
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E

INFORMÁTICA INDUSTRIAL

PAULO NEIS

DOMAIN-SPECIFIC POWER APPLICATIONS DEVELOPMENT

ENVIRONMENT AND STRATEGY:
A MODEL-DRIVEN APPROACH TO SCADA/EMS

TESE

CURITIBA

2023

PAULO NEIS

DOMAIN-SPECIFIC POWER APPLICATIONS DEVELOPMENT

ENVIRONMENT AND STRATEGY:
A MODEL-DRIVEN APPROACH TO SCADA/EMS

Ambiente e Estratégias Específicas do Domínio para o

Desenvolvimento de Aplicações de Potência:
Uma Abordagem Guiada por Modelos

Tese apresentada ao Programa de Pós-Graduação
em Engenharia Elétrica e Informática Industrial
da Universidade Tecnológica Federal do Paraná
(UTFPR), como requisito parcial para obtenção
do título de “Doutor em Ciências” - Área de
Concentração: Engenharia de Computação.

Orientador: Prof. Dr. Marco Aurélio Wehrmeister

CURITIBA

2023

4.0 Internacional

Esta licença permite remixe, adaptação e criação a partir do trabalho, mesmo para
fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es) e que licenciem
as novas criações sob termos idênticos.
Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são
cobertos pela licença.

https://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR

Ministério da Educação
Universidade Tecnológica Federal do Paraná

Campus Curitiba

PAULO NEIS

DOMAIN-SPECIFIC POWER APPLICATIONS DEVELOPMENT ENVIRONMENT AND STRATEGY: A MODEL-DRIVEN
APPROACH TO SCADA/EMS.

Trabalho de pesquisa de doutorado apresentado como requisito para
obtenção do título de Doutor Em Ciências da Universidade
Tecnológica Federal do Paraná (UTFPR). Área de concentração:
Engenharia De Computação.

Data de aprovação: 05 de Maio de 2023

Dr. Marco Aurelio Wehrmeister, Doutorado - Universidade Tecnológica Federal do Paraná

Dr. Carlos Eduardo Pereira, Doutorado - Universidade Federal do Rio Grande do Sul (Ufrgs)

Dr. Paulo Cezar Stadzisz, Doutorado - Universidade Tecnológica Federal do Paraná

Dr. Rodrigo Andrade Ramos, Doutorado - Usp-Universidade de São Paulo

Dr. Rui Jovita Godinho Correa Da Silva, Doutorado - Fundação Parque Tecnológico Itaipu

Documento gerado pelo Sistema Acadêmico da UTFPR a partir dos dados da Ata de Defesa em 24/07/2023.

RESUMO

NEIS, Paulo. Ambiente e Estratégias Específicas do Domínio para o Desenvolvimento de
Aplicações de Potência: Uma Abordagem Guiada por Modelos. 2023. 178 f. Tese
(Doutorado em Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica
Federal do Paraná. Curitiba, 2023.

Esta tese propõe uma abordagem de Engenharia Guiada por Modelos para o desenvolvimento
de aplicações que compõem uma suíte conhecida como Sistema de Gerenciamento de Energia
(EMS). EMS é uma ferramenta essencial para a operação dos sistemas elétricos de potência,
incluindo usinas hidrelétricas. Devido às características e complexidade de cada projeto, produtos
comerciais “de prateleira” podem não ser capazes de atender a todos os requisitos, demandando
o desenvolvimento de customizações, ou mesmo aplicações inteiramente novas para cada fornec-
imento. A gestão do ciclo de vida de softwares customizados torna-se complexa, particularmente
durante atualizações, migrações para novo produto, ou troca de fornecedor. O software EMS
faz parte de um sistema ciber-físico, para o qual sofisticados modelos costumam ser construídos
durante as fases de planejamento, projeto e operação das instalações. Tais modelos, porém,
costumam ser utilizados no processo de desenvolvimento apenas como suporte e documentação,
sendo que o código-fonte é considerado o principal artefato do software EMS. A evolução de tais
sistemas torna-se dispendiosa e sujeita a erros, requerendo modificações manuais no código-fonte
e documentação correspondente. A Engenharia Guiada por Modelos (MDE) é uma abordagem
para o projeto de sistemas na qual os modelos são utilizados como artefatos principais no pro-
cesso de desenvolvimento, enquanto os programas (e outros produtos) são automaticamente
gerados a partir destes. Abordagens MDE têm sido adotadas em diversas áreas da indústria,
para as quais existem linguagens e ferramentas especializadas que facilitam as atividades de
modelagem e transformação automática dos modelos em software executável. Porém, tratando-se
de desenvolvimento de software SCADA/EMS, ainda inexiste uma abordagem dedicada. Esta
tese propõe o D-SPADES: Ambiente e Estratégias Específicas do Domínio para o Desenvolvi-
mento de Aplicações de Potência, uma abordagem de Engenharia Guiada por Modelos feita sob
medida para o domínio de aplicações EMS. D-SPADES dispõe de uma linguagem de modelagem
específica para este domínio, baseada em uma notação de diagramas de bloco, associada com
estratégias de mapeamento e ferramentas para transformar automaticamente modelos em código
fonte de aplicações que podem ser integradas em plataformas SCADA existentes. D-SPADES foi
aplicado para modelar e gerar automaticamente o código-fonte de duas aplicações reais na Usina
de Itaipu: um controlador automático de volt/var, e um componente para um sistema especial de
proteção. O novo controlador de volt/var foi validado criteriosamente utilizando-se um simulador
de sistemas de potência, e comparado à uma aplicação existente, que foi desenvolvida utilizando
abordagens tradicionais. O desempenho do novo controlador em termos de funcionalidades,
uso de recursos e métricas de código fonte foi considerado satisfatório. O sistema especial de
proteção, após ser submetido à uma série de testes sistêmicos, tanto reais quanto simulados, foi
implantado definitivamente em ambiente de produção, e encontra-se plenamente operacional
desde 2022. Desta forma, foi demonstrado que D-SPADES é uma abordagem viável para o
desenvolvimento de aplicações SCADA/EMS de missão crítica.

Palavras-chave: Engenharia de Software. Engenharia Guiada por Modelos. usinas hidrelétricas.
sistemas elétricos de potência. sistemas de controle supervisório.

ABSTRACT

NEIS, Paulo. Domain-Specific Power Applications Development Environment and
Strategy: A Model-Driven Approach to SCADA/EMS. 2023. 178 p. Thesis (PhD in
Graduate Program in Electrical and Computer Engineering) – Universidade Tecnológica Federal
do Paraná. Curitiba, 2023.

This thesis proposes a model-driven approach to develop applications that compose a suite
known as Energy Management System (EMS). EMS is an essential tool for the operation of
electrical systems, including hydroelectric power plants. Given the characteristics and complexity
of each project, commercial “off-the-shelf” products might not fulfill all the requirements,
demanding the development of customized versions or even entirely new applications for each
customer. Managing the life cycle of such customized software becomes a complicated endeavor,
particularly while performing upgrades, or migrating to a different vendor or product line. EMS
software constitutes part of a cyber-physical system, for which sophisticated models are often
constructed during the planning, designing, and operation of the installations. Such models,
however, are usually employed only as support and documentation, while source code ends
up being the main EMS software artifact throughout the development process. The evolution
of such a system is expensive and error-prone, requiring manual changes to source code and
the corresponding documentation. Model-Driven Engineering (MDE) is an approach to system
engineering in which models are used as primary artifacts, while programs (and other products)
are automatically generated from such models. MDE approaches are applied in several industrial
areas, for which specialized languages and tools support the modeling activities and the automatic
transformation of such models into executable software. For SCADA/EMS software development,
however, a dedicated approach is still absent. Therefore this thesis proposes D-SPADES: the
Domain-Specific Power Applications Development Environment and Strategies, a Model-Driven
Engineering approach tailored to the EMS domain. D-SPADES relies on a domain-specific
modeling language based on block diagram notation, associated with mapping strategies and tools
for automatically transforming models into source code for applications that can be integrated into
existing SCADA platforms. D-SPADES have been applied to model and automatically generate
source code for two real-world applications at the Itaipu Power Plant: a volt/var controller and
a component for a system-wide special protection scheme. The new volt/var controller was
thoroughly validated using a power system simulator, and compared to a legacy application,
developed through traditional approaches. Its performance in terms of functionality, resource
usage, and source code metrics is considered satisfactory. The special protection scheme, after
successfully passing through a set of simulated and real system tests, was permanently deployed
to the production system and is fully operational since 2022. Hence it has been demonstrated
that D-SPADES is a viable approach to the development of mission-critical SCADA/EMS
applications.

Keywords: Software Engineering. Model Driven Engineering. hydroelectric power plants. power
systems. supervisory control systems.

LIST OF FIGURES

Figure 1 – Schematic of a conjectural e-commerce application 28
Figure 2 – Schematic of the modeling paradigms in D-SPADES 35
Figure 3 – Some examples of AO models . 37
Figure 4 – Platforms and interrelationships . 39
Figure 5 – Ptolemy II Hierarchical Model Structure 42
Figure 6 – MoML notation, terminology and aggregation 43
Figure 7 – Ptolemy II Vergil editor window . 44
Figure 8 – Overview of a typical hydro power plant 46
Figure 9 – Hydraulic turbine and generator . 48
Figure 10 – Turbine, generator and load . 49
Figure 11 – Turbine, generator, load and governor . 51
Figure 12 – Droop governor . 51
Figure 13 – Droop governor characteristic . 52
Figure 14 – Schematic block diagram of speed and frequency control 53
Figure 15 – Block diagram of excitation control . 54
Figure 16 – Excitation control system control model 55
Figure 17 – Schematic diagram of a load compensator 56
Figure 18 – IEEE 1249 hydro power plant control hierarchy 58
Figure 19 – Power system controls timescale . 59
Figure 20 – A typical SCADA system architecture . 61
Figure 21 – A model of the unit tracking detection in AGC 63
Figure 22 – Itaipu project location map . 64
Figure 23 – Itaipu electrical diagram . 65
Figure 24 – Enterprise Service Bus model. 85
Figure 25 – D-SPADES Software Process Model . 89
Figure 26 – Discrete speed governor example . 90
Figure 27 – Environment model for governor example 91
Figure 28 – Environment and Application model . 92
Figure 29 – Simplified discrete governor model . 92
Figure 30 – Simulation results for governor operation 93
Figure 31 – Adding new governor requirement . 96
Figure 32 – D-SPADES workflow and produced artifacts. 96
Figure 33 – EMSML metamodel in Ecore . 100
Figure 34 – Toy application modeled with EMSML . 101
Figure 35 – Actors currently implemented in D-SPADES 102
Figure 36 – Graphical elements used in Ptolemy II and EMSML. 102
Figure 37 – The JBVRC controller in a larger Ptolemy II simulation 104
Figure 38 – Levels of composition of the toy JBVRC model. 105
Figure 39 – D-SPADES tool chain . 113
Figure 40 – Integration Architectures . 116
Figure 41 – Adding existing Ptolemy II actors into D-SPADES 118
Figure 42 – Adding new actors into D-SPADES . 118
Figure 43 – CompositeEntity and ModalController classes from D-SPADES. 119
Figure 44 – Simplified JBVRC controller model . 124

Figure 45 – Results of Ptolemy II simulation and D-SPADES execution 125
Figure 46 – Simplified diagram for one sector of Itaipu 126
Figure 47 – Data acquisition diagram . 127
Figure 48 – AVC reactive power based control diagram 129
Figure 49 – Model of power plant and secondary voltage controller. 129
Figure 50 – Ptolemy II Simulation results. 130
Figure 51 – Hierarchical composition of the Controller. 131
Figure 52 – The JBVRC actor model. 132
Figure 53 – The JBVRC main controller block. 133
Figure 54 – The MvarDB block implementing the dead band. 133
Figure 55 – Levels of composition of the JBVRC model. 134
Figure 56 – JBVRC integration through OPC-UA . 135
Figure 57 – 350 Mvar step: observed and simulated voltage performance. 137
Figure 58 – Reactive sharing: observed and simulated performance. 138
Figure 59 – Itaipu’s 60 Hz sector and associated transmission network. 140
Figure 60 – FSM model for original ERG60 application 142
Figure 61 – ECEIPU subroutine model: inputs and outputs. 144
Figure 62 – FSM hierarchical model for MDERG . 145
Figure 63 – Model refinement for “Available” state. 145
Figure 64 – Integration test performing generation reduction. 148
Figure 65 – EMSML full metamodel. 169
Figure 66 – Model of power plant and secondary voltage controller. 176
Figure 67 – Generating Units model. 176
Figure 68 – A single Generating Unit’s voltage control model. 177
Figure 69 – Generator and AVR model. 177
Figure 70 – Generating Unit’s RTU model. 177
Figure 71 – Generating Units’ step up transformer model. 178

LIST OF TABLES

Table 1 – Brazilian electricity mix by the end of year 2022. 16
Table 2 – Comparison of development approaches from reviewed works. 74
Table 3 – Modeling concepts for EMSML. 98
Table 4 – Comparison of integration architectures. 117
Table 5 – Source code metrics for AVC and JBVRC. 136
Table 6 – Profiling information for JBVRC and AVC. 138

LIST OF ACRONYMS

INITIALISM

3GL Third-generation Programming Language
ABI Application Binary Interface
AGC Automatic Generation Control
ALFC Automatic Load Frequency Controller
AMoDE-RT Aspect-oriented Model-Driven Engineering for Real-Time Systems
AO Actor-Oriented Programming Model
AOSD Aspect-Oriented Software Development
API Application Program Interface
AQL Acceleo Query Language
AVC Automatic Voltage Control
AVR Automatic Voltage Regulator
CCR Central Control Room
CF Constant Frequency control mode
CGH Central Geradora Hidrelétrica
CIM Common Information Model
CNI Constant Net Interchange
COTS Commercial Off-The-Shelf
CPS Cyber-Physical Systems
CT Continuous-Time Model of Computation
D-SPADES Domain-Specific Power Applications Development Environment and Strategy
DA Data Analytics
DC Direct Current
DG Distributed Generator
DSL Domain Specific Language
DSML Domain Specific Modeling Language
DTS Dispatcher Training Simulator
EMF Eclipse Modeling Framework
EMS Energy Management System
EMSML Energy Management Systems Modeling Language
EMSOnto Energy Management System Ontology
ERG60 Esquema de Redução de Geração em 60 Hz
FSM Finite State Machine
GIS Gas Insulated Switchgear

HVDC High Voltage Direct Current
IDL Interface Definition Language
IEC International Electrotechnical Commission
IED Intelligent Electronic Devices
IIR Infinite Impulse Response
IoT Internet of Things
JBVRC Joint Bus Voltage/Reactive Control
JCAP Joint Control of Active Power
JTC Joint Turbine Control
JVC Joint Voltage Control
LCR Local Control Room
LDC Load Dispatch Center
LFC Load Frequency Control
M2M Model-to-Model
M2T Model-to-Text
MARTE Modeling and Analysis of Real-Time and Embedded systems
MAS Multi Agent System
MDE Model Driven Engineering
MDERG Model-Driven ERG60
ML Machine Learning
MMS Manufacturing Message Specification
MoC Model of Computation
MOFM2T MOF Model to Text Transformation Language
MoML Modeling Markup Language
MPC Model Predictive Control
ODE Ordinary Differential Equation
OMG Object Management Group
OO Object-Oriented
OPC-UA OPC Unified Architecture
OS Operating System
PCH Pequena Central Hidrelétrica
PLC Programmable Logic Controller
PN Process Network Model of Computation
PSAL Power System Automation Language
PSS Power System Stabilizer
RAS Remedial Action Scheme
RPC Remote Procedure Call
RTU Remote Terminal Unit
SCADA Supervisory, Control and Data Acquisition System

SCADA/EMS Supervisory Control and Data Acquisition / Energy Management System
SDF Synchronous Dataflow Model of Computation
SEP-765 Sistema Especial de Proteção 765 kV
SGAM Smart Grid Architecture Model
SLOC Source Lines Of Code
SysML Systems Modeling Language
UML Unified Modeling Language
XMI XML Metadata Interchange
XML Extensible Markup Language

CONTENTS

1 INTRODUCTION . 15
1.1 SUBJECT OF STUDY . 18
1.1.1 Research Questions . 19
1.2 THESIS GOALS . 20
1.2.1 Specific Deliverables . 21
1.3 CONTRIBUTIONS AND RELEVANCE 21
1.3.1 Originality . 22
1.3.2 Relevance . 23
1.4 SCOPE DELIMITATION . 24
1.5 ORGANIZATION . 25

2 CONCEPTUAL BACKGROUND . 26
2.1 MODELS AND MODELING . 26
2.2 MODELS IN SOFTWARE ENGINEERING 30
2.2.1 No Silver Bullet . 32
2.2.2 Advantages of the MDE Approach to EMS Applications 33
2.2.3 Situating our Proposed Approach . 34
2.3 MODELING PARADIGMS, LANGUAGES AND TOOLS 34
2.3.1 Actor-Oriented Programming Models . 35
2.3.2 Characteristics of AO Models and Design Environments 36
2.3.3 Advantages of the AO Model . 39
2.3.4 The Ptolemy II Tool . 41
2.4 CHAPTER SUMMARY . 44

3 BACKGROUND ON THE APPLICATION DOMAIN 45
3.1 A TYPICAL HYDRO POWER PLANT 45
3.2 OVERVIEW OF THE HYDRO POWER PRODUCTION PROCESS . 46
3.2.1 Speed, Frequency and Active Power Regulation 49
3.2.1.1 Prime Mover, Generator and Load: Frequency Deviation 49
3.2.1.2 Primary Regulation: the Speed Governor 50
3.2.1.3 Secondary Regulation: Load Frequency Control 52
3.2.2 Voltage and Reactive Power Regulation of Synchronous Generators 53
3.2.2.1 Primary Regulation: the Generator’s Excitation System Model 54
3.2.2.2 Voltage and Reactive Power Reference - Secondary Regulation 56
3.3 SOFTWARE COMPONENTS AND POWER SYSTEMS CONTROL . 57
3.3.1 Hierarchical Organization of Power Plant Controls 57
3.3.2 Classification of Power Plant Controls . 58
3.3.3 Energy Management and Automation . 60
3.3.4 Development Process of Energy Management Applications 60
3.4 THE ITAIPU CASE STUDY . 63
3.4.1 Overview of Itaipu Project . 64
3.4.2 Itaipu Power Plant Control and Supervision 66
3.4.3 Automatic Control Functions in Itaipu . 68
3.4.3.1 Automatic Generation Control . 69
3.4.3.2 Plant Level Joint Bus Voltage and Reactive Power Control 70

3.4.3.3 Centralized Emergency Control Schemes 70
3.4.4 Simulator and Production Environments 71
3.5 CHAPTER SUMMARY . 71

4 LITERATURE REVIEW AND STATE OF THE ART 73
4.1 REVIEW OUTLINE . 73
4.1.1 Research Questions for the Review . 73
4.2 INFORMATION COLLECTED FROM THE REVIEWED WORKS . 74
4.2.1 Applications not Related to Power Systems 75
4.2.1.1 Breesse . 75
4.2.1.2 AMoDE-RT . 75
4.2.2 Approaches Based on Standards for Power Systems 76
4.2.2.1 IEC Standards and Ontologies . 76
4.2.2.2 CIM-based . 76
4.2.3 Smart Grids and Other Power Applications 77
4.2.3.1 Rapid Prototyping of Smart Grid Applications 77
4.2.3.2 FMDE4SGRID . 78
4.2.3.3 ThingML+ . 79
4.2.3.4 Power-Attack . 79
4.2.4 Approaches Based on Control Theory . 79
4.2.4.1 MPC-based Algorithm . 79
4.2.4.2 Event-Triggered DG Control . 80
4.2.4.3 The DFR Algorithm . 80
4.2.4.4 Classical Control Theory . 80
4.2.4.5 NewSART Project . 81
4.3 ANSWERS TO THE REVIEW’S RESEARCH QUESTIONS 82
4.3.1 Open Problems . 85
4.4 REVIEW CONCLUSIONS . 86

5 THE D-SPADES APPROACH TO EMS SOFTWARE DEVELOPMENT 88
5.1 D-SPADES SOFTWARE PROCESS . 88
5.1.1 Problem Characterization and Requirements Elicitation 89
5.1.2 Environment Modeling . 90
5.1.3 Application Model Design and Construction 91
5.1.4 Model Testing and Validation . 92
5.1.5 Model Transformation . 93
5.1.6 System Validation . 94
5.1.7 Release and Deploy . 94
5.1.8 Further Considerations: Maintenance and Evolution 95
5.1.9 Simplified Workflow . 95
5.2 A MODELING LANGUAGE FOR EMS APPLICATIONS 96
5.2.1 Domain Analysis . 97
5.2.2 Modeling Language Design . 99
5.2.3 Modeling Language Validation . 103
5.3 MODEL TRANSFORMATIONS . 105
5.3.1 Model Conversion . 106
5.3.2 Mapping the AO Model into a Sequential Programming Model 106
5.3.2.1 Mapping SDF Models Into OO Programming Model 108
5.3.2.2 Mapping AO Models Into Structured Programming Model 109

5.3.3 Closing the Gap Between AO Models and Target Code 111
5.4 TOOL SUPPORT FOR D-SPADES . 112
5.4.1 Actor-oriented Modeling Environment . 114
5.4.2 Model Processing Tools . 114
5.4.3 Component Libraries . 115
5.4.3.1 Integration with Base SCADA . 115
5.5 EXTENDING D-SPADES . 117
5.5.1 Adding New Actors . 117
5.5.2 Extending the Support for Models of Computation 119
5.5.3 Different Programming Languages . 119
5.6 REMARKABLE FEATURES OF D-SPADES 120
5.7 CHAPTER SUMMARY . 122

6 APPLYING D-SPADES TO CONSTRUCT FUNCTIONAL APPLICA-
TIONS . 123

6.1 RUNNING EXAMPLE: SIMPLE CLOSED-LOOP CONTROLLER . 123
6.2 CASE STUDY 1: JBVRC APPLICATION 125
6.2.1 Equipment and Systems Involved . 126
6.2.2 Overall Requirements of the JBVRC Application 127
6.2.3 Modeling the Physical Process . 128
6.2.4 Modeling the JBVRC Application . 130
6.2.5 Integrating JBVRC Into the Base SCADA 133
6.2.6 Results . 135
6.2.6.1 Source Code Metrics . 135
6.2.6.2 Functional Performance . 136
6.2.6.3 Computational Performance . 138
6.3 CASE STUDY 2: ERG60 APPLICATION 139
6.3.1 Equipment and Systems Involved . 140
6.3.1.1 Earlier Versions of ERG60 . 141
6.3.1.2 Evolution of ERG60 . 141
6.3.2 Overall Requirements of MDERG . 142
6.3.3 Proposed Architecture . 143
6.3.4 Cyber-Physical Process and Application Model 145
6.3.4.1 Model Transformation . 146
6.3.5 Deployment and Test Results . 147
6.3.5.1 Functional Performance . 147
6.4 CHAPTER SUMMARY . 148

7 CONCLUSIONS AND FUTURE WORK 149
7.1 ANSWERS TO RESEARCH QUESTIONS 149
7.2 THESIS CONTRIBUTIONS . 151
7.2.1 Publications . 153
7.3 FUTURE WORK . 154

REFERENCES . 155

APPENDIX 168

APPENDIX A – EMSML METAMODEL UML CLASS DIAGRAM . 169

APPENDIX B – THE TOY JBVRC CONTROLLER XMI FILE,
GENERATED CODE AND EXAMPLE PROGRAM . 170

APPENDIX C – HIERARCHICAL COMPOSITION OF THE JB-
VRC AND PHYSICAL PROCESS 176

15

1 INTRODUCTION

Reliable power systems operations nowadays depend on computerized digital control

systems known as Supervisory Control and Data Acquisition / Energy Management System

(SCADA/EMS). The so-called Energy Management System (EMS) applications1 perform tasks

such as short-term hydro scheduling, joint voltage and reactive power control, and automatic

generation control. They are typically executed at the power system’s control centers and also in

large power plants’ control rooms (OLIVEIRA et al., 2017; CASTRO et al., 1992; JALEELI et

al., 1992).

Large hydropower plants are the primary source of electricity for the Brazilian grid.

According to official reports from the Brazilian National Electricity Agency, more than 50%

of the installed generating capacity corresponds to this type of source (ANEEL - Agência

Nacional de Energia Elétrica, 2022). Table 1 gives detailed information on the current electricity

mix, by type of source, in the Brazilian grid. Notice that plants designated as Pequena Central

Hidrelétrica (PCH) (rated between 5 and 30 MW), and Central Geradora Hidrelétrica (CGH)

(rated below 5 MW) correspond to less than 3.5% of the total installed capacity, while large

hydropower plants correspond to roughly 55% - thus our emphasis on the importance of this

type of source for the Brazilian grid. A relevant consideration is that, according to the ANEEL

information system, only the 60Hz portion of Itaipu Power Plant is accounted for in this electricity

mix, which corresponds to 7 GW - half of its installed capacity. The energy supplied by the

50Hz sector is accounted as import, therefore this portion (7 GW) is not even considered for the

Brazilian electricity mix. In other words, the overall importance of large hydropower plants for

the Brazilian grid is even greater than the proportion conveyed in Table 1.

Therefore it can be said that the bulk of the electricity delivered to consumers in Brazil

originates from large hydropower stations, some of which are rated among the biggest currently

operating in the world. Some of these plants are operational for more than three decades, having

been subject to different levels of overhauls. Overhauls and modernizations are usually intended

to improve reliability, increase production, reduce operational costs, and also comply with
1 In this work we employ the term “EMS” primarily to refer to software components performing control and

support functions at the centralized and off-site level of power plant control, according to the hierarchical
structure classified in the IEEE 1249-2013 Standard (IEC/IEEE, 2013), discussed in Section 3.3. A more general
definition of EMS, as discussed in Section 3.3.3, might include several other system-wide grid analysis functions,
like state estimation and contingency analysis.

16

Table 1 – Brazilian electricity mix by the end of year 2022.
Type Number Capacity (kW) Percentage

Large Hydro 215 103,195,357.00 54.63%
Thermo 3141 46,548,804.41 24.64%
Wind 880 23,577,523.86 12.48%

Photovoltaic 17904 7,078,613.67 3.75%
Hydro (PCH) 428 5,662,018.57 3.00%

Nuclear 2 1,990,000.00 1.05%
Hydro (CGH) 719 861,390.42 0.46%

Total 23289 188,913,707.93 100%
Source: ANEEL - Agência Nacional de Energia Elétrica (2022).

regulatory requirements (MENDES, 2011).

Although the technology behind the process of transforming hydraulic energy into

electricity and delivering it to the customers (e.g., turbines, generators, switchgear, transformers,

and power lines - designated as the primary system (MENDES, 2011)) remained essentially

unchanged during these decades, the process control and protection (designated as the secondary

system) has changed radically. The current digital technology applied to control and protection

includes programmable controllers, intelligent protective devices, data acquisition, and moni-

toring equipment. Those components are all interconnected through a complex data network,

usually orchestrated by a computerized central control system: the SCADA/EMS. The digital

secondary system fits the description of Cyber-Physical Systems (CPS) (LEE; SESHIA, 2011) in

the sense that it integrates computation with physical processes through feedback control loops

where the processes affect computations and vice versa.

The lifespan of digital control systems is usually shorter than that of electromechanical

equipment (MENDES, 2011), for several reasons. In other words, secondary systems change

more frequently than primary systems. Therefore, during the power plant’s life span, its control

system is expected to go through several upgrades. A similar rationale applies to the power

system as a whole, including transmission and distribution infrastructure. In the power system’s

community it is generally accepted that the expected lifespan of a SCADA/EMS system is in the

range of 5–10 years (KUIJLAARS, 2015). In our experience at the Itaipu power plant, upgrades

have been performed approximately every 10 years. In this scenario of frequent upgrades, control

principles are not necessarily changed, but the target platform (controllers, computer systems)

may change radically. Control functions developed for a given platform may be incompatible

with the upgraded system, possibly having to be re-implemented from scratch. Re-implementing

functions, besides increasing cost and development time, also presents risks of introducing new

software defects.

17

Ideally, it should be possible to reuse, in future control system upgrades, functions

that were previously well-specified and verified. Another desirable feature is the possibility of

automatically transforming the domain-specific models representing the power plant control

systems into software artifacts for a given target platform. A complementary feature of this

scenario is the possibility of performing improvements to the control functions using a high-level,

domain-specific language, independent of the underlying platform and computer programming

models.

Model Driven Engineering (MDE) is an approach to system engineering that can help

tackle challenges such as those mentioned above. The following two concepts are central to

MDE (SCHMIDT, 2006):

1. Domain-specific modeling languages that can formally represent the application’s re-

quirements, structure, behavior, and possibly other technical aspects within a particular

domain, such as the power plant control system;

2. Transformation engines and generators that can process models described using the

above languages, and produce various types of software artifacts, such as source code, simu-

lation inputs, Extensible Markup Language (XML) deployment descriptions, or alternative

model representations. Software artifacts produced by automatic model transformation

ensure consistency between the design and actual implementations.

MDE consists in constructing high-level abstract models for the system under devel-

opment, and then systematically transform them into concrete implementations (FRANCE;

RUMPE, 2007; SELIC, 2003). The idea of “concrete implementations” may include VHDL

code (LEITE; WEHRMEISTER, 2016), program source code (WEHRMEISTER et al., 2013)

(and consequently executable programs), configuration files (WEHRMEISTER et al., 2014), or

several other types of artifacts. By employing an abstract domain-specific representation and

automatically transforming it into lower-level artifacts, MDE can help cope with the complex-

ity involved in developing software for one particular target platform. Moreover, if the target

platform changes, the model remains valid and the software can be more easily ported to the

new platform. This portability, however, often depends on the use of standardized middleware,

Application Program Interfaces (APIs) or frameworks, rather than lower-level Operating System

(OS) APIs.

18

1.1 SUBJECT OF STUDY

Given the characteristics and complexity of each hydroelectric project, some of the

EMS functions need to be customized or developed in a “tailor-made” fashion for that particular

project. In these cases, the deployed systems are not the standard Commercial Off-The-Shelf

(COTS) products supplied by vendors in the energy management market and may include

modifications to the original software, new modules developed for the project, integrations with

legacy systems, and other third-party software packages. These customized solutions, although

sometimes inevitable, bring serious disadvantages for the product’s life cycle management

(VAN-SLYKE, 2015), such as:

• Higher cost for initial purchase;

• Higher maintenance contract costs;

• Risk of introducing software defects due to customization;

• Future system upgrades are challenging.

Particularly in the event of a system upgrade, or possibly a migration to a different

product line, the impact of customized solutions becomes more dramatic. Modifications made to

specific modules on a given release may not be applicable to the newer release and may need a

complete redesign. Extra modules integrated into one release of the product may be difficult to

port to a different release, or even impossible to migrate into a different product line.

One particular example, Itaipu’s digital control system (SCADA/EMS), was deployed

in the early 2000s and has already undergone two upgrades. It was supplied by a well-known

vendor of energy management and automation systems and includes a considerable degree of

customization and special functions developed exclusively for the project. A certain degree of

customization was deemed necessary given the particular control requirements dictated by the

characteristics and complexity of the Itaipu project. A significant portion of the customized

software originally deployed in early 2000, including voltage and generation control, has survived

these upgrades, although these applications have evolved, with new functionalities being included

along this period. Since the original deployment, these applications have been executed on top of

three different SCADA, consisting of different hardware, operating system, and software version,

and a fourth one is already on the roadmap.

19

Therefore, this study concerns methods and technologies for the modeling, development,

and maintenance of EMS applications, as well as its integration with the centralized digital

control, or Supervisory, Control and Data Acquisition System (SCADA) layer. More specifically,

we evaluate the applicability of Model Driven Engineering approaches to the development and

maintenance of these applications. Such approaches can cope with the complexity, mitigate

risks and reduce costs of the life cycle management of the SCADA/EMS. This work focuses on

large hydropower plant applications and extensively refers to practical examples drawn from the

Itaipu Power Station. However, the approach proposed here can be extended and applicable to

other power system installations, for instance: power plants based on other energy sources (e.g.,

thermal, wind, and solar farms), large substations, regional off-site control centers, and systems

operators’ dispatch centers.

1.1.1 Research Questions

The subject of this research relates to both the software engineering and supervisory

control / energy management disciplines. By developing this project, we have addressed concerns

that pervade these two areas:

From the Energy Management perspective, particularly concerning the development

and evolution of EMS applications, we have formulated answers to the following research

questions:

1. Can we choose an appropriate format for modeling EMS applications? The meaning of

“appropriate” in this context is that the models should express domain-specific concepts,

be reusable between system upgrades, easily extensible and modifiable by the domain

specialists.

2. How can the proposed approach contribute to improve model verification and validation

(V&V) (reduce “bugs” - design or implementation defects)?

3. Is it possible to automate the transformation of these models into executable artifacts? (the

transformation should be at least partially automated, and should involve a minimum effort

in writing program code).

4. Is it possible to integrate these executable artifacts with both the existing and future

generations of the centralized control systems? (possibly by means of standard protocols

20

or APIs).

From the Software Engineering perspective, we have investigated and applied MDE

techniques to energy management software development, particularly seeking answers to the

following questions:

1. Is it possible to model the behavior and structure of EMS applications using a high-level

domain-specific language? What kind of language is indicated for this application domain?

The languages must offer the resources for correctly and unambiguously specifying the

desired behavior, and at the same time abstracting low-level platform details from the

modeler.

2. Is it possible to reuse existing/legacy artifacts (specifications, block diagrams, or programs

written in third-generation languages) in the model construction, or should the model be

rewritten from scratch? We expect that documented block diagrams and transfer functions

of the current systems design can be expressed in the proposed language with few changes.

Existing code implementing self-contained operations can be also reused.

3. Which transformation techniques and tools can be used to translate the requirements and

specified behavior from a high-level modeling language into software artifacts?

4. How can these software artifacts be integrated with existing commercial supervisory

control systems? This involves integration with industry standards specific to power

systems, particularly power plant control.

1.2 THESIS GOALS

The goal of this research is to propose a novel approach to the development of EMS

software, based on MDE concepts. This approach provides a higher level of abstraction for the

construction of EMS applications, above the programming language layer, offering advantages

regarding both productivity and software quality. It enables the generation of executable software

artifacts from high-level models of power system processes. The approach is supported by a

set of tools that can be used systematically in the development of this category of applications.

The approach can be used either by utilities, software providers, and integrators in the power

system’s area. It can also be further extended to other categories of industrial applications, such

21

as automation software, PLC programming, simulation packages, or other technical fields where

the same type of abstract models are applicable.

1.2.1 Specific Deliverables

The following deliverables are produced with the development of this project:

1. A basic software process applicable to EMS software development is delineated, identify-

ing the main activities involved.

2. A domain-specific language for modeling energy management applications is proposed,

with both abstract and concrete syntaxes.

3. A set of software tools that can support the development process is identified, including

the modeling environment, simulation, transformation engines, compilers, and libraries.

Additional artifacts needed for a complete and functional development environment, like

transformation templates and software component libraries, are also developed.

4. The applicability of the proposed methodology and development environment is demon-

strated through both proof-of-concept and real-world applications from the Itaipu power

plant. These applications have shown satisfactory logical and timing performance.

1.3 CONTRIBUTIONS AND RELEVANCE

In this research, we propose an MDE-based approach called Domain-Specific Power

Applications Development Environment and Strategy (D-SPADES) consisting of process,

languages, and tools that are tailored to develop and maintain automatic, centralized, EMS

applications intended to run on top of the SCADA of hydropower plants. D-SPADES can be

viewed as a platform, according to the definition given by Lee et al. (2002), in the sense that

it provides additional layers of abstraction in the design flow of power plant supervisory and

control applications. D-SPADES is established upon the following components:

1. An actor-oriented Domain Specific Modeling Language (DSML) called Energy Manage-

ment Systems Modeling Language (EMSML) tailored for modeling EMS applications.

This language is designed to be “intuitive” in the sense that it is composed of elements

and concepts familiar to the power plant specialists, which are not necessarily literate in

22

software development techniques. EMSML allows power system specialists to express

their intended EMS application design, without necessarily requiring computer or soft-

ware engineering skills. The models specified through EMSML follow the actor-oriented

paradigm. They conform to the EMSML metamodel definition, which consists of a sim-

plified version of the MoML metamodel (LEE; NEUENDORFFER, 2000). In practice,

EMSML uses a specialized and more restricted set of the “Ptolemy II” (LEE, 2014) actors

and models of computation.

2. The mapping strategies for model transformation from actor-oriented to object-oriented

and/or procedural programming models, which are applied in order to generate source

code and produce functional executable artifacts.

3. The tool support for the approach, including modeling tools, transformation languages,

actors implementation, and SCADA integration libraries. We have demonstrated the ap-

plicability of D-SPADES using a chain of tools including: ‘Ptolemy II” modeling and

simulation environment, Eclipse Modeling Framework (EMF) 2 tools like the ATL and

MTL languages, along with the Acceleo3 tool for source code generation. Finally, the gen-

erated source code is processed by the compiler toolchain of the target language/platform to

produce the deployable artifacts. Integration with the underlying SCADA can be achieved

using either the proprietary vendor’s API or the open standard IEC-625141/OPC-UA.

4. A software process, consisting of a coherent set of activities for EMS software production.

Such activities include the specification, design, and implementation flow (including

integration techniques with existing systems), validation, and software evolution. The

successful application of D-SPADES involves the coordinated execution of all these

activities.

1.3.1 Originality

We have performed a systematic literature review of published works related to the

design and development of EMS functions and other closely related applications (NEIS et al.,

2019). This review is extended and further discussed in Chapter 4. In that survey, we have

collected evidence that such applications are more commonly modeled using concepts specific
2 https://www.eclipse.org/modeling/emf/
3 https://www.eclipse.org/acceleo/

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/acceleo/

23

to the power systems’ domain, like block diagram notations and transfer functions, rather

than traditional techniques and tools from the software industry, like the Unified Modeling

Language (UML). In other words, the domain-specific concepts used in this area are different

from traditional software modeling notations. The transformation of such models into software

implementations, however, is a subject that still needs further research. We have also verified

that few studies have investigated MDE approaches to the development of EMS applications, as

will be further discussed in Chapter 4.

The D-SPADES approach thus proposes to fill these gaps by:

• Proposing a modeling language and components library enriched with domain-specific con-

cepts, so that power system specialists may more easily participate in the EMS applications’

development process;

• Providing an approach for automatically transforming these models into software imple-

mentations.

We were unable to identify any previous publications specifically dealing with these problems,

and with the level of detail described in this thesis.

1.3.2 Relevance

Some of the biggest hydropower plants in Brazil are operational for more than three

decades. Overhauls and upgrades to these plants’ control systems are eventually necessary in

order to improve reliability, increase production while reducing operational costs, and also

comply with regulatory requirements (MENDES, 2011). As explained above, a great deal of the

Brazilian electricity demand is met by hydropower plants. Therefore reducing the development

cost and improving the reliability of the plant’s operations are relevant contributions to the

research community and general society.

Specific motivations for this research arise from immediate needs and concerns observed

during the ongoing and planned secondary systems upgrades in the Itaipu power plant4, although

other installations in the power sector or even different industrial activities may benefit from

such an approach. From our experience in the Itaipu operation, we have observed that COTS

SCADA/EMS products are unable to satisfactorily conform to operational requirements, thus
4 Information about the Itaipu modernization plan is available at: http://www.itaipu.gov.br/en/technology/

technological-upgrade.

http://www.itaipu.gov.br/en/technology/technological-upgrade
http://www.itaipu.gov.br/en/technology/technological-upgrade

24

demanding customization and shared development among the provider and the customer. Such

specialized and customer-unique applications on the other hand may potentially offer strategic

advantages to the organization.

D-SPADES has already proved useful in the development activities related to the

upgrade of a system-wide special protective scheme in the Itaipu power plant, as will be further

discussed in Chapter 6. With the ongoing modernization of the Itaipu power plant, which includes

the deployment of a brand new SCADA/EMS, we expect that other projects may be conducted

using D-SPADES.

1.4 SCOPE DELIMITATION

This work proposes a Model Driven Engineering approach to the development of EMS

applications for hydro power plants. We investigate matters related to:

• High-level domain-specific languages that can be used to model power plant control

functions, as well as other power systems applications.

• Transformation engines and generators capable of processing high-level models and

producing software artifacts. The term “high-level models” in this work refers to “levels of

abstraction above the code level” (FRANCE; RUMPE, 2007), particularly those that are

based on paradigms used at problem-level modeling.

• The necessary infrastructure for integrating and deploying the above-mentioned software

artifacts along with existing centralized digital control systems, including standardized

API, middlewares, and/or communication protocols.

• A software process suited for this kind of application, particularly with the capability

of accommodating future evolutions of both the control functions and the third party’s

centralized control system.

This work is not primarily intended to:

• Contribute with control theory or elaborate novel controller models;

• Compare or evaluate control strategies and controller performance;

• Design, evaluate or compare commercial SCADA software or hardware platforms.

25

Additionally, we emphasize that most of the developments presented in this thesis do not yet

constitute finished or commercial products. Although we present one case study where the

application of D-SPADES resulted in production-grade software, this is not the main objective

of this research.

1.5 ORGANIZATION

The remainder of this thesis is organized as follows: Chapter 2 presents some of the

fundamental notions of models and modeling in science and engineering. This chapter helps lay

out our view of the importance of models when used as layers of abstraction for problem-solving

and building engineering solutions. Chapter 3 explains the fundamental concepts of power

systems operations and control, focusing on hydropower plants. Readers with proficiency in

the subject may skip this particular chapter. Chapter 4 discusses previous works related to the

development of applications for power systems and similar industrial areas, emphasizing the

existing gaps which our research proposes to fill. Chapter 5 describes the D-SPADES MDE

approach, including the EMSML language, the model transformation strategy, and the proposed

software process. Chapter 6 describes the application of D-SPADES to case studies, as well as

results and discussion. Finally, Chapter 7 presents conclusions and discusses directions for future

work.

26

2 CONCEPTUAL BACKGROUND

In this introductory chapter, we present some of the fundamental notions of modeling in

science and engineering. We discuss how modeling paradigms are arranged in layers, therefore

raising the level of abstraction in which the engineering problems are dealt with. We give an

introduction to the roles of modeling in software engineering: the concepts, advantages, and

limitations of a model-driven approach to this area. Finally, we point to the potential benefits of

an MDE approach to the development of applications in the power systems domain.

2.1 MODELS AND MODELING

Modeling is a central activity in any scientific and engineering area. Models are ab-

stractions of reality, offering approximations. Strictly speaking, it would imply that all models

are wrong, although some are useful, as quoted by Box and Draper (2007). Therefore, besides

those inherent limitations, models have the ability to provide insight and predict the behavior of

a process (LEE, 2014). Models are used in place of the real components of a system (physical,

logical, or both), to allow a simpler, safer, and cost-effective way to study and design these

components. A model can be either: (a) concrete when it is constructed as a material object in the

physical world – like a small-scale model of a dam or building; or (b) abstract when any material

realization of the model is just incidental – like written mathematical equations representing

some phenomena or a diagram drawn in paper. In both science and engineering, the “thing being

modeled” is typically an object, process, or system in the physical world, although it could also

be another model (LEE, 2016; LEE, 2018).

We convention to call the “thing being modeled” the target of the model. In all En-

gineering fields, the “targets” are constructed in such a way that they emulate the properties

of the models. In other words, the models provide the design, while the target is the actual

implementation.

The development of technology is strongly influenced and governed by paradigms. A

paradigm is “a conceptual framework that practitioners use, often unknowingly, to interpret

observations and develop theories” (LEE, 2018). Paradigms are often so entangled in our minds

that we can’t even perceive their existence, yet they shape our understanding of the world around

us. Lee (2018) refers to such paradigms as “unknown knowns”: knowledge we possess without

27

being consciously aware. For instance, Newton’s second law (𝐹 = 𝑚 · 𝑎) is a model of an

object’s motion when subjected to a force. It has meaning within paradigms like the concepts

of force, Newton/Leibniz calculus, and the Newtonian notion of time and space, although no

physical explanation is attributed to these concepts in classical mechanics1. Yet civil engineers

are perfectly capable of designing a bridge using classical mechanics: the paradigms related to

this field of expertise are part of their “unknown knowns”.

In Engineering, every design is a model, which can range, for instance, from a simple

sketch of a part to a sophisticated schematic of a complex electrical network. Such models are

constructed within modeling frameworks that provide the syntax – how it is written down or

rendered in physical form, and the semantics – the meaning of a given rendition (LEE, 2016).

The paradigms of a modeling framework frequently fall into the category of the “unknown

knowns”.

Another interesting property of engineering models is that they stack up in layers, and

the design of each layer generally affects only the designs in layers immediately above and

below it (LEE, 2018). Let’s imagine an example: the e-commerce application schematically

represented as a layered perspective in Figure 1. Many layers of modeling exist between the

semiconductors of the physical computer and the e-commerce application. Assume the designer

decides to use the PHP language to develop this application2. He definitely requires knowledge

of PHP technology (layer 2). He also requires knowledge of the business logic requirements

for the application – the layer above (1), and normally some basic understanding of the runtime

platform where the PHP application is deployed – the layer below (3), which normally includes

a web server like Apache and associated libraries. The PHP runtime platform though is layered

on top of other technologies: the web server and the PHP interpreter module themselves are

written in third-generation programming languages like C/C++ (layer 4). But the designer of our

e-commerce application requires no knowledge of C/C++ language in order to accomplish his

task, yet he is indirectly making use of the technologies on this level of abstraction.

So we have seen that the e-commerce application (1), written in PHP (2), is deployed

on the web server (3), written in a third-generation programming language (4). If we keep

digging deeper into the layers of Figure 1, we see that programs written in a third-generation

programming language (4) are transformed into an assembly language for a given instruction
1 Sir Isaac Newton rather built a self-consistent and self-referential model where these concepts are defined one in

terms of each other.
2 This example is inspired by the ones given by Lee (2018).

28

Figure 1 – A conjectural e-commerce application built on top of several layers of modeling paradigms.

Source: The author.

set architecture (5), which through a process called compilation originates executable code that

runs in equipment that follows digital machine models (6). Digital machines are capable of

performing arithmetic operations and manipulating bits representing text. They are built by

associating several blocks of synchronous digital circuits, abstracted as logic diagrams (7). Logic

diagrams represent a network of logic functions, each one corresponding to a natural language

operation such as “AND”, “OR” and “NOT”, called “logic gates” (8). Logic gates in turn can be

modeled as an association of digital switches (9) built using transistors. To produce transistors on

a silicon wafer, a layout (10) following the Mead-Conway approach is usually designed. Finally,

a digital processor (11) can be built into a chip, where the target of our e-commerce application

model (1) can be deployed.

Thus the arithmetic expressions supported by the digital machine become a virtual

medium for expressing models, which are translatable into physical manifestations through one

level of indirection (LEE, 2018). The models in higher levels also show a transitive relation

29

to the lower levels, which in other words means all models expressible at a given layer can be

translated into the lower layer (but the opposite is usually not true). For instance, a script written

in PHP language can be mapped to the set of PHP library functions it calls. In turn, each PHP

library function can be mapped into a C procedure and so on. On the other hand, not every C

procedure can be mapped back into a PHP script.

Ultimately one could argue that all those eleven layers of modeling paradigms refer

to a final realization of the e-commerce application: the interaction between interconnected

transistors in a chip. So, theoretically, one could implement our e-commerce application by

building a large network of transistors, but that certainly wouldn’t be the most productive and

flexible way. In a realistic scenario, people write a software program that is translated into a

binary pattern that controls a machine composed of a network of transistors.

Consider a less extreme case: imagine that we want to go just two layers down, and

develop our e-commerce application directly on a third-generation programming language like

C; although perfectly feasible, the required development effort would be considerably larger

using plain C language rather than PHP; and the system produced with such an approach would

be considerably more complicated to maintain and evolve. So it is inevitable to ask: why PHP

appears to be better suited for the development of an e-commerce application than plain C? The

PHP project page3 describes PHP as “a general-purpose scripting language that is especially

suited to server-side web development”. On the other hand, Kernighan and Ritchie (1978) state

that “C provides no operations to deal directly with composite objects such as character strings,

sets, lists or arrays...”, but the language “reflects the capabilities of current computers”; in other

words, C provides constructs that map efficiently to typical machine instructions, which operate

on bits and bytes. Both languages appear to be well suited for tasks at their respective level of

abstraction: PHP development involves heavy manipulation of strings, images, and files, while C

programs can efficiently manipulate bits and bytes inside the processor’s registers.

The idea is that an engineer in charge of designing and developing a web application is

not required to manipulate bits and bytes directly, and certainly doesn’t need to possess deep

knowledge of semiconductor physics in order to deploy his application on a digital processor.

Actually, no single person can possibly master the knowledge to perform all the tasks from

top to bottom: each layer of modeling allows individuals to contribute to the design without

(necessarily) having knowledge or concern about how the layer of modeling they are creating
3 https://www.php.net/

https://www.php.net/

30

will be used by other designers (LEE, 2018) In fact, the developer doesn’t need to be aware of

any of the intermediate levels of abstraction, except possibly for the ones immediately above

and below the PHP language, and still be capable of developing a full-fledged application. Lee

(2016) has observed that the choice of modeling framework has profound consequences, since

a language suited for a task like 3D modeling is not well suited for modeling the dynamics

of an electric circuit, while the paradigms used in the design of such circuits are not the most

adequate for producing a computer program. The modeling task becomes more productive when

performed at the adequate level of abstraction for the task at hand: in the example from Figure

1, PHP is the right paradigm4 to model a web application, while the C language is the right

paradigm to model the web server and the PHP interpreter module.

In other words, the choice of the appropriate level of abstraction strongly affects how

effectively an engineering task can be accomplished. Likewise, modeling an application for a

given domain using languages based on paradigms familiar to the specialists of that domain have

the potential to increase productivity and product quality. However, we have to point out that

there is a price to be paid for designing at higher levels of abstraction:

• The transitivity property implies that at higher levels, fewer possibilities are available to

the designer. For instance: the set of operations that can be performed in a PHP script is

limited by the functions implemented in the PHP library. There are many other operations

that can be performed in the layer below (the C language) that are simply not available in

the layer above.

• There is usually a performance cost involved in designing at higher levels of abstraction.

For instance: a PHP script that prints the string “Hello, World!” will usually run slower

and require more computational resources than its C counterpart.

These limitations however tend to be vastly paid off by design productivity and scalability.

2.2 MODELS IN SOFTWARE ENGINEERING

France and Rumpe (2007) had observed that the process of analyzing a problem,
conceiving and expressing a solution in a high-level programming language can be viewed
as an implicit form of modeling. Therefore even traditional software development tasks can
be classified as model-based problem-solving activities. Writing code is a modeling activity
4 The “right paradigm” in the sense that it is at the adequate level of abstraction.

31

because it requires knowledge of the conceptual framework – the paradigms – provided by
a programming language. However, as we have discussed above, the paradigms of a specific
programming language may not be the most adequate for describing models of a given problem
domain. France and Rumpe (2007) argue that the modeling techniques should be more effectively
leveraged in software development, and the research question that motivates MDE research
should be:

How can modeling techniques be used to tame the complexity of bridging the
gap between the problem domain and the software implementation domain?
(FRANCE; RUMPE, 2007), p. 4.

According to France and Rumpe (2007), a problem-implementation gap exists when a developer

implements software solutions to problems using abstractions that are at a lower level than those

used to express the problem. Based on our experience, we could say that most CPS development

activities performed today – particularly those related to EMS applications – suffer from the

problem-implementation gap: abstractions at a lower level than those used to express the problem

are being used to implement the software.

Models with the appropriate level of abstraction are essential for modern software

development, as evidenced by four main facts (BRAMBILLA et al., 2017):

1. Software artifacts may be highly complex, and need to be discussed at different abstraction

levels, depending on the profile of the involved stakeholder, phase of the development

process, and objectives of the project.

2. Software is already widespread in many human activities. The demand for new devel-

opments, as well as the maintenance and evolution of existing systems, is expected to

increase.

3. The job market experiences a shortage of skilled software development professionals.

4. Software development is not a self-standing activity: interactions between developers and

other professionals are often required during the process. Such interactions must be based

on a common understanding – a model – of the concepts being discussed.

In this sense, an interesting discussion is made on how models can be used5 (BRAMBILLA et

al., 2017):
5 This classification is used in Brambilla et al. (2017) and credited to Martin Fowler (https://martinfowler.com/

bliki/UmlMode.html).

https://martinfowler.com/bliki/UmlMode.html
https://martinfowler.com/bliki/UmlMode.html

32

1. models as sketches: they specify only partial views of the system, focused on communi-

cating some aspects (like documentation) rather than completeness;

2. models as blueprints: they provide a complete and detailed specification/design of the

system. As in other fields of engineering, such designs can be handed off to a separate

group to write the code, much as blueprints are used in civil or mechanical projects.

3. models as programs: models are used as the primary development tool, instead of lower-

level programming languages. Tools can be used to transform the models and compile

them into executable code.

According to France and Rumpe (2007) a general perception exists in that development

models are primarily documentation artifacts, and thus they are peripheral to software develop-

ment. This perception limits the use of high-level models to activity (1) above. However, during

the development process, models can be used in all the manners specified above. For instance,

sketches of a system can be used in early project discussions and design decisions (1); afterward,

complete models can be defined as system blueprints (2); and finally, the same blueprints can be

further refined to produce software artifacts (3) through transformations and code generation.

2.2.1 No Silver Bullet

Brooks Jr (1987) observes a distinction between two types of complexity that usually

emerge in software systems: “accidental” and “essential” complexity.

1. In essence, a software entity is an abstract construct of interlocking concepts, which

remains the same no matter the representation used (programming paradigm or language);

this complexity is inherent to the nature of software.

2. By accident some difficulties are observed in the production of software, but those are not

inherent; such difficulties are eliminated, for instance, by using high-level programming

languages which abstract the computer hardware and let the programmer concentrate on

the program construct.

Brooks Jr (1987) argues that advances like third-generation programming languages and object-
oriented programming can do no more than remove the accidental difficulties from the expression
of the design. The complexity of the design itself is essential and cannot be eliminated by such
techniques. Therefore, there is no “silver bullet”:

33

There is no single development, in either technology or management technique,
which by itself promises even one order-of-magnitude improvement within a
decade in productivity, in reliability, in simplicity (BROOKS JR, 1987), p. 2.

Although no technological leap or “silver bullet” is claimed by the current research, we

argue that developing software for a given domain of application can be much more productive

when performed using specialized tools and methodologies for that particular domain. For

instance, the methodologies and tools that are great for developing an e-commerce application

(javascript, HTML, CSS, etc) are certainly not the most appropriate for an embedded real-time

controller, which in turn could be better developed using specialized development environments,

languages, and associated libraries.

The role of MDE, as already mentioned above, is to promote technologies that support

the systematic transformation of problem-level abstractions to software implementations, thus

reducing the gap between problem analysis and software implementation domains (FRANCE;

RUMPE, 2007). So let’s imagine an engineer dealing with the complexities of managing the

operations of a large power plant or interconnected power system: what is the complexity of

program data structures, loops, and branches other than accidental for this engineer? Although

we do not claim to be able to increase productivity by one order of magnitude, we believe the

MDE approach may help dealing, not just with the accidental complexity, but also with essential

complexity, by re-using physical and business logic models already developed for other phases

of the CPS design.

2.2.2 Advantages of the MDE Approach to EMS Applications

Below we list some of the expected advantages of applying the MDE approach to EMS

applications development:

• Re-use, at least partially, the models described for planning, simulation, and validation in

the electromechanical domain for actual software development, instead of using them only

as input for the requirements elicitation phase of the software engineering process.

• Since models can be verified and validated, design correctness is assured at an early stage,

even before other software artifacts are produced. Therefore, the approach can reduce the

number of software defects due to design errors.

34

• Overall software quality is improved by applying a well-defined and highly automated

process, thus reducing defects due to implementation errors.

• Aspects like the consistency of implementation with respect to the design and requirements

traceability are enforced.

• Reduce the cost and effort involved in the procurement of SCADA/EMS. According to

(STRASSER et al., 2009) the software engineering process represents up to 80% of the

total cost of such systems.

2.2.3 Situating our Proposed Approach

The current EMS applications design process makes use of models only as sketches or

blueprints. In this work, we propose D-SPADES: a domain-specific approach to the engineering

of EMS applications. With this approach, the modeling activities are promoted to a central role

in the development process, offering a more appropriate layer of abstraction for describing the

software solutions. Figure 2 schematically represents the layers of paradigms involved in the

development of a power plant application using D-SPADES. Notice that instead of writing the

applications directly in traditional third-generation programming languages, the D-SPADES

approach adds additional layers of paradigms: the use of domain-specific models and MDE tools.

We believe that a model-driven approach based on paradigms familiar to the specialists from

the power systems sector will help cope with some of the challenges mentioned in Chapter 1,

specifically: the development, maintenance, and evolution of customized EMS applications in a

scenario where the layers of abstraction supporting these applications, i.e. the SCADA software

and hardware platforms, may change frequently. It is relevant to mention that these additional

layers of abstractions, and the corresponding run-time overhead introduced, must not hinder the

timing constraints of the EMS applications. Although the focus of this work is not on real-time

software design methodology, aspects related to timing performance are taken into account.

2.3 MODELING PARADIGMS, LANGUAGES AND TOOLS

A “modeling paradigm” can be defined as a set of requirements that governs how

systems within the domain are to be modeled (NORDSTROM et al., 1999). In a simpler phrasing,

as briefly discussed in Section 2.1, a paradigm is “a conceptual framework used to interpret

35

Figure 2 – Schematic representation of the layers of modeling paradigms in D-SPADES.

Source: The author.

observations and develop theories” (LEE, 2018). Nordstrom et al. (1999) also states that the

modeling paradigm defines the language for modeling systems in the domain. Therefore a

modeling paradigm allows us to, at least:

• represent/model some phenomenon or system through a language;

• interpret observations and develop theories using such models.

In the following section we discuss a modeling paradigm we believe is particularly

relevant to this work, as well as some modeling tools that can support this paradigm.

2.3.1 Actor-Oriented Programming Models

Actor-based or actor-oriented (Actor-Oriented Programming Model (AO)) programming

model (LEE, 2003) is a general-purpose concurrent programming model with wide applicability.

It can target both shared- and distributed-memory architectures, facilitating geographical dis-

tribution, and providing strong support for fault tolerance and resilience (BUTCHER, 2014),

although it can also be deployed in non-distributed systems. According to Agha (1990), AO

models have a flexible structure, particularly well-suited for rapid prototyping applications.

The concept of AO used here is described in the work of Prof. Edward Ashford Lee

and his group with the Ptolemy II project at UC Berkeley (LEE, 2003; LEE, 2014). That notion

in turn is credited to the work of Agha (1990) and others. The term “actor” expresses the

concept of a self-contained, interactive, and independent component of a computing system

36

that communicates by asynchronous message passing (AGHA, 1990)6. The behavior of such

a component is therefore triggered by incoming messages. The triggering by message passing

contrasts with the traditional view of abstract data structures interacting via procedure call (or

method invocation) in OO and structured programming paradigms (INDRUSIAK; GLESNER,

2006).

2.3.2 Characteristics of AO Models and Design Environments

Tools supporting the AO paradigm often have a block diagram based design environment,

where the actual development basically involves assembling preexisting components – the actors –

from a library. In such an environment, the concept of an actor is materialized as an encapsulation

of parameterized actions performed on input data to produce output data (ZHOU et al., 2007).

Different compositions of the same actors can implement different functionality.

The actors’ interface consists of ports and parameters. Input and output data are com-

municated through ports, while the internal state and behavior of each actor are hidden from

other actors. AO models also contain explicit communication channels that pass data from one

port to another. The actors in such models do not interact directly, but instead, use the channels

to which they are connected as a means for communication (LEE et al., 2002). The concepts of

models, actors, ports, parameters, and channels describe the abstract syntax of an actor-oriented

language.

Some examples of widely known software tools supporting AO design include: Simulink

from The MathWorks7, extensively used in both continuous and discrete time control systems

engineering; LabVIEW from National Instruments8, commonly used for data acquisition, in-

strument control, and industrial automation; The Generic Modeling Environment (GME) from

Vanderbilt University9, a configurable toolkit for creating domain-specific modeling and program

synthesis environments; Several Modelica Simulation Environments and Libraries10 available

both commercially and as open source projects, intended for modeling and simulation of com-

plex physical systems containing mechanical, electrical, electronic, hydraulic, thermal, control,
6 The concept of “actor” in AO has a very distinct interpretation from the one used in OMG’s UML, in which “an

Actor models a type of role played by an entity that interacts with the subject” (The Object Management Group,
2007).

7 https://www.mathworks.com/products/simulink.html
8 https://www.ni.com/en-us/shop/labview.html
9 https://www.isis.vanderbilt.edu/Projects/gme/
10 https://www.modelica.org

https://www.mathworks.com/products/simulink.html
https://www.ni.com/en-us/shop/labview.html
https://www.isis.vanderbilt.edu/Projects/gme/
https://www.modelica.org

37

Figure 3 – Some examples of AO models from different modeling tools.

(a) LabView model

Source: https://microcontrollerslab.com/
list-labview-tutorials-projects/

(b) Simulink model

Source: https://www.mathworks.com/products/
simulink.html

(c) Modelica model

Source: Mukherjee and Vanfretti (2019)

(d) Ptolemy II model

Source: The author

electric power, or process-oriented subcomponents; and the Ptolemy II, from UC Berkeley11, an

open-source software framework based on AO design, supporting modeling and simulation of

heterogeneous models of computation. Figure 3 shows the appearance of models developed in

some of these environments.

The models depicted in Figure 3 intuitively convey the idea that the connections between

blocks represent interactions between components in a design. However, the type of interaction

is not explicit, for instance, we cannot directly determine whether:

• Is the communication performed in a rendezvous style, as in a phone call, or is it through

asynchronous messages, like sending a letter?

• Is it a clocked update of data, as in a synchronous digital circuit?
11 https://ptolemy.berkeley.edu/

https://microcontrollerslab.com/list-labview-tutorials-projects/
https://microcontrollerslab.com/list-labview-tutorials-projects/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://ptolemy.berkeley.edu/

38

• Does time play a role in the interaction?

• Is the interaction discrete or continuous?

As we can see, the syntactic structure of an actor-oriented design says little about its

semantics (LEE, 2003). The actual semantic – what the model means, and what it does – is

determined by the Model of Computation (MoC) implemented by the modeling tool. The MoC

dictates the operational rules for executing a model. These rules determine when actors perform

internal computations, update their internal state, and communicate with other actors. The MoC

also defines the nature of the communication (LEE, 2003). In other words, one single syntactical

representation – for instance, the one in Figure 3 (d) – may have significantly different semantics,

i.e. the model works differently, depending on the MoC under which it is executed.

Some possible examples of MoC that may govern the execution of AO models include:

• Synchronous Dataflow Model of Computation (SDF), also called static dataflow (LEE

et al., 2014), is a specific type of dataflow model in which actors begin execution (they are

fired) when their required data inputs become available. When executed in a sequential

computer, the actors’ order of execution is determined by a fixed schedule of “firings” by

the SDF scheduler.

• Process Network Model of Computation (PN) is a MoC in which each actor runs

concurrently in its own thread of execution (SMYTH et al., 2014). That is, instead of

being explicitly scheduled (fired) by a scheduler, PN actors are defined by a (typically

non-terminating) program that continuously reads data tokens from input ports and writes

data tokens to output ports. Conceptually, all actors execute simultaneously, although the

actual computational platform may involve the use of shared resources by interleaving

tasks.

• The Continuous-Time Model of Computation (CT) conceptually models time as a

continuum (CARDOSO et al., 2014). The continuous dynamics of physical processes

are represented using Ordinary Differential Equations (ODEs) over a time variable. The

model’s behavior with respect to time – the inputs and outputs of each actor – is determined

by numerically solving a system of ordinary differential equations.

Each software tool capable of AO design may support different sets of MoCs. The

Simulink tool, for instance, supports a fixed CT MoC, in which discrete-time signals are supported

39

as a special case of continuous time, by making the discrete signal piecewise constant in

continuous time (ZHOU et al., 2007). In comparison, the Ptolemy II platform isn’t limited to

a single built-in MoC, but instead supports multiple semantic domains, which is the term used

to refer to the implementation of a MoC (LEE, 2014). This is one of the main distinguishing

features of Ptolemy II in comparison to other design environments.

2.3.3 Advantages of the AO Model

The concept of platforms, platform-based and model-based design is discussed by Lee et

al. (2002). Lee (2003) argues that model-based design and platform-based design are essentially

two sides of the same coin. The model-based design consists in specifying designs using platforms

with useful modeling properties. Figure 4 schematically represents some platforms and their

interrelationships.

Figure 4 – An illustration of some platforms and their interrelationships.

Source: Lee (2003).

In the conceptual layering of Figure 4, a control system designed with a tool like,

for instance, Simulink stands in the “actor-oriented” platform, which is one level above Third-

generation Programming Language (3GL) programs written in, for instance, C++. Let’s consider

40

a case where the same control system is to be designed using languages such as C++ or Java, and

represented by abstractions such as UML. In this case, object-orientated components interact

with one another essentially by method calls, which represent a transfer of control. The concur-

rent execution of tasks in these platforms is managed through complex low-level abstractions

such as threads, mutexes, and semaphores. The control systems specialist would need, besides

knowledge of his domain’s own paradigms, familiarity with concurrent programming paradigms

and languages. It would be much more appropriate for this control system’s specialist to be

able to convey his design using platforms with modeling properties that reflect requirements

of the application, not accidental properties of the implementation (LEE, 2003). Managing

concurrency, passing the correct types in the method invocation, and handling exceptions are

clearly accidental complexities of the programming platform.

In actor-oriented abstractions, the low-level mechanisms of concurrent programming

are abstracted from the designer. They can be considered as “assembly-level mechanisms” (LEE,

2003), from the AO platform’s point of view. Threads and mutexes become implementation

mechanisms instead of part of the programming model (ZHOU et al., 2007). Besides, AO models

are much more intuitive for domain specialists, for instance, from the power systems area, which

are inherently familiar with design strategies based on block diagrams and transfer functions.

Lee et al. (2002) point out that perhaps the most significant advantage of actor-oriented design

is the use of patterns of component interaction with useful modeling properties, which consist in

the different MoCs.

As we will further discuss in Chapter 4, many works in the power systems’ area adopt

modeling paradigms borrowed from control theory, namely the block diagram and transfer

function notation, which are compatible with the AO paradigm. Modeling languages associated

with traditional modeling tools for Science and Engineering are also known to be used in this area,

for instance: Modelica, Matlab/Simulink, Scilab and Ptolemy II are often used in power systems

modeling, as described in references (SULLIGOI et al., 2011; SÜSS et al., 2008; ZHABELOVA

et al., 2014; ZANABRIA et al., 2016; STIFTER et al., 2013; BOGODOROVA et al., 2013;

ZHABELOVA et al., 2014). These modeling environments integrate a visual schematic and

equation-based notation, which fits the description of AO design. Our review has also revealed

the use of the languages specified in the IEC 61499/61131 standards for distributed control

applications, particularly in smart-grids-related areas, according to references (ANDRÉN et al.,

2013; ANDRÉN et al., 2014; ANDRÉN et al., 2013; ZHABELOVA et al., 2014; STIFTER et

41

al., 2013; STRASSER et al., 2014). IEC 61499 specifies a language based on a “function block”

concept. The standard also specifies an event-oriented model of computation and therefore can

be considered compatible with the AO paradigm. In this work, we propose adopting an actor-

oriented modeling paradigm for developing EMS applications. The following section provides

a brief overview of the Ptolemy II tool, which supports the AO paradigm and is used in the

remainder of this work.

2.3.4 The Ptolemy II Tool

Ptolemy II is a software modeling tool suited for modeling, simulation, and design of

concurrent, real-time, and embedded systems. The tool’s design environment is focused on the

assembly of components (i.e., actors) from a library, which operates according to a chosen MoC

that govern the interaction between components (ZHOU et al., 2007). Ptolemy II is heavily based

on the concept of actor-oriented models discussed above, in which actors execute concurrently

and transfer data to each other via ports (BROOKS et al., 2014a).

In terms of software, Ptolemy II is implemented as a set of Java packages, roughly

composed of (BROOKS et al., 2014a): a kernel package that supports clustered hierarchical

graphs, which are collections of entities and relations between those entities12; the data package

defining the classes that carry data from one component to another in a model; an actor package

that extends the kernel, so that entities have functionality and can communicate through ports

and relations; The actor package also includes the base definition of a Director class, which is

the concept used to specify the domain of a given model, i.e., the desired MoC that controls the

execution of the model.

The abstract syntax of Ptolemy II models consists in a tree, which represents the

hierarchy of models, overlaid with a graph at each level of the hierarchy; the graph specifies the

connections between components of a model (BROOKS et al., 2014a). Figure 5 schematically

represents an example of such a hierarchical model using a visual notation similar to the actual

graphical concrete syntax of the Ptolemy II environment.

In the Ptolemy II syntax, a model essentially consists of a top-level entity that contains

other entities. The entities – or actors – have ports through which they interact and exchange data

with other entities. Their interactions are mediated by relations, which represent communication
12 Note on the use of the term “Entity” vs “Actor”: in terms of implementation, an entity is a more generic type. An

actor is a subclass of entity; a state inside an Finite State Machine (FSM) is also a subclass of “Entity”.

42

Figure 5 – Ptolemy II Hierarchical Model Structure.

Source: (BROOKS et al., 2014a).

paths. All of these objects (entities, ports, and relations) can have attributes, which define their

parameters and add annotations. Ports have links to relations, represented in the meta-model as

an association between the Relation class and the Port class (BROOKS et al., 2014a).

In Ptolemy II an actor can itself be a model, therefore being referred to as a “composite

actor”. A composite actor that contains a director (depicted as a green rectangle in the models

from Figure 5) is said to be opaque; otherwise, it is transparent. An opaque composite actor

behaves like a non-composite (i.e., atomic) actor and its internal structure is not visible to the

model in which it is used; it is a black box. In contrast, a transparent composite actor is fully

visible from the outside, but is not executable on its own (BROOKS et al., 2014a), since it does

not have an associated MoC.

The concept reciprocal to the “composite actor” is the “atomic actor”, whose terminol-

ogy is derived from the Greek word atomos, or indivisible (LEE; MESSERSCHMITT, 1987).

Atomic actors are not composed of other actors and have to be implemented directly on the

underlying platform’s programming model, which in the case of Ptolemy II is the Java language.

The language used for expressing Ptolemy II models is called “XML Modeling Markup

Language (MoML)”. MoML specifies interconnections of parameterized, hierarchical compo-

nents, while making no assumptions about the meaning of the components or their interconnec-

tions (LEE; NEUENDORFFER, 2000). A model in MoML is represented as a clustered graph,

43

Figure 6 – MoML notation, terminology and aggregation of sub-models.

(a) MoML visual notation and terminology (b) Composite models: aggregation

Source: The Author, adapted from Lee and Neuendorffer (2000).

and it can convey designs such as netlists, state transition diagrams, and block diagrams, among

others. In MoML terminology, a topology is a collection of entities, ports, and relations. Figure

6 (a) shows a graphical notation representing a MoML model. In this figure, entities are depicted

as boxes and relations as diamonds. Entities contain ports, shown as filled circles, and relations

connect ports through links. Composite entities are clusters containing another topology, like

conceptually illustrated Figure 6 (b), where atomic entities are represented as circles in order to

differentiate them from composite entities13.

Ptolemy II has the Vergil graphical editor; it can be used to create, manipulate and

execute AO models. This graphical editor has the appearance shown in Figure 7. This image

shows two Vergil windows: the background window contains a model of one of the Itaipu

generating unit’s voltage control system, and a foreground window shows the contents of

one of the composite actors from the background model – the yellow highlighted labeled as

“GeneratorAndAVR”. The “GeneratorAndAVR” composite actor represents a particular case of

the feedback control model for the generating unit’s excitation system discussed in Chapter 3,

and shown in Figure 16 (see page 55). Some features of a typical AO design environment can be

pointed out in the Vergil editor: the block-diagram-oriented design, and the actors’ library (on

the left-hand side), which can be used to assemble new models from preexisting components.

The design shown in Figure 7 is a clustered graph expressed in a concrete syntax

of the MoML language, like conceptually represented in Figure 6. This concrete syntax has

some visual differences/augmentations, for instance: actors may have an individual pictorial

representation (an icon) associated; ports are represented as arrow points; links are shown as
13 The structural relationship between entities, composite entities and atomic entities is identical to that observed in

the traditional composite design pattern (GAMMA et al., 1995) from object-oriented design. The implementation
of both Ptolemy II and D-SPADES use the composite pattern as the realization of this structure.

44

Figure 7 – Ptolemy II Vergil editor window.

Source: The Author.

routed lines connecting ports and relations; relations are represented as filled diamonds, but

are not necessarily displayed unless more than two ports are linked together. The Vergil editor

serializes (saves) these models to XML files, which consist of an alternate concrete syntax for

the MoML language. These AO models can be described by a metamodel, and therefore are

suitable to be used in model transformations such as M2T.

2.4 CHAPTER SUMMARY

In this chapter, we discussed how models are stacked up as platforms in order to raise

the level of abstraction and increase the productivity of engineering tasks. In this scenario, we

contextualize the D-SPADES approach, arguing that it offers an appropriate layer of abstraction

for describing EMS software. We acknowledge that although “no silver bullet” exists such that

productivity increases tenfold, a domain-specific approach is leveraged by the paradigms familiar

to the professionals from the power systems domain – their “unknown knowns”. We have also

briefly discussed the actor-oriented modeling paradigm, which offers a good notation, compatible

with abstractions traditionally used for expressing problems in the power systems’ domain. This

paradigm is supported by some well-known modeling and simulation tools, however, a fully

integrated MDE approach applicable to the development of EMS applications, based on such

language, is still absent. In the forthcoming chapters, we propose an approach for developing

EMS applications based on the AO paradigm and model transformations.

45

3 BACKGROUND ON THE APPLICATION DOMAIN

This chapter describes some notions and a basic description of the physical processes

involved in the operation of hydropower plants, as well as the interfaces with its digital control

system: the cyber part of the CPS. We briefly discuss this domain of application and some of

the common paradigms in the area. This overview provides the reader with a basic knowledge

of the processes where the software under study is applied. We do not intend to cover in depth

the power system’s physical models and dynamics. For a more detailed explanation of the

theme, the reader shall refer to (KUNDUR et al., 1994; GRIGSBY, 2007; BEVRANI, 2008;

EREMIA; SHAHIDEHPOUR, 2013; KOSOW, 2009). Some of the topics covered include: a

typical hydropower plant at a glance; the main components of the hydraulic turbine, generator,

and speed-governing actuators; the main components of the generator’s excitation circuit and its

controls; basic speed/frequency and voltage regulation concepts; some of the controls involved

in power plant operations; and a particular application scenario at the Itaipu Power Plant.

3.1 A TYPICAL HYDRO POWER PLANT

In Figure 8 we show a panoramic view of the Itaipu Power Plant to illustrate some of

the main components of a typical hydropower plant. The highlighted components are:

1. The Reservoir: is the storage space for the main body of water, typically created by the

construction of the dam. A reservoir needs to be deep enough to create a head1 of water for

the turbines. Some hydropower plants are said to have little or no reservoir: the so-called

“run-of-the-river” hydro plants, usually built in a steep valley with constant river flow.

2. The Dam: is usually a bulk civil structure, responsible for holding back the water creating

the reservoir.

3. The powerhouse: is the structure that provides housing for electromechanical equipment

like turbines and generators.

4. The Spillway: is a structure that provides controlled release of flows from the reservoir

into a downstream area. Excess water not utilized for power production is discharged
1 Hydraulic head or piezometric head is a specific measurement of liquid pressure, expressed in units of length.

The gross head is numerically equal to the difference between the reservoir level and downstream tailrace level.

46

through the spillway, especially during high inflow season, so the dam is not overflown.

In other words, spillway operation helps regulate reservoir level, total downstream flows,

and consequently downriver water levels. Proper spillway operation prevents uncontrolled

floods, both upstream and downstream of the dam. It can also influence navigational

conditions in the associated river system.

5. The tailrace: is a channel that carries water away from a hydroelectric plant. The water

in this channel has already been used to rotate the turbines and produce power. The tail

race is usually at a much lower level than the height of the reservoir behind the dam, and

this difference – the gross head –, along with the volume of water flowing, determines the

amount of power that can be obtained from the water.

Figure 8 – Overview of a typical hydro power plant, in this case Itaipu.

Source: Itaipu Power Plant.

3.2 OVERVIEW OF THE HYDRO POWER PRODUCTION PROCESS

The energy production process by means of hydraulic turbines involves the conversion

of the stored energy of a fluid mass (a combination of potential energy and kinetic energy) into

mechanical energy (SUBRAMANYA, 2013). Normally a hydroelectric generator, connected

to the turbine by means of a shaft, converts this mechanical energy into electricity. Figure 9

47

illustrates the main components of a hydraulic generating unit. In reaction turbines2, like that

of Figure 9, the process works by forcing the water into a scroll case (1), usually through a

penstock. Inside the scroll case, water is guided by the stay vane ring (2) into the wicket gates

(3), which are composed of movable parts responsible for controlling the water flow through the

turbine blades. The wicket gate works like a controlled valve, being opened and closed by the

movement of the bull ring mechanism (4). The actuator responsible for turning the bull ring is the

gate servomotor (5), which is a hydraulic piston. The turbine (6) is the actual component where

the energy conversion of the falling water into motion takes place. The turbine is connected by

means of a shaft (7) to the generator’s rotor (8), composed of rotating electromagnets responsible

for producing the magnetic field. The stator (9) is the structure holding the armature coils where,

guided by Faraday’s law, the conversion of movement into electricity occurs. The electricity

generated in the stator coils is conducted to the power grid by means of the bus ducts (14),

usually composed of isolated copper bars. The electromagnets field intensity is controlled by the

excitation current injected by the exciter through the slip rings (11). The rotating parts (turbine,

shaft, and rotor) are mechanically supported by the thrust bearing (12), which vertically holds

the weight of the whole set. Other components highlighted in the illustration are: the oil head
3 (10), the stator cooling radiators (13), and the DC bus (16) that feeds the exciter and other

auxiliary systems4.

Out of the components briefly described above, the ones closely related to controlling

the energy conversion process are:

• The gate servomotor (5), which controls the active power and frequency delivered by the

generator to the power system. Other important control components, mainly the speed

governor and the load-frequency regulation loops work associated with the servomotors.

• The slip rings and rotor coils (11, 8), by means of which the exciter and the secondary

voltage regulation loops control the generator’s voltage and reactive power output.

The flows of active and reactive power in the transmission network are fairly independent

of each other in the sense that they can be controlled separately, by means of independent control
2 Regarding the nature of its interaction with water, turbines are classified as (1) reaction turbines, where the

water pressure changes while flowing through the rotor; and (2) impulse turbines, where the water pressure does
not change while flowing through the rotor, and the interaction occurs at atmospheric pressure. For more details,
the reader shall refer to (KUNDUR et al., 1994; SUBRAMANYA, 2013).

3 This component only applies to turbines having adjustable blades, like the Kaplan or certain types of bulb
turbines.

4 This image is an adaptation of the publicly available version provided by the US Army Corps of Engineers -
http://www.nwp.usace.army.mil/hydropower/

http://www.nwp.usace.army.mil/hydropower/

48

Figure 9 – Hydraulic turbine and generator.

Source: the US Army Corps of Engineers - http://www.nwp.usace.army.mil/hydropower/.

actions. Active power is closely related to frequency control, whilst reactive power is linked

to voltage control. Active power and frequency control acts upon the generating units’ prime

movers, via wicket gate open/close movements. Reactive power and voltage control act upon the

alternators’ excitation current. Both these control actions are vital for the satisfactory performance

of the power system (KUNDUR et al., 1994).

http://www.nwp.usace.army.mil/hydropower/

49

3.2.1 Speed, Frequency and Active Power Regulation

In synchronous generators, the turbine shaft is rigidly connected to the rotating elec-

tromagnets responsible for inducing voltages at the armature windings. The frequency of the

alternate voltage produced at the generator’s terminals is determined by rotational speed and its

number of poles 𝑃 , according to Equation 1 (KLEMPNER; KERSZENBAUM, 2004). Since the

number of poles is fixed for a given machine, frequency is locked (or synchronized) to rotational

speed. Therefore, in order to control frequency, the prime mover’s speed needs to be acted upon.

𝑓𝐻𝑧 =
𝑃
2
× 𝜔𝑟𝑝𝑚

60
(1)

3.2.1.1 Prime Mover, Generator and Load: Frequency Deviation

Figure 10 is a schematic representation of a basic single-generator and load system, in

which we assume no speed regulation is performed.

Figure 10 – Schematic representation of turbine, generator and load.

Turbine

Gen.

Pm

Pew

Source: The author.

For this hypothetical system, the initial condition is established such that the turbine

mechanical power (𝑃𝑚) and the electrical load power (𝑃𝑒) are equal, and the system operates at

the nominal frequency. Whenever a small change in electrical load occurs (such as when a light is

turned on), with mechanical power remaining constant, the turbine speed (𝜔) changes according

to the rotational inertia (𝐽) of the system. This variation can be modeled by the differential

Equation 2 (KUNDUR et al., 1994):

𝑃𝑚 − 𝑃𝑒 = 𝐽
𝑑𝜔

𝑑𝑡
(2)

50

The rotating inertia (𝐽) initially provides the extra energy supplied to the load, at the

expense of reducing the rotating speed (and frequency) of the system. The load itself is usually

composed of a mix of resistive and reactive loads. Loads composed of electrical motors tend to

be dependent on frequency in the sense that their power decreases as frequency drops, whilst

resistive loads such as heating are independent of frequency. The overall load’s response to the

system’s frequency can be expressed as:

∆𝑃𝑒 = ∆𝑃𝐿 +𝐷∆𝜔 (3)

Where ∆𝑃𝐿 corresponds to the fraction of load that is independent of frequency. The

𝐷∆𝜔 part corresponds to the frequency-dependent loads, with 𝐷 being called the “load-damping

constant”. 𝐷 is expressed as a percent change in load for a percent change in frequency. Typical

values of 𝐷 are between 1 to 2 percent.

The response of the hypothetical system of Figure 10 is determined by the inertia

constant 𝐽 and the load damping factor 𝐷. The steady-state speed deviation is such that the small

changes in load are compensated by a correspondent load variation due to frequency sensitivity.

In other words, the system remains stable at a different operation condition, i.e. at a frequency

slightly different from the nominal value.

3.2.1.2 Primary Regulation: the Speed Governor

In order to maintain frequency as close as possible to its nominal (or scheduled) value, a

speed governor is added to the system, as illustrated in Figure 11. The speed governor “measures”

the generator’s speed and automatically compensates for variations by acting upon the prime

mover’s valve or wicket gate position. The strategy for compensating speed variations depends

on the power network the generator is connected to, and can be either “Isochoronous Speed

Control” or “Droop Speed Control”.

In Isochoronous Speed Control mode5, the energy being admitted to the prime mover

is tightly regulated in response to changes in load which would tend to cause changes in

frequency. Any increase in load would tend to cause the frequency to decrease, but energy is

quickly admitted to the prime mover to maintain the frequency constant. The system responds

likewise for a decrease in load. The isochoronous governor, by definition, has zero steady-state

speed error for load variations inside the designed range.
5 The term Isochoronous means at constant speed (KUNDUR et al., 1994).

51

Figure 11 – Schematic representation of turbine, generator, load and governor.

Turbine
Gen.

Pm

Pew

Valve/Gate

water

Governor Speed

Tm

Te

Source: The author

The isochoronous governor is usually employed for regulating a single generator supply-

ing an isolated load, not connected to the public grid. It can also be applied to a multi-generator

system in which only one of the generators regulates frequency (the one with the isochronous

governor). Two or more generators with isochoronous governors cannot operate in parallel, or

else the system would become unstable.

In Droop Speed Control mode the governor is not attempting to maintain a constant

speed. The main purpose of this mode is to allow two or more generators to operate in parallel,

“sharing” the load among them. Figure 12 illustrates the block diagram representation of a

generator with droop governor, where 𝑌 represents the gate position (control variable) and 𝜔

represents the rotor speed.

Figure 12 – Block diagram of generator with droop governor.

Turbine

Pm

w

Valve/Gate

water

Integrator

Speed

To generator

Speed ref.

-
+

K
+

R

-

Y

Source: The author

The droop governor has a transfer function characterized as a proportional controller

with gain 1/𝑅, where 𝑅 is referred to as the “speed regulation” or “droop” (KUNDUR et al.,

1994). The value of R determines the steady-state speed versus load characteristic of a particular

generator. Figure 13 illustrates the ideal response of the droop governor to load variations.

The ratio between speed deviation ∆𝜔 (or frequency deviation ∆𝑓) to the change in

52

Figure 13 – Steady-state characteristic of a droop governor.

Source: Kundur et al. (1994)

gate position ∆𝑌 (or power output ∆𝑃) is equal to 𝑅, and therefore can be expressed as:

𝑅% =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐ℎ𝑎𝑛𝑔𝑒%

𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑔𝑒%
× 100% = (

𝜔𝑁𝐿 − 𝜔𝐹𝐿

𝜔0

)× 100% (4)

where 𝜔𝑁𝐿 represents the steady state speed at no load, 𝜔𝐹𝐿 represents the steady state speed at

full load and 𝜔0 is the generator’s nominal (or rated) speed. The usual values of droop for real

governors are in the range of 2 to 5 percent. It means that, for instance, if a generator governor

adjusted to 5% droop senses a frequency deviation of 5%, it will cause a 100% change in power

output.

Droop Speed Control, in fact, refers to the fact that the energy being admitted to the

prime mover of the synchronous generator is being controlled in response to the difference

between a speed (frequency) setpoint and the actual speed (frequency) of the prime mover. To

increase the power output of the generator, the operator increases the speed setpoint of the prime

mover, but since the speed cannot change (it’s fixed by the frequency of the grid to which the

generator is connected) the error, or difference, is used to increase the energy being admitted

to the prime mover. So, the actual speed is being allowed to “droop” below its setpoint. Any

multi-generator power grid usually employs droop speed governors, and therefore, by definition,

has non-zero steady state frequency error.

3.2.1.3 Secondary Regulation: Load Frequency Control

In any power system the frequency is dependent on the real power balance between

generators and loads (BEVRANI, 2008). If power demand at one point of a network changes, the

whole system’s frequency is affected. As seen in Section 3.2.1.2, the grid’s generators operate

53

in droop mode, which means variations in load will inevitably produce steady-state frequency

deviations. This deviation from nominal values can be viewed as a measure of system generation

and load imbalance. In order to correct this imbalance, the set points of at least some governors in

the grid must be adjusted. This job is done by the Automatic Load Frequency Controller (ALFC).

The process of set point adjustment is called secondary regulation or supplementary control.

Figure 14 schematically illustrates the relationship between the primary and secondary

control loops. By means of each individual speed governor, all generating units contribute to

the overall change in generation, irrespective of the location of the load change, using their

speed-governing capabilities. This decentralized action is insufficient to bring system frequency

back to the rated values, thus the need for the supplementary control loop.

Figure 14 – Schematic block diagram of speed and frequency control

Source: Bevrani (2008)

The supplementary control actions, on the other hand, are performed at a central location

and usually employ only a subset of the generators in the system. This supplementary action is

considerably slower than the primary, in the range of seconds to minutes (BEVRANI, 2008). The

centralized frequency controller is usually part of a larger management system, implemented on

top of a computerized infrastructure and communication network known as SCADA/EMS.

3.2.2 Voltage and Reactive Power Regulation of Synchronous Generators

In this section, we briefly discuss the modeling of synchronous generator voltage control

and power plant level voltage/reactive power control. Modeling the system-wide problem of

voltage control is beyond the scope of this discussion.

The basic idea of primary and secondary controls also applies to voltage regulation,

except that reactive power cannot be efficiently transmitted over long distances (KUNDUR et

54

al., 1994). Synchronous generators are equipped with an Automatic Voltage Regulator (AVR),

which continuously regulates armature voltage by controlling the excitation current. Therefore,

the synchronous generator can be set to either absorb or supply reactive power, constrained

by its minimum/maximum nameplate ratings, like field current, armature current and terminal

voltage (KUNDUR et al., 1994). Additionally, at the plant level, a reactive power sharing and

joint voltage control scheme is usually present (CALOVIC; JELIC, 1992).

3.2.2.1 Primary Regulation: the Generator’s Excitation System Model

The main purpose of the generator’s excitation system is to provide Direct Current

(DC) to the synchronous machine field winding. Additionally, several control and protective

functions are performed with the purpose of fulfilling operational requirements. In this work,

we are particularly interested in voltage and reactive power flow control, but other functions

include the enhancement of power system’s stability and protective actions to ensure that the

equipment’s capability limits are not exceeded. Figure 15 shows the functional block diagram of

a typical large synchronous generator excitation control system.

Figure 15 – Functional block diagram of a large generator excitation control.

Limiters and

protective circuits

Terminal voltage

transducer and

load compensator

Generator

Power system

stabilizer

ExciterRegulatorRef.

12

5

3

4

To power

system

Source: The author, based on Kundur et al. (1994)

The main components of the system are described below. In this work we are particularly

interested in the interaction of the regulator/exciter/generator, therefore components like the PSS

and the protective circuits are out of scope.

1. The exciter, provides the DC current to the generator’s field winding. Works like a “power

amplifier” for the signal generated by the voltage regulator.

55

2. The regulator combines, processes, and amplifies various input control signals to the

level required by the exciter’s input stage. This is the component that receives the voltage

setpoint from the secondary voltage control loop.

3. Terminal voltage transducer and load compensator senses the generator’s terminal

voltage and compares it to the reference setpoint, which represents the desired output

voltage.

4. The Power System Stabilizer (PSS) provides the additional input signal to the regulator

to damp power system oscillations.

5. Limiters and protective circuits include several control and protective functions that

ensure equipment’s ratings are not exceeded, minimizing the risk of damaging the generator

and the excitation system itself.

Mathematical models of the excitation system are essential for performance assessment,

planning, and power system operations, as well as for the design and coordination of supple-

mentary control schemes. Figure 16 represents the overall excitation control system in terms of

classical feedback control loops. The small signal performance of a typical excitation system can

be considered effectively linear (KUNDUR et al., 1994), and such a linear model provides the

means to evaluate the closed-loop response of the excitation system to incremental changes in

system conditions.

Figure 16 – Classical feedback control model for the excitation system.

Power amplifier

(exciter)

Generator and

power system

Feedback

elements

Controller

(regulator)

+

-

EEV
err

V Vr R fd t

V
c

Source: The author, based on (KUNDUR et al., 1994)

The load compensator mentioned above in Section 3.2.2.1 is represented schematically

in Figure 17. The voltage drop added to the generator’s terminal voltage by the compensator

provides a droop effect to the AVR. This droop ensures proper sharing of reactive power

between generators connected to the same busbar, either directly or through individual step-up

transformers. Without this provision, one of the generators of the set would end up with a slightly

56

higher terminal voltage than the others and hence would tend to supply all the required reactive

power, while the remaining ones would tend to absorb reactive power (KUNDUR et al., 1994).

Figure 17 – Schematic diagram of a load compensator into the voltage control loop.

Exciter

E
t

To power

system

HV bus

Step-up

transformer
Field Armature

I
t

PT

CT

Voltage

Regulator

Load compensator

R
c

X
c

Source: The author, based on (KUNDUR et al., 1994)

3.2.2.2 Voltage and Reactive Power Reference - Secondary Regulation

In a manner similar to the concept of droop for the speed governor, the AVR’s load

compensator ensures that generators can operate in parallel satisfactorily, however, it introduces

a steady state control error at the power plant’s high-voltage busbar.Therefore, supplementary

control actions are necessary in order to bring the output voltage back into the acceptable

operating range. These supplementary actions, known as secondary voltage regulation, are

determined on a system-wide basis by the regional load dispatcher or system operator authority.

Large power plants participate in the secondary voltage regulation by following a voltage or

reactive power reference determined by the regional dispatcher. This reference can be relayed

either automatically through digital communication infrastructure, scheduled along with the

accorded interchange schedule, or directly communicated, on demand, by the regional dispatcher

to the power plant operator.

At the power plant level, the function responsible for following this reference is known

as Joint Bus Voltage/Reactive Control (JBVRC), sometimes also referred to as Joint Voltage

Control (JVC), or simply Automatic Voltage Control (AVC). In modern power plants, the JBVRC

is also implemented on top of the SCADA/EMS and includes the features of common plant bus

voltage control and distribution of reactive generation to individual units in operation (CALOVIC;

JELIC, 1992).

57

3.3 SOFTWARE COMPONENTS AND POWER SYSTEMS CONTROL

As discussed above, many types of controls are integrated into the power system,

including generator excitation controls, prime mover controls, generation or load tripping or

shedding, fast fault clearing (protection), high-speed re-closing, reactive power compensation,

load–frequency control, and other special controls (BEVRANI, 2008). These controls can be

organized hierarchically by levels, and classified according to operation modes, conditions, and

time constants of the control loops, as shown in the following sections.

3.3.1 Hierarchical Organization of Power Plant Controls

Power plant controls are organized into a hierarchical structure classified by the IEEE

1249-2013 Standard (IEC/IEEE, 2013). According to the location, IEEE 1249-2013 classifies

power plant controls into three levels: Local, Centralized and Off-site.

1. The lower level, or Local Controls are co-located with the controlled equipment, or placed

within sight of the equipment. Examples of such controls include each of the generating

unit’s speed governors and AVR.

2. An intermediate level, or Centralized Control is located at a remote location from the point

of view of the controlled equipment, but within the limits of the power plant itself. This

level usually concentrates all (or at least most of) the necessary controls for operating all

the plant’s equipment from a single location, under normal conditions. Examples of these

controls are the joint control of active power, switchyard control, and spillway control.

3. The higher level is the Off-site control, which constitutes an operations control center

capable of remotely controlling several power plants. Each of the individual power plants

may or may not be attended by an in-site operations staff.

A diagram depicting the relationships between these control levels is shown in Figure 18.

By observing Figure 18, it becomes clear that such a control hierarchy depends on

efficient control methodologies, communication infrastructure, and information technology (IT)

services. In contemporary control technology, all the power plant control levels include software

components. Therefore they fit the definition of Cyber-Physical System (LEE; SESHIA, 2011)6.
6 In comparison, Strasser et al. (2020) used the term Cyber-Physical Energy System to refer to the concept of

“Smart Grid”.

58

Figure 18 – Relationship between local, centralized and off-site control.

Source: IEEE Std. 1249 - Guide for Computer-Based Control of Hydroelectric Power Plant Automation –
(IEC/IEEE, 2013).

3.3.2 Classification of Power Plant Controls

With respect to the operation mode, power system controls can be classified into two

major categories (BEVRANI, 2008): (1) continuous and (2) discontinuous controls. Continuous

controls operate directly on plant equipment, including generator excitation controls (PSS and

AVR), prime mover controls (speed governors), reactive power controls, and AGC. They are

usually linear, continuously active, and use local measurements. The discontinuous controls are

meant to stabilize the system after disturbances or once off-nominal conditions are detected,

therefore they operate only after certain triggering events occur in the power system. They

perform actions such as generator/load tripping, capacitor/reactor switching, and other protection

plans. These power system controls may be local at power plants and substations, or over a wide

area. Examples of discontinuous controls include discrete supplementary controls, Remedial

Action Schemes (RASs), and emergency control/protection schemes (NEIS et al., 2012; NEIS et

al., 2012; NEIS et al., 2022).

With respect to the operating condition, power system controls can again be divided

into two categories: (a) normal/preventive controls; and (b) emergency controls. Normal/preven-

59

tive controls are applied while the power system operates under normal and alert states7, to stay in

or return into normal conditions. Emergency controls are applied in an emergency or in extremis

state, in order to stop the further progress of a failure and return the system to a normal or alert

state. Automatic frequency and voltage controls are part of the normal and preventive controls,

while some of the other control schemes such as under-frequency load shedding, under-voltage

load shedding, and special system protection plans can be considered under emergency controls.

With respect to the time constants of the control actions, it is hard to establish a crisp

classification of power system controls. However, it is widely accepted that control loops at

lower system levels, (e.g. at the generator level) are characterized by smaller time constants

than the control loops active at a higher system level, like the centralized and off-site. For

example, the AVR, which regulates the voltage of the generator terminals to the reference value,

responds typically in a timescale of a second or less. On the other hand, controls like the Load

Frequency Control (LFC) and the secondary voltage regulation loop, operate in a timescale

of several seconds or even minutes (BEVRANI, 2008). Figure 19 schematically represents

different timescales for some of the power system controls, along with the associated dynamic

phenomena8.

Figure 19 – Different timescales of power system dynamics and controls.

Source: Bevrani (2008).

7 Power system operating states can be conceptually classified into five states: normal, alert, emergency, in extremis
and restorative(KUNDUR et al., 1994).

8 Note that the term SVC in this figure refers to Static Var Compensator, not to be confused with the concept of
Secondary Voltage Control.

60

3.3.3 Energy Management and Automation

In power systems operation, energy management is defined as “the process of moni-

toring, coordinating, and controlling the generation, transmission, and distribution of electrical

energy” (GRIGSBY, 2007). The physical system being managed includes power plants, trans-

mission networks (grid), and load centers. Current technology for electrical transmission and

distribution systems cannot provide significant energy storage, therefore supply and demand must

be balanced by controlling either generation or load (or both). Power production is controlled

by turbine governors and voltage regulators at the generator level, and by automatic generation,

voltage, and reactive power control functions performed at centralized and/or off-site levels.

These centralized control functions are part of a suite of software applications known as the

EMS.

EMS functions at the centralized and off-site levels are dependent on a data acquisition

and telecontrol infrastructure responsible for collecting status and measurement information

needed to supervise overall operations, as well as issuing control signals like switchgear operation

and setpoint adjustments. This infrastructure is known as the SCADA layer. A SCADA system

usually is composed of a master station communicating with several, distributed, Remote

Terminal Units (RTUs). RTUs collect and upload process data to the SCADA master station,

allowing operators to observe and control physical plants.

In this work, the centralized and off-site software control functions running on top of a

SCADA layer will be generically designated as “energy management” or EMS applications.

On the other hand, local control functions, generally running on Programmable Logic Controller

(PLC) platforms or Intelligent Electronic Devices (IED)9, will be generically designated as

“automation functions”.

3.3.4 Development Process of Energy Management Applications

In a broad sense, hydropower plant control and other power system-related

SCADA/EMS projects are usually described in the specialized literature at high-level overview,

such as in references (COHEN et al., 1989; SKOPP; VARADAN, 2000; AZEVEDO; OLIVEIRA-

FILHO, 2001; CORERA et al., 2005; VIRMANI; SAVULESCU, 2008; BJÖRKMAN et al.,

2010; ABB Inc., 2016; AGARWAL et al., 2016), giving very few details about the software
9 IED is the term used to describe microprocessor-based controllers of power system equipment.

61

process involved in its development. Despite that, common traits can be identified in the design

of the so-called “open architecture” SCADA/EMS systems.

A typical simplified SCADA/EMS architecture is represented in Figure 2010. In this

figure, we schematically show how the physical industrial process interfaces to its cyber coun-

terpart, the SCADA/EMS: through field devices such as RTUs, IEDs, and gateways to other

data acquisition systems. The front-end communication processors collect data from the field

devices, perform pre-processing and deliver it to the core SCADA real-time database; they also

communicate supervisory commands back to the field. The main SCADA servers are the heart

of the system, supporting the bulk of SCADA functions, maintaining the real-time database, and

providing data to the operator workstations. The operator workstations connect directly to the

core SCADA servers and are the entry point to process supervision and human-triggered control

actions. The application servers run the EMS applications, typically having direct access to the

SCADA real-time database and being able to relay automatic control actions to the field. The

historian servers collect real-time data and store it in a time-series database. Relational database

servers are the main repository for system configuration parameters, such as RTU communication

configuration, global system options, and network models.

Figure 20 – A typical, simplified SCADA system architecture.

Operator Workstations

Main SCADA
Servers

Historian
Servers

Communication
Front End
Processors

RTUs, Gateways, IEDs

SCADA LAN

DMZ LAN

Firewall

Application
Servers

Link to other
Control Centers

(ICCP)

Office Workstations

Data analysis,
Interface to

corporate network, etc

Firewall

Corporate LAN

Database
Servers

Industrial Process

Source: The author.

10 Depending on the size of the installation, this configuration can be scaled either up or down, for instance: smaller
installation may incorporate application servers into the main SCADA servers, and optionally may not have the
historian functionality; larger installations may incorporate other functionalities like engineering workstations,
training, and development systems.

62

Energy management applications are typically deployed into the application servers

previously represented in Figure 20. They are usually specified and designed using modeling

paradigms borrowed from control theory. Such paradigms include block diagrams and transfer

functions in the continuous “𝑠” or discrete “𝑧” forms. A vast number of publications can be

found in the specialized literature demonstrating the use of such paradigms for modeling EMS

applications (NEIS et al., 2019). Those researches are generally focused on the theoretical

aspects of the modeling, such as in references (ROBERT; HURTADO, 2008; SUN et al., 2009;

SULLIGOI et al., 2011; BEVRANI et al., 2012; BEVRANI; HIYAMA, 2009; MARTÍNEZ et

al., 2012; SHENG et al., 2009; BAEK et al., 2013; BAEK, 2014; CORSI et al., 2004a; CORSI

et al., 2004b; HARVEY et al., 2017; AZIZI; KHAJEHODDIN, 2018; LOU et al., 2019) which

offer little or no information at all about the software engineering process, i.e.: the process of

transforming the specified models into software artifacts.

However, based on our experience working with both the power utilities and the EMS

software providers, it is possible to state that in the EMS area, models are used mostly as

sketches for the function specification or documentation like tuning guides, maintenance, and

user manuals. Even when used as blueprints of the designed system, models tend to quickly

become obsolete, since updates performed in the application’s 3GL source code are not always

reflected in the system models.

Let’s take as an example the model depicted in Figure 21. This model represents the

desired behavior of the tracking detection logic for Itaipu’s AGC. This logic is responsible for

detecting the occurrence of malfunctions that prevent a generating unit’s governor from properly

following its LFC reference. Such malfunctions may occur due to local or remote defects in

either hardware or software and will usually manifest as one of the following symptoms: (1)

the unit’s measured power drifts away, while its governor fails to respond to corrective control

signals; (2) the unit’s governor fails to respond to control commands.

The tracking detection logic is specified in a block-diagram-like notation, containing

both continuous “𝑠-form” transfer functions, logical and arithmetical operators. At some point,

this model was manually translated by a developer into a 3GL programming language and

originated a subroutine module that was compiled and built into the executable AGC. This

manual translation process also includes the transformation of the continuous time transfer

functions into discrete time, since the SCADA/EMS software is completely based on digital

computers and operates over (virtually) uniformly sampled signals. Additionally, we need to

63

Figure 21 – A model of the unit tracking detection logic in Itaipu’s AGC.

RATE
LIMITER

DEADBAND

2

1

1 + sT

1

1

1 + sT

Tracking Decision Logic

 |SUM2| > Tracking Threshold (K6)
 OR

 (|SUM4| < TTTQD)
 AND (|SUM2[t] - SUM2[t-1]| < TTTQD)
 AND (|SUM2| > THRTQD)
 AND (|FACE| <= K5)

+
-

PWGENX: Unit Actual Generation
POD: Unit Desired Generation
FACE: Filtered Area Control Error

PWGENX

POD

FACE

SUM1 SUM2

TrueFalseSUM1: Unit Lagged Expected Generation
SUM2: Time Lagged Tracking Error

Unit NOT Tracking
Go to Retry Logic

Unit is Tracking
Go to Permissive
Control and Rate
Limit Logic

Source: The author, based on documents from Itaipu.

consider that the model in Figure 21 is an abstraction of the “thing being modeled”, and therefore

may not include all the necessary details that the developer adds into the 3GL module in order

to implement the actual tracking detection logic. The manual translation of the model presents

several risks and challenges, for instance:

• it may introduce errors or deviations from the designer’s intended behavior;

• future updates to the design have to be performed both in the model and in the source code;

• chances are that modifications will end up being made to the source code alone, while the

model may remain outdated;

• similar models may end up being expressed as very different implementations in 3GL,

particularly when the coding is performed by different developers;

In this scenario, we propose to adopt an MDE approach to the software engineering

process, which is expected to help cope with these and other challenges, as we will further

discuss in Chapter 5.

3.4 THE ITAIPU CASE STUDY

The Itaipu Hydroelectric Project is a bi-national project undertaken by two neighboring

countries, Brazil and Paraguay. It is located on the Paraná river, which delimits the border

between the two countries, 14 km upstream from the international bridge joining the cities of

Foz do Iguaçu in Brazil and Ciudad del Este in Paraguay, as illustrated in Figure 22 (COTRIM,

1994).

64

Figure 22 – Itaipu project location map.

Source: Adapted from (COTRIM, 1994).

3.4.1 Overview of Itaipu Project

Since 2007 Itaipu power plant is composed of 20 generating units11, each one of them

rated at 700 MW nominal power. Therefore the total installed capacity is 14000 MW.

Given the difference in frequencies used in each country – 60 Hz in Brazil and 50Hz in

Paraguay – half of the units operate at 50 Hz and half operate at 60 Hz. The power demand from

the Paraguayan system is lower than the total 50 Hz installed capacity, particularly during the

early operating stages of the project (COTRIM, 1994). The surplus power generated at 50 Hz is

interchanged with the Brazilian system, by means of static conversion to High Voltage Direct

Current (HVDC) and transmission at ±600 kV to the São Paulo area, in Brazil.

Itaipu plant can be viewed as the equivalent of two powerhouses: one of them operating

at 60 Hz frequency and having 7000 MW installed capacity, synchronized to the Brazilian

system; the other, with equivalent installed capacity and operating at 50 Hz, supplying power to

the Paraguayan system and the DC link with Brazilian system. The powerhouse, substations, and

associated transmission system are roughly composed of:

• 20 generating units, half of them operating at each country’s nominal frequency, and rated

voltage at 18 kV;
11 The original project was composed of 18 generating units, and two additional units were later commissioned.

65

• Transformer banks associated with each unit, stepping up the voltage to 500 kV;

• 500 kV gas insulated switchgear and substation (GIS-𝑆𝐹6)12 installed inside the power-

house;

• 500 kV transmission, using four lines for each frequency sector, interconnecting to both

right and left bank areas;

• 750 kV AC and ±600 kV DC for transmission into Brazil;

• 230 kV AC and 500 kV AC for transmission into Paraguay.

Figure 23 – Itaipu simplified electrical diagram.

Source: Adapted from (COTRIM, 1994).

Figure 23 illustrates a simplified electrical diagram of the Itaipu project and its intercon-

nections. A central line schematically represents the border between Paraguay (I) and Brazil (II),

and the arrow (F) represents the Paraná river flow direction. The Itaipu plant (A), containing both

the 50 Hz (1) and 60 Hz (2) units, connects to the Brazilian (B) and Paraguayan (C) systems.
12 Gas Insulated Switchgear (GIS) employs sulfur hexaflouride (𝑆𝐹6) as the insulator, an inert gas having two to

three times the insulating ability of air at the same pressure.

66

This connection is made through the right river bank substation (3) in 50 Hz, and the Foz do

Iguaçu substation13 (4) in 50 and 60 Hz, both by means of 500 kV lines. The right river bank

substation (3) is also interconnected to the 50 Hz sector of Foz do Iguaçu substation (4), where

the static HVDC converters are located.

3.4.2 Itaipu Power Plant Control and Supervision

The power plant control of the generating units and ancillary equipment can be per-

formed from two different locations: the unit local control rooms and the power plant Central

Control Room (CCR) – respectively the local and centralized levels, according to IEEE 1249-

2013 Standard (IEC/IEEE, 2013). The original control system installation employed hardwired

circuitry to perform power plant control functions (COTRIM, 1994). Currently, most of the

control and supervision functions are performed by means of a digital supervisory control and

data acquisition system (SCADA). The hardwired system serves mostly as a backup to the digital

system.

The overall features of the Itaipu power plant control system are:

• A central control room located in the powerhouse main structure: the CCR has facilities

for control and supervision of the power plant, spillway, and the right bank substation.

• Local Control Rooms (LCRs): There are ten local control rooms in the powerhouse, one

for each pair of generating units.

• Right bank substation control room, located at the right bank substation: It has facilities for

controlling the transformers/regulators and 500/220 kV transmission lines which deliver

50 Hz power to Paraguay and to the Foz do Iguaçu HVDC converter station in Brazil.

• Spillway local control room, located at the left side of the spillway structure which has

controls for opening and closing the fourteen spillway gates.

• Load Dispatch Center (LDC)14. The main functions of the LDC are to forecast the avail-

ability of Itaipu generation and to correlate it with the needs of the two power systems.
13 Foz do Iguaçu substation does not belong to Itaipu, and is operated by Furnas company.
14 Because of the project importance and the role that Itaipu production plays in the operation of Brazilian and

Paraguayan power systems, the complexity of hydrological conditions and numerous electrical transmission
interconnections with the power utilities, the power plant has an LDC (COTRIM, 1994).

67

The normal operating mode for the power plant is centralized. Operation from the LCR

is primarily used during commissioning, testing, initial operation, and in case of emergency due

to contingencies in the CCR. In general, all control levels are mutually exclusive: each device is

either under “central” or “local” control, but never simultaneously under both. Exceptions to this

rule include certain equipment functions that must operate independently of the chosen control

level, for example: protective action, such as circuit breaker trips; unit emergency shut-down

commands; lowering of intake gates; instrumentation and alarm annunciation.

In this work, regarding the Itaipu digital control system, the term “centralized control

action” refers to both: (a) human-triggered control actions initiated from the CCR or LDC; (b)

automatic control actions initiated from EMS functions on the digital control system.

The digital control system, regarded as “SCADA/EMS”, provides a modern and highly

flexible platform for control and supervision of the complete power plant, and the performing

of energy management functions (COHEN et al., 1989). The digital control system is basically

composed of:

• Remote terminal units, distributed throughout the power plant, usually close to the equip-

ment or process being supervised and controlled. The RTUs are capable of collecting data

from transducers and other field equipment and performing actions on actuators according

to commands received through the communication link.

• Operating stations, also referred to as “consoles”, distributed among the CCR and LDC.

The consoles are the interface between the operations personnel and the digital control

system.

• A central computerized station, responsible for communication and data processing. The

central station also hosts the execution of a set of automatic functions, regarded as “EMS”

functions (see section 3.3.3).

The central station functions can be further grouped and described as follows:

• General functions like data acquisition from RTU, data processing and recording, routing

information to displays on operator consoles, processing of operator actions, issuing

commands back to the RTU, and exchange of information with other internal and external

systems.

68

• Continuous or discontinuous control functions like automatic generation control, automatic

voltage control, and certain special protective actions.

• Operations assisting functions such as hydrological forecasting, generation and mainte-

nance scheduling, and provision of electrical and hydraulic system operation guidelines.

• Equipment and network security analysis functions, like state estimation, load flow, unit

operating point, and capability monitoring.

• Post-operation reports like the elaboration of statistical data, operational reports, and

production accounting.

• Other miscellaneous functions such as software database management, display develop-

ment and maintenance, dispatcher/operator training, and development environment.

Itaipu’s digital control system was deployed in the early 2000s and has already under-

gone two upgrades. It was supplied by a well-known vendor of power system energy management

and automation systems, and includes a considerable degree of customization and special func-

tions developed exclusively for the project. A certain degree of customization was deemed

necessary given the particular control requirements dictated by the characteristics and complexity

of the Itaipu project. However, customized and unique functions add extra complexity, cost, and

risks to the project, particularly in the event of upgrades or possible migration to a different

product line. Therefore, one of the goals of this work is to study and apply state-of-the-art

software engineering techniques that can help cope with the complexity, mitigate risks and

possibly reduce costs of the life cycle management of a centralized digital control system. The

Itaipu digital control system is a practical case study to which we intend to apply our proposed

methodology.

3.4.3 Automatic Control Functions in Itaipu

The automatic centralized control functions currently in service at the Itaipu power

plant are responsible for implementing, among other things: supplementary control actions,

joint generating unit control, and emergency control schemes, as well as, in certain conditions,

operating under off-site (remote) control mode. Some of these functions are of particular interest

for the development of this research and thus are described in the following sections.

69

3.4.3.1 Automatic Generation Control

The Automatic Generation Control (AGC) consists of a set of functions operating online

in real-time, to adjust the generation against the load at minimum cost (GRIGSBY, 2007). Some

of the functions that can be classified under the AGC umbrella include:

• LFC: this is the function responsible for balancing the total generation and load (plus

losses) in order to maintain the nominal system frequency (BEVRANI, 2008);

• Joint Control of Active Power (JCAP), also known as “load sharing”: provides a plant

with the ability to receive a single MW generation setpoint that may be shared among

a group of several turbine/generators (OLIVEIRA et al., 2017). The plant MW setpoint

may be either entered at the plant itself or received from an off-site control center (System

Operator, for example);

• Area Interchange Control and Scheduling: is the function responsible for maintaining net

power interchanges with neighboring control areas at the scheduled values (GRIGSBY,

2007);

• Economic Dispatch: maintains power allocation among units at economically desired

values;

• Spinning reserve monitoring: monitors the amount of spinning reserve maintained on the

system, and alerts the operators in case of violations. Maintaining enough reserve capacity

is required in case generation is lost (GRIGSBY, 2007);

With respect to the operation mode, AGC is a continuous control. With respect to the

operating condition, AGC can be classified as normal/preventive control.

Itaipu performs or takes part in the performance of these AGC functions, which are

implemented on top of the centralized digital control system15. Several control strategies are

available in Itaipu’s AGC, but the most commonly adopted, according to each powerhouse’s

frequency sectors, are:
15 A hardwired power plant control function called Joint Turbine Control (JTC) is still operational, serving as a

backup to the digital AGC function.

70

• 50 Hz sector performs LFC supplementary control actions, at Constant Frequency control

mode (CF)16;

• 60 Hz sector can use different strategies (depending on the situation): (a) load sharing with

remote setpoint control from System Operator; (b) load sharing in an open (secondary)

loop;

3.4.3.2 Plant Level Joint Bus Voltage and Reactive Power Control

Current Itaipu’s digital JBVRC function is called Automatic Voltage Control (AVC)17.

It is a real-time function responsible for maintaining the required voltage level at designated

generator-controlled bus bars while performing an optimum distribution of reactive power among

the participating generators. AVC’s target control variable is the voltage level at the 500 kV bus

bar in the powerhouse. That voltage level is controlled by changing the generators’ terminal

voltage setpoints and thereby, their reactive power output.

Different control strategies, also called modes, are also available for AVC, for example:

• Closed loop reactive power sharing among generators;

• Closed loop excitation current sharing among generators;

• Open loop reactive power sharing.

AVC function currently operates under the same mode in both powerhouse sectors,

although different parameter tuning is used. Just like AGC, AVC can be classified as a continuous

operation mode function, and as normal/preventive control.

3.4.3.3 Centralized Emergency Control Schemes

A special emergency control scheme is implemented on top of the digital control system,

which monitors the condition of certain equipment and takes remedial control actions in case

the operating point of this equipment exceeds the rated capacity. The goal of this scheme is to

automatically reduce the 60 Hz power production once any of the 500/765 kV transformers in
16 With future energy integration with the Yacyretá Power Plant, the operation under Constant Net Interchange

(CNI) mode is being evaluated.
17 A hardwired power plant control function called JVC is still operational, serving as a backup to the digital AVC

function.

71

the associated transmission system becomes overloaded by more than 10% of its rated capacity

(1800 A or 1650 MVA) (NEIS et al., 2012; NEIS et al., 2012). Once such overload has been

detected, the scheme calculates a new target power production for the 60 Hz sector, such that

all the transformers are brought back below rated capacity, and trigger the corresponding AGC

generation reschedule.

This special scheme can be classified as a discontinuous operation mode function, that

operates under emergency conditions.

3.4.4 Simulator and Production Environments

SCADA/EMS products are usually shipped with a Dispatcher Training Simulator (DTS)

package. The DTS is a realistic simulation environment capable of representing the dynamic

response of the power system under a wide range of operating conditions, within the limitations

of the power system model (WANG et al., 1994). DTS employs the same set of displays,

software tools, and databases that compose the production SCADA/EMS used in the power plant

operations, except for the field process data acquisition, which is simulated. The simulation is

based on load flow solutions and dynamic models of power system elements such as generators

and loads. Such dynamic models satisfactorily represent transient electromechanical effects that

are active for a period of one second or longer, showing pronounced effects on the power system

magnitudes.

Besides training, the DTS has proved to be a useful tool for after-the-fact power system

disturbance investigation, testing database changes, and validating EMS software changes. The

DTS has been used for years to verify the performance of applications prior to the deployment

and test on the power plant’s SCADA (HAQ et al., 2009). Since, as explained above, the DTS

runs the same software as the production system, virtually any application that correctly executes

within DTS can be safely deployed to the production system.

3.5 CHAPTER SUMMARY

This chapter summarizes some of the paradigms specific to the power system’s domain,

upon which the remainder of this work is based. An overview of the hydropower production

process is presented, along with a description of some of the software components associated

with the process control, thus configuring a Cyber-Physical System. A particular case of interest,

72

the Itaipu Power Plant, with its basic equipment and controls configuration, is briefly described.

The motivation and contextualization for this research are also briefly presented: the application

of state-of-the-art software engineering techniques to cope with the complexity, mitigate risks,

and possibly reduce costs of the life cycle management of a centralized digital control system.

Results of this research, although based on one particular case study, can certainly be extended to

other scenarios and thus bring contributions to the energy management and software engineering

fields.

We have also argued that the paradigms used by domain specialists for specifying

requirements and describing intended behavior in the power systems area usually involve nota-

tions such as block diagrams and transfer functions. However current software modeling tools

lack support for these paradigms. Not surprisingly, our literature review has shown that MDE

approaches currently play a rather limited role in the development of EMS applications. Some

questions regarding this matter remain open until now, for instance: (i) Which domain-specific

languages can be used for modeling EMS applications? (ii) Which transformation techniques and

tools can be used? (iii) How can we easily integrate custom EMS applications with commercial

SCADA packages? Those are questions we address in the following chapters.

73

4 LITERATURE REVIEW AND STATE OF THE ART

This chapter presents a literature review and state-of-the-art analysis of software de-

velopment for power systems and related applications. The findings reported in a systematic

literature review on the subject, which we have performed and published in 2019 (NEIS et al.,

2019), are discussed and augmented with complementary bibliography published after the origi-

nal review was performed. Answers to the research questions are outlined, and open problems

are identified. Comparatively, the D-SPADES approach is placed in perspective and the gaps it

proposes to fill are highlighted.

4.1 REVIEW OUTLINE

The objective of the review was to gather information about the software process applied

to the development of power systems applications. With this information, we can identify some of

the challenges faced by engineers from the power system area in describing system requirements

and transforming abstract models into lower-level software artifacts. We wish to elucidate how

domain knowledge is currently being captured from the power system specialist, and how that

knowledge is used in high-level system specification, validation, and implementation.

The original review included works from the year 2006 until March/2019. In that review,

40 publications were included. A supplementary review, following the original protocol and using

the same digital libraries (IEEE Xplore1 Digital Library (DL) and the ACM DL2) was performed

on May/2022. This supplementary review has identified additional 11 publications considered

relevant and therefore included in this chapter. Further details about the review protocol can be

found in (NEIS et al., 2019). In addition to the publications found through this review protocol,

this chapter also references and discusses other relevant works in the MDE area.

4.1.1 Research Questions for the Review

We have formulated the following research questions that shall be specifically answered

in the scope of the literature review:

1. RQ1: What are the overall characteristics of the software process being applied to the
1 http://ieeexplore.ieee.org/
2 https://dl.acm.org/

74

development of power systems applications? By answering this question we seek to identify

the type or format of models representing requirements and specifications (the source

model) and the format of the software artifacts into which the source model is transformed.

We also wish to identify the transformation process, whether it is automated or manual.

2. RQ2: Is the concept of MDE being applied to the development of SCADA/EMS, or other

power system applications? Answers to this question shall also help identify promising

DSLs for this type of application, transformation techniques and tools, and related standards

applicable to the integration with commercial SCADA packages.

4.2 INFORMATION COLLECTED FROM THE REVIEWED WORKS

We have categorized the reviewed publications and emphasized some of the most

relevant features observed in each category, as shown in Table 2, and discussed in the following

subsections. Desirable features observed in works from each category are highlighted, and related

to the proposed D-SPADES approach.

Table 2 – Comparison of development approaches from reviewed works.

Sec. Approach/Work
Application

Domain Source Model Transformation Target Model

4.2.1.1 Breesse Avionics
Actor-Oriented

Simulink/Stateflow
Automatic

M2M EMF/Ecore

4.2.1.2 AMoDE-RT Embedded UML/SysML
Automatic

(M2T)
3GL

(Java)

4.2.2.1
IEC Standards
and Ontologies

Substation
Automation

IEC 61850,
ontological model Automatic IEC 61499

4.2.2.2 CIM-based SCADA/EMS IEC 61970 (CIM) Semi-automatic
OPC-UA

address space

4.2.3.1
Rapid prototyping

for smart grid Smart Grids
PSAL

EMSOnto
Automatic

M2M & M2T
IEC 61499,

61131, others

4.2.3.2 FMDE4SGRID Smart Grids SGAM-based
Automatic

M2M & M2T
3GL

IDL, Java

4.2.3.3 ThingML+ Smart Grids
Embedded, IoT DA/ML

Automatic
(M2T)

3GL
(Python)

4.2.3.4 Power-Attack Protection System
Cyber security

Power-Attack
DSL

Interpreted
Language

Discrete
Events

4.2.4.1 MPC-based Hydro unit
speed governor

MPC discrete
control law Unspecified PLC program

4.2.4.2
Event-triggered

DG control
Micro Grids

(Volt/Frequency control) Discrete control law Unspecified Unspecified

4.2.4.3
DFR

Algorithm
SCADA/EMS and

Micro Grids
Algorithm and

Transfer Functions Unspecified Unspecified

4.2.4.4
Classical

Control Theory
SCADA/EMS

(Volt/Frequency control)
Block diagrams &
Transfer Functions Unspecified Unspecified

4.2.4.5
NewSART

project
SCADA/EMS

(Volt/Frequency control)
Block diagrams &

Scilab/Scicos model
Automatic

(code generator)
3GL
(C)

5 D-SPADES SCADA/EMS Actor-Oriented
EMSML/MoML

Automatic
(M2T)

3GL
(C++, Fortran)

75

4.2.1 Applications not Related to Power Systems

4.2.1.1 Breesse

Breesse is described as a bridge for the EMF ecosystem and the MathWorks Simulink

and Stateflow ecosystem (PAZ; BOUSSAIDI, 2020), built-in response to the needs of the

avionics systems industry. According to the authors, such systems are represented using a mix

of UML with Simulink and Stateflow design models. Manually ensuring consistency between

such heterogeneous design models is a resource-consuming and error-prone activity. Breesse

is implemented on top of EMF technologies and the Matlab Engine API for Java, being able

to import the contents of Simulink and Stateflow design models and libraries into EMF-based

representations. It, therefore, provides Eclipse MDE users and tool developers with access to

Simulink and Stateflow models and libraries in the form of EMF models, being also able to

directly connect to a running Matlab instance. Breesse is part of the toolchain that supports

engineering teams in identifying inconsistencies between design models. To flag inconsistencies

between Simulink, Stateflow, and UML design models, Simulink and Stateflow design models

are imported into Eclipse using Breesse. Then, the imported models are further processed with

EMF-based technologies that are part of the toolchain. Therefore, Breesse is not used to generate

code, but rather to ensure consistency among different representations of the system, eg: UML

and Simulink/Stateflow. Either way, this work is still relevant when compared to D-SPADES,

since the source models in the toolchain are AO-based. The work also demonstrates that it is

possible to build a EMF-compatible metamodel for Simulink/Stateflow models, which in turn

could be used as an alternative representation in D-SPADES.

4.2.1.2 AMoDE-RT

The Aspect-oriented Model-Driven Engineering for Real-Time Systems (AMoDE-

RT) (WEHRMEISTER et al., 2014; WEHRMEISTER et al., 2013; WEHRMEISTER, 2009;

WEHRMEISTER et al., 2007a; WEHRMEISTER et al., 2007b) is an MDE approach tailored

for embedded and real-time systems. It combines the use of the UML (MARTE3 profile) along

with concepts of the Aspect-Oriented Software Development (AOSD) to deal with the system’s
3 Modeling and Analysis of Real-Time and Embedded systems (MARTE) is an Object Management Group

(OMG) specification of a UML profile adds capabilities to UML for model-driven development of Real-Time
and Embedded Systems. See https://www.omg.org/spec/MARTE/1.2/.

https://www.omg.org/spec/MARTE/1.2/

76

crosscutting concerns. AMoDE-RT is supported by a tool chain composed of: (a) an automated

and configurable code generation tool, capable of transforming UML models into source code

for (virtually) any given target execution platform; (b) an automated testing tool that can execute

a set of test cases on the UML model.

In AMoDE-RT, code generation from the UML model is performed through a script-

based approach, in which small scripts define how to map model elements into target platform

constructions, generating source code fragments that are merged to produce source code files.

D-SPADES, on the other hand, employs a specialized Model-to-Text (M2T) transformation

language for code generation, besides being targeted specifically at SCADA/EMS applications

and thus using a specialized Domain Specific Language (DSL) to express models, as emphasized

in Table 2.

4.2.2 Approaches Based on Standards for Power Systems

4.2.2.1 IEC Standards and Ontologies

Approaches based on IEC standards and ontologies are described by Yang et al.

(2020), as well as in other related works previously published by the same researchers (YANG

et al., 2017; YANG; VYATKIN, 2017; VOINOV et al., 2017; ZHABELOVA et al., 2014).

These works address the transition from informal representation of requirements to formalized

specifications. The approach is contextualized within standards like the IEC 61850 and IEC

61499, incorporating requirements modeling into the engineering process and using requirements

to model and generate IEC 61499 control systems from IEC 61850 specifications. The control

specification model is created in a form of ontologies, and the generation is based on ontology

transformation. These works are related to D-SPADES in the sense that they largely apply

MDE concepts, like DSLs and model transformations, however, their focus is on the substation

automation domain.

4.2.2.2 CIM-based

Approaches based on the IEC 61970 Common Information Model (CIM) and IEC

62541 / OPC Unified Architecture (OPC-UA), like the CIMbaT, described by Rohjans et al.

(2011), which is a plug-in developed for the Enterprise Architect (EA) modeling and design tool.

77

CIMbaT exports the IEC 62541 / OPC-UA address space definition, in XML, from an IEC 61970

CIM compliant model, which is described in UML. CIMbaT is not an application development

approach, but rather an automated mapping of a CIM model into the OPC-UA address space.

The work is considered relevant in this context since, besides using a model-driven approach, it

deals with standardized models and protocols (CIM and OPC-UA).

Another study mentioning similar model-to-model transformations is (GÓMEZ et al.,

2018), in which a power network model described in the IEC 61970 CIM is used for deriving

Modelica models of physical power systems for dynamic simulations.

Interoperability standards like IEC 62541, 60970, and 61850 are also regarded as key

technology by Lopez et al. (2010). In that work, a unified platform supporting the merging of

network models and device models is proposed, such that enterprise-wide applications can be

developed for the utility by means of these interoperability standards.

4.2.3 Smart Grids and Other Power Applications

4.2.3.1 Rapid Prototyping of Smart Grid Applications

Approaches focused on rapid prototyping of smart grid applications using DSLs

are described in a series of papers apparently originated in the same research group, since they

have some authors in common, including references: (ZANABRIA et al., 2019; USLAR et al.,

2019; ZANABRIA et al., 2017; ANDRÉN et al., 2017; ANDRÉN et al., 2013; ANDRÉN et

al., 2014; ANDRÉN et al., 2014; ANDRÉN et al., 2013; ANDRÉN et al., 2015; ZANABRIA

et al., 2016; ANDRÉN et al., 2016; DÄNEKAS et al., 2014). Significant highlights from

these researches include the definition of a DSL named Power System Automation Language

(PSAL) (ANDRÉN et al., 2017) and an ontology named Energy Management System Ontology

(EMSOnto) (ZANABRIA et al., 2017), which allegedly can be combined (ZANABRIA et

al., 2019). The PSAL language provides code generation support, assisting in the design of

applications for layers of the Smart Grid Architecture Model (SGAM)4, using a textual format.

On the other hand, EMSOnto can generate informational reports on, for instance, controller

conflicts. EMSOnto is intended to support control engineers during the conception, prototype,

and implementation of control applications with a focus on multi-functional storage systems. A
4 The SGAM is a structured approach for modeling smart grid use cases. For details, see (BRUINENBERG et al.,

2012)

78

main outcome of the ontology-based approach is the automatic detection of inconsistencies at

the conception level. These works, similarly to the ones in the previous category, are related to

D-SPADES with regard to the utilization of MDE concepts, although their application domain is

focused on smart grid applications.

4.2.3.2 FMDE4SGRID

FMDE4SGRID, proposed by Felix et al. (2020), is a framework based on Model

Driven Engineering and the weaving of models to support the development of inter-operable

applications for the smart grid domain. The approach provides a DSL based on concepts from

the smart grid domain, like the SGAM, and application integration based on the IEC 61970

(CIM) standard. Code generation is performed using the Acceleo tool at three different stages:

(i) generation of Interface Definition Language (IDL)5 files, (ii) generation of the configuration

files, (iii) and the generation of Java source code.

This work, although focused on smart grid applications, has some remarkable similari-

ties in methodology with D-SPADES, including:

• Explicitly addresses interoperability between devices and systems through standardized

data formats and protocols, although it is not focused in SCADA/EMS applications.

• Adopts a modern MDE approach, describing the metamodel for the proposed DSL, based

on the SGAM.

• Transformations are explicitly defined based on these metamodels, including Model-to-

Model (M2M) and M2T.

• EMF and the Acceleo tool are also used to partially generate 3GL source code for an

application.

The DSL definition, on the other hand, is based on Object-Oriented (OO) concepts and UML

notation, which are not domain-specific languages for the power systems area.
5 IDL is an OMG standard consisting of a descriptive language used to define data types and interfaces in a way

that is independent of the programming language - https://www.omg.org/spec/IDL/4.2/About-IDL/

https://www.omg.org/spec/IDL/4.2/About-IDL/

79

4.2.3.3 ThingML+

Moin (2021) proposes ThingML+, which extends the ThingML (HARRAND et al.,

2016)6 with Data Analytics (DA) and Machine Learning (ML) techniques to facilitate the

development of smart IoT services and CPS applications. It includes a methodology, a modeling

language with extended syntax and semantics for DA and ML, as well as a number of code

generators, based on ThingML. The idea with ThingML+ is that software models become capable

of supporting ML, e.g., by generating the appropriate ML models for the task at hand and training

them automatically using existing and/or incoming data. The approach, like D-SPADES, is also

built on top of the EMF. Validation and evaluation are performed on cases from the smart energy

systems and energy stock market domains.

4.2.3.4 Power-Attack

The Power-Attack modeling and simulating environment (CHHOKRA et al., 2021) is

focused on evaluating the effect of cyber attacks on the power system. One of its components

is a domain-specific language that can be used to create scenarios involving faults in power

equipment as well as cyber attacks on protection systems, controllers, and sensing data. The

Power-Attack DSL is an imperative language that defines the simulation parameters and attack

scenarios in the form of an attack model file. Such scenarios are evaluated in run-time by a

simulation engine, in a sequence of steps to simulate attack scenarios. This approach, although

being related to D-SPADES in regard to the use of DSLs in power systems, is not intended to

produce executable SCADA/EMS software.

4.2.4 Approaches Based on Control Theory

4.2.4.1 MPC-based Algorithm

An Model Predictive Control (MPC) based algorithm is proposed by Beus and

Pandžić (2022) for the design of the hydropower plant’s primary frequency controller. With

such an algorithm, the controller’s internal linear prediction model parameters are continuously
6 ThingML includes a modeling language and tool designed for supporting code generation and a highly cus-

tomizable multi-platform code generation framework for embedded systems and Internet of Things (IoT)
applications.

80

updated depending on the unit’s operating point. The algorithm was implemented in a PLC

and validated on a laboratory hydropower unit. No details are provided about the software

development process though.

4.2.4.2 Event-Triggered DG Control

Event-triggered Distributed Generators (DGs) control proposed by Wang et al.

(2019) which is a distributed, event-triggered, and time-decoupled secondary control for fre-

quency/voltage restoration and power sharing in islanded microgrids. It is implemented as

a Multi Agent System (MAS) consisting of a cluster of computers equipped with a Remote

Procedure Call (RPC) framework. Each cluster node hosts an agent which is programmed to

communicate with other agents and calculate the proposed event-triggered algorithm. The control

algorithm consists of an event-driven control law, expressed as a discrete summation. No further

information is provided about the software development process, though.

4.2.4.3 The DFR Algorithm

The Distributed Frequency Regulation (DFR) Algorithm described by Nazari et al.

(2020a), Nazari et al. (2020b) addresses the LFC problem through a distributed approach. The

algorithm is allegedly scalable either to small-scale prosumers, such as micro-grids, as well

as large-scale control areas, such as the AGC system of utilities, thus it can be considered a

SCADA/EMS application. The objective of the DFR algorithm is to maintain frequency stability

and fairly optimal power sharing among generators, which are functionalities of traditional

centralized AGC applications. The aforementioned papers describe the DFR algorithm for each

participating agent as a set of steps, for which the corresponding equations are provided. Results

for a set of simulations are described, however, no details are provided about how the controllers

are implemented and simulated.

4.2.4.4 Classical Control Theory

Approaches based on classical Control Theory are common in several studies de-

scribing models for load/frequency control or voltage control applied to bulk generation or

transmission systems, which are typically SCADA/EMS applications, and therefore our main

81

area of interest. The model representation used in these works typically includes block diagrams,

state space models, differential/integral equations, 𝑠 or 𝑧 domain equations, or a combination of

those. These works concentrate on presenting the application’s model and the results of tests or

simulations.

Typically little detail is provided about how the models are transformed into software

artifacts or about the nature of such artifacts. In other words, the software development process

for the application is not described in detail, and the project’s design/modeling phases are

apparently decoupled from software development. On the other hand, the ubiquitous presence

of the block diagram and transfer function representation in these works is a clear hint that

an adequate DSL for this domain must fully support such abstractions. Publications reviewed

include: (LOU et al., 2019; AZIZI; KHAJEHODDIN, 2018; ARYA; KUMAR, 2017; HARVEY

et al., 2017; BAEK, 2014; BAEK et al., 2013; BEVRANI et al., 2012; MARTÍNEZ et al., 2012;

BEVRANI; HIYAMA, 2009; SHENG et al., 2009; SUN et al., 2009; ROBERT; HURTADO,

2008; SHAYEGHI; JALIL, 2007; CORSI et al., 2004a; CORSI et al., 2004b).

4.2.4.5 NewSART Project

The NewSART project, described by Sulligoi et al. (2011) is a particular work in

which the modeling is largely based on the Control Theory, and a fairly detailed description of

the modeling and transformation process is provided. NewSART performs Secondary Voltage

Regulation (SVR) as part of the hierarchical control system of a high-voltage transmission net-

work. Control and communication functions are implemented using open source tools, including

Scilab/Scicos environment to create a mathematical model that is automatically transformed into

textual artifacts (C source code) for the Linux RTAI platform.

The work shows some features similar to D-SPADES:

• It originates in the same application domain, which includes voltage and reactive power

control, although the integration with the SCADA platform is not clearly addressed. D-

SPADES, on the other hand, explicitly addresses the integration with SCADA.

• AO models are used as source models, although it is not clear which parts of the system

are modeled using this approach, and which parts are manually developed. D-SPADES,

on the other hand, is capable of producing fully functional applications without the need

for manual coding, although partial generation of modules for legacy applications is also

82

supported.

• The transformation process, although automatic, is performed by means of code generators

available in the Scilab/Scicos environment. Essential concepts of MDE approaches, like

DSLs, metamodeling, and transformations are not mentioned in the text: Sulligoi et al.

(2011) do not explicitly regard its approach as MDE. In other words, code generation is

performed through a “black box” approach. D-SPADES, on the other hand, proposes a

DSLs and adopts a template-based approach to code generation, which presents several

advantages further discussed in Section 5.6.

• The target software artifact of the process is 3GL source code, in the C programming

language. It is not clear whether other languages can be used. Comparatively, D-SPADES’s

template-based approach is targeted to C++ programming language, but can be easily

adapted to other languages by using different templates. In fact, we have already developed

a template for generating FSMs in Fortran, to be integrated into legacy applications

developed in that language. Such templates and applications are further discussed in

Chapters 5 and 6.

4.3 ANSWERS TO THE REVIEW’S RESEARCH QUESTIONS

Based on the reviewed studies, we can outline the answers to the research questions in

the scope of the literature review, as discussed below:

RQ1: What are the overall characteristics of the software process being applied to the

development of power systems applications?

Apparently few publications explicitly deal with this problem, however, we were still able to

identify the following characteristics:

• The most common source models being used for design and specification include:

1. block diagrams associated with mathematical models from control theory;

2. modeling languages related to the AO paradigm, i.e.: based on a block-diagram

notation, like Matlab/Simulink/Stateflow, Modelica, Scilab/Scicos and the Ptolemy II

(ZHABELOVA et al., 2014);

3. models standardized by the IEC (61850, 61499/61131, 61970, and 62541);

83

4. models already consolidated in the areas of systems and software modeling like

UML, Systems Modeling Language (SysML)7, MARTE or other UML profiles;

• Regarding the software artifacts produced from the source models, although several of

the reviewed studies do not specify this information, the most frequently mentioned types

include:

1. the IEC 61499/61131 executable format;

2. textual artifacts, including source code;

3. platform-specific, legacy, or other proprietary formats;

• Regarding the transformation process of the source model into other software artifacts,

many of the reviewed studies do not describe how this task is performed, although a

few mention a manual transformation process. A significant number of studies, however,

mention the use of automatic code generation, including through M2T transformations.

The supporting environment typically used for this task is the Eclipse EMF.

RQ2: Is the concept of MDE being applied to the development of SCADA/EMS, or

other power system’s applications?

Judging by the search results obtained from the DLs, we can infer that, so far, few studies have

investigated the MDE approach to the development of SCADA/EMS applications. Although we

have observed a significant number of studies mentioning MDE-related concepts, only a few

of them are specifically concerned with EMS. Relevant information obtained from the review

includes:

• regarding domain-specific languages:

1. SCADA/EMS applications are frequently modeled using control theory concepts,

and although such models are widely accepted among power systems specialists,

they cannot be considered software modeling languages.

2. The modeling approach described in the IEC 61499/61131 can be used to specify

a fully functional application, however, it does not incorporate domain-specific

concepts related to the power systems domain. Another limitation of this approach is

that it is typically targeted at PLC platforms.
7 https://sysml.org/

https://sysml.org/

84

3. Similar observation can be made about the UML-based languages: they can specify

software structure and behavior, but are not specific to the power systems domain.

4. On the other hand, formats such as those proposed by IEC 61850 and 61970/61968

standards are specific to the power industry, however, restricted to certain aspects

of the system model, like communication and information model, thus lacking the

expressiveness needed for specifying functionality and behavior.

5. Languages associated with modeling and simulation environments, such as Mat-

lab/Simulink/Stateflow, Modelica, Scilab/Scicos, and the Ptolemy II, integrate both a

visual schematic and equation-based description of the system under study, therefore

are suitable to accommodate concepts specific to SCADA/EMS applications, like the

control theory.

• in terms of transformation engines and generators, we have observed references to the

open-source Eclipse Platform tools, including the Eclipse Modeling Framework and the

Atlas Transformation Language. W3C XML-based technologies, the OMG Query Views

Transformations, and the Semantic Web Rule Language were also mentioned (YANG et

al., 2017). Other specific techniques such as ontology transformations and custom model-

to-model transformations were observed. Proprietary or tool-specific code generators, like

those supported by design environments such as Matlab and Scilab, are also mentioned.

• for integration with commercial SCADA packages, many publications mention the IEC

61970/61968 EMS API, which defines the Enterprise Service Bus architecture of Figure

24, although such architecture constitutes only a conceptual model, i.e.: the standard does

not prescribe specific technologies for its implementation. The IEC 61850 station-level

interoperability definition, based on the ISO 9506 Manufacturing Message Specification

(MMS) protocol is also mentioned. The viability of such technologies needs further

evaluation since none of the reviewed studies describe actual SCADA/EMS applications

integrated through them. The IEC 62541 - OPC-UA standard, on the other hand, is

mentioned by some studies along with instances of real applications.

85

Figure 24 – Enterprise Service Bus model for inter-application communication.

Middleware Services

Interface

GIS

Interface

Asset
Database

Interface

SCADA

EMS

Interface

Work
Management

Interface

Planning

Interface

Source: Neis et al. (2019), Electric Power Research Institute (2018).

4.3.1 Open Problems

In the set of studies reviewed in this work, the generation of complete applications

using the MDE approach is rarely seen. Most of the studies mentioning MDE-related concepts

describe the generation of part of the system, like an IEC 61850 specification or a simulation

model. Particularly in the case of SCADA/EMS applications, we were unable to identify concrete

instances where the MDE approach has been explicitly applied to the development of full

applications, except possibly by the work of Sulligoi et al. (2011), which asserts that “from

the simulated mathematical model, a C source code is automatically generated”. On the other

hand, the MDE approach is apparently being adopted for automation and distributed smart

grid applications. Therefore, the viability and advantages of this approach to SCADA/EMS

applications development are yet to be determined. Some of the open problems identified in the

previously mentioned studies, which D-SPADES proposes to address include:

• Although some studies clearly mention the adoption of MDE approaches to certain power

system’s applications development, a systematic MDE approach to EMS has not been

found in the literature, as the data presented in Table 2 suggests.

• The types of models (languages) employed by power systems specialists to represent EMS

applications include concepts specific to the domain, like the block diagram and transfer

function notations. Generic software modeling languages, like UML, are not compatible

with such paradigms.

• Although specific methodologies for modeling data/information in the power sector exist,

for instance, the CIM and IEC 61850, such models are not appropriate to represent

86

system/software behavior.

• As a consequence, the EMS development process is apparently performed in two different

stages8: (i) first the power system specialists model and validate the desired behavior using

their domain-specific tools and notations; (ii) later this specification is passed along to

the software development team, which manually translates the models into programming

languages and other types of models. Such a process becomes error-prone and hinders

future system evolution since requirements changes necessarily involve manually changing

the software. Additionally, the evolution of such systems is often performed directly in

the application’s source code, with a tendency to leave the high-level models outdated

(SCHMIDT, 2006).

• It is not clear what is the role of the power system specialist in the development process,

and how his/her modeling activities are interfaced with the software development team.

The benefits of having the artifacts designed and tested by the power system specialists and

later automatically transformed into software implementation are not being fully explored.

• Some of the reviewed studies address the problems of interoperability and integration

of applications using standardized and consolidated technologies, however not for EMS

applications. We have not been able to find studies that explicitly address how to develop

new applications and integrate them with COTS SCADA packages.

4.4 REVIEW CONCLUSIONS

We believe that MDE approach may bring significant improvements to the SCADA/EMS

applications development process, based on the following observations:

• makes it possible to reuse artifacts produced during early specification and design phases

through the whole development process, by performing the transfer and automatic model

transformations between modeling phases (HÄSTBACKA et al., 2011). Ideally, the same

artifacts used by power systems engineers to specify, design and validate the control system

behavior should be transformed into software components;
8 We reinforce this statement based on our experience working in the power system’s area for more than 20 years.

Such a conclusion is corroborated by the data presented in Table 2, although the literature review itself cannot
demonstrate the statement with hard evidence.

87

• it can allow the power system’s control specialists to actively participate in the development

process, using domain-specific, but platform-independent modeling languages;

• by being platform independent, the DSL may facilitate the porting and migration of

applications from one platform to others;

• utilities, SCADA/EMS vendors, service providers, and integrators can all benefit from

those concepts, applying MDE methodology to more easily design, develop and deliver

customized solutions.

• ultimately MDE approach may cut development costs and time, reduce defects, improve

software quality, maintainability, and requirements traceability.

Thus, the MDE concept has the potential to make the whole SCADA/EMS application develop-

ment process more agile and less error-prone. We were also able to highlight some of the desired

features and promising technologies for SCADA/EMS application development identified in the

literature review:

• The use of block diagrams and transfer function notations to express models is almost

ubiquitous. Therefore, we conclude that a good DSL for this domain must natively support

these abstractions.

• Some of the reviewed works are targeted at automation platforms based on PLCs, thus

the types of artifacts produced include PLC programs in the IEC 61499/61131 format.

This format is not appropriate for SCADA/EMS applications, since they are typically not

targeted at PLC platforms. The appropriate format, in this case, includes 3GLs like C/C++,

which are also mentioned in some of the reviewed studies.

• A good, open-source tool supporting MDE methodologies is the Eclipse EMF, which is

mentioned by some of the reviewed works.

• The International Electrotechnical Commission (IEC) standards for integration, like IEC

62541 / OPC-UA is mentioned by some of the reviewed works. OPC-UA is a platform-

independent standard through which various kinds of systems and devices can communi-

cate through messages between clients and servers or between publishers and subscribers

over various types of networks.

88

5 THE D-SPADES APPROACH TO EMS SOFTWARE DEVELOPMENT

In this chapter, we describe D-SPADES: our proposed MDE-based approach to the

development of EMS applications. According to the definition given in Section 3.3.3, and in the

context of hydropower plants operation, we define “EMS applications” as the suite of centralized

or off-site functions running on top of a SCADA layer. Such functions include, but are not limited

to: automatic generation control, voltage and reactive power control, production/interchange

scheduling, operator assistance, and analysis tools. Although the development and validation

of D-SPADES was focused on this specific category of applications, virtually any application

running on top of the SCADA layer could be developed through D-SPADES.

D-SPADES is established upon the following components: (i) an actor-oriented lan-

guage and platform for modeling hydropower plant applications; (ii) the mapping strategies for

model transformation from actor-oriented to object-oriented (or even procedural) programming

models; (iii) the necessary tool support for the approach, including modeling tools, transforma-

tion languages, components library, and SCADA integration API; and (iv) the software process

that coordinates the software production through D-SPADES approach. A full paper describing

D-SPADES is accepted for publication in the International Journal of Electrical Power and

Energy Systems (NEIS et al., 2023).

5.1 D-SPADES SOFTWARE PROCESS

The D-SPADES software process is essentially composed of the activities listed below.

These activities are executed in an iterative and incremental fashion throughout the whole

software life cycle, as schematically represented in Figure 25. Each one of the process activities

is briefly described in the following sections. As further discussed in Chapter 6, we have applied

this process to the development of real-world applications at the Itaipu power plant. Therefore,

the examples from Chapter 6 further illustrate and clarify the application of the D-SPADES

process, and are complementary to the description provided in the current chapter.

89

Figure 25 – D-SPADES Software Process Model.

Source: The author.

5.1.1 Problem Characterization and Requirements Elicitation

This phase involves the problem analysis and the collection of requirements for the

application under development. Requirements can be collected from several sources, for instance:

through observation of existing systems, discussions with stakeholders, document analysis, etc.

Eliciting the requirements may involve the development of one or more system models and

prototypes, which can be expressed using the EMSML language. In the power plant scenario,

two groups of applications can be identified, for which different sources of requirements may

exist:

1. Legacy applications that are being improved, migrated or re-implemented using D-

SPADES approach: Existent applications being evolved or migrated to a different SCADA

platform using the D-SPADES approach have a set of artifacts already available that can

leverage the development process. For instance, existing documentation and models, like

block diagrams and transfer functions, can be re-used. Legacy source code can also be used

for detailing and refining the models, as well as for populating the D-SPADES components

library.

2. New applications developed using D-SPADES approach: Specification of new functional-

ities can start, as early as possible in the project development, by describing actor-oriented

models, even when these models are early sketches. Such models can be incrementally

validated, evolved, and later transformed into the target software artifacts. The model

construction activities can also be made directly into the actor-oriented modeling environ-

ment adopted by the approach, in our case the Ptolemy II tool. Interaction with project

90

stakeholders may be facilitated by the use of the domain-specific EMSML modeling

language.

As an illustrative example, consider a hypothetical scenario where a new generating

unit’s speed-governing function needs to be developed. We acknowledge that speed governing is

not a typical EMS application: it is in fact part of the Unit Local Control, according to the IEE

Std. 1249 (IEC/IEEE, 2013), as discussed in Section 3.3. We believe, however, that this example

provides an instructive demonstration of the D-SPADES process, since the concepts involved in

the primary regulation have already been discussed in Section 3.2.1.2 (page 50). As requirements

for this governor, consider that:

1. It must be a discrete governor. The necessary signals from the physical system are already

provided as uniformly sampled with a 4 seconds periodicity. Control actions will also be

performed at this periodicity.

2. It must be an isochronous governor, i.e., it must have no steady state speed error.

Figure 26 schematically represents the physical process and the speed governor component.

Figure 26 – Discrete speed governor example.

Turbine
Gen.

Pm

Pew

Valve/Gate

water

Governor Speed

Tm

Te

Source: The author

5.1.2 Environment Modeling

Consists in building a model of the cyber-physical environment, including processes and

other applications to interact with. This environment model is used to validate the application’s

requirements and its model’s design. These activities can be leveraged by existing models of the

CPS which were previously developed, such as: generating unit’s governor and excitation system

models, electrical network models, protective devices models, and so on.

For our speed governor example, we must build a model of the physical process and

its interfaces with the application. In this case, let’s assume that the system representing the

91

turbine/generator/load has a typical transfer function of the form 1/(2 ·𝐻 · 𝑠+𝐷), with 𝐻 = 5

representing the inertia and 𝐷 = 0.75 representing the load damping factor. Figure 27 represents

a screenshot of this example environment being modeled on the Ptolemy II suite, and simulated

in open-loop (no governor). In this case, the prime mover mechanical power is modeled as a

constant value (1 pu), while its control valve is modeled as an add/subtract block, meaning

that its resulting power can be modulated by an input signal subtracted from the constant value.

A load variation is modeled as a step function, increasing from 1 pu to 1.05 pu after 10 s of

simulation, as shown in the blue trace. As a result, the output speed is reduced and stabilizes at

an off-nominal value due to the effect of the load damping.

Figure 27 – Environment model for governor example.

Source: The author

5.1.3 Application Model Design and Construction

The design and construction activities are focused on evolving the model specification

from previous phases into fully functional models. Models and specifications previously used

for studying and planning other aspects of CPS may also serve as input. These activities are

heavily dependent on the actor-oriented modeling environment. They may also involve domain

specialists in the process: people with skills in power system control and operations, but not

necessarily trained in software development.

Returning to our illustrative example, we would be modeling the actual discrete speed

governor. To the above system, our environment model must also include the periodic sampler

and the sample-holder components that interface the continuous part of the CPS with the discrete

governor, as illustrated in Figure 28.

Finally, the discrete governor, highlighted in yellow in Figure 28 must be designed. In

this case, we designed it as a simple proportional-integral controller, composed of a gain and an

92

Figure 28 – Environment and Application model.

Source: The author

accumulator, as shown in Figure 29, thus ensuring that it behaves as an isochronous governor.

This model is executed under the SDF MoC, thus operating like a typical signal processing

application triggered by incoming periodical samples.

Figure 29 – Simplified discrete governor model.

Source: The author

5.1.4 Model Testing and Validation

Model testing and validation rely heavily on the simulation capabilities of the Ptolemy II

actor-oriented modeling environment. Ptolemy II can model and simulate both the EMS applica-

tion under development, as well as the corresponding physical process associated with it. The

simulations shown in Figures 27 and 30 illustrate this capability: the first case illustrates the

open-loop simulation of the system’s behavior, while the last demonstrate the resulting behavior

in the presence of the proposed controller. We can see that the speed was brought back to 1 pu

by means of the discrete control actions performed by the governor, therefore validating the

proposed design. Additional validation could be achieved through co-simulation of other CPS

components, performed by integrating Ptolemy II with other simulation environments, such as

93

the Itaipu’s DTS (see Section 3.4.4, page 71). Details of how to perform such co-simulation,

though, are out of the scope of this research.

Figure 30 – Simulation results for governor operation.

Source: The author

5.1.5 Model Transformation

This activity involves applying the MDE tools to automatically generate software

artifacts, including source code, from the models produced through the previous activities. It also

involves inspecting the artifacts and building the executables for the target SCADA platform.

At the current stage of development, D-SPADES is able to produce source code directly from

AO models using the supported MoCs. Thus, every aspect of an EMS application that can be

expressed as an AO model (e.g. signal processing, closed-loop control logics, and determination

of the necessary output actions) can have its code automatically generated. Other aspects,

such as user interfaces, are not currently supported by the approach and must be performed

using the vendor-specific tools provided by the SCADA environment being used. Therefore

additional development activities might be necessary during this phase, in which such artifacts

are constructed using conventional approaches.

In our speed governor example above, the model transformation activities consist in

automatically producing source code from the DiscreteSpeedGovernor block highlighted in

Figure 28, and building the executables for the target platform This activity will be further

detailed in section 5.3.

94

5.1.6 System Validation

System validation or “system testing” consists in integrating the executable software

and other accompanying artifacts produced by the execution of earlier activities with the

SCADA/EMS platform, and ensuring that the whole system works as expected. It is advis-

able to start this validation on a testing platform, with simulation capabilities, like Itaipu’s DTS.

Although the simulation platform is known to have limitations, it helps identify problems early

and gain confidence and experience with the application. Finally, the application must undergo

controlled tests under actual operational conditions before it can be declared production-ready.

Once the system test is successfully executed, the running software is ready to be deployed in

the production environment.

Returning to our example above, this activity would involve performing tests in the

execution platform of our application, which are typically PLC-based in the case of discrete speed

governors. The physical system, i.e., the generating unit, could be simulated for preliminary tests,

but controlled tests on the real system would be required.

5.1.7 Release and Deploy

Deploying an application means putting it in service, to be used in real operational

processes (SOMMERVILLE, 2011). It involves the transfer of the artifacts previously validated

into the production environment, which consists of the SCADA/EMS servers and workstations.

In a power system, such activities are subject to rigorous norms and operational procedures

established both at company-level as well as power-grid-level. It involves, for instance, obtaining

work authorization from the Operations Department, as well as coordinating activities with exter-

nal agencies like System Operators. Those activities are not described here, since they involve

details specific to the environment where the application is deployed, including interactions with

other business processes. In our hypothetical speed governor, the generating unit would probably

need to be shut down in order to deploy the governor, therefore such operations would need

approval from system authorities.

95

5.1.8 Further Considerations: Maintenance and Evolution

Software modifications may be triggered by changing business requirements, by reports

of software defects, or by changes to other parts of the CPS environment (SOMMERVILLE,

2011). For instance: an upgrade to the SCADA platform may result in changes to the EMS

application layer; or the commissioning of new electro-mechanical equipment may require

changes in the control loops. Once such a need for modification is identified, another instance

of the D-SPADES process is started, using as inputs the artifacts previously developed for the

application, as well as the new requirements. It is worth mentioning that the existing modeling

artifacts can usually be re-used in future evolutions of the system, i.e., the modeling activities are

not required to start from scratch.

In the case of our hypothetical speed governor, let’s assume that a new requirement is

established: it must now have a configurable proportional gain, externally accessible, for instance,

by the operator. Figure 31 illustrates how this behavior could be modeled, i.e., by providing the

desired gain as an input to the governor block. As we can see, modifying the gain from a fixed

“0.1” value to “0.3” changes the system’s response: it moves faster towards the nominal speed

but shows some overshoot as a collateral effect.

5.1.9 Simplified Workflow

Figure 32 shows a simplified view of the activities and artifacts involved in developing

an executable EMS application through D-SPADES. This basic workflow includes the following

activities:

1. Model Building addresses the development and testing of models;

2. Model Conversion consists in converting the file format used by the modeling tool into a

standard file format known as XML Metadata Interchange (XMI)1;

3. Model-to-Text (M2T) transformation processes the model and automatically generates the

source code implementing the corresponding behavior in a 3GL;

4. Compiling and Building the executable application using the D-SPADES components

library and the SCADA integration libraries.

1 https://www.omg.org/spec/XMI/

https://www.omg.org/spec/XMI/

96

Figure 31 – Adding new governor requirement.

Source: The author

Figure 32 – D-SPADES workflow and produced artifacts.

Source: Neis et al. (2023).

5.2 A MODELING LANGUAGE FOR EMS APPLICATIONS

Based on the information gathered from our literature review, we have concluded that

a language supporting the block diagram and transfer function paradigms, among other useful

constructions, would be appropriate to model EMS applications. In this review we were unable

to identify any existing integrated development environment supporting such paradigms, readily

applicable to the modeling of EMS application, and possessing the desired properties (e.g. that

97

could be automatically processed and transformed into source code for an arbitrary platform).

Therefore we propose to adopt an AO language for D-SPADES, which is described in the

following sections. The D-SPADES approach however is not necessarily limited to this single

language: other types of models, including legacy designs and simulations built for different

modeling environments, can be supported. This support can be implemented either by creating

M2M transformations from the source/legacy models to EMSML, or by rewriting the M2T

templates that process EMSML in order to process a different modeling language. In either case,

the metamodel of this alternative language needs to be known.

According to the guidelines from (BRAMBILLA et al., 2017), language design through

metamodeling is a three-step iterative and incremental process composed of:

1. Modeling domain analysis: defines the purpose, realization and contents of the language.

This includes the analysis of the modeling domain, which in our case is the hydropower

plant EMS applications described in Chapter 3. Some examples of applications that can be

modeled using EMSML include JBVRC (see Sec. 3.4.3.2, page 70) and AGC (see Sec.

3.4.3.1, page 69). The requirements of EMSML language will be defined iteratively based

on such applications.

2. Modeling language design: formalizes the modeling concepts by modeling EMSML’s

abstract syntax, i.e., defining its metamodel.

3. Modeling language validation: consists in using EMSML to model the reference exam-

ples, validating the completeness and correctness of the metamodel.

In practice, the complete process also includes the adoption or development of a concrete

syntax, so it allows us to interact with the domain experts.

5.2.1 Domain Analysis

According to Brambilla et al. (2017), the domain analysis can be done, for instance:

(a) by abstracting recurring patterns found in legacy source code into modeling concepts; (b)

by document analysis and/or interviews with experts to derive modeling concepts. In the case

of EMSML we will apply a mix of these strategies, but initially we are performing the analysis

primarily based on existing documentation and published works.

98

As verified in our literature review (NEIS et al., 2019), a very common paradigm for

modeling EMS applications is the use of traditional control theory models, which include block

diagrams and their corresponding transfer functions. Models built on software tools such as

Matlab/Simulink, Modelica and Ptolemy II could be described as a software implementation

of control theory paradigms, thus figuring among the languages being used for power systems

modeling. These tools are categorized as “actor-oriented modeling tools” since they use “block

diagram based design environments and the design usually starts with assembling preexisting

components in the library” (ZHOU et al., 2007). If we assume the definition of “actor” to be

an encapsulation of parameterized actions performed on input data that produces output data

(ZHOU et al., 2007), then the blocks and transfer functions paradigms from control theory can

be easily accommodated as actor-oriented models. Therefore we believe that the actor-oriented

programming model is a suitable abstraction to represent EMS applications.

In the actor-oriented programming model, the concepts listed in Table 3 are identified,

which can guide the design of EMSML metamodel. These concepts are a subset of the elements

used in the MoML metamodel definition (LEE; NEUENDORFFER, 2000). A brief description

Table 3 – Modeling concepts for EMSML.
Concept Intrinsic Properties Extrinsic Properties
entity name, class Arbitrary number of links, entities, relations, properties and ports; At most one director
port name, class Arbitrary number of properties
link port, relation
relation name, class
director name, class
property name, class, value, version Arbitrary number of properties

and some examples of these concepts are presented below:

• entity: may represent a composite actor (containing other models), an atomic actor, or

a state inside an FSM. Therefore, actors and states are subclasses of the entity class. In

terms of the topology describing the model, an entity is a vertex in a generalized graph,

and it also aggregates ports.

• port: is the interface of an entity to any number of relations. The role of a port is to

aggregate a set of links to relations. Thus, for example, to represent a directed graph,

entities can be created with two ports, one for incoming arcs and one for outgoing arcs.

• link: associates ports with relations, thus creating communication channels, i.e.: they keep

track of which ports are connected to which relations.

99

• relation: relations are “splitters” that enable connecting two or more ports. The relation

broadcasts the output from a single output port to any number of input ports. The relations

thus represent connections between ports, and hence, connections between entities. Every

single port has only one connection: a connection to the relation. In terms of object-oriented

concepts, the relation implements a classical “mediator” pattern: it reduces coupling and

simplifies communication between actors in a model. For instance, if the output port of a

given actor is to be directed to two or more input ports in other actors, the logic responsible

for routing the messages resides in the relation, thus simplifying the port implementation.

• director: A director governs the execution within a model, or a specific part of the model

delimited by a composite actor. A composite actor that contains a director is said to

be opaque, and the execution model within the composite actor is determined by the

contained director. Composite actors that do not contain an instance of a director have

their behavior governed by the director of its container. In terms of implementation, the

director is responsible for invoking the actors contained by the model, or parts of the model.

In the current version of D-SPADES, no actual implementation of the director class is

necessary, since the set of MoCs currently supported is restricted to SDF and FSM. Future

evolutions of D-SPADES might need to explicitly provide director implementations in

order to support other MoCs.

• property: properties may define expressions and named parameters used in a model (e.g.

a constant value like “𝐸𝑏 : 500” defining the system’s base voltage level, or a formula like

“𝐸𝑝𝑢 = 𝐸/𝐸𝑏” defining the system’s per-unit voltage calculation); or certain characteristics

of the container objects (e.g. the direction of data flow in a port).

5.2.2 Modeling Language Design

The two most important ingredients of a modeling language are its abstract syntax and

its concrete syntax (BRAMBILLA et al., 2017). In model-centric languages, the abstract syntax

consists of the definition of the metamodel, which contains the modeling concepts and their

properties. The metamodel defines all valid models that can be expressed by EMSML.

We have built the EMSML metamodel (M2 level) shown in Figure 33 (a) using the

Ecore language (M3 level). A corresponding UML-style representation of this model is shown

in Figure 33 (b). The complete EMSML metamodel is shown in Appendix A. The elements

100

of this metamodel map to the concepts listed in Table 3 as follows: concepts are transformed

into EClasses; intrinsic properties are transformed into EAttributes and extrinsic properties are

mapped into EReferences between EClasses. This metamodel definition consists of the abstract

syntax of EMSML. The classes and relationships shown in Figure 33 (b) can be traced back to

the same concepts describing the MoML notation, shown in Figure 6 (see page 43).

Figure 33 – The Ecore metamodel and corresponding class diagram for EMSML.

(a) Ecore metamodel. (b) Corresponding class diagram.

Source: The author.

The concrete EMSML syntax is implemented through an XMI2 file, which corresponds

to the serialization of the elements in a given model to an XML format. Listing B.1, shown

in Appendix B, is an excerpt from an EMSML file, where some instances of the metamodel

classes are used to describe a simple model. The XMI concrete syntax is an essential artifact

for D-SPADES in order to perform model transformations. However, for the modeler, this

textual syntax is not very useful. The modeler would rather use a graphical syntax to express

models, such as the example shown in Figure 34. This image shows the same model from Listing

B.1, rendered in the Vergil editor, which is part of the Ptolemy II package (BROOKS et al.,

2014b). Since the concepts modeled by EMSML consist in a subset of the the MoML (LEE;

NEUENDORFFER, 2000) metamodel, the concrete syntax for EMSML can also be implemented

in the Vergil graphical editor. The graphical elements in this picture correspond to the textual

elements from Listing B.1, with a much richer visual representation.

Some of the most significant features distinguishing MoML and EMSML include the

following:
2 XML Metadata Interchange, an OMG standardized format for exchanging metadata information via Extensible

Markup Language (XML) – https://www.omg.org/spec/XMI/.

https://www.omg.org/spec/XMI/

101

Figure 34 – A toy application model illustrating EMSML’s graphical concrete syntax.

(a) Outer model. (b) Contents of composite JBVRC actor.

Source: The author.

• MoML supports several graphical properties used for displaying purposes in the Vergil

editor. Such features, although present in the EMSML metamodel, have no meaningful

semantics and are ignored during the model transformations performed in D-SPADES.

• The D-SPADES components library currently is rather limited when compared to the

Ptolemy II library. Some of the native Ptolemy II actors were implemented in D-SPADES,

and all the new actors proposed for the D-SPADES library were implemented into the

Ptolemy II library, although these D-SPADES-specific actors were not incorporated into

the official Ptolemy II distribution. This difference refers to functionalities implemented

by each library, rather than syntactic differences in the language.

• The MoCs supported by D-SPADES are currently limited to the SDF and FSM, while

Ptolemy II supports several other MoCs.

This distinction can be better characterized in the Vergil editor, for instance, by building

a user library containing all the actors supported by D-SPADES, as shown in Figure 35. The set

of actors available to the user for building models is clearly identifiable under the D-SPADES

folder.

Figure 36 shows the graphical representation of some of the actors and other language

elements used within both Ptolemy II and EMSML. A brief description of these elements is

provided below. Notice however that a far greater number of actors exist in the Ptolemy II

environment, of which only a certain subset is currently implemented in the D-SPADES library.

New actors can be easily created and added to both Ptolemy II and D-SPADES.

• Port: is represented by a triangular symbol. A filled triangle represents a “single port”,

i.e., a port that receives a link from only one relation. An empty triangle represents

102

Figure 35 – Actors currently implemented in D-SPADES components library.

Source: The author.

Figure 36 – Some of the graphical elements used within Ptolemy II and EMSML.

Source: Neis et al. (2023).

a “multiport”, which handle multiple independent channels, i.e., links from different

relations.

• Relation: implements the mediator pattern, as mentioned above.

• Parameter: is a named variable, whose value is specified by an expression which can

103

refer to constants and even other parameters.

• Composite Actor: is an essential block for the creation of hierarchical models. These are

models that contain components that are themselves models. The icon shown in Figure 36

is the default appearance of a Composite Actor, however it may also have a custom icon

individually attributed.

• Modal Model: is a special block used in the creation of models composed of states and

transitions, like Finite State Machines. They may also have a customized icon attributed

individually.

• IIR: implements a parameterized Infinite Impulse Response transfer function. The numer-

ator and denominator coefficients of the transfer function are set by double-clicking on the

block and adjusting the desired values.

• Scale: produces an output value that is equal to a scaled version of the input, according to

a configurable scaling factor.

• Add Subtract: implements the functions of adding and subtracting. Its two input ports

are “multiports”, i.e.: multiple inputs can be connected to the same port. Inputs connected

to “+” are added, and inputs connected to “-” are subtracted.

• Multiply Divide: implements the functions of multiplication and division, similarly to the

“Add Subtract” above.

• Array Sum: computes the sum of the elements in an input array, resulting in a scalar

output.

• Absolute Value: computes the absolute value of the input.

• Dead Band: produce an output value that is equal to the input if the input is outside a

configurable range, or zero if the input is inside the range.

5.2.3 Modeling Language Validation

The metamodel shown in Figure 33 can be validated through the instantiation of its

classes. We perform this by creating a model using the Vergil editor and verifying the mapping

of objects in this model to classes from the metamodel. Later, the model can also be converted

104

to XMI format and loaded into EMF for further validation: in case the model fails to load into

EMF, adjustments need to be made to the metamodel.

The simplified power plant joint voltage and reactive power controller shown in Figure

34(b) can be used for validation. This is actually an oversimplified model of the JBVRC appli-

cation, shown here for informational purposes. This diagram is a rendition of the same model

whose excerpt is shown in Listing B.13. The JBVRC controller shown in Figure 34(b) is also

a valid MoML model, so it can be instantiated and used as part of a Ptolemy II simulation, as

shown in Figure 37. Notice that the entity outlined in yellow (named JBVRC) contains the model

shown in Figure 34(b). On the other hand, the diagram in Figure 37 does not necessarily describe

a valid EMSML model, since it represents the simulation model of the whole physical process

(the environment model), not just the controller we are designing in EMSML (the application

model). The hierarchical composition of the actors that compose the CPS model shown in Figure

37 can be schematically represented by the diagram depicted in Figure 38. The model contains,

besides other CPS components, the JBVRC controller block to which we must apply the M2T

transformation. Blocks drawn with rounded corners correspond to atomic actors, while square

corners correspond to composite actors.

Figure 37 – The JBVRC controller as part of a larger Ptolemy II simulation.

Source: The author.

3 The Vergil editor also serializes the MoML models to an XML format, however, the XML file exported is slightly
different from the XMI file needed by D-SPADES, thus a conversion is required, as discussed in Sec. 5.3.1.

105

Figure 38 – Levels of composition of the toy JBVRC model.

Cyber-Physical
continuous simulation

JBVRC Controller
(CompositeActor class)

CalcError
(AddSubtract class)

IIR H(s)
(IIR class)

AddSubtract
(AddSubtract class)

Kp
(Scale class)

MultiplyDivide
(MultiplyDivide class)

Const
(Const class)

Other CPS
components

Source: The author.

The correspondence of the instances from Figure 34(b) with the EMSML metamodel

classes can be established as follows:

• The “JBVRC” actor is an instance of the “entity” class; notice that it contains other objects,

like the “SDF Director” and even other instances of the class “entity”, like the “IIR H(s)”

transfer function.

• The input/output ports, like “Ref Voltage” and “Unit Setp” are instances of the class “port”.

• The lines connecting ports and entities are instances of the class “link”.

• For every connection between two or more ports, an instance of the class “relation” exists.

Such instances are not necessarily shown explicitly in the Vergil editor rendition of the

model (Figure 34(b)) but are part of the concrete syntax. Examples of objects of this

class are shown in the excerpt from the XMI file shown in Listing B.1 (lines 40–42, for

instance).

5.3 MODEL TRANSFORMATIONS

As pointed out by Brambilla et al. (2017), the main goal of a model-driven approach

to software engineering is to get a running system out of its models. In practical cases, like

the modeling of EMS application, the “thing being modeled” – the EMS function – needs to

be integrated with the base SCADA platform and other legacy applications. The most direct

approach to achieve this integration is to produce program source code in a 3GL for the SCADA

platform through an M2T transformation. Therefore we propose mapping the actor-oriented

models described in EMSML language into an OO (or procedural) programming model through

106

Model-to-Text transformations. In the Itaipu case study, a significant portion of the legacy sys-

tems are developed in C/C++ and Fortran, therefore we choose these languages as targets. We

propose a template-based approach to code generation using an M2T transformation language.

The template-based approach has several advantages when compared to implementing generators

from scratch since it tends to facilitate future changes in the SCADA platform or target program-

ming languages. It is important to highlight that the proposed code generation approach through

M2T transformations is not limited to the above-mentioned target languages. Other languages

are supported, provided that mapping rules can be established for those languages.

5.3.1 Model Conversion

Prior to the actual M2T transformation, the Ptolemy II XML file (Figure 32, page 96 -

step 1) is converted into XMI format (step 2). This conversion is performed by a small program,

written specifically to manipulate XML files.

5.3.2 Mapping the AO Model into a Sequential Programming Model

The mapping of an AO model described in EMSML into 3GL programming languages

is performed through a template-based Model-to-Text transformation, as represented in Figure 32

(page 96 - step 2). The transformation itself is defined using Acceleo Query Language (AQL)4.

AQL, sometimes called “MTL”, is an implementation of the MOF Model to Text Transformation

Language (MOFM2T) specification defined by the OMG5, and is supported by the Acceleo tool,

which is further discussed in Section 5.4.2.

Listing 5.1 shows an excerpt of an MTL file that processes EMSML models – for

instance: the JBVRC controller example from Figure 34(b) – and produces C++ source code

files as output, as shown in Listing B.3 from Appendix B. The module imports the EMSML

metamodel definition (line 1), for which the transformation templates are defined, thus the

structure and the properties of the models are known. The AQL template navigates the model

and queries the data needed for code generation. Templates are defined for a specific metamodel

class, e.g., the entity class from Figure 33 so that they generate text as output, which can be

directed into files. Such text can be either plainly typed into the template, like the C++ “#include”
4 https://www.eclipse.org/acceleo/
5 https://www.omg.org/spec/MOFM2T/1.0/About-MOFM2T/

https://www.eclipse.org/acceleo/
https://www.omg.org/spec/MOFM2T/1.0/About-MOFM2T/

107

directives (e.g., line 15), or the result of the evaluation of tags, which are statements specified

inside the “[.../]” markers (e.g., lines 6-10).

Listing 5.1 – Excerpt of Acceleo MTL template file.

1 [module g e n e r a t e C o m p o s i t e (’ h t t p : / / www. example . o rg /EMSML’)]

2 [t e m p l a t e p u b l i c g e n e r a t e C o m p o s i t e (a n E n t i t y : e n t i t y) ? (s e l f . name = ’JBVRC ’)]

3 [comment @main /]

4

5 [comment G e n e r a t e t h e h e a d e r f i l e f o r t h e model /]

6 [f i l e (a n E n t i t y . name . r e p l a c e A l l (’ ’ , ’ _ ’) . c o n c a t (’ . h ’) , f a l s e , ’UTF−8 ’)]

7 [a n E n t i t y . g e n C o p y r i g h t H e a d e r () /]

8 [a n E n t i t y . g e n C l a s s I n c l u d e s () /]

9 [a n E n t i t y . g e n F o r w a r d D e c l a r a t i o n s () /]

10 [a n E n t i t y . g e n C o m p o s i t e s D e c l a r a t i o n s () /]

11 [/ f i l e]

12 [comment G e n e r a t e t h e i m p l e m e n t a t i o n (cpp) f i l e f o r t h e model /]

13 [f i l e (a n E n t i t y . name . r e p l a c e A l l (’ ’ , ’ _ ’) . c o n c a t (’ . cpp ’) , f a l s e , ’UTF−8 ’)]

14 [a n E n t i t y . g e n C o p y r i g h t H e a d e r () /]

15 # i n c l u d e " [a n E n t i t y . name . r e p l a c e A l l (’ ’ , ’ _ ’) . c o n c a t (’ . h ’) /] "

16 [a n E n t i t y . g e n C l a s s I m l e m e n t a t i o n () /]

17 [/ f i l e]

18 [/ t e m p l a t e]

19

20 [** * Th i s t e m p l a t e g e n e r a t e s t h e c l a s s e s f o r w a r d d e c l a r a t i o n s * /]

21 [t e m p l a t e p r i v a t e g e n F o r w a r d D e c l a r a t i o n s (a n E n t i t y : e n t i t y)]

22 c l a s s [a n E n t i t y . name . r e p l a c e A l l (’ ’ , ’ _ ’) /] ;

23 [f o r (a n E n t i t y I t e r : e n t i t y | a n E n t i t y . e n t i t y)]

24 [i f a n E n t i t y I t e r . c l a s s = ’ p to lemy . a c t o r . TypedComposi teActor ’]

25 [a n E n t i t y I t e r . g e n F o r w a r d D e c l a r a t i o n s () /]

26 [/ i f]

27 [/ f o r]

28 [/ t e m p l a t e]

29

30 [** * Th i s t e m p l a t e g e n e r a t e s t h e h e a d e r f i l e c o n t e n t s w i th c l a s s e s d e c l a r a t i o n s * /]

31 [t e m p l a t e p r i v a t e g e n C o m p o s i t e s D e c l a r a t i o n s (a n E n t i t y : e n t i t y)]

32

33 c l a s s [a n E n t i t y . name . r e p l a c e A l l (’ ’ , ’ _ ’) /] : p u b l i c C o m p o s i t e E n t i t y {

34 p u b l i c :

35 [a n E n t i t y . name . r e p l a c e A l l (’ ’ , ’ _ ’) /] (s t d : : s t r i n g sEnt i tyName) ;

36 ~[a n E n t i t y . name . r e p l a c e A l l (’ ’ , ’ _ ’) /] () ;

37 boo l i n i t i a l i z e () ;

38

39 p r i v a t e :

40 [a n E n t i t y . d e c l a r e C o m p o s i n g E n t i t i e s () /]

41 [a n E n t i t y . d e c l a r e R e l a t i o n s () /]

42 } ;

43

44 [f o r (a n E n t i t y I t e r : e n t i t y | a n E n t i t y . e n t i t y)]

108

45 [i f a n E n t i t y I t e r . c l a s s = ’ p to lemy . a c t o r . TypedComposi teActor ’]

46 [a n E n t i t y I t e r . g e n C o m p o s i t e s D e c l a r a t i o n s () /]

47 [/ i f]

48 [/ f o r]

49 [/ t e m p l a t e]

Additionally, we have developed and employed M2T templates that can process FSM

models and produce procedural source code in the Fortran language. Such templates were

employed in the production of modules implementing new functionalities for legacy applications,

which will be further discussed in Section 6.3 (page 139).

5.3.2.1 Mapping SDF Models Into OO Programming Model

As a mapping strategy from an AO SDF model to an OO programming language (C++)

we propose the following:

1. The model must be built to have one specific composite entity containing the whole desired

controller model, which we arbitrarily called “root entity”. The name of this composite

entity is passed as an argument to the M2T template, as shown in line 2 of Listing 5.1

(self.name = ’JBVRC’, in this case). For instance, the model illustrated in Figure 37

can be processed by the template by specifying the “JBVRC” as the root entity. This

entity corresponds to the block highlighted with thicker line width in Figure 38, while

all other entities in the model (other CPS components) are ignored. Source code will be

generated for this composite entity (and everything it contains), while other entities like

the “AD_Sampler” will be ignored.

2. Every composite contained in the root entity (itself included) is mapped to an entity

container C++ class, which in turn is derived from the composite pattern from OO modeling

(GAMMA et al., 1995). Instances of these classes are responsible for orchestrating the

execution of their contained entities. The template is called recursively for each composite

entity contained in the design.

3. The contained entities – the actors and their relations/links – are mapped to form the

corresponding model’s graph structure at every containing level.

4. The generated class implementing the root entity must then be instantiated and invoked

from within an executable program (e.g. the C/C++ main() procedure).

109

For instance, the controller previously shown in Figure 34 (page 101) should roughly

map to the following structure in an OO programming model:

• One container class (root entity) that interfaces with the SCADA platform. This class’

instance reads the following inputs from the SCADA platform: the reference (desired)

voltage at the 500 kV busbar; the current voltage at the 500 kV busbar; the average reactive

power generation among the generating units under control; the scheduling (periodic)

event. As output, it produces the individual generating unit’s setpoint voltage.

• For every composite actor in the model, a class declaration and implementation of the

corresponding graph at its level in the hierarchy.

• For every non-composite actor in the model, the necessary OO code for instantiating and

initializing the corresponding class from the components library, for instance: the IIR

transfer function.

• The necessary code for instantiating the relations and establishing the links among entities

and relations.

Regarding the execution strategy, the computational differences between the SDF and

the sequential execution model supported by current computers have to be accounted for. SDF

is inherently parallel, therefore actors perform their computation as soon as sufficient data is

available at each of their input ports, regardless of time and independently of other actors in

the model. To map this MoC into a sequential model, we adopt a simple strategy: actors are

executed sequentially, one at a time (single-threaded execution). The order of actor execution is

determined by a scheduling algorithm. D-SPADES uses a simplified version of the scheduling

algorithm described by Lee and Messerschmitt (1987). This algorithm can be executed either

offline, at build/compile time, or at the executable initialization time (before the program’s main

loop is invoked). D-SPADES currently runs the scheduling algorithm at program initialization

time, but it can be easily moved to the build/compile time.

5.3.2.2 Mapping AO Models Into Structured Programming Model

We have also proposed mapping of AO models into structured programming models,

particularly intended for models containing FSMs. The target model consists of Fortran sub-

110

routines, in order to implement a real-world application needed at the Itaipu power plant. This

application is described in Section 6.3.

The models subject to this mapping, as well as the source code generated, must follow

specific conventions:

• The “root entity” to be processed by the M2T template must be a “modal model”, i.e.: a

composite entity containing an FSM. This FSM can be hierarchical, i.e.: one or more of its

states may contain refinements, which are instances of FSMs associated with a particular

state of the container FSM.

• For each FSM instance in the hierarchical composition, a Controller sub-routine is gener-

ated in 3GL. This includes the root “modal model” and any other FSM contained in the

hierarchical structure. The naming convention for these sub-routines is:

– ModalModelName_Controller() for the root modal model.

– StateName_Controller() for each refinement contained in the FSM;

• The input ports declared in the root “modal model” are mapped as input parameters to

each of the controller sub-routines. All the contained FSM controllers receive the same set

of input parameters, so they all “see” the same input ports from the model, mimicking the

behavior of FSMs in the Ptolemy II environment.

• The output ports of the model are mapped to subroutine calls. Therefore, each output action

associated with a state transition results in a sub-routine call. These output sub-routines can

perform any arbitrary actions needed (for instance, issuing an alarm), and are implemented

by hand.

• The model execution is orchestrated by the topmost sub-routine (ModalModelName_-

Controller()). Transitions (guard expressions) are first evaluated at the current level of

composition in the FSM. If no transition has been triggered, and the current state contains

a refinement, the sub-routine corresponding to that refinement is called. The M2T tem-

plate relies on the support for recursion in the Acceleo tool to efficiently implement this

convention.

To implement the mapping, a specific M2T template was developed, similar to the one

shown in Listing 5.1 but focused on FSM models, as well as a “lightweight” version of the D-

SPADES components library, implemented in Fortran. Given these conventions, the D-SPADES

111

workflow shown in Figure 32 is executed in order to process the models, generate code, and

integrate it with the SCADA/EMS.

5.3.3 Closing the Gap Between AO Models and Target Code

Since the models expressed in EMSML – likewise MoML – have no associated seman-

tics, there is a gap between the model specification and the target implementation that needs

to be filled in order to produce a functional executable application. We argued that EMSML

is an adequate language to express EMS applications at a high level of abstraction, however,

the details of the actual processing performed by the language elements, like atomic actors and

relations, cannot be completely specified by an EMSML model. D-SPADES approach to fill this

gap is to supply an implementation of the missing functionalities, which cannot be specified at

the model level, arranged into a library that can be used at compile time to produce the running

application. The functionalities of this library are implemented directly in a 3GL. Such a library

contains the “building blocks” for the application design modeled in EMSML. It is even possible

to map some of the actual implementations of these “building blocks” into external services,

provided by specialized hardware or networked software, for instance: the IIR transfer function

shown in Figure 34(b), instead of being programmatically implemented by the library, could

simply be mapped to an I/O operation on a hardware device or into a remote procedure or web

service call.

In comparison, in the Ptolemy II environment, it can also be observed that the syntactic

structure specified by a MoML model does not convey its semantics. In other words, it carries

no specific instructions on how to execute the model. The semantics is orthogonal to the syntax

(LEE et al., 2002) and is determined by a model of computation (MoC). The MoC decides

when actors perform internal computation, update their internal state, and perform external

communication. The implementation of both the MoC and the actor’s internal computation is

part of the Ptolemy II environment and is realized either in Java programming language or by the

association of previously existing actors into a composite hierarchical structure. In this case, the

building blocks for the design are the actors and MoCs provided by the Ptolemy II environment,

while the design itself is conveyed by the MoML model specification.

Similarly to Ptolemy II, the D-SPADES approach proposes to use a components library

implementing the building blocks necessary for realizing EMS applications. Like in a platform-

based design, D-SPADES raises the level of abstraction in the design process, by hiding details

112

of the implementation technology. This higher level of abstraction comes at a price: the possible

design choices are restricted by the available actors and MoCs in the components library, and

some additional overhead is added to the model execution. On the other hand, the advantages of

such an approach include, as pointed out by Lee et al. (2002): the possibility of improving design

productivity through abstraction and reuse. We can also point out that, as a domain-specific

approach, the paradigms used are familiar to the domain experts, for instance: discrete transfer

functions like the IIR shown in Figure 34 (page 101) can implement lead-lag filters, smoothing

filters and digital controller blocks. Several other atomic actors performing useful functions for

the application domain can be provided in D-SPADES components library, like for instance:

limiters, rate limiters, delays, dead bands, etc. – each one of these implemented by specializing

the “Entity” class from EMSML metamodel. Familiar pictorial representations can be used in

the graphical editor, for instance, those shown in Figure 35 or the ones used for the generator and

speed governor shown in Figure 3 (d) (page 37), thus making the language more user-friendly

for the domain specialists.

To illustrate the concept, let’s look again at the “JBVRC Controller” model shown in

Figure 34. The controller itself is part of a larger CPS, whose model is shown in Figure 37. We

propose applying the D-SPADES approach to derive a realization of the “JBVRC Controller”,

targeted at the Itaipu SCADA platform. We can apply a template-based M2T transformation

to this controller model, and reproduce its corresponding tree/graph structure by instantiating

objects using an OO programming language. The actual processing performed by each object, and

the coordination of method calls (message passing) are implemented by the components library.

The components library has, for instance, a parameterized implementation of the discrete Infinite

Impulse Response (IIR)6 transfer function, among many others. The same actors and MoCs from

this library can be rearranged in a different design and produce a different functionality, for

instance: the JCAP application, briefly described in Section 3.4.3.1.

5.4 TOOL SUPPORT FOR D-SPADES

Currently, we do not know of any single integrated environment capable of supporting

both the construction of actor-oriented models and the corresponding model transformation

necessary for D-SPADES. Therefore we propose to assemble a hybrid toolchain composed of
6 In signal processing, IIR stands for Infinite Impulse Response, and refers to a property of certain linear time-

invariant systems that are distinguished by having an impulse response ℎ(𝑡) which does not become exactly zero
past a certain point, but continues indefinitely.

113

community-available, commercial, and in-house-developed tools. This toolchain is composed of:

1. an Actor-oriented Modeling Environment;

2. a Model Processing Framework;

3. the D-SPADES Components Library;

4. SCADA Integration API/libraries;

5. the compiler and build system.

Figure 39 graphically illustrates how these tools are applied in order to produce executable files

from EMSML models.

Figure 39 – D-SPADES tool chain.

Source: The author.

These tools are applied along the D-SPADES workflow illustrated in Figure 32 (page

96). The basic execution of this workflow using the proposed tools consists of:

1. build and validate the models using the Ptolemy II Actor-oriented Modeling Environment;

2. convert the Ptolemy II XML files into XMI format, using a small Java program developed

for this purpose;

3. perform the M2T transformation using the Model Processing Tools (Eclipse EMF with

Acceleo), along the EMSML metamodel;

114

4. compile the produced source modules with the target platform’s compiler and link with

the necessary libraries in order to produce the executable program.

Some of the tools used, like compilers and libraries, can be different from those illustrated in

Figure 39, depending on the platform the application is targeted to. In the following sections, a

basic description of each of these tools is provided.

5.4.1 Actor-oriented Modeling Environment

Although extensively used for describing models of power systems control applications,

the control theory “block diagram / transfer function” paradigm alone is clearly insufficient to

represent all the aspects of a software implementation (NEIS et al., 2019). We need support for

other useful abstractions, such as finite state machines. FSMs can be used to create hierarchical

models known as modal models (FENG et al., 2014). In a modal model, states of an FSM

contain sub-models in which each state of the FSM represents a mode of execution, and the

mode refinement defines the behavior in that mode.

A modeling environment that supports a rich set of heterogeneous, concurrent modeling

paradigms is the Ptolemy II from UC-Berkeley, which is an open-source tool. Additionally,

Ptolemy II can easily perform elaborate simulations of a complete CPS, which is extremely

useful for model validation, for instance, by validating the JBVRC controller design shown in

Figure 34 (page 101) through simulation of the whole physical process depicted in Figure 37

(page 104). Theoretically, any other actor-oriented modeling tool can be used with D-SPADES,

as long as its models can be interchanged with the proposed toolchain.

5.4.2 Model Processing Tools

We performed the metamodeling of EMSML and the M2T transformations using the

EMF7 tools. EMF includes a meta model (Ecore) format for describing models and runtime

support for the models including persistence via XMI serialization. For M2T transformation, we

have used Acceleo8. Acceleo is a template-based technology for creating custom code generators.

It supports the automatic generation of any kind of source code from any data source available in

EMF format.
7 https://www.eclipse.org/modeling/emf/
8 https://www.eclipse.org/acceleo/

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/acceleo/

115

5.4.3 Component Libraries

We are not aware of any pre-existing components library that supports all the com-

ponents needed to implement custom EMS applications through the D-SPADES approach.

Therefore we have implemented a C/C++ components library that contains the necessary MOCs

and actor processing behavior to be used in Itaipu. Additionally, we have also implemented a

limited version of a components library supporting the execution of FSM-based models generated

in Fortran.

The components library contains, among other things, the implementation of elements

such as those shown in Figure 36. These elements are subject to extensive unit testing in order to

ensure that their individual behavior is correct, thus minimizing the risk of introducing defects

into the design due to programming errors. For instance, the AddSubtract actor is subject to a set

of individual and automated tests where different combinations of input data are provided, and

the generated outputs are compared to the expected values. After any modifications to the actor

source code, the tests are executed again in order to guarantee that it still performs as expected.

5.4.3.1 Integration with Base SCADA

There are at least two possible approaches to integrate applications developed through

D-SPADES with commercial SCADA packages:

1. A tight integration strategy, in which the EMS application is directly deployed on the

existing SCADA servers, using proprietary libraries/APIs for integration. Figure 40(a)

schematically represents this type of integration. This approach is feasible only when the

SCADA/EMS vendor’s API is available, so the integrated application has direct access

to internal SCADA data structures and library calls. This simple approach implies less

development effort and runtime overhead. A clear disadvantage, though, is that future

changes in the vendor’s API may break the integration. In a worst-case scenario, a future

upgrade to a different product line may no longer grant access to the SCADA API due to

contractual arrangements. So far we have utilized this approach for building prototypes

and also production applications demonstrating the viability of D-SPADES.

2. A loose integration strategy, in which the EMS application is deployed on a dedicated

server, and integrates to the base SCADA through standardized protocols/middlewares

116

like OPC-UA, which figures as a prominent interoperability technology, as suggested by

our literature review (NEIS et al., 2019). This strategy is represented schematically in

Figure 40(b). A significant advantage of having a standardized interoperability technology

is that it may require only minimal migration effort in future upgrades of the SCADA

package. Support for the standard protocol may be specified in the bidding process for

future provisioning of SCADA software. This is the preferred architecture for the long-

term adoption of D-SPADES since it allows easier integration with commercial SCADA

packages. However, it requires an OPC-UA connector to exist in the components library,

so the EMS application can read and write data to the SCADA. It also requires that

the SCADA product fully supports reading and writing operations via OPC-UA. We

have implemented basic support for OPC-UA in the D-SPADES components library, and

demonstrated the feasibility of this architecture, as discussed in Section 6.2.5.

Figure 40 – Integration architectures for applications coupled with SCADA.

M2T

Generated
Controller

Source Code

Components
Library ++

SCADA
API Library

(proprietary)

Target SCADA Server

SCADA Scheduler

Actor-Oriented
Models

Compiler
and Linker

Executable

(a) Tight Integration Architecture.

M2T

Generated
Controller

Source Code

Components
Library ++

Middleware
or Protocol

Library

Target SCADA Server

SCADA Scheduler

Actor-Oriented
Models

Compiler
and Linker

Dedicated Server

Executable OPC-UA

(b) Loose Integration Architecture.

Source: The author.

Table 4 shows a comparison between the tightly and loosely coupled integration archi-

tectures, considering the aspects of portability, scalability, and performance.

117

Table 4 – Comparison of integration architectures.
Aspect Tightly coupled Loosely coupled

Portability
Migration to different SCADA product

requires extra integration work
Easier to migrate to different SCADA

product, but requires support for the middleware

Scalability
Depends on vendor-specific

proprietary support for scalability
More scalable

(easily distributed among servers)

Performance
Virtually faster and more deterministic

(less overhead)
Might include communication overhead and
non-determinism due to the network layer

5.5 EXTENDING D-SPADES

D-SPADES can be extended to support new actor implementations, new MoCs, and

different target programming languages. Below we discuss the basic tasks involved in the

development of such extensions.

5.5.1 Adding New Actors

The addition of new actors into the D-SPADES library involves, essentially, the devel-

opment of a specialized class, which implements the interfaces specified by the base D-SPADES

“Entity” class. If the desired actor already exists in the Ptolemy II library, then it can be promptly

used by the modelers in the application modeling and validation using the Vergil editor. One

example of such an actor is the “Scale”, which basically implements a gain block, controlled

by a configurable parameter. Figure 41 illustrates how this existing actor from the Ptolemy II

“math” library (Figure 41(a)) is implemented into D-SPADES, using a few of its attributes and

methods as examples. The “Entity” abstract class is specialized by the “Scale” class, which

implements the “fire()” method and overrides the base class’ “setParameter()” method, in order

to set the “Gain” value. The “fire()” method is responsible for triggering the actor’s processing,

including the reading of the input token from the “InPort”, performing the scaling by the “Gain”

and dispatching the result to the “OutPort”.

Actors not yet existent in the Ptolemy II library can also be added to the D-SPADES

library. In this case, however, the new actor implementation (or at least a mock-up) must be

also added to the Ptolemy II library, so the modelers can add it to their application models

using the Vergil editor. Apart from that, the process is similar to the one described above. The

“DspadesUAwrite” actor illustrated in Figure 42, for instance, is implemented by specializing

the same “Entity” class, as suggested in Figure 42(b). Additionally, a similar implementation

of “DspadesUAwrite” must be provided (in Java) for the Ptolemy II library, using specialization

118

Figure 41 – Adding existing Ptolemy II actors into D-SPADES.

(a) Scale actor in Ptolemy II Library.

Entity
#Parameters: map<string, string>
+virtual fire(): = 0
+virtual setParameter(ParamName:string,ParamVal:string)

Scale
-Gain: double
-InPort: Port
-OutPort: Port
+fire()
+setParameter(ParamName:string,ParamVal:string)

(b) Implementing Scale class in D-SPADES.

Source: The author.

of similar class structure existent in that library. Once that implementation is created, the

“DspadesUAwrite” actor will be available for use in the Vergil editor, as suggested in Figure 42(a).

Valid EMSML models instantiating the “DspadesUAwrite” actor, once transformed into C++

source code, will instantiate the corresponding implementation from the D-SPADES library.

Figure 42 – Adding new actors into D-SPADES and Ptolemy II.

(a) DspadesUAwrite actor in Ptolemy II Library.

Entity
#Parameters: map<string, string>
+virtual fire(): = 0
+virtual setParameter(ParamName:string,ParamVal:string)

DspadesUAwrite
-InPort: Port
-UAclient: UA_Client*
-NodeId: UA_NodeId
-MinSetpoint: double
-MaxSetpoint: double
+fire()

(b) DspadesUAwrite class in D-SPADES.

Source: The author.

It is worth noticing that an actor implementation may include calls to external libraries,

which include networked services or device drivers associated with hardware. This opens

the possibility of implementing very specialized actors capable of, for instance: (i) perform

complex or high-speed computations using dedicated hardware such as a DSP; (ii) implement

adaptive control strategies, or train machine-learning-based models using historical data which

can be retrieved from a time series database; (iii) interact with operators through Human-

Machine Interfaces. The IEC 62541 (OPC-UA) standard is particularly useful in supporting such

119

functionality since it allows information to be easily and securely exchanged between diverse

platforms from multiple vendors.

5.5.2 Extending the Support for Models of Computation

Support for different MoCs can be added into D-SPADES essentially by modifying the

“CompositeEntity” class implementation, schematically represented in Figure 43. This class also

extends the base “Entity”, and therefore implements its own “fire()” method. In the particular

case of the SDF MoC, the “fire()” method simply executes the contained actors in the order

defined in the scheduling vector, which is pre-determined.

Figure 43 – CompositeEntity and ModalController classes from D-SPADES.

Entity
#Parameters: map<string, string>
+virtual fire(): = 0
+virtual setParameter(ParamName:string,ParamVal:string)

CompositeEntity
-vSchedule: vector<Entity*>
+fire()
+addComponentEntity(pEntity:Entity*): bool

ModalController
-pCurrentState: ModalState*
+fire()
+addState(pState:ModalState*): bool
+addTransition(Name:string,pSource:ModalState*,
 pTarget:ModalState*): bool

Source: The author.

A different MoC would require a different strategy for executing the contained actors.

As an example, consider the Discrete Event MoC, in which actors communicate through events

ordered in a timeline (LEE, 2014). In such a MoC, the order of execution of the actors would

be determined by an event queue. Therefore the “CompositeEntity” should be modified in

order to support such event queue, and choose the appropriate execution strategy according

to the specified “Director” class contained in the model (see the EMSML metamodel from

Figure 33, page 100). One particular case, which is already supported by D-SPADES is the

FSM MoC: it is currently implemented as a separate specialization of the “Entity” class, called

“ModalController”, illustrated in Figure 43.

5.5.3 Different Programming Languages

Support for different target programming languages in D-SPADES can be achieved

essentially by writing new M2T transformation templates, such as the one shown in Listing

120

5.1 (page 107). The D-SPADES components library could be linked to compiled objects built

from different languages, as long as binary compatibility is supported by the compilers being

used, ie: the binary code generated from the languages is compatible at the Application Binary

Interface (ABI) level. For instance, a template for generating code in the “C” language could

be created, and the produced “C” module could be compiled and linked to the existing “C++”

binaries of the components library. Of course, that would impose limitations, particularly on the

aspects of object orientation, which are not supported in pure “C”. Another option would be to

produce a full re-implementation of both the components library and templates, although that

would represent a significant effort. In Section 6.3 we show an application where we actually

decided to implement an alternate version of the components library (although with limited

functionalities) to support a legacy system implemented in Fortran. This example reinforces

the idea that D-SPADES can be independent of the target platform and target programming

language.

5.6 REMARKABLE FEATURES OF D-SPADES

One of the advantages of D-SPADES, in comparison with traditional development

approaches, is the possibility of incrementally designing and validating the controller against the

model of the physical process since the early stages of development. This incremental design and

validation are supported by using hybrid simulation and design environments such as the Ptolemy

II. The physical process can be modeled with the necessary level of detail, so it adequately

represents the interactions between the controller being designed and the power system. The

domain specialist can use the same environment to specify the design, test its performance

using the physical process model, and iteratively perform changes on the controller model, thus

increasing the chances of producing an adequate design. From this point on, the automatic model

transformation techniques take over and generates high-quality source code, which in turn results

in executable software virtually free of design flaws and bugs commonly introduced by manual

programming.

It is worth highlighting that, although the transformations discussed have not been math-

ematically/formally proven, the mentioned software quality might be obtained if the mapping

between the input model and the output target language is syntactically and semantically correct.

In other words, this can be achieved if the mapping between model elements and the target

language constructs and services of the target execution platform were extensively tested and

121

verified. In this sense, the benefits and the gains of D-SPADES are obtained over time through the

further reuse of model elements, transformation rules, simulation results, and other previously

created high-level and platform- and application-independent design artifacts.

Another sensible advantage of D-SPADES is the support for multiple computational

models, like SDF and FSM. Commercially available design frameworks usually define fixed

MoC: Matlab/Simulink, for instance, use a continuous time MoC, with discrete time treated as a

special case (ZHOU et al., 2007)9. Additionally, D-SPADES is extensible: new actors and even

new MoCs can be developed and added to the components library, while commercial tools are

usually closed to such additions.

In terms of code generation, it can be argued that existing AO design environments

already export source code from models, since that is a feature known to exist in traditional

tools like Matlab/Simulink and Ptolemy II itself. Such code generators, however, have known

limitations, like the intermingling of static and dynamic code, non-graspable output structure

on the generator, and production of unnecessarily large amounts of code (BRAMBILLA et al.,

2017). D-SPADES on the other hand adopts a template-based approach to code generation, which

is designed to deal with the above limitations. Another drawback of traditional code generators

is that each modeling element usually needs a corresponding code generator. Ptolemy II, for

instance, uses helper-based code generators (ZHOU et al., 2007), responsible for generating

target code for a given actor in each specific target language. In other words, it requires a new

code generator to be developed for each new actor added to the environment, requiring multiple

helpers to support multiple target languages. Moreover, code generators yield little control over

the code generation process, for instance: the language and constructions used are pre-determined

by the code generator implementation. The template-based approach of D-SPADES helps in

dealing with these limitations. In D-SPADES, the addition of new actors to the environment

usually does not require changes to the M2T template.
Paz and Boussaidi (2020) emphasize another important limitation of closed technologies,

such as Matlab/Simulink:

MathWorks Simulink and Stateflow comprise one of the most widely used
MDE frameworks for developing embedded and safety-critical systems. These
MathWorks’ technologies and their supporting tooling are focused around
satisfying three specific MDE needs: design modeling, simulation and code
generation. The outlook, however, is limited since direct extensions to address

9 It could be argued, though, that Stateflow extends Simulink with a state-like formalism variant of Harel’s
Statecharts. Stateflow enables the representation of control functions that are dependent on a combination of
past and present logical conditions (PAZ; BOUSSAIDI, 2020).

122

other additional MDE needs are not possible due to MathWorks’ closed nature
(PAZ; BOUSSAIDI, 2020), p. 1.

With D-SPADES, the developer has control over the M2T template, which may not be the

case with proprietary technologies, where the code generating engine is often seen as a “black

box”, which are not easy to trust and produce sub-optimal code as pointed out by Harrand et al.

(2016). Additionally, D-SPADES easily accommodates new templates developed for different

languages/platforms. This advantage has already been explored during the development of this

work, which has demonstrated functional C++ and Fortran templates.

5.7 CHAPTER SUMMARY

In this chapter, we proposed an approach to EMS applications development: the Domain-

Specific Power Applications Development Environment and Strategies – D-SPADES. The main

components of D-SPADES were described, including:

• The EMSML modeling language, which can be used to describe actor-oriented models;

• The transformations applied on the models in order to produce executable artifacts;

• The necessary tool support for the approach, including modeling tools, transformation

languages, components library, and SCADA integration API;

• And the basic software process that coordinates the execution of the development activities.

D-SPADES is focused on raising the level of abstraction in which EMS applications are modeled,

similarly to the concept of platforms discussed in Section 2.3.3 (page 39). Such a platform can

improve productivity by leveraging the domain paradigms and promoting the integration of

power systems specialists into the software development process, without necessarily requiring

computer programming skills. D-SPADES does not imply that 3GL and “traditional” develop-

ment approaches are no longer necessary: it merely provides a layer of modeling that allows the

power system specialist to contribute to the EMS software design without necessarily having

concerns about the layers of modeling below (LEE, 2018). The roles of individuals working at

different layers are complementary and integrated, for instance: developers of 3GL code produce

reusable components (actors) that can be used by the power systems specialists at the layer

above.

123

6 APPLYING D-SPADES TO CONSTRUCT FUNCTIONAL APPLICATIONS

In this chapter, we demonstrate how running applications can be generated from high-

level AO models using D-SPADES. First, we apply D-SPADES to build a simple toy application

that takes as input some process variables, and issues control actions according to a transfer

function, for informational purposes. Following, we build and evaluate a proof-of-concept

application modeled according to the specifications of a real-world voltage and reactive power

controller from the Itaipu Power Plant. This application is compared with the legacy executable

in terms of functional and computational performance, showing satisfactory results. Finally,

we apply D-SPADES to build a production application successfully deployed at the Itaipu

Power Plant. This application, called ERG60, is responsible for supplementary protective actions

associated with the transmission system that connects Itaipu to the Brazilian interconnected

power system. Thus we demonstrate that D-SPADES is a viable approach for real-world, mission-

critical applications.

6.1 RUNNING EXAMPLE: SIMPLE CLOSED-LOOP CONTROLLER

This illustrative example demonstrates how to apply D-SPADES for building and

transforming a Ptolemy II model into valid C++ source code. This source code can be compiled

and linked with the D-SPADES library to produce functional executable programs. The output

of these programs can be compared with the results of Ptolemy II simulations of the same model

to demonstrate the correctness of the produced code.

The requirements for this hypothetical voltage controller application are the following:

1. it shall receive as inputs the following variables, expressed in pu: the measured busbar

voltage, the average reactive power produced by the plant’s generating units, and the

desired busbar voltage (plant’s setpoint).

2. it shall compute the individualized generating unit’s setpoints (pu), using discrete transfer

functions and simple add/subtract operations, for every set of input variables received.

Figure 44 shows one possible realization of such a hypothetical controller, which is

a slightly modified version of the JBVRC model from Figure 34 (page 101). This model is

placed into a simulation environment shown in Figure 45, composed only of a sequence of input

124

values and a display output. In this simulation, both the average reactive power and the controller

reference voltage are kept constant at 1.0 pu, while the following sequence of input voltage

measurements is simulated: {1, 1, 1, 1, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01}.

The JBVRC controller shown in Figure 45 is processed using a M2T template similar

to the one shown in Listing 5.1 (page 107) to produce source code. In this case, the source code

consists essentially of the “JBVRC” C++ class, composed of a header file (JBVRC.h) and an

implementation file (JBVRC.cpp). These files are shown in Listings B.2 and B.3 from Appendix

B. The automatically produced JBVRC source code is compiled and linked with the D-SPADES

components library, which implements the building blocks of the model, such as the “Port” and

the “AddSubtract” components. Finally, in order to execute this toy JBVRC on the operating

system’s prompt, a simple “main” C++ module (handwritten) invokes the JBVRC for every

argument passed through the command line. This main module is also shown in Listing B.4,

from Appendix B.

Figure 45 shows results obtained from both the Ptolemy II display and the system

terminal running the “main” executable. The output is coincident in both environments and

consists of the following sequence of setpoints: {1, 1, 1, 1, 0.9967, 0.992311, 0.99086263,

0.9903846679, 0.990226940407, 0.9901748903343}.

Figure 44 – Contents of the composite JBVRC entity implemented a simplified controller.

Source: The author.

125

Figure 45 – Comparative results of a sequence of input voltages in both Ptolemy II and D-SPADES.

Source: The author.

6.2 CASE STUDY 1: JBVRC APPLICATION

In order to demonstrate the applicability of D-SPADES to real-world scenarios, we

replicated an existent EMS application, called Automatic Voltage Control (AVC), from the Itaipu

hydroelectric power plant, described in Section 3.4.3.2 (page 70). The AVC performs functions

related to secondary voltage regulation at the power plant level, thus belonging to the category of

“Centralized Control” according to the IEE Std. 1249 (IEC/IEEE, 2013), discussed in Section 3.3.

It actually consists of joint control of the generating units’ voltage and reactive power, having

two main objectives: (1) maintaining the bus bar voltage approximately constant, according

to the scheduled voltage, and (2) maintaining an even distribution of reactive power among

the operating generators. It is classified as a continuous control1, and operates in the timescale

of seconds or longer (see Figure 19 from page 59). Such an application is sometimes called

Joint Bus Voltage and Reactive Power Control (JBVRC) (CALOVIC; JELIC, 1992). From now

on we will use the term AVC to refer to the legacy application, and JBVRC to refer to the

proof-of-concept application developed through D-SPADES.

The AVC application was developed using traditional methods, directly applying a
1 The term “continuous” refers to the continuously active nature of the controller, as described in Section 3.3.2

(page 58), not to be confused with the concept of continuous time models.

126

structured programming language. In that approach, modeling activities were limited to early

design and documentation of the desired system’s behavior. By choosing this existing and

consolidated application, which has been operating for approximately 20 years, we can compare

both the functional correctness of the executable produced through D-SPADES, as well as assess

the viability of the proposed MDE process in comparison with the conventional process focused

on programming languages.

6.2.1 Equipment and Systems Involved

As explained in Section 3.2.2.1, the synchronous generator excitation system follows a

reference signal that shall be provided either by the operator or by a supplementary controller. At

the Itaipu power plant, the current supplementary controller is the “AVC” function. Figure 46 is

a simplified one-line diagram representation of the Itaipu power plant’s equipment configuration,

for either the 50 Hz or 60 Hz sectors. It schematically represents the 10 generating units, with

each one’s respective step-up transformer bank, the 500kV busbar, and the four transmission

lines. The JBVRC function shall operate by monitoring the voltage at the 500 kV busbar and

actuating on each unit’s excitation system in order to achieve two main goals:

1. To maintain the voltage at the 500 kV busbar approximately constant, following the

established reference.

2. To share evenly the reactive power production among the generating units under its control.

Figure 46 – Simplified one-line diagram of either 50 Hz or 60 Hz sectors in Itaipu.

Generating Units
(10 x 18 kV)

Unit Transformers
(10 x 18/500 kV)

500 kV Busbar

Transmission Lines
(4 x 500 kV)

Source: The author.

The JBVRC’s interface with the physical process is made through the SCADA platform,

as represented schematically in Figure 47. The SCADA collects measurements and indications

127

from RTUs and or other field devices, and is also capable of issuing control actions over

certain plant equipment, for instance: performing switchgear operations and altering equipment

operational references. The following data, needed for the JBVRC application, are collected via

the power plant’s SCADA system:

• voltage at the 500 kV busbars;

• voltages at each generator’s terminals;

• reactive power produced by each generator;

• network topology information;

• other relevant indications, like units’ synchronization and limiters’ status.

Figure 47 – Simplified data acquisition diagram from busbar and generating units.

SCADA

Database

Plant

JBVRC

Unit RTU

SF6 RTU

(V, Q)

(Indications)

(Setpoints)

...

Source: The author.

6.2.2 Overall Requirements of the JBVRC Application

Some of the main requirements for Itaipu’s JBVRC were extracted from current system

specifications and are presented below, in an unstructured format. The complete requirement

specification can be obtained from existing Itaipu documentation and is not transcribed here

since these details are not necessary for this overview.

• JBVRC must receive the 500 kV bus voltage reference from the load dispatcher. This

reference is coordinated with the regional System Operators.

• It must support periodically scheduled execution, every two seconds.

128

• For every execution cycle, it must:

– fetch and filter raw data from the SCADA telemetered real-time measurements

database;

– calculate the voltage error and determine the modes of operation for generators and

the controller;

– calculate desired unit terminal voltage and issue setpoint control commands;

– provide error checking of input data to ensure data integrity and consistency, i.e.

JBVRC should not perform operations based on invalid or inconsistent input data.

Figure 48 represents a (sketch) model of Itaipu’s current AVC application. This model

served as input for deriving the actor-oriented EMSML model for the JBVRC. In this sketch it

is possible to identify two separate sections: on the left-hand side, a section that is common to

all generating units in a sector; this part of the model is responsible for calculating the 500 kV

busbar voltage error, applying appropriate gain with conversion factor from voltage error (∆𝑉)

to reactive power error (∆𝑄), and the desired controller transfer function 𝐻(𝑠), obtaining (∆𝑄*).

The right-hand part of the model is applicable to every generating unit under JBVRC control:

it adjusts the proportion of ∆𝑄* that will be shared by each generator (participation factor),

obtaining the ∆𝑄*𝑖 reactive power error share; calculates each unit’s deviation from average

produced reactive power (∆𝑄0𝑖); applies an inner loop desired transfer function 𝐻1(𝑠) and gain;

composes the resulting unit’s reactive power error (∆𝑄𝑖), using the individual deviation and the

share of the sector’s error; and converts the reactive power error back to voltage error (∆𝑉𝑖), in

the generating unit’s base voltage2. Other requirements like input data validation and tracking

logic are not represented in this diagram and will have to be modeled using other sources of

information, like textual descriptions and equations.

6.2.3 Modeling the Physical Process

Once the EMS application requirements are elicited, the next step consists in modeling

the physical process it must interact with. The power plant model is composed of 10 generators

with their respective step-up transformers, operating in parallel at the high voltage bus bar, rated at
2 Most of these calculations are performed using the normalized, dimensionless “per-unit system” (pu). Per-unit

quantities are converted back to engineering units when the controller interfaces with the power system’s
equipment, using the appropriate base units of the corresponding equipment. For reference in the per unit system,
see (KUNDUR et al., 1994).

129

Figure 48 – Current AVC reactive power based control diagram.

Gain/
Conversion

Controller
H(s)+

-
Measured
Voltage

V

Reference
Voltage

Q Q*

Common to
All Generators

For Each
Generator

Participation
Factor

Q*i

+

Qi Gain/
Conversion

Controller
H1(s)

Q0i

Reference
(average Q)

Unit's Metered
Reactive Power

Vi

-

Source: The author, reproduced from Itaipu’s internal documentation.

Figure 49 – Model of power plant and secondary voltage controller.

Source: Neis et al. (2023).

500 kV. Figure 49 shows the higher level of the hierarchical model built using the Ptolemy II suite.

This level shows the main components of the voltage regulation system: the physical process,

including the generating units and step-up transformers; and the associated cyber component

responsible for the secondary voltage regulation. The physical process also contains a component

modeling the equivalent to a system voltage step variation, resulting from a sudden change in

either active or reactive power consumption by the associated power system (generator, load,

or capacitor bank shedding, for instance). The green box at the bottom left hand-side indicates

to Ptolemy II that, overall, this model shall be handled as a continuous-time, although parts of

the simulation may execute under different MoC, like the discrete-time computerized voltage

controller, which follows the SDF MoC. The hierarchical composition of the physical process,

including the generating units and step-up transformers model, is illustrated in Appendix C.

Each generator performs primary voltage regulation by means of its AVR, which has a

droop characteristic to ensure proper sharing of reactive power among units connected to the

130

same bus bar, either directly or through individual step-up transformers. The AVR’s droop, in

addition to the step-up transformers’ regulation effect under varying load conditions, introduces

a steady state control error at the high voltage bus bar, hence the need for the secondary voltage

controller.

Figure 50 shows a simulation, executed within the Ptolemy II environment, of the effect

of such a step on the voltage at the power plant’s 500 kV bus bar (at 8s), with the secondary

voltage controller disabled (dashed curve in red). This simulation roughly mimics the effect

of a 350 Mvar capacitor bank being connected at the nearby Foz do Iguaçu substation. In

order to counteract this steady state error, supplementary control actions are necessary, such

that the output voltage is brought back within an acceptable operating range. These actions,

known as secondary voltage regulation, are usually determined on a system-wide basis by the

regional load dispatcher or system operator authority. Large power plants participate in the

secondary voltage regulation by following a voltage or reactive power reference determined by

the regional dispatcher. In our example, this reference is directly communicated, on demand,

by the system operator to the power plant dispatch room, which manually set the controller’s

reference. Figure 50 shows, in blue, a simulation of the effect of the same voltage step, with

secondary voltage control active, and reference set at 500 kV. Notice that the voltage is gradually

brought back to 500 kV by the digital controller, in incremental actions every 2 seconds. This

is the system’s expected behavior since the secondary voltage controller is always active under

normal conditions.

Figure 50 – Ptolemy II Simulation results.

0 4 8 12 16 20 24 28
498

500

502

504

506

V
(k

V
)

t(s)

Open loop simulation

Closed loop simulation

Source: Neis et al. (2023).

6.2.4 Modeling the JBVRC Application

The “Controller” block from Figure 49 is a composite actor, executing under SDF MoC,

that contains the actual JBVRC block, which in turn implements the power plant level secondary

131

control actions. The hierarchical composition of the “Controller” block is shown in Figure 51.

Since the simulation model shown in Figure 49 is highly simplified, many inputs to the JBVRC

block are not modeled, and therefore are “hard-coded” as constant values shown in Figure 51.

For instance, the generating units’ reactive power value and its electrical connectivity island

are not simulated by the above model, therefore they are kept fixed as “100 Mvar” and “1”,

respectively, for simulation purposes. In the real system, however, these inputs are provided by

the SCADA system to the JBVRC block.

Figure 51 – Hierarchical composition of the Controller.

Source: The author.

The JBVRC composite actor highlighted in Figure 51 is hierarchically composed of the

model depicted in Figure 52, which performs the actual controller function in the model depicted

in Figure 49. This container is the “root” element which is processed by the M2T transformation

template, similar to that shown in Listing 5.1 (page 107). The JBVRC actor must perform all

the actions required by the application. It will be periodically scheduled by an external entity,

which is not represented in the model. Communication with the base SCADA is implemented by

specialized actors, named with the “Read” or “Send” prefix in Figure 52.

The voltage controller block emphasized in Figure 52 (BBVController) is detailed in

Figure 53. This block is responsible for calculating the necessary voltage variation on each

generator as a function of the high voltage bus bar error and the reactive power sharing criteria,

132

Figure 52 – The JBVRC actor model.

Source: Neis et al. (2023).

both weighted according to individually adjustable participation factors attributed to each unit.

This model was built based on the stated requirements of the current AVC, and the legacy model

described in Section 6.2.2.

The hierarchical composition of the BBVController still descends further into other

composite actors, for instance, the MvarDB block, whose composition is shown in Figure 54.

This block implements the Mvar dead band logic on the array of measurements corresponding to

each generating unit.

A schematic diagram illustrating the levels of composition corresponding to the entire

model from Figure 49 is shown in Figure 55. Blocks drawn with rounded corners correspond to

atomic actors, while square corners correspond to composite actors. The root element processed

by the M2T template is drawn with a thicked line width. The remaining hierarchical levels

correspond respectively to: the Controller block, shown in Figure 51, whose composition

corresponds to level (3); the JBVRC block, shown in Figure 52, whose composition corresponds

to level (4); the BBVController block, shown in Figure 53, whose composition corresponds to

level (5); and finally the MvarDB block, shown in Figure 54, whose composition corresponds to

level (6). In this diagram, some of the composing blocks are omitted to save space.

133

Figure 53 – The JBVRC main controller block.

Source: Neis et al. (2023).

Figure 54 – The MvarDB block implementing the dead band.

Source: The author.

6.2.5 Integrating JBVRC Into the Base SCADA

We have evaluated the integration of JBVRC to the Itaipu’s DTS using both the tight

and loose integration strategies described in Section 5.4.3.1 (page 115). In the tight integration

strategy, the blocks named with the prefix “Read” and “Send” in Figure 52 are implemented as

calls to the native SCADA library API, performing the data access calls needed for both reading

variables from and sending setpoint commands to the SCADA layer. In the loose integration

strategy, these blocks are implemented using OPC-UA client actors, which were built into the

134

Figure 55 – Levels of composition of the JBVRC model.
Cyber-Physical

continuous simulation

JBVRC Controller

(CompositeActor class)

Controller block

discrete SDF model

CalcError

(AddSubtract class)

ControllerTF

(IIR class)

AddSubtract

(AddSubtract class)

KP_FXGAIN

(Scale class)

PFAdjQBB

(MultiplyDivide class)

BBVDeadBand

(DeadBand class)

KP_INTGAIN

(Scale class)

MvarDB

(CompositeActor class)

BBVController

(CompositeActor class)

Pu2Eng

(CompositeActor class)

CalcSetp

(CompositeActor class)
SendSetp

(CompositeActor class)

ReadUnitV

(CompositeActor class)

(...) (...) (...) (...)

(...)

(1)

(2)

(3)

(4)

(5)

(6)
CountAuto

(ArrayCountOccurrences class)

DiffMvar

(AddSubtract class)

AvgMvar

(MultiplyDivide class)

AbsolutValue

(AbsoluteValue class)

TestDB

(ArrayTesInRange class)

EnableAuto

(MultiplyDivide class)

Source: The author.

D-SPADES components library. Figure 56 shows the contents of the “ReadBBVolt” (56(a))

and the “SendSetp” (56(b)) block from Figure 52. In the Vergil editor, by double-clicking on

the input/output OPC-UA client actors highlighted in yellow, a pop-up window is shown, so

the engineer can configure the communication parameters, such as the server endpoint address

and the node ID (tag name) in the server’s address space. Such parameters are saved to the

Ptolemy II XML file and later used in the instantiation of the corresponding D-SPADES objects.

The D-SPADES implementation of the OPC-UA client uses the Open625413 library, which is a

certified implementation of the IEC 62541 standard, in conformance with the “Micro Embedded

Device Server Profile” of OPC Foundation4. We have also developed Ptolemy II versions of

these actors using the Eclipse Milo5 implementation of the IEC 62541 standard, in Java.

The observed functional performance of the application integrated through these strate-

gies was indistinguishable based on the set of tests executed. We acknowledge that the additional

network layer added by the loose integration through OPC-UA, particularly when running JB-

VRC in a separate server, might negatively influence the performance due to communication

latency and possible timing non-determinisms. However, we have not performed a thorough

evaluation of these effects in the current stage of this work. On the other hand, the OPC-UA

is a shop-floor standard for process control, already proven in many industrial applications
3 https://www.open62541.org/
4 https://opcfoundation.org
5 https://projects.eclipse.org/projects/iot.milo

https://projects.eclipse.org/projects/iot.milo

135

Figure 56 – JBVRC integration through OPC-UA.

(a) JBVRC reading variables through OPC-UA. (b) JBVRC sending controls through OPC-UA.

Source: The author.

worldwide, therefore it should be able to perform satisfactorily with EMS applications.

6.2.6 Results

We have generated the executable software corresponding to the JBVRC controller from

Section 6.2.4 and integrated it with Itaipu’s DTS. This approach allows a direct performance

comparison between the existing AVC and the JBVRC under the same scenario, as described

below.

6.2.6.1 Source Code Metrics

We have performed a comparison of software size, in terms of Source Lines Of Code

(SLOC) metric, of both AVC and JBVRC, as shown in Table 5. Although we acknowledge

the SLOC metric may not be an appropriate metric of software functionality, the comparison

made here offers a good grasp of the physical size of the software under analysis. These metrics

were collected using the cloc6 utility. Blank lines and comments are ignored, so only the actual

source code is accounted for. Additionally, we have taken into consideration only the source code

modules implementing the functionalities that were compared in this work, in section 6.2.6.2

below. Source code modules implementing other functionalities were left out.
6 https://github.com/AlDanial/cloc

136

Table 5 – Source code metrics for AVC and JBVRC.
Application SLOC

AVC (C) 4214
Automatically generated 1597

JBVRC (C++) Components Library 2526
Total 4123

Table 5 shows that the volume of source code automatically generated for JBVRC is

considerably less than the legacy AVC code. Besides the differences between the C and C++

programming languages, the other plausible cause of such variations in size is that the JBVRC’s

code makes use of the pre-programmed actors from the D-SPADES components library. In

other words, many of the operations that had to be programmed into the AVC’s source code are

previously available to JBVRC in the components library, so its code doesn’t have to include

these operations “in line”. Furthermore, if we take into account the SLOC of the components

library along with the JBVRC’s automatically generated code, the figures get balanced, and it

can be said that both applications have approximately the same physical size. It is worth noting

that the code from the D-SPADES components library can be reused in other projects, therefore,

for applications developed in the future, virtually no additional code needs to be handwritten,

except possibly for new components that are added to the library.

6.2.6.2 Functional Performance

We have evaluated a real system disturbance scenario that produces significant voltage

variations at the power plant’s 500 kV bus bar, by switching a 350 Mvar shunt capacitor bank

at the nearby Foz do Iguaçu substation. Under the considered load condition and a number

of synchronized generators, such switching caused an approximately 6 kV variation: voltage

increases when the bank is turned on, and decreases when turned off. Figure 57 shows the data

obtained from the plant’s historical data, corresponding to the real-world event of the capacitor

bank being switched on (curve in black). In this case, the AVC application was active and quickly

brought the voltage back to the scheduled value of 500 kV.

We have replicated the same capacitor switching scenario on the DTS and verified that

AVC response is reasonably consistent with the results observed in the real system, considering

the limitations of the dynamic model implemented by the DTS, as shown in Figure 57 (curve in

red). Finally, we have replaced AVC with the new JBVRC software executable on the DTS, and

performed the same capacitor switching. The observed response is shown in Figure 57 (curve in

137

blue). These results are consistent with the AVC response under the same conditions, and also

consistent with the continuous-time simulation performed by the Ptolemy II shown in Figure 50.

Figure 57 – 350 Mvar step: observed and simulated voltage performance.

0 4 8 12 16 20 24 28
498

500

502

504

506

V
(k

V
)

t(s)

AVC on real system

AVC on DTS

JBVRC on DTS

Source: Neis et al. (2023).

Other functional requirements, e.g., reactive power sharing among generators according

to participation factors and the configured dead bands, have also been verified. Figure 58

illustrates the reactive power sharing functionality in action, for a real event consisting of the

following scenario: five generating units were synchronized; four of them were initially operating

under automatic control; the fifth unit was operating under manual voltage control, with a slightly

different voltage setup, thus, it did not initially participate in the reactive power sharing. At t=6s,

the fifth unit is put under automatic control and thus starts sharing reactive power. The reactive

power sharing stops once the deviation from average reaches a configurable dead band, modeled

by the “MvarDB” block from Figure 53.

Figure 58 shows the system behavior for this scenario. The data obtained from the

plant’s historian archive for the real event using the AVC application is depicted in (a): the

unit under manual control, traced in blue, starts with its reactive power considerably above the

remaining units and, after switched to automatic control, quickly drifts towards the others, which

in turn are slightly increased so the total reactive power remains unaltered.

The results of a simulation of similar conditions, performed on the DTS, again using

the AVC application are depicted in (b). In comparison, Figure 58 (c) shows the performance of

the JBVRC application under similar conditions, also on the DTS simulator. In all three cases

above it can be verified that the reactive power distribution has occurred consistently, respecting

the configured dead band. This demonstrates that the JBVRC application, which was developed

using the MDE-based approach and the code generation proposed in D-SPADES, achieved a

similar performance when compared with the hand-crafted AVC application.

The results of these simulations suggest that D-SPADES provides an accurate mapping

of high-level models into application source code, therefore being a feasible approach in practice.

138

Figure 58 – Reactive sharing: observed and simulated performance.

0 4 8 12 16 20 24 28
-50

-40

-30

-20

-10

0

10

(a) - real system
Q

(M
va

r)

0 4 8 12 16 20 24 28
-50

-40

-30

-20

-10

0

10

(b) - AVC on DTS

t(s)
0 4 8 12 16 20 24 28

-50

-40

-30

-20

-10

0

10

(c) - JBVRC on DTS

Source: Neis et al. (2023).

They also demonstrate that the software generated automatically from the AO model provides

similar performance in comparison with its counterpart, i.e., the AVC software, which has been

manually developed, tested, debugged, and improved over many years of operation. Additionally,

besides the demonstrated feasibility of using D-SPADES in a real-world application, one can

expect other project-related gains due to applying model-driven design techniques, e.g. reducing

the effort and errors in the software coding phase, improving reuse, or shortening design time, as

already widely suggested (FELIX et al., 2020; VOELTER et al., 2019; WEHRMEISTER et al.,

2014; YANG et al., 2020; SANTOS et al., 2020).

6.2.6.3 Computational Performance

We have conducted a comparison of computational performance metrics for both AVC

and JBVRC under similar operational conditions. All source code files were compiled using

the same compiler bundle, except that AVC uses the C language compiler, whilst JBVRC

needs the C++ counterpart. In both cases, similar compiler optimization flags were employed.

Both programs were executed and profiled during a five minutes interval, while performing

control actions corresponding to the correction of the voltage disturbance described in Section

6.2.6.2. This particular comparison was performed exclusively using the tight integration strategy

described in Section 5.4.3.1 (page 115). Metrics were collected using the standard host’s operating

system profiling tool, called caliper (HUNDT, 2000), and are shown in Table 6.

Table 6 – Profiling information for JBVRC and AVC.
Processor time (s) Memory pages

AVC JBVRC AVC JBVRC
user 0.112 0.162 shared 16641 25362

system 0.587 0.231 private 311 1072
total 0.699 0.393 weighted 820 1864

139

The processor usage metrics, measured in seconds of CPU time, suggests that the

JBVRC executable spends fewer resources than AVC, particularly on system calls. The total

CPU time (user+system) spent by JBVRC corresponds to approximately 56% of the time spent

by AVC. In other words, it means that JBVRC performs the same task using roughly half the

processing power required by AVC.

In terms of memory usage, however, JBVRC requires considerably more resources than

AVC. The memory usage shown in Table 6, measured in pages of 4096 bytes, suggests that

JBVRC requires more than double (227%) the storage resources compared to AVC, when the

weighted memory pages metric is taken into account. This metric corresponds to the number

of private pages for the process plus a proportion of the shared pages, weighted by the number

of processes actually sharing each page. The number of weighted pages is considered a good

estimate of the load imposed by the process onto system memory. In other words, JBVRC

requires roughly twice the memory space to perform the same task as AVC. We consider these

results perfectly acceptable, since although JBVRC uses more memory in comparison to AVC,

the total amount used (∼7 MiB) is still low for today’s software applications. Additionally, we

have to consider that D-SPADES adds a layer of abstraction between modeling and the source

code. This additional layer adds some burden in terms of resource usage.

These results suggest that computationally efficient applications can be produced

through the D-SPADES approach, despite the additional layer of abstraction and the correspond-

ing extra libraries required at run time, when compared to the legacy applications developed

using a general-purpose language.

6.3 CASE STUDY 2: ERG60 APPLICATION

We have applied D-SPADES to the development of a real-world application currently

operating at the Itaipu Power Plant, designated as Esquema de Redução de Geração em 60

Hz (ERG60)7. The ERG60 application is part of a larger system, responsible for performing

supplementary protective actions at the power plant’s 60 Hz sector, and associated transmission

network interconnecting it to the Brazilian grid. The ERG60 can be classified as a discontinuous

control, i.e.: it is meant to bring the system back to normal after off-nominal conditions are

detected. It operates in the timescale of several seconds to minutes (see Figure 19 from page 59).

The D-SPADES software process described in Section 5.1 was fully exercised in the production of
7 ERG60 is the Portuguese acronym for 60 Hz sector’s Generation Reduction Scheme.

140

the ERG60 application, including the successful deployment of the application in the production

system. The application runs flawlessly since its deployment, in October/2022 (NEIS et al.,

2022).

6.3.1 Equipment and Systems Involved

Itaipu’s 60 Hz sector has 7,000 MW installed capacity and is integrated into the Brazil-

ian grid trough 500 kV and 765 kV transmission network, encompassing several substations

containing numerous pieces of equipment such as transformers, shunt reactors, var compen-

sators, lines, and series capacitors. Figure 59 illustrates a simplified view of this network, which

geographically spans more than 900 km.

Figure 59 – Itaipu’s 60 Hz sector and associated transmission network.

Source: (NEIS et al., 2022).

This vast network, besides the standard equipment-based protective devices, is also

equipped with a supplementary protection system, called Sistema Especial de Proteção 765

kV (SEP-765)8. The objectives of this system are to prevent contingencies in the network from

bringing the whole grid to an unstable condition or risking the integrity of power equipment,

including Itaipu’s generating units. It does so by means of automatic control actions, such as:

disconnecting (shedding) generating units at the Itaipu Power Plant, disconnecting transmission

lines or busbars, and also performing controlled reduction of power production in order to

eliminate equipment overload.

ERG60 is the specific action that reduces the power production at Itaipu Power Plant in

order to eliminate such overload. ERG60 is implemented by a periodic subroutine associated
8 SEP is the Portuguese acronym for Special Protective Scheme. According to Brazilian grid code (ONS - Operador

Nacional do Sistema Elétrico, 2022), a SEP is a system which, based on the detection of abnormal operational
conditions or multiple contingencies, performs automatic actions in order to preserve the integrity of the power
system, its equipment or transmission lines.

141

with the 60 Hz sector’s AGC.

6.3.1.1 Earlier Versions of ERG60

The demand for the ERG60 application was first identified back in 2012 when the risk

of overload in the 500/765 kV transformers at the Foz do Iguaçu substation constituted a limiting

factor for the power production in the 60 Hz sector, which could not be fully explored up to the

installed capacity. Such limitations could be circumvented by implementing a special emergency

control scheme that automatically (without any human intervention) detects such overload and

reduces power production at the power plant, until the overload is eliminated. Thus the original

ERG60 was developed, deployed and evaluated (NEIS et al., 2012; NEIS et al., 2012).

ERG60 worked by evaluating telemetered values received via ICCP from the National

Operator. These values correspond to the electrical currents, measured at the low voltage trans-

former terminals, active and reactive power output, plus quality tags. The greater of the currents

or apparent power output among the transformers is selected as reference, corresponding to the

severest loading among them. The scheme was activated once an overload above 10% of the

nominal current (or apparent power) was detected. The control actions consisted in issuing a

command the 60 Hz AGC, so it would gradually reduce power plant generation through ramps

of configurable rate and duration. By the end of the scheme’s actuation, the overload on all the

transformers shall be completely eliminated.

ERG60 was originally modeled using the FSM concept, as shown in Figure 60. This

model, however, served only as an early design and documentation artifact: model as sketch, as

previously discussed in Section 2.2 (page 30). The actual source code for the application was

manually written based on this design and the documented requirements.

6.3.1.2 Evolution of ERG60

During the year 2022, a complete overhaul of the SEP-765 was conducted (PORTUGAL

et al., 2022; NEIS et al., 2022). Along with this overhaul, the scope of the ERG60 was expanded.

From this point on, ERG60’s operation is triggered by the occurrence of an overload in any

of the 765 kV transmission lines or any of the 500/765 kV transformers shown in Figure 59

(overloads in the range from 10% to 50%). Such occurrence is detected by one of the IEDs

that compose the protective scheme and relayed to Itaipu’s SCADA system by means of a

142

Figure 60 – FSM model for original ERG60 application.

Source: The author, based on (NEIS et al., 2012).

pair of redundant RTUs. Therefore, the new ERG60 no longer monitors telemetered measured

values from individual equipment. Instead, it receives a pair of redundant binary indications

(status points), whose activated state indicates the presence of overload in at least one of the

monitored lines or transformers. Such change required a major rewriting of the ERG60 source

code, thus a good opportunity to apply D-SPADES. In order to differentiate the previous ERG60

implementation from the new one described here, we will, from now on, refer to it as the

“Model-Driven ERG60 (MDERG)”.

6.3.2 Overall Requirements of MDERG

The main requirements of MDERG are:

1. The scheme shall be automatically activated once an overload is indicated by the SEP-765

IEDs, and become inactive once the overload has been eliminated.

2. Once an overload indication is detected, the scheme shall wait for a configurable number

of scan cycles for confirmation, before starting to issue commands. This shall be done in

order to prevent the triggering of the scheme by spurious indications.

3. Once activated, the first action to be taken is to switch AGC mode to “REPA LOCAL”

(splitter, local mode), if not already in this mode, and also cancel any ongoing ram-

p/rescheduling.

143

4. The module implementing the scheme shall command the 60 Hz AGC to gradually reduce

power plant generation by means of ramps of configurable amplitudes and duration.

5. In case overload indication persists after a ramp is complete, the scheme shall remain

active and command a new descending ramp.

6. The conditions determining the scheme (un)availability are: The scheme shall become

unavailable whenever the AGC software is unavailable, and when the quality indication

flags received from the IEDs (Telemetry Error, Deactivation, etc) are set.

7. An alarm shall be issued to indicate whenever the scheme starts issuing commands to

reduce overload, and whenever the scheme becomes unavailable.

8. A toggle switch shall be implemented such that the scheme can be inhibited (turned off)

by human intervention. This may be necessary for some specific power system conditions.

This button shall also have the effect of canceling an ongoing activation and stopping the

associated AGC ramp.

6.3.3 Proposed Architecture

MDERG, as well as ERG60, is tightly coupled with the SCADA. It is implemented as a

periodically called subroutine, hooked to the main 60 Hz AGC execution cycle. Since the current

Itaipu’s AGC, as well as the ERG60, are implemented using the Fortran language, MDERG is

also implemented in that language. For that, a different M2T template was developed, focused on

the MDERG implementation, as well as a “lightweight” version of the D-SPADES components

library, implemented in Fortran9.

Complementarily to the conventions mentioned in Section 5.3.2.2 (page 109), the

following criteria were established in order to facilitate integration with the AGC code, as well

as isolating MDERG implementation from SCADA code:

• As stated before, MDERG is a subroutine periodically called by Itaipu’s AGC. The

behavior of this subroutine is governed by an FSM, similar to the ERG60’s shown in

Figure 60. This subroutine is called “ECEIPU”.
9 Although we acknowledge that the C++ version of D-SPADES components library could be used, that would

add extra overhead on the AGC executable, both in memory usage as well as executable size, due to the linkage
with the C++ library.

144

• ECEIPU is called at the end of the main AGC execution cycle, and the input data needed by

the FSM, represented in the model as input ports, is passed to the sub-routine as arguments.

• Output data, represented in the model as output ports, are implemented as subroutine calls.

Thus, for every output port in the model, a callback subroutine has to be implemented in

the D-SPADES Fortran library.

Figure 61 shows the ECEIPU subroutine, modeled in the Ptolemy II environment, with

its inputs and outputs.

• PLCRamp (IN): Status indication of overload condition (Yes/No) from the SEP-765 IED.

• PLCQual (IN): Telemetry quality indication from the redundant RTU communication.

• AGCStatus (IN): The current state of the AGC controller (ON/OFF).

• SPLFLG (IN): Binary indication of the current status of ramp execution from the AGC

(ON/OFF).

• ERGStatus (IN): Switch controlling the state of the application (ON/OFF).

• Ramp (OUT): Starts (or stops) the execution of a ramp, and also issues the corresponding

alarm.

• AlarmUnav (OUT): Issues the alarm indicating that the MDERG is unavailable, and its

return to normality.

Figure 61 – ECEIPU subroutine model: inputs and outputs.

Source: The author.

145

6.3.4 Cyber-Physical Process and Application Model

MDERG runtime environment consists of a periodical scheduler, responsible for exe-

cuting it every 4s, and the infrastructure that provides input/output data and executes actions. In

the Ptolemy II environment, this can be represented as an SDF model providing sequences of

data as inputs, and displaying the function’s output in order to perform early model validation, as

shown in Figure 61. The “ECEIPU” block shown in this figure consists of the hierarchical FSM

model represented in Figures 62 and 63.

Figure 62 – FSM hierarchical model of the ECEIPU subroutine for MDERG.

Source: The author.

Figure 63 – Model refinement for “Available” state.

Source: The author.

The hierarchical FSM, whose higher-level model is depicted in Figure 62, starts its

execution in the “Unavailable” state. From this state, its guard expression determines that it

shall transition to the “Available” state only if “𝑃𝐿𝐶𝑄𝑢𝑎𝑙 == 1” and “𝐴𝐺𝐶𝑆𝑡𝑎𝑡𝑢𝑠 == 1”,

which means: the telemetry quality associated with the redundant RTU must be “good” (at least

one RTU is up) and the 60 Hz AGC must be turned on. In case this transition is activated, an

146

output expression is also executed, in this case: “AlarmUnav=0”. According to the conventions

previously established in Section 6.3.3, a corresponding subroutine is called passing “0” as the

argument, meaning that the alarm condition for MDERG availability is reset (return to normal

alarm).

Once in the “Available” state, the FSM might transition back to “Unavailable” if the

specified guard expression is satisfied, reciprocally to the transition described above. This FSM

also has a model refinement defined for the “Available” state, as shown in Figure 63, meaning

that, in this state, another instance of an FSM is executed. The operation of this instance is

governed by the model represented in Figure 63, which essentially represents the behavior that

satisfies the requirements listed in Section 6.3.2.

6.3.4.1 Model Transformation

The model transformation for the MDERG application is performed using a specific

template targeted to produce Fortran code. An excerpt from this template is shown in Listing 6.1.

Listing 6.1 – Excerpt of Acceleo MTL template for Fortran language.

1 [comment e n c o d i n g = UTF−8 /]

2 [module g e n e r a t e F o r t r a n F S M (’ h t t p : / / www. example . o rg /EMSML’)]

3 [comment Th i s i s t h e MAIN TEMPLATE . /]

4 [t e m p l a t e p u b l i c g e n e r a t e E l e m e n t (a n E n t i t y : e n t i t y) ? (s e l f . name = ’ECEIPU ’)]

5 [comment @main /]

6 [f i l e (’OUTSTREAM. t x t ’ , f a l s e , ’UTF−8 ’)]

7 [a n E n t i t y . genFSMStruc tu re () /]

8 [/ f i l e]

9 [/ t e m p l a t e]

10 [**

11 * Th i s t e m p l a t e g e n e r a t e s a l l t h e FSM s t r u c t u r e and s u b r o u t i n e s . I t can be c a l l e d

r e c u r s i v e l y

12 * /]

13 [t e m p l a t e p r i v a t e genFSMStruc tu re (a n E n t i t y : e n t i t y)

14 { className : S t r i n g = a n E n t i t y . name . r e p l a c e A l l (’ ’ , ’ _ ’) . t r i m () ; }]

15 [i f a n E n t i t y . c l a s s = ’ p to lemy . domains . modal . modal . ModalModel ’ or a n E n t i t y . c l a s s = ’ p to lemy

. domains . modal . modal . ModalRef inement ’]

16 E n t i t y : [c lassName /] IS a ModalModel !

17 [f o r (a n E n t i t y I t e r : e n t i t y | a n E n t i t y . e n t i t y)]

18 [i f a n E n t i t y I t e r . c l a s s = ’ p to lemy . domains . modal . modal . M o d a l C o n t r o l l e r ’]

19 Found M o d a l C o n t r o l l e r : [a n E n t i t y I t e r . name . r e p l a c e A l l (’ ’ , ’ _ ’) . t r i m () /] INSIDE : [

c lassName /]

20 [a n E n t i t y I t e r . genFSMCont ro l l e r () /]

21 [/ i f]

22 [i f a n E n t i t y I t e r . c l a s s = ’ p to lemy . domains . modal . modal . ModalRef inement ’]

147

23 Found ModalRef inement : [a n E n t i t y I t e r . name . r e p l a c e A l l (’ ’ , ’ _ ’) . t r i m () /] INSIDE : [

c lassName /]

24 [comment R e c u r s i v e l y c a l l t h e genFSMStruc tu re () t e m p l a t e /]

25 [a n E n t i t y I t e r . genFSMStruc tu re () /]

26 [/ i f]

27 [/ f o r]

28 [e l s e]

29 ERROR! The model you t r i e d t o p r o c e s s i s not an FSM model .

30 [/ i f]

31 [/ t e m p l a t e]

32 [comment Th i s t e m p l a t e s u b s t i t y t e s C−s t y l e b i n a r y o p e r a t o r s w i th F77 o p e r a t o r s . /]

33 [t e m p l a t e p r i v a t e subsF77 (a S t r i n g : S t r i n g) p o s t (t r i m ())]

34 [a S t r i n g . s u b s t i t u t e A l l (’>= ’ , ’ . GE . ’) . s u b s t i t u t e A l l (’<= ’ , ’ . LE . ’) . s u b s t i t u t e A l l (’== ’ , ’ . EQ .

’) . s u b s t i t u t e A l l (’ != ’ , ’ . NE . ’) . s u b s t i t u t e A l l (’ | | ’ , ’ .OR. ’) . s u b s t i t u t e A l l (’&&’ , ’ .AND. ’

) . s u b s t i t u t e A l l (’> ’ , ’ . GT . ’) . s u b s t i t u t e A l l (’< ’ , ’ . LT . ’) /]

35 [/ t e m p l a t e]

6.3.5 Deployment and Test Results

The new AGC executable containing the MDERG was initially validated using the

DTS, with satisfactory results. The next step consisted in deploying the executable in the produc-

tion SCADA/EMS and executing integration tests with the whole SEP-765 in real operational

conditions. During these tests, no software defects were detected. It is worth noticing that the

code produced is perfectly readable and comprehensible, thus it can be easily maintained and

debugged, if necessary.

6.3.5.1 Functional Performance

Below we describe one of the tests executed, which consists in simulating an overload

event, by forcing the scheme’s IEDs to indicate this condition, although the equipment was

operating under normal loading. For this test, the MDERG was configured to perform reduction

ramps of 200 MW, with a 5 min duration.

Figure 64 shows the behavior of the 60 Hz sector’s power production during a 15 min

interval while the test took place. The plant’s 60 Hz sector was producing approximately 4750

MW (trace in black) when the overload indication was raised (red dashed line). The trace in blue

shows that the AGC target schedule was changed to approximately 4550 MW, and the ramp

command was activated (SPLFLG variable, green dashed line). The first 200 MW ramp was

completed after 5 min, with the power production reaching approximately 4580 MW. Since the

148

Figure 64 – Integration test performing generation reduction.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4400

4500

4600

4700

4800
P

(M
W

)

t(min)

Gen. 60 Hz

AGC schedule

Overload indication

AGC active

Source: Neis et al. (2023).

overload indication was still active, MDERG set the scheduled generation to 4380 MW, starting

a new ramp. This behavior, according to requirement (5), is modeled in the FSM shown in Figure

63 by the guard expressions conditioning the transitions back and forth from state “Active” to

“Controlling”. Approximately 2 min after the second ramp started, the overload indication was

lowered, so MDERG changed the scheduled generation to 4536 MW (the current measured

power) and canceled the ramp. The behavior described above is considered correct according to

the established requirements of the function, which was therefore deployed in the production

system.

6.4 CHAPTER SUMMARY

In this chapter, we have demonstrated how D-SPADES can be applied to the develop-

ment of executable software. Initially, a simple toy application was modeled, transformed into

C++ source code, and executed as a console application, in order to demonstrate the D-SPADES

workflow. Following, we have demonstrated the viability of D-SPADES by modeling the JBVRC

after the AVC, a real-world application from the Itaipu Power Plant. The JBVRC was integrated

into Itaipu’s DTS and tested in comparison to the legacy AVC, showing satisfactory results. The

JBVRC has served as a proof-of-concept for D-SPADES, demonstrating that it can produce

software that executes correctly and efficiently. Finally, we have applied D-SPADES to the

development of the MDERG application, which was deployed to the production SCADA/EMS

at the Itaipu Power Plant.

149

7 CONCLUSIONS AND FUTURE WORK

In this work, we have conducted a thorough investigation regarding techniques and

tools that can be applied in the development of EMS applications. Based on the initially stated

research questions, the thesis was developed and reached the following achievements:

7.1 ANSWERS TO RESEARCH QUESTIONS

Regarding the questions raised in Section 1.1.1, based on the argumentation and the

results reported in the previous chapters, the following answers are formulated:

From the Energy Management perspective:

1. Can we choose a satisfactory format for modeling EMS applications?

We propose to use actor-oriented models since they can easily accommodate the block

diagram and transfer function paradigms largely used in traditional control theory, as well

as other useful abstractions such as FSMs. Several modeling and simulation tools applied

in the power systems domain are block diagram based design environments, suggesting that

the paradigm has widespread acceptance in the area. We have collected evidence suggesting

that this paradigm is widely used for modeling power equipment and system behavior,

as well as to model the control applications that interact with them. In the particular

case of Itaipu, we have access to a significant volume of documentation and simulation

models based on block diagrams and transfer functions. We have demonstrated by means

of a proof-of-concept application, that these legacy models can be easily converted into

EMSML and then further processed through D-SPADES work-flow in order to produce

executable software. The existence of such legacy models thus facilitates the adoption of

the D-SPADES approach. Other companies in the power sector are likely to have their

documentation and simulation models also expressed in similar formats, and so they too

can benefit from an approach such as D-SPADES.

2. How can the proposed approach contribute to improving model verification and

validation?

The adoption of actor-oriented models compatible with the Ptolemy II package offers the

possibility of modeling and simulating both the physical process and the cyber counterpart

150

– the controller. Therefore the controller model can be incrementally built and validated in

the actor-oriented simulation environment. Using models that were previously validated

as input to the software generation step, according to MDE literature, shall significantly

improve the chances of producing an application that is correct “by design”.

3. Is it possible to automate the transformation of these models into executable arti-

facts?

We have demonstrated that abstract actor-oriented models can be processed and trans-

formed into source code through M2T transformations. Additionally, source code for

different platforms or programming languages can be produced by creating new transfor-

mations (or adapting existing ones). Thus we can use the same abstract model to produce

source code for different platforms. Since abstracting always involves simplifications, and

therefore omitting some implementation details, a gap exists between the model specifica-

tion and the target implementation that needs to be filled in order to produce a functional

executable application. This gap is filled by the D-SPADES components library, which

implements the building blocks necessary for realizing EMS applications.

4. Is it possible to integrate these executable artifacts with both the existing and future

generations of the centralized control systems?

We have demonstrated that the software produced from the high-level application models

can be integrated into a real-world SCADA/EMS. We have presented, in Chapter 6, both

a proof-of-concept application, as well as a production-level application integrated with

the current Itaipu’s SCADA/EMS. Integration with future generations of SCADA/EMS

packages may be facilitated by the adoption of standardized middleware, but so far we

have integrated the aforementioned applications to only one SCADA/EMS product line.

From the Software Engineering perspective:

1. Is it possible to model the behavior and structure of EMS applications using a high-

level domain-specific language? What kind of language is indicated?

The answer to this question is basically the same as the one provided above for the Energy

Management perspective: actor-oriented models are an appropriate choice for a high-level

representation of EMS applications’ intended behavior. We have also shown that these

models can be processed and automatically transformed into source code through M2T

151

transformations. From a Software Engineering perspective, this is an interesting conclusion,

since most of the modeling languages currently seen in MDE approaches are UML-based.

2. Is it possible to reuse existing/legacy artifacts – specifications, block diagrams or

programs written in third generation languages?

We have shown that high-level specifications like block diagrams and transfer functions

can be easily reused or adapted to the EMSML language, for instance: in the modeling of

the JBVRC shown in Figure 48 (page 129). Legacy source code could be reused in the

components library, but practical cases of such reuse are still to be determined.

3. Which transformation techniques and tools can be used?

We have used model-to-text transformations, described in a template-based language. The

Acceleo tool and the MTL transformation language were used for that effect. In addition,

the EMF Ecore is the format adopted for metamodeling. Model-to-Model transformations,

although not used in the development of this work, may be used as a “bridge” between

different modeling tools used in the design process, e.g.: transforming a Simulink/Stateflow

model into EMSML.

4. How can these software artifacts be integrated with existing commercial supervisory

control systems?

This integration can be achieved using either the tight or loose integration architectures

we proposed in Section 5.4.3.1 (page 115). We have demonstrated the feasibility of both

approaches through a proof-of-concept application described in Chapter 6, but currently

adopt a tightly integrated approach for production applications.

7.2 THESIS CONTRIBUTIONS

In this thesis, we have proposed D-SPADES: an MDE-based approach to the develop-

ment of EMS applications, focused on hydropower plants. This approach consists of processes,

languages, and tools that are tailored to develop and maintain such applications. D-SPADES

is being developed to address the immediate necessities we have observed in our professional

activities within the Itaipu Power Plant. We believe, however, that the approach is reproducible

and widely applicable in the power industry and other related areas, since the paradigms like

block diagrams and transfer functions, widely used for modeling power plant equipment and

associated systems, are also useful for modeling a vast number of industrial processes.

152

It is important to point out that, by proposing D-SPADES, we are not advocating that

traditional development approaches, such as those using 3GLs, are to be abandoned. In other

words, D-SPADES is not a replacement for traditional approaches, but rather a complement. By

offering a higher level of abstraction to the computing infrastructure, we expect to allow better

integration of domain experts into the software development process, without requiring them

to have deep knowledge of the low-level computer programming models. This integration is

promoted through a better separation of roles:

Domain Specialists concentrate on the process models using expressive, domain-specific, model-

ing tools; but not necessarily having deep knowledge of the computer’s lower-level programming

model, language, and tools. As discussed in Section 2.1 (page 26), they only need knowledge of

the layers of abstraction immediately above (the power system) and below (D-SPADES).

Software Developers can work more intensively developing model transformations and compo-

nents for the D-SPADES library, providing support for the domain specialist; they are required

to have deep knowledge of the MDE tools and programming models, but little knowledge of the

power system domain.

Therefore D-SPADES has shown several advantages in comparison with a traditional

development approach for SCADA/EMS applications, among them we can emphasize: (i) it

provides a highly abstract, domain-specific modeling language (EMSML), suitable for the power

systems specialists to participate actively in the development process; (ii) early model validation

is inherently part of the design process since the models can be tested and evolved before the

source code is produced. (iii) generated code is free of programming errors that might appear

when the software is manually programmed based on the human interpretation of specifications.

In such an approach, domain specialists and software developers play more integrated,

yet complementary roles: power engineers can focus on high-level problem solving, using DSML

and simulation tools, while software developers concentrate on the support process, like providing

an adequate set of actors and transformations for automated code production. Comparatively, in

traditional approaches, any redesign or even minor changes in the application model inevitably

requires refactoring, testing, and debugging software modules written in the chosen target

programming language. With the D-SPADES approach, on the other hand, transformations and

component libraries previously tested and validated are re-used. Newly added components can

be unit-tested, and new transformations can also be previously validated using test models. Thus

a complete application design can be conducted by power systems specialists, producing an

153

executable program ready to be integrated with the underlying SCADA system without manually

writing a single line of code in conventional programming languages.

Our results reinforce the idea that early model validation associated with automatic code

generation is an effective approach to high-quality software development. We also expect that

D-SPADES will increase productivity and facilitate software evolution, for instance, when adding

new requirements to a given application or upgrading the base SCADA platform. Additionally,

D-SPADES explicitly addresses the problem of integrating EMS applications with commercial

SCADA products. Such integration can be achieved either through a tightly-coupled architecture,

using proprietary SCADA APIs, or a loosely-coupled approach using standard middleware such

as OPC-UA.

7.2.1 Publications

During the development of the research associated with this thesis, we have published

the following related works:

1. NEIS, P.; WEHRMEISTER, M.A.; MENDES, M.F. “Model driven software engineer-

ing of power systems applications: Literature review and trends”. IEEE Access, v. 7,

p. 177761–177773, 2019. ISSN 2169-3536. http://dx.doi.org/10.1109/ACCESS.2019.

2958275.

2. NEIS, P.; TOCHETTO, A. P.; RAMÍREZ, R. J. G.; COSTA, C. H. C.; WEHRMEISTER,

M. A. “Integração do esquema de redução de geração em Itaipu 60 Hz com o novo SEP do

sistema de transmissão em 765 kV: uma abordagem de engenharia guiada por modelos”.

In: XVII EDAO - Encontro para Debates de Assuntos de Operação. São Paulo - SP:

[s.n.], 2022. p. 1–9.

3. NEIS, P.; WEHRMEISTER, M. A.; MENDES, M. F.; PESENTE, J. R. Applying a model-

driven approach to the development of power plant SCADA/EMS software. International

Journal of Electrical Power & Energy Systems, V. 153, p. 109336, 2023. ISSN 0142-

0615. https://doi.org/10.1016/j.ijepes.2023.109336.

http://dx.doi.org/10.1109/ACCESS.2019.2958275
http://dx.doi.org/10.1109/ACCESS.2019.2958275
https://doi.org/10.1016/j.ijepes.2023.109336

154

7.3 FUTURE WORK

The next logical step in the development of this work is to consolidate and promote

the adoption of D-SPADES within Itaipu and possibly other partners. Among the imminent

applications of the approach, we can mention the development and integration of applications for

the new SCADA/EMS, shipped with the Itaipu’s modernization contract1 and the development

of improved simulation modules for the DTS. Along with the development of new projects, we

will be able to promote the involvement of power systems specialists with no background in

software development, thus allowing for a more precise assessment of the true potentials of

D-SPADES. In complement, we intend to add support for a larger number of actors and MoCs

into the D-SPADES components library, as well as a correspondent set of automated unit tests,

so it can support larger projects. Additionally, the applicability of the D-SPADES approach

in applications other than SCADA/EMS can be evaluated, for instance: in the development of

applications running on IED and/or PLC platforms, performing special control or protective

actions, like the ECCANDE project (GODOY et al., 2023).

As future research, a thorough evaluation of the approach based on well-known stan-

dards must be performed, such as the ISO 9241-11 quality model, regarding aspects such as

scalability, usability, and efficiency.

1 http://www.itaipu.gov.br/en/technology/technological-upgrade

http://www.itaipu.gov.br/en/technology/technological-upgrade

155

REFERENCES

ABB Inc. Hydro power – Intelligent solutions for hydroelectric power plant controls.
Burlington, ON, Canada: [s.n.], 2016. ABB information brochure.

AGARWAL, P. K.; DE, D.; RATHOUR, H. K. Modernization of multi location live SCADA
system - a case study. In: 2016 National Power Systems Conference (NPSC). [S.l.: s.n.],
2016. p. 1–6.

AGHA, Gul. Concurrent object-oriented programming. Commun. ACM, Association for
Computing Machinery, New York, NY, USA, v. 33, n. 9, p. 125–141, Sep. 1990. ISSN
0001-0782. Available at: https://doi.org/10.1145/83880.84528.

ANDRÉN, F.; BRÜNDLINGER, R.; STRASSER, T. IEC 61850/61499 control of distributed
energy resources: Concept, guidelines, and implementation. IEEE Transactions on Energy
Conversion, v. 29, n. 4, p. 1008–1017, Dec 2014. ISSN 0885-8969.

ANDRÉN, Filip; STIFTER, Matthias; STRASSER, Thomas. Towards a semantic driven
framework for smart grid applications: Model-driven development using CIM, IEC 61850 and
IEC 61499. Informatik-Spektrum, v. 36, n. 1, p. 58–68, Feb 2013. ISSN 1432-122X. Available
at: https://doi.org/10.1007/s00287-012-0663-y.

ANDRÉN, F.; STRASSER, T.; KASTNER, W. Model-driven engineering applied to Smart
Grid automation using IEC 61850 and IEC 61499. In: 2014 Power Systems Computation
Conference. [S.l.: s.n.], 2014. p. 1–7.

ANDRÉN, F.; STRASSER, T.; KASTNER, W. From textual programming to IEC 61499
artifacts: Towards a model-driven engineering approach for smart grid applications. In: 2015
IEEE 13th International Conference on Industrial Informatics (INDIN). [S.l.: s.n.], 2015.
p. 1524–1530. ISSN 1935-4576.

ANDRÉN, F.; STRASSER, T.; ROHJANS, S.; USLAR, M. Analyzing the need for a common
modeling language for smart grid applications. In: 2013 11th IEEE International Conference
on Industrial Informatics (INDIN). [S.l.: s.n.], 2013. p. 440–446. ISSN 1935-4576.

ANDRÉN, F. P.; STRASSER, T.; KASTNER, W. Applying the SGAM methodology for rapid
prototyping of smart grid applications. In: IECON 2016 - 42nd Annual Conference of the
IEEE Industrial Electronics Society. [S.l.: s.n.], 2016. p. 3812–3818.

https://doi.org/10.1145/83880.84528
https://doi.org/10.1007/s00287-012-0663-y

156

ANDRÉN, Filip Pröstl; STRASSER, Thomas I.; KASTNER, Wolfgang. Engineering smart
grids: Applying model-driven development from use case design to deployment. Energies, v. 10,
n. 3, 2017. ISSN 1996-1073. Available at: https://www.mdpi.com/1996-1073/10/3/374.

ANEEL - Agência Nacional de Energia Elétrica. Sistema de Informações de Geração -
SIGA. 2022. Accessed: 2022-December-23. Available at: https://www.gov.br/aneel/pt-br/
centrais-de-conteudos/relatorios-e-indicadores/geracao.

ARYA, Yogendra; KUMAR, Narendra. Design and analysis of BFOA-optimized fuzzy PI/PID
controller for AGC of multi-area traditional/restructured electrical power systems. Soft
Comput., Springer-Verlag, Berlin, Heidelberg, v. 21, n. 21, p. 6435–6452, Nov. 2017. ISSN
1432-7643. Available at: https://doi.org/10.1007/s00500-016-2202-2.

AZEVEDO, Gilberto Pires; OLIVEIRA-FILHO, Ayru. Control centers with open architectures
[power system ems]. Computer Applications in Power, IEEE, v. 14, p. 27 – 32, 11 2001.

AZIZI, S. M.; KHAJEHODDIN, S. A. Designing decentralized load-frequency controllers:
An optimization approach for synchronous generators in islanded grids. IEEE Industry
Applications Magazine, v. 24, n. 2, p. 67–74, March 2018. ISSN 1077-2618.

BAEK, S. M. Design of robust voltage control system for improving transient and voltage
stability on distributed generation expansion. In: 2014 IEEE Industry Application Society
Annual Meeting. [S.l.: s.n.], 2014. p. 1–8. ISSN 0197-2618.

BAEK, S. M.; NAM, S.; SONG, J.; LEE, J.; KIM, T.; SHIN, J. Design of advanced voltage
management system including manual operation mode via real-time digital simulator. IEEE
Transactions on Industry Applications, v. 49, n. 4, p. 1817–1826, July 2013. ISSN 0093-9994.

BEUS, Mateo; PANDžIć, Hrvoje. Practical implementation of a hydro power unit active power
regulation based on an mpc algorithm. IEEE Transactions on Energy Conversion, v. 37, n. 1,
p. 243–253, 2022.

BEVRANI, H. Robust Power System Frequency Control. [S.l.]: Springer US, 2008. (Power
Electronics and Power Systems). ISBN 9780387848785.

BEVRANI, H.; DANESHFAR, F.; HIYAMA, T. A new intelligent agent-based AGC design
with real-time application. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), v. 42, n. 6, p. 994–1002, Nov 2012. ISSN 1094-6977.

BEVRANI, H.; HIYAMA, T. On load-frequency regulation with time delays: Design and
real-time implementation. IEEE Transactions on Energy Conversion, v. 24, n. 1, p. 292–300,
March 2009. ISSN 0885-8969.

https://www.mdpi.com/1996-1073/10/3/374
https://www.gov.br/aneel/pt-br/centrais-de-conteudos/relatorios-e-indicadores/geracao
https://www.gov.br/aneel/pt-br/centrais-de-conteudos/relatorios-e-indicadores/geracao
https://doi.org/10.1007/s00500-016-2202-2

157

BJÖRKMAN, Gunnar; SOMMESTAD, Teodor; EKSTEDT, Mathias; HADELI, Hadeli;
ZHU, Kun; CHENINE, Moustafa. SCADA system architectures. 2010. Developed within the
VIKING Consortium. QC 20150213.

BOGODOROVA, T.; SABATE, M.; LEÓN, G.; VANFRETTI, L.; HALAT, M.; HEYBERGER,
J. B.; PANCIATICI, P. A Modelica power system library for phasor time-domain simulation. In:
IEEE PES ISGT Europe 2013. [S.l.: s.n.], 2013. p. 1–5. ISSN 2165-4816.

BOX, G.E.P.; DRAPER, N.R. Response Surfaces, Mixtures, and Ridge Analyses. [S.l.]:
Wiley, 2007. (Wiley Series in Probability and Statistics). ISBN 9780470053577.

BRAMBILLA, Marco; CABOT, Jordi; WIMMER, Manuel. Model-Driven Software
Engineering in Practice: Second Edition. 2nd. ed. [S.l.]: Morgan & Claypool Publishers,
2017. ISBN 1627057080.

BROOKS, Christopher; BUCK, Joseph; CHEONG, Elaine; Davis-II, John S.; DERLER,
Patricia; FENG, Thomas Huining; GALICIA, Geroncio; GOEL, Mudit; HA, Soonhoi;
LEE, Edward A.; LIU, Jie; LIU, Xiaojun; MESSERSCHMITT, David; MULIADI, Lukito;
NEUENDORFFER, Stephen; REEKIE, John; RODIERS, Bert; SMYTH, Neil; XIONG,
Yuhong; ZHENG, Haiyang. Software architecture. In: PTOLEMAEUS, Claudius (Ed.).
System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org, 2014. Available
at: http://ptolemy.org/books/Systems.

BROOKS, Christopher; LEE, Edward A.; NEUENDORFFER, Stephen; REEKIE,
John. Building graphical models. In: PTOLEMAEUS, Claudius (Ed.). System Design,
Modeling, and Simulation using Ptolemy II. Ptolemy.org, 2014. Available at:
http://ptolemy.org/books/Systems.

BROOKS JR, Frederick. No Silver Bullet – essence and accidents of software engineering.
IEEE Computer, v. 20, p. 10–19, 04 1987.

BRUINENBERG, Jan; COLTON, Larry; DARMOIS, Emmanuel; DORN, John; DOYLE, John;
ELLOUMI, Omar; ENGLERT, Heiko; FORBES, Raymond; HEILES, Jürgen; HERMANS,
Peter; USLAR, Mathias. CEN -CENELEC - ETSI: Smart Grid Coordination Group -
Smart Grid Reference Architecture Report 2.0. [S.l.: s.n.], 2012.

BUTCHER, Paul. Seven Concurrency Models in Seven Weeks: When Threads Unravel. 1st.
ed. [S.l.]: Pragmatic Bookshelf, 2014. ISBN 1937785653.

CALOVIC, Milan; JELIC, Nenad. Joint bus voltage/reactive generation control in multimachine
power plants: a multivariable approach. International Journal of Electrical Power & Energy
Systems, v. 14, n. 6, p. 393 – 401, 1992.

http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

158

CARDOSO, Janette; LEE, Edward A.; LIU, Jie; ZHENG, Haiyang. Continuous-time models. In:
PTOLEMAEUS, Claudius (Ed.). System Design, Modeling, and Simulation using Ptolemy
II. Ptolemy.org, 2014. Available at: http://ptolemy.org/books/Systems.

CASTRO, F.; PESCINA, M.; LLORT, G. Reliability improvements of the Guri Hydroelectric
Power Plant computer control system AGC and AVC. IEEE Trans. Energy Convers., v. 7, n. 3,
p. 447–452, 1992.

CHHOKRA, Ajay; BARRETO, Carlos; DUBEY, Abhishek; KARSAI, Gabor; KOUTSOUKOS,
Xenofon. Power-attack: A comprehensive tool-chain for modeling and simulating attacks in
power systems. In: Proceedings of the 9th Workshop on Modeling and Simulation of Cyber-
Physical Energy Systems. New York, NY, USA: Association for Computing Machinery, 2021.
(MSCPES ’21). ISBN 9781450386081. Available at: https://doi.org/10.1145/3470481.3472705.

COHEN, A.; KEMPER, F.; Dy Liacco, T.; CÁCERES, D. The SCADA/EMS system of the
ITAIPU hydroelectric powerplant. In: IFAC Proceedings Volumes. Seoul, Korea: [s.n.], 1989.
v. 22, n. 9, p. 279–283. ISSN 1474-6670. IFAC Symposium on Power Systems and Power Plant
Control 1989, Seoul, Korea, 22-25 August 1989.

CORERA, J. M.; MARTÍ, J.; OJINAGA, Z.; LEX, W.; KUHLMANN, A. Implementation
of a new scada/ems/dms in a large utility, integrated with corporate information systems. In:
CIRED 2005 - 18th International Conference and Exhibition on Electricity Distribution.
[S.l.: s.n.], 2005. p. 1–5.

CORSI, S.; POZZI, M.; SABELLI, C.; SERRANI, A. The coordinated automatic voltage control
of the Italian transmission grid-part I: reasons of the choice and overview of the consolidated
hierarchical system. IEEE Transactions on Power Systems, v. 19, n. 4, p. 1723–1732, Nov
2004. ISSN 0885-8950.

CORSI, S.; POZZI, M.; SFORNA, M.; DELL’OLIO, G. The coordinated automatic voltage
control of the Italian transmission grid-part II: control apparatuses and field performance of
the consolidated hierarchical system. IEEE Transactions on Power Systems, v. 19, n. 4, p.
1733–1741, Nov 2004. ISSN 0885-8950.

COTRIM, John Reginald. Itaipu hydroeletric project: engineering features. [S.l.]: Itaipu
Binacional, 1994. ISBN 85-85263-02-4.

DÄNEKAS, Christian; NEUREITER, Christian; ROHJANS, Sebastian; USLAR, Mathias;
ENGEL, Dominik. Towards a model-driven-architecture process for smart grid projects. In:
BENGHOZI, Pierre-Jean; KROB, Daniel; LONJON, Antoine; PANETTO, Hervé (Ed.). Digital
Enterprise Design & Management. Cham: Springer International Publishing, 2014. p. 47–58.
ISBN 978-3-319-04313-5.

http://ptolemy.org/books/Systems
https://doi.org/10.1145/3470481.3472705

159

Electric Power Research Institute. Common Information Model Primer - Fourth Edition.
Electric Power Research Institute (EPRI), 2018.

EREMIA, M.; SHAHIDEHPOUR, M. Handbook of Electrical Power System Dynamics:
Modeling, Stability, and Control. [S.l.]: Wiley, 2013. (IEEE Press Series on Power
Engineering). ISBN 9781118516065.

FELIX, Eder; LOPES, Denivaldo; JR., Osvaldo Sousa. A framework based on model
driven engineering and model weaving to support data-driven interoperability for smart grid
applications. In: Proceedings of the 2020 European Symposium on Software Engineering.
New York, NY, USA: Association for Computing Machinery, 2020. (ESSE 2020), p. 30–36.
ISBN 9781450377621. Available at: https://doi.org/10.1145/3393822.3432341.

FENG, Thomas Huining; LEE, Edward A.; LIU, Xiaojun; TRIPAKIS, Stavros; ZHENG,
Haiyang; ZHOU, Ye. Modal models. In: PTOLEMAEUS, Claudius (Ed.). System
Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org, 2014. Available at:
http://ptolemy.org/books/Systems.

FRANCE, R.; RUMPE, B. Model-driven development of complex software: A research roadmap.
In: Future of Software Engineering (FOSE ’07). [S.l.: s.n.], 2007. p. 37–54.

GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; VLISSIDES, John. Design Patterns:
Elements of Reusable Object-Oriented Software. USA: Addison-Wesley Longman
Publishing Co., Inc., 1995. ISBN 0201633612.

GODOY, Jose Maria Barua; de Oliveira, Robson Almir; AGUAYO, Gustavo; RODRIGUEZ,
Elisandro; SZOSTAK, Alfredo Javier Mezger; SANTOS, Jhonatan Andrade dos; TOCHETTO,
André Pagani; RIOS, Manuel Leonardo Sosa; GALASSI, Paulo Henrique; PESENTE,
Jonas Roberto; RAMOS, Rodrigo Andrade. The eccande project: Design, field implementation,
and operation of a special protection scheme based on synchronized phasor measurements.
IEEE Transactions on Power Delivery, v. 38, n. 3, p. 1780–1787, 2023.

GÓMEZ, F. J.; VANFRETTI, L.; OLSEN, S. H. CIM-compliant power system dynamic
model-to-model transformation and Modelica simulation. IEEE Transactions on Industrial
Informatics, v. 14, n. 9, p. 3989–3996, Sep. 2018. ISSN 1551-3203.

GRIGSBY, L.L. The Electric Power Engineering Handbook, Five Volume Set, Second
Edition. [S.l.]: Taylor & Francis, 2007. ISBN 9780849392931.

HAQ, Enamul; ROTHLEDER, Mark; MOUKADDEM, Bassem; CHOWDHURY, Sirajul;
ABDUL-RAHMAN, Khaled; FRAME, James G.; MANSINGH, Ashmin; TEREDESAI, Tushar;
WANG, Norman. Use of a grid operator training simulator in testing new real-time market of
California ISO. In: 2009 IEEE Power Energy Society General Meeting. [S.l.: s.n.], 2009.
p. 1–8.

https://doi.org/10.1145/3393822.3432341
http://ptolemy.org/books/Systems

160

HARRAND, Nicolas; FLEUREY, Franck; MORIN, Brice; HUSA, Knut. Thingml: a language
and code generation framework for heterogeneous targets. In: . [S.l.: s.n.], 2016. p. 125–135.

HARVEY, R.; XU, Y.; QU, Z.; NAMERIKAWA, T. Dissipativity-based design of local and
wide-area DER controls for large-scale power systems with high penetration of renewables. In:
2017 IEEE Conference on Control Technology and Applications (CCTA). [S.l.: s.n.], 2017.
p. 2180–2187.

HÄSTBACKA, David; VEPSÄLÄINEN, Timo; KUIKKA, Seppo. Model-driven
development of industrial process control applications. Journal of Systems and
Software, v. 84, n. 7, p. 1100 – 1113, 2011. ISSN 0164-1212. Available at: http:
//www.sciencedirect.com/science/article/pii/S0164121211000458.

HUNDT, Robert. Hp caliper: A framework for performance analysis tools. IEEE Concurrency,
IEEE Educational Activities Department, USA, v. 8, n. 4, p. 64–71, oct 2000. ISSN 1092-3063.

IEC/IEEE. IEC/IEEE guide for computer-based control for hydroelectric power plant automation.
IEC 62270 Edition 2.0 2013-09 IEEE Std 1249, p. 1–83, Sept 2013.

INDRUSIAK, L.; GLESNER, M. An actor-oriented model-based design flow for systems-on-
chip. In: MBEES - Workshop of Model-Based Development of Embedded Systems. TU
Braunschweig, Germany: [s.n.], 2006. p. 65–73.

JALEELI, N.; VANSLYCK, L.S.; EWART, D.N.; FINK, L.H.; HOFFMANN, A.G.
Understanding automatic generation control. IEEE Transactions on Power Systems, v. 7, n. 3,
p. 1106–1122, 1992.

KERNIGHAN, B. W.; RITCHIE, D. M. The C Programming Language. USA: Prentice-Hall,
Inc., 1978. ISBN 0131101633.

KLEMPNER, Geoff; KERSZENBAUM, Isidor. Operation and Maintenance of Large
Turbo-Generators. [S.l.]: John Wiley & Sons, 2004. ISBN 0-471-61447-5.

KOSOW, I.L. Electric Machinery And Transformers 2Nd Ed. [S.l.]: Prentice-Hall, 2009.
ISBN 9788120307759.

KUIJLAARS, Ivo. SCADA Lifecycle Management. 2015. Seminar presentation at The 13th
International Workshop on Electric Power Control Centers.

KUNDUR, P.; BALU, N.J.; LAUBY, M.G. Power system stability and control. [S.l.]:
McGraw-Hill, 1994. (EPRI power system engineering series). ISBN 9780070359581.

http://www.sciencedirect.com/science/article/pii/S0164121211000458
http://www.sciencedirect.com/science/article/pii/S0164121211000458

161

LEE, Edward; MESSERSCHMITT, David. Static scheduling of synchronous data flow programs
for digital signal processing. Computers, IEEE Transactions on, C-36, p. 24 – 35, 02 1987.

LEE, Edward; NEUENDORFFER, Stephen. MoML - A Modeling Markup Language
in XML - Version 0.4. [S.l.], 2000. 1-14 p. Available at: http://ptolemy.eecs.berkeley.edu/
publications/papers/00/moml/.

LEE, Edward; NEUENDORFFER, Stephen; WIRTHLINT, Michael. Actor-oriented design
of embedded hardware and software systems. Journal of Circuits, Systems and Computers,
v. 12, 08 2002.

LEE, E.A.; SESHIA, S.A. Introduction to Embedded Systems: A Cyber-physical
Systems Approach. [S.l.: s.n.], 2011. (Electrical Engineering & Computer Sciences). ISBN
9780557708574.

LEE, Edward A. Model-driven development - from object-oriented design to actor-oriented
design. In: Extended abstract of an invited presentation at Workshop on Software
Engineering for Embedded Systems: From Requirements to Implementation (a.k.a. The
Monterey Workshop). Chicago: [s.n.], 2003.

LEE, Edward A. Heterogeneous modeling. In: PTOLEMAEUS, Claudius (Ed.). System
Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org, 2014. Available at:
http://ptolemy.org/books/Systems.

LEE, Edward A. Fundamental limits of cyber-physical systems modeling. ACM Trans.
Cyber-Phys. Syst., Association for Computing Machinery, New York, NY, USA, v. 1, n. 1, Nov.
2016. ISSN 2378-962X. Available at: https://doi.org/10.1145/2912149.

LEE, Edward Ashford. Plato and the Nerd: The Creative Partnership of Humans and
Technology. Cambridge, Massachusetts 02142: The MIT Press, 2018. ISBN 0262536420.

LEE, Edward A.; NEUENDORFFER, Stephen; ZHOU, Gang. Dataflow. In: PTOLEMAEUS,
Claudius (Ed.). System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org,
2014. Available at: http://ptolemy.org/books/Systems.

LEITE, Marcela; WEHRMEISTER, Marco Aurélio. System-level design based on uml/marte for
fpga-based embedded real-time systems. Design Automation for Embedded Systems, Kluwer
Academic Publishers, USA, v. 20, n. 2, p. 127–153, Jun. 2016. ISSN 0929-5585. Available at:
https://doi.org/10.1007/s10617-016-9172-6.

LOPEZ, R.; MOORE, A.; GILLERMAN, J. A model-driven approach to smart substation
automation and integration for Comision Federal de Electricidad. In: IEEE PES T D 2010.
[S.l.: s.n.], 2010. p. 1–8. ISSN 2160-8555.

http://ptolemy.eecs.berkeley.edu/publications/papers/00/moml/
http://ptolemy.eecs.berkeley.edu/publications/papers/00/moml/
http://ptolemy.org/books/Systems
https://doi.org/10.1145/2912149
http://ptolemy.org/books/Systems
https://doi.org/10.1007/s10617-016-9172-6

162

LOU, G.; GU, W.; WANG, J.; SHENG, W.; SUN, L. Optimal design for distributed secondary
voltage control in islanded microgrids: Communication topology and controller. IEEE
Transactions on Power Systems, v. 34, n. 2, p. 968–981, March 2019. ISSN 0885-8950.

MARTÍNEZ, J.; KJÆR, P. C.; RODRIGUEZ, P.; TEODORESCU, R. Design and analysis
of a slope voltage control for a DFIG wind power plant. IEEE Transactions on Energy
Conversion, v. 27, n. 1, p. 11–20, March 2012. ISSN 0885-8969.

MENDES, Marcos Fonseca. Proposta de metodologia e de modelo para modernizações de
sistemas de automação de unidades geradoras hidráulicas de grande porte. May 2011.
259 p. Phd Thesis (PhD Thesis) — Escola Politécnica, Universidade de São Paulo, May 2011.

MOIN, Armin. Data analytics and machine learning methods, techniques and tool for
model-driven engineering of smart iot services. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion). [S.l.:
s.n.], 2021. p. 287–292.

MUKHERJEE, Biswarup; VANFRETTI, Luigi. Modeling of PMU-Based automatic
re-synchronization controls for DER generators in power distribution networks using Modelica
and the OpenIPSL. In: Proceedings of the 13th International Modelica Conference.
Regensburg, Germany: [s.n.], 2019. p. 607–616.

NAZARI, Masoud H.; WANG, Le Yi; GRIJALVA, Santiago; EGERSTEDT, Magnus.
Communication-failure-resilient distributed frequency control in smart grids: Part I: Architecture
and distributed algorithms. IEEE Transactions on Power Systems, v. 35, n. 2, p. 1317–1326,
2020.

NAZARI, Masoud H.; WANG, Le Yi; GRIJALVA, Santiago; EGERSTEDT, Magnus.
Communication-failure-resilient distributed frequency control in smart grids: Part II:
Algorithmic implementation and system simulations. IEEE Transactions on Power Systems,
v. 35, n. 4, p. 3192–3202, 2020.

NEIS, P.; SILVA, R. J. G. C.; BASTOS, A. A. Esquema de redução de geração para eliminação
de sobrecarga nos autotransformadores 525/765 kv da subestação Foz do Iguaçu através do CAG
de Itaipu. In: XI Seminário Técnico de Proteção e Controle. Florianópolis, SC: [s.n.], 2012.

NEIS, P.; TOCHETTO, A. P.; RAMíREZ, R. J. G.; COSTA, C. H. C.; WEHRMEISTER, M. A.
Integração do esquema de redução de geração em Itaipu 60 Hz com o novo SEP do sistema de
transmissão em 765 kV: uma abordagem de engenharia guiada por modelos. In: XVII EDAO -
Encontro para Debates de Assuntos de Operação. São Paulo - SP: [s.n.], 2022. p. 1–9.

NEIS, P.; TUFAILE, R. B. R.; FAVORETO, R. S.; SILVA, R. J. G. C.; RIBEIRO, J. R.
Maximização da capacidade de escoamento de energia de Itaipu através de sistemas especiais de

163

proteção. In: XII EDAO - Encontro para Debates de Assuntos de Operação. Brasília, DF:
[s.n.], 2012.

NEIS, P.; WEHRMEISTER, M. A.; MENDES, M. F. Model driven software engineering of
power systems applications: Literature review and trends. IEEE Access, v. 7, p. 177761–177773,
2019. ISSN 2169-3536.

NEIS, Paulo; WEHRMEISTER, Marco Aurelio; MENDES, Marcos Fonseca; PESENTE,
Jonas Roberto. Applying a model-driven approach to the development of power plant
SCADA/EMS software. International Journal of Electrical Power & Energy Systems,
v. 153, p. 109336, 2023. ISSN 0142-0615.

NORDSTROM, Greg; SZTIPANOVITS, Janos; KARSAI, Gabor; LEDECZI, Akos.
Metamodeling - rapid design and evolution of domain-specific modeling environments. In:
Proceedings of the IEEE ECBS’99 Conference. Nashville, Tennessee: [s.n.], 1999. p. 68–74.

OLIVEIRA, R. A.; PESENTE, J. R.; SILVA, R. J. G. C. da; NEIS, P.; OTTO, R. B.; RAMOS,
R. A. Field experience and recommendations with parameter re-tuning of the load sharing
control loops at the Itaipu power plant. In: 2017 IEEE Power Energy Society General
Meeting. [S.l.: s.n.], 2017. p. 1–5.

ONS - Operador Nacional do Sistema Elétrico. Manual de Procedimentos da Operação
- Módulo 5 - Submódulo 5.12: Esquemas Especiais da Interligação Sul / Sudeste, Rev.
61. 2022. Accessed: 2022-October-07. Available at: http://www.ons.org.br/%2FMPO%
2FDocumento%20Normativo%2F3.%20Instru%C3%A7%C3%B5es%20de%20Opera%
C3%A7%C3%A3o%20-%20SM%205.12%2F3.1.%20Controle%20da%20Transmiss%C3%
A3o%2F3.1.2.%20Esquemas%20Especiais%2F3.1.2.1.%20Interliga%C3%A7%C3%A3o%
20entre%20Regi%C3%B5es%2FIO-EE.SSE_Rev.61.pdf.

PAZ, Andrés; BOUSSAIDI, Ghizlane El. Breesse: Bridging EMF, Simulink and Stateflow for
model-based design of safety-critical systems. In: . Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings. New York, NY, USA: Association for Computing Machinery, 2020.
ISBN 9781450381352. Available at: https://doi.org/10.1145/3417990.3421408.

PORTUGAL, Paulo Max Maciel; PERNAS, Renato Weingartner; AMARAL, Lucas Vernot;
SILVA, Renata Ribeiro; ABBOUD, Ricardo; CERNEV, Rafael; CABRAL, Marcos. Case study:
Modern RAS applied to Furnas 765 kV transmission corridor improves Itaipu power plant and
Brazilian power system stability. In: 49th Annual Western Protective Relay Conference.
Spokane, WA: [s.n.], 2022. p. 1–12.

ROBERT, G.; HURTADO, D. Optimal design of reactive power PI regulator for hydro power
plants. In: 2008 IEEE International Conference on Control Applications. [S.l.: s.n.], 2008.
p. 775–780. ISSN 1085-1992.

http://www.ons.org.br/%2FMPO%2FDocumento%20Normativo%2F3.%20Instru%C3%A7%C3%B5es%20de%20Opera%C3%A7%C3%A3o%20-%20SM%205.12%2F3.1.%20Controle%20da%20Transmiss%C3%A3o%2F3.1.2.%20Esquemas%20Especiais%2F3.1.2.1.%20Interliga%C3%A7%C3%A3o%20entre%20Regi%C3%B5es%2FIO-EE.SSE_Rev.61.pdf
http://www.ons.org.br/%2FMPO%2FDocumento%20Normativo%2F3.%20Instru%C3%A7%C3%B5es%20de%20Opera%C3%A7%C3%A3o%20-%20SM%205.12%2F3.1.%20Controle%20da%20Transmiss%C3%A3o%2F3.1.2.%20Esquemas%20Especiais%2F3.1.2.1.%20Interliga%C3%A7%C3%A3o%20entre%20Regi%C3%B5es%2FIO-EE.SSE_Rev.61.pdf
http://www.ons.org.br/%2FMPO%2FDocumento%20Normativo%2F3.%20Instru%C3%A7%C3%B5es%20de%20Opera%C3%A7%C3%A3o%20-%20SM%205.12%2F3.1.%20Controle%20da%20Transmiss%C3%A3o%2F3.1.2.%20Esquemas%20Especiais%2F3.1.2.1.%20Interliga%C3%A7%C3%A3o%20entre%20Regi%C3%B5es%2FIO-EE.SSE_Rev.61.pdf
http://www.ons.org.br/%2FMPO%2FDocumento%20Normativo%2F3.%20Instru%C3%A7%C3%B5es%20de%20Opera%C3%A7%C3%A3o%20-%20SM%205.12%2F3.1.%20Controle%20da%20Transmiss%C3%A3o%2F3.1.2.%20Esquemas%20Especiais%2F3.1.2.1.%20Interliga%C3%A7%C3%A3o%20entre%20Regi%C3%B5es%2FIO-EE.SSE_Rev.61.pdf
http://www.ons.org.br/%2FMPO%2FDocumento%20Normativo%2F3.%20Instru%C3%A7%C3%B5es%20de%20Opera%C3%A7%C3%A3o%20-%20SM%205.12%2F3.1.%20Controle%20da%20Transmiss%C3%A3o%2F3.1.2.%20Esquemas%20Especiais%2F3.1.2.1.%20Interliga%C3%A7%C3%A3o%20entre%20Regi%C3%B5es%2FIO-EE.SSE_Rev.61.pdf
https://doi.org/10.1145/3417990.3421408

164

ROHJANS, S.; PIECH, K.; USLAR, M.; CABADI, J. CIMbaT - automated generation of
CIM-based OPC UA-address spaces. In: 2011 IEEE International Conference on Smart
Grid Communications (SmartGridComm). [S.l.: s.n.], 2011. p. 416–421.

SANTOS, Fernando; NUNES, Ingrid; BAZZAN, Ana L.C. Quantitatively assessing the benefits
of model-driven development in agent-based modeling and simulation. Simulation Modelling
Practice and Theory, v. 104, p. 102126, 2020. ISSN 1569-190X.

SCHMIDT, Douglas C. Guest editor’s introduction: Model-driven engineering. Computer,
IEEE Computer Society Press, Los Alamitos, CA, USA, v. 39, n. 2, p. 25–31, Feb. 2006. ISSN
0018-9162. Available at: https://doi.org/10.1109/MC.2006.58.

SELIC, B. The pragmatics of model-driven development. IEEE Software, v. 20, n. 5, p. 19–25,
Sep. 2003. ISSN 0740-7459.

SHAYEGHI, Hossein; JALIL, AREF. Hybrid fuzzy LFC design by GA in a deregulated power
system. In: Proceedings of the 6th WSEAS International Conference on Applications of
Electrical Engineering. [S.l.: s.n.], 2007. p. 77–82.

SHENG, G.; LIU, Y.; DUAN, D.; ZENG, Y.; JIANG, X. Secondary voltage regulation based on
wide area network. In: 2009 IEEE Power Energy Society General Meeting. [S.l.: s.n.], 2009.
p. 1–7. ISSN 1932-5517.

SKOPP, Allen; VARADAN, Srinivas. ABB information & energy management systems support
Mexico’s growing demand for electric power. ABB Review, p. 35–41, 01 2000.

SMYTH, Neil; Davis II, John S.; FENG, Thomas Huining; GOEL, Mudit; LEE, Edward A.;
PARKS, Thomas M.; ZHAO, Yang. Process networks and rendezvous. In: PTOLEMAEUS,
Claudius (Ed.). System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org,
2014. Available at: http://ptolemy.org/books/Systems.

SOMMERVILLE, I. Software Engineering. [S.l.]: Pearson, 2011. (International Computer
Science Series). ISBN 9780137053469.

STIFTER, M.; WIDL, E.; ANDRÉN, F.; ELSHEIKH, A.; STRASSER, T.; PALENSKY, P.
Co-simulation of components, controls and power systems based on open source software.
In: 2013 IEEE Power Energy Society General Meeting. [S.l.: s.n.], 2013. p. 1–5. ISSN
1932-5517.

STRASSER, Thomas; JONG, Erik; SOSNINA, Maria. European Guide to Power
System Testing: The ERIGrid Holistic Approach for Evaluating Complex Smart Grid
Configurations. [S.l.: s.n.], 2020. ISBN 978-3-030-42273-8.

https://doi.org/10.1109/MC.2006.58
http://ptolemy.org/books/Systems

165

STRASSER, T.; ROOKER, M.; HEGNY, I.; WENGER, M.; ZOITL, A.; FERRARINI, L.;
DEDE, A.; COLLA, M. A research roadmap for model-driven design of embedded systems
for automation components. In: 2009 7th IEEE International Conference on Industrial
Informatics. [S.l.: s.n.], 2009. p. 564–569. ISSN 1935-4576.

STRASSER, T.; STIFTER, M.; ANDRÉN, F.; PALENSKY, P. Co-simulation training platform
for smart grids. IEEE Transactions on Power Systems, v. 29, n. 4, p. 1989–1997, July 2014.
ISSN 0885-8950.

SUBRAMANYA, K. Hydraulic Machines:. [S.l.]: Tata McGraw-Hill Education, 2013. ISBN
9789332900981.

SULLIGOI, G.; CHIANDONE, M.; ARCIDIACONO, V. NewSART automatic voltage
and reactive power regulator for secondary voltage regulation: Design and application. In:
2011 IEEE Power and Energy Society General Meeting. [S.l.: s.n.], 2011. p. 1–7. ISSN
1932-5517.

SUN, H.; GUO, Q.; ZHANG, B.; WU, W.; TONG, J. Development and applications of
system-wide automatic voltage control system in China. In: 2009 IEEE Power Energy Society
General Meeting. [S.l.: s.n.], 2009. p. 1–5. ISSN 1932-5517.

SÜSS, J. G.; POP, A.; FRITZSON, P.; WILDMAN, L. Towards integrated model-driven testing
of SCADA systems using the Eclipse Modeling Framework and Modelica. In: 19th Australian
Conference on Software Engineering (aswec 2008). [S.l.: s.n.], 2008. p. 149–159. ISSN
1530-0803.

The Object Management Group. OMG Unified Modeling Language (OMG UML),
superstructure, v2.1.2. OMG Available Specification, November 2007. Available at:
https://www.omg.org/spec/UML/2.1.2/Superstructure/PDF.

USLAR, Mathias; ROHJANS, Sebastian; NEUREITER, Christian; ANDRÉN, Filip Pröstl;
VELASQUEZ, Jorge; STEINBRINK, Cornelius; EFTHYMIOU, Venizelos; MIGLIAVACCA,
Gianluigi; HORSMANHEIMO, Seppo; BRUNNER, Helfried; STRASSER, Thomas I. Applying
the smart grid architecture model for designing and validating system-of-systems in the power
and energy domain: A european perspective. Energies, v. 12, n. 2, 2019. ISSN 1996-1073.

VAN-SLYKE, Doug. SCADA: The Heart of an Energy Management System. 2015. Seminar
presentation, IEEE IAS-PES Chapter, Southern Alberta Section.

VIRMANI, Sudhir; SAVULESCU, Savu. The real-time and study-mode data environment
in modern scada/ems. In: SAVULESCU, Savu C. (Ed.). Real Time Stability Assessment in
Modern Power System Control Centers. [S.l.]: John Wiley & Sons, Ltd, 2008. p. 1–21. ISBN
9780470233306.

https://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

166

VOELTER, Markus; KOLB, Bernd; BIRKEN, Klaus; TOMASSETTI, Federico; ALFF, Patrick;
WIART, Laurent; WORTMANN, Andreas; NORDMANN, Arne. Using language workbenches
and domain-specific languages for safety-critical software development. Softw. Syst. Model.,
Springer-Verlag, Berlin, Heidelberg, v. 18, n. 4, p. 2507–2530, aug 2019. ISSN 1619-1366.

VOINOV, A.; YANG, C.; VYATKIN, V. Automatic generation of function block systems
implementing HMI for energy distribution automation. In: 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN). [S.l.: s.n.], 2017. p. 706–713. ISSN
2378-363X.

WANG, N.; CHEUNG, R.; WU, G.; NACCARINO, J.; CASTLE, J. Simulation of the New
York Power Pool for dispatcher training. IEEE Transactions on Power Systems, v. 9, n. 4, p.
2063–2072, 1994.

WANG, Yu; NGUYEN, Tung Lam; XU, Yan; LI, Zhengmao; TRAN, Quoc-Tuan; CAIRE,
Raphael. Cyber-physical design and implementation of distributed event-triggered secondary
control in islanded microgrids. IEEE Transactions on Industry Applications, v. 55, n. 6, p.
5631–5642, 2019.

WEHRMEISTER, Marco Aurélio. An Aspect-Oriented Model-Driven Engineering
Approach for Distributed Embedded Real-Time Systems. 2009. 206 p. Phd Thesis (PhD
Thesis) — Universidade Federal do Rio Grande do Sul, 2009.

WEHRMEISTER, Marco Aurélio; de Freitas, Edison Pignaton; BINOTTO, Alécio
Pedro Delazari; PEREIRA, Carlos Eduardo. Combining aspects and object-orientation in
model-driven engineering for distributed industrial mechatronics systems. Mechatronics, v. 24,
n. 7, p. 844–865, 2014. ISSN 0957-4158. 1. Model-Based Mechatronic System Design 2. Model
Based Engineering.

WEHRMEISTER, Marco Aurélio; FREITAS, Edison Pignaton de; PEREIRA, Carlos Eduardo;
WAGNER, Flavio Rech. An aspect-oriented approach for dealing with non-functional
requirements in a model-driven development of distributed embedded real-time systems.
In: Proceedings of the 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing. Washington: IEEE Computer Society, 2007.
ISBN 0769527655.

WEHRMEISTER, Marco Aurélio; FREITAS, Edison Pignaton de; PEREIRA, Carlos Eduardo;
RAMMIG, Franz Joseph. Combining aspects-oriented concepts with model-driven
techniques in the design of distributed embedded real-time systems. In: Proceedings of the
Work-in-Progress Session of the 19th Euromicro Conference on Real-Time Systems.
Sigapura: National University of Singapore, 2007.

WEHRMEISTER, Marco Aurélio; FREITAS, Edison Pignaton de; BINOTTO, Alécio
Pedro Delazari; PEREIRA, Carlos Eduardo. Combining aspects and object-orientation in

167

model-driven engineering for distributed industrial mechatronics systems. Mechatronics, v. 24,
n. 7, p. 844 – 865, 2014. ISSN 0957-4158. Available at: http://www.sciencedirect.com/science/
article/pii/S0957415813002420.

WEHRMEISTER, M. A.; PEREIRA, C. E.; RAMMIG, F. J. Aspect-oriented model-driven
engineering for embedded systems applied to automation systems. IEEE Transactions on
Industrial Informatics, v. 9, n. 4, p. 2373–2386, 2013.

YANG, C.; DUBININ, V.; VYATKIN, V. Ontology driven approach to generate distributed
automation control from substation automation design. IEEE Transactions on Industrial
Informatics, v. 13, n. 2, p. 668–679, April 2017. ISSN 1551-3203.

YANG, Chen-Wei; DUBININ, Victor; VYATKIN, Valeriy. Automatic generation of control
flow from requirements for distributed smart grid automation control. IEEE Transactions on
Industrial Informatics, v. 16, n. 1, p. 403–413, 2020.

YANG, C. W.; VYATKIN, V. On requirements-driven design of distributed smart grid
automation control. In: 2017 IEEE 15th International Conference on Industrial Informatics
(INDIN). [S.l.: s.n.], 2017. p. 738–745.

ZANABRIA, C.; ANDRÉN, F. P.; KATHAN, J.; STRASSER, T. Towards an integrated
development of control applications for multi-functional energy storages. In: 2016 IEEE 21st
International Conference on Emerging Technologies and Factory Automation (ETFA).
[S.l.: s.n.], 2016. p. 1–4.

ZANABRIA, Claudia; ANDRÉN, Filip Pröstl; STRASSER, Thomas I.; KASTNER, Wolfgang.
A model-driven and ontology-based engineering approach for smart grid automation applications.
In: IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society.
[S.l.: s.n.], 2019. v. 1, p. 6635–6641.

ZANABRIA, Claudia; TAYYEBI, Ali; ANDRÉN, Filip Pröstl; KATHAN, Johannes;
STRASSER, Thomas. Engineering support for handling controller conflicts in energy
storage systems applications. Energies, v. 10, n. 10, 2017. ISSN 1996-1073. Available at:
https://www.mdpi.com/1996-1073/10/10/1595.

ZHABELOVA, G.; YANG, C. W.; PATIL, S.; PANG, C.; YAN, J.; SHALYTO, A.; VYATKIN,
V. Cyber-physical components for heterogeneous modelling, validation and implementation
of smart grid intelligence. In: 2014 12th IEEE International Conference on Industrial
Informatics (INDIN). [S.l.: s.n.], 2014. p. 411–417. ISSN 1935-4576.

ZHOU, Gang; LEUNG, Man-Kit; LEE, Edward A. A Code Generation Framework
for Actor-Oriented Models with Partial Evaluation. EECS Department, University of
California, Berkeley, 2007. Available at: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/
EECS-2007-29.html.

http://www.sciencedirect.com/science/article/pii/S0957415813002420
http://www.sciencedirect.com/science/article/pii/S0957415813002420
https://www.mdpi.com/1996-1073/10/10/1595
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-29.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-29.html

APPENDIX

169

APPENDIX A – EMSML METAMODEL UML CLASS DIAGRAM

Figure 65 – EMSML full metamodel.

Source: The author.

170

APPENDIX B – THE TOY JBVRC CONTROLLER XMI FILE, GENERATED CODE

AND EXAMPLE PROGRAM

Listing B.1 – A toy application modeled with EMSML concrete syntax.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" ASCII " ?><EMSML:entity xmlns:EMSML=" h t t p : / /EMSML. e c o r e . g s s .

i t a i p u /EMSML" xmlns :xmi =" h t t p : / /www. omg . org /XMI" x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 /

XMLSchema−i n s t a n c e " c l a s s =" p to lemy . a c t o r . TypedComposi teActor " name=" JBVRC_toy "

x m i : v e r s i o n =" 2 . 0 " x s i : s c h e m a L o c a t i o n =" h t t p : / /EMSML. e c o r e . g s s . i t a i p u /EMSML f i l e : / Use r s /

p n e i s / e c l i p s e −workspace / i t a i p u . g s s . e c o r e .EMSML/ model /EMSML. e c o r e ">

2 < p r o p e r t y c l a s s =" p to lemy . k e r n e l . a t t r i b u t e s . V e r s i o n A t t r i b u t e " name=" _ c r e a t e d B y " v a l u e ="

1 1 . 0 . 1 "> < / p r o p e r t y >

3 < !−− The t o y model r u n s under SDF MoC, f o r a c o n f i g u r a b l e number o f i t e r a t i o n s : −−>

4 < p r o p e r t y c l a s s =" p to lemy . domains . s d f . k e r n e l . SDFDirec to r " name="SDF D i r e c t o r ">

5 < p r o p e r t y c l a s s =" p to lemy . d a t a . exp r . P a r a m e t e r " name=" i t e r a t i o n s " v a l u e =" 10 "> < /

p r o p e r t y >

6 < / p r o p e r t y >

7 < !−− The model c o n t a i n s a c o m p o s i t e a c t o r names JBVRC: −−>

8 < e n t i t y c l a s s =" p to lemy . a c t o r . TypedCompos i teActor " name="JBVRC">

9 < p r o p e r t y c l a s s =" p to lemy . domains . s d f . k e r n e l . SDFDirec to r " name="SDF D i r e c t o r ">

10 < p r o p e r t y c l a s s =" p to lemy . d a t a . exp r . P a r a m e t e r " name=" i t e r a t i o n s " v a l u e ="AUTO">

< / p r o p e r t y >

11 < / p r o p e r t y >

12 < !−− The c o m p o s i t e JBVRC has p o r t s : −−>

13 < p o r t c l a s s =" p to lemy . a c t o r . TypedIOPor t " name=" In V o l t a g e ">

14 < p r o p e r t y name=" i n p u t " / > < / p o r t >

15 . . .

16 < !−− The c o m p o s i t e JBVRC c o n t a i n s o t h e r a c t o r s : −−>

17 < e n t i t y c l a s s =" p to lemy . a c t o r . l i b . A d d S u b t r a c t " name=" C a l c E r r o r "> < / e n t i t y >

18 < e n t i t y c l a s s =" p to lemy . a c t o r . l i b . A d d S u b t r a c t " name=" A d d S u b t r a c t "> < / e n t i t y >

19 < e n t i t y c l a s s =" p to lemy . a c t o r . l i b . S c a l e " name="Kp"> < / e n t i t y >

20 < e n t i t y c l a s s =" p to lemy . a c t o r . l i b . I IR " name=" I IR T r a n s f Fun ">

21 < p r o p e r t y c l a s s =" p to lemy . d a t a . exp r . P a r a m e t e r " name=" n u m e r a t o r " v a l u e =" { 0 . 3 3 ,

0 . 3 3 } "> < / p r o p e r t y >

22 < p r o p e r t y c l a s s =" p to lemy . d a t a . exp r . P a r a m e t e r " name=" d e n o m i n a t o r " v a l u e =" {1 ,

−0.33} "> < / p r o p e r t y >

23 < / e n t i t y >

24 < !−− The c o m p o s i t e c o n t a i n s r e l a t i o n s : −−>

25 < r e l a t i o n c l a s s =" p to lemy . a c t o r . Typ ed IORe la t i on " name=" r e l a t i o n 3 ">< / r e l a t i o n >

26 < r e l a t i o n c l a s s =" p to lemy . a c t o r . Typ ed IORe la t i on " name=" r e l a t i o n 4 ">< / r e l a t i o n >

27 . . .

28 < !−− The c o m p o s i t e c o n t a i n s l i n k s c o n n e c t i n g p o r t s t o r e l a t i o n s : −−>

29 < l i n k p o r t =" In V o l t a g e " r e l a t i o n =" r e l a t i o n 4 " / >

30 < l i n k p o r t =" Un i t Se tp " r e l a t i o n =" r e l a t i o n 2 " / >

31 . . .

32 < / e n t i t y > < !−− End of JBVRC c o m p o s i t e a c t o r −−>

33 < !−− Othe r a c t o r s i n t h e mode l : −−>

34 < e n t i t y c l a s s =" p to lemy . a c t o r . l i b . Cons t " name=" Cons t ">

171

35 < p r o p e r t y c l a s s =" p to lemy . d a t a . exp r . P a r a m e t e r " name=" v a l u e " v a l u e =" 1 "> < / p r o p e r t y >

36 < / e n t i t y >

37 < e n t i t y c l a s s =" p to lemy . a c t o r . l i b . g u i . D i s p l a y " name=" D i s p l a y "> < / e n t i t y >

38 . . .

39 < !−− R e l a t i o n s f o r t h e o u t e r mode l : −−>

40 < r e l a t i o n c l a s s =" p to lemy . a c t o r . Typ ed IORe la t i on " name=" r e l a t i o n 2 "> < / r e l a t i o n >

41 < r e l a t i o n c l a s s =" p to lemy . a c t o r . Typ ed IORe la t i on " name=" r e l a t i o n "> < / r e l a t i o n >

42 < r e l a t i o n c l a s s =" p to lemy . a c t o r . Typ ed IORe la t i on " name=" r e l a t i o n 3 "> < / r e l a t i o n >

43 < !−− Links c o n n e c t i n g r e l a t i o n s f o r t h e o u t e r mode l : −−>

44 < l i n k p o r t ="JBVRC . In V o l t a g e " r e l a t i o n =" r e l a t i o n 3 " / >

45 < l i n k p o r t ="JBVRC . Un i t Se tp " r e l a t i o n =" r e l a t i o n " / >

46 < l i n k p o r t ="JBVRC . Ref V o l t a g e " r e l a t i o n =" r e l a t i o n 2 " / >

47 < l i n k p o r t ="JBVRC . Avg Uni t Reac Pow" r e l a t i o n =" r e l a t i o n 2 " / >

48 < l i n k p o r t =" Cons t . o u t p u t " r e l a t i o n =" r e l a t i o n 2 " / >

49 < l i n k p o r t =" D i s p l a y . i n p u t " r e l a t i o n =" r e l a t i o n " / >

50 < l i n k p o r t =" Sequence . o u t p u t " r e l a t i o n =" r e l a t i o n 3 " / >

51 < / EMSML:entity>

Listing B.2 – Output header file for the toy JBVRC.

1 / * ** * /

2 / * Th i s module i s p r o p r i e t a r y t o : * /

3 / * I t a i p u − OP . DT − GSS * /

4 / * Auto g e n e r a t e d wi th E c l i p s e EMF / Acce leo − DO NOT EDIT * /

5 / * ** * /

6

7 # i n c l u d e " C o m p o s i t e E n t i t y . h "

8 # i n c l u d e " Typed IO Re la t i on . h "

9 # i n c l u d e " A d d S u b t r a c t . h "

10 # i n c l u d e " S c a l e . h "

11 # i n c l u d e " I IR . h "

12

13 c l a s s JBVRC ;

14

15

16 c l a s s JBVRC : p u b l i c C o m p o s i t e E n t i t y {

17 p u b l i c :

18 JBVRC(s t d : : s t r i n g sEnt i tyName , E n t i t y * p C o n t a i n e r E n t i t y =NULL) ;

19 ~JBVRC () ;

20 v i r t u a l bool i n i t i a l i z e () ;

21

22 p r i v a t e :

23 A d d S u b t r a c t * p C a l c E r r o r {NULL} ;

24 A d d S u b t r a c t * p A d d S u b t r a c t {NULL} ;

25 S c a l e * pKp{NULL} ;

26 I IR * pI IR_Tran s f_Fun {NULL} ;

27

28 Typed I ORe la t i on r e l a t i o n 3 ;

29 Typed I ORe la t i on r e l a t i o n 4 ;

172

30 Typed I ORe la t i on r e l a t i o n ;

31 Typed I ORe la t i on r e l a t i o n 5 ;

32 Typed I ORe la t i on r e l a t i o n 1 0 ;

33 Typed I ORe la t i on r e l a t i o n 6 ;

34 Typed I ORe la t i on r e l a t i o n 2 ;

35

36 } ;

Listing B.3 – Output implementation file for the toy JBVRC.

1 / * ** * /

2 / * Th i s module i s p r o p r i e t a r y t o : * /

3 / * I t a i p u − OP . DT − GSS * /

4 / * Auto g e n e r a t e d wi th E c l i p s e EMF / Acce leo − DO NOT EDIT * /

5 / * ** * /

6 # i n c l u d e " P o r t . h "

7 # i n c l u d e " Token . h "

8 / / These two a r e needed b e c a u s e abs () from s t d C d i f f e r s from s t d : : abs

9 # i n c l u d e <cmath >

10 us ing namespace s t d ;

11

12 # i n c l u d e "JBVRC . h "

13

14 / * ***

15 * Fo l lows methods implemented f o r c l a s s JBVRC

16 *** * /

17 JBVRC : : JBVRC(s t d : : s t r i n g sEnt i tyName , E n t i t y * p C o n t a i n e r E n t i t y) : C o m p o s i t e E n t i t y (

sEnt i tyName , p C o n t a i n e r E n t i t y)

18 {

19 }

20

21 JBVRC : : ~ JBVRC ()

22 {

23 d e l e t e p C a l c E r r o r ;

24 d e l e t e p A d d S u b t r a c t ;

25 d e l e t e pKp ;

26 d e l e t e p I IR_Tra ns f_Fun ;

27 }

28

29 bool JBVRC : : i n i t i a l i z e ()

30 {

31 bool b I n i t S t a t u s = t rue ;

32

33 / * I n i t i a l i z e c o m p o s i t e and i n s t a n t i a t e c o n t a i n e d e n t i t i e s * /

34 / / C o n t a i n e d e n t i t i e s :

35 p C a l c E r r o r = new A d d S u b t r a c t (" C a l c E r r o r " , t h i s) ;

36 addComponen tEn t i ty (p C a l c E r r o r) ;

37

38 p A d d S u b t r a c t = new A d d S u b t r a c t (" A d d S u b t r a c t " , t h i s) ;

173

39 addComponen tEn t i ty (p A d d S u b t r a c t) ;

40

41 pKp = new S c a l e ("Kp" , t h i s) ;

42 addComponen tEn t i ty (pKp) ;

43

44 p I IR_T rans f_Fun = new I IR (" I I R _ T r a n s f _ F u n " , t h i s) ;

45 addComponen tEn t i ty (p I IR _Trans f_Fun) ;

46

47 t h i s −>s e t P a r a m e t e r (" _ f l i p P o r t s H o r i z o n t a l " , " f a l s e ") ;

48 t h i s −>s e t P a r a m e t e r (" _ f l i p P o r t s V e r t i c a l " , " f a l s e ") ;

49 pKp−>s e t P a r a m e t e r (" f a c t o r " , " 1 ") ;

50 pI IR_Trans f_Fun −>s e t P a r a m e t e r (" n u m e r a t o r " , " { 0 . 3 3 , 0 . 3 3 } ") ;

51 pI IR_Trans f_Fun −>s e t P a r a m e t e r (" d e n o m i n a t o r " , " {1 , −0.33} ") ;

52 b I n i t S t a t u s &= p C a l c E r r o r −> i n i t i a l i z e () ;

53 b I n i t S t a t u s &= pAddSubt rac t −> i n i t i a l i z e () ;

54 b I n i t S t a t u s &= pKp−> i n i t i a l i z e () ;

55 b I n i t S t a t u s &= pI IR_Trans f_Fun −> i n i t i a l i z e () ;

56

57 / * I n s t a n t i a t e p o r t s * /

58 newPor t (" I n _ V o l t a g e " , ’ I ’ , P o r t : : TypedIOPor t) ;

59 newPor t (" U n i t _ S e t p " , ’O’) ;

60 newPor t (" Re f_Vo l t age " , ’ I ’ , P o r t : : TypedIOPor t) ;

61 newPor t (" Avg_Unit_Reac_Pow " , ’ I ’ , P o r t : : TypedIOPor t) ;

62

63 / * I n i t i a l i z e r e l a t i o n s * /

64 r e l a t i o n 3 . setName (" r e l a t i o n 3 ") ;

65 r e l a t i o n 4 . setName (" r e l a t i o n 4 ") ;

66 r e l a t i o n . setName (" r e l a t i o n ") ;

67 r e l a t i o n 5 . setName (" r e l a t i o n 5 ") ;

68 r e l a t i o n 1 0 . setName (" r e l a t i o n 1 0 ") ;

69 r e l a t i o n 6 . setName (" r e l a t i o n 6 ") ;

70 r e l a t i o n 2 . setName (" r e l a t i o n 2 ") ;

71

72 b I n i t S t a t u s &= r e l a t i o n 4 . c o n n e c t (g e t P o r t (" I n _ V o l t a g e ") , t rue) ;

73 b I n i t S t a t u s &= r e l a t i o n 2 . c o n n e c t (g e t P o r t (" U n i t _ S e t p ") , t rue) ;

74 b I n i t S t a t u s &= r e l a t i o n 3 . c o n n e c t (g e t P o r t (" Re f_Vo l t age ") , t rue) ;

75 b I n i t S t a t u s &= r e l a t i o n 6 . c o n n e c t (g e t P o r t (" Avg_Unit_Reac_Pow ") , t rue) ;

76 b I n i t S t a t u s &= r e l a t i o n 3 . c o n n e c t (p C a l c E r r o r −>g e t P o r t (" p l u s ")) ;

77 b I n i t S t a t u s &= r e l a t i o n 4 . c o n n e c t (p C a l c E r r o r −>g e t P o r t (" minus ")) ;

78 b I n i t S t a t u s &= r e l a t i o n 5 . c o n n e c t (p C a l c E r r o r −>g e t P o r t (" o u t p u t ")) ;

79 b I n i t S t a t u s &= r e l a t i o n 1 0 . c o n n e c t (pAddSubt rac t −>g e t P o r t (" p l u s ")) ;

80 b I n i t S t a t u s &= r e l a t i o n 6 . c o n n e c t (pAddSubt rac t −>g e t P o r t (" p l u s ")) ;

81 b I n i t S t a t u s &= r e l a t i o n . c o n n e c t (pAddSubt rac t −>g e t P o r t (" o u t p u t ")) ;

82 b I n i t S t a t u s &= r e l a t i o n . c o n n e c t (pKp−>g e t P o r t (" i n p u t ")) ;

83 b I n i t S t a t u s &= r e l a t i o n 2 . c o n n e c t (pKp−>g e t P o r t (" o u t p u t ")) ;

84 b I n i t S t a t u s &= r e l a t i o n 5 . c o n n e c t (p I IR_Trans f_Fun −>g e t P o r t (" i n p u t ")) ;

85 b I n i t S t a t u s &= r e l a t i o n 1 0 . c o n n e c t (p I IR_Trans f_Fun −>g e t P o r t (" o u t p u t ")) ;

86

87

174

88 s e t I n i t i a l i z e d (b I n i t S t a t u s) ;

89 re turn b I n i t S t a t u s ;

90 }

Listing B.4 – C++ main module invoking the toy JBVRC controller.

1 # i n c l u d e < i o s t r e a m >

2 # i n c l u d e <iomanip >

3 # i n c l u d e "JBVRC . h "

4 # i n c l u d e " S d f S e q S c h e d u l e r . h "

5 # i n c l u d e " Token . h "

6 # i n c l u d e " P o r t . h "

7

8 i n t main (i n t argc , char * a rgv [])

9 {

10 i n t i R e t V a l = 0 ;

11 bool bCon t inue = t rue ;

12 JBVRC* pJ = new JBVRC("JBVRC") ;

13 Typed I ORe la t i on i n V o l t R e l a t , i n 2 R e l a t , o u t R e l a t ;

14 i n V o l t R e l a t . setName (" i n V o l t R e l a t ") ;

15 o u t R e l a t . setName (" o u t R e l a t ") ;

16 i n 2 R e l a t . setName (" i n 2 R e l a t ") ;

17

18 s t d : : c o u t << s t d : : s e t p r e c i s i o n (1 3) ;

19 pJ−> i n i t i a l i z e () ;

20 / / Connect r e l a t i o n s t o t h e c o m p o s i t e JBVRC ’ s p o r t s :

21 bCon t inue &= i n V o l t R e l a t . c o n n e c t (pJ−>g e t P o r t (" I n _ V o l t a g e ")) ;

22 bCon t inue &= i n 2 R e l a t . c o n n e c t (pJ−>g e t P o r t (" Re f_Vo l t age ")) ;

23 bCon t inue &= i n 2 R e l a t . c o n n e c t (pJ−>g e t P o r t (" Avg_Unit_Reac_Pow ")) ;

24 i f (! bCon t inue) {

25 s t d : : c o u t << " main () : F a i l e d c o n n e c t i n g I n P o r t s . . . \ n " ;

26 re turn −1;

27 }

28 / / Compute t h e SDF ’ s s c h e d u l e p r e v i o u s t o main e x e c u t i o n loop :

29 S d f S e q S c h e d u l e r sch ;

30 sch . computeSchedu le (pJ) ;

31 s t d : : c o u t << " \ n ###\ n " ;

32 Token t (1 . 0) ;

33 / / Run w h i l e i n p u t a rgumen t s e x i s t i n t h e cmd l i n e :

34 f o r (i n t i =1 ; i < a r g c ; i ++) {

35 Token t I n V o l (s t d : : v e c t o r <double >(4 , s t d : : s t o d (a rgv [i]))) ;

36 i n V o l t R e l a t . d i s p a t c h T o k e n (t I n V o l) ;

37 i n 2 R e l a t . d i s p a t c h T o k e n (t) ;

38 bool b R e s u l t = pJ−> f i r e () ; / / Th i s i s t h e a c t u a l JBVRC i t e r a t i o n

39 i f (! b R e s u l t) {

40 s t d : : c o u t << " \ nmain () : FAILED f i r i n g JBVRC ! \ n \ n " ;

41 }

42 }

43 / / P r i n t a l l c a l c u l a t e d t o k e n s t o t h e c o n s o l e :

175

44 Token tOu t = pJ−>g e t P o r t (" U n i t _ S e t p ")−>getToken () ;

45 whi le (tOu t . i s V a l i d ()) {

46 s t d : : c o u t << tOu t . p r i n t () << " , \ n " ;

47 tOu t = pJ−>g e t P o r t (" U n i t _ S e t p ")−>getToken () ;

48 }

49 s t d : : c o u t << s t d : : e n d l ;

50 d e l e t e (pJ) ;

51 re turn i R e t V a l ;

52 }

176

APPENDIX C – HIERARCHICAL COMPOSITION OF THE JBVRC AND

PHYSICAL PROCESS

Note: potentiometer discrete transfer function from Figure 70 is 1/(𝑧 − 1), which

represents a discrete integrator.

Figure 66 – Model of power plant and secondary voltage controller.

Source: Neis et al. (2023).

Figure 67 – Generating Units model.

Source: The author.

177

Figure 68 – A single Generating Unit’s voltage control model.

Source: The author.

Figure 69 – Generator and AVR model.

Source: The author.

Figure 70 – Generating Unit’s RTU model.

Source: The author.

178

Figure 71 – Generating Units’ step up transformer model.

Source: The author.

	Cover
	Title page
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Contents
	1 Introduction
	1.1 Subject of Study
	1.1.1 Research Questions

	1.2 Thesis Goals
	1.2.1 Specific Deliverables

	1.3 Contributions and Relevance
	1.3.1 Originality
	1.3.2 Relevance

	1.4 Scope Delimitation
	1.5 Organization

	2 Conceptual Background
	2.1 Models and Modeling
	2.2 Models in Software Engineering
	2.2.1 No Silver Bullet
	2.2.2 Advantages of the MDE Approach to EMS Applications
	2.2.3 Situating our Proposed Approach

	2.3 Modeling Paradigms, Languages and Tools
	2.3.1 Actor-Oriented Programming Models
	2.3.2 Characteristics of AO Models and Design Environments
	2.3.3 Advantages of the AO Model
	2.3.4 The Ptolemy II Tool

	2.4 Chapter Summary

	3 Background on the Application Domain
	3.1 A typical Hydro Power Plant
	3.2 Overview of the Hydro Power Production Process
	3.2.1 Speed, Frequency and Active Power Regulation
	3.2.1.1 Prime Mover, Generator and Load: Frequency Deviation
	3.2.1.2 Primary Regulation: the Speed Governor
	3.2.1.3 Secondary Regulation: Load Frequency Control

	3.2.2 Voltage and Reactive Power Regulation of Synchronous Generators
	3.2.2.1 Primary Regulation: the Generator's Excitation System Model
	3.2.2.2 Voltage and Reactive Power Reference - Secondary Regulation

	3.3 Software Components and Power Systems Control
	3.3.1 Hierarchical Organization of Power Plant Controls
	3.3.2 Classification of Power Plant Controls
	3.3.3 Energy Management and Automation
	3.3.4 Development Process of Energy Management Applications

	3.4 The Itaipu Case Study
	3.4.1 Overview of Itaipu Project
	3.4.2 Itaipu Power Plant Control and Supervision
	3.4.3 Automatic Control Functions in Itaipu
	3.4.3.1 Automatic Generation Control
	3.4.3.2 Plant Level Joint Bus Voltage and Reactive Power Control
	3.4.3.3 Centralized Emergency Control Schemes

	3.4.4 Simulator and Production Environments

	3.5 Chapter Summary

	4 Literature Review and State of the Art
	4.1 Review Outline
	4.1.1 Research Questions for the Review

	4.2 Information Collected from the Reviewed Works
	4.2.1 Applications not Related to Power Systems
	4.2.1.1 Breesse
	4.2.1.2 AMoDE-RT

	4.2.2 Approaches Based on Standards for Power Systems
	4.2.2.1 IEC Standards and Ontologies
	4.2.2.2 CIM-based

	4.2.3 Smart Grids and Other Power Applications
	4.2.3.1 Rapid Prototyping of Smart Grid Applications
	4.2.3.2 FMDE4SGRID
	4.2.3.3 ThingML+
	4.2.3.4 Power-Attack

	4.2.4 Approaches Based on Control Theory
	4.2.4.1 MPC-based Algorithm
	4.2.4.2 Event-Triggered DG Control
	4.2.4.3 The DFR Algorithm
	4.2.4.4 Classical Control Theory
	4.2.4.5 NewSART Project

	4.3 Answers to the Review's Research Questions
	4.3.1 Open Problems

	4.4 Review Conclusions

	5 The D-SPADES Approach to EMS Software Development
	5.1 D-SPADES Software Process
	5.1.1 Problem Characterization and Requirements Elicitation
	5.1.2 Environment Modeling
	5.1.3 Application Model Design and Construction
	5.1.4 Model Testing and Validation
	5.1.5 Model Transformation
	5.1.6 System Validation
	5.1.7 Release and Deploy
	5.1.8 Further Considerations: Maintenance and Evolution
	5.1.9 Simplified Workflow

	5.2 A Modeling Language for EMS Applications
	5.2.1 Domain Analysis
	5.2.2 Modeling Language Design
	5.2.3 Modeling Language Validation

	5.3 Model Transformations
	5.3.1 Model Conversion
	5.3.2 Mapping the AO Model into a Sequential Programming Model
	5.3.2.1 Mapping SDF Models Into OO Programming Model
	5.3.2.2 Mapping AO Models Into Structured Programming Model

	5.3.3 Closing the Gap Between AO Models and Target Code

	5.4 Tool Support for D-SPADES
	5.4.1 Actor-oriented Modeling Environment
	5.4.2 Model Processing Tools
	5.4.3 Component Libraries
	5.4.3.1 Integration with Base SCADA

	5.5 Extending D-SPADES
	5.5.1 Adding New Actors
	5.5.2 Extending the Support for Models of Computation
	5.5.3 Different Programming Languages

	5.6 Remarkable features of D-SPADES
	5.7 Chapter Summary

	6 Applying D-SPADES to Construct Functional Applications
	6.1 Running Example: Simple Closed-loop Controller
	6.2 Case Study 1: JBVRC Application
	6.2.1 Equipment and Systems Involved
	6.2.2 Overall Requirements of the JBVRC Application
	6.2.3 Modeling the Physical Process
	6.2.4 Modeling the JBVRC Application
	6.2.5 Integrating JBVRC Into the Base SCADA
	6.2.6 Results
	6.2.6.1 Source Code Metrics
	6.2.6.2 Functional Performance
	6.2.6.3 Computational Performance

	6.3 Case Study 2: ERG60 Application
	6.3.1 Equipment and Systems Involved
	6.3.1.1 Earlier Versions of ERG60
	6.3.1.2 Evolution of ERG60

	6.3.2 Overall Requirements of MDERG
	6.3.3 Proposed Architecture
	6.3.4 Cyber-Physical Process and Application Model
	6.3.4.1 Model Transformation

	6.3.5 Deployment and Test Results
	6.3.5.1 Functional Performance

	6.4 Chapter Summary

	7 Conclusions and Future Work
	7.1 Answers to Research Questions
	7.2 Thesis Contributions
	7.2.1 Publications

	7.3 Future Work

	References
	Appendix
	A EMSML metamodel UML class diagram
	B The toy JBVRC Controller XMI File, Generated Code and Example Program
	C Hierarchical Composition of the JBVRC and Physical Process

