Scenario 2 (SC2) Results: F1-Score (FS) and ac-
curacy (ACC) with different number of cycles per
example after the turn-on event.

(c) Scenario 3 (SC3) Results: F1-Score (FS) and accu-
racy (ACC) Examples per Class.

(d) Scenario 4 (SC4) Results: F1-Score (FS) and ac-
curacy (ACC) with different sampling frequency
(Fs).

Source: Own authorship.

Similar to SC1 results, in scenario 2 (Figure 15(b)), DWT presents slightly better F1-

Scores and Accuracy than ST for five cycles: F1-Score 94.53% vs. 88.61% and Accuracy 99.75%

vs. 99.50%. For 10 cycles per sample: F1-Score 97.25% vs. 96.24% and Accuracy 99.89% vs.

99.83%. For the cases with 50 and 100 cycles per sample, ST outperforms DWT in both F1-Score

and Accuracy. F1-Score 98.14% vs. 97.58% and Accuracy 99.92% vs. 99.89% for 50 cycles,

and F1-Score 98.40% vs. 97.27% and Accuracy 99.92% vs. 99.88% for 100 cycles per sample.

Figure 15(c) shows that ST has better performance than DWT for all cases of Scenario

3. The macro F1-Score is 0.65% better with ten examples per class, 1.6% with 15 examples,

and 0.82% with 20 samples per class. The improvements in accuracy are smaller than the

improvements in F1-Score: 0.03% in 10 examples per class, 0.06% in 15 examples, and 0.03%

in 20 examples.
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ST presents better F1-Score and Accuracy than DWT for the 2 cases of Scenario 4, as

shown in Figure 15(d). This indicates that ST deals better with sub-sampling conditions than

DWT for COOLL dataset (considering Ensemble classifier). Figure 15(d) also shows that both

ST and DWT increase their performance metrics (F1-Score and Accuracy) when the sampling

frequency rises. From 99.35% to 99.67% and from 99.97% to 99.98% for ST (F1-Score and

Accuracy, respectively), and from 94.67% to 96.12% of F1-Score and from 99.76% to 99.83%

of Accuracy for DWT.

3.3 COMPARISONS WITH STATE-OF-THE-ART APPROACHES

Other state-of-the-art works presented feature extraction strategies applied to COOLL

dataset. Table 8 shows the comparison of the classification results metrics between those ap-

proaches and the proposed method. For all values of F1-Score and Accuracy in Table 8, the best

scenario for each method is considered.

Table 8 – Comparison between literature approaches and the proposed method.
Reference Method F1-Score [%] Accuracy [%]

(RENAUX et al., 2018) Traditional Wavelets - 92.00%
(MULINARI et al., 2019) Hybrid V-I Trajectory - 99.44%
(ANCELMO et al., 2019) Prony - 98.00%

Proposed Scattering Transform 99.51% 99.98%

As shown in Table 8, the proposed method presents, in terms of accuracy, an improve-

ment of 8.67% in relation to (RENAUX et al., 2018), 0.54% to (MULINARI et al., 2019), and

2.02% in relation to (ANCELMO et al., 2019).

3.4 CONCLUSIONS OF THIS CHAPTER

The classification results of NILM signal feature extraction and selection methods based

on Deep CNN depend on the amount of data available for training. We propose a classification

framework using a Scattering Transform-based feature extraction method applied to NILM. In

this framework, the weights of the convolutional network are not trained but are analytically

calculated using wavelets. We included variations in the dataset properties in the framework

to test the performance of our proposal against reductions in the amount of training data. We

vary the signal length, the number of examples per class, and sampling frequency. The main

contributions of this chapter are: (i) apply the Scattering transform to improve NILM state-of-the-
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art classification results; (ii) validate these improvements under dataset properties variations; (iii)

visual low-dimensional separability analysis of ST-based feature extraction techniques; and (iv)

proposal and evaluation of six different feature selectors based on ST applied to NILM signals.

In Section 3.2.3, we presented a reduced-order representation for the features extracted

from all examples of the COOLL dataset, both with the proposed method and with the baseline

method (traditional wavelet). These 2D representations, obtained with the t-SNE (MAATEN;

HINTON, 2008) method, showed that the intersection regions between appliances are smaller

in the proposed method than in the baseline for all tested feature selectors. This verification

indicates that the separability of the proposed method is better than the baseline for all tested se-

lectors. In addition, all the proposed feature selection methods showed similar visual separability

characteristics, which indicates robustness concerning the number of features chosen. Finally,

proposed ST-based feature selection methods separated in the 2D plane the appliances of the

same category (different brands, for example), which is desirable in the NILM classification.

We tested the six proposed feature selection methods with the five scenarios in the

table 5, using the structure of Figure 10. The average of all macro F1-Scores from each case and

scenario for each proposed feature selection method did not vary significantly depending on the

different proposed feature selection methods. This result corroborates the separability inspection

of Section 3.2.3. The results presented in Table 6 showed that the F1-Score of proposed feature

selectors surpasses the results of the wavelet baseline for all scenarios. Furthermore, the results

from Table 6 showed that the appliance turn-on event does not significantly interfere with the

classification results. This last verification is critical considering that many methods in the

literature have such dependence.

We perform detailed experiments with Method B, applied to five different scenarios and

several cases per scenario. From SC1, the proposed method outperformed the DWT baseline

for cases with more cycles per example (20 and 40 for SC1; 50 and 100 for SC2). The DWT

baseline and ST are architectures that use multi-resolution filter banks and, therefore, intrinsically

use downsampling. In our case, the ST has more subbands than the DWT, so there are more

downsampling operations for the ST. As a consequence of this, for examples with fewer cycles,

DWT outperforms ST. This trend reverses when the sampling window is larger. The experiments

with Scenario SC3 showed that the proposed method outperformed DWT when reducing the

number of examples per class for all evaluated cases. We also conclude, with SC4 results, that

Scattering Transform presented better classification metrics for downsampling conditions in
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the dataset. Finally, the proposed method resulted in better macro accuracy when compared to

state-of-the-art methods of feature extraction for NILM in the literature, as shown in Table 8.
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4 CLASSIFICATION WITH SCATTERING TRANSFORM FOR NON-INTRUSIVE

LOAD MONITORING

In Chapter 3, we presented a framework that investigated the application of ST as a

feature extractor for NILM with single appliances. The results were better than state-of-the-art

methods for the COOLL dataset. We showed that ST has better separation (in reduced order 2D

plane) than the traditional wavelet transforms for all proposed feature selection proposals. This

chapter extends the approach of chapter 3 to aggregated NILM signals. In this chapter, we are

interested in evaluating ST for the classification of aggregated loads, applying different signal

regions (steady-state, transitory, and both regions) to the feature extractor.

The results showed that the proposed ST-Based method is more robust in terms of signal

length, sampling frequency, and event location. Furthermore, the aggregated and single electrical

loads results showed the best generalization capability of the proposed method compared to

baselines.

4.1 PROPOSED CLASSIFICATION STRATEGY

We employ two different approaches and present the results and comparisons with

related works. The feature extraction, the training of the classifiers, and evaluation for the test

set are carried out with the same dataset in the first approach, which is the most conventional

analysis (RUANO et al., 2019). In the second approach, the feature extraction and the training

are conducted in one dataset, and the prediction is evaluated in a different dataset. In this second

case, we train models with single and three loads and evaluate the classification performance of

the model with two, three, and eight loads. Therefore, it is possible to analyze the generalization

of the classifier, as proposed in Lazzaretti et al. (2020). Figure 16 shows the two approaches,

detailed as follows.

4.1.1 LIT Syntetic Dataset

The first dataset used in this work is the LIT Synthetic (LIT-SYN) (RENAUX et al.,

2020). This dataset is a subset of the full LIT-Dataset, and it refers to acquisitions collected

from a bench, in which actual loads are connected, but the network loads’ switching instant is

controlled. This set contains 1 664 waveform acquisitions sampled at 15 360Hz, with precisely
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Figure 16 – Proposed Framework Experimental Setup
(a) With the same datasets.
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Source: Own authorship.

annotated (< 5ms) switching events of 26 classes (loads). The aggregated AC grid voltage and

current acquisitions are monitored for periods of up to 40 seconds. The devices used in this

subset are summarized in Table 9.

Table 9 – Appliances in LIT Synthetic Subset (LIT-SYN)
ID Device Rated Power (W)
1 Microwave Standby 4.5
2 LED Lamp 6
3 CRT Monitor 10
4 LED Panel 13
5 Fume Extractor 23
6 LED Monitor 26
7 Cell phone charger Asus 38
8 Soldering station 40
9 Cell phone charger Motorola -

10 Laptop Lenovo 70
11 Fan 80
12 Resistor 80
13 Laptop Vaio 90
14 Incandescent Lamp 100
15 Drill Speed. 1 165
16 Drill Speed. 2 350
17 Oil heater power 1 520
18 Oil heater power 2 750
19 Microwave On 950
20 Air heater Nilko 1 120
21 Hair dryer Eleganza - Speed 1 365
22 Hair dryer Eleganza - Speed 2 500
23 Hair dryer Super 4.0 - Speed 1 - Heater 1 660
24 Hair dryer Super 4.0 - Speed 1 - Heater 2 1 120
25 Hair dryer Parlux - Speed 1 - Heater 1 660
26 Hair dryer Parlux - Speed. 2 - Heater 1 885
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Figure 17 – Example of a waveform from the LIT-SYN-8 subset, highlighting the times when the turn-on and
turn-off events occurred.
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LIT-SYN contains different subsets with different multiple aggregated loads, starting

with isolated loads (LIT-SYN-1), two combined loads (LIT-SYN-2), three (LIT-SYN-3), and

eight (LIT-SYN-8). The authors of the dataset also make available a subset with all combinations,

defined as LIT-SYN-Total.

We show in figure 17 an example of the electric current curve of the LYT-SYN-8 subset,

with eight aggregated signals from different household appliances. The red segments in the

figure 17 indicate the moments at which the turn-on and turn-off events occurred, annotated in

the dataset. When the red segment is greater than zero, it is a turn-on event, and when it is less

than zero, it is a turn-off event. To facilitate the visualization, we indicate the name of the class

next to each segment. In the same figure, the blue curve represents the aggregated current.

4.1.2 PLAID Dataset

The second subset is the Plug-Load Appliance Identification Dataset (PLAID), proposed

in Medico et al. (2020). It is a high-frequency (30kHz) public dataset, and it has submetered data

for 17 electrical appliances, totaling 1 876 measurements, in 65 different homes. PLAID also has

a subset of aggregated data, composed of 1 314 waveforms of 13 electrical appliances (classes)

present in a test laboratory, which is used here. The aggregated measurements are obtained in

combinations of two or three electrical loads, with annotations of connection and disconnection
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Figure 18 – Example of a waveform from the PLAID dataset, highlighting the times when the turn-on and
turn-off events occurred.

0 5 10 15Time [s]
-4

-3

-2

-1

0

1

2

3

C
u
rr

e
n
t 

[A
] Fa

n

La
p
to

p

La
p
to

p

Fa
n

In
c
a
n
d

e
s
c
e
n
t

L
ig

h
t 

B
u
lb

In
c
a
n
d

e
s
c
e
n
t

L
ig

h
t 

B
u
lb

Source: Own authorship.

events for each load. Table 10 shows the set of aggregated electrical loads from the PLAID

dataset. We use the aggregate subset of measurements in this work.

Table 10 – Appliances in aggregated subset PLAID
ID Device Rated Power (W)
1 Compact Fluorescent Lamp 13
2 Fridge Not available
3 Fridge Defroster Not available
4 Air Conditioner 740
5 Laptop Not available
6 Vacuum Cleaner Not available
7 Fan 38
8 Incandescent Light Bulb 100
9 Blender Not available
10 Coffee Maker 975
11 Water Kettle 1500
12 Hair Iron Not available
13 Iron Solder 60

We show in figure 18 an example of the electric current curve of the PLAID dataset,

with three aggregated signals from different household appliances. The red segments in the

figure 18 indicate the moments at which the turn-on and turn-off events occurred, annotated in

the dataset. When the red segment is greater than zero, it is a turn-on event, and when it is less

than zero, it is a turn-off event. To facilitate the visualization, we indicate the name of the class

next to each segment. In the same figure, the blue curve represents the aggregated current.
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4.1.3 Preprocessing and Disaggregation

For the preprocessing and disaggregation, different scenarios are considered, as summa-

rized in Table 11. Each chosen scenario has one particular time region of the electrical NILM

signal, detailed as follows.

Table 11 – Experimental Scenarios Description.
Scenario 𝑛back 𝑛cycles Selected Region 𝑛feat

A 30 20 SS + T 118
B 30 20 T 59
C 30 20 SS 59
D 20 5 SS + T 86
E 20 5 T 43
F 20 10 SS + T 102
G 20 10 T 51
H 20 10 SS 51
I 40 40 SS + T 134
J 40 40 T 67
K 40 40 SS 67

The selected regions may be in Steady State (SS), Transient (T), or both states. Scenarios

A, D, F, and I consider SS and T regions by concatenating the energy coefficients from those

regions. Scenarios B, E, G, and J consider only transient instants. Scenarios C, H, and K consider

steady-state regions. Each scenario assesses a different number of cycles, 𝑛𝑏𝑎𝑐𝑘, before the

turn-on event, considered for the disaggregation procedure. With those scenarios, the authors

intend to verify the robustness of the proposed feature extraction strategy for variations applied

to the ST input signals. The region selected for each scenario has ncycles cycles of the aggregated

signal. The nfeat will be detailed in Subsection 4.1.4.

To exemplify, we present how we construct Scenario D and E. In Figure 19(a), the

first three red markers (M1-M3) indicate the turn-on events for a sample extracted from the

LIT-SYN-3 subset. The last three red markers (M4-M6) indicate the turn-off events. First, our

algorithm defines a point (B1), with 𝑛back = 20 cycles before M2. Then, we take a window

(𝐼back) from B1 to B2, with 𝑛cycles = 5 cycles. In the sequence, we compute two signal windows

after M2. The first is the transient current region (𝐼tran), and the other is the steady-state current

window (𝐼steady). The 𝐼tran is between the first zero-crossing after M2 and 𝑛cycles = 5 after its

zero-crossing, reaching S1. The 𝐼steady is located between 120 cycles after P1 (point S2) and S3,

that is located 𝑛cycles = 5 cycles after S2. The windows 𝐼steady and 𝐼tran are then used to compute

the disaggregated data, 𝐼𝑑tran and 𝐼𝑑steady. As in Mulinari et al. (2019), the transient and steady-state

disaggregated data are defined as 𝐼𝑑tran = 𝐼tran − 𝐼back and 𝐼𝑑steady = 𝐼steady − 𝐼back, respectively. For



83

Figure 19 – Example of the preprocessing and disaggregation.
(a) An original waveform of LIT-SYN3. The markers in red are the load turn-on or turn-off annotations

(both considered previously known in our case).
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(b) Detail 1 from Figure 19(a), showing the regions where 𝐼trans, 𝐼steady, and 𝐼back are located.

{

{

{Itran Isteady120 cycles

Iback

S2 S3M2 S1B1 B2

Time [s]
7 7.5 8 8.5 9

C
u
rr
en
t
[A
]

10

8

6

4

2

0

-2

-4

-6

-8

-10

Source: Own authorship.

Scenario D, we concatenate both signal windows 𝐼𝑑tran and 𝐼steady. For Scenario E, we directly

apply the feature extraction on 𝐼𝑑tran.

4.1.4 Feature Extraction

We use the Wavelet Scattering library, from Matlab® R2021a to implement the ST.

We consider different scenarios for the extraction and selection of features from the ST of the

electrical signal. The number of features (nfeats) for each scenario is the number of wavelets

filters (J) for the first layer of Scattering Transform (order 1). This number depends on the quality

factors of the first-order filter bank (Q) and the total number of samples for each input signal

(T). With Algorithm 1 we compute the approximated number of Scattering Coefficients (𝑛𝑘
𝑗 ),
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resulting of j-th wavelet filter convolution for the scenario 𝑘 ∈ {𝐴,𝐵, . . . ,𝐾}.

Algorithm 1 – Number of Scattering Coefficients
Input: 𝑄 and probability parameter (𝑃𝑃 ).
Output: 𝑛𝑘

𝑗

1: for each scenario 𝑘 ∈ {𝐴,𝐵, . . . ,𝐾} do
2: Compute T, the number of samples per examples.
3: Compute 𝑐𝑣, the gaussian critical value for the probability parameter 𝑃𝑃 , as detailed in Bonamente (2022).
4: Compute 𝜎𝑓

Φ = 𝑇
2×𝑐𝑣 , the frequency standard deviation for the scaling function.

5: Compute the frequency support for the scaling function (Φ𝑠𝑢𝑝𝑝𝑜𝑟𝑡), as discussed in Mallat (2012).
6: Compute the highest wavelet center frequency 𝜔Ψ = 2𝜋

1+2
1
𝑄

.

7: Compute the frequency standard deviation for the wavelets 𝜎𝑓
Ψ = 𝜔Ψ

1−2
− 1

𝑄

1+2
− 1

𝑄

1√
3
10 𝑙𝑛(10)

.

8: 𝐽 ← floor
{︁
𝑄
[︁
𝑙𝑜𝑔2

(︁
𝜎𝑓
Ψ

)︁
− 𝑙𝑜𝑔2

(︁
𝜎𝑓
Φ

)︁]︁}︁
.

9: Compute Ψ𝑓
𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡, the time support of the j-th first layer wavelet filter.

10: res← min
[︂
𝑙𝑜𝑔2

(︂
2𝜋

Ψ𝑓
𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡

)︂
,0

]︂
.

11: 𝑛𝑘
𝑗 ← round

[︀
𝑇
2res

]︀
.

12: return 𝑛𝑘
𝑗

13: end for

4.1.4.1 Feature calculation from Scattering Coefficients

We verified in chapter 3 that F1-Score does not vary significantly when using the

different proposed ST feature selection methods. Similar to when we performed the detailed

experiments in Subsection 3.2.4.1, here we also use Method B (Energies of the first-order

Scattering Coefficients, from Eq. 11) for selecting the features. We apply this method to each

scenario presented in Table 11.

Finally, it is noteworthy that both rigid translation and time-warping variabilities in

the NILM signals need to be mitigated to represent the signals. The invariance to translation is

desirable to NILM signals as the event detection is not always accurate or available. Both Deep

CNN and ST have these properties, but in the case of ST: (i) it is possible to optimize filters and

pooling non-linearities; (ii) the multiple layers are analytically determined; and (iii) there is no

training stage for the filters coefficients (BRUNA; MALLAT, 2012).

4.1.5 Classification

The electrical appliance classification task follows the steps described in Figure 16a

and 16b. The training and test sets are separated from the feature matrix and the vector of labels.

80% of the instances were used to train the classifier and select parameters using five-fold
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cross-validation from the complete matrix. For testing, the remaining 20% were evaluated. It is

noteworthy that all the features are normalized in [−1,1].

We train five different classification methods, typically used in NILM approaches (LAZ-

ZARETTI et al., 2020): K-Nearest Neighbors (k-NN), Ensemble Method (ENS), Support Vector

Machines (SVMs), Decision Trees (DTs), and Linear Discriminant Analysis (LDA). We use

Matlab® to implement all these classifiers.

4.2 RESULTS

Initially, in Subsection 4.2.1, we perform the two approaches presented in Figure 16. In

the first approach, the experiments consider the same subsets of LIT-SYN for training and testing.

Subsequently, as shown in Figure 16b, the experiments are conducted varying the number of

loads for training and testing (different subsets), aiming at evaluating different scenarios and

generalizations for the model. Since the PLAID dataset does not contain subsets with a different

number of aggregated loads, in Subsection 4.2.2, we present only the results for the approach

presented in Figure 16a. For all the experiments in Subsection 4.2.1 and 4.2.2, we include other

two baseline methods for comparisons: (i) V-I trajectory (MULINARI et al., 2019) and (ii)

Discrete Wavelet Transform (DWT) (CHANG et al., 2014). Those methods are selected since

they are part of the state-of-the-art results presented in Lazzaretti et al. (2020) and both extract

transient and steady-state features, allowing direct comparisons for all experimental scenarios

described in Table 11. In Section 4.3, a discussion and a comparison with deep learning-based

and state-of-the-art results for LIT-SYN and PLAID is shown to present further the positive

aspects of the ST feature extraction and classification.

4.2.1 LIT-SYN Dataset

4.2.1.1 Results using the same subset for training and testing

We performed the strategy proposed in Figure 16-a, training the five classification

models for each scenario of Table 11. We show in Figure 20 the comparison of the macro F1-

Scores and Accuracies among the proposed method and the baseline methods. The results were

obtained as follows: (i) for each scenario and each LIT-SYN subset, we obtained the average of

the five-fold macro F1-Score and Accuracy for five classification models; (ii) for each LIT-SYN
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Figure 20 – Average of the best macro F1-Scores and Accuracies for each classifier.
(a) Average of the best macro F1-Scores for each Classifier.
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subset, we choose the best scenario results for each classifier; and (iii) we performed the averages

of the best macro F1-Scores and Accuracies among the LIT-SYN subsets.

From Figure 20, we can conclude that the proposed method presented better perfor-

mances than baseline methods for ENS, k-NN, and DTs. Additionally, ST reaches the two highest

macro F1-Score and Accuracy averages, with 98.74% (F1-Score) and 99.87% (Accuracy) for

ENS, and 98.93% (F1-Score) and 99.91% (Accuracy) for k-NN.

Based on the results for the best classifier (ENS), for each subset of the LIT dataset,

and considering all the scenarios of Table 11, we calculated the average macro F1-Score and

Accuracy. The results are shown in Figure 21.

To verify the influence of the scenarios presented in Table 11, Figure 22(b) shows macro

accuracies and F1-Scores for the LIT-SYN-8.

4.2.1.2 Results using different subsets for training and testing

As presented in Lazzaretti et al. (2020), the actual scenario of data collection in NILM

systems may involve the acquisition of single or multiple loads, depending on the availability and

difficulty in acquiring samples. Hence, to verify in terms of classification accuracy how much
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Figure 21 – Average of best macro F1-Scores and Accuracies for each LIT subset. Observe that proposed
method becomes better than baselines as the number of aggregated loads increases. Each bar
represents the average of all scenarios for the correspondent LIT-SYN subset.
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(b) Average of the best macro Accuracies for each Subset.

Source: Own authorship.

Figure 22 – Best accuracies and F1-Scores for each scenario with subset LIT-SYN-8.
(a) F1-Scores for each scenario with ENS Classifier.
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the typical signature of an electric load is maintained as multiple loads are added, we present the

generalization analysis in this Subsection.

We first extract features with ST considering the best accuracy and F1-Score perfor-

mance previously obtained with the same subsets for training and testing. For comparison

purposes, classification models are also trained using the V-I and DWT methods for the same

training and test subsets, with the best classifiers for each case. The average macro accuracy

obtained with different subsets for training and test is shown in Table 12.

Table 12 – Macro Accuracy for different subsets of LIT-SYN

Training Dataset Testing Dataset Accuracy [%]
ST DWT V-I

LIT-SYN-1 LIT-SYN-2 86.50 92.10 89.55
LIT-SYN-1 LIT-SYN-3 73.60 62.14 67.98
LIT-SYN-1 LIT-SYN-8 58.68 41.34 54.72
LIT-SYN-T LIT-SYN-1 99.88 99.16 99.76
LIT-SYN-T LIT-SYN-2 99.63 99.41 99.52
LIT-SYN-T LIT-SYN-3 99.56 99.02 98.42
LIT-SYN-T LIT-SYN-8 99.42 98.90 97.75

4.2.2 PLAID Dataset

For the PLAID dataset, experiments were performed with scenarios A-H from Table 11.

The I-K were not applied because the turn-on events in that dataset are located less than

𝑛𝑏𝑎𝑐𝑘 = 40 cycles from the reference. The experiments for PLAID were conducted according

to the diagram in Figure 16a. The best results for accuracy and F1-Score for each classifier are

shown in Figure 23.
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Figure 23 – Average of best macro F1-Scores and Accuracies for each classifier for PLAID dataset.
(a) Average of the best macro F1-Scores for each classifier.
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(b) Average of the best macro Accuracies for each classifier.
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4.3 DISCUSSION AND COMPARISON WITH RELATED WORKS

In this Section, we discuss the results presented in Section 4.2 sequentially, making

comparisons with baseline literature methods, as suggested in Saura et al. (2021).

As one can observe in Figure 21, the proposed method has similar macro F1-Score and

Accuracy (but slightly inferior to DWT and Hybrid VI) for subsets with a smaller number of

aggregated loads (up to 3). For the cases with more aggregated loads (LIT-SYN-8 and LIT-SYN-

total), the ST overcomes the Accuracy of DWT and V-I. The macro F1-Score also surpasses

baseline F1-Scores for LIT-SYN-8. These results are significant since, in real-world NILM

applications, aggregated scenarios are more frequent.

As one can observe in Figure 22(b), scenarios E and G present lower accuracies for

the ST method, indicating that a lower number of 𝑛cycles for transient regions may decrease

the performance. However, this is not a relevant variation (< 2% for accuracy), and the ST

presents higher overall results for most cases, both for accuracy and F1-Score. This reinforces the

robustness of the ST for different waveform parameters, such as signal length and event location,

making the ST more tolerant to the reference point given by a previous detection method.

When training and testing with different subsets, the results obtained in Table 12 show

superior results for the proposed method compared to the baselines, for the LIT-SYN-3 and



90

LIT-SYN-8 subsets – 73.60% and 58.68%, respectively. Using LIT-SYN-T as a training subset

classifier, the ST presented better accuracy than baselines in all test subsets (LIT-SYN-1, LIT-

SYN-2, LIT-SYN-3, and LIT-SYN-8). It stands out the average accuracy of 99.88% achieved

when the subset LIT-SYN-1 was used as the test subset. As one can observe, the ST presents

better classification results for testing cases with different datasets for single and multiple loads

available during training. In other words, the proposed feature extraction method has a more

powerful generalization capability than baselines.

The results with PLAID dataset (Figure 23), demonstrate that ST presented both accu-

racy and F1-Score higher than the baselines for the ENS and the LDA classifiers. For ENS, the

proposed method reached an accuracy of 99.75% (against 98.80% and 99.64%) and F1-Score

of 98.12% (against 96.38% and 97.15%), for scenario F. For the LDA classifier, ST reached

the best metrics among the baselines methods with scenario B (Accuracy= 98.13% and F1-

Score= 85.95%). The accuracy of the ST surpassed V-I method for DT classifiers with scenario

G and k-NN with scenario F. Also, the accuracy of the proposed method exceeded the accuracy

of the DWT method for the SVM classifier using scenario A. The results in Figure 23 show that:

(i) ST has both F1-Score and Accuracy superior or in the same range as the baselines for all

applied classifiers; (ii) ST has the best-of-all results for the PLAID dataset, with ENS classifier

and scenario F.

Finally, the classification results obtained with the proposed method are compared with

the state-of-the-art results on NILM classification in Table 13.

Table 13 – Comparison with State-of-the-art Approaches.
Method Dataset Accuracy (%) F1-Score (%)

Proposed Method PLAID 99.75 98.12
Houidi et al. (2020) PLAID 97.70 97.50
Baets et al. (2018) PLAID - 77.60
Proposed Method LIT 99.87 97.42

Lazzaretti et al. (2020) LIT 99.80 -
Mukaroh et al. (2020) LIT 92.0 -

With PLAID dataset, the proposed method presented an F1-Score 0.64% greater

than Houidi et al. (2020) and 26.44% greater than Baets et al. (2018). The accuracy of the

proposed method with the PLAID dataset was 2.10% greater than Houidi et al. (2020). With the

LIT-SYN dataset, our approach showed accuracy approximately equivalent to Lazzaretti et al.

(2020) and 8.48% greater than Mukaroh et al. (2020).

Note that the results of Houidi et al. (2020) were obtained from a two-channel complex

CNN, whose signal length (input of the time-frequency transform) was determined empirically
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since the authors faced a loss of relevant information when using the time-frequency representa-

tion with the reassignment process. In contrast to Houidi et al. (2020), our proposed method:

(i) resulted in better classification results; (ii) had no significant loss of information, since the

signal energy is almost entirely concentrated in the first-order coefficients of the ST (BRUNA;

MALLAT, 2012); (iii) presented a good localization both in time and frequency, obtained from

the wavelet-based structure, that contributed to better results; and (iv) comprised a feature extrac-

tion and selection structure analytically determined, and there are no learned coefficients in the

convolutional network.

ST reaches significantly better F1-Score and Accuracy when compared with Baets

et al. (2018). In Baets et al. (2018), the authors extracted features from weighted pixelated

V-I images of NILM signals. This extraction process presented poor F1-Score results for high

energy consumption appliances like washing machines, fans, fridges, and air-conditioners. Our

𝐹1−𝑆𝑐𝑜𝑟𝑒 = 0.9812 on PLAID overcame Baets et al. (2018), and this shows that our proposed

feature selection method (Eq. 11) provides greater discriminability for the classification of high

energy consumption appliances.

The results of the ST with the LIT-SYN dataset reached F1-Scores and Accuracies close

to Lazzaretti et al. (2020). Still, the strategy proposed in Lazzaretti et al. (2020), different from

the one proposed for ST, is based on a complex multi-agent approach, which raises the overall

complexity of the classification process.

The proposal of Mukaroh et al. (2020) dealt with the load classification task as a

denoising problem, and the authors proposed a Generative Adversarial Network to generate

the noise distribution of background to clear the target load. This proposed structure is quite

complex and requires two learning processes: one for the GAN and another for the CNN applied

to classification. We reach an accuracy 8.48% greater than Mukaroh et al. (2020) with a more

straightforward approach.

4.4 CONCLUSIONS OF THIS CHAPTER

NILM represents a set of essential tools for managing the consumption and production

of electrical energy. Strategies for classifying and disaggregating NILM electrical signals are

necessary to build such tools. The proposed ST approach reached better results than state-of-

the-art CNN-based techniques with PLAID and LIT-SYN datasets with a convolutional network

not dependent on training the feature extraction layers. The results showed that the accuracy of
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ST framework is more stable in terms of signal length, sampling frequency, and event location.

Also, ST presented better generalization capability in classification since the proposed method

overcame the baselines using single and multiple loads as the training set.

The main contributions presented in this chapter are:

• A NILM classification framework using a convolutional-based network with the Scattering

Transform, without the need to learn filter coefficients to extract features, reducing the

amount of data required in the training process;

• An approach with better classification performance compared to the state-of-the-art meth-

ods for different publicly available datasets (LIT and PLAID);

• A time-frequency feature extraction technique that directly uses one-dimensional data as

input, reducing the overall complexity and increasing the class discriminability.
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5 NOVEL DEEP LEARNING ARCHITECTURE BASED ON SCATTERING TRANS-

FORM

We presented in Chapters 3 and 4 approaches based on ST to extract features and

classify NILM signals. In Chapter 3, we evaluated the performance of ST under non-ideal dataset

conditions: sub-sampling, reduced number of examples, and reduced number of measurements.

We explained ST in section 2.2, as a network similar to CNN (AGUIAR et al., 2021b),

sharing its advantages (high discriminability), but with the following advantages: (i) there is

no need for weight training; (ii) the ST coefficients have physical meaning (location in time

and frequency), which is particularly interesting in the NILM problem; (iii) as a consequence

of the coefficients not being trained, ST needs less training data than CNN to reach equivalent

evaluation performance.

The mentioned advantages of DCN methods (highly discriminative features and no

need for pre-knowledge about the appliances) combined with the ST, encouraged us to propose a

framework for extracting features from high-frequency NILM signals, using a new architecture

with the ST replacing the CNN in a multi-task application, called ST-NILM. Hence, the main

contributions of this chapter are:

• We propose a single framework that integrates detection and classification of aggregated

loads;

• Our proposal uses a shared network that does not need a training step, thus requiring less

data and no need for data augmentation (DA) approaches;

• Unlike other state-of-the-art approaches, our proposal utilizes a multi-label, non-trainable

feature-extraction framework to disaggregate and classify multiple aggregated loads;

• The architecture of the proposed convolutional network is determined analytically through

the selection of the appropriate ST parameters for NILM;

• Our proposal requires less computational cost than the state-of-the-art methods, with

superior results for most cases;

• An ablation study on ST-NILM parameters that evaluates the impact of varying the

Scattering transform parameters on the classification and detection of electrical loads;
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• An embedded version of our proposed framework was also developed for demonstrating

its feasibility for a real-time application.

The remaining of this chapter is organized as follows. We introduce ST-NILM in

Section 5.1, highlighting all the steps that compose it. We show the preprocessing process in

Section 5.1.1, and present the scattering network (and its parameterization) in Section 5.1.2. We

detail the dataset used in Section 5.2. The results obtained are shows in Section 5.3, including an

ablation study on the ST-NILM parameters, and the embedded implementation of our proposed

framework. Finally, general conclusions and future works are presented in Section 5.4.

DeepDFML-NILM method (NOLASCO et al., 2022) used a DCN for detection, feature

extraction, and multi-label classification of high-frequency NILM signals for the publicly avail-

able LIT-Dataset. The detection results were above 90% for most cases, whilst the classification

accuracies were comparable with other state-of-the-art works (around 97%). However, due to

the high number of parameters, the proposed method requires data augmentation strategies, in

addition to significantly increasing the computational complexity.

Despite the relatively good results presented so far, some of the main limitations with

the architectures based on DCN applied to NILM are: (i) The proposed architectures generally do

not integrate detection, disaggregation, and classification, i.e., the network performs only one or

two of these tasks – with the exception of DeepDFML (NOLASCO et al., 2022); (ii) As they use

deep learning techniques, these solutions demand a large amount of data for training, since the

computational effort grows with the increase in the number of coefficients (weights) of learned

convolutional filters. The ST, on the other hand, contributes to reduce the computational effort,

by replacing the convolutional weights by analytical wavelet coefficients. Hence, this chapter

proposes an original and unified architecture for high-frequency NILM signals, combining the

advantages of ST with DCN approaches for signal detection (identification) and classification.

5.1 THE PROPOSED ST-NILM

Since our approach is based on the DeepDFML (NOLASCO et al., 2022), we first

present in this Section a brief overview of that architecture. The DeepDFML was inspired by

YOLO (REDMON; FARHADI, 2017), and it detects the instant in time when each electrical

load is turned on or off, and predicts the combination of loads present in the input signal. The

architecture of DeepDFML has a shared network with five layers and several learned coefficients.
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Figure 24 – (a) Proposed ST-NILM and (b) DeepDFML architectures: The proposed ST-NILM architecture
is inspired by DeepDFML, but by replacing the Shared Convolutional Network of Figure 24(b)
by the Scattering Network of Figure 24(b) We also adapt the fully connected network for event
type classification to obtain better results.
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The size of the convolutional filters, the number of layers, the pool size, and all other parameters

were empirically determined.

We present DeepDFML in Figure 24(b). The DeepDFML method has a Shared Convo-

lutional Network after the preprocessing stage and three sub-networks (one for each task) at the

output. Two sub-networks deal with classification tasks (event type and load identification). The

event type sub-network performs the binary classification of the turn-on or turn-off event of an

appliance. The load identification sub-network performs the multi-label binary classification of

the aggregated appliances in the input sample. The event sample detection sub-network deals

with a regression task, and its output is a real number from 0 to 1 that informs the event’s position

inside a grid time interval.

Figure 24(a) shows the proposed ST-NILM architecture. In the ST-NILM, we replace

the shared deep convolutional network of the DeepDFML with the Scattering Network. The

Scattering Network is a network in which the filters are fixed, not learned, unlike CNN. Figure 24

shows the proposed ST-NILM architecture. The most relevant differences between our proposal

(ST-NILM) and DeepDFML-NILM are (i) ST-NILM does not have trained weights on the shared

convolutional network (named Scattering Network in Figure 24(a)); (ii) The determination of the

Scattering Network weights is analytical (determined by wavelets) and, therefore, it is possible

to calculate them a priori; We perform load detection through the Event Type Classification

network. This network detects whether the load has been turned on or off within a grid interval

(less than 166ms). We consider this detection resolution sufficient, so we do not use DeepDFML’s

Event Sample Detection network on ST-NILM.
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Figure 25 – Preprocessing Strategy Applied to ST-NILM and proposed in (NOLASCO et al., 2022).
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We detail all the parts that compose the proposed architecture as follows1.

5.1.1 Preprocessing

A fim de manter a comparabilidade dos resultados, we use the same preprocessing

strategy used in DeepDFML-NILM applied also to ST-NILM. To illustrate the preprocessing

strategy proposed in (NOLASCO et al., 2022) and used for ST-NILM, we present the block

diagram of Figure 25.

In Figure 25, the green blocks represent the original information contained in the

LIT-SYN subset, and the red blocks represent the preprocessing stage. The original LIT-SYN

subset signals are cut into smaller segments of approximately 15600 samples (this is around 50

cycles of 60Hz plus two unmapped margins). The unmapped regions are a result of the labeling

strategy proposed in Nolasco et al. (2022), whose effectiveness worsened in samples close to the

beginning and end edges of the 50 cycles. The cutoff points of the original signals come from

the electrical loads connection annotations contained in the original subset. Each output segment

of the cutting block must have at least one turn-on event. The 50-cycles segments go through a

grid separation block (Figure 25), which divides them into five regions of 10 cycles, each called

grids. From the labels and events annotations originally contained in the dataset, we determine

multi-task labels for each of the grids as follows:

• Event type label: 3-bit binary one-hot-encoding that determines whether a load has turned

on or off in the range of a grid;

• Multi-label Classification: Binary one-hot-encoding that indicates which loads are con-

nected in the range of a grid.
1 All the codes for ST-NILM are publicly available at https://github.com/LucasNolasco/ST-NILM.

https://github.com/LucasNolasco/ST-NILM
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5.1.2 Scattering Network

The proposed method replaces the shared Deep Convolutional Neural Network applied

in (NOLASCO et al., 2022) with the Scattering Network, which has no learned coefficients. The

path of the input signal in the Scattering Network block follows (i) Scattering Transform; and (ii)

Windowed Average; (iii) Flatten. We will address each of these steps as follows.

5.1.2.1 Scattering Transform Stage

Let a time-domain electrical current signal. Guth et al. (2021) showed that phase

collapse improves the classification performance of convolutional networks in which there are

time-shifting invariant classes (one-dimensional case). Phase collapse is the phase information

elimination performed by some non-linearity. The ST performs phase collapse explicitly through

the modulus applied to the convolution of the time-domain signal the wavelet (GUTH et al.,

2021). Real-valued CNNs, for example, perform phase collapse implicitly (GUTH et al., 2021).

Now we will define the main parameters of the Scattering transform: the bandwidth and

central frequencies of the filters, the number of wavelets per octave 𝑄, the maximum scale (J)

and the order (𝑚) (or the number of filter banks):

• Choosing the number of wavelets per octave 𝑄: The more wavelets per octave, the greater

the number of ST coefficients, and the more selective the filters. Studies in the literature

using ST chose Q values between 8 and 12. We chose 𝑄 = 10 for the ST-NILM;

• Choosing maximum scale J: We choose 𝐽 based on the nature of the harmonic content

of electrical signals. Consider a discrete signal 𝑥[𝑛], with sampling frequency 𝑓𝑠 and a

total number of samples equal to 𝑇 . So, the highest representable frequency, by Nyquist’s

theorem, is 𝑓𝑠
2

. Because of that, the maximum frequency scale (𝑓𝑚𝑎𝑥) analyzed must

represent a frequency 2𝐽 , lower than half the sampling frequency. We choose 𝐽 = 10, so

that the maximum frequency scale is 𝑓𝑚𝑎𝑥 = 210 = 1024𝐻𝑧. This choice guarantees that

harmonic currents (multiples of the fundamental frequency of 60Hz) of orders lower than

17 are represented by the ST. The authors in (RAMíREZ-RAMíREZ et al., 2019) showed

that the harmonic distortion of the combination of residential loads for frequencies greater

than 1020Hz (order 17) represents less than 4% of the distortion found, for example, at

180Hz (order 3). With that in mind, we consider the choice of 𝐽 = 10, representing a
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maximum frequency scale of 1024Hz, reasonable for our application in electrical signals;

• Choosing order 𝑚: Literature shows that the Scattering Coefficients (S) with two layers

already represent up to 98% of the energy of the input signal, and all second-order coeffi-

cients together represent only 20% of the first-order coefficients’ total energy (BRUNA;

MALLAT, 2011). In addition, equivalent electrical appliances classification results were

presented in (AGUIAR et al., 2023) for 𝑚 = 1 and 𝑚 = 2. We chose 𝑚 = 1, considering

that the ST with 𝑚 = 1 has fewer coefficients than the ST with 𝑚 = 2, resulting in less

computational effort.

5.1.2.2 Windowed Average

We use a windowed average to select the features shared by the two output networks.

The first-order coefficients of the ST, in each path, are signals located in time, given by:

𝑆𝑘
𝑖 = |𝑥𝑖 *Ψ1,𝑘| * Φ𝐽 . (26)

Figure 26 shows the division for windowed average. Let 𝐾 be the number of samples

of 𝑆𝑘
𝑖 . We divide the range 𝑛 ∈ [0,𝑁 ] into five integer parts (𝑔𝑘𝑖,1 . . . 𝑔

𝑘
𝑖,5), centered on the same

range. The remaining samples from this entire division were at the ends of the range, and we

named them unmapped region (represented with 𝑙𝑘𝑖 ,𝑟
𝑘
𝑖 ). The idea is to combine the result of the

ST using the same grid division applied by DeepDFML when encoding the model outputs. We

maintained the unmmaped regions representation into the grids division for windowed average to

maintain compatibility of temporal location with annotations made with the same preprocessing

of Nolasco et al. (2022).

Figure 26 – Grids division for windowed average.

} }} } } } }
Source: Own authorship

Next, the average of each 𝑙𝑘𝑖 , 𝑟𝑘𝑖 , and 𝑔𝑘𝑖,𝑛 segments are calculated. We define 𝑓𝑘
𝑛 = ¯𝑔𝑘𝑖,𝑛,

𝑓𝑘
𝑖,𝑙 = 𝑙𝑘𝑖 , and 𝑓𝑘

𝑖,𝑟 = 𝑟𝑘𝑖 , therefore the selected features for each wavelet are:

𝑆𝑓𝑘
𝑖 =

[︁
𝑓𝑘
𝑖,𝑙 𝑓𝑘

𝑖,1 · · · 𝑓𝑘
𝑖,5 𝑓𝑘

𝑖,𝑟

]︁
. (27)
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5.1.2.3 Event type Classification and Load Classification Networks

The Event Type classification network determines what type of event is found within a

grid’s time interval using one-hot encoding on a multi-class classification task. The input signal

for this task is derived from the differences between consecutive grid interval averages. We

define the differences for the 𝑘-th wavelet filter and the i-th sample as:

𝐷𝑘
𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑𝑘𝑖,0

𝑑𝑘𝑖,1

𝑑𝑘𝑖,2

𝑑𝑘𝑖,3

𝑑𝑘𝑖,4

𝑑𝑘𝑖,5

𝑑𝑘𝑖,6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓𝑘
𝑖,1 − 𝑓𝑘

𝑖,𝑙

𝑓𝑘
𝑖,2 − 𝑓𝑘

𝑖,𝑙

𝑓𝑘
𝑖,3 − 𝑓𝑘

𝑖,1

𝑓𝑘
𝑖,4 − 𝑓𝑘

𝑖,2

𝑓𝑘
𝑖,5 − 𝑓𝑘

𝑖,3

𝑓𝑘
𝑖,𝑟 − 𝑓𝑘

𝑖,4

𝑓𝑘
𝑖,𝑟 − 𝑓𝑘

𝑖,5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

For the event type classification the feature set is formed by concatenating the coef-

ficients 𝐷𝑘
𝑖 , 𝑘 = [0 . . . 𝐾] such that 𝐾 is the total number of wavelets with order less than or

equal to one. A Flatten layer is applied to 𝐷𝑘
𝑖 in order to obtain a 1D vector with all the selected

features.

The output for this sub-task has dimension (𝑛𝑔𝑟𝑖𝑑𝑠 × 3), where 𝑛𝑔𝑟𝑖𝑑𝑠 is the number of

grids, and 3 is the number of possibilities for classifying events: 1 for turn-on, 2 for turn-off and

0 for a false event. This sub-task network uses a sigmoid layer as an activation function and the

categorical cross-entropy as a loss function. This cost function, in turn, takes the following form:

𝐶𝐶𝐸 = −
𝑀∑︁
𝑖=1

𝑝(𝑥𝑖) · log 𝑞(𝑥𝑖), (29)

in which 𝑀 is the total number of examples, 𝑝(𝑥𝑖) is the expected probability of 𝑥𝑖 to be from

the class being analyzed, and 𝑞(𝑥𝑖) is the probability found by the model.

Also, there is a Load Classification network, which serves to determine which loads are

present in the sample to be classified. This network represents a multi-label classification task,

which allows the identification of multiple loads simultaneously. The input signal of this network

is the set of concatenated coefficients 𝑆𝑓𝑘
𝑖 , given by applying a Flatten layer to 𝑆𝑓𝑘

𝑖 in order

to obtain a 1D vector with all the selected features. The output has dimension (𝑛𝑔𝑟𝑖𝑑 × 𝑛𝑙𝑜𝑎𝑑𝑠),

where 𝑛𝑔𝑟𝑖𝑑𝑠 is the number of grids obtained from the windowed average, and 𝑛𝑙𝑜𝑎𝑑𝑠 = 26 is the

number of electrical appliances in the LIT-SYN dataset. Since a multi-label classification was
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implemented, sigmoid was chosen as the activation function using the binary cross-entropy as a

loss function. This cost function takes the following form:

𝐵𝐶𝐸 = − 1

𝑀

𝑀∑︁
𝑖=1

𝑝(𝑥𝑖) log 𝑞(𝑥𝑖) + (1− 𝑝(𝑥𝑖)) log(1− 𝑞(𝑥𝑖)). (30)

It is worth noting that this sub-task did not require weighting to improve the classification

performance.

Subsections 5.3.1 and 5.3.2 provide a more detailed explanation of the training and

evaluation processes.

5.2 DATASET

For the experiments, we use LIT-SYN dataset, previously presented in subsection 4.1.1,

for the following reasons: (i) The subset contains annotated samples of up to eight aggregate

loads; (ii) the Natural subset was not available by the time this work was done; (iii) the Simulated

subset does not contain real-world data; (iv) the Synthetic subset contains real-world data, from

real-world appliances, with precise annotations.

5.3 RESULTS

This Section presents the results obtained with ST-NILM, comparing them with

DeepDFML and related works. In addition, we present the procedures adopted for the ex-

periments, and a discussion of the results obtained.

5.3.1 Experiments Setup

The dataset was divided into training and test sets, with a holdout test set containing

10% of the data. For training, with 90% of the entire dataset, we used a 10-fold cross-validation

procedure. The model was trained for each fold considering a validation subset with 10% of the

training subset size. The best model was chosen considering the average between the 𝐹1 scores

for binary classification on the validation subsets for each fold.

Three detection metrics were used, based on (NOLASCO et al., 2022), as follows:

i. the 𝑃𝐶𝑜𝑛 = 𝐴𝑜𝑛

𝑁𝑜𝑛
(Percentage of Correction of an ON event for a given method), such that

𝐴𝑜𝑛 is the number of correct ON detections and 𝑁𝑜𝑛 is the total number of turning on



101

events;

ii. the 𝑃𝐶𝑜𝑓𝑓 =
𝐴𝑜𝑓𝑓

𝑁𝑜𝑓𝑓
(Percentage of Correction Detection of an OFF event for a given

method), such that 𝐴𝑜𝑓𝑓 is the number of correct OFF detections and 𝑁𝑜𝑓𝑓 is the total

number of turning off events.

iii. the 𝑃𝐶𝑎𝑣 =
𝑃𝐶𝑜𝑛+𝑃𝐶𝑜𝑓𝑓

2
(The arithmetic mean of 𝑃𝐶𝑜𝑛 and 𝑃𝐶𝑜𝑓𝑓 ), which indicates the

average detection performance.

For classification performance evaluation, we use the F1− Score = F1− Scoremacro

metric, given by Equation 24.

5.3.2 Results using a reduced LIT-SYN dataset

We present both detection and classification metrics considering reduced subsets for

the training step. We perform the analyzes on reduced datasets for the following reasons: (i)

In real-world cases of disaggregation, the amount of data can be limited, so an analysis of the

performance of the NILM techniques under these conditions is necessary; (ii) To the best of our

knowledge, related works do not address the effect of reducing the number of examples on the

performance of NILM strategies; (iii) Methods with better performance with reduced datasets

tend to be more easily implemented in real-time.

Table 14 shows the detection metrics for the reduced subset scenarios for training, and

without data augmentation (DA). The detection metrics are comparable between ST-NILM and

DeepDFML for large training sets (100% and 75%). For reduced training sets (50% and 25%),

ST-NILM outperforms DeepDFML on all calculated detection metrics. We also inserted in

Table 14 the metrics obtained with DeepDFML with data augmentation. ST-NILM, even without

data augmentation, obtained detection results equivalent to DeepDFML with data augmentation

(maximum difference in the 𝑃𝐶 metric of 4.8%).

Table 14 – Detection results for reduced training subsets.

Percentage 𝑃𝐶𝑜𝑛(%) 𝑃𝐶𝑜𝑓𝑓 (%) 𝑃𝐶𝑎𝑣(%)

ST-NILM DeepDFML ST-NILM DeepDFML ST-NILM DeepDFML
with DAwithout DA with DAwithout DA with DAwithout DA

100% 97.84% 93.50% 95.10% 91.04% 96.50% 95.90% 94.44% 95.00% 95.50%
75% 95.68% 90.90% 83.50% 84.20% 90.80% 81.80% 89.94% 90.85% 82.70%
50% 91.13% 83.50% 64.10% 82.31% 80.20% 64.10% 86.72% 81.85% 64.10%
25% 72.66% 60.20% 51.40% 82.08% 73.30% 47.40% 77.37% 66.75% 49.30%
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Figure 27 shows the classification results obtained for reduced training datasets, com-

paring ST-NILM, DeepDFML (NOLASCO et al., 2022), in addition to two baselines using

STFT (SEJDIC et al., 2009) and Mel-Spectrogram (DAVIS; MERMELSTEIN, 1980) instead

of ST as feature extractors. Notice that the classification metrics are better for ST-NILM in all

non-data-augmented scenarios with reduced training dataset. For comparison purposes, we also

insert in Figure 27 the FScore-Macro obtained with DeepDFML with data augmentation. The

classification result obtained with ST-NILM without data augmentation is equivalent or higher

to that obtained by DeepDFML with data augmentation for the scenarios with more training

examples (maximum difference of 2%) and lower (difference of 14.58%) for the scenario with

25% of training data. The detection performance using the spectral extractors STFT (SEJDIC et

al., 2009) and Mel-Spectrogram (DAVIS; MERMELSTEIN, 1980) was low (reached a maximum

of 𝑃𝐶𝑎𝑣 = 49%, similar to the values found by (LAZZARETTI et al., 2020)) and for this reason,

we chose not to include them as detection performance baselines in the Tables 14 and 15.

Figure 27 – Classification results: F1-Score results for reduced training subset scenarios.
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5.3.3 Comparison with Related Works

The most similar architecture to ST-NILM is DeepDFML (NOLASCO et al., 2022)

and, therefore it was used as the primary baseline for comparing results. This Section also

compares the results obtained with other related works. The best results achieved by DeepDFML

considered a data augmentation strategy to expand the training set. This strategy increased the

overall complexity of the model. On the other hand, our proposed method, ST-NILM, does

not need data augmentation. We present in Table 15 the detection results comparing ST-NILM

with DeepDFML in all subsets of the LIT-SYN dataset, also considering scenarios with and

without data augmentation. The results of Table 15 show that: (i) The best ST-NILM results
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are achieved without data augmentation; (ii) ST-NILM detection results are more affected by

using data augmentation than DeepDFML; (iii) ST-NILM without data augmentation is better

than DeepDFML without data augmentation, i.e., 𝑃𝐶𝑎𝑣 is higher, for tripe loads (LIT-SYN-3);

(iii) Except for LIT-SYN-2, the metric 𝑃𝐶𝑜𝑛 obtained by ST-NILM without data augmentation

outperforms DeepDFML with data augmentation for all other subsets. (iv) Notwithstanding,

ST-NILM without data augmentation surpassed DeepDFLM and correctly detected all events

for LIT-SYN-1. For LIT-SYN-2 and LIT-SYN-3 the detection performances of ST-NILM and

DeepDFLM were equivalent (maximum variation of 5.3%). For LIT-SYN-8 (the case with more

aggregated loads), ST-NILM detected better turn-on events and, conversely, DeepDFML was

better for turn-off events.

Table 15 – Comparison of detection results between methods considering each subset of the LIT-SYN dataset
Method Subset 𝑃𝐶𝑜𝑛(%) 𝑃𝐶𝑜𝑓𝑓 (%) 𝑃𝐶𝑎𝑣(%)

Data augmentation? Data augmentation? Data augmentation?

ST-NILM

No Yes No Yes No Yes
LIT-SYN-1 100.0 88.6 100.0 100.0 100.0 94.3
LIT-SYN-2 91.1 92.1 93.5 90.5 95.3 91.3
LIT-SYN-3 98.7 88.7 94.3 94.0 96.5 91.4
LIT-SYN-8 96.5 80.5 77.5 73.6 87.0 77.0

DeepDFML (NOLASCO et al., 2022)

No Yes No Yes No Yes
LIT-SYN-1 100.0 98.9 100.0 99.6 100.0 99.3
LIT-SYN-2 97.8 97.9 98.3 98.7 98.2 98.3
LIT-SYN-3 92.6 94.2 98.1 98.3 95.4 96.3
LIT-SYN-8 88.4 89.0 94.4 90.2 91.4 89.6

Table 16 presents a comparison between our work and the main state-of-the-art methods,

taking into account the following criteria: (i) the maximum number of multiple loads, which is

the maximum number of appliances added together in a single aggregated signal used for the

proposed framework; (ii) whether the method considers multi-label classification or not; (iii)

whether the method uses data augmentation or not, which directly impacts the overall complexity

of the proposal; (iv) whether the method is embedded or not, which indicates the feasibility

of real-time implementation; (v) a classification or disaggregation metric. Table 16 shows that

ST-NILM is the only method (among the analyzed methods) with an embedded application that

performs multi-label disaggregation with FScore above 95%, without using data augmentation.

5.3.4 Ablation study on ST-NILM parameters

In order to verify the impact of the variation of parameters𝑚, 𝐽 , and𝑄 on the ST-NILM

performance, we perform a series of training processes with different combinations of these

parameters. We reproduced all the experiments previously presented with 𝑚 = 1, now with
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Table 16 – Comparisons With State-Of-The-Art Methods. The ✓ symbol indicates that the method has the
related characteristic and the ✗ symbol indicates that the method does not have that characteristic.

Method Multiple
loads

Multi-
label?

Dataset Augm.? Embedded? Best
FScore
(%)

(HOUIDI et al., 2020) 1 ✗ PLAID ✗ ✗ 97%
(WU; WANG, 2019) 5 ✗ UK-DALE and BLUED ✗ ✗ 89%
(BAETS et al., 2018) - ✗ PLAID + WHITED ✗ ✗ 75%
(FAUSTINE; PEREIRA,
2020a)

1 ✓ PLAID ✗ ✗ 94%

(FAUSTINE; PEREIRA,
2020b)

3 ✓ PLAID ✗ ✗ 94%

(NOLASCO et al., 2022) 8 ✓ LIT-dataset ✓ ✓ 90%
(CHEN et al., 2022) 3 ✗ PLAID and WHITED ✗ ✗ 96%
(AGUIAR et al., 2021a) 1 ✗ COOLL ✗ ✗ 99%
(AGUIAR et al., 2021b) 8 ✗ LIT-dataset and PLAID ✗ ✗ 97%
(HWANG; KANG, 2022) 5 ✗ REDD ✓ ✓ 88%
(MULINARI et al., 2022) 8 ✗ LIT-dataset ✗ ✓ 96%
This work 8 ✓ LIT-dataset ✗ ✓ 97%

𝑚 = 2, with Kymatio library (ANDREUX et al., 2020). For 𝑚 = 2, for each time series, we

extract the features considering the following:

• For the classification model, we use the averages of each first-order grid as features. For the

detection model, we apply a flatten layer, as in Figure 24, and concatenate the difference

between the averages of each first and second-order grid, in all sub-bands;

• We apply the same fully connected layers used for 𝑚 = 1 in the tests for 𝑚 = 2;

• For 𝑚 = 2 we assume one wavelet per octave in the second-order filter bank and Q filters

per octave in the first-order filter bank. For 𝑚 = 1 we assume Q wavelets per octave in the

first-order filter bank;

• We used the same classification metrics for 𝑚 = 1 and 𝑚 = 2.

Figure 28 presents the classification and detection results obtained by tests with para-

metric variation. Comparing the classification results in Figures 28(a) and (b), we notice that

the F1-Score is not significantly impacted when choosing 𝑚− 2 instead of 𝑚 = 1 (maximum

variation less than 1.8%). We also notice that the average classification performance is better for

𝐽 = 10 than for 𝐽 = 12 (3.2% higher F1-Score average value) and that parameter 𝑄 has more

impact on classification performance for J=12 than for J=10. The detection results presented

in Figure 28(c) and (d) show that the J parameter is the most impactful for the detection since

the average 𝑃𝐶𝑎𝑣 drops more than 25% when exchanging 𝐽 = 10 for 𝐽 = 12. Furthermore, the

variance of 𝑃𝐶𝑎𝑣 with different 𝑄 is greater with 𝐽 = 12 than with 𝐽 = 10. We noticed that
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Figure 28 – (a) Classification and (b) Detection results considering different ST parameters. Note that classifi-
cation results do not variate significantly by increasing 𝐽 . Detection metric 𝑃𝐶𝑎𝑣 deterioration,
on the other hand, is much more evident when exchanging 𝐽 = 10 by 𝐽 = 12.

(a) F1-Score for 𝐽 = 10 with different
𝑄 values.
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(b) F1-Score for 𝐽 = 12 with different
𝑄 values.

J=12
100.0

80.0

85.0

90.0

92.5

97.5

95.0

4 6 8 10 12 14
Q

F
1
-m

a
c
ro

 [
%

]

(c) 𝑃𝐶𝑎𝑣 for 𝐽 = 10 with different 𝑄
values.
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(d) 𝑃𝐶𝑎𝑣 for 𝐽 = 12 with different 𝑄
values.
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Source: Own authorship.

the metrics 𝑃𝐶𝑎𝑣 are better for 𝐽 = 10 in most analyzed scenarios. Finally, the analysis of the

results leads us to conclude that: (i) Increasing the value of 𝐽 does not necessarily improve the

classification performance and aggravates the detection performance; (ii) Using 𝑚 = 2 instead of

𝑚 = 1 does not result in significant improvement in classification performance, and deteriorates

detection performance.

5.3.5 Embedded System

With the objective of evaluating the practical implementation of the proposed method, a

subject also underexplored in the literature (Table 16), ST-NILM was tested on a Jetson NVIDIA

TX1 to evaluate its performance in an embedded system environment. This platform has a
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256-core GPU, a 4-core ARM Cortex-A57 CPU, and 4GB of RAM under a Linux operating

system. The inference performance, presented in Table 17, was obtained from an average of 841

examples. Compared to DeepDFML, ST-NILM had lower RAM usage (62.7% vs 94.8%), lower

GPU load and substantially fewer floating point operations (0.264 GFLOPS for ST- NILM and

7.643 GFLOPS for DeepDFLM).

Table 17 – Resources consumption on the embedded system.
Resource monitored System state Value

RAM
Idle 808/3984 Mb (20.3%)

ST-NILM 3379/3984 Mb (84.8%)
(NOLASCO et al., 2022) 3777/3984 Mb (94.8%)

Avg. CPU load
Idle 8.2%

ST-NILM 44.0%
(NOLASCO et al., 2022) 30.9%

Avg. GPU load
Idle 0.0%

ST-NILM 38.0%
(NOLASCO et al., 2022) 50.6%

FLOPS (NOLASCO et al., 2022) 7.643 G
ST-NILM 0.264 G

5.4 CONCLUSIONS OF THIS CHAPTER

In this chapter, we presented an architecture to classify electrical signals in an unified

way. The proposed network, ST-NILM is based on the DeepDFML architecture, which has a

shared CNN with many learned parameters. However, ST-NILM has an untrained shared network

based on the Scattering Transform that has analytically computed filters given by wavelets.

We tested ST-NILM with the LIT-SYN dataset and repeated the same tests with the

DeepDFML architecture for comparison purposes. Classification results with smaller datasets

were substantially better for ST-NILM than DeepDFML. Furthermore, classification results show

that ST-NILM, even without data augmentation, outperforms DeepDFML with data augmentation.

The good classification performance of ST-NILM, unlike DeepDFML, is not dependent on

data augmentation. The improvements in classification performance over DeepDFML can be

explained by the fact that there is no need for the Scattering network to learn the filter coefficients,

only the output networks. The lack of training in the features extraction process contributed to the

ST-NILM obtaining better results than DeepDFML for smaller training sets. ST-NILM achieved

detection results equivalent to DeepDFML for LIT-SYN2 and LIT-SYN-3, and performed better

for single loads (LIT-SYN-1).

Performance gains of ST-NILM over DeepDFML in both classification and detection,
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despite being an important indicator of the method’s applicability, in themselves may not

represent a significant impact in practical applications. On the other hand, the resources used by

the hardware implementation showed that ST-NILM consumes less memory, less GPU load, and

consumes substantially less computational effort. As shown in Table 17, ST-NILM used less than

4% of the DeepDFML floating point operations, representing an essential step towards making

the architecture compatible with a cheaper and more efficient hardware. The results obtained

for the embedded system with LIT-SYN (a real-world dataset) indicate that future tests with

ST-NILM and real-time data can be promising.
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6 NILM FOR PV INVERTER IDENTIFICATION

Bearing in mind the scenario of distributed micro and mini generation and also the

concepts previously discussed related to NILM, in this chapter, we intend to answer the following

research questions (RQ):

• RQ1: Does the presence of DG interfere with the loads classification?

• RQ2: Is it possible to identify the presence of the inverter aggregated with the loads?

The answer to RQ1 reinforces the advantages related to traditional NILM, such as

energy savings, planning, and monitoring of energy consumption by the consumer. In addition,

RQ1 helps with distribution transformer sizing and distribution network protection. The answer

to RQ2 helps in all aspects mentioned in Section 2.4. A specific literature review for these works

is presented in Subsections 2.4.1 and 2.4.2. However, to the best of our knowledge, no works

involving these themes use real-world data sampled at high frequency in a system that contains

both electrical loads and distributed photovoltaic generation.

In this way, our work intends to fill the following Research Gaps (RG):

• RG1: Lack of public datasets with real-world validated data that contain both Distributed

Generation and aggregate electrical load signals;

• RG2: Lack of frameworks for classifying and detecting Distributed Generators aggregated

with NILM loads.

6.1 CONTRIBUTIONS OF THIS CHAPTER

Based on the research gaps RG1 and RG2, our main contributions arising from this

chapter are:

• Analysis, design, and implementation of an experimental arrangement to obtain NILM

samples with Distributed Generation, allowing the reproducibility and collaborative future

expansion of the proposed dataset;

• Construction and validation of a novel public dataset with electrical signals from both

electrical loads and Distributed Generation;



109

• Proposition of frameworks for disaggregation and detection of Distributed Generation in a

high frequency dataset aggregated with electrical loads;

• Get state-of-the-art detection and disaggregation results for the proposed dataset.

Section 6.2 presents the development process of our proposed dataset, highlighting

the design and implementation of the hardware and embedded software. Section 6.3 shows our

proposed frameworks applied to our dataset, obtaining novel NILM and DG results. Answers to

RQ1 and RQ2 are discussed in Section 6.4. We reserve Section 6.5 for the conclusions of this

chapter.

6.2 CONSTRUCTION OF A NOVEL HIGH-FREQUENCY DATASET WITH NILM AND

PV DATA

We propose a new dataset with high-frequency data for NILM containing electrical loads

and distributed PV generation measurements. For this, we design an experimental arrangement

and collect real-world data. The Figure 29 diagram represents the experimental arrangement.

Figure 29 shows a typical residential micro photovoltaic distributed generation (DG) system.

This system has: (i) a set of photovoltaic panels (reference) called string array, which generate,

from solar irradiation, a continuous voltage through the photovoltaic effect; (ii) a micro-inverter,

which is a direct current to alternating current static converter. The micro-inverter internally has

an automatic synchronization structure, which connects the DG to the mains. Figure 29 shows

the connection of the household appliances to the Point of Common Connection (𝑃𝐶𝐶). The

energy consumed by the appliances comes from both the DG system and the distribution mains.

Modern micro-inverters already certified for commercial use already have static converters to

regulate the DC bus from the string-array voltage, in addition to automatic real-time control of

generated active and reactive power and the maximum power point tracking (MPPT).

We partnered with campus Pato Branco of the Federal University of Technology

(UTFPR) to access the facilities of the photovoltaic generation unit and measure energy genera-

tion and consumption. The laboratory of the graduate program in electrical engineering (PPGEE)

at UTFPR Pato Branco, POLITEC, provides an arrangement of photovoltaic panels, as shown in

Figure 30a. A Fronius Primo 8.2-1 micro-inverter, which allows remote control, was also used,

as shown in Figure 30b. We show in Figure 30c the laboratory installations where we developed

this part of the work.
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Figure 29 – Typical Micro Grid-Tie Photovoltaic Distrituted Generation System

String Array Micro-Inverter

AppliancesHousehold

T

Secondary
Distribution
Mains

1
B1PCC

Source: Own authorship.

Figure 30 – Installations of the Graduate Program in Electrical Engineering at UTFPR-PB.
(a) Photovoltaic panel arrays. (b) Fronius Microinverter.

(c) Overview of the entire laboratory.

Source: Own authorship.
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Fig 31 shows the single-line diagram of the experimental setup assembled in POLITEC,

at campus Pato Branco of the Federal University of Technology (UTFPR), to develop the

proposed DG-NILM-v1 dataset. We measured the single-phase current in the low-voltage

distribution circuit breaker. This distribution circuit breaker is shared with three laboratories.

We developed a panel that contains an instrumentation unit to collect these electrical variables

measurements. At the same time, we developed an electrical load-switching system to turn on

and off with pre-determined patterns to the low-voltage bus. The remote control system also

controls the activation of a microinverter (Fronius Primo 8.2k), which is also switched at known

times.

Figure 31 – Single-line diagram of the experimental setup designed by us and implemented in POLITEC.
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Figure 32 shows the experimental setup assembled. We present in this Section the
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implementation of the setup shown in Figure 31 and Figure 32, dividing it into three parts:

Hardware design, software design, and methodology for data logging. The 6.2.1 Subsection

presents the hardware design, which comprises the projects for the Acquisition and Signal

Processing (ASP) module, the Control and Synchronization module, and the Power Switching

Module (PSM). In the Subsection 6.2.2, we present the software design, which comprises the

routines for interconnection between modules and command of devices. Finally, in Subsection

6.2.3, we present the methodology for obtaining the data that make up our proposed dataset.

Figure 32 – Overview of the assembled setup in POLITEC. We highlight the main structures with different
colors.

Source: Own authorship.

6.2.1 Hardware Design

We divide the hardware design into three parts:

• Control and Synchronization (MCB), presented in Subsection 6.2.1.1;
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• Acquisition and Signal Processing (ASP), presented in Subsection 6.2.1.2;

• Power Switching Module (PSM), presented in Subsection 6.2.1.3.

6.2.1.1 Control and Synchronization

We develop the Main Control Board (MCB) for system control and synchronization.

The MCB is responsible for switching the electrical loads, activating the PV micro-inverter, and

the analog-digital conversions of measured voltages and currents.

The MCB consists of a printed circuit board that uses the ESP32 WROVER microcon-

troller, 8Mb of pseudo-static RAM and a 240MHz dual-core processor. This microcontroller also

has a WiFi module, SPI, and I2C communication. In the MCB, we use a I2C external Real-Time

Control (RTC) module, model DS1307, synchronized with an online Network Time Protocol

(NTP) server in addition to an SD card recording module HW111. We use Arduino IDE and

FreeRTOS for MCB programming.

The Main Control Board block diagram consists of the structure shown in Figure 33.

Figure 33 – Main Control Board (MCB).
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Source: Own authorship.

As shown in the diagram in Figure 33, the MCB has a wired connection with the PV

micro-inverter through the Ethernet Module. The Ethernet Module connects to the ESP32 via the

SPI protocol. We carry out the analog-digital conversions with the 12 bits internal converters of

the ESP32 WROVER module. The sampled analog signals (voltage and current) come from the

Sensor Boards (SB, detailed in Subsection 6.2.1.2). We store the sampled quantities, in the form

of a buffer, in the ESP32 WROVER’s RAM. We periodically save data from RAM locally (on

the SD card, via SPI interface and Local Data Storage Module) and online (via WiFi module and

Online Data Logging).
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6.2.1.2 Acquisition and signal processing

We developed Sensor Boards (SB) for acquiring and conditioning NILM electrical

signals. Each SB consists of a printed circuit board that deals with NILM analog signals (voltage

or current) from electrical appliances or PV.

The SBs have the same circuit topology for both current and voltage signals. Figure 34

presents two general SB block diagrams. Each analog signal (voltage or current) that enters the

SB passes through the following stages: (i) A differential amplifier with gain 3, which consists

of a two-stage instrumentation amplifier topology, using the NE5534 operational amplifier,

trimpots and precision resistors; (ii) A stage to insert voltage offset, in order to guarantee the

full scale strict positive voltage signal at the output. We implemented this step with the NE5532

in a non-inverting adder configuration; (iii) A low-pass anti-aliasing filter with 8.84𝑘𝐻𝑧 of

cutting-frequency; (iv) A rail-to-rail operational amplifier based protection voltage buffer, to

keep the output voltage to the limits specified by the ADC of the microcontroller.

Figure 34 – Functional diagram of the two different SB (Current and Voltage). Both SB has the same circuit
topology. The difference between them is the usage or not of a Hall current transducer.

(a) Current Instrumentation Sensor Board.
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Source: Own authorship.

6.2.1.3 Power Switching Module

The Power Switching Module (PSM) is responsible for turning the appliances on and

off at periods predetermined by the MCB. At PSM we use EARU SSR-40DA solid state relays.

We drive the relays with the signals from the digital outputs of the ESP32 (0 and +3.3V). Each

solid state relay, responsible for switching each appliance, has 40𝐴𝑟𝑚𝑠 of rated current.
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6.2.2 Software Design

We develop the embedded software based on a FreeRTOS framework. We define a main

task for Real-time clock control (RTC) with a maximum priority level. The RTC task uses an

internal ESP32 timer to generate a time reference synchronized by an NTP server, which is

valid for the entire system. At every ∆𝑡 time interval, the Acquisition and Switching Task (AST)

initiates a sequence of conversions (called the Acquisition Window, or AW) at high frequency.

AST also performs relay switching, turning electrical loads on and off at pre-programmed times.

The embedded software design consists of the structure shown in Figure 35.

Figure 35 – General structure of the embedded algorithm.
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∆𝑡, in Figure 35, defines the interval between two consecutive high-frequency acquisi-

tion windows (AW). Consequently, one can define 𝑓𝑙𝑜𝑤 = (∆𝑡)−1 as a low-frequency acquisition

value for our framework. In other words, there are two main frequencies involved in data acquisi-

tion: 𝑓ℎ𝑖𝑔ℎ𝑡, or the high-frequency sampling rate for the AST, and 𝑓𝑙𝑜𝑤, which is the low-frequency

sampling rate that represents the inverse of the time interval between two AW.

Every ∆𝑡 s, we also read the registers of the Fronius Primo inverter via the Modbus

protocol using the WiFi module of the ESP32. These registers contain generation data (at low

frequency), such as active power, reactive power, and RMS current.

The Algorithm 2 presents our strategy to implement the software project using FreeR-
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TOS and the tasks we describe previously.

Algorithm 2 – Algorithm of the interconnection between the tasks we implemented to acquire the data for
our dataset.

Input: ∆𝑡, 𝑓ℎ𝑖𝑔ℎ, window_size, SWtimes.
Output: 𝐼𝑎𝑔𝑔 , 𝐼𝑖𝑛𝑣 , 𝑉𝑝𝑐𝑐, Labels
1: Setup and initialize the microcontroller peripherals (ADC, timers, SD card storage, WiFi, and Modbus)
2: Setup a timer interruption for the ADC task
3: Initialize and synchronize RTC task with an NTP server
4: Initialize the Acquisition and Switching Task
5: Initialize the Inverter Task
6: while Not manually or remotely interrupted do
7: for each ∆𝑡 time interval do
8: Start the ADC acquisition window (AW) conversion for 𝐼𝑎𝑔𝑔 , 𝐼𝑖𝑛𝑣 and 𝑉𝑝𝑐𝑐

9: Store temporarily the NTP time correspondent to the start of the AW
10: Access the Fronius Primo registers via WiFi, with the Modbus protocol
11: Get the generation data from the Fronius Primo registers
12: Store temporarily the samples in the RAM
13: Start the Solid State Relays switching, based on SWtimes
14: Store temporarily the states of the switches in a binary array named Labels, in the RAM
15: if the number of conversions reaches window_size then
16: Stop the ADC conversions
17: Stop the Switching process
18: Store the RAM values into the SD card
19: end if
20: end for
21: end while
22: return 𝐼𝑎𝑔𝑔 , 𝐼𝑖𝑛𝑣 , 𝑉𝑝𝑐𝑐, Labels.

We reserve the Subsection 6.2.3 to explain the methodology for obtaining data for our

proposed dataset. We highlight in Subsection 6.2.3 the loads’ selection process and the format of

the sampled data, as well as the choice of parameters ∆𝑡, 𝑓ℎ𝑖𝑔ℎ, 𝑓𝑙𝑜𝑤, SWtimes.

6.2.3 Methodology for data logging

The main parameters for data sampling are:

• High sampling frequency (𝑓ℎ𝑖𝑔ℎ = 1000𝐻𝑧): Sampling frequency for each voltage or

current measurement contained in an AW;

• Low sampling frequency (𝑓𝑙𝑜𝑤 = 1
60
): Sampling frequency of the PV inverter registers, or

the inverse of the period between two consecutive AWs (∆𝑡)−1 ;

• Acquisition window time interval (AWTI): This measure is given in seconds and represents

the time interval corresponding to an AW;

• Number of samples per acquisition window 𝑛𝑎𝑤 = 16000: Knowing the previous defini-

tions, 𝑛𝑎𝑤 = 𝑓ℎ𝑖𝑔ℎ × AWTI.
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Figure 36 shows a set of typical waveforms for two consecutive AWs, highlighting the

abovementioned parameters. Figure 36(a) shows in green two consecutive acquisition windows.

In seconds, the duration of a particular acquisition window is 𝐴𝑊𝑇𝐼 . Two consecutive AW

start=points are separated by an interval of ∆𝑡 = 𝑡2 = 𝑡𝑖𝑛𝑖 seconds. In Figure 36(a), 𝐴𝑊𝑇𝐼 =

𝑡1 − 𝑡𝑖𝑛𝑖 = 𝑡3 − 𝑡2. We also show in figure 36(a), in red, an example of the interval 𝑡𝑖𝑛𝑣 − 𝑡𝑖𝑛𝑖 in

which the PV inverter is turned on (generating energy). After the instant 𝑡 = 𝑡𝑖𝑛𝑣, the PV inverter

is off (not generating energy). For our example case, in which we show two AW, we have the

inverter on (on state) in the first AW (left green area) and off (off state) in the second AW (right

green area ).

Figure 36(b) shows an example of a set of switching patterns for four relays (switches a,

b, c, and d), each controlling an individual appliance. Our hardware controls each switch with

a predetermined switching interval. Note that the total time interval showed in Figure 36(b) is

𝐴𝑊𝑇𝐼 , being Figure 36(b) a zoomed version of Figure 36(a). In figure 36(b), we represent each

of these switching intervals with different colors: pink for switch a, blue for switch b, yellow for

switch c, and grey for switch d.

Our hardware allows us to choose the instants at which each load is triggered within

an AW. This flexibility allows us to assemble the load combinations we want. Some possible

examples are:

• Sequential triggering of individual loads (TIL): In this case, we choose a switching interval

for each load so that only one load is activated at a time, without overlapping more than

one load at the same time;

• Aggregate triggering with fixed intervals (TFI): In this case, we choose fixed switching

intervals and always starting at the same times for all switches, with overlapping loads;

• Aggregate triggering with a finite set of different intervals (TDI): In this case, we choose a

finite set of switching patterns for the relays, generating a finite set of different switching

patterns for different AWs;

• Aggregate triggering with a random set of different intervals (TRI): In this case, we

choose a random switching pattern for each load, and there is an infinite set of possible

combinations between these patterns, generating all AW with different switching patterns.
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Figure 36 – Set of typical waveforms for an acquisition window for the proposed dataset
(a) In green, we show two acquisition windows whose start point is separated by a ∆𝑡 time interval. In red,

we show an example of the state transition in PV inverter conditions, from on to off, if 𝑡 > 𝑡𝑖𝑛𝑣 .
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(b) Detail of the switching patterns inside a particular acquisition window (interval AWTI). We show here
four switch states waveforms, each with a different color. Let switch A be the pink waveform, switch B the
blue, switch C the yellow, and switch D the grey.
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Source: Own authorship.

6.2.3.1 Generation profile and PV inverter labeling

We show in figure 36(a) a typical switch pattern for the PV invert binary state logging.

In DG-NILM-V1, we create a binary variable specifically to signal whether or not the inverter is

injecting active power into the distribution network. If the power generated by the DG inverter

is greater than zero, the binary variable 𝑦𝑖𝑛𝑣 = 1 (shown in red in the figure 36(a)). If no active

power is injected into the grid (in cases where the inverter is off, nighttime or rainy weather),

𝑦𝑖𝑛𝑣 = 0. The AW for DG-NILM-V1 was obtained under varying meteorological regimes to

generate variability in the collected data.

6.2.3.2 Electrical appliances choosing

We choose four electrical loads of different natures to compose our dataset. We describe

the loads chosen in the items below:
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• Electric Iron: We choose an electric iron Black & Decker Quick’nEasy 315 with a nominal

power of 900W. The electric iron is a predominantly linear (resistive) load, prevalent in

most residential consumption units, and with relatively high power (above 500W);

• Single Phase Induction Motor: We chose a 0.5hp single-phase motor, with start capacitor.

This type of load has a non-linear behavior caused by the magnetic characteristics of

the iron and the air gap, resulting in a specific power signature. In Brazilian homes, it is

common for this type of load to be used in washing machines that do not use frequency

inverters;

• Driller + Transformer: We built an arrangement by connecting a driller Bosch

3601B185D0 with 127V nominal voltage to a single-phase 127V/220V transformer. The

drill has a universal motor (DC motor in series configuration). This arrangement, with a

total nominal power of 700W, has a non-linear behavior caused both by the motor action

and by the magnetic saturation and in-rush current of the transformer;

• Dimmer: Bearing in mind that more than 70% of Brazilian homes have an electric

shower (SANGOI; GHISI, 2019), that an electric shower is a resistive load, and that the

temperature control of these devices is usually carried out employing thyristor switching

systems, we build an arrangement of resistive loads commanded by a dimmer. We control

the average power delivered to the resistive array through the dimmer firing angle. This

adjustment leads to a non-linear behavior and adds considerable harmonic content to the

residential network.

6.3 PROPOSED NILM AND PV DISAGGREGATION FRAMEWORKS

Our lines of investigation proposed in the disaggregation of PV-DG are based on the

classification proposed by Wu et al. (2022), and shown in Figure 37.

Figure 37 shows our proposal category classification with bolted red lines. We propose

a Data-Driven approach. Data-Driven approaches use feature extraction from measured electrical

data. We propose a Supervised framework with labeled data available for training. As discussed

in the introduction to this chapter, we also present a new dataset to store Historical Data and use

them for training DG-PV disaggregation and classification models.

Considering our new high-frequency dataset, we propose a framework for evaluating

electrical load and distributed generation disaggregation problems. Figure 38 presents the pro-
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Figure 37 – Classification of DG-PV Disaggregation Methods in the Litera-
ture, as proposed by Wu et al. (2022)
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Source: Adapted from Wu et al. (2022)

posed framework, highlighting the three basic experiments we consider in this Section: Load

and Inverter Disaggregation Experiment (LIDE), Load Disaggregation Experiment (LDE) and

Inverter Disaggregation Experiment (IDE). We intend to answer RQ1 with the LDE and RQ2

with the results of the IDE and LIDE.

6.3.1 Segmentation

We use a segmentation stage applied to the aggregated signals from the DG-NILM

Dataset. This segmentation process returns chunks (time windows) of the aggregated signal,

which must meet the following requirements:

• Requirement 1: Every segment must have 𝑛𝑤𝑖𝑛𝑑𝑜𝑤 samples; ;

• Requirement 2: Every segment must have a unique label for each appliance.

To achieve requirements 1 and 2, we use Algorithm 3.

Algorithm 3 – Segmentation of the DG-NILM dataset for the LIDE, LDE and IDE experiments.
Input: 𝐼𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = {𝑖0, . . . , 𝑖𝑁}, 𝑌𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = {𝑦0, . . . , 𝑦𝑁}.
Output: 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = {𝑖𝑠0, . . . , 𝑖𝑠𝑆}, 𝑌𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = {𝑦𝑠0, . . . , 𝑦𝑠𝑆}
1: for each original DG-NILM dataset waveform 𝑖𝑘 ∈ {𝑖0, . . . , 𝑖𝑁} do
2: for each appliance and PV inverter binary output do
3: Find a transition from zero to 1, defining its index as 𝑖.
4: Select 𝑛𝑤𝑖𝑛𝑑𝑜𝑤 samples from 𝑖, defining this chunck as 𝑖𝑠𝑖.
5: if there is no other transitions along the selected 𝑛𝑤𝑖𝑛𝑑𝑜𝑤 samples then
6: Append 𝑖𝑠𝑖 to the output segments vector 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠.
7: Append the corresponding label logits 𝑦𝑠𝑖 to the output labels vector 𝑌𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠.
8: end if
9: end for

10: end for
11: return 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠, 𝑌𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠.
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Figure 38 – Proposed framework to evaluate PV Inverter and Elec-
trical Loads Disaggregation in NILM Context. We train
the models with high-frequency data from our proposed
DG-NILM Dataset.
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6.3.2 The experiments LIDE, LDE and IDE.

Figure 39 shows the block diagrams of the LIDE, LDE, and IDE experiments. Note that

each case has different dimensions of the annotated and predicted label arrays. As a consequence

of this, we create different classification tasks for each of the experiments. For LIDE and LDE,

we train multi-label binary classification models. In LIDE and LDE, we consider the presence

or absence of each electric load in the current 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 as binary outputs for the classification

task. Thus, the matrix of labels for LDE has dimension (𝑛𝑡𝑜𝑡𝑎𝑙 × 𝑛𝑙𝑜𝑎𝑑𝑠), where 𝑛𝑡𝑜𝑡𝑎𝑙 is the total

number of selected segments and 𝑛𝑙𝑜𝑎𝑑𝑠 is the total number of loads in the DG-NILM dataset.

In addition to the 𝑛𝑙𝑜𝑎𝑑𝑠 outputs corresponding to the electrical loads, the output of the LIDE
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classification task has one more binary output corresponding to the presence or absence of the

PV inverter. For this reason, the experiments LIDE have an array of labels with dimension

[𝑛𝑡𝑜𝑡𝑎𝑙 × (𝑛𝑙𝑜𝑎𝑑𝑠 + 1)].
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Figure 39 – Frameworks to implement the Loads and Inverter Disaggregation Experiments (LIDE), Loads
Disaggregation Experiments (LDE), and Inverter Disaggregation Experiments. LIDE and LDE
are multi-label classification tasks, with label dimensions according to the number of loads and
the presence or absence of the PV inverter. IDE is a binary classification task that only detects
the presence or absence of the inverter.
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Table 18 – F1-Score for the Inverter Detection Experiment (IDE).
Method Individual F1-Score Aggregated F1-Score Entire F1-Score

ST-NILM 100% 98% 97%
DeepDFML (NOLASCO et al., 2022) 100% 99% 99%

For each experiment (LIDE, LDE and IDE), we extract the features of 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 using

both the ST-NILM method (which we propose in Chapter 5) and the DeepDFML (NOLASCO

et al., 2022) (previously presented in Chapter 5) architecture. We performed the experiments

LDE, LIDE, and IDE with a personal computer with the following configurations: Processor

Intel Core I7-4790 (four cores and eight threads); 24Gb of DDR3 RAM; GPU NVidia Quadro

K620; Linux Ubuntu 20.04 operational system.

6.3.2.1 Inverter Detection Experiment (IDE)

The Inverter Detection Experiment consists of a binary classification problem in which

the only binary output represents the presence or absence of the inverter. To assemble this

strategy, we consider the binary labels that represent the presence of the inverter in each subset

of segments of the original dataset (aggregated, individual, or entire dataset). We separate 80%

from segments for training and 20% for testing into each subset of the original dataset. For

example, the binary vectors of training and test labels for the aggregated subset are represented,

respectively, by 𝑌 𝑎𝑔𝑔
𝑡𝑟𝑎𝑖𝑛 and 𝑌 𝑎𝑔𝑔

𝑡𝑒𝑠𝑡 .

Table 18 shows the F1-Scores for each subset of our proposed dataset and obtained

for each method for IDE. The results show that all methods can precisely identify the presence

of the inverter since the lowest F1-Score obtained with the IDE was 97%. ST-NILM achieves

classification performance equivalent to DeepDFML, considering that ST-NILM’s F1-Score was

at most 2% lower than DeepDFML (for the case of the Entire Dataset).

6.3.2.2 Loads Disaggregation Experiment (LDE)

For the LDE experiment, we intend to answer whether or not the DG inverter presence

impairs the classification performance of electrical loads. We separate training and testing subsets

for each condition (aggregated, individual or entire dataset) as follows:

• We separate the 𝑛𝑤𝑖𝑡ℎ
𝑡𝑟𝑎𝑖𝑛 segments obtained with DG from 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 and create the matrix

𝐼𝑑𝑔𝑡𝑟𝑎𝑖𝑛 ∈ R𝑛𝑤𝑖𝑡ℎ
𝑡𝑟𝑎𝑖𝑛×𝑛𝑤𝑖𝑛𝑑𝑜𝑤 ;
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• We separate the 𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡
𝑡𝑟𝑎𝑖𝑛 segments obtained with DG from 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 and create the matrix

𝐼𝑛𝑑𝑔𝑡𝑟𝑎𝑖𝑛 ∈ R𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡
𝑡𝑟𝑎𝑖𝑛 ×𝑛𝑤𝑖𝑛𝑑𝑜𝑤 ;

• We separate the 𝑛𝑤𝑖𝑡ℎ
𝑡𝑒𝑠𝑡 segments obtained with DG from 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 and create the matrix

𝐼𝑑𝑔𝑡𝑒𝑠𝑡 ∈ R𝑛𝑤𝑖𝑡ℎ
𝑡𝑒𝑠𝑡 ×𝑛𝑤𝑖𝑛𝑑𝑜𝑤 ;

• We separate the 𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡
𝑡𝑒𝑠𝑡 segments obtained with DG from 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 and create the matrix

𝐼𝑛𝑑𝑔𝑡𝑒𝑠𝑡 ∈ R𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡
𝑡𝑒𝑠𝑡 ×𝑛𝑤𝑖𝑛𝑑𝑜𝑤 ;

• We define 𝑌 𝑑𝑔
𝑡𝑟𝑎𝑖𝑛 and 𝑌 𝑛𝑑𝑔

𝑡𝑟𝑎𝑖𝑛 as the training labels matrices, related to 𝐼𝑑𝑔𝑡𝑟𝑎𝑖𝑛 and 𝐼𝑛𝑑𝑔𝑡𝑟𝑎𝑖𝑛,

respectively;

• We define 𝑌 𝑑𝑔
𝑡𝑒𝑠𝑡 and 𝑌 𝑛𝑑𝑔

𝑡𝑒𝑠𝑡 as the training labels matrices, related to 𝐼𝑑𝑔𝑡𝑒𝑠𝑡 and 𝐼𝑛𝑑𝑔𝑡𝑒𝑠𝑡 , respec-

tively;

We set up the LDE classification structure as a multi-label binary classification problem

with four binary targets (one per electrical load) without considering the inverter as a target.

From the subsets obtained with the described procedure, we trained and tested some models

according to the following methodology:

• Scenario LDE with DG: We use 𝐼𝑑𝑔𝑡𝑟𝑎𝑖𝑛, with its labels 𝑌 𝑑𝑔
𝑡𝑟𝑎𝑖𝑛 to train different classification

models (with different tested feature extractors), and we test the trained models in the

subset 𝐼𝑑𝑔𝑡𝑒𝑠𝑡 (with the respective labels 𝑌 𝑑𝑔
𝑡𝑒𝑠𝑡);

• Scenario LDE without DG: We use 𝐼𝑛𝑑𝑔𝑡𝑟𝑎𝑖𝑛, with its labels 𝑌 𝑛𝑑𝑔
𝑡𝑟𝑎𝑖𝑛 to train different classifi-

cation models (with different tested feature extractors), and we test the trained models in

the subset 𝐼𝑛𝑑𝑔𝑡𝑒𝑠𝑡 (with the respective labels 𝑌 𝑛𝑑𝑔
𝑡𝑒𝑠𝑡 ).

Figure 40 shows the average F1-Score values obtained for the LDE. For the figure 40

we consider the average value of F1-Score, calculated from all classes, for each method.
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Figure 40 – Average F1-Score for each method obtained from LDE.
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The results presented in Figure 40 show that: (i) The presence of DG impairs the

classification performance for both methods; (ii) DeepDFML method presents better average

performance than ST-NILM; (iii) The presence of the DG inverter affects less the classification

performance for the DeepDFML than ST-NILM.

Figure 41 extends the analysis of Figure 40 to each class, showing the F1-Scores for

each electric load in a stratified way. Figure 41(a) shows the results by class with DG and

Figure 41(b) shows the results without DG.
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Figure 41 – Classification per-class results for LDE, for both scenarios with and without DG presence.

Electrical Device

(a) F1-Scores per class for the scenario with DG inverter presence.

Electrical Device

(b) F1-Scores per class for the scenario without DG inverter presence.

Source: Own authorship.

From Figure 41, one can conclude that: (i) The classification of the linear load (Electric

Load) does not depend on the presence of the inverter, presenting F1-Score=1 for both methods,

scenarios, and subsets; (ii) The methods suffered performance reduction in the classification of

non-linear loads (Single-Phase Induction Motor, Driller+Transformer and Dimmer) when there

is the presence of DG. The exception is Dimmer classification performance with the DeepDFML;

(iii) The presence of the inverter had a less significant impact on DeepDFML than ST-NILM for

classifying non-linear loads.



128

6.3.2.3 Loads and Inverter Disaggregation Experiment (LIDE)

The LIDE experiment makes it possible to analyze, together, the performance of the

classification frameworks in the following aspects: (i) the ability to detect the presence or not

of the inverter (DG); (ii) performance in the disaggregation of electrical loads in a residential

installation with the presence of distributed generation.

Figure 42 presents the classification results for the LIDE tests. We trained four different

frameworks for load classification together with the inverter. The results in shades of blue

correspond to the ST-NILM, which we proposed in Chapter 5. The bars in shades of purple

represent the F1-Scores obtained with DeepDFML (NOLASCO et al., 2022).

Figure 42 – F1-Score Results for the Loads and Inverter Disaggregation Experiment (LIDE).
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When analyzing the figure 42 one can notice that:

• Both methods achieved maximum performance in electrical iron classification. This

result was expected since this appliance has linear characteristics and high power, which

facilitates discriminability in the classification;

• The performances of both methods were worse for nonlinear loads (driller+transformer and

dimmer) than linear loads. For these cases, our ST-NILM method surpassed DeepDFML

(at least 6% higher F1-Score);
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• For aggregated nonlinear loads, ST-NILM presented the worst performance among the

analyzed methods. The worst performance under these conditions occurred for Dimmer

(F1-Score of 79%);

• For the entire dataset and nonlinear appliances, the performance difference between our

method (ST-NILM) and DeepDFML decreased. This behavior occurred both for Driller +

Transformer, in which case ST-NILM performed equivalent to DeepDFML (1% lower);

• Both methods analyzed successfully identified the presence of the inverter.

When comparing the performance of the methods in LIDE among the three subsets

(aggregate, individual, and integer), we can conclude that:

• For the single-phase induction motor, DeepDFML achieved the best performance for the

aggregated subset. ST-NILM performed better with the individual dataset;

• The proposed method (ST-NILM) presented the same performance pattern for the Single

Phase Induction Motor, Driller + Transformer, and Dimmer, presenting a better per-

formance for the individual subset, a worse result for the aggregated subset, and an

intermediate performance for the entire dataset;

• Differently from ST-NILM, DeepDFML presented the worst result for the individual

subset for Single Phase Induction Motor, Driller + Transformer, and Dimmer loads.

6.3.2.4 Comparisons between LDE, IDE, and LIDE

This Subsection compares the results obtained with the LDE, IDE, and LIDE experi-

ments. Comparing the classification results obtained for load identification (LDE) with those

obtained with loads and DG identification (LIDE), we can verify whether the presence of DG

interferes with the multi-label classification of loads. On the other hand, when we compare the

binary inverter identification experiments (IDE) with the inverter and loads detection experiment

(LIDE), we can verify the performance variation in the inverter detection when we change the

classification framework (IDE is a single-output binary classification framework and LIDE is a

multi-output multi-label binary classification framework).

Figure 43 compares the average F1-Scores (obtained by averaging the F1-Scores be-

tween the three subsets for each appliance) of the LDE and LIDE experiments. As shown in



130

Figure 43: (i) Both methods achieved maximum performance for Electric Iron classification,

which is a linear load; (ii) Unlike ST-NILM, DeepDFML performed worse (up to 13% worse)

for LIDE than for LDE for the classification of Single Phase Induction Motor and Driller +

Transformer (two non-linear loads with magnetic saturation); (iii) On average, classification per-

formance worsens with the presence of the inverter for DeepDFML, but improves for ST-NILM.

Figure 43 – FScore comparison between LDE and LIDE to determine the influence of the presence of the
inverter on the classification of electrical loads

Electrical Device

Source: Own arthorship.

Figure 44 compares the average F1-Scores, calculated among all subsets and for each

method, obtained with the IDE and LIDE experiments. Each average F1-Score represents the

classification performance of the DG inverter identification only, even for LIDE. The results

indicate that: (i) Both tested methods identified the inverter with F1-Score greater than 98%,

regardless of the framework; (ii) The multi-label framework, resulting in LIDE, leads to better

classification performance for ST-NILM and DeepDFML.
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Figure 44 – FScore comparison between IDE and LIDE to determine the influence of the classification
framework on the inverter classification performance. The IDE results are obtained from a
single output binary classification framework, and LIDE are obtained from a multi-label binary
classification framework.
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Source: Own authorship.

6.4 ANSWERS TO RESEARCH QUESTIONS RQ1 AND RQ2

Here we discuss the answers to RQ1 and RQ2:

• Discussion regarding RQ1: When we compare the average performance of ST-NILM

with (LIDE) and without (LDE) inverter, we notice that we achieved better performance

with inverter (LIDE) than without inverter (LDE). The opposite behavior occurred with

DeepDFML, and for this method, the average FScore was better for the case without

an inverter (LDE) than for the case with an inverter (LIDE). In addition, we observed

the highest average performance variation between LIDE and LDE for the DeepDFML

method (8%), indicating that the classification of loads for the DeepDFML method is more

affected by the presence of the inverter than ST-NILM;

• Discussion regarding RQ2: The results of IDE and LIDE, compiled in the comparison of

Figure 44, show that identifying the DG inverter was possible and doable, with an average

F1-Score greater than 98% for both methods tested.

The average classification performance of ST-NILM was worse than DeepDFML for the

performed experiments. It should be noted that ST-NILM is a smaller network than DeepDFML,

with fewer layers and fewer convolutional filters. Despite having proven to be less discriminative

than DeepDFML for NILM + BTM classification, ST-NILM is a convolutional network with
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untrained filters, which requires less computational effort and may be more feasible for real-time

applications.

6.5 CONCLUSION OF THIS CHAPTER

NILM and BTM identification have a lot in common. We propose a new dataset with

data from both electrical loads and DG generation, allowing us to unite the discussions of these

two areas. We also propose three experiments to validate our proposed dataset and present state-

of-the-art classification results for our dataset. We chose state-of-the-art classification methods

involving both spectral (ST-NILM) and DCN-based (DeepDFML) strategies. Our experiments

innovatively showed the influence of the presence of DG along with the aggregate loads on the

load classification performance. Our results showed that the PV inverter impairs the classification

of loads with magnetic saturation. One possibility for this is due to the coupling of the intrinsic

inductances of these loads with the characteristic inductance of the weak network Aguiar (2014)

that represents the local distribution network of the POLITEC laboratory and with the inductance

resulting from the DC filter of the inverter.

We also evaluated the influence of aggregate loads on classification performance in

identifying the presence of DG. We obtained a DG identification performance (average F1-Score)

higher than 98% for all tested methods. This result points to possible applications of IDE for

energy management systems in electricity utilities, in order to: (i) detect clandestine distributed

generation connections; (ii) increase the observability of the generation network connected to

the distribution bus; (iii) collaborate in the sizing, planning and expansion of the distribution

network; (iv) generate information for power system operating agents; (v) improve the selectivity

of protection.

The most significant impact on the average load classification performance by the

presence of the inverter is 8%, which occurred with the DeepDFML method. Our results also

showed that load classification performance is more affected by the presence of DG than DG

identification is affected by the presence of aggregated loads.

The NILM-DG-V1 dataset has AWs of 16s. Although there are 16s of information

for each example, our frameworks used smaller windows, the size of a grid (166ms). Other

frameworks based on our experiments could also use context information to extract characteristics

from the aggregated signal, contributing to the possible increase in discriminability. Furthermore,

another valid discussion is about the resolution of analog-to-digital converters: we used the
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internal converters of the ESP32 microcontroller, which present nonlinearities close to the

maximum and minimum allowable voltage limits, in addition to having a maximum resolution

of 12 bits. Although many converters on the market have better specifications than this, the

classification results, even with relatively low resolution and nonlinearities in acquisitions,

are valid since the cost of implementing practical solutions with higher specifications is also

significantly higher.

The results of LDE, LIDE, and IDE frameworks constitute the main contribution of

this thesis. These results can serve as a benchmark for future comparisons with other load

identification and DG detection methods, in addition to serving as a basis for restructuring the

frameworks to include other loads, other forms of DG, and other tasks.
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7 CONCLUSIONS AND FUTURE WORKS

In Chapter 3, we proposed six feature selectors and a framework for extracting features

with the Scattering Transform. We used subsets of training data with fewer examples per class and

subsampling. The classification results for simple loads proved to be better than state-of-the-art

methods for most tested scenarios. Furthermore, we showed that the separability of the classes

with the features obtained by the Scattering Transform is better than the traditional wavelet

(baseline) for the tested cases. These promising results encouraged us to investigate further,

including multiple loads and disaggregation. The results presented in Chapter 3 meet specific

objectives numbers 1-5 and 8.

In Chapter 4, we proposed a new framework to extract features with the Scattering

Transform. In this framework we used multiple loads (aggregated). We tested the performance of

the Scattering Transform considering the electrical signals input in different temporal regions

(steady-state, transient regime, or both). The classification results showed that the ST is more

robust than the baselines regarding signal length, sampling frequency, and event location. The

results shown in Chapter 4 meet specific objectives numbers 6-8.

The frameworks proposed in Chapters 3 and 4 considered the traditional diagram

for NILM shown in Figure 3. Our proposal in the Chapter 5 improved the traditional NILM

strategy since it is a multi-task and multi-label approach. In this approach, we perform classi-

fication and disaggregation in a single step. We proposed the ST-NILM architecture, based on

DeepDFML (NOLASCO et al., 2022). We showed that ST-NILM is less computationally costly

than DeepDFML. The FLOPS for ST-NILM, as shown in Table 17, are still high compared to

some embedded methods in the literature. However, we significantly reduced computational

complexity compared to DeepDFML (0.264G for ST -NILM versus 7.643G for DeepDFML).

Also, the classification results were better in ST-NILM than in DeepDFML, especially in cases

where we used less data for training. This result corroborates the theory presented by (MALLAT,

2012), and meet specific objectives numbers 8-9.

In Section 6.2, Figure 31 and 32, we proposed an experimental arrangement that allowed

flexible NILM and DG variables measuring. Our proposal made it possible to choose the exact

times for connecting and disconnecting multiple loads, in addition to allowing the connection of

a PV micro-inverter to the distribution voltage PCC. This development meets specific objective

10.
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Motivated by the lack of datasets mixing NILM and DG acquisitions discussed in

Subsection 2.4.2, in the Subsection 6.2.2, we selected a set of appliances and elaborated a

methodology for data logging. As a result, we constructed a novel public dataset named DG-

NILM-V1. We provided a public repository containing our dataset to meet specific objective

11.

In Section 6.3, we validated our proposed dataset by comparing the results of NILM

load classification and disaggregation using DG-NILM-V1 subsets for training and testing. We

performed feature extraction and classification with four state-of-the-art methods. This validation

meets the specific objective 12.

To meet specific objective 13, we divided the proposed dataset validation into three

experiments: IDE, LIDE, and IDE, building an ablation study (Subsection 6.3.2) to investigate

the influence of DG in NILM classification and vice versa. We obtained classification F1-Scores

above 98% with our dataset for DG identification, and we concluded in Section 6.5 that load

classification performance is more affected by the presence of DG than DG identification is

affected by the presence of aggregated loads.

We showed in Table 1 that the results presented in Chapter 4 were published in a

scientific paper in the journal Energies MDPI. Furthermore, the results of Chapter 3 were

presented in a scientific paper published in the journal LNLM. The results presented in Chapter 5

were compiled into a paper submitted to IEEE Sensors journal. Finally, our novel dataset, ablation

study, and the related conclusions in Chapter 6 were compiled into a paper and submitted to the

IEEE Transactions on Smart Grids. These submissions meet specific objective 14.

7.1 FUTURE WORKS AND OPEN CHALLANGES

Even though our proposal in Chapter 3 has obtained state-of-the-art results for feature

selection with ST, in future works, we intend to evaluate the general performance of extraction

methods, also considering the performance of a detection method. Furthermore, we suggest a

future ablation study to evaluate the power signature of the inverter analogously to an electrical

load. A possible approach is to extract features with the methods proposed in Chapter 3 and

compare them with other features selection methods.

Despite the good results of ST-NILM compared to other state-of-the-art methods

based on Deep Learning, some future improvements can be considered: (i) Improve the GPU

implementation of ST-NILM; (ii) Improve the feature selection techniques in order to improve
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the 𝑃𝐶𝑜𝑓𝑓 in the case of more aggregate loads; (iii) Improve the classification and detection

comparisons with other time-frequency-based feature extractors; (iv) Evaluate the ST-NILM

with other real-world datasets; (v) Evaluate the ST-NILM with real-time data.

Although the results presented in Chapter 6 have shown encouraging endeavors in this

field, including DG with NILM still requires numerous efforts. We focus our results on the

disaggregation and classification of appliances and DG. In the future, it is desirable to expand the

analysis to detect the instants of connection and disconnection of the appliances and the inverter.

Detection of the on and off time instants is a different challenge than the one we address, which

is also essential in the context of NILM and DG. In addition, we intend to obtain classification

results with other state-of-the-art methods, including methods based on Transformers (VASWANI

et al., 2017).

With continuity and new versions of the NILM-DG-v1 dataset, some open challenges

can be raised: (i) expanding our dataset, inserting more samples in different meteorological

conditions and with an unbalanced number of examples per class; (ii) Increasing the number

of appliances, allowing the evaluation of life-long learning methods; (iii) Evaluating the clas-

sification performance under unbalanced conditions; (iv) Expanding the number of AW, and

testing the classification methods without using stride; (v) Identify the DG’s modes of operation;

(vi) Elaborate and evaluate a framework considering both 𝐼𝑖𝑛𝑣 and 𝐼𝑎𝑔𝑔 for training (instead of

only 𝐼𝑎𝑔𝑔) as a regression task to estimate the amount of distributed generated power from the

aggregated current load.

In Brazil, the entity responsible for managing, dispatching energy generation and

monitoring the interconnected system of generation and transmission of electrical energy is the

ONS (acronym in Portuguese for “National System Operator”). Currently, ONS does not directly

observe micro and mini DG systems connected to the distribution network. This means that, for

example, when a sufficient number of prosumers stop generating energy at the same time, this

is noticed by the ONS only due to the effect caused by the imbalance between generation and

consumption, characterized in this case by a perception of increased load. This perception of

an increase in load can lead to mistaken decision-making, since in fact what happened was a

drop in generation, not an increase in load. For these cases, the DG detection that we proposed

in this work using the LIDE and IDE frameworks can be useful, helping to mitigate the reported

problem.

We use the aggregated current for the frameworks with the NILM-DG-V1 dataset. In
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many real cases, however, the available quantity is power, not current. We intend to address this

line of investigation in the future, also involving the inclusion of power measurements in new

versions of our dataset. Besides that, we intend to get a new subset for NILM-DG dataset with an

external bidirectional power alternated current source, emulating an ideal distribution network

scenario. One may better understand the local distribution line characteristics and parameters

when comparing LIDE, IDE, and LDE results with this new subset.
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