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ABSTRACT

Long operating life, high dynamic response and efficiency, and higher torque-to-weight
ratio make the BLDC motor attractive for several applications, such as electric vehicles,
drones, etc. Due to its versatility, the BLDC motor can be exposed to applications in
which load disturbances, sudden disturbances, and parameter variation occur, making
conventional control techniques such as proportional-integral-derivative PID controller
not reach its variables with precision and agility. To avoid this inconvenience, the PID
controller can improve its performance when used in conjunction with adaptive techniques
that collect data from the system’s operating environment and perform adjustments based
on the condition it is in, dynamically minimizing system failures.Adaptive techniques
based on fuzzy logic or Gaussian functions can be an alternative to this impasse.
However, the choice of parameters and variables empirically are some obstacles that
the designer faces, requiring full knowledge of the system’s behavior to which they
will be applied. For this, using a metaheuristic optimization algorithm such as Particle
Swarm Optimization (PSO) would be a solution, this bio-inspired algorithm searches in
a complex universe of multiple solutions the best one for a given problem. This paper
aims to compare different control techniques, such as PID, Hybrid Fuzzy-PID Hybrid
Fuzzy-PID, and GAPID optimized by PSO for speed control of a BLDC motor, through
simulations performed in the Simulink software and its practical implementation in an
ESP32 microcontroller.

Keywords: fuzzy; controllers; particle swarm optimization; metaheuristic.



RESUMO

Vida operacional longa, alta resposta dinâmica e eficiência e maior relação torque-peso
são características que fazem o motor BLDC ser atrativo para diversas aplicações, como
veículos elétricos, drones e etc. Entretanto, devido a sua versatilidade o motor BLDC
pode ser exposto a aplicações em que ocorram distúrbios de carga, perturbação súbita
e variação de parâmetros, fazendo com que as técnicas de controle convencionais
como controlador proporcional-integral-derivativo PID, não alcancem suas variáveis
com precisão e agilidade. Para evitar esse inconveniente, o controlador PID pode
ter o seu desempenho melhorado quando utilizado em conjunto com técnicas adap-
tativas que coletam dados do ambiente de operação do sistema e realizam ajustes
baseados na condição em que ele se encontra de forma dinâmica minimizando falhas
no sistema.Técnicas adaptativas baseadas em lógica difusa ou que utilizam funções
Gaussianas podem ser uma alternativa para esse impasse.Porém, a escolha dos parâ-
metros e variáveis de forma empírica são alguns obstáculos que o projetista enfrenta,
requerendo do mesmo pleno conhecimento do comportamento do sistema ao qual
serão aplicadas. Para isso o uso de um algoritmo de otimização metaheurística como o
Particle Swarm Optimization (PSO) seria uma solução, esse algoritmo bio-inspirado
busca em um universo complexo de múltiplas soluções melhor resultado para o dado
problema. Tem-se como objetivo realizar neste trabalho a comparação entre diferen-
tes técnicas de controle, como PID, Híbrido Fuzzy-PID e Híbrido Fuzzy-PID e GAPID
otimizado pelo PSO para o controle de velocidade de um motor BLDC por meio de
simulações realizadas no software Simulink e a sua implementação prática em um
microcontrolador ESP32.

Palavras-chave: fuzzy; controladores; otimização por enxame de partículas; metaheu-
rística.
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1 INTRODUCTION

The replacement of coal with electricity, oil with steam energy, and steel in pro-

duction techniques were milestones for the beginning of the second industrial revolution.

At that time, several scientists and researchers were fundamental to our current

technologies. Morit Hermann von Jacobi stands out in 1839 with the development of a

1000 Watt engine to be coupled to a boat, where it was driven by zinc-platinum batteries

that together weighed more than 200 kilograms (DOPPELBAUER, 1822).

Even with all the technology and knowledge we have nowadays, this example

illustrates the current industry’s challenges, especially concerning electric vehicles. The

barriers to developing components, motors, and electric batteries with long life, high

performance, and low weight have been the focus of several researchers since then.

These factors prevented the large-scale replacement of steam engines by electric motors

at that moment. However, it inspired others to produce electric motors with the same

power standards and different topologies.

According Doppelbauer (1822), in 1866 Werner von Siemens built an electric

machine without a permanent magnet with a power of approximately 30 Watts. This

machine could work as a generator using the effect of self-excitation and as a motor as

long as a direct current DC was applied at its terminals.

About 30 years after Werner’s achievement, the three-phase squirrel-cage

induction motor emerges. The Russian Michael von Dolivo Dobrowolsky developed this

equipment. The motor was more silent, had an approximate efficiency of 80% and had

a longer useful life when compared to previous electric motor models (DOPPELBAUER,

1822).

In the early 1960s, the first concepts of the Brushless Direct Current Electric

motor (BLDC) began to appear due to the popularity and advances in the development of

solid-state technology. T.G.Wilson invented the precursor of the motor without brushes,

and P.H. Trickey called a DC machine with solid-state commutation (XIA, 2012).

During the same period as the discovery and development of electric motors,

the need to obtain control over equipment and processes, such as the flow control to

regulate a water clock or the speed control of the grinding stone in a mill encouraged

the development of several control techniques (FRANKLIN; POWELL; EMAMI-NAEINI,

2013).
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Indeed, these techniques were also applied to direct current electric motors

seeking speed control to obtain maximum performance and efficiency. Because of the

various techniques developed, one stands out for having robustness and easy empirical

adjustments, the Ziegler-Nichols method, which is used nowadays in most industrial

meshes (KUMAR; SWAIN; NEOGI, 2017).

The increasing number of replacements of DC motors by BLDC motors has

been taking place over the years because BLDC motors have a longer service life, lower

noise emission, and high dynamic response. Such attributes make the motor BLDC

attractive, mainly for electric vehicles, robotics, and aviation.

The simplicity of the PID controller is its strong and weak points. In such

applications, the BLDC motor is exposed to different types of load disturbance, which

can make the controller unresponsive, not reaching the desired performance accurately

in a short response time. In other words, the PID controller may not be the most suitable

option for specific cases (GHANY; SHAMSELDIN; GHANY, 2017).

However, the PID controller can improve its performance by applying adaptive

techniques such as Fuzzy logic, which is necessary for dynamic systems in unstable

environments. In this way, the union of a PID controller to a Fuzzy controller results in a

controller known as a Fuzzy-PID hybrid controller. In this hybrid structure, the Fuzzy-PID

controller integrates the advantage of both control structures, improving PID control

even when plant parameters vary or a disturbance occurs (GOSWAMI; JOSHI, 2018).

In a universe of countless alternatives, another option would be Gaussian

Adaptive Proportional, Integral, and Derivative controller (GAPID), generally applied to

typical power supplies of medical equipment with the Buck converter. This controller

dynamically modifies the PID controller gains to achieve better performance. Even

though there are not many examples of the application of this controller to electric

motors, it should be adequate, practical, and straightforward to apply to it (PUCHTA

et al., 2021).

According to Simões and Shaw (2007) and Puchta et al. (2021), there is no

algebraic solution for the adaptive parameters tuning of both controllers (GAPID and

Fuzzy-PID), which requires the designer’s full knowledge of the system whereupon it will

be applied, making the choices adopted not being the ideal ones to obtain the maximum

controller performance.

Thus, one of the ways to obtain these parameters would be using additional
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tools, such as Particle Swarm Optimization (PSO). This bio-inspired algorithm is based

on the interaction between several particles with a range of random values in search of

the best resolution for the proposed problem.

1.1 Research Delimitation

At the beginning of the 20th century, electric vehicles peaked, representing

a share of 33% of the entire automotive chain. However, the discovery of large oil

reserves, government incentives, and the mass production created by Henry Ford made

combustion vehicles gain ground. In addition, their competitive values and significant

range negatively influenced the popularity of electric vehicles, as they were slow with

an average speed of 20 km/h and cost twice as much as internal combustion vehicles

(MATULKA, 2014).

Over the years, the use of petroleum derivatives resulted in a significant emission

of pollutants to the environment and the development of high dependence on this non-

renewable energy source. For such adversity, sustainability has become society’s focus,

seeking alternatives that help the planet, mainly related to urban mobility. In this way,

with the advancement of technology, the electric and hybrid vehicles’ industry has been

increasing in recent years due to significant investments in search to increase the range

of the electric vehicle and get a better price (IZO, 2018).

In order to achieve this objective, the vehicle must have batteries with high

energy density per mass, high-performance control techniques, an effective energy

management system, and an engine that has a high dynamic response, high efficiency,

and a higher ratio torque-weight, characteristics that make up a BLDC motor (JAVORSKI

ECKERT et al., 2018). Thus, studying control techniques to control the BLDC motor and

manage other vehicle systems is increasingly important.

As the topic addressed in this paper is expansive, the Methodi Ordinatio tech-

nique was applied because it is a simple and effective bibliometric analysis, reducing

the search time for articles related to the main research topic (PAGANI; KOVALESKI;

RESENDE, 2015).
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The Methodi Ordinatio consists of nine steps:

• Defining the research intent;

• Preliminary exploratory research in bibliographic databases;

• Definition of Keywords;

• Search and Collection of articles in the databases;

• Filtering;

• Identification of Impact Factor and Number of citations;

• Ordering the scientific relevance of articles using the InOrdinatio function;

• Articles download;

• Reading.

It was decided to use three databases to conduct the searches, Scopus, Science

Direct, and IEEE. The keywords used were: BLDC Motor, PID Controller, Fuzzy Logic,

PSO, Electric Vehicle, Gaussian, GAPID, and DC Motor. However, it was found that it

was not possible to identify an article that involved all keywords at once, so we’re used

combinations like:

• BLDC Motor, PID Controller, Fuzzy Logic and PSO;

• PID Controller, Fuzzy Logic, PSO, Gaussian and GAPID;

• BLDC Motor, PID Controller, Fuzzy Logic, PSO, Electric Vehicle and DC Motor.

Thus, 264 articles were obtained, of which 51 were repeated, and 73 agreed with

the theme. After passing through these two filters, the InOrdinatio function (Equation 1)

was applied, resulting in 36 articles that were studied (Figure 1).

𝐼𝑛𝑂𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜 =

(
𝐹𝑖

1000

)
+ 𝛼.(10 − (𝑌𝑇𝐷 − 𝑌𝑃𝐵

) +∑
𝐶𝑖) (1)

Where:

𝐹𝑖 represents Impact Factor;

𝐶𝑖 represents Number of citations;

𝑌𝑇𝐷 represents Year to Date;

𝑌𝑃𝐵
represents Year Published;

In addition to the articles researched, the books of the principal authors on the

subjects that make up the theme were used to enrich the paper.
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Figure 1 – Article filtering process

Source: Own authorship (2022)

As shown in Frame 1, it is possible to analyze that none of the papers involved

the comparison between a PID controller, a Hybrid Fuzzy-PID controller and a GAPID

all implemented in an ESP32 microcontroller, corroborating the academic relevance of

this research.

1.2 Main objective and Specific objectives

1.2.1 Main Objective

Recently, a growing number of studies have been carried out with the purpose of

presenting different alternatives for control techniques applied to electric vehicles. This
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also occurs because electric vehicles have several topologies, such as in-wheel direct

drive, where each front or rear wheel has a BLDC motor attached. In this topology, it is

extremely important to develop a controller that can adapt to different types of situations,

such as performing curves in which the outer wheel has a rotating speed higher than the

inner wheel or load variations that may occur due to sudden acceleration and braking

(CHHLONH; RIAWAN; SURYOATMOJO, 2019).

Thus, the main objective of this work is to compare different control techniques,

such as PID, the hybrid Fuzzy-PID and GAPID, and optimize using the bio-inspired

adaptive technique, Particle Swarm Optimization, for the speed control of a BLDC motor.

1.2.2 Specific Objectives

• Conduct a literature review, approaching the main characteristics and differ-

ences between the DC electric motor and the BLDC motor and the control

techniques;

• Develop an experimental test bench;

• Carry out comparisons between PID, Fuzzy-PID, and GAPID in simulations

performed in the software Simulink;

• Develop the PID, Fuzzy-PID, and GAPID hybrid controllers and implement

them in the ESP32 microcontroller;

• Optimize the Fuzzy-PID and GAPID hybrid controllers through the PSO, per-

form the simulation in Simulink and implement them in the ESP32 microcon-

troller;

• Compare the results obtained in the practical implementation with those of

the simulation.

1.3 Dissertation Structure

This dissertation is divided as follows:

Chapter 2 approaches the structures of the DC motor and BLDC motor are

described with their respective functions and differences, the fundamentals of control

and the details of the PID, Fuzzy controller, Fuzzy-PID hybrid controller, GAPID controller,

and the particle swarm optimization algorithm.
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In Chapter 3, the reasons for choosing the test bench components, the designed

methodology of each control technique and the optimization method adopted, and, finally,

MatLab and Simulink simulations.

In Chapter 4, the approach of the simulations of each proposed controller

presents the results obtained in the test bench, where tests with and without load were

carried out, the results obtained in the simulation and the experimental one, and their

comparisons.

Chapter 5 presents the conclusions obtained with the development of this study

are presented, besides future studies about the adaptive control.
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Frame 1 – Comments on relevant articles.
Title Comments/Results

(2022) - Metaheuristics-Based Optimization of a
Robust GAPID Adaptive Control Applied to a DC
Motor-Driven Rotating Beam with Variable Load

• Comparison between Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO);

• Optimization of the Gaussian Adaptive PID con-
trol (GAPID);

• Control of a DC motor with load variation;
• GAPID presented low overshoot, fast response

and robustness to load changes;
• Comparison between PID controller and GAPID

controller;
• Simulation and Implementation results.

(2022) - The performance of the Optimization and
Regenerative Braking systems by using PI con-
trolling technique for Electric Vehicle (EV)

• Regenerative Braking systems;
• Closed loop feedback control system using PI

controller technique;
• Simulink model with load;
• Importance of BLDC motor for electric vehicles

(2022) - Optimizing BLDC motor drive perfor-
mance using particle swarm algorithm-tuned fuzzy
logic controller

• Performs the optimization of a Fuzzy PID Hybrid
controller through Particle Swarm Optimization
(PSO);

• Uses 3 performance indicators, integral time
absolute error (ITAE), integral time square error
(ITSE) and integral square error (ISE);

• Addresses advantages of Particle Swarm Opti-
mization and Fuzzy PID Hybrid controller;

• Examples of rule base;
• The controller optimized by PSO obtained good

results for load variation;
• Simulation only and no implementation.

(2022) - The Fuzzy PID Controller Performance
in BLDC Motor Rotor Speed Variable • Highlights advantages and disadvantages of

the PID controller for controlling the speed of a
BLDC motor;

• Fuzzy-PID Hybrid Controller Applications;
• Performs the comparison between the Hybrid

Fuzzy-PID Controller and PID Controller for the
speed; control of a BLDC motor;

• The hybrid Fuzzy PID controller achieved good
results, including a 100% overshoot attenuation;

• Simulation only and no implementation.

(2022) - A Novel Design Methodology and Nu-
merical Simulation of BLDC Motor for Power Loss
Reduction

• Focus on Efficiency;
• Load and Speed variation;
• The Fuzzy Controller presented better perfor-

mance regarding ripple torque reduction and
good speed;

• Simulation and implementation.
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(2021) - Four In-Wheel BLDC Motors Speed Con-
trol in EV Based on Hybrid Fuzzy-PI Controller
Visual on GUI

• Hybrid Fuzzy-PI Controller for BLDC Motors
Speed Control;

• Comparison between PI controller, Fuzzy con-
troller and hybrid fuzzy-PI controller;

• In-wheel direct drive for the Electric Vehicles
(EV);

• the hybrid fuzzy-PI controller is the most suitable
for EVs;

• Simulation only and no implementation (future
work).

(2019) - Modeling and Simulation of Independent
Speed Steering Control for Front In-wheel in EV
Using BLDC Motor in MATLAB GUI

• Speed of each front wheel controlled by Fuzzy
controller;

• Setup of the Fuzzy controller empirically;
• Fuzzy Logic is able to handle nonlinearities

and uncertainties without need of mathemat-
ical model;

• Rule Base example;
• The Fuzzy Controller presented good results,

no overshoot and small error;
• Simulation only and no implementation (future

work).

(2018) - Brushless DC motor tracking control using
self-tuning fuzzy PID control and model reference
adaptive control

• Hybrid Fuzzy-PID Controller for Speed Control
of BLDC Motor;

• Advantages of BLDC motor;
• Rule Base example;
• Sudden disturbance and parameters variations;
• Comparison between Hybrid Fuzzy-PID Con-

troller and Model Reference Adaptive Control
(MRAC) with PID compensator;

• MRAC performed better than Hybrid Fuzzy-PID
Controller;

• Simulation only and no implementation.

Source: Own authorship (2022)
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2 THEORETICAL BACKGROUND

2.1 DC Motor

Due to their versatility, direct current motors are present in almost every aspect

of our life, indirectly or directly, from a complex robotic arm for assembly in factory

production that requires precision and speed to a simple laptop cooling system. This

fact occurs because, in the DC motor, it is possible to choose several alternatives for the

method of excitation of the field windings, which influences the dynamic behavior of the

machine and, consequently, the steady-state characteristics. In other words, depending

on the adopted topology, it is possible to obtain several options for torque versus speed

ratio (FITGERALD; KINGSLEY JR; UMANS, 2008).

Among the alternatives, the field winding can be connected in series, parallel,

or series and parallel to the armature.In addition, it is also possible to choose how the

rotor is powered. The current is applied to the brush’s rotor in brushed DC motors. In a

brushless DC motor, the rotor has a permanent magnet.

2.1.1 Brushed DC Motor Structure

The direct current (DC) motor comprises four elements (Figure 2): the stator, the

rotor, the split ring commutator, and the brushes. The stator is a ferromagnetic material

surrounded by a set of turns made of copper, where a magnetomotive force is produced.

The rotor, whose objective is to allow the passage of the magnetic flux produced by

the stator, is an electromagnet where the mechanical motor action occurs in which it

consists of a core, usually of silicon steel, by a set of coils connected to the split ring

commutator, which in turn transmits current electrical power at the moment its terminals

come into contact with the brushes (KOSOW, 1993). In this switching process, sparks

are generated between the split ring commutator and brushes, in addition to detrition

on both components, thus generating the need for frequent maintenance (DEL TORO,

1994).

Two ways to excite the DC motor are energizing the field coils via a separate

DC source or having the current flow through the field winding supplied by the motor.

However, for this to occur, there must be residual magnetism in the machine, so the self-
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Figure 2 – Brushed DC Motor Structure.

Source: Own authorship (2022)

excitation process can begin (FITGERALD; KINGSLEY JR; UMANS, 2008). Self-excited

motors can be classified into:

• Shunt: Field and armature windings are connected in parallel. The speed of

a Shunt DC motor is constant and does not deviate with varying mechanical

loads.

• Series: Field and armature windings are connected to the power supply. Series

motors always rotate in the same direction, regardless of the voltage source.

Its speed varies with mechanical load.

• Compound: divided into cumulative or additive and differential or subtractive.

The cumulative motor unites the characteristics of shunt and series motors,

but for variation in speed with a load of the relative number of ampere-turns in

the shunt and series fields.

2.1.2 BLDC Motor Structure

The brushless direct current motor (BLDC) comprises a three-phase stator and

a rotor with permanent magnets on its surface. Its operating principle is similar to that

of a synchronous alternating current motor, but its power supply is of direct current

(EL-SAMAHY; SHAMSELDIN, 2018).

One of the alternatives to increase the motor’s efficiency is to connect two

opposite coils in series, doubling the force of attraction and repulsion. In this way, six

intervals are required for the rotor to perform a complete rotation, according to Figure 3.

Note that at the same instant, the current is positive at point A, negative at point



23

Figure 3 – BLDC Motor and Hall sensor pulses.

Source: Own authorship (2022)

B, and zero at point C. Thus, it is possible to use the same current to energize two

different phases simultaneously, making a star connection (Y).

As stated before, at least six intervals are necessary for the motor to complete

a revolution. For this phenomenon to occur, one of the solutions would be the use

of an ESC, electronic speed controller, which uses an arrangement of transistors that

work synchronously, driving the coils that must attract and repel the rotor according to

its position, which can be obtained by the use of Hall sensors or the use of counter-

electromotive force (NARMADA; AROUNASSALAME, 2014).

In the Hall sensors method, the sensors are usually arranged every 120° or

every 60° so that when the magnetic field coming from the rotor approaches a sensor, it

emits a high logic level signal for one pole and a low logic level signal for the opposite

pole as shown in Figure 3.

A current in the opposite direction is generated in the coils that are not energized

at a given moment through the counter-electromotive force. As a consequence, an

induced voltage is generated, identified by the controller present in the ESC, which

performs calculations to predict which coils it must turn on or off, as shown in Figure 4.

2.1.3 Nonlinear Phenomena in BLDC motor

Currently, several studies have been carried out with the purpose of under-

standing the nonlinear characteristics of the BLDC motor, many of them are based on

theoretical analyses instead of experimental, because in order to reach and observe the
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Figure 4 – Counter-Electromotive Force Signal.

Source: Own authorship (2022)

chaotic state, which is the manifestation of nonlinearities and which occurs in an instant

of time, the motor needs to be operating under specific conditions. In some papers, the

chaotic state was caused by the internal characteristics of the motor and load variations

(LI et al., 2018).

Adaptive control techniques such as the Fuzzy controller are ideal for non-linear

systems. In the case of Fuzzy controller, which uses the Universal Approximation

Theorem and, when well-designed, fits for most cases where nonlinearities occur. With

this technique, it is possible to maintain an acceptable level of control system performance

when large and unknown changes in model parameters happen (WANG, 1993).

2.1.4 DC Motor X BLDC Motor

The brushed direct current motor has undesirable effects such as the projection

of sparks and carbon particles coming from it and the generation of acoustic noise

(VARGHESE; ROY; THIRUNAVUKKARASU, 2014).

Despite its limited reliability linked to the need for constant maintenance of its

brushes due to operating wear and the need for commutators, the DC motor still has

advantages, such as good efficiency and linear behavior, discarding the need to use

techniques of complex control (ARIS et al., 2016).
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Unlike DC motors, BLDC motors have many advantages: long operating life,

high dynamic response, high efficiency, better speed vs. torque characteristics, more

comprehensive speed range, and higher torque-to-weight ratio (EL-SAMAHY; SHAM-

SELDIN, 2018).

This way, the BLDC motor requires reduced maintenance and maintains the

same power as a DC motor occupying a smaller volume. These and other characteristics

mentioned above make the replacement of DC motors with BLDC motors more attractive

and used in several industrial applications (KUMPANYA; THAIPARNAT; PUANGDOWN-

REONG, 2015).

2.2 PID Controller

Controllers are subsystems that act on a given system or plant to achieve pre-

established results. When correctly sized, controllers can increase the efficiency of the

system in which they operate. When used in a closed-loop (Figure 5), where the system

feedback with the output signal occurs, the reduction of the output error to the input

signal can occur (OGATA, 2011).

Figure 5 – Closed-loop Control System.

Source: Own authorship (2022)

Because it is simple, robust, and has few adjustment parameters, 90% of

industrial loops apply PID controllers (CHOPRA; SINGLA; DEWAN, 2014).

According to (NISE; SILVA, 2002), the control signal provided by the PID con-

troller depends on three parameters, which are given by Equation 2:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖
∫ 𝑡
0 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)
𝑑𝑡

(2)
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Where:

𝑢(𝑡) represents the control signal;

𝑒(𝑡)represents the Steady-state error, which is the difference between the Set-

point 𝑟 (𝑡) and the Output 𝑦(𝑡);

𝐾𝑝 represents the Proportional gain;

𝐾𝑖 represents the Integral gain;

𝐾𝑑 represents the Derivative gain.

Each parameter, 𝐾𝑝, 𝐾𝑑 e 𝐾𝑖, allows changing the controller’s behavior applied

to the plant. For example, high gains can make the controller act with fast changes in

the output signal. On the other hand, low gains result in a controller with a more passive

characteristic, having little influence on the system (OGATA, 2011).

Knowledge of each parameter’s influence on the system’s performance, such as

the Percentage Overshoot (PO), which represents how much the maximum peak value

exceeds the final value, is essential. So that when it is necessary to make more precise

adjustments, the same can operate as expected. In this way, according to Frame 2, it

is possible to verify the effect caused in the plant by the variation of the gain of each

controller parameter (KUMAR; SWAIN; NEOGI, 2017).

Frame 2 – Controller x Plant Ratio.
Parameter Settling Time Overshoot Error

Proportional (𝐾𝑝) Small Change Increase Decrease
Integral (𝐾𝑖) Increase Increase Zero
Derivative (𝐾𝑑) Decrease Decrease Small Change

Source: Kumar, Swain, and Neogi (2017)

2.3 Fuzzy Logic

To assist in the search for the solution to specific problems, fuzzy logic seeks

to approach human thought, leaving boolean logic and seeking answers by dealing

with the concept of partial truth. It happens because the basis of fuzzy systems is the

Fuzzy set theory, in which its elements have a degree of membership determined by the

analysis of the membership functions (DE AZEVEDO; BRASIL; OLIVEIRA, 2000).

One of the main advantages of using the Fuzzy controller is that the designer

can control a system based on its behavior without raising its mathematical model (FENG

et al., 2002). However, for this to occur, the designer must have complete knowledge of



27

the system’s functioning to adjust the parameters correctly, making the control effort to

handle each input correctly to achieve the expected objectives.

For the processing of numerical variables sent to the controller to happen, for

example, to process a signal sent by a sensor, it is necessary to start a process that

consists of transforming this numerical information into linguistic variables to carry out

decision-making based on pre-established rules associated with a numerical value

necessary to control the plant. These steps can be defined as fuzzification, inference,

and defuzzification, as shown in Figure 6 (CHOI et al., 2005).

Figure 6 – Fuzzy logic Structure.

Source: Own authorship (2022)

The fuzzification step transforms the input data, numerical variables, into linguis-

tic variables, where a pre-processing of categories takes place to reduce the number of

processes. Then, in inference, decisions are made based on the If-Then conditional,

defined by a base of previously established rules, defining the actions to be taken on a

given occasion. The last step of signal processing, defuzzification, ensures the exact

interpretation of the linguistic variables obtained in the inference phase into numerical

values (CHOI et al., 2005).

Two models are usually used in Fuzzy systems, the classical and the interpolation

ones. The classics have for each rule a fuzzy term within a fixed set of convex terms that

can be graphically represented by triangular, trapezoidal, and bell functions. Among the

most common models, the Larsen model and the Mamdani model are worth mentioning

(SILVA; DATTA; BHATTACHARYYA, 2002).

On the other hand, interpolation models usually present a different conclusion

for each rule through a strictly monotonic function, the most common being the Takagi-

Sugeno model and the Tsukamoto model. In these models, the values obtained by
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each rule for each control variable are unique, where a global control action is obtained

through a weighted average of the individual values obtained (JÚNIOR et al., 2005).

In research performed with the purpose of optimizing the BLDC motor drive

performance, the PID controller produced hysteresis effects and created uncertainty

problems and to avoid such situations the Fuzzy controller was implemented. After

this application, a considerable improvement in the control of the system was noticed,

reaching favorable results (SHI et al., 2022). In another example, which the purpose was

to seek a power loss reduction of a BLDC motor, it was noted that the Fuzzy controller

contributed to a better control adaptability for load variations, reducing the ripple and the

system response time (KUMAR; CHANDRASEKARAN, et al., 2022).

2.4 Fuzzy-PID Hybrid Controller

Despite being robust and easy to apply, the PID controller has some limitations

in specific applications, such as in systems that do not behave linearly or in situations

where the dynamics of the plant vary constantly. Such situations can impact the response

time of the controller. One of the alternatives for such a situation would be the union of

the PID controller and the Fuzzy logic.

In this controller, the application of Fuzzy logic is coupled to a PID controller to

adjust its parameters automatically in an online process (Figure 7). In other words, if

there are changes in the plant dynamics, for example, load variations, the PID controller

gains are adjusted through Fuzzy logic to adapt to this change in real-time (GOSWAMI;

JOSHI, 2018).

Figure 7 – Basic structure of a Fuzzy-PID hybrid controller.

Source: Own authorship (2022)

This union can stabilize the system faster than a classical PID controller, de-
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creasing the accommodation time to reach the steady-state (GEETHA; THANGAVEL,

2016).

Several researches based on the application of this controller in electric vehicles

were carried out and demonstrated that this type of control technique, when applied to

control the speed of a BLDC motor, presents greater reliability when compared to PID

or Fuzzy controller (CHHLONH; KIM, et al., 2021).

Another study has indicated that the hybrid fuzzy PID controller was able to

decrease the rise time, the settling time and even attenuate the overshoot to 100%

(SUTARNA; PURWANTI; SUHADHA, 2022).

2.5 GAPID Controller

Gaussian adaptive control is based on the use of Gaussian functions with

well-defined upper and lower limits, adjustable concavities, and smooth derivatives,

which causes the gains to be gradually increased or decreased as the stationary error

approaches zero, avoiding an unexpected system behavior which might be caused by

discontinuous gain transitions (BORGES et al., 2022).

These functions are defined as shown in Equation 3.

𝑓 (𝛾) = 𝐾1 − (𝐾1 − 𝐾0)𝑒−𝑞.𝛾
2 (3)

Where:

𝛾 represents the error;

𝐾1 and 𝐾0 represent the function limits;

−𝑞 represents the regulator of the concavity of the Gaussian curve.

The −𝑞 regulator, represented by Equation 4, adjusts the position of the range of

input values where the transition between 𝐾0 and 𝐾1 occurs. 𝐾0 has a more significant

influence when the stationary error approaches zero and 𝐾1 when the error is significant.

Note also that when 𝐾0 < 𝐾1, the concavity is facing upwards, and when 𝐾0 > 𝐾1, the

concavity is facing downwards as represented by Graph 1.

𝑞 = −𝑙𝑛
(
𝐾1− 𝑓 (𝛾)
𝐾1−𝐾0

)
. 1
𝛾2 (4)
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Graph 1 – Gaussian functions.

Source: Own authorship (2022)

As the controller is based on a linear PID controller, each branch has its Gaussian

function with its respective values. That means there would be nine parameters which

are 𝐾𝑝1, 𝐾𝑖1, 𝐾𝑑1, 𝐾𝑝0, 𝐾𝑖0, 𝐾𝑑0, 𝑞𝑝, 𝑞𝑖 and 𝑞𝑑 represented by Equation 5.

𝑓 𝐾𝑝1 = 𝐾𝑝1 − (𝐾𝑝1 − 𝐾𝑝0)𝑒−𝑞𝑝 .𝛾
2;

𝑓 𝐾𝑖1 = 𝐾𝑖1 − (𝐾𝑖1 − 𝐾𝑖0)𝑒−𝑞𝑖 .𝛾
2;

𝑓 𝐾𝑑1 = 𝐾𝑑1 − (𝐾𝑑1 − 𝐾𝑑0)𝑒−𝑞𝑑 .𝛾
2
.

(5)

Generally, the Gaussian curve for the proportional gain is turned upwards, since

its objective is to accelerate the system’s transient response. In other words, in the first

instant 𝑇 , the maximum stationary error demands a high gain value. In contrast, the

integral gain curve is assumed to have opposite behavior, in other words, a downward

concavity. As the controller approaches the integral gain set point, it should increase to

the point to correct this margin of error and keep the system stable.

This type of controller, when correctly parameterized, proved to be a good

control alternative for non-linear systems, supplying the deficiencies of the widely used

controller, the PID controller (BORGES et al., 2022).

2.6 Particle swarm optimization

Particle swarm optimization (PSO) was initially proposed in 1995 by James

Kennedy and Russell Eberhart, in which they sought to describe the collective behavior of



31

groups of animals in a mathematical way, where the individual behavior of each member

that composes the group is analyzed and the social impact it has on its neighbors

(KENNEDY; EBERHART, 1995).

As it is based on biological models, the algorithm uses basic rules to generate

competitive and/or cooperative behavior among individuals to find the best solution for a

given problem (GARCIA-GONZALO; FERNANDEZ-MARTINEZ, 2012).

Over time, several researchers sought ways to increase the performance of the

PSO. Among the improvements, it is worth highlighting the stability analysis and the

understanding of the dynamics of the particle swarm, which is based on the group’s

influence on the particle.

This cultural adaptation can be summarized in three principles: The individual

and collective perception of the particle, the comparison between individuals, and the

imitation of the best particles (EBERHART; SHI; KENNEDY, 2001).

In this way, because it is simple and robust, this method has been successfully

applied in several areas of engineering to find solutions to various problems (GARCIA-

GONZALO; FERNANDEZ-MARTINEZ, 2012).

2.6.1 Optimization through PSO

To optimize a problem, it is necessary to initialize a randomly distributed popula-

tion composed of individuals or particles with unique positions 𝑥𝑖 and speeds 𝑣𝑖. These

particles are represented by a vector whose dimension is the domain of the fitness

function that is evaluated by each particle in each iteration, resulting in a change in

the position and velocity of each individual. The number of iterations and the number

of individuals influence the amount of processing used and the accuracy of the result

obtained.

Therefore, the decision taken by a given individual is linked to its performance

in the past, together with the performance of its neighbors.

In this way, for a better understanding, the optimization process can be separated

into seven steps:

1. Generating an initial population where each one has a position 𝑥𝑖 which is

the value that the particle has at the moment, and a velocity 𝑣𝑖 which is the

value that changes the individual’s response at each iteration;
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2. Calculating the fitness function returning as a result of how far each particle

is from the target;

3. Finding the (pBest) which is the best position so far of each particle;

4. Finding the (gBest) which is the comparison between the particles, whose

objective is to find the best particle in the population at the moment;

5. Updating the velocity of each particle, whose equation can be represented by

Equation 6, where 𝑟1 and 𝑟2 are random values between 0 and 1 and 𝑐1 and

𝑐2 arbitrary values between 0 and 4. In this step, it can add a variable that

can be decisive in the stability condition of the algorithm, the inertia factor (𝜔),

whose purpose is to carry out an exploratory phase in a moment of execution.

As the iterations go by, its value decreases, reaching the specialization part,

in other words, trying to find a balance between local and global skills of the

PSO;

6. Determining the position of each particle as shown in Equation 7;

7. Evaluating each particle by finding the pBest and gBest.

𝑉𝑖 (𝑡 + 1) = 𝜔𝑣𝑖 + 𝑐1𝑟1(𝑝𝐵𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡 − 𝑥𝑖) (6)

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) +𝑉𝑖 (𝑡 + 1) (7)

Where:

𝜔 represents the inertia weight;

𝑣𝑖 represents the previous velocity of the particle;

𝑐1 represents the cognitive parameter;

𝑟1 represents a random number;

𝑝𝐵𝑒𝑠𝑡 represents the local best position;

𝑐2 represents the social scaling parameter;

𝑟2 represents a random number;

𝑔𝐵𝑒𝑠𝑡 represents the global best position;

𝑥𝑖 represents the previous position of the particle.

For better understanding, Figure 8 illustrates the behavior of particles at each

iteration to solve a problem in which 30 particles were generated with 50 iterations.
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Figure 8 – Arrangement of PSO particles.

Source: Own authorship (2022)
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3 THEORETICAL AND EXPERIMENTAL DEVELOPMENT

For the development of the control system, it was decided to use the BLDC

Racerstar BR2212 1800KV motor, a 40 amps electronic speed controller (ESC), the

HTR-W2-360-3PP encoder to close the control loop that emits 360 pulses per revolution,

and an ESP32 microcontroller to control the motor and monitor these pulses.

In order to produce the load variation necessary in the experimental tests, a felt

disk was directed to the rotor, as shown in Figure 9:

Figure 9 – Test Bench.

Source: Own authorship (2022)

3.1 mathematical model of the system

Before starting the design and development of controllers, obtaining a mathe-

matical model representing the behavior of the system in a real environment is necessary.

Furthermore, obtaining all the values of the constructive parameters related to the BLDC

motor is not a simple task, it requires several tests with specific equipment.The easiest

way is to represent the system as a black box. Therefore, it is necessary to carry out

experimental tests with a mathematical representation closest to reality can be raised

(NISE; SILVA, 2002).
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to obtain the steady-state speed and, consequently, the maximum number of pulses

emitted by the encoder in the sampling time 𝑇𝑠.

Five measurements were carried out to find the adequate sampling time for the

system, where the motor rotates at maximum speed every thirty seconds for each period,

being: 1 s, 500 ms, 275 ms, 200 ms, 100 ms, and 50 ms. Moreover, arithmetic means

with their respective resolutions 𝑅% were taken from these (Equation 8), resulting in the

following Table 1.

𝑅% = 100
1

𝑃𝑢𝑙𝑠𝑒𝑠
(8)

Table 1 – Maximum pulse count and resolution per sampling time.
𝑇𝑠 (ms) Pulse Average/𝑇𝑠 Resolution %
1000 121000 0.000826
500 60500 0.001653
275 33275 0.003005
200 24200 0.004132
100 12100 0.008264
50 6050 0.016529

Source:Own Authorship (2022).

The following calculations were performed to validate the data obtained in Table 1

and to verify if the speed obtained through the encoder portrays the reality of the motor

manufacturer.

Knowing that the encoder emits 360 pulses at each rotation, and 121000 pulses

were obtained in a period 𝑇𝑠 of 1000 ms, we have Equation 9.

Revolutions =
121000

360
≈ 336 (9)

Converting to RPM:

Motor Speed = 336 · 60 seconds ≈ 20167 rpm (10)

In this way, as presented by the manufacturer in the BLDC Racerstar BR2212

motor datasheet in Table 2, for each volt applied, the motor rotates at 1800 rpm. In other

words, at its nominal voltage of 11.1 volts, the maximum speed is approximately 20000

rpm.
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Table 2 – Racerstar BR2212 BLDC motor datasheet.
Description:
Brand Name: Racerstar
Item Name: BR2212 brushless motor
KV: 1800
Operating Voltage 2-4S
Weight: 52g
Recommended Prop: 8060

Source:Manufacturer Website (2022).

As open-loop tests confirmed data provided by the manufacturer and based on

experimentally obtained results (Table 1), a period of 50 ms was adopted because it

has the best resolution, which is 0.016529% and 6050 pulses per 𝑇𝑠.

That way, the BLDC motor open-loop speed curve is obtained (Graph 2), showing

that it behaves like a first-order system. Thus, the necessary parameters to be determined

are the static gain 𝐴 and the time constant 𝜏 values.

Graph 2 – Motor BLDC open-loop response curve - 𝑇𝑠 = 50 ms.

Source: Own authorship (2022)

Knowing that first-order systems can have their time constant measured at the

moment the system response takes to reach 63% of its maximum speed (NISE; SILVA,

2002). It is possible to go along with the steps below. 63% of maximum speed is

approximately 3812 pulses, as described in Equation 11.

Motor Speed = 6050 · 0.63 ≈ 3812 pulses (11)
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According to Graph 2, 3812 pulses represent a 𝜏 value between 0.05 and 0.1

seconds. The period of 0.05 seconds was chosen because it approximates the motor

response. As a result, the curve was obtained by replacing the values of 𝐴 and 𝜏 in

Equation 12, as shown in Graph 3.

𝑦(𝑡) = 𝐴(1 − 𝑒 −𝑡
𝜏 ) (12)

Where:

𝑦(𝑡): Motor speed at the instant 𝑡;

𝜏: Time constant;

𝐴: Static gain.

Thus,

𝑦(𝑡) = 6050(1 − 𝑒 −𝑡
0.05 ) (13)

Graph 3 – Motor BLDC open-loop response curve measured vs
calculated - 𝑇𝑠 = 50 ms.

Source: Own authorship (2022)

Therefore, the mathematical model of the BLDC motor or its plant transfer

function can be given by Equation 14.

𝐺 (𝑠) = 6050
0.05𝑠 + 1

(14)
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The Equation 14 was obtained from a step input of 11.1 volts, because of it,

must divide the equation by the step, getting the Equation 15.

𝐺 (𝑠) = 6050
0.555𝑠 + 11.1

(15)

3.2 Plant discretization

As the system control is embedded in a microcontroller which is composed

of a discrete control system, it is necessary to carry out the controller design in the

discrete domain (Z-Plane), where the model is obtained through the discretization method

Zero-Order Hold (ZOH), which is the most suitable model for digital systems.

The software Matlab was used to perform the discretization of the plant, resulting

in Equation 16, which is represented by Graph 4 for a unit step response.

𝑃(𝑧) = 344.5
𝑧 − 0.3679

(16)

Graph 4 – Open-loop discrete plant unit step response.

Source: Own authorship (2022)
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3.3 Controllers design

3.3.1 Proportional-integral controller design (PI).

In order to control the speed of the BLDC motor, it was decided to design a PI

controller without the need to use a derivative gain (𝐾𝑑) because it is a first-order system.

Thus, with the integral gain (𝐾𝑖), it is possible to correct the stationary error and, with the

proportional gain (𝐾𝑝), obtain an improvement in the response speed.

In this way, the performance parameters adopted for the development of the

controller were the percentage overshoot (PO) of at most 1.3% and a stabilization time

(𝑇𝑒) of 0.5 seconds. With this information, it is possible to obtain the damping ratio (Z)

as represented by Equation 17.

Z =

𝑙𝑜𝑔(100
𝑃𝑂

)√︂
𝜋2 + 𝑙𝑜𝑔(100

𝑃𝑂
)2

= 0.5147 (17)

In this way, it is possible to calculate the natural frequency (𝜔𝑛) according to

Equation 18 and the damped natural frequency (𝜔𝑑) represented in Equation 19.

𝜔𝑛 =
4
𝑇𝑒Z

= 15.5425 (18)

𝜔𝑑 = 𝜔𝑛
√︁

1 − Z2 = 13.3255 (19)

As the values of the damping coefficient, the natural frequency of the system,

and the natural frequency were obtained, it is possible to calculate and find the pole in

the S-domain according to Equation 20.

𝑠 = −Z𝜔𝑛 ± 𝑗𝜔𝑑 = −8 + 𝑗13.3255 (20)

Transforming Equation 20 to the Z-domain, we have Equation 21.

𝑧 = 𝑒𝑠𝑇𝑠 = 0.5270 + 𝑗0.4143 (21)

For the stationary error to be null, a pole was adopted at 𝑧=1 and a zero at 𝛼 as

represented in Equation 22, where 𝑘 represents the controller gain.
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𝐾 (𝑧) = 𝑘 𝑧 − 𝛼
𝑧 − 1

(22)

Consequently, the plant angle (\𝑝) is obtained by replacing Equation 21 result

in Equation 22. Knowing that the controller angle (\𝑘 ) added to \𝑝 should result in -𝜋, it

is possible to obtain (\𝑘 ), as shown in Equation 23.

\𝑘 = −𝜋 − \𝑝 = −1.9374 (23)

It is known that the controller numerator angle (\𝑛) is the result of the sum of the

controller angle and the controller denominator angle (NISE; SILVA, 2002). In this way,

keeping the controller denominator fixed at (𝑧-1), we can calculate 𝛼, as presented in

Equation 24.

𝛼 = − 𝑧.𝑡𝑎𝑛(\𝑛)
𝑡𝑎𝑛(\𝑛)

= −0.2594 (24)

With the value of 𝛼, it remains to calculate the value of 𝑘 to obtain the controller,

according to Equation 25.

𝑘 =
1

|𝑃(𝑧) |.| 𝑧 − 𝛼
𝑧 − 1

|
= 0.0009113 (25)

Substituting the Equation 24 and Equation 25 in Equation 22, we obtain the

controller (Equation 26).

𝐾 (𝑧) = 0.0009113𝑧 + 0.0002364
𝑧 − 1

(26)

3.3.2 Fuzzy-PI hybrid controller design

As already mentioned, the development of the Fuzzy system was chosen be-

cause it is the simplest method to perform adaptive control. However, it is empirical,

requiring the designer or specialist to have full knowledge of the operation of the plant

to be controlled. Thus, for it to be implemented, some steps need to be carried out: the

definition of input and output variables, delimitation of the universe of discourse for each

variable, and the definition of the rule base.
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3.3.2.1 Definition of input and output variables

To establish the Fuzzy control system, two input variables were used. The first

input was the error sign (𝐸) which is the difference between the chosen reference and

the output signal, and the second input is the error derivative (𝑑𝑒) which indicates the

proximity of the output signal with the reference, helping fine-tune the controller. For the

output of the Fuzzy control system, the gains of the PI controller are called 𝐾𝑝 and 𝐾𝑖.

3.3.2.2 Delimitation of the universe of discourse for each variable

At this stage, the fuzzification process begins, where numerical variables are

transformed into linguistic variables. Thus, through tests in simulations, the universe of

discourse for each input and output variable, as well as their pertinence functions, were

delimited.

As shown in Figure 10, it was chosen for the error inputs and the error derivative

to use five membership functions of the triangular type because it is the most accessible

topology to manipulate and also because it is the most common in many applications

of Fuzzy controllers. The membership functions are named NP, NE, ZO, PO, and PP,

meaning negative plus, negative, zero, positive, and positive plus, respectively. The

universe of discourse of the variable 𝐸 varies from -5000 to 5000, and the universe of

discourse of the variable 𝑑𝑒 varies from -1200 to 1200.

According to Figure 11, four membership functions of the triangular type were

used for the output variables: Z, S, M, and B, meaning zero, small, medium, and big,

respectively.

The universe of discourse of the variable 𝐾𝑃 is from 0 to 3, and 𝐾𝑖 is from 0 to 7.

3.3.2.3 Rule base definition

The rule base strongly influences the control system’s behavior, directly influ-

encing performance parameters, such as response time and percentage overshoot.

Therefore, in order for the rule base to bring the desired behavior to the control system,

some points were taken into account, which are:

• For a high error value, there must be a high proportional gain, which causes the
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Figure 10 – Entries membership function 𝐸 and 𝑑𝑒.

Source: Own authorship (2022)

Figure 11 – Output membership function 𝐾𝑝 and 𝐾𝑖.

Source: Own authorship (2022)
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necessary correction, approaching the pre-established reference value; and a

moderate value of the integral gain to avoid a high percentage of overshoot

and not have a significant impact on the response time;

• For the situation where the error and derivative values are close to zero, the

proportional and integral gain values must be close to zero, maintaining the

stability of the system;

Thus, Figure 12 represents the rules established for 𝐾𝑝 and 𝐾𝑖 respectively.

Figure 12 – Rule base for 𝐾𝑝 and 𝐾𝑖.

Source: Own authorship (2022)

3.4 Optimization of the Fuzzy-PI hybrid controller by PSO

As previously reported, the realization of a Fuzzy controller is done empirically.

The particle swarm optimization was applied to avoid hours of work wasted in trial and

error tests, finding the best parameters and obtaining better results from this controller.

The PSO, in this case, was used offline, where the values were obtained based

on the simulations performed by the Simulink software.

To correctly generate the PSO, the following steps were applied:

1. Generate the initial population of 40 particles with 40 iterations, each particle

having its position and velocity generated randomly;

2. Calculating the fitness function, in other words, check how far the particles

are from the target/ setpoint;

3. Finding the best position of each particle at each iteration (pBest);

4. Finding the best particle in the population at the moment (gBest);

5. Updating the velocity of each particle, based on pBest and gBest obtained;
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6. Determining the position of each particle at a given instant;

7. At the end of the 40 iterations, save the gBest obtained, compare the 35

simulations that will be performed, and use the best result for the implemen-

tation.

This algorithm was developed with the aim of finding the best result, in other

words minimizing the steady-state error, for a given setpoint, which in this case is 2900

pulses per sampling period.

As the results obtained by the empirical Fuzzy controller were considerably

good, it was decided to apply some restrictions with a focus on improving what has been

developed so far.

In this case, the optimization algorithm was limited to generating 25 rules, the

maximum range of the inputs 𝐸 and 𝑑𝑒 between -4000 to 4000 and the range of the

outputs 𝐾𝑝 between 0 and 7 and 𝐾𝑖 between 0 and 15.

It is worth noting that the nomenclature of membership functions remained the

same as those used in the Fuzzy controller for better comparison.

During the development process of the algorithm, several simulations were

performed, and it was noted that with a number greater than 40 particles and also a

number greater than 40 iterations, no significant improvement was obtained, in addition

more interactions and particles would require a longer processing time. Thus, both

numbers, 40 particles and 40 iterations were considered.

Also, the fifth step is the moment when Equation 6 is applied. In this case, the

values for the parameters 𝑐1 and 𝑐2 were empirically chosen as 1 and 2.5, respectively.

Therefore, a static inertia coefficient (𝜔) of 0.5 was used in the tests.

With the simulations, the rule base for each variable had a considerable change,

about 87% of the rules were modified as shown by the highlighted blocks in Figure 13.

As shown in Figure 14, the membership functions continued to be of the triangular type,

but the universe of discourse for each variable changed.

Now 𝐸 ranges from -3500 to 3500 and 𝑑𝑒 ranges from -800 to 800, according

to Figure 14, while 𝐾𝑝 ranges from 0 to 3.5 and 𝐾𝑖 varies from 0 to 10 as shown in

Figure 15.
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Figure 13 – Rule base for 𝐾𝑝 and 𝐾𝑖 obtained by the PSO.

Source: Own authorship (2022)

Figure 14 – Entries membership function 𝐸 e 𝑑𝑒 obtained by the PSO.

Source: Own authorship (2022)

3.5 Optimization of the GAPID controller by PSO

As discussed in Chapter 2, the determination of the 9 parameters, 𝐾𝑝1, 𝐾𝑖1,

𝐾𝑑1, 𝐾𝑝0, 𝐾𝑖0, 𝐾𝑑0, 𝑞𝑝, 𝑞𝑖 and 𝑞𝑑, is not an easy task to perform empirically. Due to the

complexity of the problem, it was decided to use the PSO to obtain them.

Before starting the optimization algorithm, some crucial factors were considered,

such as the number of variables to be obtained and how the adaptive controller would be

applied. Because the plant to be controlled has characteristics of a first-degree system,

the parameters linked to the proportional gain were discarded, thus reducing the problem
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Figure 15 – Output membership function 𝐾𝑝 e 𝐾𝑖 obtained by the PSO.

Source: Own authorship (2022)

to 6 variables. With that, the controller will be called GAPI.

Instead of using the specialized solution, which consists of the direct application

of the Gaussian function in the plant, it was decided to link the set of parameters to the

gains of the linear PI controller and, in this way, take advantage of the exact project

requirements but seeking better performance, as shown in Figure 16.

Figure 16 – GAPI Block in Simulink.

Source: Own authorship (2022)

For the optimization algorithm (PSO), the same steps presented in section 3.4

were followed, ten simulations were compared, and the best result was chosen among
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as explained in topic 3.4.

According to Table 3 and Graph 5, it is noted that, contrary to the expected

scenario, 𝐾𝑝 with an upward curve and 𝐾𝑖 with a downward curve. Both gains had their

curves turned downwards.

Table 3 – GAPI parameters.
Parameter Value
𝐾𝑝1 3.17901
𝐾𝑖1 7.73366
𝐾𝑝0 -1.03353
𝐾𝑖0 0.39996
𝑞𝑝 6.59485
𝑞𝑖 5.16543

Source:Own Authorship (2022).

Graph 5 – GAPI Gaussian curves obtained by PSO.

Source: Own authorship (2022)
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3.6 Controller implementation

As mentioned at the beginning of this chapter, the ESP32 microcontroller was

used to control the motor speed through the signals obtained by the encoder. In this

case, it was opted to use the Arduino IDE to program the controller due to the familiarity

with the language and the practicality of monitoring the results obtained. In this way, the

following steps were performed:

1. Obtaining a reliable pulse count approaching reality using 50ms interrupts;

2. Describing the discrete-time system by the difference equation;

3. Using the value resulting from the control effort to generate a PWM pulse;

3.6.1 Difference Equation

For the microcontroller to be able to interpret the controllers to be implemented,

it is necessary to describe the discrete-time system by a difference equation model.

The Equation 27 can be written as follows:

𝑈 (𝑧) · (𝑧 − 1) = 𝐸 · 0.0009113 · (𝑧 + 0.0002364) (27)

Thus, performing the inverse Z transform of Equation 27, 𝑢(𝑘) is obtained, which

is described by Equation 28.

𝑢(𝑘) = 𝑢(𝑘−1) + 0.0009113 · 𝑒(𝑘) + 0.0002364 · 𝑒(𝑘−1) (28)

Where:

𝑢𝑘 represents the output signal;

𝑢(𝑘−1) represents the past output signal;

𝑒𝑘 represents the current input error signal;

𝑒(𝑘−1) represents the past input error signal.

It is worth noting that Equation 28 represents the differential equation of the PI

controller, as the hybrid Fuzzy-PI controller is nothing more than the multiplication of the

outputs resulting from the Fuzzy logic by the gains of the PI controller. Therefore, the

differential equation used for implementing this controller and the controller optimized

by the PSO can be given by Equation 29



49

𝑢(𝑘) = 𝑢(𝑘−1) + (0.0009113 · 𝑒(𝑘) · 𝐴) + (0.0002364 · 𝑒(𝑘−1) · 𝐵) (29)

Where:

• 𝐴 represents 𝐾𝑝 output value obtained through fuzzy logic;

• 𝐵 represents 𝐾𝑖 output value obtained through fuzzy logic.

As the PWM pulse to be sent to the motor will be multiplied by 𝑢(𝑘), the control

effort was normalized to vary between 0 and 1 continuously. In other words, when 𝑢(𝑘)
saturates, as in the first moment where the motor needs to come out of inertia and 𝑒(𝑘)
s maximum, the value that could go from 1 becomes 1 without bursting the maximum

value of the PWM emitted by the microcontroller which is 255 (8 bits).
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4 RESULTS AND DISCUSSION

This chapter presents the simulation and experimental applications results

obtained, where the simulations for all four controllers were performed in closed-loop for

a setpoint of 2900 pulses/𝑇𝑠 using the Simulink software, which in all situations the load

was not considered, as shown in Figure 17, Figure 18 and Figure 19, these simulations

resulted in the curves Graph 6.The tests with load were performed on a test bench where

a felt disk was applied directly to the rotor of the motor at pre-established time intervals.

The best results obtained for each section in all the tables that will be presented

in the next topics are highlighted and underlined for better analysis.

Figure 17 – PI controller simulation in Simulink.

Source: Own authorship (2022)

Figure 18 – Fuzzy-PI Hybrid controller simulation in Simulink.

Source: Own authorship (2022)

Figure 19 – GAPI controller simulation in Simulink.

Source: Own authorship (2022)

Table 4 and Graph 6 show that the GAPI controller obtained the best results

in the rise time and settling time, about 1.64 seconds faster than the PI controller, but
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Graph 6 – Curve of the four controllers simulated without load for a
reference of 2900 pulses/Ts.

Source: Own authorship (2022)

controller showed a fast response time with an overshoot of 0 %, and its PSO-optimized

version showed a slight improvement, but with an overshoot of 1.9 %.

Table 4 – Simulation Results.
Section PI Fuzzy-PI Fuzzy-PI (PSO) GAPI
Rise Time (s) 0.9587 0.1864 0.1078 0.0421
Settling Time (s) 1.7738 0.3463 0.1482 0.1246
Settling Min. 2624 2622 2855 2756
Settling Max. 2900 2900 2957 2984
Overshoot (%) 0 0 1.9663 2.9017
Peak 2900 2900 2957 2984
Peak Time (s) 10 10 0.2 0.1

Source:Own Authorship (2022).
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Graph 7 – Curve of the four controllers implemented without load for
a reference of 2900 pulses/Ts.

Source: Own authorship (2022)

As much as the designer tries to carry out simulations taking into account as

many variables as possible to get closer to reality, it is still possible to forget one of them,

which is evident when we compare the results obtained in the bench tests without load.

To avoid a discrepancy between the simulated and obtained results, using

saturators in the controller output simulations was taken as a countermeasure, as

illustrated in Figure 19, thus limiting the voltage applied to the motor to 11.1 V.

With the data obtained, it is possible to notice that the PI controller was ade-

quately designed, achieving a better performance than the simulated one with a rise

time of 0.3 seconds and a similar percentage of overshoot of 1.3 %.

Another interesting fact is that in the implementation, the PSO-optimized Fuzzy-

PI hybrid controller could not perform better than all the controllers as shown in the

simulation, having a 2% higher overshoot percentage and a 0.02 seconds slower rise

time than the Fuzzy-PI hybrid controller.

The Fuzzy-PI hybrid controller only gained the stabilization time, and the GAPI

controller presented the highest overshoot, 7 %, according to Table 5 and Graph 7.
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Table 5 – Implementation Results without load.
Section PI Fuzzy-PI Fuzzy-PI (PSO) GAPI
Rise Time (s) 0.3003 0.1180 0.1490 0.1288
Settling Time (s) 0.4532 0.8844 0.7 1.2545
Settling Min. 2698 2765 2802 2713
Settling Max. 2940 3030 3086 3103
Overshoot (%) 1.3793 4.4828 6.4138 7.000
Peak 2940 3030 3086 3103
Peak Time (s) 1.35 0.50 0.30 0.40

Source:Own Authorship (2022).

A load disturbance was inserted to investigate the robustness of each control

technique used, where a felt disk was applied directly to the rotor of the BLDC motor

and repeatedly removed every 5 seconds. In other words, the load is placed in 5 and 15

seconds and withdrawn at 10 and 20 seconds, as seen in Graph 8.

Graph 8 – Curve of the four controllers implemented with load for a
reference of 2900 pulses/Ts.

Source: Own authorship (2022)

According to the graph presented and the measured data in Table 6, it can be

noted that the Fuzzy-PI hybrid controller optimized by the PSO has a faster response to

load disturbances, managing to maintain the lowest percentage of overshoot among the

four analyzed controllers. In addition, it is also worth mentioning the robustness of the

PI controller, which despite having a slow response to the load variation, still manages

to adapt and reach the established reference, having a shorter stabilization time than

the other three controllers.
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the adaptive controllers based on fuzzy logic, it fulfilled its function by being practical

and leading to a significant improvement for the PI controller with an accommodation

time 2 seconds faster than the Fuzzy-PI hybrid controller optimized by PSO and a 20 %

reduction in overshoot.

Table 6 – Implementation Results with load.
Section PI Fuzzy-PI Fuzzy-PI (PSO) GAPI
Rise Time (s) 0.2970 0.1391 0.1512 0.1289
Settling Time (s) 21.8275 24.71 24.4115 22.3991
Settling Min. 984 1131 2057 1047
Settling Max. 4957 4042 3983 4369
Overshoot (%) 70.9310 39.3793 37.3448 50.5513
Peak 4957 4042 3983 4369
Peak Time (s) 10.35 10.25 10.15 10.15

Source:Own Authorship (2022).
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5 CONCLUSIONS

The necessity to optimize processes is increasingly present due to the complexity

of systems and the advancement of technology. For this, new control techniques need

to be developed and applied.

For the proposed research, the control technique widely used in the industry,

the proportional-integral controller, was not enough to meet the project’s needs precisely

because it does not behave linearly when there are load variations.

Thus, one of the ways to mitigate this problem would be the application of

adaptive techniques such as Fuzzy and Gaussian. However, for such techniques to be

used correctly in the controllers, the designer must have complete knowledge of the

control system. As it is an entirely empirical control, the values used in the simulation

and implementation may not be ideal.

In this way, using an optimization algorithm was the best way to get reliable

results. As the PSO creates a universe of possible results and, in a few interactions, can

obtain the best values to project. It was achievable to find the parameters necessary for

a Fuzzy system, such as the membership functions and their respective degrees, as

well as the organization of the rule base and the bottom and upper limits much needed

for the GAPI controller.

Based on the results obtained, it became clear that the Fuzzy-PI Hybrid controller,

when properly designed, proves to be a powerful tool. Due to its construction, it is possible

to perform precise control with a high level of fine adjustment. On the other hand, it

requires high processing power compared to the GAPI controller, which can make this

technique unattractive for specific projects, mainly when focusing on developing a low-

cost product. For example, the ESP32 microcontroller can be replaced by an Arduino

Nano, as it has enough processing power to run the GAPI controller algorithm and obtain

good results.

Despite not presenting the best results, the GAPI controller fulfilled its role by

supplying some evident deficiencies in the PI controller for the test proposal of this study.

In this work, it was possible to conclude that the union of these control and

optimization techniques resulted in a controller that could supply the PI controller’s low

response time for load variations, reduce the complexity, and eliminate the empiricism

of the applied adaptive techniques.
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Although the results were positive for the motor speed control, an important

point for this type of control was not considered, which was the efficiency. As mentioned

at the beginning of this paper, efficiency is the main focus of the electric vehicle industry,

when the BLDC motor is used in this application, several variables must be taken into

account, such as the electric current.

It is proposed for future research, the improvement of Fuzzy and GAPI controllers

using the current demanded by the motor as a second control variable, aiming at

optimization, greater efficiency and a longer battery usage time, as well as the analysis

of the particularities of this electrical magnitude in a BLDC motor.
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APPENDIX A — CODES USED FOR SIMULATIONS AND IMPLEMENTATION



62

In this section, MatLab Software was used in order to perform the necessary

calculations to obtain the discretized plant and the development of the PI controller in

which the root locus method was applied.

In the same way, the algorithm for the particle swarm optimization of the Fuzzy-PI

hybrid controller and GAPI controller were developed.

PI Controller

numP=[6050];
denP=[0.05 1];
P=tf(numP,denP);
P=P/11.1;
Ts=0.05;
Pd=c2d(P,Ts);
step(Pd)
hold on
PSS = 1.3;
qsi = log10(100/PSS)/(sqrt((pi^2)+log10(100/PSS)^2));}
Te= 0.5;
wn = 4/(Te*qsi)
sigma = -qsi*wn
wd = wn*sqrt(1-(qsi$^$2))
s= sigma + j*wd
z = exp(s*Ts)
rp = freqresp (Pd,z)
mp = abs(rp)
tetap = angle$^$s(rp)
tetak = -pi - tetap
tetad=angle(z-1)
tetan=tetak+tetad
tan(tetan);
alpha=(imag(z)-(real(z)*ans))/-ans
mk=abs((z-alpha)/(z-1))
k=1/(mk*mp)
numk=k*[1 -alpha]
denk=[1 -1]
K=tf(numk,denk,Ts)
G=K*Pd;
T=feedback(G,1);
kp1=alpha*k;
ki1=k-kp1;
step(T);

Particle swarm optimization algorithm - Fuzzy

% chama o controlador PI
controlador();
% estabelecimento dos parâmetros de inicialização
NUM_PARTICULAS = 40;
NUM_GERACOES = 35;
nIteracoes = 1;
best_fit = 0;
fit_max=0; vetor_fit_max=0;

% Inicialização dos limites para as funções de Pertinência
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ub1 = [0 1.5 2.5 3.5 600 2650 1300 4000 3 6 15];
lb1 = [0 1 2 3 300 2150 800 3500 2.5 5 7];
numRegras=25;
ub=ub1; lb=lb1;
for i=1:numRegras

% limites para kp
ub(i+length(ub1)) = 4;
lb(i+length(lb1)) = 1;
% limites para ki
ub(numRegras+i+length(ub1)) = 4;
lb(numRegras+i+length(lb1)) = 1;

end
[~, numVar] = size(ub);
numFuncoes = 11; %regras SC
numRegras = numVar - numFuncoes;

% Executa o PSO
for n=1:nIteracoes
disp(' ---------------- BPSO ---------------- ');

% Inicia o enxame com vetor velocidade zero
swarm = [];
for i=1:NUM_PARTICULAS

swarm = [swarm, Particula()];
for j=1:length(lb)

swarm(i).vel(j)=0;
end

end

% Gera posição aleatória
for i=1:length(swarm)

swarm(i)=swarm(i).inicPosicao(lb,ub,numRegras);
end

%Inicia a partícula gBest
gBest = Particula();

classdef Particula
properties

pos = [];
vel = [];
fit = 0;
pbestpos;
pbest = 0;

end
methods

function self = inicPosicao(self,lb,ub,numRegras)
for i = 1:length(lb)

self.pos = [self.pos, rand*(ub(1,i)-lb(1,i))+lb(1,i)];
end
for k=1:numRegras

while(self.pos(k)==0 && self.pos(k+numRegras)==0)
self.pos(k) = randi([lb(1,k),ub(1,k)]);
self.pos(k+numRegras)=
randi([lb(1,k+numRegras),ub(1,k+numRegras)]);

end
end

end
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function self = calculaFit(self)
self.fit = avaliacao(self.pos);
if self.fit > self.pbest

self.pbest = self.fit;
self.pbestpos = self.pos;

end
end
function self = calcVel(self,gBest,i,NUM_GERACOES)
w=0.5;
c1=1;
c2=2.5;

for i=1:length(self.vel)
self.vel(i) = w*self.vel(i) + c1*rand*(self.pbestpos(i)
- self.pos(i)) +
c2*rand*(gBest.pos(i) - self.pos(i));

end
end
function self = calcPos(self,lb,ub,numRegras)

self.pos = round(self.pos+self.vel);

%Checagem dos Limites
contLimites=0;
for c=1:length(lb)

if self.pos(c) > ub(c)
self.pos(c) = ub(c);
contLimites=contLimites+1;

elseif self.pos(c) < lb(c)
self.pos(c) = lb(c);
contLimites=contLimites+1;

end
end

fprintf('Bounds: %d out of %d.\n',contLimites,length(lb));
for k=1:numRegras

while(self.pos(k)==0 && self.pos(k+numRegras)==0)
self.pos(k) = randi([lb(1,k),ub(1,k)]);
self.pos(k+numRegras) = randi([lb(1,k+numRegras),
ub(1,k+numRegras)]);

disp('Regra nula por calcPos');
end

end
end
function self = mut(self,lb,ub,numRegras)

self.pos(i) = randi([lb(1,k),ub(1,k)]);
for k1=1:numRegras

while(self.pos(k1)==0 && self.pos(k1+numRegras)==0)
self.pos(k1) = randi([lb(1,k1),ub(1,k1)]);
self.pos(k1+numRegras) = randi([lb(1,k1+numRegras),
ub(1,k1+numRegras)]);

disp('Regra nula por mutacao');
end

end
end

end
end

%Realização dos Cálculos
i = 1;
while i <= NUM_GERACOES
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%Calculo fitness
for j=1:NUM_PARTICULAS
fprintf('Avaliacao %d de %d\n',j,NUM_PARTICULAS);

swarm(j)=swarm(j).calculaFit();

% Atualiza o gbest
if(swarm(j).fit > gBest.fit)

gBest = swarm(j);
end

end
hold off
fprintf('\n');
%plot - melhor fitness
vetor_fit_max(i)=gBest.fit;
subplot(2,2,[1,2])
plot(vetor_fit_max)
axis([0 inf 0 max(vetor_fit_max)])

% Busca local da melhor velocidade e posição
for j=1:NUM_PARTICULAS

swarm(j)=swarm(j).calcVel(gBest,i,NUM_GERACOES);
end

for j=1:NUM_PARTICULAS
swarm(j)=swarm(j).calcPos(lb,ub,numRegras);

end

fprintf('Ger: %d \nMelhor Fit: %f\n\n',i,gBest.fit);
if gBest.fit == 1

break
end
i=i+1;

end
disp('-- FIM --');

best(n,:) = gBest.pos;
dispersaoG(1,n) = i;
dispersaoR(1,n) = gBest.fit;
if gBest.fit > best_fit

fit_idx = n;
vetor_fit_max1 = vetor_fit_max;
best_fit = gBest.fit;

end
save('log.mat','best','fit_idx','
dispersaoG','dispersaoR','vetor_fit_max1');
end

% Respostas
load log.mat

%Atualiza o arquivo .fis do controlador Fuzzy
atualizacaoFuzzy(best(fit_idx,:));
function atualizacaoFuzzy(x1)
global a

% Configuração do Fuzzy
x2=x1(1,1:11);
a=newfis('fuzzy');
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a=addvar(a,'input','erro',[-x2(8) x2(8)]);
a=addmf(a,'input',1,'NG','trimf',[-x2(8) -x2(8) -x2(6)]);
a=addmf(a,'input',1,'NP','trimf',[-x2(8) -x2(6) x2(1)]);
a=addmf(a,'input',1,'ZO','trimf',[-x2(6) x2(1) x2(6)]);
a=addmf(a,'input',1,'PP','trimf',[x2(1) x2(6) x2(8)]);
a=addmf(a,'input',1,'PG','trimf',[x2(6) x2(8) x2(8)]);
;
a=addvar(a,'input','derro',[-x2(7) x2(7)]);
a=addmf(a,'input',2,'NG','trimf',[-x2(7) -x2(7) -x2(5)]);
a=addmf(a,'input',2,'NP','trimf',[-x2(7) -x2(5) x2(1)]);
a=addmf(a,'input',2,'ZO','trimf',[-x2(5) x2(1) x2(5)]);
a=addmf(a,'input',2,'PP','trimf',[x2(1) x2(5) x2(7)]);
a=addmf(a,'input',2,'PG','trimf',[x2(5) x2(7) x2(7)]);

a=addvar(a,'output','Kp',[x2(1) x2(4)]);
a=addmf(a,'output',1,'Z','trimf',[x2(1) x2(1) x2(2)]);
a=addmf(a,'output',1,'S','trimf',[x2(1) x2(2) x2(3)]);
a=addmf(a,'output',1,'M','trimf',[x2(2) x2(3) x2(4)]);
a=addmf(a,'output',1,'B','trimf',[x2(3) x2(4) x2(4)]);

a=addvar(a,'output','Ki',[x2(1) x2(11)]);
a=addmf(a,'output',2,'Z','trimf',[x2(1) x2(1) x2(9)]);
a=addmf(a,'output',2,'S','trimf',[x2(1) x2(9) x2(10)]);
a=addmf(a,'output',2,'M','trimf',[x2(9) x2(10) x2(11)]);
a=addmf(a,'output',2,'B','trimf',[x2(10) x2(11) x2(11)]);

ruleList=[ ...
1 1 round(x1(12)) round(x1(37)) 1 1
1 2 round(x1(13)) round(x1(38)) 1 1
1 3 round(x1(14)) round(x1(39)) 1 1
1 4 round(x1(15)) round(x1(40)) 1 1
1 5 round(x1(16)) round(x1(41)) 1 1
2 1 round(x1(17)) round(x1(42)) 1 1
2 2 round(x1(18)) round(x1(43)) 1 1
2 3 round(x1(19)) round(x1(44)) 1 1
2 4 round(x1(20)) round(x1(45)) 1 1
2 5 round(x1(21)) round(x1(46)) 1 1
3 1 round(x1(22)) round(x1(47)) 1 1
3 2 round(x1(23)) round(x1(48)) 1 1
3 3 round(x1(24)) round(x1(49)) 1 1
3 4 round(x1(25)) round(x1(50)) 1 1
3 5 round(x1(26)) round(x1(51)) 1 1
4 1 round(x1(27)) round(x1(52)) 1 1
4 2 round(x1(28)) round(x1(53)) 1 1
4 3 round(x1(29)) round(x1(54)) 1 1
4 4 round(x1(30)) round(x1(55)) 1 1
4 5 round(x1(31)) round(x1(56)) 1 1
5 1 round(x1(32)) round(x1(57)) 1 1
5 2 round(x1(33)) round(x1(58)) 1 1
5 3 round(x1(34)) round(x1(59)) 1 1
5 4 round(x1(35)) round(x1(60)) 1 1
5 5 round(x1(36)) round(x1(61)) 1 1
];
a = addrule(a,ruleList);
writefis(a,'fuzzy');
end

fuzzy fuzzy.fis



67

%simula o controlador Fuzzy
sim('Controle_Fuzzy_PID_Motor23');

Particle swarm optimization algorithm - GAPI

Sav_Gbests = zeros(1,7);
%% Problem Definition
FitFunction = @(X) MotorFitGAPID_Carlos(X);
nVar = 6; %Number of genes of a particle
VarSize = [1 nVar]; %Matrix size of Particle
VarMin = 0.00000001; %Lower bound
VarMax = 0.01; %Upper bound

%% Parameters of the PSO
MaxIt =180; %Max Iterations
nPop = 50; %Population Size (swarm size)
%w = 0.6; %Inertia coefficient
wmax = 0.99; %Max inertial weight value
wmin = 0.6; %Min inertial weight value
wdamp = 0.99; %Damping Ratio of Inertia Coefficient
c1 = 1.5; %Personal Acceleration COefficient
c2 = 2.5; %Social Acceleration COefficient

MaxVelocity = 100*(VarMax - VarMin);
MinVelocity = -MaxVelocity;

simi = 1;

%% Initialization
empty_particle.Position = [];
empty_particle.Velocity = [];
empty_particle.Fit = [];
empty_particle.Best.Position = [];
empty_particle.Best.Fit = [];
X = zeros(nPop, nVar);

%Create population array:
particle = repmat(empty_particle, nPop, 1);

%Initialize Global Best:
GlobalBest.Fit = 0;
GlobalBest.Position = 0;
for i=1:nPop

%Generate initial random solutions:
particle(i).Position= unifrnd(VarMin, VarMax, VarSize);

%Initialize Velocity at zero:
particle(i).Velocity = zeros(VarSize);

%Evaluate the Fit:
X(i,:) = particle(i).Position;
kp1 = X(i,1);

ki1 = X(i,2);
%kd1 = X(i,3);
kp0 = X(i,3);
ki0 = X(i,4);
qp = X(i,5);
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qi = X(i,6);
% qd = X(i,8);

TempX = X(i,:);

%-------------------------------------------------------
FitSum = 0;
AuxFit = FitFunction(TempX);
FitSum = FitSum + AuxFit;
FitFinal = FitSum;
particle(i).Fit = FitFinal;
%---------------------------------------------------------

%Update Personal best:
particle(i).Best.Position = particle(i).Position;
particle(i).Best.Fit = particle(i).Fit;

%Update Global best:
if particle(i).Best.Fit > GlobalBest.Fit

GlobalBest = particle(i).Best;
GlobalBest.Fit = particle(i).Best.Fit;
GlobalBest.Position = particle(i).Best.Position;

end

%Array with the best Fit at each iteration:
BestFits = zeros(MaxIt, 1);
ite = zeros(MaxIt, 1);
partFit = zeros(MaxIt, 1);
WorstFits = zeros(MaxIt, 1);
AvgFits = zeros(MaxIt, 1);
MutCount = 0;

end

%% Main loop
for it=1:MaxIt
TempFit = GlobalBest.Fit;

for i=1:nPop

w = wmax - it.*((wmax-wmin)/MaxIt);
%Velocity update:

particle(i).Velocity = w*particle(i).Velocity + %
c1*rand(VarSize).*(particle(i).Best.Position - particle(i).Position)+ %
c2*rand(VarSize).*(GlobalBest.Position - particle(i).Position);

%Update Position:
particle(i).Position = particle(i).Position + particle(i).Velocity;

%Evaluation:
X(i,:) = particle(i).Position;
kp1 = X(i,1);
ki1 = X(i,2);
%kd1 = X(i,3);
kp0 = X(i,3);
ki0 = X(i,4);
qp = X(i,5);
qi = X(i,6);
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%qd = X(i,8);
TempX = X(i,:);
%--------------------------------------------------------
FitSum = 0;

AuxFit = FitFunction(TempX);
FitSum = FitSum + AuxFit;

FitFinal = FitSum;
particle(i).Fit = FitFinal;
%---------------------------------------------------------

%Update Personal Best:
if particle(i).Fit > particle(i).Best.Fit

particle(i).Best.Position = particle(i).Position;
particle(i).Best.Fit = particle(i).Fit;

%Update Global Best:
if particle(i).Best.Fit > GlobalBest.Fit

disp(['Gbest Fitness before = ' num2str(GlobalBest.Fit)]);
GlobalBest = particle(i).Best;
GlobalBest.Fit = particle(i).Best.Fit;
disp(['Gbest Fitness after = ' num2str(GlobalBest.Fit)]);

end

end

end

%Store the Best Fit Value
ite(it) = it;
WorstFits(it) = min([particle.Fit]);
AvgFits(it) = median([particle.Fit]);
BestFits(it) = GlobalBest.Fit;
partFit(it) = max([particle.Fit]);

%Display Iteration Information
disp(['Iteration ' num2str(it) '; Best Fit = ' num2str(BestFits(it)) '; %

Best of Ite = ' num2str(partFit(it))]);
disp(['Gbest = ' num2str(GlobalBest.Position)]);
disp(['Gbest repetition count = ' num2str(MutCount)]);

end

%% Results
figure
plot(ite,BestFits,ite,WorstFits,ite,AvgFits);
xlabel('Iterations');
ylabel('Fitness');
legend('Best','Worst','Average','Location','northoutside','Orientation','horizontal');
grid on;

Sav_Gbests(1,1:6) = GlobalBest.Position;
Sav_Gbests(1,7) = GlobalBest.Fit;

T = table(Sav_Gbests);
writetable(T,'PSO_Gbests_List_99.xls');
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Implementation code of controllers in ESP32 microcontroller

For the implementation of the code to the microcontroller and for familiarity with

the language, the Arduino IDE was used. In this section are the codes used for all

controllers present in this paper.

Open loop control

This code was used for the purpose of obtaining the system transfer function.

#include <Wire.h>
hw_timer_t * timer = NULL;
int pulseCount;
void setup() {
Serial.begin(115200);
attachInterrupt(digitalPinToInterrupt(15), counter, RISING);
timer = timerBegin(0, 1, true);
timerAttachInterrupt(timer, calc, true);
timerAlarmWrite(timer, 2000000, true);
timerAlarmEnable(timer);

}void calc() {
Serial.println(pulseCount);
pulseCount = 0;
}void counter() {
pulseCount++;

}void loop() {}

PID Controller
#include <HardwareSerial.h>
#include <ESP32Servo.h>
hw_timer_t * timer = NULL;
int ref = 2900;
int vel,pwmreal;
double uk=0, uk1=0, ek=0, ek1=0, pwm = 0, erro;
Servo ESC;

void setup() {
Serial.begin(115200);
Serial2.begin(115200, SERIAL_8N1, 16, 17);
ESC.attach(18);
delay(5000);
start();
delay(3000);
}
void start(){
ESC.write(180);
delay(3000);
ESC.write(40);

}
void loop() {
if (Serial2.available()>0){
vel = Serial2.parseInt();
}

erro = ref - vel;
ek = erro/255;
Ts=50ms

uk= uk1+ (0.0009113*ek) + (0.0002364*ek1);
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pwmreal=uk;
uk1=uk;
ek1=ek;

if(uk>1) uk=1;
if(uk<0) uk=0;

pwm=180*uk;
ESC.write(pwm);
Serial.println(vel);
vel = 0;

}

Fuzzy-PID hybrid controller and its PSO-optimized version

The code below was used for the implementation of the hybrid Fuzzy-PID

controller, for its implementation only the rules and the values of the membership

functions were changed.

#define FIS_TYPE double
#define FIS_RESOLUSION 101
#define FIS_MIN -3.4028235E+6
#define FIS_MAX 3.4028235E+6
typedef FIS_TYPE(*_FIS_MF)(FIS_TYPE, FIS_TYPE*);
typedef FIS_TYPE(*_FIS_ARR_OP)(FIS_TYPE, FIS_TYPE);
typedef FIS_TYPE(*_FIS_ARR)(FIS_TYPE*, double, _FIS_ARR_OP);

#include <ESP32Servo.h>
#include <HardwareSerial.h>

int ref = 2900;
double pwm, vel, Velo;
int vel1=0;
double uk=0, uk1=0, ek=0, ek1=0, ek2=0, kp, ki,KP,KI;
Servo ESC;
double erro = 0;
double derro = 0;
float Ts = 0.05;

FIS_TYPE g_fisInput[2];
FIS_TYPE g_fisOutput[2];

void setup() {
Serial.begin(115200);
Serial2.begin(115200, SERIAL_8N1, 16, 17);
ESC.attach(18);
delay(3000);
start();
delay(5000);
}

void start(){
ESC.write(180);
delay(3000);
ESC.write(40);
delay(3000);
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}

void fuzzy()
{

g_fisInput[0] = erro;
g_fisInput[1] = derro;

g_fisOutput[0] = 0;
g_fisOutput[1] = 0;

fis_evaluate();

kp = g_fisOutput[0];
ki = g_fisOutput[1];

}

FIS_TYPE fis_trimf(FIS_TYPE x, FIS_TYPE* p)
{

FIS_TYPE a = p[0], b = p[1], c = p[2];
FIS_TYPE t1 = (x - a) / (b - a);
FIS_TYPE t2 = (c - x) / (c - b);
if ((a == b) && (b == c)) return (FIS_TYPE) (x == a);
if (a == b) return (FIS_TYPE) (t2*(b <= x)*(x <= c));
if (b == c) return (FIS_TYPE) (t1*(a <= x)*(x <= b));
t1 = min(t1, t2);
double yy=0;
return (FIS_TYPE) max(t1, yy);

}

FIS_TYPE fis_min(FIS_TYPE a, FIS_TYPE b)
{

return min(a, b);
}

FIS_TYPE fis_max(FIS_TYPE a, FIS_TYPE b)
{

return max(a, b);
}

FIS_TYPE fis_array_operation(FIS_TYPE *array,
int size, _FIS_ARR_OP pfnOp)
{

int i;
FIS_TYPE ret = 0;
if (size == 0) return ret;
if (size == 1) return array[0];
ret = array[0];
for (i = 1; i < size; i++)
{

ret = (*pfnOp)(ret, array[i]);
}
return ret;

}
_FIS_MF fis_gMF[] =
{

fis_trimf
};

int fis_gIMFCount[] = { 5, 5 };
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int fis_gOMFCount[] = { 4, 4 };

FIS_TYPE fis_gMFI0Coeff1[] = { -5000, -5000, -2500 };
FIS_TYPE fis_gMFI0Coeff2[] = { -5000, -2500, 0 };
FIS_TYPE fis_gMFI0Coeff3[] = { -2500, 0, 2500 };
FIS_TYPE fis_gMFI0Coeff4[] = { 0, 2500, 5000 };
FIS_TYPE fis_gMFI0Coeff5[] = { 2500, 5000, 5000 };
FIS_TYPE* fis_gMFI0Coeff[] = { fis_gMFI0Coeff1, fis_gMFI0Coeff2,
fis_gMFI0Coeff3, fis_gMFI0Coeff4, fis_gMFI0Coeff5 };

FIS_TYPE fis_gMFI1Coeff1[] = { -1200, -1200, -600 };
FIS_TYPE fis_gMFI1Coeff2[] = { -1200, -600, 0 };
FIS_TYPE fis_gMFI1Coeff3[] = { -600, 0, 600 };
FIS_TYPE fis_gMFI1Coeff4[] = { 0, 600, 1200 };
FIS_TYPE fis_gMFI1Coeff5[] = { 600, 1200, 1200 };
FIS_TYPE* fis_gMFI1Coeff[] = { fis_gMFI1Coeff1, fis_gMFI1Coeff2,
fis_gMFI1Coeff3, fis_gMFI1Coeff4, fis_gMFI1Coeff5 };

FIS_TYPE** fis_gMFICoeff[] = { fis_gMFI0Coeff, fis_gMFI1Coeff };

FIS_TYPE fis_gMFO0Coeff1[] = { 0, 0, 1 };
FIS_TYPE fis_gMFO0Coeff2[] = { 0, 1, 2 };
FIS_TYPE fis_gMFO0Coeff3[] = { 1, 2, 3 };
FIS_TYPE fis_gMFO0Coeff4[] = { 2, 3, 3 };
FIS_TYPE* fis_gMFO0Coeff[] = { fis_gMFO0Coeff1, fis_gMFO0Coeff2,
fis_gMFO0Coeff3, fis_gMFO0Coeff4 };

FIS_TYPE fis_gMFO1Coeff1[] = { 0, 0, 2.4 };
FIS_TYPE fis_gMFO1Coeff2[] = { 0, 2.4, 4.7 };
FIS_TYPE fis_gMFO1Coeff3[] = { 2.4, 4.7, 7 };
FIS_TYPE fis_gMFO1Coeff4[] = { 4.7, 7, 7 };
FIS_TYPE* fis_gMFO1Coeff[] = { fis_gMFO1Coeff1, fis_gMFO1Coeff2,
fis_gMFO1Coeff3, fis_gMFO1Coeff4 };

FIS_TYPE** fis_gMFOCoeff[] = { fis_gMFO0Coeff, fis_gMFO1Coeff };

int fis_gMFI0[] = { 0, 0, 0, 0, 0 };
int fis_gMFI1[] = { 0, 0, 0, 0, 0 };
int* fis_gMFI[] = { fis_gMFI0, fis_gMFI1};
int fis_gMFO0[] = { 0, 0, 0, 0 };
int fis_gMFO1[] = { 0, 0, 0, 0 };
int* fis_gMFO[] = { fis_gMFO0, fis_gMFO1};
FIS_TYPE fis_gRWeight[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
int fis_gRType[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

int fis_gRI0[] = { 1, 1 };
int fis_gRI1[] = { 1, 2 };
int fis_gRI2[] = { 1, 3 };
int fis_gRI3[] = { 1, 4 };
int fis_gRI4[] = { 1, 5 };
int fis_gRI5[] = { 2, 1 };
int fis_gRI6[] = { 2, 2 };
int fis_gRI7[] = { 2, 3 };
int fis_gRI8[] = { 2, 4 };
int fis_gRI9[] = { 2, 5 };
int fis_gRI10[] = { 3, 1 };
int fis_gRI11[] = { 3, 2 };
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int fis_gRI12[] = { 3, 3 };
int fis_gRI13[] = { 3, 4 };
int fis_gRI14[] = { 3, 5 };
int fis_gRI15[] = { 4, 1 };
int fis_gRI16[] = { 4, 2 };
int fis_gRI17[] = { 4, 3 };
int fis_gRI18[] = { 4, 4 };
int fis_gRI19[] = { 4, 5 };
int fis_gRI20[] = { 5, 1 };
int fis_gRI21[] = { 5, 2 };
int fis_gRI22[] = { 5, 3 };
int fis_gRI23[] = { 5, 4 };
int fis_gRI24[] = { 5, 5 };
int* fis_gRI[] = { fis_gRI0, fis_gRI1,
fis_gRI2, fis_gRI3, fis_gRI4, fis_gRI5,
fis_gRI6, fis_gRI7, fis_gRI8, fis_gRI9,
fis_gRI10, fis_gRI11, fis_gRI12,
fis_gRI13, fis_gRI14, fis_gRI15,
fis_gRI16, fis_gRI17, fis_gRI18,
fis_gRI19, fis_gRI20, fis_gRI21,
fis_gRI22, fis_gRI23, fis_gRI24 };

int fis_gRO0[] = { 4, 1 };
int fis_gRO1[] = { 4, 1 };
int fis_gRO2[] = { 4, 1 };
int fis_gRO3[] = { 4, 1 };
int fis_gRO4[] = { 3, 1 };
int fis_gRO5[] = { 3, 3 };
int fis_gRO6[] = { 4, 3 };
int fis_gRO7[] = { 2, 3 };
int fis_gRO8[] = { 2, 3 };
int fis_gRO9[] = { 2, 3 };
int fis_gRO10[] = { 3, 4 };
int fis_gRO11[] = { 4, 4 };
int fis_gRO12[] = { 1, 1 };
int fis_gRO13[] = { 2, 4 };
int fis_gRO14[] = { 4, 4 };
int fis_gRO15[] = { 2, 2 };
int fis_gRO16[] = { 2, 3 };
int fis_gRO17[] = { 2, 3 };
int fis_gRO18[] = { 2, 3 };
int fis_gRO19[] = { 2, 3 };
int fis_gRO20[] = { 3, 1 };
int fis_gRO21[] = { 4, 2 };
int fis_gRO22[] = { 4, 4 };
int fis_gRO23[] = { 3, 4 };
int fis_gRO24[] = { 4, 4 };
int* fis_gRO[] = { fis_gRO0, fis_gRO1,
fis_gRO2, fis_gRO3, fis_gRO4, fis_gRO5,
fis_gRO6, fis_gRO7, fis_gRO8, fis_gRO9,
fis_gRO10, fis_gRO11, fis_gRO12,
fis_gRO13, fis_gRO14, fis_gRO15,
fis_gRO16, fis_gRO17, fis_gRO18,
fis_gRO19, fis_gRO20, fis_gRO21,
fis_gRO22, fis_gRO23, fis_gRO24 };

FIS_TYPE fis_gIMin[] = { -5000, -1200 };
FIS_TYPE fis_gIMax[] = { 5000, 1200 };
FIS_TYPE fis_gOMin[] = { 0, 0 };
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FIS_TYPE fis_gOMax[] = { 3, 7 };

FIS_TYPE fis_MF_out(FIS_TYPE** fuzzyRuleSet, FIS_TYPE x, int o)
{

FIS_TYPE mfOut;
int r;
for (r = 0; r < 25; ++r)
{

int index = fis_gRO[r][o];
if (index > 0)
{

index = index - 1;
mfOut = (fis_gMF[fis_gMFO[o][index]])(x,fis_gMFOCoeff[o][index]);

}
else if (index < 0)
{

index = -index - 1;
mfOut = 1 - (fis_gMF[fis_gMFO[o][index]])
(x,fis_gMFOCoeff[o][index]);

}
else
{

mfOut = 0;
}
fuzzyRuleSet[0][r] = fis_min(mfOut, fuzzyRuleSet[1][r]);

}
return fis_array_operation(fuzzyRuleSet[0], 25, fis_max);

}
FIS_TYPE fis_defuzz_centroid(FIS_TYPE** fuzzyRuleSet, int o)
{
FIS_TYPE step = (fis_gOMax[o] - fis_gOMin[o])/ (FIS_RESOLUSION - 1);

FIS_TYPE area = 0;
FIS_TYPE momentum = 0;
FIS_TYPE dist, slice;
int i;

for (i = 0; i < FIS_RESOLUSION; ++i){
dist = fis_gOMin[o] + (step * i);
slice = step * fis_MF_out(fuzzyRuleSet, dist, o);
area += slice;
momentum += slice*dist;

}

return ((area == 0) ? ((fis_gOMax[o] + fis_gOMin[o])/ 2) :
(momentum / area));}
void fis_evaluate()
{

FIS_TYPE fuzzyInput0[] = { 0, 0, 0, 0, 0 };
FIS_TYPE fuzzyInput1[] = { 0, 0, 0, 0, 0 };
FIS_TYPE* fuzzyInput[2] = { fuzzyInput0, fuzzyInput1, };
FIS_TYPE fuzzyOutput0[] = { 0, 0, 0, 0 };
FIS_TYPE fuzzyOutput1[] = { 0, 0, 0, 0 };
FIS_TYPE* fuzzyOutput[2] = { fuzzyOutput0, fuzzyOutput1, };
FIS_TYPE fuzzyRules[25] = { 0 };
FIS_TYPE fuzzyFires[25] = { 0 };
FIS_TYPE* fuzzyRuleSet[] = { fuzzyRules, fuzzyFires };
FIS_TYPE sW = 0;
int i, j, r, o;
for (i = 0; i < 2; ++i)
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{
for (j = 0; j < fis_gIMFCount[i]; ++j)
{

fuzzyInput[i][j] = (fis_gMF[fis_gMFI[i][j]])
(g_fisInput[i], fis_gMFICoeff[i][j]);

}
}
int index = 0;
for (r = 0; r < 25; ++r)
{

if (fis_gRType[r] == 1)
{

fuzzyFires[r] = FIS_MAX;
for (i = 0; i < 2; ++i)
{

index = fis_gRI[r][i];
if (index > 0)

fuzzyFires[r] = fis_min(fuzzyFires[r], fuzzyInput[i]
[index - 1]);

else if (index < 0)
fuzzyFires[r] = fis_min(fuzzyFires[r], 1 - fuzzyInput[i]
[-index - 1]);

else
fuzzyFires[r] = fis_min(fuzzyFires[r], 1);

}
}
else
{

fuzzyFires[r] = FIS_MIN;
for (i = 0; i < 2; ++i)
{

index = fis_gRI[r][i];
if (index > 0)

fuzzyFires[r] = fis_max(fuzzyFires[r], fuzzyInput[i]
[index - 1]);

else if (index < 0)
fuzzyFires[r] = fis_max(fuzzyFires[r], 1 - fuzzyInput[i]
[-index - 1]);

else
fuzzyFires[r] = fis_max(fuzzyFires[r], 0);

}
}
fuzzyFires[r] = fis_gRWeight[r] * fuzzyFires[r];
sW += fuzzyFires[r];

}
if (sW == 0)
{

for (o = 0; o < 2; ++o)
{

g_fisOutput[o] = ((fis_gOMax[o] + fis_gOMin[o]) / 2);
}

}
else
{

for (o = 0; o < 2; ++o)
{

g_fisOutput[o] = fis_defuzz_centroid(fuzzyRuleSet, o);
}

}
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}
void loop() {

if (Serial2.available()>0){
vel = Serial2.parseInt();

}
erro = ref - vel;
derro = (erro-ek1)/Ts;

fuzzy();
KP=kp*1;
KI=ki*1;
ek = erro/255;

uk= uk1+ ((0.0009113*KP)*ek) + ((0.0002364*KI)*ek1);
uk1=uk;
ek1=ek;
vel1=vel;

if(uk>1) uk=1;
if(uk<0) uk=0;

% PWM do ESC 30 valor MIN e 180 valor MAX

pwm=180*uk;
ESC.write(pwm);
Serial.println(vel);
vel = 0;
}

GAPID Controller

//para o ESP32
#include <HardwareSerial.h>
#include <ESP32Servo.h>
hw_timer_t * timer = NULL;
int ref = 2900,count=0;
int vel,pwmreal;
double fKi=0, fKp=0,fKd=0, uk=0, uk1=0, ek=0, ek1=0, pwm =0,erro;
double kp1= 3.179014015,
ki1= 7.733658167,
kp0= -1.033526258,
ki0= 0.399961113,
qp= 6.5948459,
qi= 5.1654269;

Servo ESC;
void setup() {
Serial.begin(115200);
Serial2.begin(115200, SERIAL_8N1, 16, 17);
ESC.attach(18);
delay(5000);
start();
delay(3000);
}
void start(){//ESC.writeMicroseconds(2500);
ESC.write(180);
delay(3000);
ESC.write(40);//ESC.writeMicroseconds(1500);
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}
void loop() {
if (Serial2.available()>0){
vel = Serial2.parseInt();
}

erro = ref - vel;
ek = erro/255;
fKi = ki1 - (ki1 - ki0)*exp(-qi*pow(erro,2));
fKp = kp1 - (kp1 - kp0)*exp(-qp*pow(erro,2));

uk= uk1+ ((0.0009113*fKp)*ek) + ((0.0002364*fKi)*ek1);
pwmreal=uk;

uk1=uk;
ek1=ek;

if(uk>1){
uk=1;}
if(uk<0){
uk=0;}

pwm=180*uk;
ESC.write(pwm);
vel = 0;

}

𝜔Z\𝑝\𝑘\𝑛𝛼𝜔𝑛𝜔𝑑𝛾
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