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RESUMO

SILVA, Carolline V. G.. Uma nova abordagem para a predição de crises epilépticas
baseada nas técnicas de Padrões Espaciais Comuns e Aprendizagem de
Máquina . 2022. 79 f. Dissertação (Mestrado em Engenharia Elétrica) — Universidade
Tecnológica Federal do Paraná, Cornélio Procópio, 2022.

A epilepsia é uma das doenças neurológicas mais comuns, caracterizada por convul-
sões recorrentes causadas por breves distúrbios nas funções elétricas do cérebro. Em
30% dos casos, esta condição não pode ser tratada com sucesso por medicação ou
ressecção, impactando diretamente na qualidade de vida do paciente. Assim, há um
interesse significativo em desenvolver ferramentas confiáveis para prever convulsões,
permitindo a tomada de decisões, ou pelo menos alertar os pacientes para estarem
preparados quando uma convulsão se aproxima. O método proposto para previsão de
convulsões é baseado na análise tempo-frequência do eletroencefalograma de escalpo
(EEG) e no uso de técnicas de filtragem espacial para extrair características capazes de
discriminar as atividades interictal e preictal. Os coeficientes dos ritmos teta, alfa e beta
do EEG, obtidos pela decomposição da Transformada Discreta Wavelet, são submetidos
à técnica de filtragem dos Padrões Espaciais Comuns. Atributos estatísticos e relacio-
nados à entropia são extraídos e, em seguida, as características são selecionadas e
aplicadas no classificador SVM com kernel Gaussiano, a fim de discriminar o estado
cerebral como preictal ou não-preictal. O algoritmo proposto é avaliado em registros
de superfície multicanal de 17 sujeitos com epilepsia refratária do banco de dados do
Children’s Hospital Boston and Massachusetts Institute of Technology (CHB-MIT). Duas
técnicas, Filtro de Kalman e o Filtro de Mediana, são também comparadas em uma
etapa de pós-processamento para suavizar os resultados do classificador. Uma decisão
final de cada época do EEG foi tomada após um processo de nivelamento. Os melhores
resultados mostraram uma precisão média de 68,8% para a classificação da amostra.
O gerador de alarme reportou uma taxa de falso-positivo de 0,334 por hora.

Palavras-chave: Eletroencefalograma. Wavelet. Máquina de Vetor de Suporte. Filtro
de Kalman. Filtro de Mediana.



ABSTRACT

SILVA, Carolline V. G.. A novel approach for epileptic seizures prediction based on
common spatial patterns and machine learning techniques . 2022. 79 p.
Dissertation (Mestrado em Engenharia Elétrica) — Universidade Tecnológica Federal
do Paraná, Cornélio Procópio, 2022.

Epilepsy is one of the most common neurological diseases characterized by recurrent
seizures caused by brief disturbances in the brain’s electrical functions. In 30% of the
cases, this condition cannot be successfully treated by medication or resection, directly
affecting the quality of life of these individuals. Thus, there is a significant interest in
developing reliable tools for predicting seizures, enabling decision making, or alerting
patients to be prepared when a seizure is approaching. The proposed method for seizure
prediction is based on time-frequency analysis of the scalp electroencephalogram (EEG)
and spatial filtering techniques to extract features capable of discriminating the interictal
and preictal activities. The coefficients of the theta, alpha, and beta EEG rhythms,
obtained by the decomposition of the Wavelet Discrete Transform, are subjected to the
Common Spatial Patterns filtering technique. Statistical and entropy-related attributes
are extracted, and then features are selected and applied to the SVM classifier with
Gaussian kernel to discriminate cerebral state as preictal or non-preictal. The proposed
algorithm is evaluated on multichannel surface recordings of 17 subjects with refractory
epilepsy from the Children’s Hospital Boston and Massachusetts Institute of Technology
(CHB-MIT) database. Two techniques, namely Kalman Filter and Median Filter, are used
to smooth the classifier’s outputs. A final decision of each EEG epoch is yielded after a
thresholding process. The best results have shown an average precision of 68.8% for
sample classification. The alarm generator reported a false-positive rate of 0.334 per
hour.

Keywords: Electroencephalogram. Wavelet. Support Vector Machine. Kalman Filter.
Median Filter.
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1 INTRODUCTION

Epilepsy is a neurological disorder characterized by a transient alteration of

neuronal activities, causing a lasting predisposition to epileptic seizures (THURMAN

et al., 2011). The most common epilepsy symptom is the seizure, an event defined by

signals and/or symptoms stemming from abnormally excessive or synchronous neuronal

activity, causing loss of awareness or consciousness and disturbances of movement,

sensation, or other cognitive functions (FISHER et al., 2005).

This condition affects about 50 million people around the world. The incidence

rate of epilepsy is expected to increase further due to rising life expectancy, and an

increasing proportion of people surviving events that often lead to epilepsy, such as birth

trauma, traumatic brain injuries (TBI), infections of the brain and stroke (WHO, 2019).

Epilepsy has a higher prevalence in children and in the elderly. Considering socio-

economic aspects, three-quarters of people with epilepsy live in low-income countries

and do not get the treatment they need – due to sanitary hygiene conditions, inadequate

health care delivery services, and even higher risk of infections and brain infestations

(DUNCAN et al., 2006). However, up to 70% of people with epilepsy could become

seizure-free with the appropriate use of cost-effective antiseizure medicines (WHO,

2019).

For the other 30% of cases, a condition called refractory epilepsy, treatment

possibilities include brain surgery and electrical brain stimulation. Surgical resection of

epileptic parts of the brain may be proposed if the seizure focus can be located and safely

removed. However, not all patients are suitable surgical candidates, and surgery does

not always provide a complete absence of seizures (TÉLLEZ-ZENTENO; DHAR; WIEBE,

2005). One of the most debilitating aspects of epilepsy is the unpredictability of seizure

onset. Despite medical costs linked with the treatment of epilepsy, the injuries resulting

from uncontrolled seizures represent an even higher cost to the society (STRZELCZYK

et al., 2013).

Electroencephalogram (EEG) recordings by the electroencephalography method

are a helpful tool for diagnosing and managing epileptic syndromes. The measurement

of electrical potentials can be done either on the scalp or directly on the cortex, in

intracranial areas of the brain with invasive EEG. The scalp EEG is an inexpensive and

non-invasive method in which recordings are made through electrodes arranged in well-
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defined positions, the most commonly used of which is the 10-20 system (LIBENSON,

2010).

Spikes and sharp waves distinguish epilepsy in the EEG, usually on almost all

channels. From the appearance of these morphologies, the epileptic seizure events

can present the following states: interictal (characterized by the absence of seizures),

preictal (starting before the seizure, ending the interictal state), ictal (through the seizure),

postictal (immediately after the seizure, occurring or reestablishment of normal interictal

conditions) (FISHER et al., 2005). Also, similar patterns can be found in normal and

interictal EEG segments, which makes it difficult to distinguish between the two in the

time domain (OLIVA; ROSA, 2017).

The primary goal of seizure prediction is to distinguish the preictal period from

the rest of these states. In contrast, seizure detection comprises the proper identification

of the ictal state among these four states.

1.1 PREDICTABILITY OF SEIZURES

Many of the early studies focused on seizure detection rather than prediction -

while seizure detection aims to identify seizures shortly before or after onset, seizure

prediction seeks to recognize seizures minutes in advance. According to Acharya, Sree,

et al. (2013), better processing for seizure detection can be handled by single-channel

or multi-channel processing techniques.

At the beginning of the present century, after the work of Adeli, Z. Zhou, and

Dadmehr (2003), meaningful advances have been seen in the automated diagnosis and

detection of epilepsy. Several studies have been conducted on EEG seizure detection

(SIDDIQUI et al., 2020). Their performance is considerably higher since detecting an

impending seizure is easier than predicting it before onset - making seizure prediction a

more challenging problem.

In the biomedical engineering field, the development of techniques for the

problem of predicting epileptic seizures onset has the goal of significantly contributing

to improving diagnostic and therapeutic methods, ensuring the quality of life for many

patients (ACHARYA; HAGIWARA; ADELI, 2018). On the other hand, researchers are

still far from a complete and reliable approach that can practically be used in actual

medical applications (FREESTONE; KAROLY, P. J.; COOK, 2017).
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The seizure prediction system is often treated as a classification problem whose

objective is to distinguish preictal and interictal brain activities. By neuroscientific knowl-

edge, the length of the preictal period is unclear, ranging from several minutes to hours,

so it has often been left as a design choice (BANDARABADI; RASEKHI, et al., 2015;

MORMANN; ANDRZEJAK, et al., 2007).

The prediction system is expected to trigger an alarm when a threshold is

crossed, indicating the possible approach to a seizure event. If the alarm is within the

time interval of the seizure prediction horizon (SPH), it is classified as a true alarm

(true positive). Otherwise, if triggered within the interictal period, it is considered a false

alarm (false-positive) (RASHEED et al., 2021). Figure 1 illustrates a typical SPH from a

3-channel EEG.

Figure 1 – Concept of seizure (preictal) prediction horizon (SPH) in a 3-channel EEG

Source: Authors (2022).

Patients with refractory epilepsy would approve of a prediction algorithm if it

could satisfactorily provide a better quality of life. A reliable alarm system would allow

the management of preventive interventions, possibly dealing with the seizure before it

happens (WINTERHALDER et al., 2003).

1.2 PAST EFFORTS IN SEIZURE PREDICTION

The interest in detection of the preictal/ictal stages started during the 1970s with

Viglione and Walsh (1975), to identify epileptic seizure precursors with a linear approach.

Later, using nonlinear models, Rogowski, Gath, and Bental (1981) and Salant, Gath, and

Henriksen (1998) could better represent the nonlinear characteristic of EEG recordings.



14

Over the past decade, a wide variety of methods have been proposed to perform

the task of detecting the preictal stage from an assortment of EEG datasets, but achieving

high sensitivity and a low false-positive rate remains a significant challenge (USMAN,

S. M.; KHALID; AKHTAR, et al., 2019; ACHARYA; HAGIWARA; ADELI, 2018; ALOTAIBY;

ALSHEBEILI; ALSHAWI, et al., 2014). Notable among them are traditional Machine

Learning (ML) and Deep Learning (DL) models that include the steps of EEG signal

preprocessing, feature extraction, classification between preictal and interictal seizure

states, and postprocessing for decreasing false positives.

The preprocessing step by attribute extraction have greatly influence the max-

imization of prediction time and true positive rate. Many approaches enable signal

decomposition on their temporal and spectral components. Several researchers have

used the Wavelet Transform for the EEG signals preprocessing, where mainly Discrete

Wavelet Transform (DWT) features are used to extract information from signals in differ-

ent frequency sub-bands (ADELI; ZHOU, Z.; DADMEHR, 2003). This technique is very

efficient when it is desired to detect seizure onset (OCAK, 2009; KHAN et al., 2017).

Gadhoumi, Lina, and Gotman (2013), through signal decomposition into wavelet

coefficients and entropy measurements, obtained significant results in 7 out of 17 patients

for a 20-minute preictal period. The classifier training method selected the best channels,

which were then submitted to cross-validation. The algorithm achieved sensitivities of

85% and a false positive rate of 0.1/h.

Instead of tasking the classifier to select the best channels, it is possible to

handle multichannel problems using other techniques. One such method, which can

result in a better signal-to-noise ratio (SNR), removing internal noise from the EEG signal,

and decreasing computational cost by reducing the number of channels is Common

Spatial Patterns (CSP) filtering. CSP is a feature extraction algorithm used in different

applications, such as EEG signal analysis for motor imagery purposes (WANG, Y.;

GAO, S.; GAO, X., 2006), seizure detection (FU et al., 2020) and prediction (ALOTAIBY;

ALSHEBEILI; ALOTAIBI, et al., 2017; ZHANG, Y. et al., 2019). The main idea is to use a

linear transformation to project multichannel EEG data into low-dimensional subspaces

to generate spatial pattern vectors. This transformation can maximize the variance of

one class and minimize the variance of another, being a useful tool for discriminating

between different EEG activities. In contrast, the Principal Component Analysis (PCA)

maximizes the signal variance (WANG, Y.; GAO, S.; GAO, X., 2006).
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A challenging issue is using spatial filters to extract robust and representative

features for seizure discrimination. One example of CSP application for seizure prediction

is from Alotaiby, Alshebeili, Alotaibi, et al. (2017), who extracted features from the CSP

projection matrix for training a linear discriminant classifier, being able to achieve an

average accuracy of 89%.

Syed Muhammad Usman, Muhammad Usman, and Fong (2017) have applied

CSP in a pre-processing step Children’s Hospital Boston and Massachusetts Institute

of Technology (CHB-MIT) database (GOLDBERGER et al., 2000). Then, a surrogate

channel was obtained to increase SNR and high variance between preictal and interictal

states. Empirical Mode Decomposition has applied to the surrogate channel, and spectral

and statistical features were extracted and fed into three classifiers: Naive Bayes, k-

nearest neighbors (KNN) and Support Vector Machine (SVM) (the latter presenting the

best performance).

The most common classifier used to distinguish between preictal and interictal

stages has been the Support Vector Machine (USMAN, S. M.; KHALID; AKHTAR, et

al., 2019; RASHEED et al., 2021). Yun Park, Luo, et al. (2011) used cost-sensitive

SVM on measures derived from frequency analysis, namely spectral density at various

frequencies, in 18 patients from the Freiburg database. The assumed preictal period

was 30 minutes, and sensitivity values of 98.3% are reported in this study.

Teixeira et al. (2014) developed a study on seizure prediction in continuous

and long-term intracranial EEG recordings of 280 patients. The method comprised

the analysis of 22 univariate features per channel, being 6 channels per subject. In

this approach, the seizure occurrence periods were optimized for each patient. The

method was validated on three machine learning methods: SVM, Multilayer Perceptron

and Radial Basis Function (RBF) architectures. In this study, the temporal dynamics of

the samples were emphasized through the development of the “Firing Power method”,

which smooths the output of the classifiers, reporting 100% sensitivity for 16% of the

individuals.

Deep Learning methods result from advancements in Machine Learning re-

search. DL methods comprise multiple layers of computational (non-linear) modules that

work mutually to process large amounts of data and extract features for classification

tasks. Current studies have also successfully used Convolutional Neural Networks (CNN)

for classification. Yuan Zhang et al. (2019) proposed a CNN for patient-specific seizure
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prediction, using also CSP and Wavelet Packet Decomposition (WPD) to reduce the

input dimension of the network. The resulting classifier achieved 92.2% accuracy with a

30 minutes early prediction window for 23 subjects from the CHB-MIT EEG dataset.

Convolutional neural networks are proving to be a suitable feature extraction

method. Syed Muhammad Usman, Khalid, and Aslam (2020) used CNN-based features

as input for three types of classifiers: Naïve Bayes, KNN, and SVM. The SVM topology

gave the highest sensitivity compared to others, predicting seizures 23.6 min before

onset with 92.2% sensitivity and 90.8% specificity.

Deploying neural networks in a portable system is still a challenge. General-

purpose Central Process Units (CPUs), even with their architectural transformation over

the years, cannot fulfill the high computational demand of deep learning models (AJANI;

IMOIZE; ATAYERO, 2021).

Therefore, implementing these classifiers may require adaptations that consid-

erably affect system performance, especially within resource-limited embedded and

mobile environment applications. Classification models ratify these requirements since

they are simple models, such as logistic regression and decision trees. Some models

have already been successfully employed in embedded applications, such as Multilayer

Perceptron (MLP) and SVMs (HUSSAIN; PARK, S. J., 2020; CONDORI; URQUIZO;

DIAZ, 2016; RÚA et al., 2012).

A post-processing step is usually needed to decide, given a temporal sequence

of classifications, if an alarm is triggered. Different post-processing researches have

applied Kalman filtering (CHISCI et al., 2010; PARK, Y.; LUO, et al., 2011), moving

mean/median filters (ALOTAIBY; ALSHEBEILI; ALSHAWI, et al., 2014), and statistical

validation methods (KIRAL-KORNEK et al., 2018). Alotaiby, Alshebeili, Alshawi, et al.

(2014) used a seventh-order median filter with a patient-dependent threshold approach to

smooth Linear Discriminant Analysis (LDA) classifier’s results, reporting a 89% average

sensitivity and 0.39/h average false prediction rate.

The present work proposes to bring potential improvements to current methods

by applying two processing techniques, DWT and CSP, along with an SVM model

to detect seizures before onset with sufficient time. Post-processing techniques must

smooth the temporal dynamics of the classifier outputs, minimizing the false alarm

rate. The proposed procedure may enable the future development of low-cost devices

that can improve the quality of life of refractory epilepsy patients living in economically
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disadvantaged areas.

1.3 HYPOTESIS AND OBJECTIVES

This work hypothesizes that integrating the Wavelet Decomposition and Com-

mon Spatial Patterns filtering techniques for processing EEG signals, focusing on the

SVM classifier outputs regularization, can enable the development of an efficient seizure

prediction system, both in terms of implementation cost and precision. Therefore, this

study aims to contribute to the development of methodologies with appropriate perfor-

mance to be integrated into a transportable device to alarm the impending seizures or

just occurring seizures in refractory epileptic patients in real-time.

From the hypothesis, the following specific objectives were defined:

• Perform the time-frequency analysis of the EEG signals in preictal and interictal

states, the Discrete Wavelet Transform is used to extract the features of CHB-

MIT database signals in the frequency sub-bands of interest (theta, alpha,

and beta);

• Extract statistical attributes from Wavelet Decomposition coefficients’ result-

ing CSP filtering process to train a patient-independent SVM structure to

discriminate between interictal and preictal periods.

• Develop an alarm protocol by applying techniques for post-processing the

model outputs and threshold evaluation.

The general workflow of a epileptic seizure prediction model is presented in

Figure 2.

Figure 2 – Seizure predictor simplified workflow

Source: Authors (2022).

All of the algorithms of this thesis were simulated using the MATLAB software
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package from MathWorks Inc. The summary of our contribution to these epileptic seizure

problems is detailed as follows.

1.4 LIMITATIONS

There are some limitations linked to databases or the behavior of epilepsy.

Analyzing the definition of the preictal state, as previously described, the prediction

of seizures implies the detection of the preictal period, which is not well defined or

characterized in the literature, being therefore considered an ambiguous state. This

results in one of the critical challenges to seizure prediction since it implies identifying

something that is conceptually difficult to define because it varies substantially among

patients. The choice of preictal length is an essential issue with seizure prediction

algorithms and can differ from patient to patient, and even between a patient’s seizures

(BANDARABADI; RASEKHI, et al., 2015).

The significance of publicly available datasets is that they provide a reference

to analyze and compare results with others. The availability of continuous, annotated,

long-term datasets allows researchers to generate hypotheses and statistically validate

prospective algorithms (KUHLMANN et al., 2018). Many research groups have used non-

public data so that other groups’ results are not reproducible. There is no widely available

open-source multichannel EEG database covering numerous epilepsy syndromes and

different seizure types, and providing clues about the development of epilepsy with

various therapies. As a consequence, comparisons are still scarce.

1.5 TEXT OUTLINE

This dissertation presents the results from the master’s research and is organized

into five chapters.

This first chapter contextualizes and characterizes the problem of seizure pre-

diction. With this, the motivations for implementing a method for prediction using multi-

channel EEG recordings are highlighted.

In Chapter 2, the theoretical and technical aspects of seizure prediction are

presented. It starts with an introduction on EEG recordings: origin, brain rhythms, tech-

nical aspects necessary for signal acquisition, brain rhythms, abnormalities, among
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others. The key concepts of epilepsy are then briefly explored. Subsequently, the main

characteristics of EEG signals are explained. Next, a brief description of the primary

techniques used in the study is presented: Discrete Wavelet Transform, Common Spatial

Patterns Filtering, Support Vector Machine classifier, and post-processing techniques

for alarm generation.

The main contributions to seizure prediction are demonstrated in Chapter 3.

All the steps of the adopted methodology are covered, and the performance metrics in

seizure prediction are addressed.

In Chapter 4, quantitative and qualitative analyses of the results of the application

of the proposed methodology are presented, as well as a comparison with some studies

in the literature.

Finally, Chapter 5 comprise the last considerations about the study. Suggestions

for future work and ways to continue this research are also presented.
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2 BACKGROUND

This chapter comprises a survey of the relevant concepts that guide the devel-

opment of this work. The literature review covers the main biological and mathematical

properties of the electroencephalogram signals, the Discrete Wavelet Transform and

Common Spatial Patterns processing techniques for feature extraction, the Support

Vector Machine classifier, and the post-processing approaches for the prediction protocol.

2.1 OVERVIEW ON ELECTROENCEPHALOGRAM

Electroencephalography is a method that has enabled the development of a

medical technique for measuring the brain’s electrical activities through the scalp, which

results in the reading is called electroencephalogram. The EEG was developed to be a

tool for clinical neurological and neurophysiological research because of its ability to

detect brain activity (FREEMAN; QUIROGA, 2012).

Electroencephalogram signals reflect the electrical activity of large populations

of brain neurons. The synapse’s electric current is generated in the dendrite when these

neurons are activated. This current generates a magnetic field measurable by electromyo-

gram (EMG) machines and a secondary electrical field over the scalp, measurable by

EEG systems (SANEI; CHAMBERS, 2013).

Many electrodes are placed on the scalp surface during the EEG acquisition

procedure. Each electrode detects tiny electrical charges resulting from the brain cells’

activity. The electric differentials between the electrodes are amplified, converted into

wavy lines on a computer screen, and then recorded (SIULY; LI; ZHANG, Y., 2016).

Even with patients under similar circumstances, the behavior of the captured

EEG signal is different. For this and other reasons, unlike other bioelectrical signals

such as the electrocardiogram, the encephalogram recording is irregularly, thus not

presenting an exact pattern.

2.1.1 Brain Rhythms

Spectral analysis of the EEG shows specific peaks, and studies about the EEG

suggest that characteristics of the waveforms can also be associated with specific mental
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states (SANEI; CHAMBERS, 2013).

The frequency components of different waves seen in a routine EEG recording

are usually employed for analysis: delta, theta, alpha, beta, and gamma. Waveform

activities differ according to the brain function related to the specific mental and physical

tasks. For instance, low-frequency waves (delta and theta) predominate during sleep. In

contrast, an EEG signal acquired during awake periods includes a higher percentage of

high-frequency waves (alpha and beta) (HENRY, 2006).

Frame 1 presents the behavior of the main brain rhythms, organized from the

lowest to the highest frequency, as well as their amplitude levels.

Frame 1 – Main EEG rhythms
Wave Frequency (Hz) Predominancy Abnormalities

Delta (𝛿) 1 – 4 Deep sleep stages.
White Matter Subcortical Lesions

Diffuse Lesions
Encephalopathy

Theta (\) 4 – 8

The transition from the conscious
state to the drowsy state. Play
a significant role in infancy and
childhood. In awake adult, high
theta activity is abnormal and re-
lated to brain disorders such as
epilepsy.

Encephalopathy
Lesions

Alpha (𝛼) 8 – 13

Appear spontaneously in normal
adults during wakefulness, under
relaxation, and mental inactivity
conditions.

Coma
Ictal rhythm with seizures

Beta (𝛽) 13 – 30 Attention states and active
thoughts.

Drug overdose
Seizures

Gamma
(𝛾) >30 Intense mental activity, high con-

centration moments. Seizures

Source: Adapted from Sanei and Chambers (2013) and Tatum (2014).

Figure 3 shows the Power Spectrum Density (PSD) of an EEG using a 20-

second Welch window, which transforms a signal from the time domain to the frequency

domain (WELCH, 1967). The y-axis represents the normalized amplitude of the power

spectral densities on a decibel scale; the vertical dashed lines delimit the standard

EEG frequency bands. It is observed, that there is a predominance of frequencies up to

around 30Hz.
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Figure 3 – Frequency sub-bands on a single-channel EEG Power Spectrum Density

Source: Authors (2022).

2.1.2 EEG Recording and Capture

Recording electrical brain signals can be done both in an invasive and a non-

invasive way. Electrocorticography (ECoG) is an example of invasive recording also

known as intercranial EEG (iEEG) in which electrodes are inserted into the brain and

remain in direct contact with the brain tissue. Scalp EEG recording is noninvasive, where

electrodes are placed over the scalp (SANEI; CHAMBERS, 2013). Knowing where

to place the electrodes is necessary because different cortex lobes process different

activities (SIULY; LI; ZHANG, Y., 2016).

The cortex is the outermost layer of the brain and is subdivided symmetrically

into two hemispheres: the right and the left. Each hemisphere is divided into four lobes,

represented in Figure 4.

These lobes contain regions where the main brain activities, vital and cognitive,

are processed. The frontal lobe is involved with personality, emotions, problem-solving,

motor development, reasoning, planning, speech, and movement. The parietal lobe

handles sensation, sensory comprehension, recognition, perception of stimuli, orientation

and movement. The occipital lobe is responsible for visual processing. The temporal

lobe is involved in recognizing auditory stimuli, speech, perception, and memory (SIULY;

LI; ZHANG, Y., 2016).
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Figure 4 – Anatomy of the cerebral cortex presenting the four lobes

Source: Adapted from Lim et al. (2018).

The location of the electrodes is pre-established by the 10-20 international sys-

tem. It ensures standardization, reproducibility, and comparison of studies and scientific

papers in the literature. The positioning uses 21 points, as illustrated in Figure 5, which

are determined by dividing the scalp in proportions of 10% or 20% of the distance

between the reference points: nasion and inion — front and back parts of the head,

respectively (MALMIVUO; PLONSEY, 1995).

The electrodes nomenclature is also defined by the 10-20 system from letters and

numbers. The letters correspond to the scalp section where the electrode is positioned:

C for central, F for frontal, Fp for frontal-polar, P for parietal, T for temporal, and O for

occipital. The sub-index "z" refers to an electrode placed on the middle of the scalp; even

numbers refer to electrode positions on the right hemisphere, whereas odd numbers

refer to those on the left hemisphere (MALMIVUO; PLONSEY, 1995).

Recording the EEG from distinct regions of the skull makes it feasible to identify

a functional disorder in the brain and judge its severity, location, and expansion. In this

context, it is significant to note that the same type of damage can affect the EEG in

different ways due to individual diversities (FREEMAN; QUIROGA, 2012).

Since typical scalp EEG recording has a peak-to-peak amplitude of less than

200`V, it becomes necessary to use amplifiers and filters for artifacts reduction. Usually,

artifacts have an extra-brain origin, either technical or physiological activities, which

can hinder or even prevent the correct interpretation of EEG signals (e.g., electrode

movement, muscle contraction, eye blinking, and power lines noise at 50 or 60 Hz)

(FREEMAN; QUIROGA, 2012). All of those can have a significant impact on the EEG
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Figure 5 – International 10-20 system of electrode placement

Source: Adapted from Malmivuo and Plonsey (1995) .

analysis. Thus several types of research aim at minimizing such effects (GOTMAN;

IVES; GLOOR, 1981; VERGULT et al., 2007). Therefore, the seizure prediction algorithm

has to handle various types of noise and ensure that even high amplitude noise does

not interfere with the detection process.

2.1.3 EEG and Epilepsy

The EEG acquisition system is one of the oldest electrical devices used in

medical technology, with the first human EEG recorded by Hans Berger in 1929 (SANEI;

CHAMBERS, 2013). A decade later, it was already shown that, for patients having

epilepsy, certain patterns called epileptiform pattern activities were present. Epileptiform

appears during the onset (the transition from the preictal to the ictal state) of epilepsy

and refers mostly to spike waves and sharp waves (SIULY; LI; ZHANG, Y., 2016). Some

examples of such shapes are pictured in Figure 6.

Figure 6 – Examples of (a) epileptic spikes, (b) sharp waves and (c) spike and wave complex in
the EEG

(a) (b) (c)

Source: Adapted from Malaver (2017).

Both waveforms are generally described as having a sudden initial upstroke,
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being their duration the only difference. A sharp wave duration is between 70–200 ms,

whereas a spike is no longer than 70 ms. Specific artifacts such as cardiac activity can

affect a normal EEG, so an ECG artifact can sometimes be incorrectly classified as

these types of waves (SÖRNMO; LAGUNA, 2005). These patterns in EEG recordings

have been used to diagnose and classify epilepsy since their discovery.

The flow of a naturally occurring seizure comprises an interictal (baseline activity),

preictal, ictal, and postictal section. The interictal stage also contains epileptic patterns

that change according to the patient’s consciousness and brain activity. Then, before

the seizure, the brain transitions to the preictal stage. Unlike the preictal state, the ictal

period is well distinguished because a seizure causes a noticeable change in the EEG

(LODDENKEMPER; LÜDERS, 2008).

The most widely accepted classification of epileptic seizures is defined by the

Commission on Classification and Terminology of International League Against Epilepsy

(ILAE) (FISHER et al., 2005; LODDENKEMPER; LÜDERS, 2008).

• Clinical seizures: epileptic seizures that show clinical manifestations as behav-

ioral events characterized by involuntary movements like the flexing of lower

and upper limbs, eyes rolling towards the back of the head, facial twitches or

shaking.

• Sub-clinical seizures: seizures with no clinical manifestations, but with recorded

abnormalities in the EEG. These electrographic events are usually of shorter

duration and remain more localized in the brain when compared to clinical

seizures.

The second type of classification is based on the epileptic focus and has two

major categories:

• Generalized seizures: typically affect both cerebral hemispheres simultane-

ously. Such seizures do not have a recognizable focus at onset and usually

cause loss of consciousness.

• Partial seizures: the most common type of seizure in children, manifesting in

only one hemisphere of the brain. They are further classified as simple partial

seizures (if there is no impairment of the patient’s consciousness and if they

are limited to a small region), or as complex partial seizures if patients lose

consciousness.

Partial seizures are segmented into simple partial seizures, complex partial
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seizures (with impairment of consciousness at onset or followed by loss of conscious-

ness), and partial seizures resulting in generalized tonic-clonic convulsions (preceded

either by a simple or complex partial seizure). Generalized seizures are further classified

into absence seizures, myoclonic seizures, clonic seizures, tonic seizures, tonic-clonic

seizures, and atonic seizures (LODDENKEMPER; LÜDERS, 2008).

Figure 7 illustrates one segment of multi-channel EEG seizure onset. An epileptic

seizure began at the sixth second (highlighted by the red bar), followed by a dramatic

oscillation in the EEG signal.

Figure 7 – A 10-second sample of multichannel EEG record from the CHB-MIT dataset. The red
bar marks the beginning of a seizure.

Source: Adapted from Goldberger et al. (2000) and Shoeb (2009).
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2.2 EEG SIGNAL PROCESSING

Biomedical signals are a specific class of signals that contain information about

biological systems. Thus, biomedical signals processing presents typical issues, derived

from the complexity of the human body, and the need to make non-invasive indirect

measurements in most applications.

The nature of the EEG signal and its importance in research on brain functioning,

as well as its clinical applications, has made the introduction of signal analysis methods

indispensable. In this chapter, we will explain some mathematical characteristics of EEG

signals, as well as some possibilities of digital processing.

2.2.1 Signal Characterization and Preprocessing

Signals can be generically divided into continuous and discrete. Bioelectric sig-

nals, as well as electroencephalogram recordings, are essentially continuous. However,

during their capture, they are sampled and become discrete. To provide a consistent

notation throughout this study, we define continuous signals as 𝑥(𝑡) and its discrete time

indexed by 𝑛, as 𝑥 [𝑛], given by

𝑥 [𝑛] = 𝑥(𝑛 𝑇𝑠) (1)

where 𝑇𝑠 is the sampling period, and its reciprocal is the sampling frequency (OPPEN-

HEIM, A., 1997).

Another approach to classifying bioelectric signals comprises two groups: de-

terministic and stochastic. Deterministic signals are those that can be represented by

mathematical or graphical means, i.e. their current and past values in time can determine

all their future values precisely (VAN DRONGELEN, 2018).

By the same definition, a stochastic signal comes from a stochastic process,

which cannot be expressed analitically, being described by its statistical properties. From

this simple definition one can conclude that all observed signals, whether man-made or

otherwise, should be classified as random.

In the analysis of random sequence, it is frequently convenient to represent

finite-length sequence as vectors. Thus, a discrete signal 𝑥 [𝑛] defined on the interval
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[0, 𝑁 − 1] can be represented as a vector 𝑥 with components 𝑥 [𝑛] as shown in Equation

(2) (THERRIEN, 1992).

x =



𝑥 [0]

𝑥 [1]
...

𝑥 [𝑁 − 1]


(2)

As shown in the previous sections, the EEG signals do not represent only

brain activities. This signal is corrupted by random noise and artifacts introduced by

distinct sources — it is not possible to predict the amplitude, duration, and morphology

of this type of signal, which makes it reasonable to consider its stochasticity. Several

researchers have proven that the EEG is not necessarily random in nature, but has

such high complexity that analysis by statistical tools is convenient (VAN DRONGELEN,

2018).

The underlying model representing the random sequence is known as a random

process or a stochastic process. Consider a sequence 𝑥 [𝑛] such that its value for any

choice of the parameter 𝑛 is a random variable, hence a collection of random variable

values determines the formation of a random process. Mathematically, the set of all

outcomes of an experiment can be thought of as comprising the sample space 𝑆. For

the event Z defined on 𝑆 their respective probabilities, if for any 𝑡 ∈ 𝐼 and Z ∈ 𝑆 one

sets a random variable 𝑋 (𝑡,Z) to the set {𝑋 (𝑡,Z) : 𝑡 ∈ 𝐼}, then one has a random process

(LEON-GARCIA, 2008). If the real variable 𝑡 is a time variable, the random process is

called a stochastic process.

In recent decades, many systems based on continuous-time analog circuits have

been implemented using discrete-time digital systems. This phenomenon is mainly due

to the more accessible access to digital signal processors (DSP) and general-purpose

microcomputers (LATHI, 1998).

Using a digital filter in DSP has numerous advantages over the analog filter.

Among them is that digital filters are programmable without hardware modifications.

Analog filters, usually composed of active components, are subject to variations due to

temperature changes or other components. Variations that digital filters are not subject

to, which makes them much more stable (OPPENHEIM, A. V.; SCHAFER, 2009).
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The discrete-time approach often represent naturally occurring events at discrete

points in time, i.e., they result from sampling continuous random signals. This concept

is of paramount importance in signal processing and other engineering applications.

Stochastic processes consider the uncertainty and randomness often inherent

in the phenomenon itself. Biomedical applications have a complex characteristic; most

of the results that come from interactions of many variables that are very difficult - or

even impossible in principle - to isolate and control in most procedures (KUTZ, 2009).

2.2.2 Discrete Wavelet Transform

Due to their particular characteristics (low amplitudes, non-stationarity for long

recordings, existence of artifacts, etc.), the electroencephalogram signals present pro-

cessing problems. The Fourier Transform (FT), widely used for processing stationary

signals, does not provide enough information when applied to non-stationary signals.

The FT determines the frequency components of the signal, but not how they are

distributed in the time domain (WEEKS, 2010), which is a disadvantage of the method

since EEG recordings are susceptible to abrupt changes caused by various events.

A solution to this problem would be to partition this complete time interval into

smaller subintervals. The FT would be calculated for each time window - a procedure

referred to as the Short-Time Fourier Transform (STFT). However, this method has

problems regarding the size of the time window, since higher frequency waves have

short periods, while low-frequency signals have longer periods. Thus, choosing the

window size in time would impair its resolution in frequency and vice versa (MISITI et al.,

2008; WEEKS, 2010).

For these reasons, a type of mathematical analysis was developed and formal-

ized in the mid-1980s that was called Wavelet Transform (WT) (MISITI et al., 2008). WT

provides a more flexible way of representing the time-frequency domains of a signal, as

illustrated in Figure 8. This is achieved by using a variable windowing technique, where

the time windows can vary their width depending on the frequency band being analyzed.

When low frequencies are observed, a long observation in time is required. In

contrast, when high frequencies are observed, only a quick observation in time is needed.

According to Daubechies (1992), WT studies each different frequency component with a

resolution appropriate to its scale. Thus, one has short basis functions for high frequency
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and long ones for low frequencies.

Figure 8 – Time-frequency windows of STFT (a) and WT (b)

(a) (b)

Source: Adapted from Poisson, Rioual, and Meunier (1999).

From Figure 8(a), it can be seen that the STFT has a fixed time-frequency

window (Δ𝑡 and Δ 𝑓 ), which means a lack of flexibility. However, the WT, Figure 8(b), can

provide high-frequency components with sharper time resolution than the low-frequency

components. Such a feature enables users to choose a proper window to examine

signals at different resolutions, especially in the analysis of fast transient waveforms,

such as spikes present in EEG signals.

The Continuous Wavelet Transform (CWT) decomposes a signal in terms of

functions called wavelets resultant from scaling and shifting an original function called

mother wavelet Ψ(𝑡) — an arbitrary small wave of limited duration and concentrated

energy, designed to afford the analysis of nonstationary signals and transients. Unlike

STFT, the CWT of a function of one variable is represented by a function of two continuous

variables, scale (𝑎) and translation (𝑏). The wavelet function, depending on the scale

and translation factors, can be defined as:

Ψ𝑎,𝑏 =
1√︁
|𝑎 |

Ψ∗
(
𝑡 − 𝑏
𝑎

)
(3)

where 𝑎 and 𝑏 are a set of real numbers and ∗ is a complex conjugate.

If 𝑥(𝑡) is a continuous function in time 𝑡, then the CWT coefficients are defined

as:

𝑊𝑎,𝑏 =

∫ +∞

−∞
𝑥(𝑡)Ψ𝑎,𝑏 𝑑𝑡 (4)

The wavelet function becomes narrower with the increase of 𝑎 and is displaced
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in time with varying values of 𝑏. Therefore, wavelets can monitor different frequency

ranges by varying the width of the window. The translation parameter relates to the

location of the window. When this parameter is varied, the wavelets are shifted in time,

allowing them to cover the whole signal in the time domain. The signal is analyzed

piecewise, essentially processing the content that is within the window (DAUBECHIES,

1992).

CWT is not very versatile because the calculation of the analysis scales requires

much time and computational resources and generates redundant information (MALLAT,

1989). Therefore, the WT admits another main approach for signal inspection: the

Discrete Wavelet Transform.

In the DWT procedure, the wavelets are translated and scaled in discrete inter-

vals, 𝑎 = 𝑎𝑚0 and 𝑏 = 𝑛𝑏0𝑎
𝑚
0 , reducing the computational effort. Initially, this process is

done by fixing two positive constants 𝑎0 and 𝑏0 and defining:

Ψ𝑚,𝑛 = 𝑎
−𝑚/2
0 Ψ

(
𝑎−𝑚0 𝑡 − 𝑛𝑏0

)
(5)

where 𝑚, 𝑛 ∈ Z.

DWT represents a function through a measurable set of wavelet coefficients,

which corresponds to points on a two-dimensional grid of discrete points in the time-scale

domain, indexed by 𝑚 and 𝑛.

A computationally efficient approach involves setting 𝑎0 = 2 and 𝑏0 = 1. We can

observe that for these values, for any increment of 𝑚, the scaling value doubles, which

implies doubling the width in the time domain and halving the width in the frequency

domain (DAUBECHIES, 1992). Thus, for every increment of 𝑚, a enhanced frequency

resolution is obtained, and for every decrement, a enhanced time resolution is yielded.

For different values of 𝑚 and 𝑛, a multi-resolution analysis is possible (MISITI et al.,

2008).

From the DWT multi-resolution analysis, the signal is decomposed into approxi-

mations and details and may be reconstructed with no loss. The approximation refers

to the high scales (low-frequency components), while the detail corresponds to the low

scales, high-frequency components of the signal (MALLAT, 1989).

According to Mallat (2009), the calculation of DWT, through the use of filters, is

the most efficient way of applying WT. The wavelet decomposition can be done through
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banks of high-pass and low-pass filters, providing representations of the original signal

relative to different scale/frequency levels.

Figure 9 shows the 𝑞-level wavelet decomposition scheme of a signal 𝑥 [𝑛]

sampled at a frequency 𝑓𝑠. As noted, the signal 𝑥 [𝑛] is applied to a pair of low-pass

and high-pass filters (LPF and HPF respectively) and then sub-sampled, producing the

approximations (cA) and details (cD) with 𝑛𝑞 samples - half the amount of samples from

the previous stage 𝑞 − 1 (MALLAT, 1989).

The coefficients of the filters depend on the mother wavelet function used. The

low-pass channel wrappers are expansions/compressions of a single scaling function

𝜙(𝑡) and the high-pass channel wrappers are also expansions/compressions of a single

wavelet function Ψ(𝑡).

Figure 9 – DWT q-level filter bank structure

Source: Authors (2022).

The approximations are again subject to the filters at the next level, producing

another set of approximations and details. The coefficients of approximations (𝑐𝐴𝑞) and

details (𝑐𝐷𝑞), of level 𝑞, are obtained by convolution of the approximation coefficients

(𝑐𝐴𝑞−1), with the LPH and HPF filters, respectively.

This process is repeated until the desired level of decomposition is completed,

resulting in a binary tree – which can also be seen as a filter bank structure. Features

are extracted from each node in this tree (MISITI et al., 2008). Each node represents a

frequency interval half as wide as the level above and twice as wide as the level below.

The time scale at each level is twice the level below and half above (MALLAT, 1989).

The choice of wavelet basis function and the number of decompositions imply

the success of DWT and are determined by the characteristics of the signal or image

and the nature of the application (RAFIEE et al., 2011).
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In practice, a satisfying number of levels is based on the frequency ranges that

need to be analyzed and the signal nature. Here, the coefficients must discriminate the

spike-like events of the signal and be useful for further analysis: spatial filtering, feature

extraction, and classification steps.
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2.3 COMMON SPATIAL PATTERNS

Many real-world data, such as noise signals, multichannel signals, images, or

corpus data, exhibit the characteristic of high dimensionality. Keeping in mind the goal

of dealing with such information successfully, it is desirable to reduce the dimensions of

the data in many situations (VAN DER MAATEN; POSTMA; VAN DEN HERIK, et al.,

2009).

One of the major tools used for dimensionality reduction is the method called

Principal Components Analysis (PCA). PCA is a multivariate statistical technique that

comprises exploring the variance and covariance structures of a random vector, com-

posed of random variables, employing principal components. The principal components

are linear combinations of all the original variables, are decorrelated from each other

and are estimated to keep, in order of estimation, the maximum information, in terms of

the total variation in the data (JOLLIFFE, 1972).

The Common Spatial Pattern (CSP) technique is another feature extraction

method that can self-design spatial filters to maximize the separation between two

classes. This strategy was first introduced by Koles, Lazar, and Steven Z. Zhou (1990)

to extract discriminative EEG features from two human populations.

CSP is one of the most popular and efficient Brain-Computer Interface (BCI)

systems methods commonly applied in BCI competitions (WANG, Y.; GAO, S.; GAO,

X., 2006; WANG, L. et al., 2013). However, several other applications extract signal

features that best represent the underlying physiologic activity for a specific task, such

as hand/foot movements (FENG et al., 2019; PARK, Y.; CHUNG, 2019) and seizures

detection/prediction EEG signals (ALOTAIBY; ALSHEBEILI; ALOTAIBI, et al., 2017;

USMAN, S. M.; USMAN, M.; FONG, 2017; ZHANG, Y. et al., 2019).

The aim of using CSP in this study is to distinguish between interictal and preictal

states. As an extension of PCA, CSP can find a projection matrix W that minimizes

the variance for preictal activity and maximizes it for the other class. The mathematical

formulation of the algorithm is described as follows (WANG, Y.; GAO, S.; GAO, X., 2006).
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2.3.1 CSP Algorithm

CSP algorithm performs spatial filtering of the EEG signals and provides a metric

for choosing the subspace projection that contains more class-related information. The

transformation is made so that, for each CSP filter, the variance of the resulting signal is

maximized if the trial is from one class and minimized if it is from the other class (KOLES;

LAZAR; ZHOU, S. Z., 1990).

For this work, the variables X𝐼
(𝑘) and X𝑃

(𝑘) denote each trial of wavelet decom-

position matrices under two EEG states (interictal and preictal) with dimensions 𝑁 × 𝑛𝑞,

representing a set of 𝑞-th level wavelet detail coefficients of the k-th 5-second window,

with 𝑁 channels and 𝑛𝑞 samples. For CSP projection, a normalized covariance matrix of

each class is required for each segment given in Equation (6), where {.}𝑇 is the matrix

transpose operation and the 𝑇𝑟𝑎𝑐𝑒{X} operation computes the sum of the diagonal

elements of X:

R𝐼
(𝑘) =

X𝐼
(𝑘)X𝐼

(𝑘)𝑇

𝑇𝑟𝑎𝑐𝑒
{
X𝐼

(𝑘)X𝐼
(𝑘)𝑇 } R𝑃

(𝑘) =
X𝑃

(𝑘)X𝑃
(𝑘)𝑇

𝑇𝑟𝑎𝑐𝑒
{
X𝑃

(𝑘)X𝑃
(𝑘)𝑇 } (6)

The R matrices are calculated for each multichannel samples. The algorithm

also computes the average of these covariance matrices for each class R𝐼 and R𝑃

R𝐼 =

𝑚𝐼∑︁
𝑘=1

1
𝑚𝐼

R𝐼
(𝑘) R𝑃 =

𝑚𝑃∑︁
𝑘=1

1
𝑚𝑃

R𝑃
(𝑘) (7)

where 𝑚𝐼 and 𝑚𝑃 are the total five-second windows corresponding to the interictal and

preictal periods, respectively.

The following step consists in computing the global covariance of both classes

as R = R𝐼 + R𝑃. Covariance matrices are symmetric and positive semi-definite by

construction (FUKUNAGA, 1990). Thus the spectral decomposition of R is given by

R = U0 ΣU𝑇
0 (8)

where U0 is the eigenvectors matrix and Σ is the diagonal matrix of eigenvalues of the

covariance matrix R. Using the previous factorization, the next step consists of defining

the whitening matrix P = Σ−1/2 U𝑇
0 , which will transform the class related covariance

matrices as:
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S𝐼 = P R𝐼 P𝑇 S𝑃 = P R𝑃 P𝑇 (9)

These matrices share the same eigenvectors whose concatenation will form the

projection matrix W. Nevertheless, they are sorted in a descending order since their

eigenvalues are complimentary in the sense that Σ𝐼 + Σ𝑃 = I (WANG, Y.; GAO, S.; GAO,

X., 2006). A high eigenvalue means that the filter output based their respective filter

vector in W yields a high variance for input signals in one class and a low variance for

signals from the other class (and vice versa. Thus, this can be expressed mathematically

as:

S𝐼 = UΣ𝐼 U𝑇 S𝑃 = UΣ𝑃 U𝑇 (10)

Thus, the CSP projection matrix W ∈ R𝑁×𝑁 is formulated as

W = U−1P (11)

whose filtering process results in a matrix Z ∈ R𝑁×𝑛𝑞 represented by Equation (12).

Z = W X (12)

Matrix Z can be seen as source components including common and specific

components of different EEG periods, X𝐼 and X𝑃, for interictal and preictal states,

respectively. Then each trial of wavelet coefficients data X can be reconstructed by

X = W−1Z (13)

The rows of W represent spatial filters of a selected type, while the columns of

W−1 represent the common spatial patterns. The first and last columns of the projection

matrix are the most significant spatial patterns that explain one task’s largest variance

and the smallest variance of the other (KOLES; LAZAR; ZHOU, S. Z., 1990).

Assuming that the vectors w𝑖 are the optimal filters in W = [w1,...,w𝑁 ]𝑇 , CSP

can provide 𝑁 spatial filters. A common practice is to reduce the dimensionality of the

output by selecting the 𝑃 filters that best discriminate between classes. If 𝑃 is too small,

discrimination between classes may not be effective; on the other hand, high values of

𝑃 can lead to an overfitting condition (BLANKERTZ et al., 2008).
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The chosen 𝑃 filters are the eigenvectors associated with the most and least

significant eigenvalues related to the preictal class. Assuming 𝑃 to be an even number

smaller than 𝑁, the set W𝑅 ∈ R𝑃×𝑛𝑞 is composed of the first 𝑃/2 and last 𝑃/2 optimal

filters:

W𝑅 = [w1,...,w 𝑃
2
,w𝑁− 𝑃

2 +1,...,w𝑁 ]𝑇 (14)

Therefore, the filtering process also reduces the dimension from 𝑁 EEG channels

to 𝑃 spatially filtered data and gathering the relevant information that is spread over

different channels.

2.4 SUPPORT VECTOR MACHINE

Support Vector Machine is a supervised learning model for pattern analysis and

recognition. They are used for binary classification and regression of data and aim to

solve the problem through the concept of margin, which comprises the smallest distance

between the decision surface and any of the samples (BISHOP, 2006).

Support vector machines, developed by Vapnik (2000), can solve classification

and regression problems, acquiring through a learning process, in the training stage, the

ability to generalize. Considering a binary problem, the goal of the SVM is to separate

the instances of the two classes by hyperplanes that will be obtained from the known

instances in the training phase. The goal is to produce a classifier that works adequately

with unfamiliar examples, i.e., examples that were not applied during training, thus

acquiring the ability to predict the outputs of future new inputs (GUNN et al., 1998).

Training an linear SVM is equivalent to solving a quadratic programming problem.

The goal is to find an optimal separating hyperplane for a feature set. In this approach,

the decision surface (or hyperplane) is chosen to be the one with the largest margin, as

illustrated in Figure 10. The optimal hyperplane is determined from the reference of two

other hyperplanes, called auxiliary hyperplanes. These connect a set of points (support

vectors) (BISHOP, 2006).
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Figure 10 – Optimal hyperplane of the SVM algorithm

Source: Adapted from Duda, Hart, and Stork (2001).

The maximum margins are calculated by minimizing ∥𝑤∥, the norm of 𝑤, where 𝑤

is the normal vector of the separation hyperplane. Thus, we have the primal optimization

problem in variables 𝑤 and the bias parameter 𝑏, for a training set 𝑋 = (𝑥𝑖,𝑦𝑖), where 𝑥𝑖
is the feature vector and 𝑦𝑖 the labels:

Min 1
2
∥𝑤∥2

subject to

𝑦𝑖 (𝑤𝑥𝑖 + 𝑏) ≥ 0, 𝑖 = 1,2,...,𝑁

(15)

where 𝑁 is the cardinality of the training set.

The classification is then done by assigning the data point to the class that is

associated with the side of the hyperplane where the point lies. An essential property

of this classifier is that the determination of the parameters corresponds to a convex

optimization problem. Therefore, any global solution is also an optimal global value.

2.4.1 Soft Margin SVM

The problem illustrated in Figure 10 stands for linearly separable patterns. In

situations where the data is non-linearly separable but can be divided into two classes by

a hyperplane, a classifier that accepts such errors is adopted. The optimization problem

shown in Equation (15) is updated, by adding the slack variable b𝑖, making the model

tolerable to classification errors, as well as to samples between the edges, thus enabling

SVMs to classify non-linearly separable data. These errors are controlled by a parameter
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called the regularization parameter 𝐶, and these classifiers are known as smooth-margin

SVMs (BISHOP, 2006).

The primal optimization problem for smooth-margin SVMs is given by Equation

(16).

Min 1
2
∥𝑤∥2 + 𝐶

𝑁∑︁
𝑖=1

b𝑖

subject to

𝑦𝑖 (𝑤𝑥𝑖 + 𝑏) + b𝑖 − 1 ≥ 0

b𝑖 ≥ 0

(16)

Equation (16) gives the Generalized Optimal Separating Hyperplane – a

Quadratic Programming problem that can be solved here using the method of Lagrange

multipliers (BURGES, 1998).

2.4.2 Kernel Functions

In genuine problems, as with EEG patterns, the features domain is not linearly

separable. So even soft-margin SVMs do not produce satisfactory results. Thus, nonlin-

ear classifiers are implemented for this study, which performs a dimensionality change

through kernel functions, allowing linear classification techniques in higher dimensions

(BISHOP, 2006).

Figure 11 illustrates the transformation of a non-linearly separable domain into

a linearly separable problem by increasing the dimensionality, where mapping is made

by a kernel function 𝐾 (𝑥).

Figure 11 – Kernel transformation: non-linearly separable problem into a linearly separable
problem

Source: Adapted from Tinghua Wang, Lin Zhang, and Hu (2021).
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However, the kernel function 𝐾 (𝑥) to be used needs to be defined in implement-

ing an SVM (BURGES, 1998). Different kernels can assign various types of decision

boundaries, where the most common include a polynomial kernel or Gaussian radial

basis function (RBF) kernel, being the latter chosen for this work. The RBF kernel on two

samples x(𝑖) and x( 𝑗), represented as feature vectors in some input space, is defined as

𝐾 (x(𝑖) , x( 𝑗)) = 𝑒−𝛾∥xi−xj∥2
(17)

where 𝛾 is the scale parameter that controls the width of the Gaussian surface of the

RBF kernel; it replaces each point in the feature space by the Gaussian of its squared

Euclidean distance from support vectors.

With the Gaussian kernel, there are two parameters to control the classification

performance: the scale parameter 𝛾 and the soft margin parameter of 𝐶. Most Machine

Learning algorithms make use of heuristics and meta-heuristics to select the best pa-

rameters, because exhaustive search is very time consuming, especially when the set of

examples has numerous instances and/or features. The gamma value was automatically

specified by the software, according to nearest neighbor heuristics (MATLAB, 2018).

This parameter was not changed as that did not seem to lead to an overall improvement

in results in this preliminary analysis.

Within the MATLAB Statistics and Machine Learning Toolbox, the default error

cost hyper-parameter is set to 𝐶 = 102 after some preliminary experiments. The 𝐶

parameter adds a penalty for each misclassified data: if a small value of 𝐶 is chosen,

the penalty for misclassified samples is low so a decision boundary with a large margin

is chosen. On the other hand, a large 𝐶 value will lead SVM to minimize the number

of misclassified examples, which results in a decision boundary with a smaller margin,

thus a minor expected generalization capability (QUITADAMO et al., 2017).
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2.5 CLASSIFIER POSTPROCESSING TECHINIQUES

Classifiers are essentially defined to generate independent outputs for the input

test samples, and not all samples are usually correctly classified. This issue becomes

serious with EEG prediction, where the classification is performed between few seconds

intervals. As a result, classification schemes may eventually lead to a significant number

of false alarms.

Practical systems are subject to noise and random disturbances that can hinder

the analysis and identification procedures. To avoid these problems, filters have been

used to capture only the signals with the dynamics of interest present in the system

(HAYKIN, S., 2004). The regularization methods are therefore designed to reduce the

number of false alarms by taking the most recent classifications into account by making

some corrective manipulations on the classifier outputs.

The following are the filters that will be considered in the prediction design from

the SVM classifiers’ output smoothing. These are the Moving Average Filter, the Median

Filter, and the Kalman Filter.

2.5.1 Moving Average Filter

Suppose that we want to remove the noise from the data, to get a closer repre-

sentation of the expected underlying smooth curve. Consider a time series 𝑦, 𝑡 = 1,...,𝑁.

A symmetric (centered) moving average filter of window length 𝑚 = 2𝑘 + 1 is given by:

𝑀𝐴 =
1
𝑚

𝑘∑︁
𝑗=−𝑘

𝑦𝑡+ 𝑗 (18)

Intuitively, this could be accomplished by averaging values of the time series

within 𝑘 periods of 𝑡. Observations that are nearby in time are also likely to be close in

value. Therefore, the average eliminates some high-frequency randomnesses in the

data, leaving a smooth trend-cycle component (SMITH, 2003).

The centralized moving average smooths the series since it keeps the lower

frequencies and attenuates the higher frequencies (LYNCH, 2015).

This class of filters change the spectral characteristics of a time series pre-

dictably, requiring that the series exhibit stationarity, has non-time-dependent mean and
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autocovariance (LÜTKEPOHL, 2004).

2.5.2 Median Filter

The Median Filter (MF) is the filtering technique used for noise removal from

images and signals. The median filters are considered good alternatives because they

have some very interesting properties (PITAS, 1990; NODES; GALLAGHER, 1982):

1. They can smooth the transient changes in signal intensity;

2. The edge information is preserved in the filtered signal;

3. They can be implemented by very simple digital nonlinear operations.

Due to these properties, they are frequently used in various signal and image

processing applications, such as seismic signal processing, speech processing, medical

imaging, robotic vision, and pattern recognition (NODES; GALLAGHER, 1982; ALI,

2018).

The median of a group, containing an odd number of elements, is defined as

the middle element when the elements of the group are sorted into either ascending

or descending order. If the set comprises an even number, the median value is the

arithmetic mean of all the values in the range (𝑘 − 𝑟) to (𝑘 + 𝑟).

A median filter finds the median of several elements at its input. For a set of 𝑁

samples of a time series 𝑦, the median of 𝑘-th element is calculated as:

𝑚 =


𝑦𝑘 ; 𝑘 = 𝑁+1

2 (N odd)
𝑦𝑘 + 𝑦𝑙

2
; 𝑘 =

𝑁

2
; 𝑙 =

𝑁

2
+ 1 (N even)

(19)

In the standard median filtering applications, a moving "window" of rank 𝑟 and

width (2𝑟 + 1) is moved along the sampled values of the signal or the image. For each

position of the window, the median of the elements within the window is computed

and then written as the output value at the same position as the central element of the

window.
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2.5.3 Kalman Filter

The Kalman Filter (KF) is a recursive solution for linear filtering of discrete

data, using mathematical equations to estimate the state of a process to minimize the

mean square error. The technique was developed in the decade of 1960 by Hungarian

engineer Rudolf Kalman within the field of electrical engineering, applying to stationary

and non-stationary environments (KALMAN, 1960).

To understand how a Kalman filter works, it is important to first understand its

equation, which considers observations got through noisy measurements. This type of

filter is widely used in applications such as tracking the position, velocity, and acceleration

of airplanes, drones and even atomic vehicles (LEFFERTS; MARKLEY; SHUSTER,

1982).

First, let’s introduce a generic system described as state variables. Let xk =

[dk dk]′ denote the state vector ( ¤𝑑𝑘 represents the rate of change of dk), yk is the

measured variable (i.e, SVM output). Then, yk is represented by the following state-

space model: 
xk+1 =


1 𝑇

0 1

 xk + wk

yk =

[
1 0

]
xk + vk

(20)

where 𝑇 is the time interval of an EEG epoch (a 5-second window is considered in this

work); wk and vk are zero-mean white noise vectors with covariance

Q =


𝜎2
𝑤
𝑇3

3 𝜎2
𝑤
𝑇2

2

𝜎2
𝑤
𝑇2

2 𝜎2
𝑤 𝑇

 (21)

where 𝜎𝑤 the assumed standard deviation of the random fluctuations of ¤dk.

The KF underlying idea is to obtain a filtered version of dk (d̂k) (CHISCI et al.,

2010). The smoother variable d̂k will then be used as the output in place of yk. The ratio

𝜎𝐾𝐹 = 𝜎𝑤/𝜎𝑣 can be adjusted to tune the filter performance.

The complete algorithm is described in Simon Haykin (2004). Shortly, the Kalman

estimator presents two steps for estimation: the prediction and the correction. In the

prediction step, one must predict the projection of the state in the forward step (a priori),
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as well as the uncertainty in the estimation. The correction step, necessary to reach the

estimated state, is formulated through an equation that associates the estimated state

in the measure’s prediction with the difference between the real measured value and

the predicted value (a posteriori).

2.5.4 Stationarity Test

Stationarity is a significant factor for the analysis of time series, as it is an

indicator for choosing the best statistical method, in this study, to smooth the behavior of

the SVM classifiers’ outputs. From all the techniques previously considered, the moving

average filter is the only one that has a restriction on the stationarity of the time series.

In order to verify if the dynamics of the outputs of the classifiers come from stationary

processes, a stationarity test will be performed.

Several types of tests are found in the literature. In this study, the Augmented

Dickey-Fuller (ADF) test was chosen por ser um famoso método formal para a verificação

de estacionariedade (DICKEY; FULLER, 1979, 1981).

The development of the test was motivated by the need to check whether a

series needs to be differentiated to become stationary. A time series is stationary if

the random data oscillate around a constant value. This is found when the probability

distribution parameters mean, variance, and covariance are fixed and constant over time

(WOOLDRIDGE, 2015; MORETTIN, 2017).

The first thing to note about the ADF test is that it seeks to check whether or

not a series is stationary by testing whether it has a unit root. The initial approach is to

assume the following model.

𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝑒𝑡 (22)

where 𝑒𝑡 is the random error term known as white noise, which has zero mean, constant

variance 𝜎2 and is non-self-correlated. The term 𝜙 stands for the adjustment speed

coefficient.

When 𝜙 = 1, Equation (22) becomes a random walk model (no displacement)

and then the process has a unit root and the series is said to be nonstationary. If |𝜙 | ≤ 1,

the time series 𝑦𝑡 is said to be stationary and consequently has no unit root. Therefore,
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called the unit root test, ADF uses hypotheses, which are:
𝐻0 : 𝜙 = 1, 𝑦𝑡 is non-stationary (has unit root)

𝐻1 : |𝜙 | ≤ 1, 𝑦𝑡 is stationary
(23)

Dickey and Fuller (1979) registered critical values through Monte Carlo simula-

tions and developed a τ statistic to formally test the unit root problem. If the absolute

value of the calculated τ statistic is greater than the absolute value tabulated by DF,

there is evidence to accept the null hypothesis, considering the series as non-stationary.
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3 MATERIAL AND METHODS

This chapter discusses the materials and methods employed to develop the

research. In the first section, there is a description of the CHB-MIT EEG data set,

commenting on the acquisition procedure. The criteria for the selection of patients are

also presented, as well as the criteria for the determination of the interictal and preictal

periods. In Sections 3.2 and 3.3, the DWT EEG processing technique and the spatial

filtering procedure via CSP are discussed, respectively. Sections 3.4 and 3.5 explains

the feature extraction step, also covering the classification performance metrics used

in the study. Finally, Section 3.6 discusses the procedures adopted for the design and

validation of the prediction protocol.

Figure 12 shows an overview of the proposed process for the seizure prediction

method.

Figure 12 – Methodology framework

Source: Authors (2022).
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All of the computational codes are written in MATLAB. The MATLAB environment

is a well-known suite for digital signal processing and advanced mathematical applica-

tions. The tool has also a large set of specialized support programs, called toolboxes,

which make it suitable for solving particular classes of problems. All algorithms were

developed using the Wavelet and Statistics, and Machine Learning Network Toolboxes.

3.1 DATABASE DESCRIPTION

The scalp EEG signals used in this study are available in the PhysioNet open-

source CHB-MIT database created by a group of researchers from Boston Children’s

Hospital and Massachusetts Institute of Technology (MIT). The recordings are from 23

patients, whose ages range from 1.5 years to 22 years. Furthermore, the gender of

the patients in each case is specified, 5 males and 17 females. All 23 individuals have

intractable seizures and underwent continuous monitoring for several days following

withdrawal of anti-seizure medication to characterize their seizures and assess their

candidacy for surgical intervention. An annotation document clearly states the time of

seizure start and end for each subject (GOLDBERGER et al., 2000; SHOEB, 2009).

The EEG signals were sampled at 256 Hz with 16-bit resolution. The electrodes

were placed on the scalp according to the 10-20 international system with bipolar

longitudinal setup (Figure 13) – where each channel measures the difference between

two adjacent electrodes (HENRY, 2006; FISCH; SPEHLMANN, 1999).

Figure 13 – CHB-MIT Database electrode’s setup

Source: Adapted from Libenson (2010).
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As a patient-independent study, and since seizures often occur in different

regions across patients (as mentioned in Section 2.1), is relevant to consider the records

from electrodes placed all over the scalp. Hence, a subject’s 18 common channels

were selected (FP1-F7, F7-T7, T7- P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4,

F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ and CZ-PZ), covering

large area records of the scalp, which can provide a more consistent analysis in both

time-frequency and spatial domains.

According to the number of crises available and their respective distributions

over the recorded period, we have considered 17 out of 23 patients. The subjects’

information as their seizure condition is presented in Table 1.

Table 1 – Detailed description of CHB-MIT EEG Database

Subject (ID) Gender1 Age Seizure Type2 Brain Location No. of seizures3

01 F 11 SP, CP Frontal 4
02 M 11 SP, CP, GTC Temporal 1
03 F 14 SP, CP Frontal 1
04 M 22 SP, CP, GTC Temporal 2
05 F 7 CP, GTC Frontal 4
06 F 1.5 CP, GTC Temporal/Occipal 6
07 F 14.5 SP, CP, GTC Temporal 2
08 M 3.5 SP, CP, GTC Frontal 2
09 F 10 CP, GTC Temporal/Occipal 3
10 M 3 SP, CP, GTC Temporal 2
13 F 3 SP, CP, GTC Temporal/Occipal 1
14 F 9 CP, GTC Frontal/Temporal 2
15 M 16 SP, CP, GTC Temporal 5
16 F 7 SP, CP, GTC Temporal 2
18 F 18 SP, CP Frontal 2
21 F 13 SP, CP Temporal/Parietal 1
22 F 9 - Temporal 2

Total 42
1 Female (F) and Male (M)
2 Simple partial seizure (SP), Complex partial seizure (CP) and Generalized tonic-clonic seizure (GTC)
3 The number of seizures considered for the study of the total available, which met the criteria explained

in subsection 3.1.1
Source: Yuan Zhang et al. (2019), Goldberger et al. (2000) and Shoeb (2009).

3.1.1 Interictal and Preictal Periods Selection

The choice of preictal length is a major issue with seizure prediction algorithms,

and may differ from patient to patient, and even among the seizures of a patient. Based

on the literature, it has been reported that there are electrophysiological changes that
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might develop minutes to hours before the actual seizure onset (MORMANN; KREUZ,

et al., 2005; DIREITO et al., 2017). As there is no prior marking by the experts, the

definition of preictal and interictal periods comprises the initial stage of this work.

The preictal period should be selected carefully, so to cover the information

and patterns best reflecting the preictal activities. To tackle this issue, the length of the

preictal period in this study, also called seizure prediction horizon (SPH), is defined by

AES (2014). Daoud and Bayoumi (2019) also believe that 60 minutes is an appropriate

range that can effectively provide significant time for effective patient care.

The period of 60 minutes was also chosen for the interictal period. This strategy

was assumed because of the limited number of seizures available as well as to avoid

the unbalanced data problem.

Thus, the continuous recordings were truncated and the interictal and preictal

periods were extracted, taking as reference the seizure onset and termination marks.

Hence, each seizure in the database could only be considered for the study if it had at

least 120 minutes of prior seizure-free recordings, justifying the subjects and the number

of seizures presented in Table 1.

3.2 DISCRETE WAVELET DECOMPOSITION

The preprocessing stage generally consists of filtering the EEG signals to limit

them within frequency ranges of interest through DWT high and low-pass filters. In the

specific case of application in EEG recordings, the choice of wavelet function assumes

that it should resemble, as much as possible, the epileptogenic event that one wishes to

highlight.

Given the respective approaches described in Adeli, Z. Zhou, and Dadmehr

(2003) and Gandhi, Panigrahi, and Anand (2011), the Daubechies 4 orthonormal wavelet

function (db4), which is constructed from an eighth-order filter, is used on the proposed

system. Both Halford (2009) and Indiradevi et al. (2008) argued the db4 wavelet yields

the highest correlation coefficients with the epileptic behavior among the wavelet bases

available in the MATLAB Toolbox.

Figure 14 presents the scale function, Daubechies 4 wavelet function, and the

coefficients of the low-pass and high-pass filters, respectively.
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Figure 14 – Scaling and Wavelet functions for Daubechies 4 and its low-pass and high-pass filters

For the EEG segmentation as trials, a non-overlapping sliding windowing tech-

nique with a fixed width of 5 seconds (1280 samples) was used to minimize the effect

of non-stationarity (BANDARABADI; TEIXEIRA, et al., 2015; RUKHSAR et al., 2019).

According to the Nyquist-Shannon sampling theorem (SHANNON, 1949), one can only

represent frequencies up to half of the sampling frequency, thus the frequencies of the

signals range between 0 and 128 Hz.

Knowing that the seizure in recorded EEGs usually occurs between 3-29 Hz

(GOTMAN, 1982), five-level Wavelet decomposition was set to match well with the afore-

mentioned frequency range of the EEGs sub-bands. Figure 15 shows the corresponding

wavelet decomposition tree.

Figure 15 – Five-level decomposition for Daubechies order 4 wavelet with a sampling frequency
of 256 Hz

Source: Authors (2022).
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Frame 2 presents the bandwidth and the five sub-bands corresponding to the

respective levels of decomposition.

Frame 2 – Frequencies corresponding to the 5-level wavelet decomposition
Level Coef. Frenquency range EEG sub-band

1 cD1 64 - 128 Hz -
2 cD2 32 - 64 Hz gamma
3 cD3 16 - 32 Hz beta
4 cD4 8 - 16 Hz alpha
5 cD5 4 - 8 Hz theta
5 cA5 0 - 4 Hz delta

The detail coefficients, highlighted in green, correspond to the sub-bands beta,

alpha and theta, and will be considered for the spatial filtering step because they comprise

the range of interest for pathological studies in electroencephalography. Figure 16

illustrates the single-channel decomposition process of a subject 1 5-second epoch.

The multiresolution decomposition allows highlighting significant variations in

the behavior of the signals in the considered frequency range. To further highlight

these variations within the range of 4 and 32 Hz and, mainly, to significantly reduce the

dimensional problem, the spatial filtering technique via CSP is applied.

3.3 COMMON SPATIAL PATTERNS FILTERING

In the present CSP filtering process, three spatial filters are obtained, one for

each frequency sub-band (beta, alpha and theta). The parameter was set experimentally

to 𝑃 = 4 spatial filters (W𝑅 = [w1,w2,w17,w18]𝑇 ). In other words, as explained in the CSP

method, it is assumed that the first two and last two spatial patterns are related to specific

sources of the two EEG periods: preictal and interictal, respectively. Analogously to the

Equation (12), the reduced filtered components of each trial X of wavelet coefficients of

a given frequency sub-band, are given by

Z𝑅 = W𝑅 X (24)

By reducing the data dimension from 18 channels to 4 components, the features

extraction can be more convenient, as well as the processing time can be decreased.



52

Figure 16 – Wavelet decomposition of a EEG sample up to the fifth level using DB4 wavelet. The
signals displayed in the following order from top to bottom: single-channel EEG, cD1,
cD2, cD3, cD4, cD5 and cA5 coefficients

Source: Authors (2022).

3.4 FEATURE EXTRACTION

The feature extraction of EEG signals for classification aims to represent the

signals compactly and with properties that highlight differences between different classes

of interest (DUDA; HART; STORK, 2001).

In similar employs, DWT metrics related to entropy and statistical moments are

considered, while when there is spatial transformation via CSP, they usually extract

attributes from the𝑊 projection matrix (ALOTAIBY; ALSHEBEILI; ALOTAIBI, et al., 2017).

In the present study, feature extraction will be from the 𝑃 = 4 vectors that compose the

compact projection of the coefficient matrices resulting from DWT. Thus, the reduced

matrix Z𝑅 (Equation(25)) will be used for feature extraction.
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Z𝑅 = [z1, z2, z3, z4]𝑇 (25)

Three different attributes have been selected, which act as inputs to the clas-

sifiers: Shannon Entropy, Logarithm Energy Entropy and Variance logarithm. Entropy

has been used as a measure of the complexity or uncertainty of a signal, which allows

efficient characterization of the chaotic behavior reflected in the EEG signal (GREENE

et al., 2008; SANEI; CHAMBERS, 2013). The three attributes are detailed as follows.

• Shannon Entropy for wavelet decomposition has been presented by Coifman

and Wickerhauser (1992). As zj is the j-th filtered vector of 𝑛𝑞 coefficients result-

ing from wavelet decomposition on an orthonormal basis, the (unnormalized)

entropy F1 of a given EEG sub-band is denoted by

F1(z 𝑗 ) = −
𝑛𝑞∑︁
𝑘=1

z 𝑗 𝑘
2 log(z 𝑗 𝑘

2) (26)

• Logarithm Energy Entropy: is a parameter that has been used in recent studies

and has proved to be an effective tool for extracting information about EEG

signals (AYDIN; SARAOĞLU; KARA, 2009; GÖKSU, 2018). As well as in

Equation (26), the Logarithm Energy Entropy F2 is given by

F2(z 𝑗 ) =
𝑛𝑞∑︁
𝑘=1

𝑙𝑜𝑔(z 𝑗 𝑘
2) (27)

• Logarithm of Variance: variance is a statistical parameter that captures the

deviation from the mean value of random data. Extracting the logarithm of this

measure, Equation (28), is a widely used approach in data from CSP filtering

(BLANKERTZ et al., 2008).

𝐹3(z 𝑗 ) = 𝑙𝑜𝑔(𝐸 [z2
𝑗 ] − `2) (28)

where ` is the mean of z 𝑗 and the 𝐸 [.] operation corresponds to the expected

value.

Taking the set of 4 components in Z𝑅, we have 12 attributes for each frequency

sub-band of interest (beta, alpha and theta), totaling 36 attributes. These are extracted

from 𝑘 trials and grouped into a single matrix. Figure 17 represents the formation of a

feature matrix for each EEG state, where the blocks represent attribute vectors of the 𝑘
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trials.

Figure 17 – Feature matrix process for each window of EEG activity

Source: Authors (2022).

3.5 SVM CLASSIFIER

A universal SVM-RBF model is trained to distinguish the state of a five seconds

EEG trial, from preictal to interictal, across 17 subjects. Each trial is evaluated regardless

of its temporal organization.

The non-specific model approach is carried out using the leave-one-subject-out

(LOSO) cross-validation method (Figure 18), which is performed by leaving a different

subject out for testing in each iteration, to check whether the model performance is stable

for the entire dataset (PEREIRA et al., 2018), and is intended to derive a generalized

prediction.

Figure 18 – Protocol of the leave-one-subject-out cross-validation

Source: Adapted from Ma, Liu, and Cai (2020).
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3.5.1 Features’ Standardization

One of the most common steps when designing pattern recognition systems is

feature scaling. Ideally, all attributes should vary within the same boundaries, thus avoid-

ing introducing bias in the classifier. Such a strategy can help reduce the convergence

time of the (HAYKIN, S. S., 2009) algorithm.

The boxplot is a very useful tool for visualizing and comparing distributions

between features, highlighting useful information such as outliers (KING, 2019). In

addition, each quartile, median, maximum and minimum of the three different feature

types can be observed, as shown in Figure 19.

Figure 19 – Boxplot for the three chosen features
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The behavior of the EEG signals implies that entropy features have higher

magnitudes compared to the rest, whereas logarithm of the variance may be small.

In Machine Learning, standardization is the best practice to oversee the dataset

to transform the features to compatible scales. The proposed method uses the z-score –

a very useful statistical tool because it allows us to compare two different values from

different normal distributions (MOLUGARAM; RAO, 2017).

Z-score is a function provided by MATLAB. For a data with mean ` and standard

deviation 𝜎, the z-score of a data point 𝑥 is computed as:

𝑧 =
𝑥 − `
𝜎

(29)
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In summary, it can be said that standardization gives the features a comparable

scale, but without highlighting outliers. Figure 20 presents a distribution of the feature

values after the standardization procedure.

Figure 20 – Features’ bloxplot after z-score
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Source: Authors (2022).

The standardization process has enabled features to be worked out on very

close scales, as seen in Figure 20.

3.5.2 Performance Evaluation

The trained classifiers should return an output 1 for the preictal state prediction

(positive label) and 0 for the interictal period (negative label).

Performance evaluation is an essential step and must be executed before any

algorithm can be implemented as a medical diagnostic aid. In this study, performance

will be quantified by the classifier’s ability to discriminate between the two grasping

states of interest.

A meaningful evaluation for a classifier response can also be performed ac-

cording to some metrics, which are given by the information in the confusion matrix

(POWERS, 2011), where TP = true-positive, TN = true-negative, FP = false-positive and

FN = false-negative.

• Precision: the fraction of trials correctly classified from all those predicted

as positive. Precision gives an indication of how certain the model is when
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predicting a positive class.

Precision =
TP

TP+FP (30)

• Recall: the correctly classified fraction of all trials that actually have a positive

label. This measurement gives an indication to what rate of a class labels that

the model was able to predict.

Recall =
TP

TP+FN (31)

• F1-score: precision and recall are often combined into a single measure using

their harmonic mean.

F1-score = 2 × Precision × Recall
Precision + Recall (32)

The range for the F1-score is [0, 1], where 0 is rated the worst and 1 the best. It

states the performance of a classifier and also its robustness, meaning that it should not

fail with a significant number of samples. A high precision but lower recall would give

high accuracy, but fail many samples. The greater F1, the better the performance of a

model is (MURPHY, 2013).

3.6 PREDICTION PROTOCOL

The classifier used in this study does not consider the temporal dynamics of

the samples. The samples are considered as independent from each other, without the

classifier knowing that they are part of a time series.

It is unclear how accurate prediction of brief windows is effective in the clinical

goal of prediction when there is no protocol for the regularization of the SVM model

output. Hence, once smoothed by a post-processing filter, a specific threshold could

determine the patient’s state: when the filter output is above the threshold, an alarm will

be raised to acknowledge seizure, enabling decision making.
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3.6.1 Stationarity Test

The Augmented Dickey-Fuller tests were run at a significance level of 10% and

it was verified that not all series (SVM outputs) followed a stationary trend, most times,

there was not enough evidence to reject the null hypothesis. This caused the Moving

Average method to be discarded for this work. Therefore, only Kalman Filter and Median

Filter are used to smooth the outputs of the classifiers.

3.6.2 Filters’ parameters settings

The standard deviations are the only design parameter of the Kalman Filter. The

value of 𝜎𝐾𝐹 = 𝜎𝑤/𝜎𝑣 (Equation (21)) was set according to Chisci et al. (2010), being

𝜎𝐾𝐹 = 5 × 10−5.

For the Moving Median filter parameter 𝑟 was set to 𝑟 = 30 after several tests.

This gives a window length of 𝑚 = 2× 30 + 1 = 61, the calculation includes the element in

the current position, 30 elements before the current position (corresponding to a period

of 30 × 5 = 150 seconds), and 30 elements after the current position.

3.6.3 Performance Evaluation

To reinforce correct decision-making, besides the post-processing result, thresh-

old evaluation law was created. The predictors’ alarms are generated using the post-

processed outputs 𝑦𝑝𝑝 values according to:

𝑎[𝑘] =


1, if 𝑦𝑝𝑝 [𝑖] ≥ 𝐿

0, if 𝑦𝑝𝑝 [𝑖] < 𝐿
∀𝑖 ∈ [𝑘 − 5, 𝑘] (33)

where L is an arbitrary threshold, which in this work the values {0.7, 0.9} are analyzed.

Both L and values were set experimentally and consisted of a bold approach to smooth

out false alarms.

An alarm can only be raised if, at the current time and in the 5 previous times,

𝑎[𝑘] crosses the threshold, therefore strongly suggesting a preictal state. This means

that if at least 6 epochs (30 seconds) led to a positive prediction, then the alarm is set.

To evaluate the performance of the proposed prediction protocol, another sta-
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tistical measurement of false positive/negative rate and anticipation time to assess the

performance of our approach.

• The false-positive rate (FPR) represents the ratio of interictal trials which are

currently misclassified as preictal trials to all the interictal horizon. It is an

important metric for a seizure predictor, especially when applied to patients

with refractory epilepsy. For those patients who suffer constantly from seizures,

the wrong prediction can increase the patient’s anxiety.

• The false-negative rate (FNR) represents the ratio of preictal trials which are

currently misclassified as interictal to all the preictal trials. Both FNR, FPR

demonstrate how many false alarms the proposed algorithm would generate.

• The average prediction time (APT) is the ratio of difference between the

algorithm-driven alarms within the preictal period and their corresponding

actual seizure onsets (in minutes).
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4 RESULTS AND DISCUSSION

In this chapter, the final results of the epileptic seizure prediction system are

presented as a progression of the research and experiments described in Chapter 3.

4.1 SVM CLASSIFIER

Table 2 presents the results obtained from the proposed method for the SVM

classification step. An average precision of 68.8% is achieved.

Table 2 – SVM classifier performance on 17 subjects

Subject (ID) Precision Recall F1-score
1 0.621 0.549 0.583
2 0.728 0.942 0.821
3 0.505 0.771 0.610
4 0.520 0.817 0.636
5 0.611 0.921 0.735
6 0.701 0.880 0.780
7 0.680 0.791 0.731
8 0.672 0.894 0.767
9 0.642 0.914 0.754
10 0.870 0.834 0.852
13 0.646 0.576 0.609
14 0.672 0.741 0.705
15 0.478 0.812 0.602
16 0.654 0.833 0.733
18 0.873 0.853 0.863
21 0.965 0.912 0.938
22 0.859 0.946 0.900

Average 0.688 0.823 0.742
Standard deviation 0.136 0.115 0.109

A heterogeneity in performance was found. The large plurality can justify this

regarding the affected regions and the generation mechanisms of these seizures across

the subjects. The accuracy rate is lower than the other metrics, showing that the algorithm

found it more challenging to detect the preictal activity in most patients.

Looking strictly at the results, we can group the subjects into three distinct

scenarios:

1. Scenario 1: best performances, precision and recall metrics with high values,

resulting in remarkable F1-scores;

2. Scenario 2: low precision, discrepant of the higher remaining metrics;
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3. Scenario 3: worst performances, with all metrics having low values.

Figure 21 presents a schematic of the patients studied in each of the respective

scenarios presented above.

Figure 21 – Representation of the three distinct behaviors by the studied patients

Source: Authors (2022).

From the scenario segmentation in Figure 21, it can be observed that in only

six subjects, the classifier presents a remarkable performance. More than half of the

patients fall into scenario 2, where high recall rates are found, evidencing higher difficulty

in detecting the interictal period in the samples of these individuals.

Organizing the test samples according to their respective window in time gives

continuous 2 hours test segments (both interictal and preictal) per seizure. Examples of

the behavior of the classified samples from four subjects’ outcomes are presented in

Figure 22. Both interictal and preictal periods are highlighted for reference, outlined by

the colors green and yellow, respectively, showing that alarms outside this window will

be considered as misclassification.

For subject 21 (Figure 22(a)), whose behavior also represents those patients

who provided the highest F1-score, it can be observed that positive detection occurs

throughout the SPH. The low false positive rate is also observed, reflecting the high

precision rates.

For subject 1 (Figure 22(b)), a lot of false-positive labels frequently appeared

within the interictal horizon. At the preictal period, the density of true positives increases

slightly as the seizure approaches but loses density in the final windows of the prediction

horizon. A prediction system capable of generating alarms even a few minutes before

a seizure will be entirely satisfactory for keeping patients safe from some dangerous

situations.
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Figure 22 – Temporal dynamics of SVM classifier outputs
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(c) Subject 9, Scenario 2

Source: Authors (2022).

However, it was expected that recall could vary for different subjects due to the

varying quality of their preictal activity behavior. One of the most significant divergences

between precision and recall of scenario 2 is found in samples from subject 9 (Figure

22(c)), where the high density of false positives is visible. The prediction horizon has a

low false-negative density, reflecting the high recall rate. The temporal dynamics analysis

does not show any correlation between the behavior of the classifiers and the evolution

between the interictal and preictal periods, which is detrimental to decision making.

For patients with refractory epilepsy, for such excessive false prediction rates,

patients may either not consider generated alarms seriously, even those of accurate

predictions, or go through intensive psychological stresses.

To eliminate some false positives, and properly arrive at a classification decision

to detect seizure events, a post-processing method, called SVM output regularization,

needs to be incorporated into the system – we post-process the SVM classification
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output using the smoothing techniques Median and Kalman Filters.

4.2 POSTPROCESSING AND ALARM GENERATION

Summary results for all the patients after the two preprocessing methods and

alarm-rule (Equation (33)) for both threshold values set are shown in Tables 3 and 4.

Table 3 – Predictor Performance - Threshold at 0.7

Subject Kalman Filter Median Filter
(ID) FPR/h FNR/h APT(min) FPR/h FNR/h APT(min)
1 0.049 0.836 59.321 0.151 0.559 59.021
2 0.024 0.276 59.333 0.189 0.000 59.917
3 0.381 0.553 59.917 0.893 0.179 59.917
4 0.535 0.433 58.542 0.767 0.099 59.417
5 0.220 0.320 59.604 0.544 0.004 59.667
6 0.030 0.440 59.347 0.211 0.001 59.861
7 0.043 0.575 57.583 0.347 0.046 58.833
8 0.088 0.250 59.333 0.360 0.089 59.833
9 0.105 0.355 58.944 0.581 0.002 59.806
10 0.003 0.526 59.042 0.004 0.007 59.500
13 0.014 0.921 57.000 0.082 0.232 57.667
14 0.022 0.697 59.458 0.258 0.110 59.917
15 0.617 0.562 59.517 0.979 0.033 59.917
16 0.034 0.557 57.958 0.312 0.000 59.917
18 0.000 0.422 59.250 0.000 0.078 58.500
21 0.000 0.357 59.333 0.000 0.007 59.500
22 0.000 0.674 59.208 0.002 0.005 59.625

Average 0.127 0.515 58.982 0.334 0.085 59.460
Standard deviation 0.195 0.189 0.776 0.317 0.140 0.626

We can observe that the adoption of a default threshold at L=0.7 could mitigate

the false positive problems by the Kalman Filter approach, which were evidenced by the

precision metric in Table 2. On the other hand, the false-negative rate was noticeably

impaired, given the high recall values, which evidenced the low false-negative rate in

the classification step.

With the average false positive rate at 0.334, it can be seen that the Median

Filter was able to reduce the false positive rate to the point that it did not hurt the low

false-negative rate.

A more striking threshold L=0.9 did not provide a significant improvement in

alarm performance. For the Kalman Filter, FNR was reduced by an average of 0.085,

but the FNR rate increased slightly to 0.609. The performance for the Median Filter

remained intact, evidencing its better suitability for the proposed method.
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Table 4 – Predictor Performance - Threshold at 0.9

Subject Kalman Filter Median Filter
(ID) FPR/h FNR/h APT(min) FPR/h FNR/h APT(min)
1 0.023 0.932 47.011 0.151 0.559 59.021
2 0.000 0.378 59.250 0.189 0.000 59.917
3 0.225 0.667 59.917 0.893 0.172 59.917
4 0.503 0.499 56.208 0.767 0.099 59.417
5 0.146 0.440 58.312 0.544 0.004 59.667
6 0.006 0.597 57.861 0.211 0.001 59.861
7 0.013 0.719 56.750 0.347 0.046 58.833
8 0.033 0.278 58.917 0.360 0.089 59.833
9 0.034 0.517 56.028 0.581 0.002 59.806
10 0.000 0.665 58.042 0.004 0.007 59.500
13 0.001 0.994 28.500 0.082 0.233 57.667
14 0.001 0.875 59.292 0.258 0.110 59.917
15 0.481 0.701 58.317 0.979 0.033 59.917
16 0.002 0.724 56.417 0.312 0.000 59.917
18 0.000 0.532 59.000 0.000 0.078 58.500
21 0.000 0.500 59.250 0.000 0.007 59.500
22 0.000 0.328 58.625 0.002 0.005 59.625

Average 0.086 0.609 55.747 0.334 0.085 59.460
Standard deviation 0.164 0.205 7.611 0.317 0.140 0.626

It is essential to note that the high values of the standard deviation of the

FNR metric show a high variation of the score across seizures from the patients or

seizures from a particular location. For the patients with much smaller FNR, no specific

characteristics were found that distinguished them from the others.

Unfortunately, both FNR and FPR parameters cannot be optimally set simulta-

neously, as improving one means worsening the other. Therefore, a trade-off has to be

made in their selection. For example, during a preictal period where the amplitude of the

signals increases significantly, one can make predictions by choosing a threshold level.

All seizures will be correctly predicted for a relatively low threshold level while FPR will

increase. In contrast, higher thresholds will decrease FPR while decreasing sensitivity.

The final stage of alarms generation post-processing methods is illustrated in

Figure 23. As shown in this figure, upon exceeding the threshold value 0.9, while fulfilling

the conditions presented in Equation (33), an alarm is triggered. At the top panels, the

decision values from the SVM classification (in mustard bars) and their Median and

Kalman-smoothed outputs (olive and orange colors, respectively) are shown. Meanwhile,

the bottom plot stands for final outputs after the alarm rule is evaluated. Once post-

processed and classified as positive, the positive output must continue in the next 25-sec

prediction horizon, alarming evidence of an epileptic seizure; otherwise, it is classified
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into a negative (interictal) group.

Figure 23 – Examples of postprocessing by the Kalman and Moving Median filters and posterior

threshold evaluation in subjects 21 (a), 01 (b) and 09 (c)
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Source: Authors (2022).

As shown in Figure 23(a), after the smoothing process, the chattering behavior

imposed on the SVM decision variable has been mitigated. For the other cases (Figures

23(b) and 23(c)), where the false detection density is very high, the presence of false

alarms is inevitable.

In gereral, the Median filter is less volatile, while the Kalman filter is sensitive

to the slightest change in the density of positive outputs of the classifier. However, the

number of false alarms raised by KF does not hinder its applicability for some patients.

It can be concluded that the MF approach is more conservative concerning the

raising of alarms because it considers a longer memory, and because of its particular

constraints (rules) on the times where alarms are possible to be raised. While MF

considers a range from 180 to 360 seconds, the KF approach is based on just the

past output sample, and its derivative (rate of change), i.e., a much shorter memory is

considered.

Another important aspect is how patient-specific characteristics, such as seizure

types, age, and gender, can directly affect seizure prediction performance. Correlations

on the seizure type or focal aware seizures were not found to account for high or

low performance in certain subjects. This observation could be helpful for clinical trial

consideration; e.g., focus on patients with aware focal seizures first.

Frame 3 summarizes some state-of-art methods using the same CHB-MIT
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database in chronological order. N/M represents "not mentioned" entries.

Frame 3 – Comparison of summary approaches for epileptic seizure predictors

Method Features’s nature Classifier Precision FPR/h Postprocessing Statistical
Validation

Khan et al.
(2017) DWT CNN 0.878 0.14 N/M Random

Predictor
Alotaiby,

Alshebeili,
Alotaibi, et al.

(2017)

CSP LDA 0.81 0.47 Median Filter N/M

Syed
Muhammad

Usman,
Muhammad
Usman, and
Fong (2017)

Hjorth parameters
Approximate entropy
Statistical moments
Spectral moments

SVM 0.922 N/M N/M N/M

Syed
Muhammad
Usman and

Hassan
(2018)

Hjorth parameters
Statistical moments

KNN
Naive Bayes
SVM

0.974
0.907
0.971

N/M N/M t-test

Yuan Zhang
et al. (2019)

CSP
WPD

CNN 0.922 0.12 Kalman Filter t-test

Syed
Muhammad

Usman,
Khalid, and

Aslam
(2020)

CNN SVM 0.927 N/M N/M

Proposed
method

DWT
CSP
Entropy features
Statistical moment

SVM 0.688 0.086
0.334

Median Filter
Kalman Filter

No

This study produced a generalized seizure prediction with low average precision

relative to related work. On the other hand, the false positive rate can be mitigated in

the post-processing stage, which compares favorably with the results from the patient-

specific studies listed, including those using Deep Learning techniques. It is worth

repeating that generalized prediction algorithms are at a performance disadvantage

because of the heterogeneity of seizures between patients.

It can be observed that the vast majority of notable works with the CHB-MIT

dataset do not use post-processing techniques and focus only on the classifiers’ perfor-

mance. As seen in the methodology of this paper, such techniques are of paramount

importance for understanding and smoothing the temporal dynamics of a predictor.

Because this is a primary study of a seizure predictor, an important mechanism

proposed to evaluate the performance of predictors concerning their evaluation for
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clinical application was out of the project scope: the comparison of predictors with a

random predictor. It is a recent trend and should also be implemented to understand if the

proposed methods perform above a reference probability (MORMANN; ANDRZEJAK,

et al., 2007).
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5 CONCLUSIONS

This work proposes a novel approach for non-patient-specific epileptic seizure

prediction by scalp EEG multichannel records.

The primary goal of this paper is to explore the roles of four preprocessing

techniques to determine their classification performance. Preprocessing EEG signals

is performed by applying the DWT for extracting features in a range of frequency sub-

bands of interest. CSP-based features extraction made it possible to combine the

information from the 18 available channels to maximize the variance between the interictal

and preictal periods, reducing the problem dimensionality to 4 vectors. This approach

contributes to developing robust classification models suitable for practical seizure

prediction systems, where information about the entire scalp is combined and, even with

reduced dimensions, the attributes essential for class discrimination remain.

The number of different EEG features used in the literature is considerable.

Considering the primary goal of this research, this paper does not determine the optimal

type or combination of features. However, it focuses on constructing robust models

based on two types of entropy features and a statistical one that is well known and

relatively simple to extract.

With an average precision of 68.8%, the SVM-RBF classifier demonstrates that

new procedures should be addressed to enable the non-patient-specific approach. On

the other hand, the soft post-processing techniques demonstrated upward directions for

seizure prediction, managing to achieve an false-positive rate of 0.334 for the Median

Filter.

Our work is not yet comparable with the-state-of-art methods using the same

CHB-MIT dataset. Nevertheless, this method opens multiple avenues for further studies

to investigate more suitable techniques for patient-independent seizure alarm systems.

Complementary approaches are therefore needed to acquire additional insights

into the preictal period. We have assumed a uniform preictal period (60 minutes) for

all patients in this study, but this might not be true as the preictal period may vary

from patient to patient. A better understanding of the dynamic transitions into and out of

seizures will contribute to the prediction and comprehension of what composes a seizure.

An exploratory study regarding the quality of the features and a further validation via

another machine learning technique is also a valid alternative.
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A common issue with initial studies concerned the statistical validity of the algo-

rithms’ performance (MORMANN; ANDRZEJAK, et al., 2007). According to Andrzejak

et al. (2009), many early seizure prediction models often claimed excellent results but

were later proven to be irreproducible or were unsubstantiated. In future investigations, it

is suggested to refine post-processing parameters and apply another statistical validation

technique to verify the superiority of the proposed method for seizure prediction, com-

paring our results with those achieved from the analytical random predictor introduced

by Schelter et al. (2006).

Another procedure often carried out as part of the performance measurement of

seizure prediction systems is the statistical validation of the applicability of the systems.

This statistical test aims to verify whether the developed algorithm has sensitivity higher

than the acute sensitivity, i.e. sensitivity under the same conditions as the random

predictor. Thus, a specific predictor, such as those developed in this study, should

have sensitivity superior to that of non-specific predictors, such as a random predictor

(WINTERHALDER et al., 2003).
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