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RESUMO

Nos sistemas de gerenciamento térmico automotivo, uma operação de refrigeração adaptativa é
necessária pois a rejeição de calor do motor muda constantemente com a dinâmica do veículo.
Um objetivo de refrigeração adaptativa ideal para o motor pode ser alcançado ao fornecer
um fluxo de líquido refrigerante, em determinados estados de temperatura, o mais próximo
possível das necessidades reais de coleta e rejeição de calor. Atualmente, para a regulação da
temperatura do líquido refrigerante, sistemas veiculares de controle empregam amplamente
controladores proporcional integral derivativo (PID), como processos de controle rápidos e leves,
que geram demandas de velocidade do ventilador para o processo de atuação na rejeição de calor.
Embora interessante em termos de custo computacional de processamento no veículo, a indução
de distúrbios, a partir de parâmetros não estimados com precisão na modelagem do sistema,
agrava a regulação da temperatura do líquido refrigerante na presença de diversas variáveis de
impacto térmico. Com o objetivo de reduzir tais distúrbios, uma estratégia de controle preditivo
baseado em modelo (MPC) é proposta, como um método, algoritmo e estratégia aplicados em
sistemas de controle de ventiladores de veículos para a geração de demandas otimizadas de
velocidade do ventilador na manutenção de um horizonte previsto de temperaturas do líquido
refrigerante para uma configuração de set point de temperatura. Melhorias no desempenho do
veículo, eficiência de combustível e emissões são potencialmente alcançadas com estratégias de
aprendizado de máquina na previsão da temperatura e regulação térmica do líquido refrigerante e
dos estados de impacto térmico em um horizonte futuro, definido para permitir que um modelo
proposto de rotulagem com aprendizado por reforço (RL) realize buscas por velocidades ideais
do ventilador. A estratégia probabilística do agente do modelo de rotulagem é aprimorada
na interação e observação da resposta da temperatura do líquido refrigerante, a partir de um
modelo de resposta térmica, com confiança em correlações de tempo cruzado com variáveis
de impacto térmico, resultando em um menor desvio do set point de temperatura, comparado
com controladores clássicos. Além disso, é proposto um processo de extração de características
interpretáveis por humanos, com o uso do método de agrupamento baseado em covariância
inversa Toeplitz (TICC), como um método de extração de estruturas precisas e interpretáveis em
dados de séries temporais multivariadas, abordando otimizações no tempo de processamento na
aplicação de representações confiáveis e de baixa dimensão. Os resultados de uma avaliação
física experimental demonstram a eficácia da solução MPC em comparação com um controlador
clássico, ao alcançar as potenciais reduções de 1,53% e 0,61% nos consumos de potência do
ventilador e combustível, respectivamente.

Palavras-chave: controle preditivo baseado em modelo; aprendizado por reforço; agrupamento
baseado em modelo.



ABSTRACT

In automotive thermal management systems, an adaptive cooling operation is required as the
engine’s heat rejection is constantly changing with the vehicle dynamics. Maintaining an optimal
adaptive engine cooling can be achieved by delivering coolant flow at certain temperature states,
as close as possible to actual needs. Currently, for the coolant temperature regulation, cooling
fan control systems widely employ Proportional Integral Derivative (PID) controllers, as fast
and light solutions in generating fan speed demands for the heat rejection process. Although
interesting in terms of in-vehicle computational processing cost, the induction of disturbances
from parameters not precisely estimated, in the system modelling, aggravate the low robustness in
the regulation of the coolant temperature in the presence of uncertain thermal impacts. Aiming at
improving the reduction of disturbances, a Model Predictive Control (MPC) strategy is proposed,
as a method, algorithm, and strategy, applied on cooling fan control systems, for the generation
of optimized fan speed demands in maintaining a predicted horizon of coolant temperatures at a
set point configuration. Improvements on vehicle performance, fuel efficiency and emissions
are potentially achieved with the application of machine learning strategies for the prediction
and thermal optimization of the coolant temperature in a future control horizon, allowing a
proposed Reinforcement Learning (RL) labeling model to perform searches for optimal fan
speeds. The probabilistic strategy of the RL agent is improved in interacting and observing
the coolant temperature response, from a thermal response model, with confidence from cross-
time correlations with thermal impact variables, resulting in less deviance from configurable
temperature set points when compared to classic feedback controllers. In addition, a human
interpretable feature extraction process is proposed, using the Toeplitz Inverse Covariance-Based
Clustering (TICC) method, in extracting accurate and interpretable structures in multivariate time
series data, for addressing processing time concerns with the use of reliable and low dimensional
feature representations. The results of an experimental physical evaluation demonstrate the
effectiveness of the MPC solution in comparison to a classic controller, as it achieves the potential
reductions of 1.53% and 0.61% in the consumption of fan power and fuel, respectively.

Keywords: model predictive control; reinforcement learning; model-based clustering.
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1 INTRODUCTION

1.1 Control and optimization systems

Many strategies of dynamic response modeling for control systems have been researched

and developed as the task of influencing the disturbance rejection and maintaining a low

mathematical complexity level in a controller model design and parameter tuning, as needed,

grow apart in high-order system dynamics that carry complex temporal impact correlations. Such

characteristics are observed in various vehicle dynamics systems meant for regulation, and in

the case of a thermal management strategy, multiple controllers and integration methods can be

applied to ensure the optimal regulation of the engine temperature by cooling agents, ensuring

the optimal flow and temperature for an refrigerant fluid in various possible thermal response

scenarios.

For many decades, PID controllers have been widely applied for the regulation of the

coolant temperature at a configurable set point with a determined fan speed. PID controllers

present loop mechanisms that employ feedback and are designed with the application of tuning

methods on gains, composing control terms that attempt to minimize the error, from a defined set

point, over time. Without the model and observing the system response, the controller lacks direct

knowledge of the process and, overall, presents a reactive performance that can compromise or

poorly accomplish the regulation to a desired set point on certain applications. The performance

of the controller can also be impacted by the presence of nonlinearities, resulting in imprecise

regulation outputs over changes in uncovered system dynamics behaviors, and the addition of lag

in responding to large disturbances.

In covering complex system dynamics in the regulation process while maintaining

human interpretability, the Fuzzy Logic Controller (FLC) can be applied with a design that

implements a wide range of operating conditions, readily adapted in terms of natural language,

allowing a more complex knowledge of a given system’s dynamics by eliminating the need

to linearize nonlinear systems before tuning controller parameters. In addition, FLC can be

flexibly adjusted with new fuzzy rules, exceptions and new behaviors as the base structure is

semantic (FENG, 2006). As systems tend to high-order dynamics, the configuration of accurate

rules become a difficult task that can be overcame with optimization models in recognizing

non-interpretable patterns.

Given the recent advances in the integration of systems’ identification and optimization
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strategies, the control modeling design for complex systems can be automated by an improved

knowledge of the system dynamics from high-order observations, where the regulation can be

expressed by cost minimization functions that explore a dynamic environment in the search for

disturbance rejection improvements, extending the controller actuation to cover the regulation

accuracy of a future horizon in a predictive manner. By employing an explicit model of the

controlling plant in predicting future output behavior, the Model Predictive Control (MPC) has

the capability of solving nonlinear multivariate control problems on line by searching for control

action optimizations in minimizing a specified cost function, with or without constraints (SWIEF;

EL-ZAWAWI; EL-HABROUK, 2019). In applying machine and Deep Learning (DL) methods

and strategies in system modeling and identification, an improved knowledge over adverse

environments can be achieved and its use to reinforce unusual dynamic control behaviors can

increase a model’s prediction confidence to uncertainty and noise.

1.2 Feature extraction

Feature extraction is widely applied in Machine Learning (ML) for classification and

prediction with methods that aim to optimally filter redundant and irrelevant information,

extracting relevant patterns regarding task context. With the recent increase in the dimensionality

of data, feature extraction methods face a proportional challenge in effectively extracting relevant

patterns. Similarly, the interpretability of sparse representations becomes harder to achieve as

model parameters tend to scale with the dimensionality of inputs, increasing the size of encoded

latent spaces.

The Principal Component Analysis (PCA) (JOLLIFFE; CADIMA, 2016) is a classic

and statistical technique of feature extraction that adaptively creates a set of lower dimension

variables that relate to the variance found in an original distribution. A similar strategy for

dimensionality reduction is the Linear Discriminant Analysis (LDA) (THARWAT et al., 2017),

which, as a supervised method, maximizes the separability in groups of data that present a similar

variation for each specific category. Although simple and fast, PCA suffers from interpretability

when capturing the maximum variation in the data and LDA requires a classification that can be

difficult to achieve in high-dimensional distributions.

Currently, nonlinear methods, such as t-Distributed Stochastic Neighbor Embedding

(t-SNE) (MAATEN; HINTON, 2008) and Autoencoders (AEs) are widely applied to capture

nonlinear patterns in high-dimensional data. The t-SNE enables data exploration and visualization
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by preserving small pairwise distances instead of large distances, as observed in PCA for the

maximization of variance in generated data, capturing nonlinear relationships and improving

the representation of high-dimensional data. The AE (CHO; MERRIËNBOER, et al., 2014;

SUTSKEVER; VINYALS; LE, 2014) is a Neural Network (NN) architecture used in multiple

ML applications. Its internal structure is composed of encoder, latent space, and decoder layers,

presenting compression and decompression processes that can assume distinct input and output

dimensions and, as part of the training process, produce useful features in intermediate layers

by minimizing a reconstruction error in the process. The flexibility in defining sizes for each

layer eases the scaling of the structure in regards to the problem, optimally capturing nonlinear

patterns in the latent space for high-dimensional inputs.

Advances in ML, such as AEs, have enabled the expansion of problems and solutions

in neural machine translation, computer vision, and time series prediction, among others. A

wide range of time series prediction algorithms have been proposed in applications regarding

signal treatment and analysis (MAKRIDAKIS; HIBON, 1997) and due to the increase in data

dimensionality and its nonlinear patterns, Deep Neural Networks (DNNs) have become a research

focus in representing high-dimensional and sequential data.

For various real world applications, the impact from exogenous series is essential

to accurately describe concurring and future variable states. To address this issue, various

Nonlinear Autoregressive Exogenous (NARX) models (LIN et al., 1996; GAO; ER, 2005;

DIACONESCU, 2008; YAN; ELGAMAL; COTTRELL, 2013; QIN et al., 2017) have been

developed in predicting the values of a given time series using the relationship between the target

and driving (exogenous) series. In recent years, Recurrent Neural Networks (RNNs) have been

applied as NN structures fit for sequence modeling, flexibly enabling the capture of nonlinear

relationships. Further improvements in capturing long-term dependencies were achieved with

Long Short-Term Memory (LSTMs) (HOCHREITER; SCHMIDHUBER, 1997) units, which

overcome the problem of vanishing gradients (BENGIO; SIMARD; FRASCONI, 1994). For time

series AEs, attention mechanisms can be employed to select and propagate features to subsequent

layers of an NN model by applying weights that reflect the "importance" of a current hidden state

with respect to previous information. In this way, a decoder attention mechanism can relieve

the encoding process by filtering information as it most contributes to a task-related goal (CHO;

MERRIENBOER, et al., 2014). Using state-of-the-art RNN architectures and attention based

AEs, the Dual-Stage Attention-Based RNN (DA-RNN) model enables the adaptive selection of

the most relevant features during the prediction process, outperforming classic and state-of-the-art
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RNN models for time series prediction (QIN et al., 2017).

Despite accurately capturing relevant patterns, AE latent spaces tend to lose human-level

interpretability from high-dimensional inputs, aggravating the prediction accuracy and evaluation

from drifts in captured data patterns, described in human-interpretable environments and not

covered by overspecified feature compression processes, which are harder to identify and correct

as they deviate from human-interpretability (RYBAKOV et al., 2020). To overcome this challenge,

the application of clustering techniques for high-dimensional data (HALLAC; NYSTRUP; BOYD,

2016; HIMBERG et al., 2001; BEGUM et al., 2015; SMYTH, 1996; BERNDT; CLIFFORD,

1994) can produce human-interpretable data representations from dynamic programming and

optimization functions. General clustering techniques tend to suffer as distance and density

based approaches (NA; XUMIN; YONG, 2010; MÜLLNER, 2011; ESTER et al., 1996) are

challenged by high data sparsity in high-dimensional spaces, presenting low tolerance to noise

and data asymmetry. Furthermore, graph-based approaches (NG; JORDAN; WEISS, 2001; XU;

SU, 2015; HALLAC; VARE, et al., 2018) were proposed to allow the expression of cluster

relationships by the number and strength of links between and within clusters, improving the

estimation of dependency structures in high-dimensional data. For multivariate time series

data, dynamic programming and iterative cost minimization functions can optimally support

the graphic assignment of clusters for correlated series over a discrete time window, where the

definition of parameters leads to human-interpretable data representations, as observed with the

Toeplitz Inverse Covariance-Based Clustering (TICC) method (HALLAC; VARE, et al., 2018).

1.3 Justification

Although classic control systems present light and fast control processes, their regulation

accuracy and complexity are negatively affected proportionally to the dimension of a given

dynamic system (EFHEĲ; ALBAGUL; AMMAR ALBRAIKI, 2019). Such is the case for vehicle

and thermal dynamics systems, impacted by multiple internal and external factors that present a

high-dimensional correlation toward different thermal rejection states for the vehicle’s engine.

Advances in ML and intelligent systems have shown that system identification, dimensionality

reduction and optimizations can be achieved for highly nonlinear systems while establishing

high-level settings for a regulation objective (PILLONETTO et al., 2014; SORZANO; VARGAS;

MONTANO, 2014; SUN et al., 2019). Additionally, the use of ML and data-driven resources for

optimization can ease the cost of low-level controller designs from classic control solutions.
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1.4 Proposition

Considering advances in ML for time series forecasting, optimization and feature

extraction, we propose an MPC system with the aim of improving coolant temperature regulation,

where cooling agent optimizations, for the training of an in-vehicle controller, are achieved with

a proposed RL labeling system.

In addressing processing time concerns, a feature extraction system is proposed for the

reduction of the dimension of inputs while maintaining their sequential relevance.

1.5 Objectives

The main objective of this work is the design, development and evaluation of an MPC

system proposition for the thermal regulation of the cooling system.

The project targets 3 specific objectives to accomplish this goal:

• Define the methods and strategies for the control and optimization systems;

• Design and develop the ML models and architectures;

• Evaluate the MPC system.

1.6 Contributions

The contributions of the work are summarized as follows:

• Proposition of a multivariate time series feature space based on a state-of-the-art

clustering technique, presenting balance of model agnostic and specific patterns.

• Presentation of a feature extraction process that enables the simplification of deep

RNN architectures by relieving attention-based expenses.

• Proposition of a predictive cooling system control method, able to reduce coolant

temperature disturbances, from thermal impact variables and parameters not precisely

estimated on the system modeling, with a horizon of fan speeds that aim to maintain

the coolant at a desirable temperature set point.

• Proposition of high-level controller design and offline optimization process, relying on

the correct definition of optimization objectives and constraints to set the configuration

of a reinforcement learning labeling model.
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1.7 Thesis structure

The remainder of this work is structured as follows:

Chapter 2 covers the TICC model-based clustering method and the DA-RNN as a NARX

model architecture for the literature review of the proposed feature extraction strategy. In addition,

MPC and RL are reviewed with recent contributions in highlighting the proposed MPC control

strategy.

Chapter 3 describes the proposed feature extraction and MPC control strategies,

methodologies and algorithms.

Chapter 4 contains the experimental comparative evaluation, describing the contrast

between the prediction accuracy and the number of parameters in the adoption of the proposed

feature extraction method.

Chapter 5 presents the conclusion. Finally, the next steps of the project are presented in

Chapter 6.
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2 LITERATURE REVIEW

In this chapter, the literature will be reviewed exploring in depth each theme brought on

this work. Concepts and definitions around the subjects are presented in this section, alongside the

context on where each one is involved and needed. Furthermore, an overview of the applications

on the matter is shown, resuming the importance and deliberate approaches found in scientific

literature.

2.1 Control and Optimization Systems

2.1.1 Model Predictive Control

Model Predictive Control (MPC) is a feedback control system that employs the knowledge

of a given system’s response to make predictions about the future outputs of a process. With

the goal of regulating a plant’s response to achieve a certain set point objective, MPC uses

the plant’s model as key in improving each regulation step based on the future response to a

series of controllable inputs. Additionally, MPC handles Multi-Input Multi-Output (MIMO)

systems that might present correlations between their inputs and outputs, which is challenging

for Proportional Integral Derivative (PID) controllers, given that each control loop operates

independently, in a way that the number of controller gains escalate with the number of input and

output pairs (SALEM; MOSAAD, 2015). Figure 1 shows the complexity of a PID controller

design for MIMO systems that present 𝑛 plant inputs 𝑢 and outputs 𝑦.

Figure 1 – PID controller architecture for a MIMO system.

Source: Bemporad, Ricker, and Morari (2020).
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MPC offers support for system constraints, aiding the optimization problem when

adopting outputs that lead to undesirable consequences, which may affect the safety of the system

and other components involved in its response. The limits of a given system can be further

incorporated in the form of future references, supporting the accuracy of the regulation task in

evolving environments (SALEM; MOSAAD, 2015). In simulating the output trajectory, the MPC

controller uses a given system’s model and with an optimizer ensures that the predicted future

plant output tracks the desired reference. With the definition of a controller prediction horizon

𝑝, the optimization covers the minimization of a weighted cost function 𝐽. The optimization is

performed online and at each regulation step (SALEM; MOSAAD, 2015), involving the adoption

of 𝑝 states for all future actions. The general cost function is expressed by the following equation:

𝐽 =
∑𝑝

𝑖=1 𝑤𝑒𝑒
2
𝑘+𝑖 +

∑𝑝−1
𝑖=0 𝑤Δ𝑢Δ𝑢𝑘+𝑖2 (1)

Here, the collection of errors 𝑒 is weighted 𝑤𝑒 in fitting the prediction window for the

best future horizon response of the system. Along with the sum of weighted horizon errors for

controller inputs starting at 𝑡 = 𝑘 , the collection and addition of weighted actions 𝑤𝛿𝑢𝛿𝑢 compose

the cost function in correlating the response of previous step responses in the future performance

of the optimizer. The described optimization system often eases covering a great range of MIMO

systems with great accuracy at the cost of expensive computational requirements (SALEM;

MOSAAD, 2015). Figure 2 presents the MPC.

Figure 2 – The structure of MPC.

Source: Bemporad, Ricker, and Morari (2020).

2.1.2 MPC formulation

Considering an uncertain Linear Time-Invariant (LTI) system:
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𝑥(𝑘 + 1) = 𝐴 (𝜃∗) 𝑥(𝑘) + 𝐵 (𝜃∗) 𝑢(𝑘) (2)

where 𝜃∗ ∈ Θ is the uncertain parameters in the model for a convex set Θ. For a known parameter

𝜃∗, the controller inputs over the prediction horizon u = {𝑢(0), 𝑢(1), · · · , 𝑢(𝑁 − 1)} lead to the

solution of the following minimization problem:

min
u
𝐽𝑁 (𝑥, u) =

∑𝑁−1
𝑖=0 𝑙 (𝑥(𝑖), 𝑢(𝑖)) +𝑉 (𝑥(𝑁)) (3)

subject to
𝑥(𝑖 + 1) = 𝐴 (𝜃∗) 𝑥(𝑖) + 𝐵 (𝜃∗) 𝑢(𝑖), 𝑥(0) = 𝑥

𝑥(𝑖) ∈ X, 𝑢(𝑖) ∈ U, 𝑖 ∈ [0, 𝑁 − 1]

𝑥(𝑁) ∈ X𝑓 ∈ X

(4)

where the sets U and X represent the input and state constraints, 𝑥(𝑁) ∈ X𝑓 is the artificial

terminal constraint in ensuring stability, and 𝑉 (𝑥(𝑁)) represents the terminal cost function. In

summary, the MPC loss function can be described by:

𝑙 (𝑥(𝑖), 𝑢(𝑖)) = 𝑥(𝑖)𝑇𝑄𝑥(𝑖) + 𝑢(𝑖)𝑇𝑅𝑢(𝑖) (5)

Here, with𝑄 and 𝑅 as positive definite,𝑉 (𝑥) andX𝑓 are defined by the control Lyapunov

function of 𝑉 (𝑥) in X𝑓 (KIM, J.-S., 2010), yielding the optimal control sequence:

u∗(𝑥) = {𝑢∗(0; 𝑥), 𝑢∗(1; 𝑥), · · · , 𝑢∗(𝑁 − 1; 𝑥)} (6)

the optimal trajectory:
x∗(𝑥) = {𝑥∗(0; 𝑥), 𝑥∗(1; 𝑥), · · · , 𝑥∗(𝑁; 𝑥)} (7)

and the optimal cost:
𝐽∗
𝑁
(𝑥) = 𝐽𝑁 (𝑥, u∗(𝑥)) (8)

2.1.2.1 Highly nonlinear systems and performance concerns

In adapting MPC to real-time applications and complex nonlinear environments,

alternatives can be adopted for the optimization model. Such is the Adaptive MPC model,

which establishes a plant model that adapts the same number of states and constraints across

different nonlinear operating conditions with the intention of performing MPC cost function



22

minimizations for a linear representation of the regulation function. In this sense, considering

the same LTI system as in 2 and that the parameter 𝜃∗ is now unknown and varies in multiple

operating conditions, an estimation can be made with measurements from the plant (KIM, J.-S.,

2010). As in popular strategies of employing estimators (HAYKIN, 2002; MIURA, 2011), the

prediction equation can then be described by:

𝑥(𝑖 + 1) = 𝐴(𝜃)𝑥(𝑖) + 𝐵(𝜃)𝑢(𝑖), 𝑥(0) = 𝑥 (9)

where 𝜃 denotes the estimated parameter. Figure 3 shows the adaptive MPC structure with the

use of an estimator.

Figure 3 – The structure of adaptive MPC.

Source: Jung-Su Kim (2010).

Many adaptive MPC approaches were developed in the search for optimal closed

loop stability (KIM, T.-H.; SUGIE, 2008; SHOUCHE et al., 1998; ADETOLA; DEHAAN;

GUAY, 2009; KIM, J.-S.; YOON; SHIM, 2005) and although ensuring that the control process

is established over dynamically evolving models, the estimated parameter 𝜃𝑘 , from previous

measurements 𝑥(𝑘 − 1), may not correlate to 𝑥(𝑘), found in the Domain of Attraction (DOA) of

(𝐴(𝜃𝑘 )𝑥(𝑖),𝐵(𝜃𝑘 )), leading to infeasibility in multiple applications (KIM, J.-S., 2010).

Similarly, gain-scheduled MPC enables the linearization of a plant with multiple plant

models, each representing a distinct state with the advantage of adopting unique constraints, that

are evolving in known nonlinear operating conditions. For the execution of the correct plant

function, a switching algorithm is adopted for gain-scheduled MPC in understanding a current

state operating condition and adopting its defined optimization function. In a gain-scheduled
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MPC algorithm, at each sample time 𝑡, given a partitioned state 𝑥(𝑡) =
[
𝑥′1(𝑡), 𝑥

′
2(𝑡)

]′, the system

can be described as:

𝑥(𝑡 + 1) = 𝐴 (𝑥1(𝑡)) 𝑥(𝑡) + 𝐵 (𝑥1(𝑡)) 𝑣(𝑡) (10)

where,
𝑢(𝑡) = 𝑔(𝑥(𝑡), 𝑣(𝑡)) (11)

is the precompensation feedback and the control signal 𝑣(𝑡) is obtained from measurement

associations with feedback gains 𝐹𝑖 that ensure exponential stability for the nonlinear system

around the origin, as in the following equation:

𝑣(𝑡) = 𝐹𝑖(𝑡)𝑥(𝑡) (12)

For the definition of the MPC receding-horizon operation, an auxiliary open-loop

component 𝑐 is used to complement the control signal and enable the selection of the optimal

sequence 𝑐(𝑡), as in:

c(𝑡) = arg min
c(𝑡)
∥c(𝑡)∥2 subject to


𝑥(𝑡)

c(𝑡)

 ∈ 𝑆𝑖(𝑡)𝑁 (13)

where 𝑖(𝑡) = 𝑖 (𝑥1(𝑡)) is the index, such that 𝑥1(𝑡) ∈ 𝑋𝑖, and 𝑆𝑁 is the set of states steered offline

by the new control sequence. The new control signal is expressed as:

𝑣(𝑡) = 𝐹𝑖(𝑡)𝑥(𝑡) + 𝑐(𝑡 | 𝑡) (14)

where 𝑐′(𝑡) = [𝑐′(𝑡 | 𝑡), 𝑐′(𝑡 + 1 | 𝑡), . . . , 𝑐′(𝑡 + 𝑁 − 1 | 𝑡)].

The optimal sequence, at time 𝑡 and among all admissible sequences 𝑐(𝑡), is then

selected by the minimum 𝑙2 norm from applying the control signal 𝑣(𝑡) to the plant (CHISCI;

FALUGI; ZAPPA, 2003). Although an interesting solution for simpler nonlinear systems, in the

case of highly nonlinear systems, the solution of a nonconvex optimization problem, comprising

a nonlinear system, its constraints and cost function, is hardly identifiable and thus the application

of linearization techniques is mostly ineffective. For this purpose, a nonlinear solution, using

regression based approaches for system identification, may be applied (BEMPORAD; RICKER;

MORARI, 2020).

In addressing the reduction of computational costs in processing an MPC solution, a
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model order reduction strategy may be adopted in removing state variables that contribute less

to the plant response. Similar speed and memory usage gains may be obtained with the use of

various strategies, such as shortening the prediction and control horizon, reducing the number of

constraints and increasing the accepted error in the optimization process, which at the cost of

lower precision operations and data representations, decrease computational costs (BEMPORAD;

RICKER; MORARI, 2020). Another solution for decreasing the processing time of the controller

is the explicit MPC method, which employs an offline optimization solution for all the states

within a given prediction range with Multi-Parametric Quadratic Programming (mp-QP). This

can be described by rewriting Equation 3 as the convex Quadratic Program (QP):

𝐽∗(𝑥(𝑡)) = 1
2𝑥
𝑇(𝑡)𝐺𝑥(𝑡) +min

u

{ 1
2u𝑇𝐻u + 𝑥𝑇(𝑡)𝐹u

}
(15)

subject to
𝐴𝑐u ≤ 𝑏0 + 𝐵𝑐𝑥(𝑡) (16)

where 𝑛 ≜ 𝑛𝑢𝑁 , 𝑛𝑢 is the number of controller output variables, 𝑚 is the number of state variables,

𝑞 is the number of linear inequality constraints imposed in the MPC problem formulation, as in

equation 3, 𝐻 ∈ R𝑛×𝑛 is the Hessian matrix, 𝐹 ∈ R𝑛×𝑚 defines the linear term, 𝐺 ∈ R𝑚×𝑚 affects

the optimal cost function, and the matrices 𝐴𝑐 ∈ R𝑞×𝑛, 𝑏0 ∈ R𝑞, and 𝐵𝑐 ∈ R𝑞×𝑚 define a compact

form of the constraints, which are computed offline. The MPC law is defined by rewriting the

controller manipulated variables as:

𝑢(𝑥) = [𝐼 0 . . . 0]𝑧(𝑥) (17)

where 𝑧 represents the optimizer of the QP problem and 𝐼 is the identity matrix of dimension

𝑛𝑢 × 𝑛𝑢 (BEMPORAD, 2013; LEE; CHANG, 2017).

Considering that the optimizer function 𝑧∗ : 𝑋 𝑓 ↦→ R𝑛 is piecewise affine and continuous

over the set 𝑋 𝑓 of parameters 𝑥 (BEMPORAD; MORARI, et al., 2002), the online computations

can be reduced to the offline evaluation of:

𝑢(𝑥) =


𝐹1𝑥 + 𝑔1 if 𝐻1𝑥 ≤ 𝑖1

...
...

𝐹𝑀𝑥 + 𝑔𝑀 if 𝐻𝑀𝑥 ≤ 𝑖𝑀

(18)

In this way, the iterative optimization process is simplified to a linear function evaluation

with identification of the state in which the response model is found based on the currently
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imposed constraints. As a consequence, the complexity of a given system’s regions and its

identification algorithm may require a higher memory capacity. To improve memory usage,

regions can be merged at the cost of increasing the distance to an optimal solution (BEMPORAD;

RICKER; MORARI, 2020).

2.1.3 Reinforcement Learning

Given recent advances in machine learning for system identification and its need to

describe and control highly nonlinear, multivariate and dynamic environments for the purpose of

searching for optimal cost paths while respecting constraints that increase with a given system’s

complexity. RL comprises a solution in a learning environment that makes use of a high-level

view of a given problem in establishing the optimal probabilistic strategy for a given agent or

controller. In this sense, an RL system comprises a general optimization problem that evolves in

accuracy and may evolve in speed as the knowledge of a given system’s response to input state

variables for a well established goal is learned iteratively. In increasing the ability to comprise

relevant information over a complex system for a specific objective, DNN architectures may

efficiently enable the representation of high-dimensional data with structures fit to correlate and

process categorical and numerical data.

2.1.3.1 Reward-Driven Behavior

An RL system contains resources that enable the learning process through an extensive

interaction with a given environment, which simulates the system’s response to related inputs.

Thus, upon observing the consequences of its actions, an agent can learn to adopt new and

improved strategies in reaching a defined goal within this environment. Similar to the inspirations

of ML and DL in human behavior, driven by learning the effects of various sensed inputs to

understand and take advantage of either learned or instinctive actions for a specific goal in a

given environment, RL has its main foundations in behaviorist psychology as the paradigm of

trial-and-error. Another RL inspiration is in optimal control, as its efficiency is correlated to

dynamic programming (ARULKUMARAN et al., 2017).

In an RL system, a machine learning controlled agent observes an initial state 𝑠𝑡 at

the first iteration 𝑡 and by interacting with the environment with subsequent actions, starting

with action 𝑎𝑡 for state 𝑠𝑡 , either the environment or the agent or both transition to new states
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𝑠𝑡+1. Moving forward, and considering that an environment state comprises all the required

information of the agent and environment iterative evolution, the agent probabilistic strategy

is reinforced as a proper guide, to an objective in the environment, determines if an action or

sequence of actions lead to optimal consequences. This feedback system dictates which behavior

should be adopted and learned by the agent, as motivation to achieve a reward, provided, as

𝑟𝑡+1 for the first environment response, in environment transitions by a system that is designed

according to the complexity and dimension of the agent, environment and objectives. This

ongoing interaction between agent and environment has the overall goal of constructing a policy

𝜋, as a control strategy, that maximizes the expected return. In this sense and unlike other control

systems, the controller, as an RL agent, learns to minimize a given cost function by learning its

consequences in the environment by trial and error, without the need for model assumptions

as in optimal control solutions. In high-dimensional and probabilistic environments, where

the knowledge of the plant is scarce, RL employs a system’s response learning process to a

specific objective within an environment using properties of ML and DL to automatically find

compact and relevant low-dimensional representations of inputs, consistently providing new and

optimized cost paths to complex systems (ARULKUMARAN et al., 2017). Figure 4 presents

the RL interactive-learning loop, where the probabilistic strategy of the agent is reinforced with

knowledge from state transitions of the form (𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1,𝑟𝑡+1).

Figure 4 – RL perception-action-learning loop.

Source: Arulkumaran et al. (2017).
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2.1.3.2 Markovian Decision Process

RL can be described as a system with Markov properties, as it contains a set of states

S, distribution of starting states 𝑝(𝑠0), set of actions A, transition dynamics T (𝑠𝑡+1 | 𝑠𝑡 ,𝑎𝑡),

which map state-actions to its subsequent distribution of states, and a discount factor 𝛾 𝜖 [0, 1],

employed to emphasize immediate rewards. An RL policy maps states to a probability distribution

over actions 𝜋 : S → 𝑝(A = a | S), and, in achieving the maximum expected return from all

states the optimal policy 𝜋∗:

𝜋∗ = argmax
𝜋

E[𝑅 | 𝜋] (19)

In accessing correlations beyond a past state 𝑠𝑡−1 to improve the agent’s learning

capabilities of a given environment, DL solutions may be applied as in RNNs (WIERSTRA

et al., 2010; HAUSKNECHT; STONE, 2015; HEESS et al., 2015; MNIH; BADIA; MIRZA;

GRAVES; LILLICRAP, T. P., et al., 2016; OH et al., 2016), which are fit for sequential data in

aggregating an improved dynamic state to the agent (ARULKUMARAN et al., 2017).

2.1.3.3 Challenges in RL

In the field of control systems, several challenges are faced by RL algorithms. The

trial-and-error interaction may be computationally extensive and expensive and due to the

complexity of a given environment and difficult task of designing a reward system, lead to

undesirable policies. Strong temporal correlations need to be addressed as they may yield relevant

dynamic characteristics of interactions for a given objective, and long-range time dependencies

have consequences as previous actions may lead to relevant consequences after many transitions

of the environment (ARULKUMARAN et al., 2017).

In addressing the concerns, strategies can be adopted in estimating the expected return

E[𝑅 | 𝜃] of being in a given state, as with value functions, or encoding policies with weight

optimization to maximize this expected return, as with policy search methods. Both strategies

can also be used in a hybrid, actor-critic approach (ARULKUMARAN et al., 2017).
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2.1.3.4 Value Functions

Value Function methods use a state-value function 𝑉∗(𝑠) that, for a state-value corre-

sponding to the optimal policy 𝜋∗, can be defined as:

𝑉𝜋 (𝑠) = E[𝑅 | 𝑠,𝜋] (20)

The maximization of the expected return can be observed as an optimal value function

𝑉∗(𝑠), which leads to the retrieval of the optimal policy in choosing the action 𝑎, maximizes

Es𝑡+1∼T (s𝑡+1 |s𝑡 ,a) [𝑉∗ (s𝑡+1)] among all actions at 𝑠𝑡 . Considering that, for the RL setting, transition

dynamics T are unavailable, a quality function Q, similar to 𝑉𝜋, can be used, as with the initial

action 𝑎 provided, 𝜋 is only followed from the subsequent state onward:

Q𝜋 (𝑠,𝑎) = E[𝑅 | 𝑠,𝑎,𝜋] (21)

Here, the best policy is found by greedily choosing an action 𝑎 at every state 𝑠, where,

under this policy, 𝑉𝜋 (𝑠) is found by maximizing Q𝜋 (𝑠,𝑎). Considering that each quality state

Q𝜋 (𝑠,𝑎) aggregates importance toward the given goal, the Markov property can be adopted for

current values in improving the Q𝜋 estimate:

Q𝜋 (s𝑡 , a𝑡) ← Q𝜋 (s𝑡 , a𝑡) + 𝛼𝛿 (22)

where 𝛼 is the learning rate and 𝛿 = 𝑌 − Q𝜋 (s𝑡 , a𝑡) represents the Temporal Difference (TD)

error, and, as in the standard regression problem, 𝑌 is the target. Here, transitions generated

by this derived policy can be used to improve the estimate of Q𝜋, which results in setting

𝑌 = 𝑟𝑡 + 𝛾𝑄𝜋 (s𝑡+1, a𝑡+1), this on-policy learning algorithm is known as State-Action-Reward-

State-Action (SARSA). When updating the estimate with transitions, not necessarily generated

by a generated policy, the target becomes 𝑌 = 𝑟𝑡 + 𝛾maxa𝑄
𝜋 (s𝑡+1, a), directly approximating

Q𝜋, also known as the Q-learning off-policy algorithm (ARULKUMARAN et al., 2017). As the

combinations of states and actions become large, the memory and computation requirements

for Q functions proportionally increase. To address this problem, Deep Q-Networks (DQNs)

were proposed (MNIH; KAVUKCUOGLU, et al., 2015), initially as a strategy to downsample

high-dimensional data with Convolutional NNs (CNNs) and further enabling the use of DNN

techniques in approximating 𝑄(𝑠, 𝑎). A DQN’s evaluation network uses 𝑄(𝑠,𝑎; 𝜃) as the Q-

function for approximating the action value function while a target network uses 𝑄(𝑠,𝑎; 𝜃−). As
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the parameters of the evaluation network are updated, a copy is made to the target network at

every 𝑖 − 𝑡ℎ iteration as in the following loss function:

𝐿𝑖 (𝜃𝑖) = 𝐸(𝑠,𝑎,𝑟,𝑠′
) [(

𝑦
DQN
𝑖
−𝑄 (𝑠, 𝑎; 𝜃𝑖)

)2
]
,

𝑦
DQN
𝑖

= 𝑟 + 𝛾max
𝑎′
𝑄

(
𝑠′, 𝑎′; 𝜃−𝑖

)
,

(23)

where, 𝑖 is the current iteration, 𝜃𝑖 are the parameters in the evaluation network and 𝜃𝑖 are the

copied parameters in the target network.

In simplifying the learning of action 𝑎 relevance, Advantage functions A𝜋 (𝑠,𝑎) =

Q𝜋 (𝑠,𝑎) −𝑉𝜋 (𝑠) represent relative state-values that are more intuitive for weight optimization,

as learning the more exclusive impact of actions for the overall goal is easier than learning the

complete return from an action (ARULKUMARAN et al., 2017). Recently, many advantage-

based update models have been used in Deep RL (DRL) algorithms (WANG; SCHAUL, et al.,

2015; GU, S.; LILLICRAP, T.; SUTSKEVER, et al., 2016; MNIH; BADIA; MIRZA; GRAVES;

LILLICRAP, T., et al., 2016; SCHULMAN et al., 2016).

2.1.3.5 Policy Search

Unlike value functions, in policy search methods, a parameterised policy 𝜋𝜃 is updated

to maximize the expected return E[𝑅 | 𝜃] with gradient-based or gradient-free optimization

strategies. Gradients provide support to improve a parameterised policy as an average over

acceptable trajectories, observed in the current policy parameterisation, which can be obtained

by applying linearization or stochastic approximations. In model-free RL methods, which learn

directly from interacting with the environment, the estimate of the expected return from a state

can be performed by averaging the return from multiple rollouts of a policy with the Monte

Carlo method (SUTTON; BARTO, 2018). In the application of gradient-based learning, a

gradient estimator is used, similar to the optimization of the log-likelihood in supervised learning,

which increases the relevance of a sampled action weighted by the return. This reinforcing rule

computes the gradient of a given expectation over a function 𝑓 of a random variable 𝑋 in relation

to the policy parameters 𝜃, as in the following equation:

∇𝜃E𝑋 [ 𝑓 (𝑋; 𝜃)] = E𝑋 [ 𝑓 (𝑋; 𝜃)∇𝜃 log 𝑝(𝑋)] (24)

The described computation is generally performed by subtracting a baseline to remove
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noise from high variance gradients, as a consequence of relying on the empirical return of a

trajectory, establishing weighted updates by an advantage, similar to advantage representations in

the description of value functions, rather than the complete return of an action. This strategy can

be adopted with an average return over several episodes but may vary according to gains in the

problematic (ARULKUMARAN et al., 2017).

2.1.3.6 Actor-critic Methods

In combining value functions with policy search strategies, actor-critic methods establish

a policy agent that learns through feedback from a value function, also known as critic.

Considering that policy search methods use unbiased estimates to reduce gradient variance, with

consequent noise, actor-critic methods differ by using an optimized value function. Additionally,

actor-critic algorithms can make use of Deterministic Policy Gradients (DPGs), which extend

the standard stochastic policies as deterministic. For an environment that does not yield

uncertainties for the estimation of actions, simpler policies that integrate over state spaces can

be adopted (ARULKUMARAN et al., 2017). This is the case for high-dimensional continuous

control problems (SILVER et al., 2014). For high-dimensional state spaces, the processing

and description of estimates can benefit from DNNs, thus, NNs can be applied, as function

approximators (LILLICRAP, T. P. et al., 2016), in Deep DPGs ((DDPGs)). Figure 5 shows the

actor’s strategy in choosing actions over environmental states for actor-critic methods. The critic,

as the value function, uses the TD error as an outcome of the processing state and reward from a

previous interaction, to update itself and the actor.

Figure 5 – Actor-critic setup.

Source: Adapted from Arulkumaran et al. (2017).
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As a benefit of value functions, actor-critic methods can present improved data efficiency

from off-policy methods or improved stability from on-policy methods (ARULKUMARAN et

al., 2017). In this sense, several attempts were made to integrate or merge both methods (WANG;

BAPST, et al., 2017; O’DONOGHUE et al., 2017; GU, S.; LILLICRAP, T.; GHAHRAMANI, et

al., 2016; GRUSLYS et al., 2018; GU, S. ( et al., 2017).

2.1.3.7 Model-based RL

Recent developments in system identification enabled the efficient incorporation of

complex systems in RL models. Simulation environments, learned as predictive models of

dynamical systems, can be embedded into low-dimensional spaces from higher-dimensional

observations. Thus, DRL allows the interaction between agents and simple representations

of high-dimensional spaces such as images from a camera, which can be later scaled up to

high-dimensional visual domains. Given that a system can present high complexity in its response,

from nonlinearities, as multivariate and temporal correlations in time series prediction problems,

a great number of observations to optimize the simulation model weights may be needed. In this

sense, Gu et al. (GU, S.; LILLICRAP, T.; SUTSKEVER, et al., 2016) proposed a strategy of

locally training linear models for use with the Normalized Advantage Function (NAF) algorithm,

as the continuous equivalent of the DQN (MNIH; KAVUKCUOGLU, et al., 2015). Less common

and as a potential method for improving data efficiency, the s Successor Representation (SR), can

be used to replace the transition dynamics T with expected future occupancies, which, when

linearly combined with the reward function R, are more robust than model-free methods, while

failing with T changes (ARULKUMARAN et al., 2017). The extension of SRs into DNNs can

be used in balancing the data efficiency with the accuracy of probabilistic strategy updates within

a complex environment (KULKARNI et al., 2016).
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3 MATERIAL AND METHODS

In this chapter, all proposed methods, strategies and algorithms will be described, with

examples and explanations. Furthermore, methodologies employed and models implemented for

the evaluation of the human-interpretable feature extraction method and for the composition of

the model-based predictive controller will be presented, highlighting the use of experimental

clustering environments in increasing the confidence of comparisons in performance between

widely employed and proposed strategies. All the algorithms were implemented in Python, using

the TensorFlow Keras API.

According to the complete development of each strategy, the feature extraction method

and results are described as previous to the MPC system due to its inspirations, for the design

and development, in the architectures that are described in Subsections 3.1.2 and 3.1.2.1.

3.1 Human-interpretable feature extraction

The proposed human-interpretable feature space is composed of the likelihood a given

multivariate and sequential sample has of belonging to a given cluster in a human-interpretable

environment. The clustering of a multivariate time series 𝑛 × 𝑇 is performed using the TICC

method with a dynamic parameter definition to obtain 𝐾 clusters, described by a correlation

window of size 𝑤 (HALLAC; VARE, et al., 2018). Figure 6 presents the proposed feature

extraction method.

Figure 6 – Human-interpretable feature extraction method.
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Source: Own Authorship (2022).
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Given the dynamic definition of TICC (HALLAC; VARE, et al., 2018) parameters

while interpreting each cluster labeled sample, after iterating through the overall optimization

function ??, extracted features can be computed as the likelihood a sample has of belonging to

each cluster. The proposed feature extraction algorithm iterates through each cluster’s optimized

information, consisting of the empirical mean 𝜇𝑖 and inverse covariance matrix Θ𝑖 to obtain the 𝑖

dimensional feature space of a given time series sample 𝑋 . Algorithm 1 presents the iterative

computation of sample likelihoods.

Algorithm 1 – Extract the feature space
Given 𝑋 = time series of 𝑇 sequential observations, 𝜇𝑖 = 𝑖-th cluster’s empirical mean, Θ𝑖 = 𝑖-th cluster’s inverse

covariance matrix.
Initialize LL = list of 𝐾 zeros.

1 for 𝑖 = 1, . . . , 𝐾 do
2 x = 𝑋 − 𝜇𝑖
3 LD = log(det(Θ𝑖))
4 LL[𝑖] = x𝑇 ⊙ (Θ𝑖 ⊙ x) + LD
5 end for
6 return LL

Source: Own Authorship (2022).

The feature space (ll1, ll2, . . . , ll𝐾), produced at the end of the feature extraction process,

has a reduced dimension, comprising multivariate and temporal correlations for a defined

window size 𝑤. Thus, in maintaining the importance of sequential information, an original input

dimension of 𝑛 × 𝑇 can be reduced to 𝐾 ×𝑊 , obtained through multiple iterations of feature

extraction, where 𝑘 is the set of cluster-related likelihoods and𝑊 is a reduced window of size

𝑇−𝑤+1, if 𝑇 ≥ 𝑤. Starting at 𝑡 = 𝑤, a static feature space comprises all temporal and multivariate

correlations for past states. With the collection of subsequent states up to 𝑡 = 𝑊 , the feature

representation expands into a dynamic and changing clustered environment.

3.1.1 Implementation

The EM optimization algorithm consists of the combined dynamic programming and

ADMM method, where each cluster is initialized randomly, convergence is achieved by alternating

between cluster assignments and parameter updates, and interruptions are performed when

cluster assignments are stationary. The optimization parameters, consisting of window size 𝑤,

number of clusters 𝐾 , sparsity level 𝜆 and smoothness penalty 𝛽, are dynamically defined through

the search for human-interpretability in visualizing each cluster’s assigned samples and related

individual time series values and variability as its weights.
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Initially, 𝜆 and 𝛽 are fixed while 𝑤 and 𝐾 are modified with the goal of visualizing

homogeneity with reasonable variance in the quantity of samples for all clusters, showing

consistency in iterating for convergence. After establishing a reasonable 𝑤 and 𝐾 , 𝜆 is modified

to improve the cluster assignments for a human-interpretable environment and 𝛽 in smoothing

the cluster assignment switches. For an optimal clustered environment small changes in each

individual parameter can be applied. The EM optimization and feature extraction algorithms

were built and run in Python.

3.1.2 Experimental evaluation

The experimental evaluation consists of a comparison between 2 custom DA-RNN

architectures, as state-of-the-art NARX models for processing multivariate time series, and

2 derived models, modified to receive the proposed feature spaces as inputs, for target time

series reconstruction, with a range of 𝑟 values, and forecasting, with a range of 𝜏 values. The

comparison is performed between models with similar numbers of parameters, intending to

approximate the processing time for the analysis of an accuracy ramp, obtained by deepening

each architecture.

3.1.2.1 Models and parameter settings

The custom DA-RNN model contains the original DA-RNN structure with a customized

definition of encoder hidden states 𝑚 and decoder hidden states 𝑝. The derived model replaces

the input attention with the proposed TICC feature extraction, which outputs a set of clustered

environment states with equal relevance to the encoder at time 𝑡. Additionally, an artificial AE

was tested and applied as a final structure in improving target value accuracy, receiving the latent

outputs (ỹ1, . . . , ỹ𝑟+𝜏). Figure 7 shows the custom and derived architectures. The main processes

are presented in dashed boxes identified by sequential numbers; additionally, red and blue colors

present inputs, processes and outputs exclusive to custom and derived models, respectively. The

evaluation parameters are shown in Table 1.
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Figure 7 – Custom and derived DA-RNN architectures.

Source: Own Authorship (2022).

Table 1 – Feature extraction evaluation parameters.
Models 𝑇 𝑤 𝑚= 𝑝 𝑟 𝜏

Custom 1
20 -

5

0 5
Custom 2 8
Derived 1

- 5
9

Derived 2 14
Source: Own Authorship (2022).

3.2 Model Predictive Controller

The proposed MPC is a method and algorithm designed for the regulation of the coolant

temperature over a base controller performance and thermal response of the target. Vehicle

performance, fuel efficiency and emission improvements can be achieved with the application of

machine learning and time series analysis techniques. Forecasting strategies are used to predict

coolant temperature and thermal impact states for a future control horizon, defined to allow a

reinforcement learning labeling model to perform searches for optimal fan speeds. Fan speed

demands are generated based on a thermal response system that predicts coolant temperature states

with confidence based on cross-time correlations with thermal impact variables, resulting in less

deviance from configured temperature set points, compared to classic controllers. Additionally,

a model-based clustering strategy is used to generate unique thermal impact scenarios that, as
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low-dimensional, yet intuitive, feature spaces, complement the environment states returned to

the agent, improving its knowledge over thermal impacts in the target, and are fed to an NN

controller, simplifying its architecture for coolant temperature regulation from general and simple

thermal impact information. The selection of model-based clustering parameters can be leveraged

for distinct vehicle configurations that present similar cross-time correlations between coolant

temperature and thermal impact variables.

3.2.1 Coolant temperature regulation architecture

The proposed MPC method, strategy and algorithms are presented with two main

structures, an internal structure, processed by the fan control processing unit, and an external

structure to the vehicle, used to configure and train the controller for the real-time temperature

regulation. The internal structure contains two main functions, forecasting and controlling.

The data-driven structure and model design are shaped by the selection of optimal thermal

impact variables on the coolant, from a range of available in-vehicle sensor data. Different data

assignments are made based on observations over the variance of individual thermal impact

series on short time sequences for real-time control purposes. As a data-driven method, similar

data and machine learning model considerations are applicable to vehicle configurations that

present the same set of real-time sensor data.

The external structure’s design reflects the need for optimal fan speed demands that

lead to cooling performance improvements from base observations. For this achievement, an

RL labeling strategy, inspired by the online optimization problem of general MPC in setting

the regulation objective and general interactive strategy, is defined. The internal structure is

designed for the real-time regulation of the coolant temperature, inspired by the offline interactive

strategy adopted in the RL labeling method. Initially a forecasting strategy is used to propagate

all relevant thermal impact information to a future horizon, upon which, an NN control model

predicts optimal fan speed demands for regulation. For this task, a predicted or fixed array of

fan speed demands may be supplied to the controller in a subsequent iteration, according to

the complexity of the fan hardware constraints and its appropriate learning by the controller

NN model. Figure 8 presents the proposed MPC method, composed of forecasting and future

horizon strategies for the offline training and inference of the controller. The controller training

is performed after optimizing the RL model samples’ inputs with cumulative actions in labels.

An inference represents the acquisition of past 𝑡−𝑑 |𝑡−𝑛 reference 𝑟 and thermal impact 𝑥 data,
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containing 𝑖 multivariate impact series, its forecasting to a future horizon 𝑡+𝑘 |𝑡, which may

contain the feature extraction of thermal impact patterns in a scenario 𝑠, and the processing of

future action inputs 𝑢(𝑡+𝑘 |𝑡). Additionally, 𝑑 is the processing delay, 𝑛 is the number of acquired

past values and 𝑘 is the number of optimized actions from a current state 𝑡 (𝑘 ≤ 𝑁𝑝). Previously

imposed fan speed demands 𝑢𝜏−1 may be applied to a current 𝜏 controller inference to improve

its prediction accuracy from known fan hardware constraints.

Figure 8 – Proposed MPC method.
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Source: Own Authorship (2022).
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3.2.2 Reinforcement learning labeling

With the overall goal of searching for optimal fan speed demands, the definition of an

RL model, designed over the coolant temperature regulation problem, enables the development

of a prediction-based interactive scenario that, in advantage over the general MPC formulation,

supports offline optimization. The offline optimizer (RL agent) solely relies on predicted states,

without the need for system identification and linearization, given that the optimizer, now

model-free, learns high-order patterns from observations that lead to the objective. Thus, the

achievement of regulation objectives in highly nonlinear systems relates to the capability of

learning by the RL agent while the environment, as a system response predictor, leverages

techniques such as the downsampling of high-dimensional inputs with the goal of supplying

discrete system responses to the iterative training of the agent. As an advantage of the offline

optimization, the RL environment can leverage DNN features with a heavy focus on prediction

accuracy. Linear constraints can be easily imposed with environment and state space rules

as bounds for the selection of allowed actions and the labeling objective can be achieved as,

concurrent with the iterative learning, a cumulative gain configuration𝑈 leads a predicted target

sequence 𝑌 to a minimum accepted error from the target set point. This achievement, for a

selection of relevant samples, is then concluded with the replacement of each original sample’s

sequential fan speeds with the new RL optimized values. Design efforts are then shifted to the

internal structure controller in regards to training and inference capabilities.

3.2.2.1 RL labeling interactive setting for coolant temperature regulation

For the purpose of labeling data to an NN controller, the RL model is set as episodic,

covering a range of relevant samples for optimization. The samples are defined as multivariate

time series 𝑋 = {𝑠1, . . . , 𝑠𝑊 } set with the same thermal impact variables, of size 𝑛, from the

values adopted in evaluating the proposed feature extraction method, as the objective of predicting

the coolant temperature is shared by the proposed RL environment. The sample’s window size𝑊

was selected dynamically with the accuracy goal and architecture design of the RL environment,

as a target prediction DNN. For this interactive setting, each episode is composed of a maximum

number of iterations 𝑇 , allowing the agent to iteratively learn from a given sample’s static and

dynamic environment states, which are composed of static thermal impact and dynamic fan

speed and coolant temperature series. For the definition of an exploratory and exploitative agent,
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Table 2 – Action setting.
ID Description Summary
#1 Increase the fan speed +𝑘
#2 Decrease the fan speed −𝑘
#3 Move forward 2 positions +2𝑝
#4 Move back 2 positions −2𝑝
#5 Move forward 1 position and increase the fan speed +𝑝 + 𝑘
#6 Move forward 1 position and decrease the fan speed +𝑝 − 𝑘
#7 Move back 1 position and increase the fan speed −𝑝 + 𝑘
#8 Move back 1 position and decrease the fan speed −𝑝 − 𝑘

Source: Own Authorship (2022).

In Figure 10, visual representations of the defined action space are presented as a

constrained environment (a) and an example strategy (b). As the agent makes observations

over concurrent and future states of the target series, strategies may be adopted in weighting

sequential interactions to increase or decrease the overall value of the action composition, leading

to unfeasible or impossible actions that can be bounded in a constrained environment. Upon

reaching these conditions, a programmatic elimination of actions can lead an agent’s transfer of

relevance to bounded actions, optimally generating improved and bounded strategies. Along with

this representation, subsequent RL iterations are displayed in presenting one possible strategy

adopted by the agent for tuning action values at two nonadjacent positions, an achievement that

requires few RL iterations in the designed RL interactive loop. In example (b), 4 interactions,

starting at 𝑝1, are required to tune the gains of 𝑝4 and 𝑝6 with the use of movement-based and

gain-based actions while taking advantage of the action space in learning the constrained action

space environment. In addition, with respect to both representations, the agent’s iterative strategy

may assume an optimal path toward the constrained bounds, as in (a), tending toward a fine-tuning

operation, as seen in (b), for exploring and exploiting fan speed configurations for regulation.
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Figure 10 – Visual representations of the action space.

(a) Constrained environment

(b) Strategy example

Source: Own Authorship (2022).

In leveraging the learning of predicted impacts at every possible reference position 𝑃𝑡
in the action space, the environment’s DNN is designed to predict a target value horizon 𝜏𝑒 that,

for 𝜏𝑒 = 2𝜏𝑎 − 1, given 𝜏𝑎 > 1, enables a reward function 𝑟 , shaped by the regulation objective, to

assume a fixed horizon of future observations 𝜏𝑟 = 𝜏𝑎 − 1 from a sliding window strategy, as

follows:

𝑟 (𝑢𝑖,𝑝𝑖) = 𝑓 ( [𝑢𝑖+1,𝑝𝑖+1], . . . , [𝑢𝑖+𝜏𝑟 ,𝑝𝑖+𝜏𝑟 ]) (25)

Here, for 𝑖 ≤ 𝜏𝑎, the reward shaping can make use of the transition from a concurrent

horizon of target observations, from the action space at 𝑝1, to a future horizon, at 𝑝𝜏𝑎 . A dynamic

reward horizon 𝜏𝑟 can also be applied with the following reward shape:
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𝑟 (𝑢𝑖,𝑝𝑖) = 𝑓 ( [𝑢𝑖+1,𝑝𝑖+1], . . . , [𝑢𝜏𝑒 ,𝑝𝜏𝑒]) (26)

where, for all positions, the complete horizon defines the iterative objective. For the defined

optimization problem, the reward horizon can be optimally shaped by the environment’s static

states, which dictate whether manufactured dynamic states, imposing a minimum or maximum

possible actuation of the fan agent, constrained by the fan hardware, are able to inflict the change

from a higher temperature, compared to a defined set point, to a lower temperature, or the inverse,

at a given critical action space position. If possibly obtained for a given sample, this critical

position can be dynamically defined, at each episode, as a starting position 𝑃𝑠, from which the

regulation objective can be established. This reward strategy, adopted for the coolant temperature

regulation problem, is shaped as follows:

𝑟 (𝑢𝑖,𝑝𝑖) =


𝑓 ( [𝑢𝑖,𝑝𝑖], [𝑢𝑖+1,𝑝𝑖+1], . . . , [𝑢𝜏𝑒 ,𝑝𝜏𝑒]) 𝑖 = 𝑃𝑠

0 � 𝑃𝑠
(27)

where if 𝑃𝑠 is nonexistent, the sample is discarded as the manufactured 𝑒𝑑 solution is optimal.

Considering that the labeling objective is not constrained by sample or iteration

characteristics, as a regulation goal must always be met despite the thermal impact setting of a

given sample and iteration, the state space, for updating the agent with information over time

series correlations in the target series, is set to cover the dynamic and static environment’s states.

While dynamic states are composed of the sum of changes observed in an interaction, in the

form of cumulative actions𝑈 = {𝑢1, . . . , 𝑢𝜏𝑎} and predicted target series 𝑌 = {𝑦1, . . . , 𝑦𝜏𝑎} for a

concurrent and future horizon, static states dictate the relevance of each episodic change for the

overall labeling goal by comprising information of the thermal impacts in the target, exclusive

to each sample and containing the previous fan speed, coolant temperature and thermal impact

variables. This is achieved with the application of the proposed human-interpretable feature

extraction process in generating a clustered environment representation of 𝐾-cluster likelihoods

𝐿𝐿 = {𝐿𝐿1, . . . , 𝐿𝐿𝐾}, as simple and robust states, for understanding each sample’s relevance

in the agent’s decision over actions. Additionally, the current action position 𝑃𝑡 , in reinforcing

the agent’s capability of weighting movement-related actions toward the regulation objective,

and the starting position 𝑃𝑠, in defining the episodic reward horizon, are attached to the state

space in enabling, in association with the defined action setting, the learning from a complete

exploration of the environment and later exploitation of appropriate strategies, and the state space
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observation for an adequate reward distribution, respectively. For a discrete time step composition

𝑡 = {1, 2, . . . , 𝑇}, where 𝑇 is the number of episodic iterations, the state space assumes the form

𝑆𝑡 = [𝑈𝑡 , 𝑌𝑡 , 𝐿𝐿, 𝑃𝑡 , 𝑃𝑠], where 𝑆𝑡 ∈ 𝑆 and 𝑆 is the collection of all state spaces.

The reward function, shaped by the objective of achieving an optimal regulation in the

general labeling setting, is set by a regression problem, where the interactive cost-minimization

success is attributed to the agent’s ability to reduce the deviation of the residuals from the

discrete target 𝑌 , as the predicted coolant temperature, in reference to the equivalent horizon

of set points 𝑌 , as the Mean Squared Error (MSE). In assuming a reward distribution strategy,

the adopted cumulative gain composition denotes that optimal strategies, leading to new and

improved action compositions, could also have been built upon achievements from previous

iterations. In this sense, strategies that serve as foundation for its subsequent have equal relevance

toward the objective and, in addition, the learning of such strategy may be related to few actions

in association with a high number of iterations, for a great but simple evolution in the action

composition, or related to more specialized strategies, requiring a broader set of actions and few

iterations but evolving into a complex composition. For this problem statement, a cumulative

reward function, for a distribution of rewards that encourages a balanced exploration of complex

strategies, is adopted as follows:

𝑅𝑡 =
𝑇∑︁
𝑡′=𝑡

𝑟𝑡′ , (28)

where the episode duration ranges from time 𝑡 to 𝑇 .

For labeling all available samples, reward states receive an interactive update, propor-

tional to the cost-minimization error in the current time step 𝑡, independent of previous states,

which enables a flexible control over sample changes in training. Additionally, it enables multiple

labeling attempts of samples used in early training, where an increase in the sum of rewards can

be observed as the agent optimally shifts to an exploitative strategy. Thus, with a distribution

of rewards determined at every iteration from its related state space, for each positive reward

milestone, as a partial valuable reward, the action space composition 𝐴𝑡 can be saved for a future

episode in the same sample. Algorithm 2 presents the proposed interactive setting with the

described reward distribution for optimizing fan actuation and extracting labels.
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Algorithm 2 – Optimize fan actuation and extract labels
Given 𝑋 = collection of samples,𝑈𝑖 = base action composition, 𝑃𝑖 = reference position, 𝜏𝑎 = length of the action

space, 𝜏𝑒 = length of the target horizon , 𝑖𝑛𝑑𝑒𝑥𝑈 = index of the agent series, 𝑖𝑛𝑑𝑒𝑥𝑌 = index of the target series,
𝑊 = sample window size, 𝑔𝑜𝑎𝑙𝐸𝑟𝑟𝑜𝑟 = goal MSE, 𝑟𝑚𝑎𝑥 = maximum reward, 𝑠 = number of valuable rewards.

Initialize 𝑟𝑒𝑤𝑎𝑟𝑑 = 0; 𝑑 =
𝑟𝑚𝑎𝑥

𝑠
; 𝑟_𝑙𝑖𝑠𝑡 = [𝑟 (0), . . . , 𝑟 (𝑠)], for 𝑟 (𝑛) = 𝑑 ∗ 𝑛; 𝑌 = list of 𝜏𝑒 target set point values.

1 for each 𝑋𝑖 ∈ 𝑋 do
2 𝑌𝑖 = 𝐷𝑁𝑁𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝐼𝑛 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑋𝑖 ,𝑈𝑖)
3 𝐿𝐿 = 𝐺𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 (𝑋𝑖)
4 𝑈𝑙𝑎𝑠𝑡 = 𝑋𝑖 [𝑖𝑛𝑑𝑒𝑥𝑈] [𝑊 − 𝜏𝑎 − 1]
5 𝑌𝑙𝑎𝑠𝑡 = 𝑋𝑖 [𝑖𝑛𝑑𝑒𝑥𝑌 ] [𝑊 − 𝜏𝑎 − 1]
6 𝑈𝑐 = 𝐺𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑈𝑙𝑎𝑠𝑡 ,𝑌𝑙𝑎𝑠𝑡 ,𝑌 )
7 𝑌𝑐 = 𝐷𝑁𝑁𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝐼𝑛 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑋𝑖 ,𝑈𝑐)
8 𝑃𝑠 = 𝐺𝑒𝑡𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑌𝑐)
9 𝑆𝑡 = [𝑈𝑖 , 𝑌𝑖 , 𝐿𝐿, 𝑃𝑖 , 𝑃𝑠]

10 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 = 𝑜𝑙𝑑𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 = 0
11 𝑏𝑎𝑠𝑒𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑆𝐸 (𝑌𝑖 [𝑃𝑠 , . . . , 𝜏𝑒], 𝑌 [𝑃𝑠 , . . . , 𝜏𝑒])
12 for 𝑡 = 1, . . . , 𝑇 do
13 𝑈𝑡 , 𝑃𝑡 = 𝐷𝑄𝑁𝐴𝑔𝑒𝑛𝑡𝐼𝑛 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑆𝑡 ,𝑟𝑒𝑤𝑎𝑟𝑑)
14 𝑌𝑡 = 𝐷𝑁𝑁𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝐼𝑛 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑋𝑖 ,𝑈𝑡 )
15 𝑆𝑡 = [𝑈𝑡 , 𝑌𝑡 , 𝐿𝐿, 𝑃𝑡 , 𝑃𝑠]
16 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑆𝐸 (𝑌𝑡 [𝑃𝑠 , . . . , 𝜏𝑒], 𝑌 [𝑃𝑠 , . . . , 𝜏𝑒])
17 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 =

(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑟𝑟𝑜𝑟 − (2 ∗ 𝑏𝑎𝑠𝑒𝐸𝑟𝑟𝑜𝑟)) ∗ (2 ∗ 𝑟𝑚𝑎𝑥)
(𝑔𝑜𝑎𝑙𝐸𝑟𝑟𝑜𝑟 − (2 ∗ 𝑏𝑎𝑠𝑒𝐸𝑟𝑟𝑜𝑟)) − 𝑟𝑚𝑎𝑥

18 𝑟𝑒𝑤𝑎𝑟𝑑 =
𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒

𝐴𝑏𝑠(𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒) ∗ 𝑟_𝑙𝑖𝑠𝑡 [𝐴𝑏𝑠(𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒)]
19 while −𝑠 < 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 < 𝑠 do
20 if 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 ≥ 0 then
21 if 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 ≥ (𝑟_𝑙𝑖𝑠𝑡 [𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒] + 𝑑) then
22 𝑟𝑒𝑤𝑎𝑟𝑑 += 𝑟_𝑙𝑖𝑠𝑡 [1]
23 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 + +
24 else if 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 ≤ (𝑟_𝑙𝑖𝑠𝑡 [𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒] − 𝑑) then
25 𝑟𝑒𝑤𝑎𝑟𝑑 −= 𝑟_𝑙𝑖𝑠𝑡 [1]
26 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 − −
27 else
28 break
29 end if
30 else
31 if 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 ≥ (−𝑟_𝑙𝑖𝑠𝑡 [−𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒] + 𝑑) then
32 𝑟𝑒𝑤𝑎𝑟𝑑 += 𝑟_𝑙𝑖𝑠𝑡 [1]
33 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 + +
34 else if 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 ≤ (−𝑟_𝑙𝑖𝑠𝑡 [−𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒] − 𝑑) then
35 𝑟𝑒𝑤𝑎𝑟𝑑 −= 𝑟_𝑙𝑖𝑠𝑡 [1]
36 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 − −
37 else
38 break
39 end if
40 end if
41 end while
42 if 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 > 𝑜𝑙𝑑𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 then
43 𝑜𝑙𝑑𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 = 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒

44 𝐿𝑖 = 𝐺𝑒𝑡𝐿𝑎𝑏𝑒𝑙 (𝑋𝑖 ,𝑈𝑡 )
45 end if
46 end for
47 return 𝐿𝑖
48 end for

Source: Own Authorship (2022).
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In addressing the discrete action and state spaces, Q-learning is applied. Thus, the

action value function is defined as follows:

𝑄(𝑠, 𝑎) = 𝐸 [𝑅𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] , (29)

where, through iterating, the optimal action value function is obtained. Additionally, due to the

dimension of the state space, the DNN’s feature extraction capabilities can be leveraged with the

use of a DQN agent in estimating the optimal Q-function, as in (23).

3.2.3 In-vehicle model framework and strategy

The internal structure, inspired by the RL labeling setting, was designed to reflect the

gains from optimal actuation labels in real-time while addressing accuracy and processing time

concerns for a real-time operation. To achieve this objective, the product of the correlation

of sequential and multivariate target impact information is used to predict the target’s future

behavior as well as to enable the appropriate understanding of a more complete thermal setting

for regulation. For this purpose, the proposed in-vehicle model framework is presented with two

integrated strategies that aim at providing and using the optimal knowledge of the plant for the

regulation of the refrigerant fluid.

A forecasting strategy is set with the provision task, as inspired by the RL environment’s

provision of target values to the agent, featuring the prediction of the target series, as the coolant

temperature, driven by internal and external exogenous variables, and its related thermal feature

space, to supply the optimal knowledge of the plant, with an adequate dimension for time

efficiency, for the regulation action predictor, as the in-vehicle controller model.

As the RL model labels data for samples linked to episodes, TICC feature spaces 𝐿𝐿 are

set to cover a known range of multivariate and sequential values that remain unchanged for an

episode duration and, for such a process, the proposed feature extraction algorithm can be used

once every RL episode in describing this static sample-defining state for the agent. Distinctly, the

in-vehicle controller, as an NN model for the translation of relevant states into regulation actions,

is set to predict a range of optimized controller actions with a single pass through the network,

performed on inputs that contain unique clustered environment spaces at each iteration and with

processing expenses relieved of past attention efforts that are leveraged by the forecasting strategy.

For each inference of the in-vehicle model, the forecasted outputs feed an NN controller
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for the prediction of optimized fan speed demands and, similar to how action space observations

(𝐴𝑡 ∈ 𝑆𝑡) were required for the agent’s knowledge over a constrained environment, a range of

previously imposed fan speed demands 𝑥𝑢 can be fed to the controller for a complete knowledge

over imposed bounds. Figure 11 shows the internal structure in terms of forecasting and controller

models. The parallel forecasting models’ outputs are encoded as the horizon of target states is

part of the feature space.

Figure 11 – Internal structure.

Source: Own Authorship (2022).

3.2.4 Experimental evaluation

The evaluation consists of the analysis of training results, presented according to each

proposed ML model’s objective, and an experimental and comparative physical evaluation of

the complete controller strategy, making use of ML development environments, automotive

calibration software and an Application Programming Interface (API) for integration. The

following sections comprise the ML models’ design and choice of parameters, highlighting the

proximity between the RL labeling setting and in-vehicle architectures.

For initializing the dataset and model preparation as fit for the physical comparison, the

sampling time was set for 0.1 seconds, where each adopted sequential length could be multiplied

to acquire the temporal length or distance in each development stage.

3.2.4.1 In-vehicle architecture and parameter settings

The RL labeling and in-vehicle models were designed with strategies for the selection

of optimal parameters in weighting the accuracy and speed for each specific task. For accurately

predicting target values that relate to exogenous time series, the architectures were built as inspired

by the DA-RNN architecture, with decision over adopting specialized attention mechanisms for
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precisely downsampling high-dimensional time series features into a horizon of target values.

As applied in evaluating the proposed feature extraction method, strategy and algorithm, an

artificial AE scaled with the size of the DA-RNN hidden states was tested at the end of each

custom DA-RNN architecture to improve the prediction accuracy.

The in-vehicle forecasting models were designed with balance between accuracy and

speed for the vehicle’s real-time processing. The appropriate number of parameters for each

model was defined over the size of the encoder 𝑚 and decoder 𝑝 hidden states, window size 𝑇 and

prediction horizon 𝜏. Given the connection between forecasting models, as seen in Figure 11, the

AE parameters were set to scale with the size of the hidden states of the driving series forecasting

model.

For simplicity, given that the DA-RNN temporal attention mechanism naturally cap-

tures long-term temporal dependencies of time series while selecting the most relevant input

features (QIN et al., 2017), the hidden states were selected with equal size in conducting a grid

search over 𝑚 = 𝑝 ∈ {4,8,16,32,64,128}, similar to (QIN et al., 2017). Figure 12 presents the

forecasting architecture of the target and driving series prediction models with decoders in blue

and red, respectively. The values of 𝑚 = 𝑝 and 𝑇 are presented in Table 3.

Figure 12 – Forecasting architecture.

Source: Own Authorship (2022).
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Considering the forecasting model’s target 𝑦̂ 𝑓 as the controller’s model reference 𝑟𝑐,

the controller was designed with relieved attention expenses as the fan actuation is predicted

through downsampling a single target series with future temporal relevance. The input attention

mechanism was removed, as there is no need to compute the multivariate relevance of the input

series at each time step, and the temporal attention mechanism was reduced, as past regulation

target values, often available to condition the decoder, were used to forecast the driving series

feature space of thermal impacts. With such a reduced model complexity, the controller assumes

the task of translating the forecasted coolant temperature series 𝑟𝑐 into the optimized fan actuation

series 𝑦̂𝑐 and, given the use of extracted thermal impacts, the decoded outputs are concatenated

with relevant thermal impact variables.

The dynamic set of thermal impact variables 𝑋𝑑 was selected as equal to those defined

in the proposed human-interpretable feature space evaluation, where, TICC parameters, weights,

vehicle configuration, driving session and engine load conditions could be shared in training and

testing the complete controller solution. In contrast, however, static variables 𝑋𝑠 were defined and

applied in the controller due to their individual contributions in the thermal impact setting. This

definition was disregarded for the feature extraction evaluation because cross-time correlations of

observations with low variance, for an adopted TICC window size 𝑤, are not optimally captured.

For the training and physical evaluations of the control solution, the length of the

forecasted coolant temperature and fan actuation horizons 𝜏 was selected as equal to the length

of the action space horizon 𝜏𝑎, making use of all labeled fan speed optimizations in the training

of the controller model. The size of the hidden states was selected with a grid search over

𝑚 = 𝑝 ∈ {4,8,16,32,64,128}, similar to the strategy adopted for the forecasting models. Figure 13

presents the controller architecture with predicted target series 𝑦̂, driving feature space 𝑑, acquired

static variables 𝑥𝑠 and previously imposed fan speed demand 𝑥𝑢 as inputs. The values of 𝑚 = 𝑝

and 𝜏 are presented in Table 3 with the complete size of the controller solution displayed in the

sum of all in-vehicle model parameters.

Figure 13 – Controller architecture.

Source: Own Authorship (2022).
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3.2.4.2 RL labeling architecture and parameter settings

While it shares the target prediction objective with the in-vehicle forecasting strategy, the

offline RL labeling environment presents distinctions in regards to time efficiency in processing as

it does not concern real-time operations and possible production costs. Thus, the environment’s

model architecture was designed over the custom DA-RNN for target forecasting, as shown in

Figure 12, and, to improve the prediction accuracy at the cost of a higher dimension, a new

grid search was conducted 𝑚 = 𝑝 ∈ {8,16,32,128,256}, starting with the adopted values for the

in-vehicle target forecasting model with a fixed 𝑇 , larger than the original value for an improved

temporal context. The values were selected as the observed accuracy converged.

For the agent, which receives the complete prediction horizon of concurrent and

future values 𝑌𝑡 , and a simple representation of past values 𝐿𝐿, the architecture was designed

as inspired by the adopted artificial AE for extracting the individual relevance of the target

and action compositions, as weighted by the positional arguments and static context. The

positional arguments were handled with an initial embedding layer, converting [𝑃𝑡 , 𝑃𝑠] ∈ N to

[𝑃𝑡∗, 𝑃𝑠∗] ∈ R, and a deeper decoder was tested and implemented due to improvements in the

training convergence. Figure 14 displays the agent’s model architecture, where, 𝑝 is the value for

scaling all the fully connected layers and 𝜏 is the number of actions 𝑎̂, as shown in Table 2. The

rest of the parameters of all designed models are shown in Table 3.

Figure 14 – Agent architecture.

Source: Own Authorship (2022).
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Table 3 – MPC evaluation parameters.
Models 𝑚= 𝑝 𝑇 𝜏 parameters

Forecasting Target series 8 26 10 8808
Driving series 16 𝑘=4 12788

Controller 8 10 𝜏𝑎=10 6970

RL labeling Environment 32 36 𝜏𝑒=19 103935
Agent 36 - 8 8378

Source: Own Authorship (2022).

The action constraints were defined, in contribution with the OEM’s thermal management

team, as relating to a fixed limit 𝑙 between the current 𝑢𝑡 and immediately preceding 𝑢𝑡−1 fan

speed values. For a maximum or minimum actuation, the constrained composition assumes a

linear form, as shown in example (a) of Figure 10, for both increasing or decreasing fan actuation.

The constrained function for possible actions 𝑎𝑡 is presented as follows:

𝑎𝑡 = [𝑢𝑡 ,𝑝𝑡] subject to |𝑢𝑡 − 𝑢𝑡−1 | ≤ 𝑙 (30)

where, 𝑙 was defined as 50 rpm and the fixed gain 𝑘 , applied in increasing or decreasing the fan

speed value 𝑢𝑡 = 𝑢𝑡−1 at a given position 𝑝𝑡 was selected as 5 rpm, representing a fraction of 𝑙 in

enabling the formation of complex action compositions inside the bounded area of actuation.

A strategy to provide a maximum area of actuation, for an optimal exploration of the

environment, was selected according to the defined constrained environment for the initial action

composition 𝐴0, where all available action values𝑈0 were set with the immediately preceding fan

speed value 𝑢−1 as part of the static context returned to the agent. The initial action composition,

previous to the first interaction and bounded by the adopted constrained function, is presented in

Figure 15.

Figure 15 – Initial action composition.

Source: Own Authorship (2022).
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3.2.5 Physical evaluation

After the definition, training and testing of the developed models, resulting in the

collection of optimal weights, a comparative physical evaluation method, strategy and algorithm

were developed for the complete analysis and study of possible gains with the proposed controller

strategy. The physical evaluation was structured as experimental with strategies for the accurate

access to similar partial engine load conditions on vehicle runs in a route, defined with similar

conditions as the training and testing observations.

The performance metrics for comparison were defined with contributions from the

thermal management team according to the level of interpretability and interest in the internal

adoption of a new control strategy at a production scale. Thus, they were defined as fuel

consumption and fan usage, with the general acquisition of available variables for the further

development of experimental strategies.

Considering the need to visualize, acquire, process and impose data in real-time, the

evaluation algorithm was developed as an integration of the ATI VISION software, used for

the visualization, acquisition and calibration of the vehicle’s Electronic Control Units (ECUs)

parameters, and Python, used with resources from ML libraries for training, testing and predicting

with all developed models. The algorithm was developed for a CAN Calibration Protocol

(CCP) communication between an OEM’s notebook, with adequate computational processing

capabilities, and the vehicle’s ECUs. Multiprocessing was used for the simultaneous execution

of the acquisition of interest data, data processing, imposition of fan speed demands and data

logging, while threading was used in the acquisition processes for the simultaneous collection

of data. A time counter was used in each specific process and a time stamp of acquisition (𝑡𝑎)

was shared for the synchronization of all dependant processes. A pool multiprocessing object

was used to contain the processes while a pipe object was used to enable intercommunication

between processes as needed.

The pool process for the acquisition of interest data contains a pipe object for sharing the

acquired values with the controller and data processing pool. Initially, a flag is sent, from the data

processing pool, to start the acquisition process, which is responsible for acquiring, arranging

and sending data frames, specified to the requirements of all forecasting and controller models,

to the controller and data processing pool. The arrangement of each data frame is made with a

continuous collection of simultaneous values, synchronized for the defined sampling time 𝑡𝑠 of 0.1

seconds. When a composition of 𝑇 sequential values is made, according to the forecasting model



52

requirements seen in Table 3, the sample and 𝑡𝑎 are sent to the controller and data processing

pool for a complete algorithm synchronization. Algorithm 3 shows the acquisition process.

Algorithm 3 – Acquire the data of interest
Given 𝑡𝑠 = sampling time, 𝑇 = sequential length, 𝑖𝑙𝑖𝑠𝑡 = list of data item names for acquisition in the vehicle’s

calibration file.
Initialize 𝑡 = 0, 𝑆𝑙𝑖𝑠𝑡 = empty list.

1 while 1 do
2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 = 𝐺𝑒𝑡𝑇𝑖𝑚𝑒()
3 if 𝑡 == 0 or 𝐴𝑏𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑡) ≤ 𝑡𝑠

10
then

4 𝑑𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑇ℎ𝑟𝑒𝑎𝑑 (𝐺𝑒𝑡𝐷𝑎𝑡𝑎(𝑖𝑙𝑖𝑠𝑡 ))
5 if 𝑡 == 0 then
6 𝑡 = 𝐺𝑒𝑡𝑇𝑖𝑚𝑒()
7 𝑡 = 𝑡 + 𝑡𝑠
8 else
9 𝑡 = 𝑡 + 𝑡𝑠

10 end if
11 if 𝐿𝑒𝑛𝑔𝑡ℎ(𝑑𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛) < 𝑇 then
12 append 𝑑𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 to 𝑆𝑙𝑖𝑠𝑡
13 else if 𝐿𝑒𝑛𝑔𝑡ℎ(𝑑𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛) == 𝑇 then
14 return 𝑆𝑙𝑖𝑠𝑡 , 𝑡 − 𝑡𝑠
15 else
16 𝑆𝑙𝑖𝑠𝑡 = 𝑅𝑒𝑚𝑜𝑣𝑒𝐹𝑖𝑟𝑠𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑆𝑙𝑖𝑠𝑡 )
17 append 𝑑𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 to 𝑆𝑙𝑖𝑠𝑡
18 𝑡𝑎 = 𝑡 − 𝑡𝑠
19 return 𝑆𝑙𝑖𝑠𝑡 , 𝑡𝑎
20 end if
21 end if
22 end while

Source: Own Authorship (2022).

After the reception of the first data frame, the controller and data processing pool execute

a complete pass through the forecasting and controller networks, generating fan speed demands

for an imposition in the fan hardware. Algorithm 4 presents the controller execution.

Algorithm 4 – Execute the controller inference
Given 𝑆𝑙𝑖𝑠𝑡 = sample from the data acquisition process, 𝑡𝑠 = sampling time.

1 while 1 do
2 𝑆𝑙𝑖𝑠𝑡 , 𝑡𝑎 = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑆𝑎𝑚𝑝𝑙𝑒()
3 𝑌𝑙𝑖𝑠𝑡 = 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑒𝑟𝑖𝑒𝑠𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔(𝑆𝑙𝑖𝑠𝑡 )
4 𝐿𝐿𝑙𝑖𝑠𝑡 = 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑆𝑒𝑟𝑖𝑒𝑠𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔(𝑆𝑙𝑖𝑠𝑡 )
5 𝑈𝑙𝑖𝑠𝑡 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝐼𝑛 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑌𝑙𝑖𝑠𝑡 , 𝐿𝐿𝑙𝑖𝑠𝑡 )
6 return 𝑈𝑙𝑖𝑠𝑡 , 𝑡𝑎
7 end while

Source: Own Authorship (2022).

The values are then sent, along with 𝑡𝑎, to the imposition process pool, which, respecting

the time synchronization from the currently acquired data frame, ensures that each output

is correctly imposed in the fan hardware with modifications in the vehicle’s calibration file.

Algorithm 5 displays the imposition of the generated demands.
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Algorithm 5 – Impose the fan speed values
Given 𝑡𝑠 = sampling time, 𝑛𝑠 = number of consecutive fan speed impositions from one sample.

1 while 1 do
2 𝑈𝑙𝑖𝑠𝑡 , 𝑡𝑎 = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐷𝑒𝑚𝑎𝑛𝑑 ()
3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 = 𝐺𝑒𝑡𝑇𝑖𝑚𝑒()
4 𝑡 = 𝑡𝑎 + 𝑡𝑠
5 𝑖𝑑𝑥 = 0
6 while 𝑖𝑑𝑥 < 𝑛𝑠 do
7 if 𝐴𝑏𝑠(𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒) ≤ 𝑡𝑠

10
then

8 return 𝑈𝑙𝑖𝑠𝑡 [𝑖𝑑𝑥]
9 𝑡 = 𝑡 + 𝑡𝑠

10 𝑖𝑑𝑥 = 𝑖𝑑𝑥 + 1
11 end if
12 end while
13 end while

Source: Own Authorship (2022).

While performing the acquisition, processing and imposition of the values of interest, a

data logging process pool was used for composing and saving the physical evaluation dataset. To

avoid overloading the communication system of each process, the synchronization, acquisition,

data treatment and saving function were set as independent of the other processes. The separate

data logging process is shown in Algorithm 6.

Algorithm 6 – Log the data of interest
Given 𝑡𝑠 = sampling time, 𝑇 = sequential length, 𝑖𝑙𝑖𝑠𝑡 = list of data item names for logging in the vehicle’s calibration

file.
Initialize 𝑡 = 0.

1 while 1 do
2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 = 𝐺𝑒𝑡𝑇𝑖𝑚𝑒()
3 if 𝑡 == 0 or 𝐴𝑏𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑡) ≤ 𝑡𝑠

10
then

4 𝑑𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑇ℎ𝑟𝑒𝑎𝑑 (𝐺𝑒𝑡𝐷𝑎𝑡𝑎(𝑖𝑙𝑖𝑠𝑡 ))
5 if 𝑡 == 0 then
6 𝑡 = 𝐺𝑒𝑡𝑇𝑖𝑚𝑒()
7 𝑡 = 𝑡 + 𝑡𝑠
8 else
9 𝑡 = 𝑡 + 𝑡𝑠

10 end if
11 return 𝑑𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛

12 end if
13 end while

Source: Own Authorship (2022).

For the real-time visualization of each variable and to validate the imposition of fan

speed demands in the calibration file, the built-in visualization tool of the ATI VISION software

was used, with a custom configuration for the data visualization, including graphic representations

and item distributions, dynamically defined to validate optimal conditions for a comparative

analysis between control strategies. A custom ATI VISION visualization window, used for
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the verification of interest variables and validation of the developed evaluation algorithm, is

presented in Figure 16.

Figure 16 – Configured ATI VISION screen for visualization.

Source: Own Authorship (2022).

After the complete validation of the developed algorithm, the comparative analysis

was structured, with support from the thermal management team, for the definition of the route,

driving strategy and configuration for multiple runs with the adopted vehicle. The route was

defined based on similarities with the one used for training and testing the complete control

strategy, where, an uphill road configuration was adopted due to a longer partial engine load

operation. The driving strategy was defined according to the route, where the driver was guided

into maintaining the vehicle’s speed constant at 35 km/h while avoiding gear changes.
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4 RESULTS AND DISCUSSION

4.1 Feature extraction

This section describes the use of the proposed human-interpretable feature extraction

process in an NARX problem, comprising the evaluation and study of the prediction accuracy of

similar ML models that differ in the reception of each type of input. The problem was additionally

defined as befitting with the purpose of evaluating the complete MPC controller strategy, where,

TICC parameters, weights, vehicle configuration, driving session, engine load conditions and the

summary of results were applied in training and testing the controller solution.

4.1.1 Dataset preparation and feature extraction setup

The evaluation was performed in a dataset, provided by an OEM, containing thermal

impact-related sensor data, for distinct engine load conditions, from a real driving session. This

session lasts approximately 2 hours and occurs on a road in a Brazilian city. Observations are

made with 7 sensory measurements every 0.1 seconds:

• Vehicle Acceleration

• Vehicle Speed

• Transmission Gear

• Engine Speed

• Road Inclination

• Fan Speed

• Coolant Temperature

TICC (HALLAC; VARE, et al., 2018) parameters were dynamically defined over

subsequences of the dataset with the initial goal of visualizing reasonable homogeneity and

consistency, in iterating for convergence, for the quantity of cluster samples. A custom

visualization tool was built in Python in integration with HTML to support a dynamic definition

of parameters over values and visual resources. A discrete sampling time of 0.3 seconds was

adopted for a window size 𝑤0.3 = 6 and number of clusters 𝑘 = 4. Figure 17 shows the final

visual outputs considered for the feature extraction setup. The first bar contains colors for each

sample’s cluster assignment, while the bar for each sensor highlights its related intensity at each

timestamp.
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Figure 17 – Outputs of the TICC visualization algorithm.

Source: Own Authorship (2022).

For the initial objective, visual outputs of the number of cluster samples at each iteration

of the TICC optimization algorithm were used. Considering that an MRF is assigned to each

cluster, all partial correlations between variables (sensors), as graphic edges, denote the temporal

strength in the relationship between all defined sensors. Thus, for interpretation, the Betweeness

Centrality (BC) scores (BRANDES, 2001), which summarize the contributions of each sensor

in a clustered environment definition, were displayed in an "importance" matrix 𝑘 × 𝑛, where

each value represents the impact weight of each sensor. In searching for an optimal clustered

environment, homogeneity and consistency in assigning clusters were initially achieved by

searching for a low Mean Average Deviation (MAD) among all sensor relationship weights for

each cluster, as it contains the relative cluster importance at a given optimization iteration. Fine

tuning is achieved by increasing the average BC score of the cluster with the least number of

samples, inherently the least "important" cluster, while maintaining or improving the overall

score proximity. The search for a higher average BC score, among all clusters, increases the

confidence in each cluster assignment. Table 4 contains the BC score for each sensor within each

defined cluster.

Table 4 – Importance matrix.
Clusters Acc. Spd. Gear Eng. Spd. Road Incl. Fan Spd. Cool. Temp.

#1 84.033 0 0 255.55 41.516 137.506 39.396
#2 42.671 0 0 256.497 28.174 47.543 19.115
#3 50.503 67.539 39.996 179.106 53.944 65.774 43.138
#4 41.107 32.725 27.268 130.192 30.645 46.96 20.102

Source: Own Authorship (2022).

After the dynamic definition of initial parameters through the analysis of optimization

BC scores, the visualization of all sample assignments optimally leads to a human-interpretable

cluster definition and additional assignment smoothing. Figure 17 shows the outputs of a
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visualization tool, presenting a range of each cluster’s assigned samples and the intensity of each

sensor for the specification of a human-interpretable clustered environment.

Table 4 and Figure 17 present the visual context for the final clustered environment

definition. Table 4 shows that the engine speed sensor has a high correlation importance in

the thermal performance of all clusters, while vehicle speed and transmission gear shifts tend

to passively change, adapting to the environment. Cluster #1 carries the highest engine speed

and fan speed scores, as fan speed demands are determined upon outer-loop requests, more

independent of the coolant temperature response and with higher intensity than other clusters.

Cluster #2 maintains a high engine speed importance with an average score among other sensors

as the observed increase in heat rejection, from the vehicle and engine speed, road inclination

and coolant temperature, correlates to a higher heat rejection demand. Clusters #3 and #4 present

lower heat-rejection environments and a nonzero score for the vehicle speed and transmission

gear shifts. The observed cluster attributes are a consequence of a more direct impact from

driver control inputs in the vehicle’s thermal response. Cluster #4 describes a more pronounced

variation in sensor data in the occurrence of subsequent rapid gear shifts.

4.1.2 Evaluation metrics and structure

To measure the effectiveness of the proposed feature extraction method, two different

evaluation metrics are considered in comparing the prediction performance of models with

a similar quantity of trainable parameters. For a number of test observations 𝑁 , ground

truth values 𝑦 and predicted values 𝑦̂, the Root Mean Squared Error (RMSE), defined as

RMSE =

√︃
1
𝑁

∑𝑁
𝑖=1

(
𝑦𝑖𝑡 − 𝑦̂𝑖𝑡

)2, contributes to the comparative analysis with a higher weight in the

impact of outliers, whereas the Mean Absolute Error (MAE), defined as MAE = 1
𝑁

∑𝑁
𝑖=1

��𝑦𝑖𝑡 − 𝑦̂𝑖𝑡 ��,
contributes with the application of higher weights to the overall performance in the test set

without highlighting resulting outliers.

The adopted evaluation structure contains results for the overall performance of each

model and a graphic presentation of results for each metric and predicted value, composing the

prediction window. Thus, intending the discussion of a general and a more detailed view of each

model’s performance.

The comparative analysis is performed on the prediction error, with both metrics, of all

4 models. Figure 18 and Table 5 present the accuracy performance results.
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Figure 18 – Error × prediction window curve.

(a) MAE

(b) RMSE

Source: Own Authorship (2022).

Table 5 – Evaluation results.

Metrics Models
Custom 1 Derived 1 Custom 2 Derived 2

Number of Param. 3427 3169 7118 7106

Accuracy MAE 0.0143 0.0137 0.0135 0.0133
RMSE 0.0103 0.0141 0.00475 0.0139

Source: Own Authorship (2022).
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Table 5 shows that the application of the proposed feature spaces, as a time series of

equal and relevant clustered environment states, leads to forecasting NN models with a smaller

absolute error. This improvement, in comparison to approaches that make use of specialized

input attention mechanisms, demonstrates that the extraction of model agnostic features, available

in a human-interpretable clustered environment, optimally supports the prediction of values from

inputs, with a reduced dimension, that reflects the general dynamic of a given model. In the case

of exceptions, as specific and rare responses to exogenous series, the interpretable and dynamic

optimization process tends to suppress high-dimensional outliers, aggravating the RMSE metric

performance. As outliers become apparent, the result of a greater number of training samples or

better selection of high-dimensional spaces, the use of the proposed feature extraction method

leads to additional improvements in the MAE metric, tending to outperform more specialized

models in the RMSE metric.

For both architectures and choice of parameters, a deeper model results in performance

improvements. Table 5 and Figure 18 show a significant decrease in RMSE in the case of the

custom model, as the capability of describing high-dimensional outliers increases, whereas, for

the derived model, a proportional decrease of MAE and RMSE is observed, befitting with a

feature representation that carries interpretable correlation features, as the task of describing

outliers, suppressed during optimization, remains challenging to deeper models. A more detailed

view of predicted values, in Figure 18, shows that for both derived models, the proposed feature

space better represents the impact of the driving series, as patterns, in forecasting values up to

0.3 seconds, consequence of more balanced, model agnostic and specific, features and model

dynamics outliers, tending to decrease the performance as inadequately interpreted impacts in

the target affect the accuracy performance of subsequent values.

4.1.3 Evaluation summary

The feature space, as the likelihood that a sample belongs to the cluster in an interpretable

environment, presents a reduced dimension with patterns that relieve expenses in the design of

ML architectures. Furthermore, the application of dynamic programming eases the definition of

parameters due to a direct visualization of its impacts while converging to an optimal solution.

The experimental comparative evaluation results show that the proposed method of feature

extraction relies on the optimal description of model dynamics, as the reduction of data outliers

can improve the accuracy of ML prediction models, and, as the dynamics of a given system are
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well described for a given objective, such as regulation, the feature extraction process becomes

interesting for systems with limited processing capabilities, such as the internal structure of the

proposed MPC control strategy, or to increase the time efficiency for optimization, as applied in

complementing the RL agent’s state space with a simple feature representation. A promising

future direction is to explore different human-interpretable methods for the dynamic clustering

optimization process and the use of model-based clustering feature spaces for integrated systems

and applications with limited processing capabilities.

4.2 Model predictive controller

This section describes the experimental evaluation of the proposed MPC controller

solution, comprising the training results of RL labeling, forecasting and controller models, visually

presented as fit for each objective, and the conception, results and study of an experimental and

comparative physical evaluation between the proposed controller and a PID solution, applied at a

production scale for the covered heavy-duty vehicle, in terms of coolant temperature regulation

impacts on the vehicle performance.

4.2.1 Dataset preparation

For training and testing the forecasting models, the dataset described in Section 4.1.1

was used with a split of 80% for training, 10% for validating and 10% for testing, where each

sample was defined according to the input and output specifications of each model, as presented

in Table 3. For the offline labeling setting, where the environment’s DNN model requires a

separate training process for an unbiased performance over RL samples, the dataset and splits

of the forecasting models were used in training and testing the environment’s DNN while a

new dataset, with observations of an equal vehicle configuration and route, and similar ambient

conditions, timespan and driving performance, was used to label the data for the controller.

Given that the controller’s data specification is a subset of the RL environment, as

the input 𝑇 and output 𝜏 lengths are smaller, the RL labeling datasets were specified for the

environment’s model due to simplicity and code optimization, later reframed to the controller

parameters for its training.
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4.2.2 Training and testing

Due to the application of an ML strategy that employs attention mechanisms in weighting

each driving series individually and temporally, the forecasting and environment models presented

a stable conversion to a minimum loss. To more intuitively visualize the goals achieved in

training, the weights, prior to the overfitting of each model, were saved and applied in measuring

the prediction error, with the forecasting and environment models, and class accuracy, in the case

of the driving series forecasting model. Figure 19 displays the error in the test set for the target

series forecasting and environment models, where, the MAE and RMSE metrics were used for

averaging the prediction accuracy and sensitivity to outliers.

Figure 19 – Accuracy of the target series forecasting and environment models.

Source: Own Authorship (2022).

Due to the accurate response of each model, the optimized weights were deemed fit for

each objective in providing accurate coolant temperature states to the controller and RL agent,

where the use of a deeper architecture contributed to a greater accuracy and robustness to outliers.

To demonstrate the results of the driving series forecasting model after training, the

predicted clustering feature spaces, composed of 4 cluster likelihoods, were displayed with colors

for each most suitable cluster and arranged in Global Positioning System (GPS) coordinates,

acquired for each test sample, for a simple visual comparison between the outputs of the TICC

model and the driving series model predictions. Figure 20 presents the single-class accuracy of

the model throughout the test set and Table 6 shows the multi-class and single-class accuracy in

terms of MAE, RMSE, and Percentage of Correct Predictions (PCP).
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Figure 20 – Single-class performance of the driving series forecasting model.

(a) TICC outputs

(b) Prediction

Source: Own Authorship (2022).

Table 6 – Accuracy of the driving series forecasting model.
Multi-class Single-class

MAE RMSE PCP (%)
0.2391 0.3892 93.9

Source: Own Authorship (2022).

An accurate thermal response is needed, as seen in Figures 19 and 20, for providing a

target and driving series prediction horizon that resembles the states returned to the agent by the

environment’s model, with greater accuracy from less concerns for time efficiency, given that the

learning of optimizations, by the controller, is a reflection of the offline labeling capabilities.

For training and measuring the loss of the offline labeling model, the goal MSE, seen

in Algorithm 2, was set to 0, as an optimal regulation state for verifying the minimum RMSE

that can be achieved episodically. As the episodic reward represents the approximation to the

goal error and the increase in optimization speed, as an episode yields better rewards if the

optimal action composition is reached in early iterations, a cumulative reward progression of

each sequential episode, displayed in Figure 21, was used to present the training episodes. After

the model conversion to a maximum reward, labeling was performed once again on all training

samples to verify the final exploitative results. For an improved visualization of the reward

convergence, a forward-in-time filtered representation was used while the original data dispersion

was displayed with related colors in the background of each series.
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Figure 21 – Reward evolution of the labeling model.

Source: Own Authorship (2022).

The labeling model outperformed the PID controller regulation performance while

stabilizing after transitioning to a more exploitative policy. Thus, all optimized samples were

employed for training the controller.

The number of optimized samples, obtained directly and through the sample manufac-

turing process, roughly presented 5% of the original dataset as a consequence of the specificity

of heavy engine load conditions and rated operation at high coolant temperatures for the adopted

truck configuration. To increase the controller’s training dataset, the complete actuation of the

PID controller was leveraged by using the original dataset, used for the selection of samples for

optimization, with the replacement of samples that were outperformed by labeled optimizations.

In addition to the use of mixed data, a new strategy for the evaluation of the controller

model was defined as a consequence of the proportion of optimized samples and to accurately

present the gains of the developed controller. Due to the learning of the observed PID controller

transitions for various engine load conditions in addition to the labeled optimizations, a new

testing dataset, composed of similar observations from the previously adopted training and testing

sets, was acquired and specified for the controller model and for the execution of sequential

inferences.
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In evaluating the performance of the controller, a variable for the number of sequential

runs in the test set (𝑛𝑠) was defined to verify the complete model capabilities of achieving and

maintaining the temperature set point for different operating time windows. At each testing

iteration, characterized by a specific value of 𝑛𝑠, the generated fan speed demand, resulting from

sequential controller inferences, was supplied to the environment’s model to accurately determine

the concurrent coolant temperature states. While iterating through the test samples (𝑆) with 𝑛𝑠
sequential inferences, the RMSE of the comparison between the set point and resulting target

temperature states, along with the RMSE between the set point and original coolant temperature

values, were collected for a comparative evaluation. Additionally, the Area Under the Curve

(AUC) of both the original and generated fan speeds was calculated for a complete evaluation of

the model’s performance.

The number of sequential runs 𝑛𝑠 was initially defined as 1 and, after acquiring the

RMSE and AUC values for both strategies, 𝑛𝑠 was progressively increased for the calculation

of an average over a time evolution. The optimal weights of the controller model were then

selected while minimizing the RMSE comparative error and fan usage. Figure 22 displays the

achievements after training the MPC solution in terms of RMSE and fan usage reductions.

Figure 22 – Results of the MPC solution.

(a) RMSE (b) Fan usage
Source: Own Authorship (2022).

As seen in Figure 22, the MPC solution outperformed the PID controller with slight

improvements over the maintenance of the coolant temperature and an average reduction of

1.439% in fan usage. The results expressed the need to more accurately measure the gains

with the new strategy, leading to the conception of a physical, comparative and experimental

evaluation.
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4.2.3 Physical evaluation

After training, testing and validating the complete controller model and physical

evaluation algorithm, the physical testing period was scheduled for a week with the performance

of multiple truck runs on each test day. The proposed MPC and PID controller models were

applied on sequential and intercalated runs, where, for some cases, the evaluation samples

presented a high level of similarity due to a close time of day. Different ambient conditions, more

specific to each testing day, heavily impacted the vehicle performance, leading to the selection of

6 runs, 3 of each strategy, based on similar external conditions.

To further diminish the impact of internal and external factors, a comparative analysis

was performed based on route positions, where the minimal distance between GPS coordinates

of samples from different runs defined each comparative sample.

Considering that no automation was applied for establishing equal driving conditions

between runs and that some variance in internal and external conditions was unavoidable, an

additional experimental strategy, for further extracting reliable samples, was developed and

applied prior to the execution of the comparative evaluation.

The strategy was composed of a new TICC optimization process, where a clustered

environment was sought for defining a subset of reliable samples. The dataset was built as a

sequential composition of all logged test runs, and sensors were selected according to their

contributions to the coolant temperature behavior. The selected sensors are presented as follows:

• Vehicle Acceleration

• Vehicle Speed

• Transmission Gear

• Engine Speed

• Road Inclination

• Ambient Temperature

• Ambient Air Pressure

To establish a metric befitting with the physical evaluation method, reliability for

comparison can be weighted by the similarity that samples from different runs of the same control

strategy have in terms of regulation performance. This is because of a proportional level of

similarity in internal and external impacts for the comparison samples. If this similarity level is

high for runs with different strategies, the contributions of different controller solutions in terms

of fan usage and fuel consumption would be highlighted for comparison. Thus, the minimization

of the MAD of the fuel consumption and fan usage was set as the optimization objective, where
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each positional sample, presenting a common cluster in runs of the same control strategy, was

selected in the search for a reliable dataset for comparison.

The traveled distance (𝑑) and fuel level (𝑙) signals were logged and linearized, and the

fuel consumption, defined by 𝑐𝑡 =
|𝑙𝑡 − 𝑙𝑡−1 |
|𝑑𝑡 − 𝑑𝑡−1 |

, was calculated and associated with each positional

argument for evaluation.

The fan usage was specified as fan power due to a broader use in thermal performance

evaluations, where the instantaneous values (𝑝𝑡) were obtained as a function of the logged fan

speed ( 𝑓𝑡) with the following expression, according to the fan hardware:

𝑝𝑡 = 8727.643 − 8727.652

1 +
(

𝑓𝑡

15209.29

)3.0023 (31)

Figure 23 (a) shows the clustered sequences of two runs after optimization, where each

common sample, collectively presented as a green subset in (b), was used for the generation of

a reliable dataset for the final comparative evaluation. In (c) and (d), fuel consumption values,

distributed in similar route positions for two runs of the same strategy, are presented for the

reliable (green) and inconsistent (yellow) subsets, respectively. Due to the number of samples

and positional arrangement, forward-in-time filtered representations were used.

Figure 23 – Results of the extraction of reliable samples.

(a) Clustered sequences

(b) Reliable and inconsistent subsets

(c) Reliable set (d) Inconsistent set
Source: Own Authorship (2022).
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As seen in Figure 23 (a) and (b), the major portion of each original logged run was

defined by a single cluster as a consequence of the imposed driving conditions, contributing to a

more interpretable and consistent comparative evaluation.

With the definition of reliable samples, the datasets for comparison were built with

samples that presented common cluster assignments among the 6 selected runs. The instantaneous

fuel consumption and fan power values were averaged for each similar position in runs of the

same strategy. Figure 24 presents the regulation performance, in terms of fuel consumption and

fan power, for both strategies.
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Figure 24 – Regulation performance of the MPC and PID solutions.

(a) Fuel consumption

(b) Fan power

Source: Own Authorship (2022).

An average improvement of 0.61% in the reduction of consumed fuel and 1.53% in the

reduction of fan power were observed. The improvements are considered potential as specific

engine load conditions were used to train, test and validate the proposed solution.
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5 CONCLUSION

In this Master’s thesis, an MPC system, consisting of offline labeling, forecasting and

regulation methods, strategies and algorithms, was proposed for the thermal regulation of the

refrigerant fluid. To achieve regulation optimizations solely from observations, supervised and

semisupervised ML strategies were applied, improving the processed knowledge over the plant,

reference and controlled signals while addressing processing time concerns with the generation

of low-dimensional feature spaces. The use of an RL system, for the designed offline setting,

enables the automatic search for regulation optimizations from a high-level interactive system,

where simple actions are used to generate complex compositions, learned from exploring an

environment of accurate target responses. A real-time operation for regulation, as inspired

by the labeling setting, is achieved with the forecasting and translation of high-dimensional

thermal inputs, into optimal control signals, while making use of interconnected architectures

and attention mechanisms for each objective.

The challenging measurement of results from a data-driven and semisupervised controller

model led to the search for experimental and comparative evaluation methods, resulting in the

use of simulation and feature extraction models, and a broad range of representations. The

results of the controller evaluations presented an average fan usage reduction of 1.439% with

remote plant simulations and 1.53% as resulting of the physical evaluation when compared

to the PID solution applied at a production scale for the adopted vehicle configuration. The

improvement is a consequence of the predictive actuation of the proposed controller, learning

without the specification of a range for actuation and generating a nonlinear demand of fan speeds

proportional to foreseen thermal rejection states. The reduced fan usage positively impacted the

fuel consumption with a reduction of 0.61%, although inconsistencies were observed for some

sequences As summarized in the evaluation of the proposed feature extraction method, regulation

accuracy improvements are proportional to the description of the model dynamics, supplied

to the training of ML models. Additionally, considerations for different metrics of interest, in

the conception of an optimization system, would generate improvements and a more consistent

thermal regulation toward fuel efficiency.
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6 NEXT STEPS

The next steps of this work involve the design and development of a new controller

version. Regarding the specification of the model dynamics, a new input treatment model will be

developed for the controller and RL agent, containing the input of different vehicle characteristics

relative to the thermal objective, optimally achieving a model configuration that is scalable

to multiple configurations. The selection of inputs will be made according to an analysis of

different vehicle configurations in production, offering support to the specifications of upcoming

configurations,

The new controller model will be additionally developed as an embedded system,

involving production scale concerns. The RL system of the offline labeling strategy will be

built as a multi-agent solution, where different cooling agents will be explored in performing

individual and collective interactions with a new simulation environment. An inner multi-agent

setting for each cooling agent will be tested with a new decision-making system over the discrete

action and environment spaces, comprising the magnitude of imposed gains and improvements

in the action space movement for simple and complex action compositions.

The remote and physical tests and evaluations will be enhanced for multiple vehicle

configurations and engine load conditions, according to the new achievements of a new version.



71

REFERENCES

ADETOLA, V.; DEHAAN, D.; GUAY, M. Adaptive model predictive control for constrained
nonlinear systems. Systems & Control Letters, v. 58, n. 5, p. 320–326, 2009. ISSN 0167-6911.
DOI: https://doi.org/10.1016/j.sysconle.2008.12.002. Available from:
https://www.sciencedirect.com/science/article/pii/S0167691108002120.

ARULKUMARAN, K. et al. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Processing Magazine, v. 34, n. 6, p. 26–38, 2017.

BEGUM, N. et al. Accelerating Dynamic Time Warping Clustering with a Novel Admissible
Pruning Strategy. In: PROCEEDINGS of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Sydney, NSW, Australia: Association for
Computing Machinery, 2015. (KDD ’15), p. 49–58. ISBN 9781450336642.

BEMPORAD, A. Explicit Model Predictive Control. In: Encyclopedia of Systems and Control.
Ed. by John Baillieul and Tariq Samad. London: Springer London, 2013. P. 1–9. ISBN
978-1-4471-5102-9. DOI: 10.1007/978-1-4471-5102-9_10-1.

BEMPORAD, A.; MORARI, M., et al. The Explicit Linear Quadratic Regulator for Constrained
Systems. Automatica, Pergamon Press, Inc., USA, v. 38, n. 1, p. 3–20, Jan. 2002. ISSN
0005-1098. Available from: https://doi.org/10.1016/S0005-1098(01)00174-1.

BEMPORAD, A.; RICKER, L. N.; MORARI, M. Get Started with Model Predictive Control
Toolbox — mathworks.com. [S.l.: s.n.], 2020.
https://www.mathworks.com/support/search.html?fq[]=asset_type_name:video&fq[]=categor
y:mpc/getting-started-with-model-predictive-control-toolbox&page=1. [Accessed
20-Aug-2022].

BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, v. 5, n. 2, p. 157–166, 1994.

BERNDT, D. J.; CLIFFORD, J. Using Dynamic Time Warping to Find Patterns in Time Series.
In: KDD Workshop. [S.l.: s.n.], 1994.

BRANDES, U. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical
Sociology, v. 25, p. 163–177, 2001.

CHISCI, L.; FALUGI, P.; ZAPPA, G. Gain-scheduling MPC of nonlinear systems.
International Journal of Robust and Nonlinear Control, v. 13, n. 3-4, p. 295–308, 2003. DOI:
https://doi.org/10.1002/rnc.819. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.819.

CHO, K.; MERRIENBOER, B. van, et al. On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. CoRR, abs/1409.1259, 2014. arXiv: 1409.1259. Available
from: http://arxiv.org/abs/1409.1259.

https://doi.org/https://doi.org/10.1016/j.sysconle.2008.12.002
https://www.sciencedirect.com/science/article/pii/S0167691108002120
https://doi.org/10.1007/978-1-4471-5102-9_10-1
https://doi.org/10.1016/S0005-1098(01)00174-1
https://www.mathworks.com/support/search.html?fq[]=asset_type_name:video&fq[]=category:mpc/getting-started-with-model-predictive-control-toolbox&page=1
https://www.mathworks.com/support/search.html?fq[]=asset_type_name:video&fq[]=category:mpc/getting-started-with-model-predictive-control-toolbox&page=1
https://doi.org/https://doi.org/10.1002/rnc.819
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.819
https://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259


72

CHO, K.; MERRIËNBOER, B. van, et al. Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation. In: PROCEEDINGS of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, Oct. 2014. P. 1724–1734. DOI:
10.3115/v1/D14-1179. Available from: https://aclanthology.org/D14-1179.

DIACONESCU, E. The use of NARX neural networks to predict chaotic time series. WSEAS
Transactions on Computers archive, v. 3, p. 182–191, 2008.

EFHEĲ, H.; ALBAGUL, A.; AMMAR ALBRAIKI, N. Comparison of Model Predictive
Control and PID Controller in Real Time Process Control System. In: 2019 19th International
Conference on Sciences and Techniques of Automatic Control and Computer Engineering
(STA). [S.l.: s.n.], 2019. P. 64–69. DOI: 10.1109/STA.2019.8717271.

ESTER, M. et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In: PROCEEDINGS of the Second International Conference on
Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. (KDD’96),
p. 226–231.

FENG, G. A Survey on Analysis and Design of Model-Based Fuzzy Control Systems. IEEE
Transactions on Fuzzy Systems, v. 14, n. 5, p. 676–697, 2006.

GAO, Y.; ER, M. J. NARMAX time series model prediction: feedforward and recurrent fuzzy
neural network approaches. Fuzzy Sets and Systems, Elsevier BV, v. 150, n. 2, p. 331–350, Mar.
2005.

GRUSLYS, A. et al. The Reactor: A fast and sample-efficient Actor-Critic agent for
Reinforcement Learning. In: INTERNATIONAL Conference on Learning Representations.
[S.l.: s.n.], 2018. Available from: https://openreview.net/forum?id=rkHVZWZAZ.

GU, S.; LILLICRAP, T.; GHAHRAMANI, Z., et al. Q-Prop: Sample-Efficient Policy Gradient
with An Off-Policy Critic. [S.l.]: arXiv, 2016. Available from: https://arxiv.org/abs/1611.02247.

GU, S.; LILLICRAP, T.; SUTSKEVER, I., et al. Continuous Deep Q-Learning with
Model-based Acceleration. [S.l.]: arXiv, 2016. Available from:
https://arxiv.org/abs/1603.00748.

GU, S. ( et al. Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient
Estimation for Deep Reinforcement Learning. In: GUYON, I. et al. (Eds.). Advances in Neural
Information Processing Systems. [S.l.]: Curran Associates, Inc., 2017. v. 30. Available from: ht
tps://proceedings.neurips.cc/paper/2017/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf.

HALLAC, D.; NYSTRUP, P.; BOYD, S. Greedy Gaussian Segmentation of Multivariate
Time Series. [S.l.]: arXiv, 2016. Available from: https://arxiv.org/abs/1610.07435.

HALLAC, D.; VARE, S., et al. Toeplitz Inverse Covariance-Based Clustering of Multivariate
Time Series Data. In: PROCEEDINGS of the 27th International Joint Conference on
Artificial Intelligence. Stockholm, Sweden: AAAI Press, 2018. (ĲCAI’18), p. 5254–5258.
ISBN 9780999241127.

https://doi.org/10.3115/v1/D14-1179
https://aclanthology.org/D14-1179
https://doi.org/10.1109/STA.2019.8717271
https://openreview.net/forum?id=rkHVZWZAZ
https://arxiv.org/abs/1611.02247
https://arxiv.org/abs/1603.00748
https://proceedings.neurips.cc/paper/2017/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf
https://arxiv.org/abs/1610.07435


73

HAUSKNECHT, M.; STONE, P. Deep Recurrent Q-Learning for Partially Observable
MDPs. [S.l.]: arXiv, 2015. Available from: https://arxiv.org/abs/1507.06527.

HAYKIN, S. Adaptive filter theory. 4th. Upper Saddle River, NJ: Prentice Hall, 2002.

HEESS, N. et al. Memory-based control with recurrent neural networks. [S.l.]: arXiv, 2015.
Available from: https://arxiv.org/abs/1512.04455.

HIMBERG, J. et al. Time series segmentation for context recognition in mobile devices. In:
PROCEEDINGS 2001 IEEE International Conference on Data Mining. [S.l.: s.n.], 2001.
P. 203–210.

HOCHREITER, S.; SCHMIDHUBER, J. Long Short-term Memory. Neural computation, v. 9,
p. 1735–80, Dec. 1997.

JOLLIFFE, I. T.; CADIMA, J. Principal component analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, The Royal Society, v. 374, n. 2065, p. 20150202, Apr. 2016.

KIM, J.-S. Recent advances in adaptive MPC. In: ICCAS 2010. [S.l.: s.n.], 2010. P. 218–222.

KIM, J.-S.; YOON, T.-W.; SHIM, H. Switching Adaptive Output Feedback MPC for
Input-constrained Neutrally Stable Linear Plants. In: PROCEEDINGS of the 44th IEEE
Conference on Decision and Control. [S.l.: s.n.], 2005. P. 777–782.

KIM, T.-H.; SUGIE, T. Adaptive receding horizon predictive control for constrained
discrete-time linear systems with parameter uncertainties. International Journal of Control,
Taylor & Francis, v. 81, n. 1, p. 62–73, 2008. DOI: 10.1080/00207170701266779. Available
from: https://doi.org/10.1080/00207170701266779.

KULKARNI, T. D. et al. Deep Successor Reinforcement Learning. ArXiv, abs/1606.02396,
2016.

LEE, J.; CHANG, H.-J. An application of explicit model predictive control to electric power
assisted steering systems. In: 2017 11th Asian Control Conference (ASCC). [S.l.: s.n.], 2017.
P. 2119–2124.

LILLICRAP, T. P. et al. Continuous control with deep reinforcement learning. In: BENGIO, Y.;
LECUN, Y. (Eds.). 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. [S.l.: s.n.], 2016.
Available from: http://arxiv.org/abs/1509.02971.

LIN, T. et al. Learning long-term dependencies in NARX recurrent neural networks. IEEE
Transactions on Neural Networks, v. 7, n. 6, p. 1329–1338, 1996.

MAATEN, L. van der; HINTON, G. Visualizing Data using t-SNE. Journal of Machine
Learning Research, v. 9, n. 86, p. 2579–2605, 2008.

https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1512.04455
https://doi.org/10.1080/00207170701266779
https://doi.org/10.1080/00207170701266779
http://arxiv.org/abs/1509.02971


74

MAKRIDAKIS, S.; HIBON, M. ARMA Models and the Box-Jenkins Methodology. Journal of
Forecasting, Wiley, v. 16, n. 3, p. 147–163, May 1997.

MIURA, K. An Introduction to Maximum Likelihood Estimation and Information Geometry.
Interdisciplinary Information Sciences (IIS), v. 17, Nov. 2011.

MNIH, V.; BADIA, A. P.; MIRZA, M.; GRAVES, A.; LILLICRAP, T., et al. Asynchronous
Methods for Deep Reinforcement Learning. In: BALCAN, M. F.; WEINBERGER, K. Q. (Eds.).
Proceedings of The 33rd International Conference on Machine Learning. New York, New
York, USA: PMLR, June 2016. v. 48. (Proceedings of Machine Learning Research),
p. 1928–1937. Available from: https://proceedings.mlr.press/v48/mniha16.html.

MNIH, V.; BADIA, A. P.; MIRZA, M.; GRAVES, A.; LILLICRAP, T. P., et al. Asynchronous
Methods for Deep Reinforcement Learning. arXiv, 2016. Available from:
https://arxiv.org/abs/1602.01783.

MNIH, V.; KAVUKCUOGLU, K., et al. Human-level control through deep reinforcement
learning. Nature, Nature Publishing Group, a division of Macmillan Publishers Limited. All
Rights Reserved., v. 518, n. 7540, p. 529–533, Feb. 2015. ISSN 00280836. Available from:
http://dx.doi.org/10.1038/nature14236.

MÜLLNER, D. Modern hierarchical, agglomerative clustering algorithms. [S.l.]: arXiv,
2011. Available from: https://arxiv.org/abs/1109.2378.

NA, S.; XUMIN, L.; YONG, G. Research on k-means Clustering Algorithm: An Improved
k-means Clustering Algorithm. In: 2010 Third International Symposium on Intelligent
Information Technology and Security Informatics. [S.l.: s.n.], 2010. P. 63–67.

NG, A. Y.; JORDAN, M. I.; WEISS, Y. On Spectral Clustering: Analysis and an Algorithm. In:
PROCEEDINGS of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic. Vancouver, British Columbia, Canada: MIT Press, 2001.
(NIPS’01), p. 849–856.

O’DONOGHUE, B. et al. Combining policy gradient and Q-learning. In: INTERNATIONAL
Conference on Learning Representations. [S.l.: s.n.], 2017. Available from:
https://openreview.net/forum?id=B1kJ6H9ex.

OH, J. et al. Control of Memory, Active Perception, and Action in Minecraft. [S.l.]: arXiv,
2016. Available from: https://arxiv.org/abs/1605.09128.

PILLONETTO, G. et al. Kernel methods in system identification, machine learning and function
estimation: A survey. Automatica, v. 50, n. 3, p. 657–682, 2014. ISSN 0005-1098. DOI:
https://doi.org/10.1016/j.automatica.2014.01.001. Available from:
https://www.sciencedirect.com/science/article/pii/S000510981400020X.

QIN, Y. et al. A dual-stage attention-based recurrent neural network for time series prediction.
In: AAAI PRESS. PROCEEDINGS of the 26th International Joint Conference on Artificial
Intelligence. [S.l.: s.n.], 2017. P. 2627–2633. Available from:
https://www.ijcai.org/proceedings/2017/0366.pdf.

https://proceedings.mlr.press/v48/mniha16.html
https://arxiv.org/abs/1602.01783
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1109.2378
https://openreview.net/forum?id=B1kJ6H9ex
https://arxiv.org/abs/1605.09128
https://doi.org/https://doi.org/10.1016/j.automatica.2014.01.001
https://www.sciencedirect.com/science/article/pii/S000510981400020X
https://www.ijcai.org/proceedings/2017/0366.pdf


75

RYBAKOV, S. et al. Learning interpretable latent autoencoder representations with
annotations of feature sets. Cold Spring Harbor Laboratory, Dec. 2020. Available from:
https://doi.org/10.1101/2020.12.02.401182.

SALEM, F.; MOSAAD, M. I. A comparison between MPC and optimal PID controllers: Case
studies. In: MICHAEL Faraday IET International Summit 2015. [S.l.: s.n.], 2015. P. 59–65.

SCHULMAN, J. et al. High-Dimensional Continuous Control Using Generalized Advantage
Estimation. In: PROCEEDINGS of the International Conference on Learning
Representations (ICLR). [S.l.: s.n.], 2016.

SHOUCHE, M. et al. Simultaneous Constrained Model Predictive Control and Identification of
DARX Processes. Automatica, v. 34, n. 12, p. 1521–1530, 1998. ISSN 0005-1098. DOI:
https://doi.org/10.1016/S0005-1098(98)80005-8. Available from:
https://www.sciencedirect.com/science/article/pii/S0005109898800058.

SILVER, D. et al. Deterministic Policy Gradient Algorithms. In: XING, E. P.; JEBARA, T.
(Eds.), 1. Proceedings of the 31st International Conference on Machine Learning. Bejing,
China: PMLR, June 2014. v. 32. (Proceedings of Machine Learning Research, 1), p. 387–395.
Available from: https://proceedings.mlr.press/v32/silver14.html.

SMYTH, P. Clustering Sequences with Hidden Markov Models. In: PROCEEDINGS of the
9th International Conference on Neural Information Processing Systems. Denver, Colorado:
MIT Press, 1996. (NIPS’96), p. 648–654.

SORZANO, C. O. S.; VARGAS, J.; MONTANO, A. P. A survey of dimensionality reduction
techniques. [S.l.]: arXiv, 2014. DOI: 10.48550/ARXIV.1403.2877. Available from:
https://arxiv.org/abs/1403.2877.

SUN, S. et al. A Survey of Optimization Methods from a Machine Learning Perspective.
[S.l.]: arXiv, 2019. DOI: 10.48550/ARXIV.1906.06821. Available from:
https://arxiv.org/abs/1906.06821.

SUTSKEVER, I.; VINYALS, O.; LE, Q. V. Sequence to Sequence Learning with Neural
Networks. In: PROCEEDINGS of the 27th International Conference on Neural Information
Processing Systems - Volume 2. Montreal, Canada: MIT Press, 2014. (NIPS’14), p. 3104–3112.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. Second. [S.l.]:
The MIT Press, 2018. Available from: http://incompleteideas.net/book/the-book-2nd.html.

SWIEF, A.; EL-ZAWAWI, A.; EL-HABROUK, M. A Survey of Model Predictive Control
Development in Automotive Industries. In: 2019 International Conference on Applied
Automation and Industrial Diagnostics (ICAAID). [S.l.: s.n.], 2019. v. 1, p. 1–7.

THARWAT, A. et al. Linear discriminant analysis: A detailed tutorial. AI Communications,
IOS Press, v. 30, n. 2, p. 169–190, May 2017.

https://doi.org/10.1101/2020.12.02.401182
https://doi.org/https://doi.org/10.1016/S0005-1098(98)80005-8
https://www.sciencedirect.com/science/article/pii/S0005109898800058
https://proceedings.mlr.press/v32/silver14.html
https://doi.org/10.48550/ARXIV.1403.2877
https://arxiv.org/abs/1403.2877
https://doi.org/10.48550/ARXIV.1906.06821
https://arxiv.org/abs/1906.06821
http://incompleteideas.net/book/the-book-2nd.html


76

WANG, Z.; BAPST, V., et al. Sample Efficient Actor-Critic with Experience Replay. In:
INTERNATIONAL Conference on Learning Representations. [S.l.: s.n.], 2017. Available
from: https://openreview.net/forum?id=HyM25Mqel.

WANG, Z.; SCHAUL, T., et al. Dueling Network Architectures for Deep Reinforcement
Learning. [S.l.]: arXiv, 2015. Available from: https://arxiv.org/abs/1511.06581.

WIERSTRA, D. et al. Recurrent policy gradients. Logic Journal of the IGPL, v. 18, n. 5,
p. 620–634, 2010.

XU, C.; SU, Z. Identification of cell types from single-cell transcriptomes using a novel
clustering method. Bioinformatics, v. 31, n. 12, p. 1974–1980, Feb. 2015. ISSN 1367-4803.
eprint: https://academic.oup.com/bioinformatics/article-pdf/31/12/1974/17100675/btv088.pdf.

YAN, L.; ELGAMAL, A.; COTTRELL, G. W. Substructure Vibration NARX Neural Network
Approach for Statistical Damage Inference. Journal of Engineering Mechanics, American
Society of Civil Engineers (ASCE), v. 139, n. 6, p. 737–747, June 2013.

https://openreview.net/forum?id=HyM25Mqel
https://arxiv.org/abs/1511.06581
https://academic.oup.com/bioinformatics/article-pdf/31/12/1974/17100675/btv088.pdf

	Cover
	Title Page
	Approval Page
	Acknowledgments
	Resumo
	Abstract
	List of Algorithms
	List of Figures
	List of Tables
	List of Abbreviations, Initials, and Acronyms
	Initials

	Summary
	1 Introduction
	1.1 Control and optimization systems
	1.2 Feature extraction
	1.3 Justification
	1.4 Proposition
	1.5 Objectives
	1.6 Contributions
	1.7 Thesis structure

	2 Literature Review
	2.1 Control and Optimization Systems
	2.1.1 Model Predictive Control
	2.1.2 MPC formulation
	2.1.2.1 Highly nonlinear systems and performance concerns

	2.1.3 Reinforcement Learning
	2.1.3.1 Reward-Driven Behavior
	2.1.3.2 Markovian Decision Process
	2.1.3.3 Challenges in RL
	2.1.3.4 Value Functions
	2.1.3.5 Policy Search
	2.1.3.6 Actor-critic Methods
	2.1.3.7 Model-based RL



	3 Material and Methods
	3.1 Human-interpretable feature extraction
	3.1.1 Implementation
	3.1.2 Experimental evaluation
	3.1.2.1 Models and parameter settings


	3.2 Model Predictive Controller
	3.2.1 Coolant temperature regulation architecture
	3.2.2 Reinforcement learning labeling
	3.2.2.1 RL labeling interactive setting for coolant temperature regulation

	3.2.3 In-vehicle model framework and strategy
	3.2.4 Experimental evaluation
	3.2.4.1 In-vehicle architecture and parameter settings
	3.2.4.2 RL labeling architecture and parameter settings

	3.2.5 Physical evaluation


	4 Results and Discussion
	4.1 Feature extraction
	4.1.1 Dataset preparation and feature extraction setup
	4.1.2 Evaluation metrics and structure
	4.1.3 Evaluation summary

	4.2 Model predictive controller
	4.2.1 Dataset preparation
	4.2.2 Training and testing
	4.2.3 Physical evaluation


	5 Conclusion
	6 Next steps
	References

