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RESUMO

BASSO, FELIPE OLIVEIRA. Simulações de Grandes Escalas e Simulação Numérica Direta
Sub-Resolvida de Escoamento Turbulento de Fluidos Herschel-Bulkley. Tese. Programa de
Pós-Graduação em Engenharia Mecânica e de Materiais, Universidade Tecnológica Federal do
Paraná, Curitiba, Brasil, 137 páginas, 2022.

Escoamentos turbulentos de fluidos não newtonianos com o modelo Herschel-Bulkley são
encontrados em várias aplicações de engenharia, por exemplo, fluidos de perfuração, lamas de
mineração e soluções de polímeros. No entanto, estudos sobre simulações de grandes escalas
(LES) envolvendo esse tipo de fluido são escassos. O presente trabalho visa contribuir para este
debate. A primeira parte da tese se concentra na avaliação da abordagem LES na previsão das
características de escoamento de fluidos Herschel-Bulkley. A metodologia numérica é comparada
com dados de referência da literatura. Dois modelos de sub-malha (SGS) são considerados:
Dynamic Smagorinsky e Wall Adapting Local Eddy-viscosity (WALE). Além disso, simulações
numéricas direta sub-resolvidas (UDNS) também são realizadas. Em seguida, o método de
solução é utilizado para analisar o escoamento turbulento de fluidos Herschel-Bulkley através de
uma seção anular concêntrica com rotação interna do cilindro em ReG ≈ 9, 000. A influência do
índice de comportamento do escoamento (n = 0.65, 0.70 e 0.75), número de Bingham (Bn =

0.10, 0.25 e 0.40), e a taxa de rotação (N = 0.15 e 0.30) nas características de escoamento são
exploradas. As quantidades de escoamento instantâneo, incluindo contornos da velocidade axial
e viscosidade, estruturas de vórtices, estatísticas de turbulência de primeira e segunda ordem
e características do escoamento médio, como perfis viscosidade, energia cinética turbulenta,
gradiente de pressão e fator de atrito são investigados. Os resultados mostram que estruturas
turbulentas mais fracas são geradas à medida que o valor de n é reduzido e o número de Bingham
elevado. Aumentar a taxa de rotação aumenta as magnitudes das estatísticas turbulentas e torna
os níveis de flutuações de velocidade mais assimétricos. Demonstra-se também que as previsões
obtidas com os modelos SGS e UDNS não apresentam diferenças significativas.

Palavras-chave: Simulação das Grandes Escalas, Simulação Numérica Direta Sub-Resolvida,
Turbulência, Fluido Herschel–Bulkley.



ABSTRACT

BASSO, FELIPE OLIVEIRA. Large-Eddy Simulation and Under-Resolved Direct Numerical
Simulatoin of Turbulent Flow of Herschel-Bulkley Fluids. Thesis. Postgraduate Program in
Mechanical and Materials Engineering, Federal University of Technology - Parana, Curitiba,
Brazil, 137 pages, 2022.

The Herschel-Bulkley model’s turbulent flows of non-Newtonian fluids are encountered in several
engineering applications, e.g. drilling fluids, mining slurries, and polymer solutions. However,
studies regarding Large Eddy Simulations (LES) involving this type of fluid are scarce. The
present work aims to contribute to this issue. The first part of the thesis focuses on evaluating
the LES approach in predicting the flow features of Herschel-Bulkley fluids. The numerical
methodology is compared against literature reference data. Two subgrid-scale (SGS) models are
considered: Dynamic Smagorinsky and Wall Adapting Local Eddy-viscosity (WALE) models.
Additionally, under-resolved direct numerical simulations (UDNS) are also performed. Following
that, the solution method is used to analyze the turbulent flow of Herschel-Bulkley fluids through
a concentric annular section with inner cylinder rotation at ReG ≈ 9, 000. The influence of
the flow behavior index (n = 0.65, 0.70 and 0.75), the Bingham number (Bn = 0.10, 0.25
and 0.40), and the rotation rate (N = 0.15 and 0.30) on the flow characteristics are explored.
The instantaneous flow quantities, including contours of the axial velocity and viscosity, vortex
structures, the first- and second-order turbulence statistics, and mean flow features, such as
mean viscosity profiles, mean turbulence kinetic energy, pressure gradient, and friction factor are
investigated. The results show that weaker turbulent structures are generated as the n value is
reduced and the Bingham number increases. Raising the rotation rate enhances the magnitudes
of turbulent statistics and makes the levels of velocity fluctuations more asymmetrical. It is also
demonstrated that predictions obtained with the SGS models and the UDNS do not present
significant differences.

Keywords: Large-Eddy Simulation, Under-resolved Direct Numerical Simulation, Turbulence,
Herschel-Bulkley fluids.
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NOMENCLATURE
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Aϕ Discretization matrix [−]

A Mean flow advection [m2 s−3]

CS Model constant [−]
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D Diameter / Integration domain [m/−]

Dt Mean viscous transport [m2 s−3]

E Energy density [m2 s−2]

f Friction coefficient / Any flow quantity [−]

F Mass flux through the face [m3/s]

gb Fixed gradient at boundary b [−]

G Filter function [−]

k Turbulent kinetic energy per unit mass [m2 s−2]

k Wave number [m−1]

K Fluid consistency index [Pa sn]

Ko Kolmogorov constant [−]

l Large eddies’ length scale [m]

L Characteristic length [m]

Lz Axial domain length [m]

Lθ Azimuthal domain length [rad]

LSGS
ij Leonard stress tensor [Pa]

M Ratio of the resolved turbulent kinetic energy to the modeled one [−]

∇ Nabla operator [−]

n Flow behavior index [−]

N Point in the center of the neighbouring control volume [−]

Nxi Number of cells in ith direction [−]

p Pressure [Pa]

P Modified pressure / Point in the center of the control volume [Pa/−]

Pt Turbulent kinetic energy production [m2 s−3]

r Radial coordinate [m]

R Radius of the cylinder [m]

R∗
r Radius raio [−]

R R.h.s vector for discretization system [−]

Rzz Two-point correlation function [m2 s−2]



s′, s′′ Ratio of the SGS viscosity to the molecular viscosity [−]

Sϕ Source term [−]

S, Sij Rate-of-strain tensor [s−1]
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t Time [s]
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ϑ Smallest eddies’ velocity scale [m s−1]

κ Von Kármán constant [−]
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ν Kinematic viscosity [m2 s−1]

νSGS Kinematic eddy viscosity [m2 s−1]

Π Rate of transfer of kinetic energy per unit mass [m2 s−3 kg−1]

ϖ Non-orthogonal contribution of the face area vector [m]

ρ Density [kg m−3]

σ Viscous stress tensor [Pa]

ς Mean shear turbulent viscous transport [m2 s−3]

τw Wall shear stress magnitude [Pa]

τy Yield stress [Pa]

τSGS , τSGS
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Reηk Smallest eddies Reynolds number ϑηk/ν [−]

N Rotation rate ΩRrc/Ub [−]

∆x+i Non-dimensional cell size ∆xiuτ/ν [−]

y+ Non-dimensional wall distance yuτ/ν [−]

Superscripts
( )

′
Fluctuation field

( ) Time-averaged quantityf( ) Filtered quantityc( ) Test filter

( )0 Previous time-step

( )+ Wall coordinates



( )T Transposed

Subscripts
( )b Boundary face

( )f Cell face

( )P Cell of interest

( )i Inner cylinder
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( )nn Non-Newtonian fluids
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1 INTRODUCTION

1.1 Motivation

Transitional and turbulent flows of non-Newtonian fluids with viscoplastic characteristics are en-

countered in various applications and biological systems. These applications include drilling fluid flows,

mining slurries, paint industries, polymer solutions, and blood flow in arteries.

The blood is a complex fluid in the medical field that presents some non-Newtonian rheological

characteristics, including deformation rate dependency, viscoelasticity, and thixotropic behavior (ZAMAN

et al., 2015). The laminar-turbulent transition of blood flow can be found in the arteries of patients

who have vascular stenosis disease. Stenosis is an abnormal narrowing in a blood vessel caused by

accumulations of low-density lipoproteins, e.g., cholesterol (MOLLA; PAUL, 2012; KHAN et al., 2018).

As a consequence, turbulent flows can damage blood-cell components in the form of mechanical hemolysis

anemia - damage to the red blood cells due to the high wall shear stress associated with turbulence – and

thrombus formation – the post-stenotic flow has a recirculation zone that facilitates the accumulation of

platelets, providing an optimal environment for coagulation (KELLY et al., 2020).

In the wellbore drilling process, non-Newtonian fluids with viscoplastic behavior are used as a drilling

fluid (MITCHELL; MISKA, 2011). According to Mitchell and Miska (2011) and Caenn and Chillingar

(1996), the primary functions of the drilling fluids are: to transport the cuttings from the hole to the surface

through the annular region; hold cutting in suspension when fluid circulation is interrupted; support the

wellbore wall and maintain the wellbore stability; cool and lubricate the rotating drill string and drill bit;

control the subsurface pressure.

A drilling method widely used is the rotary drilling process (HOSSAIN; AL-MAJED, 2015). Figure

1.1 illustrates a schematic view of this type of operation. The drilling fluid is pumped into the drill string,

passes through the bit nozzles, and returns to the surface, carrying the cuttings through the annular region

formed between the hole walls and drill string.

The drilling fluid flow in the annular region preferably occurs under a laminar regime. However, in

situations where it is necessary to increase the flow rate to prevent excessive cutting sedimentation (cutting

bed) in the annular region, the flow may become turbulent. Moreover, the flow in the annulus can be

laminar, transitional, or turbulent depending on the parameters such as drill string rotation, drill string

eccentricity concerning the wellbore center, diameter ratio between the drill string and wellbore diameter,

and fluid rheological properties (ERGE et al., 2015a).

Hossain and Al-Majed (2015) and CAENN et al. (2017) argue that most of the problems encountered

during the drilling process, such as slow drilling rate and loss of circulation, are directly or indirectly

related to the drilling fluids. Therefore, knowing the behavior of these fluids in different flow regimes is

essential to control processes during a drilling operation.
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Figure 1.1 – Schematic representation of drilling operation and wellbore cleaning.

Source: Adapted from Epelle and Gerogiorgis (2018).

Based on the above considerations, the particular motivation for the present work comes from the

research regarding turbulent flows of non-Newtonian fluids and the oil industry. While the turbulence

theory and numerical methods are well-developed for the Newtonian fluids, there are gaps in the literature

regarding theoretical understanding, physical phenomena, and mathematical modeling for turbulent flows

of non-Newtonian fluids.

1.2 Numerical Simulation of Turbulent Flows

Turbulence is an omnipresent phenomenon in fluid flow dynamics. For several decades engineers

and scientists have been trying to comprehend turbulence mechanisms and develop methods to model

turbulent flows.

From a numerical solution, the turbulent flow can be computed with different levels of approximation.

The most straightforward approach to solve the turbulent flows is a direct numerical simulation (DNS),

which directly resolves all the spatial and temporal scales of the flow without any turbulence modeling

approximation. Supposing the mesh is fine enough to resolve even the smallest scales of motion, the

dissipative scales, and the numerical scheme employed is designed to minimize the numerical dispersion

and dissipation errors, one can obtain an accurate solution to the balance equations free of modeling

assumptions (PIOMELLI, 1999). DNS provides a detailed understanding of turbulence mechanisms,

which is helpful for the improvement of theories and the development of turbulence models. However,

DNS is computationally expensive, and it is currently unfeasible for most calculations of industrial flows.
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Statistical methods were developed to reduce the number of scales solved in a turbulent flow. The

Reynolds-averaged Navier-Stokes (RANS) simulations are based on the statistical description of the

flow. Reynolds (1896) proposed that any instantaneous variable of a turbulent flow, such as velocity field

u(x, t), could be decomposed into a mean value ū(x) and a fluctuation part u′(x, t) through an averaging

procedure, yielding u(x, t) = ū(x) + u′(x, t).

One obtains the well-known RANS equations by inserting the Reynolds decomposition into the

Navier-Stokes equations. These equations describe the evolution of the mean quantities, while the effect of

turbulent fluctuations introduces a new term, the so-called Reynolds stress tensor, which must be modeled

to close the system. The Reynolds stress tensor can be determined by a turbulence model via the eddy

viscosity hypothesis or computed directly from the Reynolds stress transport equation (POPE, 2000).

The cost of RANS simulations is significantly lower compared to DNS. Consequently, the solution of

RANS equations is commonly used in industrial applications to predict the turbulent flow. Unfortunately,

since the resolved field is limited to the mean flow, no information is provided about coherent turbulence

structures and two-point correlations, for example.

Large-eddy simulation (LES) is a technique intermediate between the DNS of turbulent flows and the

solution of the RANS equations, and it is motivated by the limitations of each of these approaches. In

LES, the large-scale turbulent motions are solved explicitly, while the small ones are modeled. The LES

approach avoids the problem of the RANS method, which also models the motion of large scales, which

contain most of the kinetic energy in a turbulent flow. At the same time, keep away from the DNS issue of

having to solve the dissipative scales. According to Pope (2000), nearly all of the computational effort in

DNS is spent on the smallest scales of turbulence.

Since the small scales are more homogeneous, dissipative, and contain little energy than the large

eddies, it is appropriate to model them (RODI et al., 2013). The effect of the small (unresolved) scales can

be modeled explicitly (explicit LES) or implicitly (Implicit LES).

In explicit LES, an additional forcing term (Subgrid-scale (SGS) stress tensor) is added to the

Navier–Stokes equations (SAGAUT, 2006). Conversely, in Implicit LES (ILES), no additional term

is introduced to the Navier–Stokes equations, and the effects of unresolved scales are incorporated

implicitly via a numerical scheme (SAGAUT, 2006; GRINSTEIN et al., 2007). The computational effort

is significantly reduced by modeling the small-scale fluctuations compared to a DNS solution, and LES

can produce quantitatively satisfactory predictions. Details about the filtering procedure are discussed in

Section 2.5.

In an alternative approach, the Navier–Stokes equations are solved directly on a (coarse) LES mesh

executed without an SGS model and constraints imposed on the numerical dissipation (CASTIGLIONI;

DOMARADZKI, 2015; KOMEN et al., 2017). In the current thesis, this approach is referred to as

under-resolved direct numerical simulation (UDNS) or no-model LES, following the works of Castiglioni

and Domaradzki (2015) and Komen et al. (2017).
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1.3 Literature Review

This section reviews previous works regarding the turbulent flow of generalized Newtonian fluids

(GNF), focusing on fluids characterized by the Herschel-Bulkley model. A definition of GNF is given

in Chapter 2 (Section 2.2). The literature review is divided into three topics. Section 1.3.1 reports the

experimental studies in pipes. In Section 1.3.2, experimental works in the annular section are discussed.

In Section 1.3.3, DNS and LES of turbulent flows of GNFs are debated.

1.3.1 Experimental Studies in Pipes

Experimental works regarding turbulent flows of GNFs initially focused on correlations for the friction

factor. Authors such as Metzner and Reed (1955), Dodge and Metzner (1959), Torrance (1963), Hanks

(1978), Wilson and Thomas (1985), and Slatter (1995) proposed several methods to measure the coefficient

of friction factor.

Early experimental studies concerning the flow visualization and measurements of turbulent statistics

of GNFs in pipes were published by Park et al. (1989), Pinho and Whitelaw (1990), and Pereira and

Pinho (1994). All works above used laser Doppler velocimeter (LDV) as a measurement technique to

investigate the flow features. The studies showed similar behaviors for the non-Newtonian fluids, such

as an increase in the mean velocity profiles and axial turbulence intensities, suppression of radial and

azimuthal turbulence intensities, and delay in the transition from laminar to turbulent flow.

Escudier and Presti (1996) performed Laser Doppler Anemometry (LDA) measurements to investigate

the Laponite solution in laminar, transitional, and fully turbulent flows. The Herschel-Bulkley model

fitted the viscosity apparent in the testing fluid. Escudier and Presti (1996) were the first researchers to

report the asymmetric behavior in mean velocity profiles when the flow is in a transitional regime. It was

speculated that the asymmetry is either associated with instabilities in the flow during the transitional or

with small geometric imperfections in the flow loop.

Peixinho et al. (2005) carried out an experimental study to analyze laminar, transitional, and turbulent

flow with three different fluids: 0.2% Carbopol solution as viscoplastic fluid,an aqueous solution of 2%

sodium carboxymethyl cellulose (CMC) as a shear-thinning fluid, and glucose syrup as a Newtonian

fluid. The Herschel-Bulkley model fitted the Carbopol solution, whereas the Cross model characterized

the CMC solution. For the Carbopol solution, the asymmetry in the mean velocity profile appears in

the transitional regime, while in laminar and turbulent regimes, no evident asymmetry was noticed. The

drag reduction effect for both non-Newtonian fluids was observed in turbulent flow via friction factor

measurements and velocity profiles. The authors also argue that the transition for the yield stress fluid

takes place in two stages. The experimental velocity profile departs slightly from the laminar theoretical

solution in the first stage. The fluctuations are suppressed in the central zone (plug zone) and increase

slightly outside this zone. Then, in the later stage, with increasing the Reynolds number, turbulent spots

fill up the whole section, and the plug zone is disrupted due to large velocity fluctuations. Between two

successive spots, the presence of the plug zone is still possible.
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Subsequently, Escudier et al. (2005) performed LDA measurements in unrelated research programs in

the UK, France, and Australia. They used a wide range of non-Newtonian fluids with rheological curves

fitted by Herschel-Bulkley and Carreau-Yasuda models. In all cases, the mean velocity profiles were

axisymmetric for laminar and turbulent flow conditions, while asymmetries for the transitional flow were

observed. Thus, the authors concluded that asymmetry must result from a fluid-dynamic mechanism rather

than imperfections in the flow facilities. Typical mean axial velocity profiles obtainedby the authors are

shown in Figure1.2.

Figure 1.2 – Mean axial velocity profiles at different Reynolds numbers for 0.2% Carbopol solution. The
Herschel-Bulkley parameters: τy = 9.80 [Pa], K = 2.31 [Pa sn], n = 0.51.

Source: Escudier et al. (2005).

A description of asymmetry in the transitional regime was also provided by Esmael and Nouar (2008).

According to the authors, a feasible explanation for these asymmetries is attributed to a nonlinear coherent

structure characterized by two weakly modulated counter-rotating longitudinal vortices.

Guzel et al. (2009) investigate the transition to turbulence of a yield stress shear-thinning fluid

experimentally. From the results, the researchers mention that the plug breaks – vanish – before starting

the transition regime. Moreover, they observed that once in the transition or turbulent regime, the behavior

of the yield stress fluid is similar to a shear-thinning fluid.

Bahrani and Nouar (2014) measured the mean velocity profiles experimentally using LDV for an

0.2% Carbopol solution at different Reynolds numbers. According to the authors, two stages are identified

during the transition to turbulence. In the first stage, called pre-transition, a central zone (plug zone)

remains in the laminar regime with occasionalvelocity fluctuations. At this stage, the mean velocity profile

exhibits a slight asymmetry, and the experimental measurements of the friction factor are very close to the

theoretical laminar solution. The second stage corresponds to the appearance of turbulent puffs with a

significant asymmetry in the axial velocity profile. These observations are in agreement with Peixinho et

al. (2005).
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1.3.2 Experimental Works in Annular Sections

As mentioned in the previous section, the return of drilling fluid to the surface during the drilling

process occurs in an annular region formed between the hole walls and drill string. In addition, the flow in

annular passages is also crucial in several areas of engineering, such as heat exchangers, and gas-cooled

nuclear reactors (CHUNG; SUNG, 2005). This section reviews the experimental works of GNFs flow in

laminar-turbulent transition regimes in the annular sections.

Amongst the available literature, the work of Nouri et al. (1993) stands out as one of the first

experimental studies of turbulent flows in annular sections with non-Newtonian fluids. Nouri et al. (1993)

analyzed turbulent flows in concentric and eccentric annular passages with a Newtonian fluid and a

non-Newtonian solution (0.2% CMC solution) for several Reynolds numbers. The Power-Law model

fitted the apparent viscosity of 0.2% CMC solution. The LDV technique obtained the mean velocity

profiles and Reynolds shear stress. They observed that the profiles of mean velocity and axial turbulent

intensity are similar to those obtained for the Newtonian fluid at an equal Reynolds number, while the

radial and azimuthal turbulence intensities are suppressed.

Subsequently, Nouri and Whitelaw (1994) extended their previous work (NOURI et al., 1993),

including the rotation effect of the inner cylinder (300 rpm) on turbulent flows in a concentric annular

passage. They observed that the mean axial velocity profiles become flattered with increasing cylinder

rotation, and there is an enhancement in turbulence intensities due to the rotation effect. Later, Nouri and

Whitelaw (1997) performed an experimental investigation through an eccentric annular section, including

the effects of inner cylinder rotation.

Escudier et al. (1995) conducted measurements using LDA for laminar, transitional, and turbulent

flows in a concentric annular section for three non-Newtonian fluids: a Xanthan gum, 0.2% CMC

solution, and a laponite–CMC blend. The rheological curves for the non-Newtonian fluids were fitted by

Carreau, Cross, and Herschel-Bulkley models. Measurements were also conducted for a Newtonian fluid.

Distributions of mean axial velocity, axial and azimuthal turbulence intensities, and friction factors are

presented. For the turbulent flow, it was observed that all non-Newtonian fluids showed a significant drag

reduction compared to Newtonian fluid. The axial turbulence intensities for the non-Newtonian solutions

exhibited similar magnitudes distributions to those observed for the Newtonian cases, while the azimuthal

velocity fluctuations are lowered in intensity. These results agree with the study conducted by Nouri et al.

(1993).

Japper-Jaafar et al. (2010) conducted LDA measurements for laminar-turbulent transition flow through

a concentric annular region for Newtonian and non- Newtonian fluids. The Carreau–Yasuda model was

used to fit the data of Xanthan gum and the Herschel-Bulkley model to fit the Carbopol solutions. Particular

attention is placed on the transitional flow region. The transitional flow regime is studied by monitoring

the axial turbulence intensity level. They found that the Reynolds number range for transitional flow is

greater for the more shear-thinning fluids.

Erge et al. (2015b) analyzed the laminar-turbulent transition of non-Newtonian fluids in concentric and

eccentric annular regions. Blends of Laponite solutions, Xanthan gum, and polyanionic cellulose (PAC

R) additives were used as testing fluids, and the Herschel-Bulkley model fitted their rheological curves.

Both theoretical and experimental approaches are used to better understand the onset of transitional flow.
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The authors concluded that the transition from laminar to turbulent significantly depends on eccentricity,

diameter ratio, and fluid properties, especially the shear-thinning ability of the fluid.

Experimental works provide valuable information about the behavior of GNFs in turbulent flows.

However, those aqueous solutions of CMC, Xanthan gum, and laponite, often used as testing fluid, can

exhibit some degree of viscoelasticity and thixotropy (ESCUDIER et al., 1995; PEIXINHO et al., 2005).

According to (RUDMAN; BLACKBURN, 2006), although the level of viscoelasticity can be irrelevant in

low shear, e.g. laminar flow, becomes essential in the high shear, typical of turbulent flow.

1.3.3 DNS and LES of Turbulent Flows of GNFs

Early studies regarding DNS of turbulent flows of GNFs were presented by Rudman et al. (2004) and

Rudman and Blackburn (2006). Turbulent pipe flow of Power-law, Herschel-Bulkley, and Carreau–Yasuda

fluids were simulated numerically with a high-order spectral element-Fourier DNS code – Semtex. These

studies investigated the effect of rheological properties on the turbulent flow structure at moderate

Reynolds numbers. The results with non-Newtonian fluids showed a reduction in the friction factor when

compared to a Newtonian fluid. Analysis of the flow field revealed coarser turbulent structures than for

Newtonian fluids with the homologous Reynolds numbers. Moreover, the yield stress fluids weaken the

turbulent structures further, driving the flow toward the transitional regime.

Another study regarding DNS with Power-law fluids was developed by Gavrilov and Rudyak (2016)

at relatively higher Reynolds numbers ReG (10, 000 ∼ 20, 000). Five different flow behavior indexes n

from 0.4 to 1 were considered. The authors published the first study about the anisotropy of Power-law

fluids through anisotropy-invariant maps. They noted that the Power-law fluids exhibit stronger turbulent

anisotropy than a Newtonian fluid, and the anisotropy becomes more significant with the decreasing flow

behavior index. The authors also observed that turbulence intensity increases in the axial direction but

decreases in the radial and the azimuthal directions with the reducing flow behavior index. They argue

that this phenomenon is associated with the suppression of the energy transfer from the axial fluctuations

to the transverse ones.

Singh et al. (2017a) used the same numerical formulation as Rudman et al. (2004) to perform an

investigation regarding the influence of flow index behavior of Power-law fluids in turbulent pipe flow for

friction Reynolds number Reτ = 323. The results were analyzed to understand the shear-thinning effects

for first- and second-order flow statistics, including turbulent kinetic energy production, transport, and

dissipation. In addition, the simulations showed that the turbulent kinetic energy budget is affected by shear-

thinning, mainly in the near-wall region (y+ ≤ 60). After that, Singh et al. (2018) performed simulations

with Power-law fluid for friction Reynolds numbers Reτ = 323 ∼ 750 (ReG = 10, 000 ∼ 28, 000). The

reported results are similar to the work carried out by Gavrilov and Rudyak (2016). The results provided

strong evidence that the shear-thinning effect does not disappear by increasing the Reynolds number.

Subsequently, Singh et al. (2017b) investigated the effects of yield stress on turbulent pipe flow of

Herschel-Bulkley and Bingham fluids at a generalized Reynolds number of ReG ≈ 11, 000. Simulations

were carried out with the yield stress varying from 0% to 20% of the mean wall shear stress. The results

demonstrated increased axial turbulence intensity when the yield stress was enhanced. In contrast, the

radial and azimuthal turbulence intensities were lower for higher yield stresses. The influence of yield
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stress is similar to shear-thinning, acting as a turbulence dampening instrument. However, the effect of

yield stress is larger outside the viscous sublayer (y+ < 5), while shear-thinning acts more inside the

viscous layer. Analysis of the turbulent kinetic energy budget terms showed that the effect of yield stress

is more significant for y+ ≤ 60.

Zheng et al. (2019) performed DNS of turbulent pipe flow of Herschel-Bulkley fluids and compared

the performance of two numerical methods. The accuracy and efficiency of OpenFOAM – a second-order

finite volume code – were evaluated against the high-order spectral element-Fourier DNS code Semtex.

The simulations were run for nominal generalized Reynolds numbers of ReG = 5, 000 and ReG = 7, 500.

The results showed that OpenFOAM predicts a more transitional Herschel-Bulkley fluid flow than Semtex’s

predictions, with lower second-order turbulence statistics in the radial and azimuthal directions and a

higher peak in the axial direction. Profiles of the second-order turbulence statistics presented disagreement

between the codes, with a maximum difference of 16% in the peak value of second-order turbulence

statistics in the azimuthal direction at ReG = 5, 000. The discrepancy between the codes decreased as the

Reynolds number increased, with a maximum difference of 7,7% for ReG = 7, 500.

Arosemena et al. (2021) performed DNS of turbulent channel flow of Carreau fluids. The different

statistics studied reveal that the fluid rheology effect appears mainly to affect the flow within the inner

layer region y+ ≤ 110, suppressing near-wall structures such as quasi-streamwise vortices and low-speed

streaks, inhibiting turbulence generating events and leading to different drag reduction features.

There have been few studies regarding the LES of GNF. In this approach, extra terms arise when the

spatial filter is applied to the balance equations due to the non-Newtonian viscosity (OHTA; MIYASHITA,

2014; AMANI et al., 2021). Additionally, the existence of several constitutive models (Power-law, Casson,

Cross, Herschel-Bulkley, Bingham) makes it challenging to develop a generalist SGS model to account

for the effects of GNF.

Molla and Paul (2012) performed LES with the Dynamic Smagorinsky model ignoring the additional

term imposed by the non-Newtonian stress tensor to investigate the transition to turbulent non-Newtonian

fluid flow through arterial stenosis using various GNF models (Power-law, Carreau, Quemada, Cross,

and the viscoplastic modified-Casson model) to simulate the blood viscosity. The distributions of shear

rate, post-stenotic recirculation zone, mean shear stress, mean pressure, and turbulent kinetic energy were

discussed.

Ohta and Miyashita (2014) carried out DNS and LES of turbulent channel flow of GNF. The authors

evaluated the capability of an extended Smagorinsky SGS model with correction function (damping

function) in the filter width for a locally varying viscosity employing the Power-law and the viscoplastic

Casson model. Ohta and Miyashita (2014) analyzed the profiles of the additional term and compared

them with the SGS stress. As a result, the authors ignore the influence of the additional term as it is much

smaller than the SGS stress. Mean axial velocity profiles and Reynolds shear stress were assessed with the

Power-law fluid, while only the mean axial velocity profiles were analyzed with the Casson model. The

extended Smagorinsky model’s results agreed better with the DNS data than the standard Smagorinsky

model in coarse grids. From the analyses, it can be seen that the well-resolved LES with the standard

Smagorinsky’s model reproduced the flow features correctly. In dense grids, both SGS models showed

similar results, suggesting that the scale features of the viscosity fluctuations are small.
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Gnambode et al. (2015) follow the arguments of Ohta and Miyashita (2014) and also neglected

the additional term. The authors performed LES of turbulent pipe flow of Power-law fluids for various

power-law indices (0.5 ≤ n ≤ 1.4) at different Reynolds numbers (4, 000 ≤ ReG ≤ 12, 000). The LES

results indicated that it is possible to reproduce with good accuracy most of the non-Newtonian fluid flow

features using the Dynamic Smagorinsky model with a fine grid resolution.

Recently, Amani et al. (2021) proposed a closure model for the additional term, namely the Non-

Newtonian SGS (NNSGS) stress tensor. Two canonical case studies were evaluated by including the

Power-law viscosity model in Burgers turbulence. Inagaki (2021) assessed the effectiveness of a mixed

SGS model, combining an isotropic eddy viscosity model and a scale-similarity model for Power-law

fluids. The author follows the discussion of Ohta and Miyashita (2014) and also ignores the additional

term imposed by the non-Newtonian stress tensor. The performance of the proposed model was tested in

the plane channel flows and pipe flows for the power-law index of 0.5 ≤ n ≤ 1.15.

1.4 Open Issues and Objectives of the Work

From the above literature review, it is clear that few studies have been conducted with LES focusing on

the turbulent flows of viscoplastic fluids, Molla and Paul (2012) and Ohta and Miyashita (2014) addressed

the subject briefly.

The main question that arises is whether SGS models based on the eddy viscosity hypothesis can

provide satisfactory results for simulations with viscoplastic fluids at a low Bingham number (ratio of

yield stress forces to viscous forces (ALEXANDROU et al., 2003)).

Therefore, this thesis aims to assess the performance of different SGS models for the turbulent flow of

Herschel-Bulkley fluids. Two SGS models available in the literature are considered for this task: Dynamic

Smagorinsky and Wall-Adapting Local Eddy-viscosity (WALE). The models will be evaluated based

on predictions of first- and second-order turbulence statistics and flow features such as mean wall shear

stress, mean wall viscosity, friction factor, mean shear rate, and mean viscosity profiles. Additionally,

UDNS simulations will also be performed. Numerical results from each model will be compared with

DNS performed using OpenFOAM and the spectral element-Fourier code Semtex.

Subsequently, the current methodology will be used to study the effects of rheological properties of

Herschel-Bulkley fluids in a concentric annular section. The effects of the flow behavior index, Bingham

number and the influence of the inner cylinder rotation on the flow characteristics will be evaluated.

1.5 Document Outline

This thesis is divided into six chapters: Chapter 2 presents a brief review of the concepts regarding

non-Newtonian fluids and turbulent flows. The LES formulation, the approaches to modeling unresolved

scales, and methods to quantify LES resolution are also exposed. Chapter 3 presents the numerical method

employed in this thesis. The finite-volume discretization technique performed by the OpenFOAM code is

described. In Chapter 4, the verification of the numerical method is discussed. First, simulations of the

turbulent pipe flows of Newtonian and Herschel-Bulkley fluids are performed. Numerical simulations

of turbulent flows of a Newtonian fluid in a concentric annular section with different inner cylinder
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rotations are also analyzed. Chapter 5 presents the results and discussions concerning the turbulent

flows of Herschel-Bulkley fluids in a concentric annular region with inner cylinder rotation. Finally, the

conclusions and recommendations of this thesis are exposed in Chapter 6.
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2 THEORETICAL FORMULATION

This chapter presents the theoretical concepts used throughout this thesis. Section 2.1 describes the

balance equations for an incompressible and isothermal flow. The basics concepts regarding Newtonian

and non-Newtonian fluids are present in Section 2.2 and some non-dimensional parameters used in the

current work are described in Section 2.3. Section 2.4 introduces a brief overview of turbulent flows

features. The LES filtering process and sub-grid scale modeling are discussed in Section 2.5. Finally, in

Section 2.6, some methods to assess the LES resolution are presented.

2.1 Balance Equations

In the Eulerian description, the governing principles in fluid mechanics can be derived using a control

volume approach. For an incompressible and isothermal flow, the motion of a fluid is governed basically

by the mass and momentum conservation equations (SAGAUT, 2006).

The mass conservation is described as

∇ · u = 0 (2.1)

where u = (ui, uj , uk)
T is the velocity vector.

ρ
∂u

∂t
+ u · ∇u = −∇p+∇ · σ (2.2)

where t indicates the time, ρ is the density, p is the pressure, and σ is the viscous stress tensor. Equations

of motion in cylindrical coordinates are presented in Appendix A.

In order to complete the model’s system of equations, it is necessary to introduce a constitutive

equation, which describes the shear stress-shear rate relationship of a fluid.

2.2 Fluid Behavior

Newtonian fluids are those whose behavior can be described by Newton’s law of viscosity, which

establishes a linear relationship between the shear stress and shear rate for a given temperature and

pressure. The viscous stress tensor σ for an incompressible Newtonian flow can be defined as (ASTARITA;

MARRUCCI, 1974; SAGAUT et al., 2006)

σ = 2µS (2.3)

where µ is the dynamic viscosity of the fluid and S is the rate-of-strain tensor, defined as

S =
1

2
(∇u+ (∇u)T) (2.4)
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A fluid that does not obey Newton’s law of viscosity is described as a Non-Newtonian fluid. The non-

Newtonian fluids can be divided into three groups: Generalized Newtonian fluid (GNF), time-dependent

fluids, and viscoelastic fluids (CHHABRA; RICHARDSON, 2008; DESHPANDE et al., 2010).

• Generalized Newtonian fluids are a subclass of non-Newtonian fluids in which the instantaneous

shear stress of the material is determined purely by the local shear rate (BALMFORTH et al., 2014).

The GNF also implies a time-independent viscosity and inelastic behavior.

• Fluids whose apparent viscosity also depends on the shear duration and their kinematic history are

called time-dependent.

• Viscoelastic materials exhibit elastic as well as viscous behavior. In addition, after deformation

shows partial elastic recovery.

It is worth mentioning that this classification is somewhat arbitrary in real fluids. Some fluids can

exhibit a combination of properties from two or even all three groups (DESHPANDE et al., 2010).

In this thesis, the discussion will focus only on fluids characterized as GNF. For more details about

the time-dependent fluids and viscoelastic fluids, the reader is referred to Bird et al. (1987), Macosko

(1994), Chhabra and Richardson (2008), and Deshpande et al. (2010).

GNFs are divided into shear-thinning (pseudoplastic), shear-thickening (dilatant), and viscoplastic

fluids. Shear-thinning fluids are characterized by an apparent viscosity that gradually decreases with an

increasing shear rate. On the other hand, shear-thickening fluids enhance the apparent viscosity as the

shear rate increases. Finally, the viscoplastic behavior is characterized by the existence of yield stress, τy,

i. e. a viscoplastic fluid does not flow until the shear stress surpasses the yield stress value.

The Power-law model can represent both shear-thinning and shear-thickening fluids, whereas the

Herschel-Bulkley model aims to represent viscoplastic fluids. Figure 2.1 shows the flow curves and shear

stress in the shear rate function, for the Newtonian, Power-law, and Herschel-Bulkley models.

For a GNF, the apparent viscosity is a function of the shear rate magnitude. The viscous stress tensor

is written as (ASTARITA; MARRUCCI, 1974)

σ = 2η(|γ̇|)S (2.5)

where η is the apparent viscosity, |γ̇| denotes the magnitude of the shear rate. The magnitude of the shear

rate is defined as the second invariant of the rate-of-strain tensor, yielding

|γ̇| = (2S : S)1/2 (2.6)
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Figure 2.1 – Qualitative flow curves for Newtonian and non-Newtonian fluids.
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The Herschel-Bulkley model is widely used to characterize the rheological behavior of drilling fluids

(PEIXINHO et al., 2005). The apparent viscosity of the Herschel-Bulkley model is defined as (OSSWALD;

RUDOLPH, 2015):

η =
τy
˙|γ|
+K ˙|γ|

n−1
|σ| > τy

η → ∞ |σ| ≤ τy

(2.7)

where τy is the yield stress, K is the fluid consistency index, and n is the flow behavior index. For n < 1,

the Herschel–Bulkley model presents the shear-thinning behavior (BIRD et al., 1987). When τy = 0, Eq.

2.7 reduces to a Power-Law rheology model representing purely shear-thinning behavior.

2.3 Non-Dimensional Parameters

When the viscous stress tensor either for a Newtonian fluid or GNF (Eqs. 2.3 and 2.5) is introduced

into Eq.(2.2) yields the Navier-Stokes equation,

∂u

∂t
+ u · ∇u = −1

ρ
∇p+∇ · ν(∇u+ (∇u)T) (2.8)

where ν is the kinematic viscosity, and it is defined as ν = µ/ρ for a Newtonian fluid or ν = η/ρ for a

GNF.

The Navier-Stokes equation expresses the equilibrium condition between inertial forces (left-hand

side) and surface forces, represented by the pressure field and viscous stress tensor (right-hand side) acting

on the fluid particle (SCHILICHTING, 1979; DAVIDSON, 2004).
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A significant dimensionless quantity that arises naturally when governing equations (Eqs. 2.1 and

2.8) are transformed into dimensionless form is the Reynolds number (Re), which describes the ratio of

inertial forces to viscous forces. The Reynolds number is defined as

Re =
ρUbL

µ
(2.9)

where Ub is the fluid bulk velocity and L is the characteristic length.

The Reynolds number is used to differentiate between the laminar and turbulent fluid flow. Considering

the example of a pipe flow, it is assumed that Re ≤ 2, 100 denotes a laminar flow, whereas Re ≥ 2, 300

indicates that the flow is turbulent.

Commonly, the Reynolds number used for GNFs is based on the mean wall viscosity ηw (RUDMAN;

BLACKBURN, 2006; SINGH et al., 2017b). Then, the dynamic viscosity of Eq 2.9 is replaced by ηw.

For a Herschel-Bulkley fluid, the mean wall viscosity is defined as (SINGH et al., 2017b)

ηw =
K1/n τw

(τw − τy)1/n
(2.10)

where τw is the mean wall shear stress. For instance, for a given mean pressure gradient ∂P/∂z, the τw

can be calculated as

τw = −D

4

∂P

∂z
(2.11)

where D is the pipe diameter.

Using the mean wall viscosity scale, the generalized Reynolds number ReG is written as (RUDMAN;

BLACKBURN, 2006; SINGH et al., 2017b)

ReG =
ρUbL

ηw
(2.12)

Two dimensionless parameters arise for Herschel-Bulkley fluid flows. The Hedstrom number, He,

determines the flow behavior of yield stress fluids (MALIN, 1998).

He =
ρL2 τ

(2/n−1)
y

K2/n
(2.13)

Additionally, the Bingham number, Bn, relates the ratio of the yield stress forces to viscous forces

(ALEXANDROU et al., 2003)

Bn =
τyL

n

KUn
b

(2.14)
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2.4 Turbulence

2.4.1 A Brief Discussion of Turbulence

Turbulent flows usually arise from instabilities when inertial forces surpass the influence of viscous

effects. These instabilities produce fluctuations in the velocity field and grow chaotically, leading to a

fully turbulent flow. Nevertheless, the turbulent flows are highly dissipative and need a continuous energy

supply. If energy is not supplied, turbulence decay rapidly, and the flow becomes laminar again due to the

viscous effects. A typical energy source for velocity fluctuations is shear in the mean flow (TENNEKES;

LUMLEY, 1978) (TENNEKES and LUMLEY, 1978).

As mentioned in Section 1.2, any turbulent flow quantity, such as the velocity field, can be characterized

by the Reynolds decomposition. Thus, the instantaneous velocity u(x, t) is expressed as the sum of a

mean velocity ū(x), obtained from a statistical average and a fluctuating contribution u′(x, t) (WILCOX,

1993).

u(x, t) = ū(x) + u′(x, t). (2.15)

ū(x) = lim
T→∞

=
1

T

Z t+T

t
u(x, t)dt (2.16)

The time average of the fluctuation part of the velocity field is zero (WILCOX, 1993).

ū′(x, t) = lim
T→∞

=
1

T

Z t+T

t
[u(x, t)− ū(x)]dt = 0 (2.17)

The turbulent kinetic energy (TKE) per unit mass defined by the mean value of the turbulent velocity

fluctuations is given by (WILCOX, 1993)

k =
1

2
u′iu

′
i =

1

2
(u′2i + u′2j + u′2k ) (2.18)

Two features of turbulent flows stand out: the capability to mix or transport properties and the existence

of a wide range of eddies. First, the ability to mix fluid directly impacts the rates of momentum, heat, and

mass transfer; these quantities rapidly disperse across the flow. On the other hand, in a laminar flow, these

substances would be transported along streamlines of the flow and slowly diffuse by molecular transport

(TENNEKES; LUMLEY, 1978; DURBIN; PETTERSSON-REIF, 2015).

The second issue is that the turbulent flows are characterized by a wide range of eddies with different

length and time scales, and energy and momentum transfer are essentially affected by inertial processes

(BAYLY et al., 1988). The large eddies are the most energetic, interact with the mean flow, and they are

dependent on geometry and boundaries conditions; while the small scales contain little energy, they are

considered isotropic and can be described by a Gaussian probability density function (LESIEUR et al.,

2005; RODI et al., 2013).
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The large scales extract energy from the mean motion and transfer their energy toward smaller eddies

until the size of the smallest scales of turbulence is so tiny that their structure can no longer subsist to

the molecular viscosity action. This mechanism is known as the energy cascade and it was introduced

by Richardson (1922). The energy cascade process is illustrated in Figure 2.2. The viscous stress effects

in large eddies are negligible. The cascade ends when the eddy size becomes so small that Re, based on

the size of the smallest eddies, is of order unity. The viscous forces become significant, and dissipation

becomes important (DAVIDSON, 2004).

Figure 2.2 – Schematic representation of the energy cascade. Terms u and l represent the typical velocity
and length scales associated with the largest eddies. Terms ϑ and ηk correspond to the velocity
scales and characteristic length of the smallest structures, respectively.
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Source: Adapted from Davidson (2004).

The distribution of TKE from the different length scales is usually expressed by the energy spectrum

in wave number domain E(k) (SAGAUT et al., 2006). The TKE is related to the energy spectrum in the

wave number space E(k) as

k =
1

2
u′iu

′
i =

Z ∞

0
E(k)dk (2.19)

where k is the wave number, given by

k =
ωeddie

u
=

2π

l
(2.20)

Here ωeddie is the angular frequency associated with the rotation of a turbulent scale, which can

be expressed as ωeddie = 2π/Υ, where the lifespan of eddies is given by the turn-over time Υ = l/u

(DAVIDSON, 2004). The TKE spectrum is depicted in Figure 2.3.

The first region of Figure 2.3, the energy-containing range, consists of the largest eddies where

the mean flow generates the turbulence energy. The largest scales of turbulence are subject to inertial

instabilities and quickly break up into small vortices. The rate at which energy (per unit mass) is passed

down to the smaller scales is defined as
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Figure 2.3 – Typical representation of the energy spectrum of a turbulent flow.
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Π ∼ u2

l/u
=

u3

l
(2.21)

In the inertial subrange, whose extent of this spectrum is conditioned to the Reynolds number, the

size of turbulent scales is small compared to l but large compared to ηk. In this range, the energy is neither

fed from the mean motion nor dissipated by viscous forces but only transferred from the larger to the

smaller eddies. Based on the Kolmogorov hypothesis, the energy spectrum E(k) in the inertial subrange

decreases following the k−5/3 relation, and it is defined as:

E(k) = Koε
2/3k−5/3 (2.22)

where K0 is the Kolmogorov constant, ranging between 1.4 – 1.7 (SAGAUT et al., 2006).

In statistically steady turbulence, the rate of energy dissipation in the smallest scales, ε, must be

equivalent to the Π (DAVIDSON, 2004)

ε ≈ Π ∼ u3

l
(2.23)

At the smallest scales of turbulence, the viscous effect becomes significant, and the rate of energy

dissipation is given by

ε = 2νSijSij ∼ ν
ϑ2

η2k
(2.24)

where the rate-of-strain tensor associated with the smallest eddies can be evaluated by

Sij ∼
ϑ

ηk
(2.25)
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Since the energy is transferred without loss, combining Eq. 2.6 and 2.7 gives:

u3

l
≈ ν

ϑ2

η2k
(2.26)

In addition, the local Reynolds number in the smallest scales is expressed by

Reηk =
ϑηk
ν

∼ 1 (2.27)

From Eqs. (2.26) and (2.27), it is possible to derive expressions to estimate the Kolmogorov’s micro

scales (DAVIDSON, 2004).

ηk = lRe−3/4 ∼ ν3

ε
(2.28)

ϑ = uRe−1/4 ∼ (νε)1/4 (2.29)

2.4.2 Turbulent Kinetic Energy Budget

The TKE budget, which can describe the physical processes that govern the turbulent flow is directly

related to the mechanisms that generate, transport and dissipate turbulence (NASEEM et al., 2019).

Compared with a Newtonian fluid, the non-uniform viscosity and viscosity fluctuations modify the

TKE budget equation for a non-Newtonian fluid. According to Singh et al. (2017b), an equation for the

ensemble-average TKE for GNF is written as:

ktz}|{
∂k

∂t
+

Az }| {
Uj

∂k

∂xj
=

Ptz }| {
−u′iu

′
jSij +

−

Ttz }| {
1

2

∂u′iu
′
iu

′
j

∂xj
−

ζz }| {
∂p′u′j
∂xj

+

Dtz }| {
∂(2νs′iju

′
i)

∂xj

−

ϵz }| {
2νs′ijs

′
ij

+


ςnnz }| {

∂(2ν ′u′iSij)

∂xj
+

Dnnz }| {
∂(2ν ′s′iju

′
i)

∂xj


χnnz }| {

−2ν ′s′ijSij −

ϵnnz }| {
−2ν ′s′ijs

′
ij

(2.30)

In order to simplify the notation, the suffix notation was used here. The terms in the first row appear

for both Newtonian and non-Newtonian fluids, and the following is the standard terminology:

kt: rate of change of turbulence kinetic energy;

A: mean flow advection;

Pt: turbulent kinetic energy production;

Tt: turbulent velocity transport;

ζ: pressure-related transport;
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Dt: mean viscous transport;

ϵ: mean viscous dissipation.

The terms in the second row are zero for a Newtonian fluid and appear only for non-Newtonian fluids.

SINGH et al. (2017) defined the following terminology for these terms:

ςnn: mean shear turbulent viscous transport;

Dnn: turbulent viscous transport;

χnn: mean shear turbulent viscous dissipation;

ϵnn: turbulent viscous dissipation.

When the terms of similar nature are summed together, the TKE budget equation can be written as

(SINGH et al., 2017b)

Dk

Dt
= P + T k + ϵk (2.31)

where T k = Tt+ ζ+Dt+ ςnn+Dnn is the total transport and ϵk = ϵ+χnn+ ϵnn is the total dissipation.

2.5 Large-Eddy Simulations

2.5.1 The Filtering Procedure

As briefly mentioned in the introduction, the large scales of fluid motion are solved explicitly in LES,

while the small ones are modeled. In order to separate these scales, a filtering operation is performed.

Ideally, this separation happens in a spectral region where only energy transfer occurs, no action by

production and dissipation (SAGAUT et al., 2006; RODI et al., 2013). In Figure 2.4, an energy spectrum

is illustrated for DNS and LES. The cut-off wave-number kcut−off represents the separation between

resolved and unresolved scales.

Mathematically, the filtering operation corresponds to the convolution of any flow quantity f(x, t) by

the filter function G(x, x′,∆) in the form (LESIEUR et al., 2005)

f̃(x, t) =

Z
D
f(x′, t) G(x, x′,∆)dV ′ (2.32)

where f̃(x, t) is the resolved (filtered) part of f(x, t), x is the location where f̃ is determined, x′ is

the position where f is considered in the spatial integration, D is the domain where the integration is

performed, and ∆ is the filter width (PIOMELLI, 1999; RODI et al., 2013). The specified function G

satisfies the normalization condition (POPE, 2000; SAGAUT, 2006).

Z
D
G(x, x′,∆)dV ′ = 1 (2.33)

The unresolved field of f(x, t), denoted by f ′(x, t) is a representation of the small scales of the flow,

often known as subgrid scales, which are smaller than ∆ and it is defined as (LESIEUR et al., 2005;

SAGAUT, 2006)
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Figure 2.4 – Concept of LES regarding the energy spectrum.
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f ′(x, t) = f(x, t)− f̃(x, t) (2.34)

It is worth mentioning that the filter G is not a Reynolds type operator since the following properties

of this type of operator are not satisfied in general (DAVIDSON, 2004; SAGAUT, 2006):

˜̃
f(x, t) ̸= f̃(x, t) (2.35)

f̃ ′(x, t) ̸= 0 (2.36)

where ˜̃
f(x, t) and f̃ ′(x, t) are referred to as double-filtered variable and filtered residual variable, respec-

tively.

The filters commonly employed to separate scales are the Top-Hat (box) filter, Gaussian filter, and the

Sharp or Spectral cut-off filter (PIOMELLI, 1999; POPE, 2000; SAGAUT, 2006). The convolution filters

G(x) in the physical space and their corresponding transfer function Ĝ(k) in the Fourier space (frequency

domain) are described in Table 2.1.

The graphical representation of the three filters in physical and Fourier space is shown in Figure 2.5.

The top-hat filter is local in the physical space and non-local in the Fourier space, inversely to the sharp

cut-off filter, which is local in the spectral space and non-local in the physical space. As for the Gaussian

filter is non-local both in the physical and Fourier spaces (SAGAUT, 2006) because the Fourier transform

of a Gaussian function is also a Gaussian.
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Table 2.1 – Filter functions and transfer functions (POPE, 2000).

Name Filter Function Transfer Function
- G(x) bG(k) ≡

R∞
−∞ eikr G(x)dx

Top-Hat (box) filter G(x)=


1/∆ if |x| ≤ ∆/2

0 otherwise

bG(k) = sin(k ∆/2)
k ∆/2

Gaussian Filter G(x)=
q

6
π∆2 exp −6x2

∆2
bG(k) = exp −k ∆2

24

Sharp or Spectral cut-off filter G(x) = sin(kc(x))
kc(x)

, with

kc =
π
∆

bG(k) =


1/∆ if k ≤ π

0 otherwise

Source: Adapted from Pope (2000).

The top-hat filter for being local in physical space, a simple average over a rectangular region (DE

VILLIERS, 2006), is used implicitly in the finite volume method. In this approach, the filter cut-off width

∆ is defined by the computational mesh size and determines the scales of the fluid motion that are filtered

out.

The sharp cut-off filter is typically used in conjunction with spectral methods. In Fourier space, the

filtering operation affects only scales above a defined cut-off wave number (PIOMELLI, 1999).

The difference between the exact solution and the energy spectrum modification of a test function

performed by the filtering operators is depicted in Figure 2.6. The top-hat and Gaussian filters give

similar results. Both filters smooth the resolved and unresolved scales, while the sharp cut-off filter clearly

separates the scale fluctuations (PIOMELLI, 1999; SAGAUT, 2006).

Applying the filtering operation to the governing equations (Eqs. (2.1) and (2.8)), one obtains the

filtered equations (SAGAUT, 2006; RODI et al., 2013)

∇ · ũ = 0 (2.37)

∂ũ

∂t
+∇ · ( gu⊗ u) = −1

ρ
∇p̃+∇ · σ̃ (2.38)

where quantities with an f( ) are filtered (resolved) components.

The non-linear term u⊗ u in the Navier-Stokes equation (Eq. 2.38) produces the filtered productgu⊗ u in the convective term (POPE, 2000). Since gu⊗ u ̸= eu⊗ eu, the SGS stress tensor τSGS arises

from the difference between the two sides of this inequality. τSGS is defined as (POPE, 2000; SAGAUT

et al., 2006)

τSGS = gu⊗ u− eu⊗ eu (2.39)
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Figure 2.5 – Typical filter functions. Boxfilter: representation in physical space (a) and Fourier space (b).
Gaussian filter: representation in physical space (c) and Fourier space (d). Sharp cut-off filter:
representation in physical space (e) and Fourier space (f).

Source: Adapted from Sagaut (2006).

The SGS stress tensor represents all the interaction between the subgrid (unresolved) and the filtered

scales (LESIEUR et al., 2005; SAGAUT, 2006). Currently, two different methods of accounting for SGS

stresses are found in the literature (SAGAUT, 2006):
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Figure 2.6 – Energy spectrum of the unfiltered and filtered solutions for the same cut-off wave number
kcut−off = 60.

Source: Adapted from Laval (2020).

• Explicit modeling: This approach derives a model that correctly drains the energy from the resolved

to unresolved scales, mimicking the process associated with the energy cascade.

• Implicit inclusion: The effects of unresolved scales are incorporated implicitly via a numerical

scheme by arranging it, so the truncation error induces the desired effects.

In the present thesis, the τSGS effect will be treated explicitly. Therefore, Eq. (2.38) can be rewritten

as (OHTA; MIYASHITA, 2014; AMANI et al., 2021)

∂ũ

∂t
+∇ · (eu⊗ eu) = −1

ρ
∇p̃+∇ · σ̃ −∇ · τSGS +∇ · τNNSGS (2.40)

Note that when the spatial filtering process is applied to the governing equations for a GNF an

additional term, τNNSGS = gσ(S)− σf(S), is derived because the viscous stress tensor is a non-linear

function of the rate-of-strain tensor (OHTA; MIYASHITA, 2014; AMANI et al., 2021).

As mentioned in the literature review, Ohta and Miyashita (2014) showed that τNNSGS is much

smaller than the SGS stress, and its amplitude is negligible compared with the error associated with the

SGS model. Therefore, following the arguments of Ohta and Miyashita (2014) this additional term is also

disregarded in the present study, and only the SGS stress tensor is modeled.

For the simulations involving the UDNS, the terms τSGS and τNNSGS of Eq. (2.40) vanish and the

balance equations are solved directly.

2.5.2 Subgrid-Scale Modeling

The most popular models for computing SGS stresses employ the eddy viscosity hypothesis (DAVID-

SON, 2004; SAGAUT, 2006; RODI et al., 2013). Using the eddy viscosity assumption, τSGS is decom-

posed into anisotropic and an isotropic component (RODI et al., 2013). For simplification, assuming the

suffix notation the τSGS is defined as
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τSGS = τSGS
ij = τSGS,a

ij +
1

3
τSGS
kk δij (2.41)

where τSGS,a
ij is the anisotropic SGS stress tensor, τSGS

kk is the component ofthe SGS normal stresses and

δij denotes the Kronecker delta. The isotropic part contains the sum of the SGS normal stresses, whose

value is equal to two times the SGS kinetic energy and acts like a pressure term (POPE, 2000; RODI et al.,

2013).

The isotropic part of τSGS
ij is added to the filtered pressure term, which leads to a new pressure

variable (POPE, 2000; RODI et al., 2013)

P̃ = p̃+
1

3
τSGS
kk (2.42)

The anisotropic SGS stress tensor is defined as

τSGS,a
ij = −2νSGSS̃ij (2.43)

where νSGS is the eddy viscosity of the SGS motions and S̃ij is the filtered rate-of-strain tensor (POPE,

2000; RODI et al., 2013)

S̃ij =
1

2

∂ũi
∂xj

+
∂ũj
∂xi

(2.44)

The eddy viscosity is not a fluid property and can be estimated through dimensional analysis, similar

to Prandtl’s mixing length model (SAGAUT, 2006; RODI et al., 2013).

In the present thesis, two SGS models are used to model the SGS stress tensor: Dynamic Smagorinsky

and WALE. Both models are based on the eddy viscosity assumption.

Dynamic Smagorinsky model

The Dynamic Smagorinsky model was proposed by Germano et al. (1991). The eddy viscosity is

defined according to the model developed by Smagorinsky (1963),

νSGS = (Cs∆)2 ˜|S| (2.45)

where Cs is the model constant, ∆ is the filter width, and ˜|S| =
q
2S̃ijS̃ij is the magnitude of the filtered

rate-of-strain tensor.

To dynamically calculate Cs, Germano et al. (1991) suggested introducing a second filter b∆ (the test

filter) wider than the grid filter ∆. The test filter is commonly defined as b∆ = 2∆. The SGS-test-filter

stress tensor TSGS
ij is defined as (GERMANO et al., 1991)

TSGS
ij = dguiuj − b̃uib̃uj (2.46)
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where quantities withb· are test-filtered.

An exact relation can relate subgrid tensors corresponding to two different filtering levels (SAGAUT,

2006), this approach in the literature refers to Germano identity

Lij = TSGS
ij − bτSGS

ij = d̃uiũj − b̃uib̃uj (2.47)

Assuming the same functional form to calculate the resolved turbulent stresses Lij , the νSGS expressed

in Eq. (2.45) can be used to parametrize both TSGS
ij and τSGS

ij

τSGS
ij − 1

3
τSGS
kk δij = −2 (Cs ∆)2 |S̃|S̃ij

TSGS
ij − 1

3
TSGS
kk δij = −2 Cs

b∆ 2
|b̃S|b̃Sij

(2.48)

By inserting Eq. 2.48 into Eq.2.47, an equation for Cs is obtained:

Lij −
1

3
Lkkδij = −2 C2

s Mij (2.49)

where

Mij = b∆2 b̃S b̃Sij −∆2 d̃
S S̃ij (2.50)

Lilly (1992) presented the least-squares method to determine the value of Cs (Eq. 2.49), yielding

C2
s = −1

2

⟨LijMij⟩
⟨MijMij⟩

(2.51)

WALE

The WALE model was proposed by Nicoud and Ducros (1999), and it calculates the eddy viscosity

based on the square of the velocity gradient tensor. It is defined by (NICOUD; DUCROS, 1999)

νSGS = (Cw∆)2
(Sd

ijS
d
ij)

3/2

(S̄ijS̄ij)5/2 + (Sd
ijS

d
ij)

5/4
(2.52)

where Sd
ij is the traceless, symmetric tensor of the square of the velocity gradient tensor

Sd
ij =

1

2

∂ūk
∂xi

∂ūj
∂xk

+
∂ūk
∂xj

∂ūi
∂xk

− 1

3
δij

∂ūk
∂xk

∂ūk
∂xk

(2.53)

A way to determine this constant is to assume that the WALE model gives the same ensemble-average

subgrid kinetic energy dissipation as the classical Smagorinsky model (NICOUD; DUCROS, 1999). The

filter width ∆ is computed as the cubic root of the computational cell volume. The WALE model was

designed to provide predictions similar to the Dynamic Smagorinsky model. The latter also provides the

correct near-wall asymptotic behavior (νSGS = y3) through its dependence on Lij , while the WALE

formulation does not require explicit filtering or damping functions (DURBIN; PETTERSSON-REIF,

2015).
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2.6 LES Resolution

There are different ways to estimate the resolution of LES data. However, there is no consensus on

which method would be the ideal in the literature. In LES, there is no concept of grid independence because

a grid-independent LES is essentially a DNS (CELIK et al., 2005; DURBIN; PETTERSSON-REIF, 2015).

A common approach to quantify the LES accuracy is a-posteriori validation. DNS and/or experimental

data concerning turbulence statistics for several canonical problems, such as homogeneous isotropic

turbulence, periodic channel flow, and periodic pipe flow are available in the literature for comparison and

validation.

The spatial grid resolution is essential in the LES because it provides a perception of accuracy. As the

computational grid is refined, smaller and smaller turbulent structures are resolved, and the simulation

moves towards a DNS.

Regarding non-dimensional wall units for LES, the near-wall flow can either be modeled as in a

RANS approach or resolved as in the DNS. For a wall-resolved LES in a turbulent boundary layer, Jiang

and Lai (2009) and Zang (1991) mention that the grid size must satisfy ∆y+wall < 1 for the first volume

near the wall and contain 3 to 5 grid elements between the wall and the region of the wall coordinate

y+ = 10.

Jiang and Lai (2009) summarize that there are three levels of grid resolution for LES in the streamwise

∆x+ and spanwise ∆z+ directions for a turbulent boundary layer: poor resolution with ∆x+ ≥ 100

and ∆z+ ≥ 30; medium resolution with 50 ≤ ∆x+ < 100 and 12 ≤ ∆z+ < 30; high resolution with

∆x+ < 50 and ∆z+ < 12.

According to Montreuil (2000), typical LES high-resolution requirements for a simple periodic

channel flow is ∆x+ ≈ 35 and ∆z+ ≈ 10, Menter (2012) suggests ∆x+ ≈ 40 and ∆z+ ≈ 20. For

instance, Kim et al. (1987) argue that the required resolution for a DNS in a periodic channel flow is

∆x+ = 8 and ∆z+ = 4. In the wall-normal direction, leastways three grid points below ∆y+wall = 1 and

at least 10 grid elements up to y+wall = 10. Zheng et al. (2019) performed DNS of turbulent pipe flow of

non-Newtonian fluids using a mesh resolution with ∆y+wall = 0.5, ∆z+ = 9.4 (streamwise in cylindrical

coordinate) and R∆θ+ = 5.7 (spanwise in cylindrical coordinate).

The non-dimensional cell sizes in Cartesian coordinates are defined as

∆y+ =
uτ∆y

ν
(2.54)

∆x+ =
uτ∆x

ν
(2.55)

∆z+ =
uτ∆z

ν
(2.56)

where ∆y, ∆x and ∆z represent the spatial mesh size in y, x and z directions, respectively, and uτ is the

friction velocity defined as uτ =
p

τw/ρ.
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Pope (2000) introduced a parameter M to estimate the amount of resolved turbulent kinetic energy by

a simulation. This variable is the ratio of the resolved turbulent kinetic energy to the modeled one, defined

as

M =
kres

kres + kSGS
(2.57)

where kres and kSGS are the resolved and modeled turbulent kinetic energy, respectively.

The value of M ranges from 0 to 1. If M = 1, the simulation corresponds to DNS and indicates that

the flow is very well resolved, while for M approaching zero tends to a RANS simulation. Pope (2000)

suggests M ≥ 0.8 as the minimum resolution to achieve a good result with LES.

Another parameter to compute the LES resolution is the ratio of the SGS viscosity to the molecular

viscosity, given by (DURBIN; PETTERSSON-REIF, 2015)

s′ =
νSGS

νSGS + ν
(2.58)

Several authors (DAVIDSON, 2009; BEN-NARS et al., 2017) prefer to express the ratio of the SGS

viscosity to the molecular viscosity as follows

s′′ =
νSGS

ν
(2.59)

Both parameters s′ and s′′ range between 0 and 1 and represents the degree of modeling in an LES

simulation. According to (DURBIN; PETTERSSON-REIF, 2015), when the ratio of the SGS viscosity to

molecular viscosity is not more than the order of 0.1, LES is found to be very accurate. When it reaches 1,

the simulation is considered inaccurate.

An alternative measure of the resolution can be defined via the rate of energy dissipation (DURBIN;

PETTERSSON-REIF, 2015; BEN-NARS et al., 2017), given by

ε′ =
εSGS

εSGS + ε
(2.60)

where εSGS is the SGS dissipation.

Davidson (2009) and Davidson (2011) presented and discussed some further methods to assess the

LES resolution, including energy spectra, two-point correlations, and the ratio of SGS shear stress to

resolved Reynolds shear stress Ns = τSGS,12/(u
′v′). The author argues that two-point correlations are

the best measures for estimating LES resolution. From this property, it is possible to know the number of

grids used to solve the largest scales of the flow.

Finally, Meyers et al. (2003) and Celik et al. (2005) formulated some indices to measure the resolution

of an LES, including the contributions from both the SGS modeling and numerical discretization.
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Chapter summary

This chapter provided some fundamental conceptualization about the subjects that will be covered

in the development of this work. The basic concepts about non-Newtonian fluids behavior and a brief

discussion regarding generalized Newtonian fluids were introduced. The characteristics of turbulent flows

and the difference in the TKE budget between Newtonian and GNFs were also shown. Subsequently, the

LES filtering process of the balance equations was presented, and the most used filters and their respective

characteristics. Two SGS models derived from the eddy viscosity hypothesis (Dynamic Smagorinsky and

WALE) to compute the effects of unresolved scales were also discussed. The chapter is concluded with a

brief discussion regarding several methods available in the literature to assess the resolution of LES data.
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3 NUMERICAL IMPLEMENTATION

This chapter presents the numerical methodology used, exposing the characteristics of the Open

source Field Operation And Manipulation (OpenFOAM) code, which is based on the Finite Volume

Method (FVM). Only the discretization and interpolation methods and the solution techniques for systems

of linear algebraic equations employed in this work will be discussed. For the other approaches available

in the OpenFOAM package, the reader is advised to consult the work of Jasak (1996), which is the primary

source regarding OpenFOAM’s FVM implementation.

The selection of OpenFOAM as the tool to perform the numerical simulations is based on some

reasons. First, the OpenFOAM is an open-source Computational Fluid Dynamics (CFD) package under

the GNU General Public License. The code also provides a collection of libraries for pre-processing,

solving, and post-processing and a structure that can be used to develop specific applications, such as

custom solvers and boundary conditions.

3.1 Introduction

The FVM is a numerical technique that transforms the set of partial differential equations representing

conservation laws of fluid dynamics into a system of linear algebraic equations. The integral formulation

of conservation laws is directly discretized in the physical space (HIRSC, 2007).

The discretization procedure used in the FVM demands two steps.The first step is to divide the

computational domain into a finite number of discrete regions, called elements or cells, whose one element

can represent a control volume. This approach is known as cell-centered, where control volumes coincide

with elements. Another method to define a control volume is cell vertex, where the control volume is

formed by a set of adjacent cells that share the same vertex (VERSTEEG; MALALASEKERA, 2007;

MOUKALLED et al., 2016).

The cell-centered variable arrangement is currently the most popular variable arrangement used with

the FVM (MOUKALLED et al., 2016). In this approach, the variables and their related quantities are

stored at the centroids of the elements.

After the domain discretization, the partial differential equations are integrated over the control

volumes. Then, to obtain an algebraic equation for each control volume, the surface and volume integrals

are approximated using quadrature formulae (FERZIGER; PERIC, 2002; MOUKALLED et al., 2016).

3.2 Domain Discretization

The geometric domain is subdivided into a finite number of elements resulting in a mesh in which the

balance equations are solved. The mesh is composed of discrete elements defined by a set of vertices and

bounded by faces. These control volumes do not overlap and fill the computational domain completely.

A typical pair of the control volume is depicted in Figure 3.1. It is conventional to indicate the

centroid of the control volume of interest as P , the face of the control volume as f , and the centroid of a
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neighboring control volume with a common face to P as N . The vector d is the distance between cell

centroids, d = xP − xN , and Sf is the face normal area vector. The Sf point outwards from the control

volume and has a magnitude equal to the area of the face.

In the control volume, the definitions of centroid P and the centroid of the face f are given by

Z
VP

(x− xp)dV = 0 (3.1)

Z
f
(x− xf )dS = 0 (3.2)

where xP is the position of the cell centroid, xf is the face center, x is the position of a generic point

within the domain, and dS (dS = ndS) represents an infinitesimal surface element with associated normal

n pointing outward of the surface ∂V .

All the dependent variables (e.g. velocity, pressure, temperature) are stored at the cell centroid in the

OpenFOAM code. The adoption of this arrangement is favorable for solving flows in complex geometries

(MOUKALLED et al., 2016).

Figure 3.1 – A pair of control volumes.

fS

N

P f

d

Source: Own Elaboration.

3.3 Discretization of the Transport Equations

The transport equation for a generic scalar property ϕ is defined as (VERSTEEG; MALALASEKERA,

2007; MOUKALLED et al., 2016)

∂ϕ

∂t|{z}
Transient term

+ ∇ · (uϕ)| {z }
Advective term

= ∇ · (Γ∇ϕ)| {z }
Diffusion term

+ Sϕ(ϕ)| {z }
Source term

(3.3)
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where Γ is the diffusivity coefficient and Sϕ represents a source term. The discretization of each Eq. (3.3)

terms will be discussed separately in the sequence.

The FVM requires the integration of Eq. (3.3) over a control volume (VERSTEEG; MALALASEK-

ERA, 2007; MOUKALLED et al., 2016), yielding

Z t+∆t

t

∂

∂t

Z
VP

ϕdV +

Z
VP

∇ · (uϕ)dV −
Z
VP

∇ · (Γϕ∇ϕ)dV dt

=

Z t+∆t

t

Z
VP

Sϕ(ϕ)dV dt

(3.4)

where VP is the control volume around the point P .

In order to obtain second-order accuracy, a linear variation of ϕ around the point P is assumed in both

space and time as (JASAK, 1996; MOUKALLED et al., 2016)

ϕ(x) = ϕp + (x− xP ) · (∇ϕ)P (3.5)

ϕ(t+∆t) = ϕt +∆t
∂ϕ

∂t

t

(3.6)

where ϕP = ϕ(xP ) and ϕt = ϕ(t).

According to the linear variation of ϕ(x), Eq. 3.5, the integral over the volume VP becomes:

Z
VP

ϕ(x)dV =

Z
VP

[ϕp + (x− xP ) · (∇ϕ)P ]dV

= ϕP

Z
VP

dV +

Z
VP

(x− xP )dV| {z }
=0 (Eq.3.1)

·(∇ϕ)P = ϕPVP
(3.7)

Terms under the divergence operator are evaluated using the Gauss divergence theorem, according to

Z
Vp

∇ · adV =

I
∂V

dS · a

=
X
f

Z
f
dS · a

(3.8)

where a is a generic vector.
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By assuming a linear variation of ϕ(x), the expression for the surface integral is defined as

Z
f
dS · a =

Z
f
dS · af +

Z
f
(x− xf )dS| {z }
=0(Eq.3.2)

: (∇a)f

= Sf · af

(3.9)

Combining Eqs. (3.8) and (3.9), one obtains

Z
Vp

∇ · a dV =
X
f

Z
f
dS · a =

X
f

Sf · af (3.10)

3.3.1 Advective Term

The discretization of the advective term is obtained using Eq. (3.10)

Z
VP

∇ · (uϕ)dV =
X
f

Sf · (uϕ)f =
X
f

Sf · (u)fϕf =
X
f

Ffϕf (3.11)

where Ff = Sf ·uf is the mass flux through the face f and ϕf is the face value of the transported quantity

ϕ.

The value of ϕf is not given directly, so it must be interpolated to the cell faces employing the

so-called Convection Differencing Scheme – CDS (FERZIGER; PERIC, 2002).

The central differencing scheme performs a straightforward approximation for the value on the face

between the two nearest nodes. This method interpolates linearly the face value of ϕ between the point P

and a neighboring point N . The schematic representation is illustrated in Figure 3.2, and the equation for

ϕf is expressed as (FERZIGER; PERIC, 2002)

ϕf = fxϕP + (1− fx)ϕN (3.12)

where fx is the interpolation factor, and it is defined as the ratio of the distances fN and PN as

fx =
fN

PN
(3.13)

It is worth mentioning that the central differencing scheme can produce non-physical oscillations in the

solution for advection-dominated problems (FERZIGER; PERIC, 2002; HIRSC, 2007). Nonetheless, this

issue can be remedied with mesh refinement (DE VILLIERS, 2006; VERSTEEG; MALALASEKERA,

2007; XU; YANG, 2021).

Several authors used the central differencing scheme in conjunction with the FVM (LAMPITELLA,

2014; KOMEN et al., 2014; KOMEN et al., 2017; ZHENG et al., 2019) to reproduce turbulent flows with

LES and DNS. Adedoyin et al. (2015) investigated the combination of several CDS and SGS models. The

author mentions that the central differencing scheme presents better results than the other methods.
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Figure 3.2 – Face interpolation to calculate the face fluxes between the two nearest nodes.

fP N

Pφ
fφ

Nφ

Source: Adapted from OpenFOAM.

3.3.2 Diffusive Term

A similar approach employed in discretizing the advective term is used here. The linear variation of

the quantity ϕ is also assumed to compute the diffusion term of the Eq. (3.4)

Z
VP

∇ · (Γϕ∇ϕ)dV =
X
f

Sf · (Γϕ∇ϕ)f =
X
f

(Γϕ)f Sf · (∇ϕ)f (3.14)

In the case of an orthogonal mesh, the vectors d and Sf depicted in Figure 3.3 are parallel. Then, the

following expression is used to estimate the face gradient of ϕ:

Sf · (∇ϕ)f = |Sf |
ϕN − ϕP

|d|
(3.15)

Figure 3.3 – Schematic representation of vector decomposition for an orthogonal mesh.

fP Nd

Sf

Source: Adapted from OpenFOAM.

For non-orthogonal cells, the product Sf · (∇ϕ)f is divided into two parts, according to Figure 3.4.

Sf · (∇ϕ)f = ∆ · (∇ϕ)f| {z }
orthogonal contribution

+ ϖ · (∇ϕ)f| {z }
non−orthogonal contribution

(3.16)

The first term on the right side of Eq. (3.16) is an orthogonal contribution since the ∆ vector has the

same direction of d, while the second term is a non-orthogonal correction since the ∆ and ϖ vectors add

up to the vector Sf .
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Figure 3.4 – Schematic representation of vector decomposition for a non-orthogonal mesh.

fP Nd

Sf

∆
ϖ

Source: Adapted from OpenFOAM.

Sf = ∆+ϖ (3.17)

Eq. (3.16) can be rewritten using Eq. (3.15) for the orthogonal contribution and a correction equation

for the non-orthogonal term as

Sf · (∇ϕ)f = |∆|ϕN − ϕP

|d|
+ϖ · [fx(∇ϕ)P + (1− fx)(∇ϕ)N ] (3.18)

where

(∇ϕ)P =
1

Vp

X
f

Sfϕf (3.19)

3.3.3 Source Term

The source term usually represents a general function of ϕ that cannot be considered either in the

advective and diffusive terms or in the temporal contribution of the transport equation (JASAK, 1996).

This term is linearized as follows

Sϕ(ϕ) = SC + SPϕ (3.20)

where Sc and SP can also depend on ϕ. Following Eq. (3.7), the volume integral is calculated as

Z
VP

Sϕ(ϕ)dV = SCVP + SPVPϕP (3.21)

Finally, the integral form of the transport equation introduced in Eq. (3.4) is here again reported.

Z t+∆t

t

∂

∂t

Z
VP

ϕdV +

Z
VP

∇ · (uϕ)dV −
Z
VP

∇ · (Γϕ∇ϕ)dV dt

=

Z t+∆t

t

Z
VP

Sϕ(ϕ)dV dt

(3.22)
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Substituting the discretized terms, Eq.(3.11), (3.14), and (3.21), into Eq. (3.22), one obtains the

semi-discretized form of the transport equation (HIRSC, 2007; MOUKALLED et al., 2016)

Z t+∆t

t

 ∂ϕ

∂t P

VP +
X
f

Ffϕf −
X
f

(Γϕ)f Sf · (∇ϕ)f

 dt

=

Z t+∆t

t
[SCVP + SPVPϕP ] dt

(3.23)

3.3.4 Temporal Discretization

The temporal term is discretized using a second-order implicit backward differencing scheme. This

method requires the expansion of ϕn values at ϕn−1 and ϕn−2. In order to calculate the temporal derivative,

the time level n− 2 is expressed as a Taylor expansion around n:

ϕn−2 = ϕn − 2
∂ϕ

∂t

n

∆t+ 2
∂2ϕ

∂t2

n

∆t2 +O(∆t3) (3.24)

Likewise, for the term ϕn− 1 around n

ϕn−1 = ϕn − ∂ϕ

∂t

n

∆t+
1

2

∂2ϕ

∂t2

n

∆t2 +O(∆t3) (3.25)

Combining Eqs. (3.24) and (3.25), the second-order approximation of the temporal derivative is

(JASAK, 1996):

∂ϕ

∂t

n

=
3
2ϕ

n − 2ϕn−1 + 1
2ϕ

n−2

∆t
(3.26)

By assuming that the density, the advective and the diffusive fluxes do not change in time within each

time step, the final form of the discretized transport equation becomes (JASAK, 1996; KOMEN et al.,

2014):

3
2ϕ

n − 2ϕn−1 + 1
2ϕ

n−2

∆t
VP +

X
f

Ffϕ
n
f −

X
f

(Γϕ)f Sf · (∇ϕ)nf

= [SCVP + SPVPϕ
n
P ]

(3.27)

The convergence and stability of numerical schemes are reached by Courant–Friedrichs–Lewy (CFL)

condition (MOUKALLED et al., 2016) as follows

CFL =
ui∆t

∆x
+

uj∆t

∆y
+

uk∆t

∆z
(3.28)

The CFL must be smaller than 1 to ensure numerical stability (HIRSC, 2007; MOUKALLED et

al., 2016). Consequently, the small time step helps to correctly capture the fluctuations or transient

characteristics of turbulent flows.
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3.4 Boundary Conditions

Boundary conditions play an important role in numerical simulations of fluid flow. For instance, the

flow fields within a domain are quite different for distinct boundary conditions, although the governing

equations representing a particular phenomenon are the same. The class of boundary conditions used in

this work is given by Dirichlet, Neumann, and periodic boundary conditions.

3.4.1 Dirichlet Boundary Condition

This approach prescribes a fixed value of ϕ at the boundary face b, yielding ϕ = ϕb A schematic view

is illustrated in Figure 3.5. This boundary condition is used to prescribe the velocity field at the inlet

domain and define the no-slip condition at the walls. The equations for the Dirichlet boundary condition

when applied to the advective and diffusive terms are defined below.

- Advective term: From Eq. (3.11), the advective term is discretized as

Z
VP

∇ · (uϕ)dV =
X
f

Ffϕf (3.29)

The boundary flux is evaluated directly by employing the fixed value of ϕb. Therefore

(Ffϕf )f→b = Fbϕb (3.30)

- Diffusive term: The diffusive term is discretized according to Eq.(3.14)

Z
VP

∇ · (Γϕ∇ϕ)dV =
X
f

(Γϕ)f Sf · (∇ϕ)f (3.31)

The face gradient at face b is calculated from the known face value ϕb and thecell center value ϕP ,

similar to Eq. (3.15):

Sf · (∇ϕ)b = |Sb|
ϕb − ϕP

|db|
(3.32)

3.4.2 Neumann Boundary Conditions

This type of boundary condition specifies the normal gradient gb at the boundary face, it is computed

as follows

∂ϕ

∂nb
=

Sb

|Sb|
= gb (3.33)

The Neumann boundary condition is depicted in Figure 3.6, and for the current work, it is applied to

the wall region for the pressure field.
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Figure 3.5 – Schematic representation of the Dirichlet boundary condition.

d b
Sb

specifiedb φφ =

P

Source: Adapted from Moukalled et al. (2016).

- Advective term: Since the value of ϕb is not provided, the face value ϕb is calculated from the value

in the cell center ϕP Moreover, the prescribed gradient at the boundary

ϕb = ϕP + db · (∇ϕ)b

= ϕP + |db| · gb
(3.34)

- Diffusive term: In this case, the fixing of the boundary condition is direct, since

(∇ϕ)b · Sb = gb (3.35)

Figure 3.6 – Schematic representation of the Neumann boundary condition.

d b
Sb

b
b g=
nφ
φ

P

Source: Adapted from Moukalled et al. (2016).
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3.4.3 Periodic Boundary Conditions

Periodic boundary conditions help approximate a large (infinite) domain, e.g., channel and pipe flow,

when the flow is statistically homogeneous in a particular direction, or the geometry is periodic in one or

two directions (RODI et al., 2013). For any flow variable, such as velocity field, the periodic boundary

condition implies

u(x, t) = u(x+ L′, t) (3.36)

where L′ is the length of the periodic region.

3.5 Discretization ofthe Navier-Stokes Equation

The discretization methods presented above for a generic scalar property ϕ provide the basis for the

discretization of the Navier-Stokes equations. By integrating the Eqs. (2.37) and (2.40) over a control

volume to yield the integral form of the governing equations, one obtains

Z
VP

∇ · ũdV =

Z
∂V

dS · ũ = 0 (3.37)

Z t+∆t

t

d

dt

Z
VP

eudV +

Z
VP

∇ · (eu⊗ eu)dV −
Z
VP

∇ · [νeff (∇eu+ (∇eu)T )]dV dt =

−
Z t+∆t

t

1

ρ

Z
VP

∇ ePdV dt

(3.38)

where νeff is the sum of the kinematic viscosity ν and SGS viscosity νSGS .

Two issues require special attention: the non-linearity of the momentum equation and the pressure-

velocity coupling. First, the advective term ∇ · (eu⊗ eu) appearing in Eq. (3.38) results in a quadratic

function and must be linearized to prevent the resulting system of algebraic equations from being nonlinear.

This procedure is achieved by replacing one of the values from the current iteration of velocity with a

value from the previous time-step (eu0 ≈ eu). The advective term is linearized as follows (JASAK, 1996;

DAMIÁN, 2013):

Z
VP

∇ · (eu⊗ eu)dV =
X
f

Sf · euf · euf

≈
X
f

(Sf · eu0
f ) · euf =

X
f

F 0
f · euf

= aP euP +
X
f

aNeuN

(3.39)

where F 0
f is the mass flux through the face f at the previous time-step, eu0

f is the velocity at the previous

time-step, aP are the diagonal coefficients of the discretization matrix, and aN the off-diagonal ones.
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The coefficients aP and aN are functions of eu0. The flux conservation at each time-step is taken from

the iteration of the pressure-velocity loop, which assures the application of the continuity equation (DE

VILLIERS, 2006; DAMIÁN, 2013). In addiction, since the time-step is small (CFL< 1), the variation

between consecutive solutions will also be small, and it is possible to delay the non-linearity without any

significant effect (JASAK, 1996).

Regarding the pressure-velocity coupling, the question that arises when using segregated schemes, as

in the OpenFOAM code, with incompressible fluids is how to solve the pressure field from the conservation

equation, where the pressure does not show up, but only the velocity. Therefore, it is necessary to derive a

pressure equation for the incompressible Navier-Stokes system.

3.5.1 Solution of the Pressure Equation

Starting from the semi-discretized form of the momentum equation is possible to derive an equation

for the pressure field. The semi-discretized form of the momentum equation is defined as (JASAK, 1996)

aP euP = H(eu)−∇P (3.40)

where H(eu) accounts for the advective and diffusive terms as well as all the source terms (JASAK, 1996;

DAMIÁN, 2013)

H(eu) = −
X
f

aNeuN +
eu0

∆t
(3.41)

The discretized form of the continuity equation (Eq. 2.37) can be written as

∇ · ũ =
X
f

Sf · euf = 0 (3.42)

The Eq.(3.40) is used to express the velocity at the cell center euP

euP =
H(eu)
aP

− 1

aP
∇ eP (3.43)

Interpolating the Eq. (3.43) to express the velocities at cell faces euf

euf =
H(eu)
aP f

− 1

aP f

∇ eP
f

(3.44)

This equation will serve as a basis for the calculation of face fluxes. Introducing the above equation

into Eq. (3.42), an equation for the pressure can be obtained:

∇ · 1

aP
∇ eP = ∇ · H(eu)

aP
(3.45)
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Then, the set of discrete equations for the Navier-Stokes system is defined as

aP euP = H(eu)−X
f

S( eP )f (3.46)

X
f

Sf ·

"
1

aP f

(∇ eP )f

#
=

X
f

Sf · H(eu)
aP f

(3.47)

where S( eP ) is a source term given by the pressure gradient. Finally, the face flux F is estimated using Eq.

(3.44)

F = euf · Sf =

"
H(eu)
aP f

− 1

aP f

∇ eP
f

#
· Sf (3.48)

3.5.2 The PISO Algorithm for Pressure-Velocity Coupling

By considering the final form of the Navier-Stokes system, Eqs. (3.46) and (3.47), a solution for the

pressure-velocity coupling can be developed. The Pressure-Implicit-Split-Operator (PISO) algorithm has

been initially proposed by Issa (1986). In this approach, the method performs a series of corrections to

velocity and pressure fields until the convergence of the solution is reached. The PISO algorithm can be

described as follows:

1. An approximation for the velocity field is estimated by solving the momentum equation (Eq. 3.46)

using the pressure field of the previous time-step. This step is called momentum predictor.

aP euP = H(eu)−X
f

S( eP 0)f (3.49)

2. Using velocity field obtained, the H(eu) operator can be assembled, and the pressure equation (Eq.

3.47) is solved. The solution of the pressure equation gives the first estimate of the new pressure field.

This step is called the pressure solution.

X
f

Sf ·

"
1

aP f

(∇ eP )f

#
=

X
f

Sf · H(eu)
aP f

(3.50)

3. Eq. (3.48) gives a set of conservative fluxes consistent with the new pressure field.

F = euf · Sf =

"
H(eu)
aP f

− 1

aP f

∇ eP
f

#
· Sf (3.51)

4. The correction of the velocity field at the cell center is carried out due to the new pressure

distribution. The velocity correction is done in an explicit manner using Eq. (3.43). This passage is called

the explicit velocity correction.

euP =
H(eu)
aP

− 1

aP
∇ eP (3.52)
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5. If the convergence of pressure and velocity fields is reached, the solution advances. Otherwise,

steps 2 to 4 are repeated until convergence is achieved.

Figure 3.7 summarises the solution flowchart of the numerical code.

Figure 3.7 – Solution flowchart.
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Source: Own elaboration.

3.6 Solving the System of Algebric Equations

The final form of the discretization process is a system of linear equations for each control volume

that can be written as follows (FERZIGER; PERIC, 2002; MOUKALLED et al., 2016)

Aϕϕ = R (3.53)

where Aϕ is the matrix of aP and aN coefficients, ϕ is a vector of unknowns located at the centroids

of the elements, and R is the vector that contains all sources, constants, boundary conditions, and non-

linearizable components (MOUKALLED et al., 2016). The solution of this system is usually obtained by

the use of iterative linear equations solvers.

The discretization of the balance equation generally produces asymmetrical linear systems due to the

advective term. Conversely, the matrix of coefficients resulting from the discretization of the incompress-

ible pressure equation or pressure correction equation yields symmetrical systems (MOUKALLED et al.,

2016).
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In the present thesis, the system of linear equations is resolved by employing different solvers.

The preconditioned Bi-Conjugate Gradient solver (PBiCG) with Diagonal Incomplete LU (DILU) as

a preconditioner is used for asymmetric matrices. According to (BENZI, 2002), the preconditioners

attempt to improve the properties of the coefficient matrix and thus optimize the solver’s performance. The

Geometric-Algebraic Multi-Grid (GAMG) solved the pressure equation with Gauss-Seidel as smoother

for symmetric matrices. Finally, regarding the convergence of the solvers, the iterative calculation is

performed until the residual value computed by the L1 norm reaches orders of magnitude set by the user.

Chapter Summary

This chapter introduced the finite volume discretization technique adopted in the OpenFOAM code.

The second-order discretization schemes applied in this work are described in Section 3.3. The boundary

conditions, the discretization procedure for the Navier-Stokes equations, and the approach adopted for the

pressure-velocity coupling based on the PISO algorithm were discussed in Sections 3.4 and 3.5. Finally,

the methods to solve the linear systems are reported in Section 3.6. In the next chapter, the verification

studies will be presented.
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4 NUMERICAL VERIFICATION

In this chapter, the numerical methodology is tested. First, LES of turbulent pipe flows of Newtonian

and Herschel-Bulkley fluids are investigated. Next, simulations of the turbulent flows of Newtonian fluids

in a concentric annular section with inner cylinder rotation are performed. For the results obtained with the

Newtonian fluids, only the first and second-order turbulence statistics are discussed, while those computed

with the Herschel-Bulkley fluids, besides the turbulence statistics, flow quantities, including mean wall

shear stress, mean wall viscosity, friction factor, mean shear rate and mean viscosity profiles are also

compared to the reference data.

4.1 Turbulent Pipe Flow

Numerical simulations of turbulent pipe flows were carried out at two different generalized Reynolds

numbers of 5, 000 and 7, 500. The pipe length in the axial direction is defined as Lz = 4πD. The pipe

length follows the arguments of Singh et al. (2017a), which is based on a domain independence study via

two-point correlation, and it has the same length used by Rudman et al. (2004), Singh et al. (2017b), and

Zheng et al. (2019) for similar Reynolds numbers.

4.1.1 Initial and Boundary Conditions

The simulations with Herschel-Bulkley fluids were initialized with a fully developed Newtonian flow

field. DE VILLIERS (2006) developed the approach to create an initial field for the Newtonian case. The

method is based on the interaction between streaks and streamwise vortices that play a central role in

near-wall turbulence production (CASSINELLI et al., 2017).

According to DE VILLIERS (2006), the profile is derived from the fully developed laminar flow.

Near-wall parallel streaks are produced by modifying the base parabolic flow, U+
z0, in the following way

(DE VILLIERS, 2006)

U+
z = U+

z0 + (∆u+z0/2) cos(b
+θ+r+)(y+/30)exp(−Cσy

+2 + 0.5),

U+
r = U+

θ = 0
(4.1)

where U+
z , are the mean velocity profiles in the axial, radial and azimuthal directions, respectively,

∆u+z0 is the wall-normal circulation, b+ stands for spanwise wavenumber and Cσ is the transverse decay,

Cσ = 0.00055.

Then, these streaks need to be slightly perturbed to develop a wavy character which, in turn, will

produce streamwise vortices. This is achieved by a second relation (Eq. 4.2), which introduces a spanwise

perturbation (DE VILLIERS, 2006)

uθ = cϵsin(a
+z+)y+exp(−Cθy

+2),

uz = ur = 0
(4.2)
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where cϵ is the linear perturbation amplitude, cϵ = ub/200, and a+ is the axial wave numbers. The

constants, b+ and a+ are chosen to produce a sparse streak spacing (θ+ ≈ 200), equivalent to the buffer

layer in the wall-normal extent (y+ = 30) and with a maximum intensity of about 10% of the bulk fluid

velocity (DE VILLIERS, 2006).

The standard no-slip boundary condition was applied at the pipe wall, and the flow is assumed periodic

in the axial direction for any flow quantity ϕ(z, r, θ) = ϕ(z + Lz, r, θ). In addition, the flow is driven by

a constant mass flow rate.

It is worth mentioning that the apparent viscosity of the Herschel-Bulkley model diverges to infinity

as the shear rate approaches zero (Eq. 2.7) and, therefore, a ‘cut-off’ value is used to remedy this issue. In

the present work, the ‘cut-off’ value chosen is 0,01 [s−1], and the values below are assumed to be constant

for computing the viscosity.

4.1.2 Averaging Procedure

Before collecting averages over time, typically, 10 flow-through time (FTT = L/Ub) are required for

the flow to reach a statistically steady state. After that, statistics were collected for 40 FTT . As the final

step, the spatial averaging was carried out over the homogeneous directions during the post-processing.

4.1.3 Mesh Convergence Study

The mesh analysis is performed at two different Reynolds numbers. First, LES of turbulent pipe flow

of a Newtonian fluid was considered to evaluate the mesh resolution for the simulations at ReG = 5, 000.

The second case of LES of turbulent pipe flow of a Herschel-Bulkley fluid was used to check the grid for

the simulations at ReG = 7, 500. The range of values mentioned in Section 2.6 provides a perception of

the mesh requirements for LES analysis with a high-resolution grid. Four different grid resolutions were

considered for both Reynolds numbers, as shown in Tables 4.1 and 4.2.

Table 4.1 – Summary of the computational grids for the turbulent pipe flow simulations with Newtonian
fluid at ReG = 5, 000.

Mesh resolution I II III IV
Nz x Nr x Nθ 54x36x112 108x18x112 108x36x112 162x36x112
Number of cells 260,064 302,400 521,000 732,032
∆z+ 76 40 40 26.4
(R∆θ)+ 9.5 9.4 9.2 9.2
∆r+wall (first volume near the wall) 0.41 0.84 0.4 0.4
Number of cells in the viscous sublayer 9 5 9 9
Number of cells for y+ ≤ 10 14 8 14 14

Source: Own elaboration.

Figure 4.1 depicts the profiles of the mean velocity and root-mean-square (RMS) velocity fluctuations

calculated from the different SGS models for the simulations with the Newtonian fluid at ReG =

5, 000. The profiles are normalized using the friction velocity uτ =
p
τw/ρ. Figure 4.2 illustrates the

configuration of the meshes employed in the pipe cross-section.
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Table 4.2 – Summary of the computational grids for the turbulent pipe flow simulations with Herschel-
Bulkley fluid at ReG = 7, 500.

Mesh resolution V VI VII VIII
Nz x Nr x Nθ 54x42x136 108x21x136 108x42x136 162x42x136
Number of cells 370,872 433,296 741,744 1,126,616
∆z+ 98 52 52 34.2
(R∆θ)+ 12.4 12.1 12.1 10.2
∆r+wall (first volume near the wall) 0.51 0.53 0.51 0.48
Number of cells in the viscous sublayer 7 4 7 7
Number of cells for y+ ≤ 10 12 7 12 12

Source: Own elaboration.

Results for the mean axial velocity and radial and azimuthal turbulence intensities obtained with the

Dynamic Smagorinsky and WALE models on meshes II, III, and IV align with the reference DNS data.

The major difference (≈ 4%) between the meshes III and IV occurs in the range 50 < y+ < 100 for the

RMS velocity fluctuations in the axial direction.

Figure 4.1 indicates that the difference in the outcomes between meshes III and IV are minimal and,

thus, mesh III is considered adequate for the sequence of simulations at ReG = 5, 000 in the current work.

Moreover, mesh III complies with the high-resolution grid requirements (∆z+ < 50 and R∆θ+ < 12).

The profiles of mean velocity and RMS velocity fluctuations for the Herschel-Bulkley fluid at

ReG = 7, 500 with different grid resolutions are illustrated in Figure 4.3. The non-Newtonian law of the

wall for the mean axial velocity for Power-law and Herschel-Bulkley fluids proposed by Anbarlooei et al.

(2015) are also plotted for comparison. The model parameters for the Herschel-Bulkley fluid are provided

in Table 4.3. The bulk velocity is 1.0 [m s−1] and the pipe diameter is 0.1 [m].

Table 4.3 – Herschel-Bulkley fluid model parameters for the turbulent pipe flow simulations at ReG =
7, 500.

τy (Pa) K (Pa sn) ρ (kg m−3) n

4.28e-02 9.09e-02 1,000 0.65
Source: Zheng et al. (2019).

Results from meshes VI, VII and VIII computed by the Dynamic Smagorinsky and WALE models

match with DNS data of Zheng et al. (2019) for radial and azimuthal turbulence intensities. In terms of

the mean velocity and RMS turbulent intensity in the axial direction, just on mesh VIII the SGS models

perform similarly with DNS data.

Overall, similar trends were observed between meshes VI, VII and VIII with the Dynamic Smagorinsky

and WALE models. However, only the mesh VIII follows the guidelines of a high-resolution grid

(∆z+ < 50 and R∆θ+ < 12). Thus, the mesh IV will be considered for simulations at ReG = 7, 500.
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Figure 4.1 – Profiles of mean velocity and turbulence intensities for the different SGS models. Turbulent
pipe flow of a Newtonian fluid at ReG = 5, 000, (a) Dynamic Smagorinsky (b) WALE.
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Figure 4.2 – Pipe cross-section configuration on meshes I, III, and IV.

Source: Own elaboration.

4.1.4 Newtonian Fluid

In order to assess the predictive capability of the numerical method, the LES and UDNS computations

are compared with the DNS results from Zheng et al. (2019) and experimental data from Den Toonder

and Niewstadt (1997) for turbulent pipe flow of a Newtonian fluid at ReG = 5, 000.
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Figure 4.3 – Profiles of mean velocity and turbulence intensities for the different SGS models. Turbulent
pipe flow of a Herschel-Bulkley fluid at ReG = 7, 500, (a) Dynamic Smagorinsky (b) WALE.
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Figure 4.4 shows the mean axial velocity profiles predicted by SGS models, UDNS, the corresponding

DNS results (ZHENG et al., 2019), and the experimental data (Den Toonder; NIEWSTADT, 1997). The

profiles are normalized using the friction velocity uτ . The distributions of the mean axial velocity of both

SGS models and UDNS are qualitatively consistent with the DNS results and experimental data.

Figure 4.4 – Mean axial velocity profiles of Newtonian fluid plotted in wall units for ReG = 5, 000.
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The second-order statistics of the velocity field are plotted in Figure 4.5. A good agreement can

be observed for the profiles of the RMS velocity fluctuations of the Dynamic Smagorinsky and WALE

models, and the UDNS compared with the DNS data of Zheng et al. (2019). Profiles of Reynolds shear

stress for both SGS models and UDNS match the DNS results and the experimental data.

Figure 4.5 – Profiles of RMS velocity fluctuations in (a) axial, (b) radial, (c) azimuthal direction, and (d)
Reynolds shear stress of Newtonian fluid plotted in wall units at ReG = 5, 000.
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Small differences (less than 2%) were observed between the SGS models predictions and the cor-

responding UDNS computations, suggesting that the numerical dissipation is dominant over the SGS

dissipation rate. Similar results were observed by Castiglioni and Domaradzki (2015), Cadieux et al.

(2017), and Komen et al. (2017). Kravchenko and Moin (1997) also pointed out that the contribution of

the SGS models is small when applied in low-order methods.

4.1.5 Herschel-Bulkley Fluid

Simulations of turbulent pipe flow of Herschel–Bulkley fluids are carried out at two different general-

ized Reynolds numbers of 5, 000 and 7, 500. Following the work developed by Zheng et al. (2019), the

model parameters are given in Table 4.4. The pipe diameter is 0.1 [m], the fluid density is 1,000 [kg m−3],

and the bulk velocity is 1.0 [m s−1]. An additional simulation of turbulent pipe flow of Herschel–Bulkley

fluids at ReG = 10, 600 is also presented in Appendix B.



Chapter 4. Numerical Verification 70

Table 4.4 – Model parameters for the turbulent pipe flow simulations with Herschel-Bulkley fluids.

Simulation τy (Pa) K (Pa sn) n ReG He Bn

Case A 6.62e-02 1.22e-01 0.65 5,000 23 0.1215
Case B 4.28e-02 9.09e-02 0.65 7,500 23 0.1054

Source: Zheng et al. (2019).

4.1.5.1 Mean Velocity Profile

The mean axial velocity profiles for the simulations at ReG = 5, 000 and ReG = 7, 500 are illustrated

in Figure 4.6. The profiles are normalized using the friction velocity uτ . The Dynamic Smagorinsky and

WALE models and the UDNS match the OpenFOAM DNS data of Zheng et al. (2019) up to the buffer

layer (y+ ≤ 30). After that, the UDNS yields a lower velocity in the logarithmic region with a maximum

deviation of 3.2%. For the simulations at ReG = 7, 500, the LES results follow the trend of OpenFOAM

DNS data of Zheng et al. (2019).

As shown in Figure 4.6, the DNS axial velocity profiles predicted by OpenFOAM are slightly above

the profiles obtained with Semtex, suggesting OpenFOAM predicts the flow to be more transitional for the

shear-thinning fluids (ZHENG et al., 2019).

Figure 4.6 – Mean axial velocity profiles of Herschel-Bulkley fluids plotted in wall units at different
generalized Reynolds numbers, (a) ReG = 5, 000 and (b) ReG = 7, 500.
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4.1.5.2 RMS Velocity Fluctuations and Reynolds Shear Stress

The profiles of the RMS velocity fluctuations in the axial direction for the LES predictions at ReG =

5, 000 and ReG = 7, 500 are shown in Figure 4.7. The results obtained with the Dynamic Smagorinsky

and WALE models and the corresponding UDNS computations present satisfactory agreement with

OpenFOAM DNS data of Zheng et al. (2019) for both generalized Reynolds numbers. The current

simulations predict the peak location. However, the LES simulations, as well as OpenFOAM DNS results

(2019), overpredict the values by around 10% and 6% compared to Semtex DNS data of Zheng et al.

(2019) for ReG = 5, 000 and ReG = 7, 500, respectively.
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Figure 4.7 – Profiles of the RMS velocity fluctuations in the axial direction of Herschel-Bulkley fluids
plotted in wall units , at different generalized Reynolds numbers, (a) ReG = 5, 000 and (b)
ReG = 7, 500.
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Figure 4.8 depicts the profiles of RMS velocity fluctuations in the radial direction. The UDNS and the

SGS models follow the trend of OpenFOAM DNS data of Zheng et al. (2019) at ReG = 5, 000. In the

buffer layer (5 < y+ < 30), the UDNS is in slightly better agreement with the OpenFOAM DNS data

than the SGS models. However, the UDNS overpredicts the peak value by around 2.1%, whereas the SGS

models overpredict this location by approximately 1.5% compared to OpenFOAM DNS data of Zheng et

al. (2019). For the simulations at ReG = 7, 500, all the LES computations performed similarly with the

OpenFOAM DNS data from Zheng et al. (2019).

Figure 4.8 – Profiles of the RMS velocity fluctuations in the radial direction of Herschel-Bulkley fluids
plotted in wall units at different generalized Reynolds numbers, (a) ReG = 5, 000 and (b)
ReG = 7, 500.
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Results for the profiles of the RMS velocity fluctuations in the azimuthal direction are reported

in Figure 4.9. For the simulations at ReG = 5, 000, the SGS models and the corresponding UDNS

predictions agree with the OpenFOAM DNS data from Zheng et al. (2019). The Dynamic Smagorinsky

and WALE models overpredict the peak value by approximately 4.5% and 2%, respectively, while the

difference for the UDNS at the peak is 5.87% compared to OpenFOAM DNS result (ZHENG et al.,
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2019). For ReG = 7, 500, in contrast, the profiles obtained with LES computations follow the trend of the

OpenFOAM DNS data of Zheng et al. (2019).

Figure 4.9 – Profiles of the RMS velocity fluctuations in the azimuthal direction of Herschel-Bulkley
fluids plotted in wall units at different generalized Reynolds numbers, (a) ReG = 5, 000 and
(b) ReG = 7, 500.
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Figure 4.10 shows the distribution of Reynolds shear stress. The profiles are normalized by u2τ . The

Dynamic Smagorinsky and WALE models and the UDNS results agree well with DNS data of Zheng et al.

(2019) for both generalized Reynolds numbers. The profiles of Reynolds shear stress obtained with LES

follow the trend of the DNS results and correctly predict peak locations but present slightly larger values

at these locations. The SGS models overpredict the peak value by approximately 6.5% for simulations at

ReG = 5, 000, while the difference for the UDNS at the peak is 12% compared to OpenFOAM DNS data.

For ReG = 7, 500, the Dynamic Smagorinsky and WALE models overpredict the peak value within 1.8%,

while the maximum deviation from DNS data at the peak is 4.6% for the UDNS.

Figure 4.10 – Profiles of Reynolds shear stress of Herschel-Bulkley fluids plotted in wall units at different
generalized Reynolds numbers, (a) ReG = 5, 000 and (b) ReG = 7, 500.
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It can be noted that the differences between the results of the first- and second-order statistics decreased

as the Reynolds number increased, suggesting the difficulty of the code in computing transitional flows of

non-Newtonian fluids.
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Finally, an additional study regarding the turbulent intensities was performed at ReG = 7, 500

employing a coarse grid, mesh VI from Table 4.2, with grid resolution in wall units of ∆z+ ≈ 51,

∆θ+ ≈ 12 and ∆r+wall = 0.52. The distributions of the second-order statistics are shown in Figure 4.11.

Even with a coarse grid, the results are in good agreement with the OpenFOAM DNS data of Zheng et

al. (2019). The differences between the profiles obtained with SGS models and the results of the UDNS

are small. However, following the trends presented above, the SGS models predict the peak values of the

RMS velocity fluctuations in the radial and azimuthal directions and Reynolds shear stress better than the

UDNS.

Figure 4.11 – Profiles of RMS velocity fluctuations in (a) axial, (b) radial, (c) azimuthal direction, and (d)
Reynolds shear stress of Herschel–Bulkley fluid with the mesh VI plotted in wall units at
ReG = 7, 500.
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4.1.5.3 Mean Viscosity and Shear Rate Profiles

The mean viscosity predictions normalized by the mean wall viscosity are plotted in Figure 4.12. The

profiles obtained with the Dynamic Smagorinsky and WALE models and the results of the UDNS match

the DNS data of Zheng et al. (2019) for both generalized Reynolds numbers. Near the wall, the apparent

viscosity is constant up to the viscous sublayer (y+ < 5).

Results for the mean shear rate normalized by u2τ/νw are illustrated in Figure 4.13. The profiles

show that the highest shear rate values are located near the pipe wall. The most considerable difference

in the mean shear rate between the LES computations and OpenFOAM DNS results of Zheng et al.
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(2019) occurs near the wall, both SGS models and the predictions of the UDNS overestimate OpenFOAM

DNS values. After that region, very similar results are observed. When the profiles computed by the

OpenFOAM package are compared to Semtex DNS data from Zheng et al. (2019), the values are slightly

smaller for the whole domain.

Figure 4.12 – Profiles of Reynolds shear stress of Herschel-Bulkley fluids plotted in wall units at different
generalized Reynolds numbers, (a) ReG = 5, 000 and (b) ReG = 7, 500.
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Figure 4.13 – Profiles of Reynolds shear stress of Herschel-Bulkley fluids plotted in wall units at different
generalized Reynolds numbers, (a) ReG = 5, 000 and (b) ReG = 7, 500.
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4.1.5.4 Wall Shear Stress, Pressure Gradient, and Wall Viscosity

The mean wall shear stress τw and the mean pressure gradient dp/dz from the reference DNS data of

Zheng et al. (2019), and their respective averaged quantities computed by LES are summarized in Table

4.5. The ensemble-averaged wall shear stress ⟨τw⟩ and ensemble-averaged pressure gradient ⟨∂P/∂z⟩ are

obtained a posteriori. The current computations agree well with the DNS results. The SGS models predict

the mean wall shear stress better than the UDNS for both cases. It is worth noting that the maximum

deviation from DNS data is approximately 4.5% for the UDNS.
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Table 4.5 – Comparison between the reference DNS data of Zheng et al. (2019) for mean wall shear stress
and mean pressure gradient with the ensemble-averaged quantities of wall shear stress and
pressure gradient computed by LES.

Case A Case B
τw ∂P/∂z τw ∂P/∂z

[Pa] [Pa m−1] [Pa] [Pa m−1]
Semtex DNS (ZHENG et al., 2019) 3.70 148.0 3.35 134.0
OpenFOAM DNS (ZHENG et al., 2019) 3.70 148.0 3.35 134.0

⟨τw⟩ ⟨∂P/∂z⟩ ⟨τw⟩ ⟨∂P/∂z⟩
[Pa] [Pa m−1] [Pa] [Pa m−1]

Dynamic Smagorinsky 3.76 150.5 3.45 138.0
WALE 3.77 150.8 3.45 138.0
UDNS 3.83 153.2 3.44 140

Source: Own elaboration.

The mean wall viscosity ηw is a crucial variable to quantify the generalized Reynolds number for

GNFs. The mean wall viscosity (see Eq.2.10) can be determined a priori in experiments from the

measurements of the mean pressure gradient (SINGH et al., 2017a). In contrast, the ensemble-averaged

wall viscosity ⟨ηw⟩ is obtained a posteriori in simulations.

The ensemble-averaged wall viscosity computed by LES and the mean wall viscosity from the

reference DNS data of Zheng et al. (2019) are summarized in Table 4.6. It can be observed that the

differences between LES predictions and DNS data are smaller than 1.5% for all cases.

Table 4.6 – Comparison between the reference DNS data of Zheng et al. (2019) for mean wall viscosity
with the ensemble-averaged wall viscosity computed by LES.

Case A Case B
ηw [Pa s] ηw [Pa s]

Semtex DNS (ZHENG et al., 2019) 1.999e-02 1.329e-02
OpenFOAM DNS (ZHENG et al., 2019) 1.999e-02 1.348e-02

⟨ηw⟩ [Pa s] ⟨ηw⟩ [Pa s]
Dynamic Smagorinsky 2.014e-02 1.328e-02
WALE 2.016e-02 1.332e-02
UDNS 1.996e-02 1.319e-02

Source: Own elaboration.

4.1.5.5 Generalized Reynolds Number and the Fanning Friction Factor

The generalized Reynolds numbers obtained with LES and reference DNS values from Zheng et al.

(2019) are presented in Table 4.7. The difference between the generalized Reynolds numbers values is

mainly due to the velocity difference used in the simulations. The Semtex DNS of Zheng et al. (2019)

underpredicts the bulk velocity by 4.9% and 7.2% for cases A and B, respectively. In contrast, the

OpenFOAM DNS from Zheng et al. (2019) underestimates the bulk velocity by 1.9% for case B.
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Table 4.7 – Reference DNS data of Zheng et al. (2019) and LES results for Generalized Reynolds numbers
(the expected bulk velocity is 1.0 [m s−1].

Case A Case B
ReG Actual Ub ReG Actual Ub

[m s−1] [m s−1]
Semtex DNS (ZHENG et al., 2019) 4757 0.9510 6980 0.9280
OpenFOAM DNS (ZHENG et al., 2019) 5018 1.003 7277 0.9810
Dynamic Smagorinsky 4965 1.00 7529 1.00
WALE 4960 1.00 7509 1.00
UDNS 5013 1.00 7583 1.00

Source: Own elaboration.

Table 4.8 compares the Fanning friction factor using LES with DNS data of Zheng et al. (2019). The

Fanning friction factor, f , is defined as

f =
τw

1
2ρU

2
b

(4.3)

For case A (ReG = 5, 000), the Fanning friction factor obtained with LES agrees well with the

OpenFOAM DNS result of Zheng et al. (2019). The maximum deviation is approximately 1.5% for the

SGS models and 3.5% for the UDNS. For case B (ReG = 7, 500), the UDNS matches the OpenFOAM

DNS result of Zheng et al. (2019), while the Dynamic Smagorinsky and WALE models underpredict by

about 1.5%.

When the friction factor computed by the OpenFOAM package is compared to Semtex DNS data from

Zheng et al. (2019) the values are underestimated by around 12%.

Table 4.8 – Reference DNS data of Zheng et al. (2019) and LES results for Fanning friction factor (the
expected bulk velocity is 1.0 [m s−1].

Case A Case B
f Actual Ub f Actual Ub

x10−3 [m s−1] x10−3 [m s−1]
Semtex DNS (ZHENG et al., 2019) 8.20 0.9510 7.80 0.9280
OpenFOAM DNS (ZHENG et al., 2019) 7.40 1.003 7.00 0.9810
Dynamic Smagorinsky 7.52 1.00 6.90 1.00
WALE 7.54 1.00 6.90 1.00
UDNS 7.77 1.00 7.00 1.00

Source: Own elaboration.

4.1.6 Summary

Profiles of first- and second-order turbulence statistics computed by the Dynamic Smagorinsky and

WALE models, and the UDNS (or no-model LES) agreed well with the DNS results from Zheng et al.
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(2019) and experimental data from Den Toonder and Niewstadt (1997) for the simulations with Newtonian

fluid in a turbulent pipe flow.

The results obtained using the SGS models and the UDNS for Herschel-Bulkley fluids showed a

good agreement with reference DNS data. The current computations adequately reproduced the first- and

second-order turbulence statistics.

The profiles computed with LES were qualitatively consistent with each other for second-order

statistics of the velocity field. However, the SGS models agreed better with the DNS data than the

UDNS predictions for the peak values of the RMS velocity fluctuations and Reynolds shear stresses. The

maximum difference of the RMS velocity fluctuations was approximately 6% from the DNS results of

OpenFOAM in predicting the peak in the azimuthal direction at ReG = 5, 000, while the peak value of

the Reynolds shear stress is overestimated by 12%.

The differences between the results of the second-order statistics decreased as the Reynolds number

increased. The LES simulations are qualitatively consistent with OpenFOAM DNS data for the RMS

velocity fluctuations. The maximum difference was 4.6% in predicting the peak in the Reynolds shear

stress at ReG = 7, 500 with the UDNS.

When the DNS results of RMS velocity fluctuations computed by the OpenFOAM package are

compared to Semtex DNS data the relative differences in axial, radial, and azimuthal turbulence intensities

at the peak for ReG = 5, 000 are 10.0%, 5.9% and 15.7%, respectively. For the simulations at ReG =

7, 500, the differences decreasing to 6.3%, 2.0% and 7.7% (ZHENG et al., 2019).

The distributions of mean viscosity, mean shear rate, mean wall shear stress, mean wall viscosity, and

friction factor for Herschel-Bulkley fluids were also computed. The UDNS and the SGS models followed

the trends of the DNS data.

4.2 Turbulent Flow in a Concentric Annulus

Numerical simulations of Newtonian fluid flow in a concentric annular with inner cylinder rotation

were performed at Re = 8, 900 for two different rotation rates (N = 0.214 and 0.429), following the

work developed by Chung and Sung (2005). The rotation rate N is defined as

N =
ΩRrc

Ub
(4.4)

where Ω is the angular velocity and Rrc is the radius of the rotating cylinder. The radius ratio, R∗
r = Ri/Ro,

was set 0.5 for all simulations with Ri and Ro standing for the radius of the inner and outer cylinder,

respectively.

The axial domain length was defined as Lz = 18δ, where δ is one-half the cylinder gap, δ =

(Ro −Ri)/2 and the azimuthal domain size was set as Lθ = π/2. As the work of Chung and Sung (2005)

was also performed with LES using the Dynamic Smagorinsky model, the mesh analysis will not be

accomplished. Figure 4.14 depicts a schematic view of the annular region, and Table 4.9 summarizes the

computational domain and grids resolutions for the simulations.
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Figure 4.14 – Schematic representation of the annular region for Lθ = π/2.

Source: Own elaboration.

Table 4.9 – Summary of the computational grid used for the flow simulations in a concentric annular
region at Re = 8, 900. Comparisons with the Chung and Sung (2005) data.

- Chung and Sung (2005) Present LES Chung and Sung (2005) Present LES
N 0.2145 0.2145 0.429 0.429
Lz 18 δ 18 δ 18 δ 18 δ

Lθ π/2 π/2 π/2 π/2

Nz 128 128 192 192
Nr 65 65 65 65
Nθ 64 64 64 64
∆z+ 22.95 22.13 16.80 17.30
∆r+in 0.27 0.33 0.30 0.33
∆r+out 0.23 0.30 0.24 0.29
∆r+max 13.86 17.55 15.23 18.38
Rin∆θ+ 8.01 7.74 8.80 8.39
Rout∆θ+ 13.86 14.39 14.34 15.23

Source: Own elaboration.

4.2.1 Initial and Boundary Conditions

The same approach developed by DE VILLIERS (2006) was used in Section 4.1.1 to create the initial

velocity field for the Newtonian case in a circular pipe was employed to initialize the flow field of the

annular region.

Periodic boundary conditions were applied in the axial ϕ(z, r, θ) = ϕ(z+Lz, r, θ) and circumferential

directions ϕ(z, r, θ) = ϕ(z, r, θ + Lθ). The no-slip boundary condition was imposed on the walls; the

inner wall rotated at a constant angular velocity while the outer wall remained stationary. The velocity

field at the walls of the annular region was expressed as

u(z, r = Ri, θ, t) = −ΩRi

u(z, r = Ro, θ, t) = 0
(4.5)
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4.2.2 Averaging Procedure

Similar to the process described in Section 4.1.2, after the flow reaches a statistically steady state for

the annular region, the statistical quantities were computed by 960δ/Ub, equivalent to 40 FTT . Then, the

spatial averaging was performed over the homogeneous directions during the post-processing.

4.2.3 Results and Discussions

Figure 4.15 illustrates the profiles of mean axial and tangential velocity predicted by the Dynamic

Smagorinsky and WALE models, UDNS, and the corresponding LES results of Chung and Sung (2005).

The velocity profiles agree well with the reference data for both rotation rates, N = 0.2145 and N = 0.429.

Figure 4.15 – Profiles of (a) mean axial velocity normalized by the bulk velocity and (b) mean tangential
velocity normalized by the velocity at the inner wall. Left: N = 0.2145; Right: N = 0.429.
The parameter r∗ stands for the non-dimensional radial coordinate, r∗ = (r−Ri)/(Ro−Ri).
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Results for the RMS velocity fluctuations are plotted in Figure 4.16, while those obtained for the

Reynolds stresses are presented in Figure 4.17. The profiles computed with the SGS models and the

UDNS produce very similar distributions, and the predictions are qualitatively consistent with the Chung

and Sung (2005) data, except for the Reynolds rθ stress components that deviate from the reference results

for values above r∗ > 0.6.

Figure 4.16 – Profiles of RMS velocity fluctuations in (a) axial, (b) radial, and (c) azimuthal direction.
Left: N = 0.2145; Right: N = 0.429. The parameter r∗ stand for the non-dimensional
radial coordinate, r∗ = (r −Ri)/(Ro −Ri).
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Figure 4.17 – Profiles of the Reynolds stress, (a) Reynolds zr stress component and (b) Reynolds rθ stress
component. Left: N = 0.2145; Right: N = 0.429.
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Chapter Summary

In this chapter, simulations were performed to assess the capacity and limitations of the present

numerical method. The LES predictions obtained with Dynamic Smagorinsky and WALE models and the

results of the UDNS demonstrated good predictability compared to the reference data for turbulent pipe

flows with both Newtonian and Herschel-Bulkley fluids and turbulent flows in an annular section with

Newtonian fluid. Therefore, in the following chapter, the present methodology will perform numerical

simulations of turbulent flows in a concentric annular section with Herschel-Bulkley fluids.
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5 TURBULENT FLOW OF HERSCHEL-BULKLEY FLUIDS IN A CONCENTRIC
ANNULAR SECTION WITH ROTATION OF THE INNER CYLINDER

This chapter presents the results of the turbulent concentric annular flow of Herschel-Bulkley fluids

with inner cylinder rotation. The LES methodology considered in the previous section is used here. The

influence of the fluid behavior index n, the Bingham number Bn, and the Rotation number N on the flow

quantities are discussed. The chapter is organized as follows. The flow parameters studied are described

in the next section. In sequence, details of the geometrical configuration, initial field, and averaging

procedure are presented. The grid convergence study is also given. In section 5.5, the fluid behavior index

results are discussed; in Section 5.6 the influence of the Bingham number is reported. In Section 5.7, the

effect of the Rotation number is considered; and in Section 5.8, the comparison between SGS models and

UDNS is provided.

5.1 Flow Parameters

In order to assess the influence of the flow behavior index n, three values are considered; n =

0.65, 0.70 and 0.75. For values below n = 0.65, the simulations show a re-laminarization of turbulent

flow at ReG ≈ 9, 000. The effect of the Bingham number on the flow quantities is measured with Bn =

0.10, 0.25 and 0.40. The effect of the inner cylinder rotation is investigated at N = ΩRrc/Ub = 0.15 and

N = 0.30. In the present work, N = 0.15 stands for the inner cylinder rotating at 55 rpm and N = 0.30

corresponds to 110 rpm. These rotation ranges generally are employed in the drill pipe to help the hole

cleaning during the oil drilling process (KELIN et al., 2013). Table 5.1 summarizes the parameters that

will be analyzed in this chapter.

Table 5.1 – Summary of the flow parameters evaluated.

Parameters Values
Bingham number Bn 0.10; 0.25; 0.40
Flow behavior index n 0.65; 0.70; 0.75
Rotation rate N 0.15; 0.30

Source: Own elaboration.

Simulations were run at the fixed mass flow rate. For cases at N = 0.15, the generalized Reynolds

numbers measured a posteriori are around ReG ≈ 9, 000, while for those performed at N = 0.30, the

generalized Reynolds numbers increased slightly to ReG ≈ 9, 200 due to the rotation effect. Table 5.2

presents the set of case studies in this chapter.
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From Table 5.2, it is possible to select some cases to study the parameters individually. For instance,

comparing simulations 01, 02, and 03, only the n effect on the flow characteristics is evaluated. Addition-

ally, comparing simulations 03, 05, and 07, the Bingham number is varied and its influence on the flow

features is analyzed, while the other parameters remain fixed.

Table 5.2 – Set of simulations to investigate the flow features.

Sim Bn n
Ub

[m s−1]
N ReG

01 0.10 0.75 1.93 0.15 9,030
02 0.10 0.70 1.93 0.15 9,010
03 0.10 0.65 1.93 0.15 9,060
04 0.25 0.70 1.93 0.15 9,020
05 0.25 0.65 1.93 0.15 9,050
06 0.40 0.70 1.93 0.15 9,020
07 0.40 0.65 1.93 0.15 9,020
08 0.10 0.75 1.93 0.30 9,110
09 0.10 0.65 1.93 0.30 9,190
10 0.25 0.75 1.93 0.30 9,160
11 0.25 0.70 1.93 0.30 9,190
12 0.25 0.65 1.93 0.30 9,180
13 0.40 0.75 1.93 0.30 9,100
14 0.40 0.70 1.93 0.30 9,180
15 0.40 0.65 1.93 0.30 9,190

Source: Own elaboration.

The LES simulations up to section 5.7 were executed with the WALE model as it has a lower

computational cost (≈7%) than other methods.

5.2 Details of the Geometrical Configuration

The flow of non-Newtonian fluids is bounded by two concentric cylinders, where the inner cylinder

rotates at a constant angular velocity while the outer one is stationary. The geometry is illustrated in

Figure 5.1. The computational length of the annular section in the axial direction varies from Lz = 24δ

to Lz = 26δ and the azimuthal domain size is fixed to Lθ = 9π/9.1. In addition, the radius ratio,

R∗
r = Ri/Ro , was set 0.5 for all simulations.

Since periodic boundary conditions are applied in the axial and azimuthal directions, the sizes of

computational domains are verified via two-point correlations to ensure that the periodicity does not

influence the results. The axial and azimuthal two-point correlations for the axial velocity fluctuations are

defined as (RODI et al., 2013; BAGUERI et al., 2020)

Rzz(∆z) =
⟨u′z(z, θ, r, t) u′z(z +∆z, θ, r, t)⟩

⟨u′z(z, θ, r, t) u′z(z, θ, r, t)⟩
(5.1)
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Figure 5.1 – Schematic representation of the annular section

Source: Own elaboration.

and

Rzz(∆θ) =
⟨u′z(z, θ, r, t) u′z(z, θ +∆θ, r, t)⟩

⟨u′z(z, θ, r, t) u′z(z, θ, r, t)⟩
(5.2)

respectively.

The Rzz(∆z) correlation was evaluated at three radial locations; on the surface of the inner and

outer walls at y+ = 15, near the point where the axial turbulence intensity reaches its peak value and at

the middle of the gap of the annular section. Figure 5.2 depicts the profiles of the two-point correlation

of the axial velocity fluctuations in the streamwise direction for Sim 01 and Sim 08 (most developed

turbulent flow for N = 0.15 and N = 0.30, respectively) and Sim 07 and Sim 15 (simulations with

weaker turbulent structures for N = 0.15 and N = 0.30, correspondingly). As introduced in the literature

review, the reduction of n and the increase of yield stress act as turbulence dampers for fluid flow at the

same Reynolds number.

For all simulations performed with the Rotation number N = 0.15, the axial domain length is fixed to

Lz = 26δ, while for those with N = 0.30 the domain is set to Lz = 24δ. This difference in the Lz occurs

because in simulations with N = 0.15 and Lz = 24δ the Rzz(∆z) quantities were around 0.2, so the

axial length was increased to reduce the Rzz(∆z) values to close to zero. Therefore, from Figure 5.2, the

results suggest that the sizes of computational domains in the axial direction are appropriate for all cases.

Figure 5.3 shows the two-point correlations Rzz(∆θ) of the axial velocity fluctuations in the azimuthal

direction for Sim 07 and Sim 08 at y+ = 15 on the surfaces of the inner and outer walls. It can be noted

that the profiles fall off to zero, suggesting that the computational domain size in the azimuthal direction

is adequate for the simulations.
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Figure 5.2 – Profiles of two-point correlation functions of the axial velocity fluctuation computed over the
surface located at y+ = 15 from the inner and outer walls and the middle of the gap. Top:
N = 0.15; bottom: N = 0.30.
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Figure 5.3 – Profiles of two-point correlation functions of the axial velocity fluctuation in the azimuthal
direction computed over the surface located at y+ = 15 from the inner and outer walls.
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5.3 Initial Field and Averaging Procedure

Similar to the discussion introduced in subsections 4.1.1 and 4.1.2. The simulations with Herschel-

Bulkley fluids were initialized with a fully developed Newtonian flow field. The DE VILLIERS (2006)’s

approach was employed to create an initial field for the Newtonian case. Regarding the computations of
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statistical quantities, 10 FTT are skipped from time averaging until a statistically steady state is reached.

Subsequently, statistics were collected for 40 FTT. As the final step, the spatial averaging was carried out

over the homogeneous directions during the post-processing.

5.4 Grid Convergence Study

Table 5.3 summarizes the grid resolutions used by several authors for simulations of the turbulent

concentric annular pipe flow of Newtonian fluid performed with the DNS and LES methods at Re ≈ 8900.

Therefore, it provides insight regarding the proper mesh density to perform in the current simulations.

Four different grid levels were considered to assess the sensitivity of the results. The mesh parameters,

including non-dimensional grid resolutions ∆r+, R∆θ+ and ∆z+, and the number of cells for ∆r+ ≤ 5

(viscous sublayer) and ∆r+ ≤ 10 are given in Table 5.4. The grid points are equally spaced in both

axial and azimuthal directions, while in the radial coordinate the elements were distributed by geometric

progression to ensure ∆r+ < 1 for the first volume adjacent to the wall. The mesh convergence study

is executed with Sim 08, as it is the case that presents the most developed turbulent flow (higher flow

behavior index and Rotation number, and lower Bingham number).

Table 5.3 – Grid resolutions used by several authors for the turbulent concentric annular flow of Newtonian
fluid performed with DNS and LES at Re ≈ 8900

- Chung et al. (2002) - DNS Chung and Sung (2005) - LES Schneider et al. (2017) - LES
∆z+ 14.30 22.95 24
∆r+in 0.13 0.27 0.31
∆r+out 0.12 0.23 0.27
∆r+max 12.96 13.86 21.40
Rin∆θ+ 3.75 8.01 5.70
Rout∆θ+ 7.10 13.86 10.40

Source: Own elaboration.

Table 5.4 – Details of considered grid resolutions for the convergence study.

Mesh I II III IV
Nz x Nr x Nθ 100x54x75 50x54x150 100x54x150 150x54x150
Number of cells 405,000 405,000 810,000 1,215,000
∆z+ 37.5 76.60 37 24.5
∆r+in 0.43 0.50 0.42 0.42
∆r+out 0.32 0.40 0.31 0.31
∆r+max 18.5 19 18.5 18.3
Rin∆θ+ 13.72 7.3 7.1 7.0
Rout∆θ+ 20 10.5 10.8 10.4
Number of cells for r+ ≤ 5 9 9 9 9
Number of cells for r+ ≤ 10 14 4 14 14

Source: Own elaboration.
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Profiles of the mean axial velocity normalized by the bulk velocity and the azimuthal velocity

normalized by the rotational velocity of the inner wall are reported in Figure 5.4. On the horizontal

axis, r∗ = (R−Ri)/(Ro −Ri) = 0 and 1 correspond to the inner- and outer-cylindrical wall surfaces,

respectively.

Figure 5.4 – Profiles of the mean (a) axial and (b) azimuthal velocity for different grid resolutions. The bulk
velocity normalizes the mean axial velocity, and the mean azimuthal velocity is normalized
by the rotational velocity of the inner wall.
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There is no significant difference between the analyzed meshes for the mean axial velocity profiles

(Figure. 5.4a). For the mean azimuthal velocity profiles (Figure 5.4b), results from meshes II, III, and IV

are similar, while mesh I show a discrepancy between the region 0.2 < r∗ < 0.97.

The RMS velocity fluctuations and Reynolds u′z u
′
r shear stress components predicted with different

grid resolutions are plotted in Figure 5.5. Results for the second-order quantities obtained with meshes

III and IV are in close agreement. The major difference between meshes III and IV in axial, radial and

azimuthal turbulence intensities are 3,9%, 3.25%, and 4.7%, respectively. Conversely, profiles obtained

with the grid resolutions I and II deviate significantly compared with denser grids for all second-order

statistics.

Additionally, Figure 5.6 shows the ratio of the SGS viscosity to molecular viscosity, νSGS/ν. As

introduced in the Section 2.6, the ratio of the SGS viscosity to molecular viscosity represents the degree of

modeling in an LES simulation. According to Durbin and Pettersson-Reif (2015), when the ratio νSGS/ν

is smaller than 10 %, LES is found to be accurate. Although meshes II, III and IV present values lower than

0.1 for the entire computational domain, only meshes III and IV follow the guidelines of a high-resolution

grid and show similar results for the second-order statistics of the velocity field as illustrated in Figure 5.5.

Based on the grid convergence study, mesh III presents a compromise between accuracy and computa-

tional cost and, therefore, all computational results hereafter were obtained with mesh III.
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Figure 5.5 – Profiles of RMS velocity fluctuations in (a) axial, (b) radial, and (c) azimuthal direction, and
(d) Reynolds u′zu

′
r shear stress component predicted with different mesh resolutions.
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Figure 5.6 – Ratio of the SGS viscosity to molecular viscosity computed for diferent grid resolutions.
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5.5 Effect of Flow Behavior Index

The effect of n on the flow quantities is investigated with two distinct flow configurations. The cases

explored in this section are summarized in Table 5.5. Case A reports the effect of flow behavior index

at fixed Bn = 0.10 and Rotation number N = 0.15, and case B refers to the simulations performed at

Bn = 0.25 with N = 0.30.

Table 5.5 – Set of simulations for investigating the effect of the flow behavior index on the flow quantities

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N )

Bulk Velocity
[m s−1]

Case A
01 0.10 0.75 0.15 1.93
02 0.10 0.70 0.15 1.93
03 0.10 0.65 0.15 1.93

Case B
10 0.25 0.75 0.30 1.93
11 0.25 0.70 0.30 1.93
12 0.25 0.65 0.30 1.93

Source: Own elaboration.

5.5.1 Instantaneous Flow

As the first step, the effect of n on instantaneous flow structures is analyzed. Figure 5.7 depicts

the example of an axial-azimuthal plane used to extract the contours of the instantaneous flow. In this

subsection, only the values of n = 0.75 and 0.65 will be considered to facilitate the flow visualization.

Figure 5.7 – Example of an axial-azimuthal plane used to extract the instantaneous velocity and viscosity
contours. Contours of instantaneous axial velocity at the core region y+ ≈ 150 for Sim 01.
The values ranging from 1Ub to 1.35Ub. Red color stands for maximum values, and blue for
the minimum.

Source: Own elaboration.

Figure 5.8 shows the contours of instantaneous axial velocity; the z− θ plane is located near the outer

wall at y+ ≈ 15, where the highest velocity fluctuations are expected. Even using the same bulk velocity,
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reducing the n value elongates the low-speed streaks (dark blue shades) and reduces the fluctuations in

the flow. According to Singh et al. (2017a), the longer low-speed streaks for lower n are associated with

reduced wall-normal turbulence intensities by shear-thinning.

Figure 5.8 – Contours of instantaneous axial velocity at y+ ≈ 15 from the outer wall (a) case A (n = 0.75
and 0.65 at Bn = 0.10 and N = 0.15); (b) case B (n = 0.75 and 0.65 at Bn = 0.25 and
N = 0.30). The values ranging from 0.34Ub to 1.29Ub. Red color stands for maximum
values, and blue for the minimum. Top: flow behavior index n = 0.75; bottom: flow behavior
index n = 0.65.

Source: Own elaboration.

Contours of instantaneous viscosity are plotted in Figure 5.9; the z−θ plane is located near the middle

of the annular section at y+ ≈ 100 from the outer wall where the influence of n is more evident and will be

discussed later in section 5.5.2, and the highest viscosity values are expected. The most significant values

for viscosity fluctuations compared to the wall viscosity are found in fluids with more shear-thinning

behavior, indicating a more viscous flow. The differences between the maximum viscosity fluctuations are

approximately 1.6 and 1.9 times for cases A and B, respectively.

The vortical structure is visualized through the Q-criterion method. The Q-criterion can be determined

as (JEONG; HUSSAIN, 1995)

Q =
1

2
(||Ω||2 − ||S||2) (5.3)

where Q > 0 depicts the existence of a vortex, S is the rate-of-strain tensor and Ω is the vorticity tensor.

Essentially, this parameter means that a vortex is a region where the vorticity tensor prevails over the

rate-of-strain tensor.

Figure 5.10 exhibits the iso-surfaces of the Q-criterion for both cases. It can be noticed that the

vortices regions decrease for fluids with higher shear-thinning behavior (lower n value). This phenomenon

may be associated with the growth in flow viscosity that, as a consequence, generates weaker turbulence

structures. A projection of case A in 3D perspective is illustrated in Figure 5.11.
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Figure 5.9 – Contours of instantaneous viscosity at y+ ≈ 100 from the outer wall (a) case A (n = 0.75
and 0.65 at Bn = 0.10 and N = 0.154) ranging from 1νwall to 7.2 νwall; (b) case B
(n = 0.75 and 0.65 at Bn = 0.25 and N = 0.30) ranging from 1νwall to 9.7 νwall. Red
color stands for maximum values, and dark blue for the minimum. Top: flow behavior index
n = 0.75; bottom: flow behavior index n = 0.65.

Source: Own elaboration.

From Figures 5.10 and 5.11 can also be observed that for flows with n = 0.75 the vortices are more

uniformly distributed throughout the domain than n = 0.65. For flow behavior index n = 0.65, the

vortices are concentrated near the inner cylinder, where the highest velocity gradients and the lowest

viscosity values of the annular region are located. In the present work, the values of Q = 750 represent

10% of the range of the Q-criterion, as lower values of Q result in an excessive amount of structures that

make visualization difficult.

Figure 5.10 – Top view of the iso-surfaces of the Q-criterion (Q = 750) colored by the instantaneous
axial velocity. The Q = 750 represents the value of 10% of the Q-criterion range. (a)
Case A (n = 0.75 and 0.65 at Bn = 0.10 and N = 0.154); (b) case B (n = 0.75 and
0.65 at Bn = 0.25 and N = 0.30) ranging from 1νwall to 9.8 νwall. Red color stands for
maximum values, and blue for the minimum. Top: flow behavior index n = 0.75; bottom:
flow behavior index n = 0.65.

Source: Own elaboration.
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Figure 5.11 – Iso-surfaces of the Q-criterion (Q = 750) colored by instantaneous axial velocity for case
A: (a) flow behavior index n = 0.75; (b) flow behavior index n = 0.65.

Source: Own elaboration.

5.5.2 Mean Flow Quantities

Distributions of mean axial and azimuthal velocity components for cases A and B are shown in

Figure 5.12. The mean axial velocity profiles normalized by Ub did not show disparities for different n.

For the present work, it is noted that the velocity profiles obtained for the annular region via numerical

simulation are symmetric for this range of Reynolds number. It is worth mentioning that the asymmetries

were observed experimentally by several authors and during the transition regime in pipe flow. The

mean azimuthal velocity profiles present a high-velocity gradient close to the walls due to the boundary

conditions applied in these regions. In the middle of the gap, between the region 0.2 < r∗ < 0.85, the

mean angular momentum decreases almost linearly.

The influence of flow behavior index n on the mean axial velocity is more evident in the logarithmic

velocity profile plotted as a function of the distance from the wall y+. These profiles are illustrated in

Figure 5.13. The law of the wall proposed by Anbarlooei et al. (2015) for both power-law and Herschel-

Bulkley fluids are plotted for comparison. The authors argue that the proposed law of the wall fits better

than the “Newtonian” law of the wall.

From Figure 5.13, the effect of n on the mean axial velocity becomes visible for y+ > 10. As the

flow behavior index n decreases, the higher the shear-thinning characteristic, the slope of the mean axial

velocity profiles enhances. This behavior suggests that the flow with n = 0.65 is more transitional. Similar

trends have been noticed in turbulent pipe flows of Power-law fluids in Rudman et al. (2004), Singh et al.

(2017a), and Gavrilov and Rudyak (2016).
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Figure 5.12 – Profiles of the mean (a) axial and (b) azimuthal velocity. The bulk velocity normalizes the
mean axial velocity, and the mean azimuthal velocity is normalized by the rotational velocity
of the inner wall. Left: case A (n = 0.75,0.70 and 0.65 at Bn = 0.10 and N = 0.15); right:
case B (n = 0.75,0.70 and 0.65 at Bn = 0.25 and N = 0.30).
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Source: Own elaboration.

The difference observed in the logarithm region, y+ > 30, near the inner and outer walls (Figures

5.13a and 5.13b) is attributed to the rotation effect of the inner cylinder, which increases the friction

velocity. The mean axial velocity profiles in the logarithm region near the outer wall are located above

the logarithmic law of the wall, while profiles close to the inner wall lie in the same region or below the

logarithmic law of the wall. This behavior is consistent with profiles observed by Chung and Sung (2005)

and Schneider et al. (2017).

Profiles of the mean viscosity normalized by the wall viscosity νwall are shown in Figure 5.14 for

both analyzed cases in this section. From the figures illustrated in wall coordinates (Figures 5.14b and

5.14c), it can be noted that near the walls, the mean viscosity profiles are constant up to y+ ≈ 5. The

effect of flow behavior index n becomes apparent after y+ ≥ 10, the mean viscosity increases towards

the center of the annular section. Shear-thinning fluids exhibit a dependence of the apparent viscosity on

shear rate, whose viscosity decreases as the shear rate enhances, indicating that the regions close to the

walls have the highest shear rate values. In addition, the ratio between the maximum value (at the center

of the annular section) and the minimum value (near the wall) of the normalized mean viscosity increases

for higher shear-thinning fluids.
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Figure 5.13 – Profiles of the mean axial velocity plotted in wall units, (a) near the inner wall; (b) near the
outer wall. Left: case A (n = 0.75, 0.70 and 0.65 at Bn = 0.10 and N = 0.15); right: case
B (n = 0.75, 0.70 and 0.65 at Bn = 0.25 and N = 0.30).
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The RMS velocity fluctuations plotted in wall units for cases A and B are illustrated in Figures 5.15

and 5.16, respectively, and these properties normalized by the bulk velocity are reported in Figure 5.17.

From Figures 5.15 and 5.16, it can be observed that by reducing the fluid behavior index n, the RMS axial

velocity fluctuations are enhanced. Conversely, the RMS velocity fluctuations in the radial and azimuthal

directions decreased. Singh et al. (2017a) suggest that this behavior for shear-thinning fluids is due to the

strong dependence of u+r and u+θ on the mean fluid viscosity. The increase in viscosity with reducing n

(see Figure 5.14) dampens the velocity fluctuations normal to the wall. Gavrilov and Rudyak (2017) also

argue that the increase in turbulent anisotropy is due to the reduced energy transport from the axial to

the transverse fluctuations due to the increase in viscosity as a function of distance from the wall. As a

result, this behaviour leads to an enhancement of the axial velocity fluctuations and an attenuation of the

fluctuations of the radial and azimuthal components.



Chapter 5. Turbulent flow of Herschel-Bulkley fluids in a concentric annular section with rotation of the inner
cylinder 95

Figure 5.14 – Profiles of the normalized mean viscosity ν/νwall. (a) Plotted as a function of r∗, (b) Plotted
as a function of y+, near the inner wall; (c) Plotted as a function of y+, near the outer
wall. Left: case A (n = 0.75, 0.70 and 0.65 at Bn = 0.10 and N = 0.15); right: case B
(n = 0.75, 0.70 and 0.65 at Bn = 0.25 and N = 0.30).
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Profiles of RMS velocity fluctuations normalized by the bulk velocity illustrated in Figure 5.17 show

similar trends to the RMS velocity fluctuations plotted in wall units, Figures 5.15 and 5.16. However,

asymmetries in the RMS velocity fluctuation profiles become evident due to the increase in the rotation of

the inner cylinder for N = 0.30.
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Figure 5.15 – Profiles of RMS velocity fluctuations plotted in wall units for case A (n = 0.75, 0.70 and
0.65 at Bn = 0.10 and N = 0.15), (a) axial, (b) radial, and (c) azimuthal direction. Left:
near the inner wall; right: near the outer wall.
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The Reynolds shear stress is shown in Figure 5.18. The effect of n on these quantities is comparable to

the RMS velocity fluctuations in the radial and azimuthal directions. The Reynolds shear stress components

reduce with increasing shear-thinning behavior. The Reynolds rθ stress component (Figure 5.18b) is

zero in non-rotating annular. The higher values of this term near the inner wall than the outer wall are

attributed to the more active turbulence events in that region. According to Liu and Lu (2005), the annular

section rotation enhances the correlation between the radial velocity fluctuation generated by the near-wall

turbulence events (coherent turbulent structures) and the azimuthal velocity fluctuation in the wall regions.



Chapter 5. Turbulent flow of Herschel-Bulkley fluids in a concentric annular section with rotation of the inner
cylinder 97

Figure 5.16 – Profiles of RMS velocity fluctuations plotted in wall units for case B (n = 0.75, 0.70 and
0.65 at Bn = 0.25 and N = 0.30), (a) axial, (b) radial, and (c) azimuthal direction. Left:
near the inner wall; right: near the outer wall.

y+

〈u
z′〉
rm
s
/u

τ

100 101 102
0

0.5

1

1.5

2

2.5

3

3.5

n = 0.75

n = 0.70

n = 0.65

Case B (a)

n

y+

〈u
z′〉
rm
s
/u

τ

100 101 102
0

0.5

1

1.5

2

2.5

3

3.5

n = 0.75

n = 0.70

n = 0.65

Case B (a)

n

y+

〈u
r′〉
rm
s
/u

τ

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Case B (b)

n

y+

〈u
r′〉
rm
s
/u

τ

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Case B (b)

n

y+

〈u
θ′〉
rm
s
/u

τ

100 101 102
0

0.2

0.4

0.6

0.8

1

1.2

Case B (c)

n

y+

〈u
θ′〉
rm
s
/u

τ

100 101 102
0

0.2

0.4

0.6

0.8

1

Case B (c)

n

Source: Own elaboration.

Distributions of mean turbulence kinetic energy (TKE) per unit mass k = 1
2

P
i u

′
iu

′
i are reported in

Figure 5.19. The mean TKE presents the peak values near the inner and outer walls, located in wall units

by around y+ ≈ 16. From the profiles normalized by Ub
2 (Figure 5.19a), the TKE distributions deviate

slightly. However, the fluid with the higher n has the highest peak values. On the contrary, when the TKE

profiles are plotted in wall coordinates using the respective friction velocity values for the inner and outer

walls (Figures 5.19b and 5.19c), the TKE profiles follow the pattern RMS axial velocity fluctuations. By

reducing the fluid behavior index n, the TKE enhances.
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Figure 5.17 – Profiles of RMS velocity fluctuations normalized by the bulk velocity Ub, (a) axial, (b)
radial, and (c) azimuthal direction. Left: case A (n = 0.75, 0.70 and 0.65 at Bn = 0.10 and
N = 0.15); right: case B (n = 0.75, 0.70 and 0.65 at Bn = 0.25 and N = 0.30).
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Source: Own elaboration.

The similarity between the profiles of TKE and axial turbulent intensity occurs as the contribution of

the streamwise turbulent intensity to the TKE is always more significant than the contribution of the other

two normal components (PONCET et al., 2014). While axial turbulence fluctuation is generated by mean

flow shear, the radial and azimuthal turbulence fluctuations are yielded by the sweep and ejection events

related to the high- and low-speed elongated streaks in the near-wall regions (LIU; LU, 2005).
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Figure 5.18 – Profiles of Reynolds shear stress normalized by U2
b , (a) Reynolds rz stress component and

(b) Reynolds rθ stress component. Left: case A (n = 0.75, 0.70 and 0.65 at Bn = 0.10 and
N = 0.15); right: case B (n = 0.75, 0.70 and 0.65 at Bn = 0.25 and N = 0.30).
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Source: Own elaboration.

The influence of the flow behavior index n on the pressure gradient and skin friction coefficients are

given in Table 5.6 and Table 5.7, respectively. The mean axial pressure gradient for an annular section can

be determined as (BAGUERI et al., 2020)

Ψ =
2(τw,i Ri + τw,o Ro)

R2
o −R2

i

(5.4)

where τw,i and τw,o are the mean wall shear stress on the inner and outer cylinders, respectively. The values

of τw,i and τw,o are different due to the rotation and curvature effects of the inner and outer cylinders. The

skin friction coefficient, f = τw/(ρUb
2/2), was already introduced in the previous chapter (Eq.4.3).
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Figure 5.19 – Profiles of turbulence kinetic energy. (a) Plotted as a function of r∗ and normalized by U2
b ;

(b) Plotted as a function of y+ and normalized by u2τ , near the inner wall; (c) Plotted as a
function of y+ and normalized by u2τ , near the outer wall. Left: case A (n = 0.75, 0.70 and
0.65 at Bn = 0.10 and N = 0.15); right: case B (n = 0.75, 0.70 and 0.65 at Bn = 0.25
and N = 0.30).
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Source: Own elaboration.

These two quantities – pressure gradient and the skin friction coefficients – depend on the τw. As can

be noticed, by reducing n, the values of these quantities fall. This behavior is related to the reduction of

wall-normal turbulence intensities, as shown in Figure 5.17, which generate weaker turbulent structures

and smaller amounts of high-speed fluid near the wall regions where wall shear stress is produced

(RUDMAN; BLACKBURN, 2006).
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Table 5.6 – Pressure gradient computed for different flow behavior indices n.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N )

Pressure gradient
[Pa m−1]

Case A
01 0.10 0.75 0.15 537.1
02 0.10 0.70 0.15 509.1
03 0.10 0.65 0.15 488.8

Case B
10 0.25 0.75 0.30 568.3
11 0.25 0.70 0.30 549.2
12 0.25 0.65 0.30 522.9

Source: Own elaboration.

Table 5.7 – Skin friction coefficients estimated for different flow behavior indices n.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N)

finner wall

x10−3

fouter wall

x10−3

Case A
01 0.10 0.75 0.15 8.23 6.70
02 0.10 0.70 0.15 7.90 6.30
03 0.10 0.65 0.15 7.55 6.07

Case B
10 0.25 0.75 0.30 9.35 6.77
11 0.25 0.70 0.30 9.07 6.52
12 0.25 0.65 0.30 8.78 6.14

Source: Own elaboration.

5.6 Effect of the Bingham Number

This section evaluates the effect of the Bingham number Bn on the flow quantities. The set of

simulations is reported in Table 5.8. The simulations of case C account for the flow behavior index

n = 0.65 and N = 0.15, while the Bingham number varies from 0.10 to 0.45. Case D evaluates the

dependence of Bn with n = 0.75 and N = 0.30. As mentioned earlier in Chapter 2, the Bn is the ratio of

yield stress force to the viscous force (ALEXANDROU et al., 2003).

Table 5.8 – Set of simulations for investigating the effect of Bingham number on the flow quantities.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N )

Bulk Velocity
[m s−1]

Case C
03 0.10 0.65 0.15 1.93
05 0.25 0.65 0.15 1.93
07 0.40 0.65 0.15 1.93

Case D
08 0.10 0.75 0.30 1.93
10 0.25 0.75 0.30 1.93
13 0.40 0.75 0.30 1.93

Source: Own elaboration.
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5.6.1 Instantaneous Flow

Figure 5.20 shows contours of instantaneous axial velocity in a z − θ plane located at y+ ≈ 15 from

the outer wall for Bn = 0.10 and 0.40. The low-speed streaks become more evident and elongated in

the streamwise direction for a higher Bn number, suggesting weaker turbulent structures that bring less

high-speed fluids from the central zones into the near-wall areas due to the higher viscosity in the core

region compared with a flow containing a lower Bn number. This flow pattern for viscoplastic fluids

was also observed by Singh et al. (2017b) and LUGARINI DE SOUZA (2020) for turbulent flows with

Bingham fluids.

Figure 5.20 – Contours of instantaneous axial velocity at y+ ≈ 15 from the outer wall (a) case C
(Bn = 0.10 and 0.40 at n = 0.65 and N = 0.15) ranging from 0.43Ub to 1.30Ub; (b)
case D (Bn = 0.10 and 0.40 at n = 0.75 and N = 0.30) ranging from 0.48Ub to 1.34Ub.
Red color stands for maximum values, and blue for the minimum. Top: Bingham number
Bn = 0.10; bottom: Bingham number Bn = 0.40.

Source: Own elaboration.

Contours of instantaneous viscosity located at y+ ≈ 100 from the outer wall are plotted in Figure

5.21. As the number of Bn increases, the simulations show regions with higher instantaneous viscosity

values. It is worth mentioning that even in the case C for Bn = 0.40 (Sim 07) with viscosity fluctuations

on the order of 13.2 νwall, no unyielded zones (γ̇ → 0 [s−1]) were noticed. The lowest instantaneous and

mean strain rates observed for Sim 07 have values of γ̇ = 2.63 [s−1] and γ̇ = 16.63 [s−1], respectively.

The vortex structures for the flows at Bn = 0.10 and 0.40 are shown in Figure 5.22 . For Bn = 0.10,

there are more vortices throughout the computational domain than Bn = 0.40, exhibiting more developed

turbulence characteristics. Combination of the small flow behavior index (n = 0.65) and high Bingham

number (Bn = 0.40) is shown in Figure 5.22a. For iso-surface of Q = 750, the vortical structures are

scarce. The flow exhibits a weak turbulent activity at the gap center due to the high viscosity coexisting

with more energetic turbulent regions close to the inner wall as a consequence of the rotation effect.
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Figure 5.21 – Contours of instantaneous viscosity at y+ ≈ 100 from the outer wall (a) case C (Bn = 0.10
and 0.40 at n = 0.65 and N = 0.15) ranging from 1νwall to 13.5νwall; (b) case D
(Bn = 0.10 and 0.40 at n = 0.75 and N = 0.30) ranging from 1νwall to 6.6νwall. Red
color stands for maximum values, and blue for the minimum. Top: Bingham number
Bn = 0.10; bottom: Bingham number Bn = 0.40.

Source: Own elaboration.

Figure 5.22 – Top view of the iso-surfaces of the Q-criterion (Q = 750) colored by the instantaneous
axial velocity (a) case C (Bn = 0.10 and 0.40 at n = 0.65 and N = 0.15); (b) case D
(Bn = 0.10 and 0.40 at n = 0.75 and N = 0.30). Red color stands for maximum values,
and blue for the minimum. Top: Bingham number Bn = 0.10; bottom: Bingham number
Bn = 0.40.

Source: Own elaboration.

5.6.2 Mean flow Quantities

Profiles of mean axial and azimuthal velocity components for cases C and D are illustrated in Figure

5.23. The bulk velocity normalizes the mean axial velocity, and the mean azimuthal velocity is normalized

by the rotational velocity of the inner wall. From Figure 5.23, no significant difference was observed in

the mean axial velocity. A strong velocity gradient exists near the walls in the mean azimuthal velocity

profiles.
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Figure 5.23 – Profiles of the mean (a) axial and (b) azimuthal velocity. The bulk velocity normalizes the
mean axial velocity, and the mean azimuthal velocity is normalized by the rotational velocity
of the inner wall. Left: case C (Bn = 0.10, 0.25 and 0.40 at n = 0.65 and N = 0.15); right:
case D (Bn = 0.10, 0.25 and 0.40 at n = 0.75 and N = 0.30).
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Source: Own elaboration.

The mean axial velocity profiles plotted in wall units in Figure 5.24 show a Bingham number

dependence only for y+ ≥ 30. As the Bingham number grows, the slope of the mean axial velocity

increases slightly. The variations in these profiles are attributed to the friction velocity that slightly

decreases as the number of Bn increases. This pattern in the axial velocity profiles indicates that the flow

with Bn = 0.40 tends to be more transitional.
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Figure 5.24 – Profiles of the mean axial velocity plotted in wall units, (a) near the inner wall; (b) near the
outer wall. Left: case C (Bn = 0.10, 0.25 and 0.40 at n = 0.65 and N = 0.15); right: case
D (Bn = 0.10, 0.25 and 0.40 at n = 0.75 and N = 0.30).
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Source: Own elaboration.

Distributions of the mean viscosity normalized by the wall viscosity νwall are depicted in Figure

5.25. Increasing Bn, the ratio between the maximum value (at the center of the annular section) and the

minimum value (near the walls) of the mean viscosity also grows. Similar to the effect of flow behavior

index n, the mean viscosity profiles are constant up to y+ ≈ 5, and at around y+ ≥ 10 the mean viscosity

increases rapidly towards the center of the annular section.
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Figure 5.25 – Profiles of the normalized mean viscosity ν/νwall (a) Plotted as a function of r∗; (b) Plotted
as a function of y+, near the inner wall; (c) Plotted as a function of y+, near the outer
wall. Left: case C (Bn = 0.10, 0.25 and 0.40 at n = 0.65 and N = 0.15); right: case D
(Bn = 0.10, 0.25 and 0.40 at n = 0.75 and N = 0.30).
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The RMS velocity fluctuations and Reynolds shear stress components normalized by the bulk velocity

Ub are shown in Figure 5.26 and Figure 5.27, respectively. Increasing the Bingham number is comparable

to reducing the flow behavior index for the flow characteristics. The differences between the RMS velocity

fluctuations in the axial direction are negligible. However, the values of the other second-order quantities

decrease, showing a flow with weaker turbulent structures.
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Figure 5.26 – Profiles of RMS velocity fluctuations in (a) axial, (b) radial, and (c) azimuthal direction.
Left: case C (Bn = 0.10, 0.25 and 0.40 at n = 0.65 and N = 0.15); right: case D
(Bn = 0.10, 0.25 and 0.40 at n = 0.75 and N = 0.30).
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Figure 5.28 exhibts the TKE profiles obtained for different Bingham numbers. The highest peak

values are observed for the lowest values of Bn. Although the profiles differences are not very significant,

the behavior reasonably agrees with the result (RUDMAN; BLACKBURN, 2006). The author argues that

increasing yield stress reduces the TKE of the flow.

The effect of the Bingham number Bn on the pressure gradient and the skin friction coefficients are

given in Table 5.9 and Table 5.10, respectively. Similar to the augment of the shear-thinning property, the

increase of Bn reduces the turbulence intensities, consequently decreasing the pressure gradient and the

skin friction coefficients.
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Figure 5.27 – Profiles of Reynolds shear stress normalized by U2
b , (a) Reynolds rz stress component and

(b) Reynolds rθ stress component. Left: case C (Bn = 0.10, 0.25 and 0.40 at n = 0.65 and
N = 0.15); right: case D (Bn = 0.10, 0.25 and 0.40 at n = 0.75 and N = 0.30).
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Figure 5.28 – Profiles of the turbulence kinetic energy normalized by U2
b . Left: case C (Bn = 0.10, 0.25

and 0.40 at n = 0.65 and N = 0.15); right: case D (Bn = 0.10, 0.25 and 0.40 at n = 0.75
and N = 0.30).
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Table 5.9 – Pressure gradient computed for different Bingham numbers.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N )

Pressure gradient
[Pa m−1]

Case C
03 0.10 0.65 0.15 488.8
05 0.25 0.65 0.15 477.1
07 0.40 0.65 0.15 472.5

Case D
08 0.10 0.75 0.30 575.8
10 0.25 0.75 0.30 566.9
13 0.40 0.75 0.30 559.3

Source: Own elaboration.

Table 5.10 – Skin friction coefficients estimated for different Bingham numbers.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N)

finner wall

x10−3

fouter wall

x10−3

Case C
03 0.10 0.65 0.15 7.55 6.07
05 0.25 0.65 0.15 7.50 5.86
07 0.40 0.65 0.15 7.37 5.83

Case D
08 0.10 0.75 0.30 9.47 6.86
10 0.25 0.75 0.30 9.39 6.72
13 0.40 0.75 0.30 9.28 6.62

Source: Own elaboration.

5.7 Effect of the Rotation Number

Here is investigated the effect of the Rotation number (N ) on the flow features. Table 5.11 summarizes

the configuration of the cases studied.

Table 5.11 – Set of simulations for investigating the effect of Rotation number on the flow quantities.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N )

BulkVelocity
[m s−1]

Case E
03 0.10 0.65 0.15 1.93
09 0.10 0.65 0.30 1.93

Case F
06 0.40 0.70 0.15 1.93
14 0.40 0.70 0.30 1,93

Source: Own elaboration.

5.7.1 Instantaneous Flow

Figures 5.29 and 5.30 exhibit the contours of instantaneous axial velocity at a distance y+ ≈ 15 from

the inner and outer wall, respectively. It is worth noting that the rotation effect is more significant close to

the inner walls. Contours of instantaneous axial velocity are almost parallel to the streamwise axis for
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flows with Rotation number N = 0.15. On the other hand, as N rises, these contours become inclined to

the streamwise axis, indicating that the centrifugal force imposed by the rotation affects the flow pattern

in that region. Near the outer wall (Figure 5.30), the streaks showed alignment with the axial direction for

both cases. In addition, close to both walls, the increase in rotation reduced the size of low-speed streaks

and enhanced the number of high-speed streaks regions.

Figure 5.29 – Contours of instantaneous axial velocity at y+ ≈ 15 from the inner wall (a) case E
(Bn = 0.10 and n = 0.65) ranging from 0.34Ub to 1.5Ub; (b) case F (Bn = 0.40 and
n = 0.70) ranging from 0.42Ub to 1.48Ub. Red color stands for maximum values, and blue
for the minimum. Top: Rotation number N = 0.15; bottom: Rotation number N = 0.30.

Source: Own elaboration.

Figure 5.30 – Contours of instantaneous axial velocity at y+ ≈ 15 from the outer wall (a) case E
(Bn = 0.10 and n = 0.65) ranging from 0.34Ub to 1.3Ub; (b) case F (Bn = 0.40 and
n = 0.70) ranging from 0.36Ub to 1.3Ub. Red color stands for maximum values, and blue
for the minimum. Top: Rotation number N = 0.15; bottom: Rotation number N = 0.30.

Source: Own elaboration.

The rotation effect on instantaneous viscosity over a z − θ plane located at y+ ≈ 100 is reported in

Figure 5.31. There are no significant differences over the instantaneous viscosity field. The ranges of

viscosity fluctuations are very close for both rotation numbers.



Chapter 5. Turbulent flow of Herschel-Bulkley fluids in a concentric annular section with rotation of the inner
cylinder 111

Figure 5.31 – Contours of instantaneous viscosity at y+ ≈ 100 from the outer wall (a) case E (Bn = 0.10
and n = 0.65) ranging from 1νwall to 8νwall; (b) case F (Bn = 0.40 and n = 0.70) ranging
from 1νwall to 11νwall. Red color stands for maximum values, and blue for the minimum.
Top: Rotation number N = 0.15; bottom: Rotation number N = 0.30.

Source: Own elaboration.

Figure 5.32 shows the vortical structure through the instantaneous iso-surfaces of the Q-criterion. The

increase in the rotation of the inner cylinder yields an enhancement in the number of vortices present in

the flow, indicating a more vigorous turbulent activity.

Figure 5.32 – Top view of the iso-surfaces of the Q-criterion (Q=750) colored by the instantaneous axial
velocity (a) case E (Bn = 0.10 and n = 0.65); (b) case F (Bn = 0.40 and n = 0.70).
Red color stands for maximum values, and blue for the minimum. Top: Rotation number
N = 0.15; bottom: Rotation number N = 0.30.

Source: Own elaboration.
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5.7.2 Mean Flow Quantities

Figure 5.33 depicts the mean axial and azimuthal velocity profiles. The bulk velocity normalizes the

mean axial velocity distributions, and the azimuthal velocity components are normalized by the rotational

velocity of the inner wall. As also observed by Nouri and Whitelaw (1994), Okamoto and Shima (2005),

and Chung and Sung (2005) the mean axial velocity profiles become flattered with increasing the rotating

number N . From Figure 5.33b, it can be observed that for a higher value of N , the azimuthal velocity

gradient near the walls also enhanced.

Figure 5.33 – Profiles of the mean (a) axial and (b) azimuthal velocity. The bulk velocity normalizes the
mean axial velocity, and the mean azimuthal velocity is normalized by the rotational velocity
of the inner wall. Left: case E (N = 0.15 and N = 0.30 at Bn = 0.10 and n = 0.70); right:
case F (N = 0.15 and N = 0.30 at Bn = 0.40 and n = 0.65).
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Source: Own elaboration.

The mean axial velocity profiles plotted in wall units are reported in Figure 5.34. The difference

observed near the inner and outer walls is due to the rotation effect of the inner cylinder, which results in

an augment of the wall shear stress. The rotation effect is most evident near the inner wall, although it

propagates through the gap and is also seen to a smaller degree in the vicinity of the outer one.
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Figure 5.34 – Profiles of the mean axial velocity plotted in wall units, (a) near the inner wall; (b) near the
outer wall. Left: case E (N = 0.15 and N = 0.30 at Bn = 0.10 and n = 0.70); right: case
F (N = 0.15 and N = 0.30 at Bn = 0.40 and n = 0.65).
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Profiles of mean viscosity ν of normalized by νwall for cases E and F are shown in Figure 5.35. From

Figure 5.35a, it can be noticed that the rotation effect does not produce considerable discrepancies in the

viscosity profiles, as seen previously for the effects of flow behavior index and Bingham number. The

ratio between the maximum value (in the center of the annular region) and the minimum value (near the

walls) of the mean viscosity distribution is similar for both rotation numbers, although the profiles for

N = 0.30 present a more parabolic behavior. Distributions of mean viscosity plotted in wall coordinates

(Figures 5.35b and 5.35c) follow the tendency of the analyses discussed above. The profiles are constant

up to y+ ≈ 5 and after y+ ≥ 10, the mean viscosity increases towards the center of the annular section.

The RMS velocity fluctuations normalized by the bulk velocity are reported in Figure 5.36. A variation

in the peak value of the RMS axial velocity fluctuations near the inner wall region appears as N increases.

However, the rotation effect is more evident in the RMS velocity fluctuations in radial and azimuthal

directions. The fluctuation levels increase in strength and become asymmetric, which can be attributed to

the destabilizing effect of the centrifugal forces arising from the rotation of the inner cylinder. (CHUNG;

SUNG, 2005; PONCET et al., 2014).
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Figure 5.35 – Profiles of the normalized mean viscosity ν/νwall. (a) Plotted as a function of r∗, (b) Plotted
as a function of y+, near the inner wall; (c) Plotted as a function of y+, near the outer
wall. Left: case E (N = 0.15 and N = 0.30 at Bn = 0.10 and n = 0.70); right: case F
(N = 0.15 and N = 0.30 at Bn = 0.40 and n = 0.65).
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Figure 5.36 – Profiles of RMS velocity fluctuations in (a) axial, (b) radial, and (c) azimuthal directions.
Left: case E (N = 0.15 and N = 0.30 at Bn = 0.10 and n = 0.70); right: case F
(N = 0.15 and N = 0.30 at Bn = 0.40 and n = 0.65).
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The Reynolds shear stress components normalized by the bulk velocity are illustrated in Figure

5.37. The profiles also enhance in amplitude as N increases. The Reynolds rθ stress term demonstrates

a significant sensitivity to the rotation rate generated by augmenting radial and azimuthal velocity

fluctuations due to the higher amount of near-wall turbulence events (high- and low-speed elongated

streaks and vortical structures) as illustrated in Figures 5.29 and 5.32.
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Figure 5.37 – Profiles of Reynolds shear stress normalized by U2
b , (a) Reynolds rz stress component and

(b) Reynolds rθ stress component. Left: case E (N = 0.15 and N = 0.30 at Bn = 0.10
and n = 0.70); right: case F (N = 0.15 and N = 0.30 at Bn = 0.40 and n = 0.65).
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Profiles of mean turbulence kinetic energy (TKE) are reported in Figure 5.38. The rotation effect of

the inner cylinder produces an increase of TKE across the domain, with a significantly higher peak value

(≈ 33%) near the inner wall. In addition, the TKE distribution becomes more asymmetrical with a higher

value of N .

The contribution of the Rotation number N to the pressure gradient is given in Table 5.12. Due to the

enhancement of wall shear stress induced by the rotation effect, the pressure gradient (Eq. 5.4) rises by

around 9% in both cases.

The effect of the Rotation number on the skin friction coefficients is reported in Table 5.13. The

difference in the friction coefficient on the inner wall is approximately 15% for both cases. On the other

hand, the effect of rotation number on the outer wall is less sensitive; the difference between N for f

values is 5%.
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Figure 5.38 – Profiles of the turbulence kinetic energy normalized by U2
b . Left: case E (N = 0.15 and

N = 0.30 at Bn = 0.10 and n = 0.70); right: case F (N = 0.15 and N = 0.30 at
Bn = 0.40 and n = 0.65).

r*

〈k
〉/
U
2 b

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

N = 0.15

N = 0.30

Case E

r*

〈k
〉/
U
2 b

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

N = 0.15

N = 0.30

Case F

Source: Own elaboration.

Table 5.12 – Pressure gradient computed for different rotation numbers.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N )

Pressure gradient
[Pa m−1]

Case E
03 0.10 0.65 0.15 488.8
09 0.10 0.65 0.30 536.3

Case F
06 0.40 0.70 0.15 492.9
14 0.40 0.70 0.30 535.6

Source: Own elaboration.

Table 5.13 – Skin friction coefficients estimated for different rotation numbers.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation
number (N )

finner wall

x10−3

fouter wall

x10−3

Case E
03 0.10 0.65 0.15 7.55 6.07
09 0.10 0.65 0.30 8.86 6.37

Case F
06 0.40 0.70 0.15 7.69 6.08
14 0.40 0.70 0.30 8.95 6.31

Source: Own elaboration.

5.8 Comparison Between SGS Models and the UDNS

This section explores the performance of two SGS models, namely Dynamic Smagorinsky and WALE

models, and the UDNS (no-model LES) on the flow features is studied. The cases analyzed in this section

are reported in Table 5.14.

The Dynamic Smagorinsky and WALE models calculate the eddy viscosity νSGS differently. The

Dynamic Smagorinsky is an algebraic model in which subgrid-scale stresses are parameterized using the

resolved turbulent stresses, and the underlying assumption is that the small scales are in local equilibrium
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Table 5.14 – Set of simulations used to compare the performance of SGS models and the UDNS.

Sim
Bingham number
(Bn)

Flow behavior
index (n)

Rotation number
(N )

Bulk velocity
[m s−1]

Case G 04 0.25 0.70 0.15 1.93
Case H 15 0.40 0.65 0.30 1.93

Source: Own elaboration.

between energy production and dissipation (GERMANO et al., 1991). On the other hand, the WALE

model is based on the square of the velocity gradient tensor and considers the effects of both the strain

and the rotation rate of the smallest resolved turbulent fluctuations (NICOUD; DUCROS, 1999).

Figure 5.39 exhibits the mean axial velocity and azimuthal velocity profiles for different SGS models

and the UDNS. The SGS models and the UDNS match well with each other for the mean axial velocity,

while a maximum difference of 6% was observed between the Dynamic Smagorinsky model and UDNS

at r∗ = 0.5 in the azimuthal velocity component for case G.

Figure 5.39 – Profiles of the mean (a) axial and (b) azimuthal velocity. The bulk velocity normalizes
the mean axial velocity, and the mean azimuthal velocity is normalized by the rotational
velocity of the inner wall. Left: case G (N = 0.15, Bn = 0.25 and n = 0.70); right: case
H (N = 0.30, Bn = 0.40 and n = 0.65).
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Figure 5.40 shows the mean axial velocity distributions plotted in wall units, the profiles obtained

with the SGS models and the UDNS results are qualitatively consistent with each other near the inner wall,

whereas near the outer wall due to the higher friction velocity value the UDNS underpredict (≈1,1%)

the results at y+ > 30. Even the inner wall presenting a higher value of the wall shear stress for UDNS

compared to SGS models, the rotation effect seems to cancel out the friction velocity influence for

y+ > 30.

Figure 5.40 – Profiles of the mean axial velocity plotted in wall units (a) near the inner wall and (b)
near the outer wall. Left: case G (N = 0.15, Bn = 0.25 and n = 0.70); Right: case H
(N = 0.30, Bn = 0.40 and n = 0.65).
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Profiles of mean viscosity normalized by νwall and the mean turbulence kinetic energy (TKE) per unit

mass normalized by U2
b are illustrated in Figures 5.41 and 5.42, respectively. For both flow properties, the

SGS models agree with the UDNS results.
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Figure 5.41 – Profiles of the normalized mean viscosity ν/νwall. (a) Plotted as a function of r∗, (b) plotted
as a function of y+, near the inner wall; (c) plotted as a function of y+, near the outer wall.
Left: case G (N = 0.15, Bn = 0.25 and n = 0.70); Right: case H (N = 0.30, Bn = 0.40
and n = 0.65).
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The RMS velocity fluctuations computed with different SGS models and the UDNS are shown in

Figure 5.43. Results for Dynamic Smagorinsky and WALE models are in close agreement. The UDNS

overpredicts the peak values compared with SGS models in the radial and azimuthal RMS velocity

fluctuations. The major differences between SGS models and the UDNS in the radial component are

around 5.5% and 4.2% near the outer wall (r∗ ≈ 0.80) for cases G and H, respectively, while the maximum

deviations between SGS models and the UDNS in the azimuthal direction are approximately 6% for case

G and 4% for case H.
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Figure 5.42 – Profiles of the turbulence kinetic energy normalized by U2
b . Left: case G (N = 0.15,

Bn = 0.25 and n = 0.70); Right: case H (N = 0.30, Bn = 0.40 and n = 0.65).
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Figure 5.44 depicts the profiles of Reynolds shear stress. The UDNS and the SGS models present

similar trends. However, the UDNS slightly overestimate the peaks of the Reynolds shear stress u′zu
′
r

component.

The pressure gradient computed for different SGS models and the UDNS is given in Table 5.15.

The Dynamic Smagorinsky and WALE models are in good agreement. On the other hand, the UDNS

overpredicts pressure gradient values by around 3%.

Table 5.15 – Pressure gradient computed for different SGS models and the UDNS. Left: case G (N = 0.15,
Bn = 0.25 and n = 0.70); right: case H (N = 0.30, Bn = 0.40 and n = 0.65).

Case G Case H
Pressure Gradient [Pa m−1] Pressure Gradient [Pa m−1]

Dynamic Smagorinsky 495.6 520.3
WALE 495.8 520.6
UDNS 518.6 572.7

Source: Own elaboration.

The skin friction coefficients f estimated for different SGS models and the UDNS are reported in

Table 5.16. The Dynamic Smagorinsky and WALE models match each other. The UDNS overpredicts

the f values by less than 1% compared with SGS models in the inner walls, while in the outer walls the

difference between SGS models and the UDNS for the skin friction coefficients is approximately 4%.

Overall, as also noted in the previous chapter, the results obtained with Dynamic Smagorinsky and

WALE models match well with each other; and when the SGS models predictions are compared with the

UDNS results, the differences between the two approaches in the flow characteristics are lesser than 6%.
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Figure 5.43 – Profiles of RMS velocity fluctuations normalized by the bulk velocity Ub (a) axial, (b) radial,
and (c) azimuthal directions. Left: case G (N = 0.15, Bn = 0.25 and n = 0.70); Right:
case H (N = 0.30, Bn = 0.40 and n = 0.65).
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Figure 5.44 – Profiles of Reynolds shear stress normalized by U2
b (a) Reynolds rz stress component and

(b) Reynolds rθ stress component. Left: case G (N = 0.15, Bn = 0.25 and n = 0.70);
Right: case H (N = 0.30, Bn = 0.40 and n = 0.65).
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Table 5.16 – Skin friction coefficients estimated for different SGS models and the UDNS. Top: case
G (N = 0.15, Bn = 0.25 and n = 0.70); Bottom: case H (N = 0.30, Bn = 0.40 and
n = 0.65).

Case G
finner wall

x10−3

fouter wall

x10−3

Dynamic Smagorinsky 7.83 6.07
WALE 7.83 6.07
UDNS 7.93 6.48

Case H
finner wall

x10−3

fouter wall

x10−3

Dynamic Smagorinsky 8.72 6.12
WALE 8.73 6.21
UDNS 8.76 6.25

Source: Own elaboration.
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Chapter Summary

In this chapter, large-eddy simulations of Herschel-Bulkley fluids in a concentric annular section with

rotation of the inner cylinder were performed at ReG ≈ 9, 000. The effects of the flow behavior index

(n = 0.75,0.70 and 0.65), Bingham number (Bn = 0.10,0.25 and 0.40), and the influence of Rotation

number (N = 0.15 and 0.30) on the flow quantities were investigated. The performance of two SGS

models, Dynamic Smagorinsky and WALE models, and the UDNS (no-model LES) was also discussed.

The effect of increasing the shear-thinning property (reducing the n value) of the fluids and the

Bingham number have similar behaviors on the flow quantities. In the instantaneous flow features, the

low-speed streaks of the axial velocity elongate in the streamwise direction; there is a greater amplitude

of viscosity fluctuations compared to wall viscosity, and decreasing in the number of vortical structures.

These characteristics suggest weaker turbulent structures.

Concerning the mean quantities, the RMS velocity fluctuations enhance in the axial direction; however,

they decrease in the radial and the azimuthal directions, and the Reynolds shear stress components. Profiles

of mean turbulent kinetic energy do not change significantly but decrease in value at the peak regions

with increasing shear-thinning properties and Bingham number; the pressure gradient and the skin friction

coefficients present the same tendency.

The mean viscosity profiles are constant near the walls and the effect of both parameters, flow behavior

index and the Bingham number, become apparent after y+ > 10. The mean viscosity increases towards

the center of the annular section. Moreover, the ratio between the maximum value (at the center of the

annular section) and the minimum value (near the wall) of the normalized mean viscosity grows for fluids

with higher shear thinning behavior and Bingham number.

Regarding the influence of the Rotation number, the mean axial velocity profiles become flatter and

the second-order turbulent statistics augment in magnitude as rotation number N enhances. In addition,

asymmetries in the profiles of the RMS velocity fluctuations become apparent with increasing N . The

alteration of the turbulent structures is attributed to the centrifugal force arising from the rotation of the

inner wall.

The influence of the Rotation number does not produce huge discrepancies in the viscosity profiles,

as seen for the effects of flow behavior index n and Bingham number. The ratio between the maximum

value (in the center of the annular region) and the minimum value (near the walls) of the mean viscosity

distribution is similar for both rotations, although the profiles for N = 0.30 present a more parabolic

behavior than N = 0.15.

Finally, it is interesting that results obtained with the SGS models and the UDNS do not show

significant differences, suggesting that the numerical dissipation is dominant over the SGS dissipation rate.

These results agree with the profiles presented in Chapter 4, and they are in line with the works developed

by (CASTIGLIONI; DOMARADZKI, 2015) and (KOMEN et al., 2017) using low-order schemes.
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6 CONCLUSIONS

The research presented in this thesis aimed to investigate the applicability of the LES method in the

turbulent flow of Herschel-Bulkley fluids. Although many industrial processes involve turbulent flows of

non-Newtonian fluids, there are few studies regarding the LES of GNF.

In the early part of this thesis, simulations were performed to assess the capacity and limitations of the

present numerical method. The OpenFOAM package, an implicit finite volume solver with second-order

accuracy in space and time was employed for the computations. The OpenFOAM is an open-source

CFD code and is commonly used to simulate industrial flows. Turbulent pipe flow with Newtonian and

Herschel-Bulkley fluids and the turbulent flow of Newtonian fluid in a concentric annular section with

inner wall rotation were considered. The LES approach has been applied with two different SGS models,

Dynamic Smagorinsky and WALE models, and the UDNS (no-model LES).

As a first highlight, using a denser grid, the present methodology reproduced the features of the

non-Newtonian fluid flows, and it presented consistent results compared to DNS data obtained by the

second-order finite volume method. However, the results are reasonable for the second-order statistics

when the current predictions are compared with data from a high-accuracy spectral DNS code.

In addition, it was observed that results predicted with the SGS models and the UDNS did not

yield significant differences. Some authors argue that the contribution of the SGS models is small if the

numerical dissipation in low-order schemes is dominant over the SGS dissipation rate (KRAVCHENKO;

MOIN, 1997; CASTIGLIONI; DOMARADZKI, 2015)

With a huge amount of spatial and temporal scales existing in the turbulent flow field, the LES can be

helpful to computing the evolution of instantaneous or mean quantities associated with turbulent flows

where engineering precision is the desired outcome for industrial problems. The LES method can produce

qualitatively consistent results at a reduced computational cost than a DNS solution.

Subsequently, the current methodology was applied to explore the turbulent flow of Herschel-Bulkley

fluids in a concentric annular section with inner wall rotation. This type of flow usually occurs in the oil

well drilling process, where drilling fluid is pumped into the drill string and returns to the surface carrying

the cuttings through the annular region formed between the hole walls and drill string. The effects of the

flow behavior index (n = 0.75, 0.70 and 0.65), Bingham number (Bn = 0.10, 0.25, and 0.40), and the

influence of Rotation number (N = 0.15 and 0.30) on the flow quantities were investigated.

As a second highlight, the effect of increasing the shear-thinning property (reducing the n value) of the

fluids and the Bingham number have similar behaviors on the flow quantities. As both parameters enhance,

weaker turbulent structures are generated in the flow field. In the instantaneous flow features, the low-

speed streaks elongate in the streamwise direction; there is a greater amplitude of viscosity fluctuations

compared to wall viscosity and decreasing in the number of vortical structures. These characteristics

suggest weaker turbulent structures.

Concerning the mean quantities, the RMS velocity fluctuations enhance in the axial direction but

decrease in the radial and the azimuthal directions due to the turbulence anisotropy enhancement. The
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Reynolds shear stress also decreases with augmenting the shear-thinning property and the Bingham

number. Profiles of mean turbulent kinetic energy do not change significantly but decrease in value at the

peak regions with increasing shear-thinning properties and Bingham number; the pressure gradient and

the skin friction coefficients present the same tendency.

The mean viscosity profiles are constant near the walls, and the effect of both parameters, the flow

behavior index and the Bingham number, become apparent after y+ > 10. The mean viscosity increases

towards the center of the annular section. Moreover, the ratio between the maximum value (at the center

of the annular section) and the minimum value (near the wall) of the normalized mean viscosity grows for

fluids with higher shear thinning behavior and Bingham number.

Regarding the influence of the Rotation number, the mean axial velocity profiles become flattered and

the second-order turbulent statistics augment in magnitude as rotation number N enhances. In addition,

asymmetries in the profiles of the RMS velocity fluctuations become apparent with increasing N . The

modification of the turbulent structures is attributed to the centrifugal force arising from the rotation of

the inner wall.

The influence of the rotation number does not produce huge discrepancies in the viscosity profiles,

as seen for the effects of flow behavior index n and Bingham number. The ratio between the maximum

value (in the center of the annular region) and the minimum value (near the walls) of the mean viscosity

distribution is similar for both rotation numbers, although the profiles for N = 0.30 present a more

parabolic behavior than N = 0.15.

6.1 Recommendations and Suggestions for future research

Some issues that could be considered for future works are suggested below.

• The study presented in Chapter 5 could be extended to investigate the eccentricity effect of the

annular region on the flow quantities, as well as increase the range of parameters n, Bn, ReG, and

N evaluated.

• In order to improve the quality of the results of Chapter 5 and introduce an analysis of the TKE

budgets, the simulations could be performed with a higher-order scheme.

• Once the numerical dissipation can mask the predictive capability of the SGS models, whenever it

is of the same order of magnitude or greater than the SGS dissipation rate, it would be interesting

to extend the work and quantify numerical dissipation and SGS dissipation rate.

• Finally, develop a closure model for the non-Newtonian SGS stress tensor to reduce the computa-

tional cost and produce satisfactory results even with coarse grids.
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APPENDIX A – BALANCE EQUATIONS IN CYLINDRICAL COORDINATES

A.1 Conservation equaions

The equations of motion are presented in cylindrical coordinates for an incompressible fluid in terms

of viscous stress tensor σ (BIRD et al., 1987). The gravity is neglected.

Continuity:
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APPENDIX B – TURBULENT PIPE FLOW OF THE HERSCHEL-BULKLEY FLUID
AT ReG = 10, 600 (Reτ = 633)

The set of numerical simulations presented in Section 4.1.5 for turbulent pipe flow of Herschel-Bulkley

fluids is extended in this section. An additional simulation is presented here. The DNS results of Singh et

al. (2016) are compared with the current LES and UDNS approaches.

B.1 Computational Methodology

The pipe length in the axial direction is defined as Lz = 4πD with D = 0.0445 [m]. The bulk

velocity and the pressure gradient used by Singh et al. (2016) were estimated experimentally, and the

values of these quantities are 2.90 [m s−1]. and 2.72 [kPa m−1], respectively. The model parameters of

the Herschel-Bulkley fluid are given in Table B.1. According to the author, the model parameters were

determined experimentally via rheology measurements.

The computational grid employed in the current simulations is the same mesh used in the simulations

for ReG = 7, 500 of Section 4.1.5 (mesh VIII from Table 4.2). The number of cells in the axial, radial,

and azimuthal directions are Nz = 162,Nr = 36, and Nθ = 122, totaling approximately 1.1 M elements.

The mesh resolution in wall units is ∆z+ ≈ 50, R∆θ+ ≈ 14 , and ∆r+wall ≈ 0.50.

Table B.1 – Model parameters of a Herschel-Bulkley fluid for the turbulent pipe flow simulations at
ReG = 10, 600.

τy (Pa) K (Pa sn) ρ (kg m−3) n

0.72 0.129 1,000 0.69
Singh et al. (2016).

B.2 Results and Discussion

The mean axial velocity profiles are illustrated in Figure B.1. The results obtained with SGS models

and the UDNS agree with the DNS data until y+ < 10; however, the solutions overpredict the DNS

velocity profile in the logarithm region. The difference between current simulations and DNS prediction

is about 3.9% after y+ < 30.

The second-order statistics of the velocity field are reported in Figure B.2. Following the data trend

presented in Section 4.1.5, the OpenFOAM computes the radial and azimuthal turbulence intensities and

Reynolds shear stress in lower magnitudes. On the other hand, the axial turbulence intensity overpredicts

the DNS data. The relative differences in axial, radial, and azimuthal turbulence intensities at the peak are

9%, 8%, and 12%, respectively.
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Figure B.1 – Mean axial velocity profiles of the Herschel-Bulkley fluid plotted in wall units at ReG =
10, 600.
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Figure B.2 – Profiles of RMS velocity fluctuations in (a) axial, (b) radial, (c) azimuthal directions, and (d)
Reynolds shear stress of the Herschel-Bulkley fluid plotted in wall units at ReG = 10, 600.
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The radial distributions of the mean viscosity normalized by the wall viscosity are shown in Figure

B.3. The present profiles of both SGS models and the UDNS align with the DNS results of Singh et al.

(2016). The maximum deviation (≈5%) between current simulations and the reference data occurs in the

core region at y+ = 300.
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Figure B.3 – Mean viscosity profiles of the Herschel-Bulkley fluid plotted in wall units at ReG = 10, 600.
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The flow quantities, including mean wall shear stress, mean pressure gradient, mean wall viscosity,

and the Reynolds number based on the friction velocity are presented in Table A.2. The mean wall shear

stress and the mean pressure gradient estimated by Singh et al. and the present work show differences of

approximately 13%. The maximum deviations for the mean wall viscosity and Reynolds number are 3.5%

and 8.5%, respectively.

Table B.2 – Comparison between the present work and the reference DNS data of Singh et al. (2016) for
mean wall shear stress, mean pressure gradient, mean wall viscosity, and Reynolds number
based on the friction velocity.

τw
[Pa]

dp/dz
[Pa m−1]

νwall

[m2 s−1]
Reτ

Semtex DNS (SINGH et al., 2016) 30.25 2,720 1.217e-05 633
Dynamic Smagorinsky 27.02 2,429 1.24e-05 587
WALE 26.80 2,408 1.251e-05 583
UDNS 27.28 2,453 1.24e-5 593

Source: Own elaboration.
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