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"BE PROACTIVE. Being proactive is more

than taking the initiative. It is recognizing that

we are responsible for our own choices and that

we have the freedom to choose based on

principles and values rather than circumstances

and conditions. Proactive people are agents of

change and choose not to be victims, not to be

reactive, or to blame others." (COVEY, 2004)



RESUMO

SILVA, Rodrigo Tchalski da. Métodos de Visão Computacional para Detecção, Localização
e Classificação de Tatuagens. 2022. 95 f. Dissertation (Master’s Degree em Electrical
Engineering and Industrial Informatics) – Federal University of Technology - Paraná. Curitiba,
2022.

As tatuagens ainda são pouco exploradas como fator biométrico para identificação humana,
principalmente na segurança pública, onde elas podem desempenhar um papel importante na
identificação de criminosos, vítimas ou outras pessoas de interesse. As tatuagens são classifi-
cadas como biometria suave, pois não são permanentes e podem mudar ao longo do tempo,
diferentemente dos traços biométricos rígidos (impressão digital, íris, DNA, etc.). Desta forma,
o objetivo principal deste trabalho é aplicar métodos de visão computacional e transferência
de aprendizado para os problemas de detecção, localização e classificação de tatuagens em
imagens. Dada a escassez de bases de dados disponíveis na literatura para estes problemas,
foram criadas bases de dados anotadas específicas para cada um dos problemas aqui abordados.
Para o problema de detecção de tatuagens foi apresentado um modelo de aprendizado profundo
baseado em transferência de aprendizado. Também foi aplicada a técnica de data augmentation
para melhorar a diversidade dos conjuntos de treinamento para obter uma melhor precisão de
classificação, e experimentos comparativos foram feitos para avaliar a diversidade de imagens
nos conjuntos de dados e a precisão do modelo proposto. Para o problema de localização de
tatuagens foi apresentada uma abordagem retreinando a rede Mask R-CNN com uma base de
dados de tatuagens, e um fine tuning foi realizado na rede com o objetivo de encontrar o conjunto
de parâmetros que apresentasse melhores resultados no treinamento da rede. Para o problema
de classificação de tatuagens o modelo proposto foi também baseado na utilização de redes
profundas com transferência de aprendizado para classificar um conjunto de 40 categorias de
tatuagens, muitas delas com significado prático para segurança pública. A técnica de data aug-
mentation também foi utilizada para melhorar a diversidade e robustez dos dados de treinamento.
Na detecção de tatuagens os resultados foram muito promissores, alcançando uma precisão
de 95,1% no conjunto de teste e um F1-score de 0,79 em um conjunto de dados externo que,
no geral, foram satisfatórios, dada a complexidade do problema. Na localização de tatuagens
os resultados alcançaram uma precisão média de 89,3%, mostrando que a rede Mask R-CNN
possui grande capacidade de adaptação para o ambiente de tatuagens, além de ser realizada uma
análise qualitativa que ajudou a entender como as características das imagens e das anotações tem
influência sobre os resultados. Na classificação de tatuagens, os resultados alcançaram 85,48%
de acurácia ao utilizar validação cruzada e data augmentation, mostrando que a abordagem
de transferência de aprendizado adotada tem boa capacidade para este problema. Trabalhos
futuros incluirão melhorar a qualidade e o volume das bases de dados, realizar um estudo mais
profundo sobre o ajuste fino de parâmetros das redes, e estudos de técnicas de mundo aberto
para classificação de tatuagens, além de desenvolvimento de modelos para outros problemas que
compõem o sistema de reconhecimento de tatuagens.

Palavras-chave: Detecção de tatuagem. Localização de tatuagem. Classificação e tatuagem.
Visão computacional. Transferência de aprendizado.



ABSTRACT

SILVA, Rodrigo Tchalski da. Computer Vision Methods for Tattoo Detection, Location and
Classification. 2022. 95 p. Dissertation (Master’s Degree in Electrical Engineering and
Industrial Informatics) – Federal University of Technology - Paraná. Curitiba, 2022.

Tattoos are still poorly explored as a biometric factor for human identification, especially in
law enforcement, where they can play an important role in identifying criminals, victims or
other persons of interest. Tattoos are classified as soft biometrics as they are not permanent and
can change over time, unlike hard biometric traits (fingerprint, iris, DNA, etc.). In this way,
the main objective of this work is to apply computer vision methods and transfer learning to
the problems of tattoo detection, location and classification in images. Given the scarcity of
datasets available in the literature for these problems, specific annotated datasets were created
for each problem addressed here. For the tattoo detection problem, a deep learning model based
on transfer learning was presented. Data augmentation technique was also applied to improve
the diversity of the training sets to obtain a better classification accuracy, and comparative
experiments were carried out to evaluate the diversity of images in the data sets and the accuracy
of the proposed model. For the tattoo location problem, an approach was presented by retraining
the Mask R-CNN network with a tattoo dataset, and a fine-tuning was performed on the network
to find the set of parameters that presented the best results in training the network. For the tattoo
classification problem, the proposed model was also based on using deep networks with transfer
learning to classify a set of 40 tattoo categories, many of them with practical meaning for law
enforcement. Data augmentation technique was also used to improve the diversity and robustness
of the training data. In tattoo detection, the results were very promising, achieving an accuracy
of 95.1% in the test dataset and an F1-score of 0.79 in an external dataset, which, in general,
were satisfactory, given the complexity of the problem. In tattoos location, the results reached an
average accuracy of 89.3%, showing that the Mask R-CNN network has great adaptability to the
tattoo environment, in addition to performing a qualitative analysis that helped to understand how
the characteristics of images and annotations influence the results. In tattoos classification, the
results reached accuracy of 85.24% when using cross validation and data augmentation, showing
that the transfer learning approach adopted has good capacity for this problem. Future work will
include improving the quality and volume of the databases, conducting a more in-depth study
on the fine-tuning of network parameters, and studies of open-world techniques for classifying
tattoos, as well as developing models for other problems that compose the tattoo recognition
roadmap.

Keywords: Tattoo detection. Tattoo location. Tattoo classification. Computer vision. Transfer
learning.
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1 INTRODUCTION

1.1 MOTIVATION

Tattoos are widely used around the world, representing both a form of human expression

and a kind of art. For more than 5,000 years (JAIN et al., 2007) they have been used and can

bring a lot of information about people, including their stories, their personality traits, groups

they belong to, among others (ROHITH et al., 2020). In their almost unique traits, tattoos may

carry information that goes beyond the reasons that led people to make it, which can also be

classified as a kind of biometrics and, consequently, they can be useful in identifying its carriers.

The term biometrics is described as the science of recognizing an individual based

on their physical or behavioral traits (JAIN et al., 2006). It is also described as the automated

use of physiological or behavioral characteristics to determine or verify an individual’s identity

(SHARMA, 2015). Currently, biometrics are useful for many applications such as cell phone

unblocking, bank transaction authentication, access control and especially those related to

security, including people monitoring, criminal identification, identity certification and border

control (LABATI et al., 2016).

Biometrics is divided into two major areas: hard biometrics and soft biometrics (AB-

DELWHAB; VIRIRI, 2018). On the one hand, the former is characterized by being unique,

distinctive and permanent, and includes face (ZHAO et al., 2003; MARSICO et al., 2014; IBSEN

et al., 2021), fingerprint (BORRA et al., 2016; SONI; MAHESH, 2018), iris (NITHYA; LAK-

SHMI, 2015; NGUYEN et al., 2017; RATTANI; DERAKHSHANI, 2017), palmprint (CHEN et

al., 2010; ZHANG et al., 2012; ALI et al., 2018), voice (FARRÚS, 2018), ear shape (ABAZA et

al., 2013), brain biometrics (GUI et al., 2019), DNA (ZAHID et al., 2019; KATSANIS et al.,

2022), among others (National Research Council, 2010; DUBAL; BHARADI, 2016; DONG et

al., 2017). On the other hand, soft biometrics are those that are not deterministic or permanent,

designed to address less well-defined biometric traits, such as skin blemishes, scars, marks,

ethnicity, age, gender (GUO; MU, 2014), gait (VERLEKAR et al., 2018), signature (SERDOUK

et al., 2017; KAUR; JINDAL, 2016) and tattoos (JAIN et al., 2004; DANTCHEVA et al., 2010;

UNAR et al., 2014).

In the biometrics field, tattoo recognition becomes an important theme of research, given

its complexity and applicability. Unar et al. (2014) established some criteria that help to qualify
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biometrics in terms of Universality, Distinctiveness, Invariance, Collectability, Performance and

Acceptability. Following this perspective, in Table 1 is possible to have a comparison between

tattoo recognition and other biometrics regarding those criteria, in a comprehensive way.

Table 1 – Comparison between some common biometrics features and tattoos (✓ means “Yes”, ✗ means “No”,
and “–” means “Does not apply”).

Face Fingerprint Palmprint Iris DNA Voice Tattoos
Do all people have it? ✓ ✓ ✓ ✓ ✓ ✗ ✗
Is it discriminating in people? ✓ ✓ ✓ ✓ ✓ ✗ ✗
Is it found in a well-defined location? ✓ ✓ ✓ ✓ – – ✗
Is it invariant over time? ✓ ✓ ✓ ✓ ✓ ✗ ✗
Does it have well-defined characteristics? ✓ ✓ ✓ ✓ ✓ ✓ ✗
Does it have a pattern? ✓ ✓ ✓ ✓ ✓ ✓ ✗
Is it easy to collect? ✓ ✓ ✗ ✗ ✗ ✓ ✓
Are there well-established technologies for
its recognition?

✓ ✓ ✓ ✓ ✓ ✓ ✗

Is the available technology assertive? ✓ ✓ ✓ ✓ ✓ ✓ ✗

Source: own author.

Compared to other biometrics, tattoos bring with them a series of characteristics that

make them very difficult to recognize. Other biometrics usually have well-defined standards,

robust techniques and well-established methods for their treatment and recognition, standardized

data capture and storage, and other factors that help its reliability and robustness. However,

tattoos still do not have such characteristics and requirements.

As a matter of fact, conventional biometrics (face, fingerprint, and iris, for instance)

have well-established methods for preprocessing and re-identification based on its patterns.

However, the same does not hold for tattoo images, when used as biometrics, which makes tattoo

recognition a unique problem, since a tattoo is not standardized in shape, size, color, location,

position, style, symmetry, stroke or fill.

In addition, the effective use of almost all the above-mentioned biometrics for real-world

applications rely on computer vision methods. Such as methods are necessary for processing raw

images as well as identifying/re-identifying individuals according to their biometric traits.

Apart from the issues related to processing and using general biometrics, tattoo recog-

nition has a singular complexity because it can be divided into several sub-problems, each

one equally important, that includes identification, location, segmentation, classification, re-

identification, de-identification, among others.

Because of the wide scope of the topic, the published studies are fragmented, usually

focusing on very specific issues. That is, the authors choose to present a method to solve some

specific problem related to tattoo recognition. However, it is still missing a thorough review of
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the different problems and proposed solutions.

On the other hand, from the point of view of the applicability of the theme, tattoo

recognition has a great application in many areas, especially in law enforcement, where there

is a great lack of methods and applications to be used in practice to recognize people by using

tattoo information.

For this purpose, tattoos can provide an important source of biometric information

which has great utility (ACTON; ROSSI, 2008; HARBERT, 2015) because tattoos can be used

for identifying not only suspects but, also, victims (LEE et al., 2008; FANG et al., 2018). In

addition, the subject has raised studies on ethical and social issues that may encompass the topic

(BACCHINI; LORUSSO, 2017).

Tattoos can also be used both to recognize its bearer and, also, in some situations

identify some personal characteristics, such as information about gangs and past facts. In Brazil,

for example, some gangs often tattoo specifics images to identify their members, or also are

used to identify specific facts, like a clown, tattooed by people who had killed a police man, or

specific numbers to determine to which gang they are associated.

Thus, the development of new methods and studies about tattoo recognition can bring

a high contribution to this area of application. New image recognition methods have been

developed, including deep learning based, and their application to tattoo recognition problems

can contribute significantly to this research area.

1.2 OBJECTIVES

1.2.1 General Objectives

Tattoo recognition carries a large roadmap of problems to be solved, basically divided

into preprocessing problems and recognition problems. Preprocessing problems includes tattoo

detection, location, and segmentation. Identification problems include tattoo classification, re-

identification and de-identification. Although many methods have already been presented to

address these issues, this area is still opened to be studied, since no one has achieved results good

enough to be considered completely solved.

Considering the complexity of the tattoo recognition roadmap (Section 2.2.1), and the

importance to improve this research field based on the more recent image recognition approaches,

and facing the open area to research in this field, the aim of this study is to propose new
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approaches to tattoo detection, location, and classification problems.

1.2.2 Specific Objectives

In order to evaluate the capability to recognize images with tattoo, the present study

propose a new group of tattoo datasets and approaches to three specific problems in tattoo

recognition.

1. Tattoo detection: presents a method to determine whether an image contains a tattoo or

not.

2. Tattoo location: presents a method to determine where are the tattoos in an image, inserting

a bounding box around de tattoo area.

3. Open world tattoo classification: presents a method to determine a label to a tattoo based

on a group of known labels and, if the image does not belong to any class, determine it as

unknown.

1.3 ORGANIZATION

The presented work is divided in five chapters, as follows: the second chapter presents

a complete review of the literature related with the problems and techniques addressed in this

study in tattoo recognition, including a review of the methods, environment, and results that have

been achieved so far to each problem. The third chapter presents the proposed methodology, the

datasets, and the environment used to perform this research. Chapter four present the results

achieved and a discussion about them. Finally, chapter five presents the conclusions and future

works related with the problems, its challenges and suggestions for possible directions for further

research.
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2 LITERATURE REVIEW

2.1 METHODS IN COMPUTER VISION AND IMAGE RECOGNITION

2.1.1 Computer Vision

Computer vision (CV) is a field of Artificial Intelligence (AI) that focus on understand-

ing the content of digital images (Figure 1). “Typically, this involves developing methods that

attempt to reproduce the capability of human vision” (BROWNLEE, 2019, access in April 21st,

2022).

Figure 1 – Computer Vision in Artificial Intelligence field.

Source: Viejo et al. (2019).

In addition, Szeliski (2022) cites that computer vision “is an interdisciplinary field at the

intersection of signal processing and machine learning, which is concerned with the automatic

and semiautomatic extraction of information from digital images” (Figure 2).

To Mihajlovic (2019, access in April 21st, 2022), computer vision is “the field of

computer science that focuses on replicating parts of the complexity of the human vision system

and enabling computers to identify and process objects in images and videos in the same way

that humans do”.

Brownlee (2019, access in April 21st, 2022) defines computer vision as “a field of study

that seeks to develop techniques to help computers “see” and understand the content of digital
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Figure 2 – Approaches to computer vision methods.

Source: Lurig et al. (2021).

images such as photographs and videos”.

Computer vision covers many applications, that includes object classification, object

identification, object verification, object detection, image segmentation, object recognition, video

motion analysis, image restoration, scene reconstruction, object de-identification, among others.

In application areas, it is used in surveillance, healthcare, security, biometrics, robotics,

industry, self-driving cars, Optical Character Recognition (OCR), machine inspection, retail (e.g.,

automated checkout), motion capture, engineering, agriculture, microbiology, ecology, among

many others.

Concerning the research in computer vision, Szeliski (2022) presents a rough timeline

of some of the most active topics in the last years (Figure 3).

Regarding to the methods applied in computer vision, Lurig et al. (2021) divide its

evolution in four waves. In the first wave (Hand-Crafted Features), researchers in the 1970s and

1980s “developed different ways to perform feature extraction from raw pixel data. Such features

tended to be low-level features, such as lines, edges, texture or lighting, but provided us with the

initial basic geometric understanding of the data contained in images”. The methods developed

includes watershed algorithm, Canny and Sobel filters, Hough transforms, Principal Component

Analysis (PCA), Scale Invariant Feature Transform (SIFT) and Histogram of Oriented Gradients

(HOG).

In the second wave (Initial Machine-Learning Approaches), “it became apparent that

without image standardization, those low- and intermediate-level features will often fall short of
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Figure 3 – A rough timeline of some of the most active topics of research in computer vision.

Source: Szeliski (2022).

producing sufficiently robust CV algorithms” (LURIG et al., 2021). So, machine-learning starts

acquired more generalizable applications using unsupervised algorithms to attempt to identify

previously unidentified patterns on unlabeled data, such as k-means and Gaussian Mixture

Models (GMM). However, it is in the supervised domain that machine learning for CV has been

most successful by using Support Vector Machines (SVM) in image classification, recognition,

among others.

The third wave (Ensemble Methods) brings the ensemble methods, that represent a

“slightly different philosophical approach to machine learning, in which multiple models are

trained to solve the same task and their individual results are combined to obtain an even better

model performance” (LURIG et al., 2021), and are divided in two main families: bagging and

boosting.

Finally, the fourth wave (Deep Learning) brings the most actual approaches and the

state-of-the-art in computer vision, the deep learning based methods. “Deep learning refers to

a family of machine learning methods based on hierarchical artificial neural networks, most

notably, CNN” (LURIG et al., 2021).

2.1.2 Deep Learning

Deep Learning is a class of machine learning methods based on learning data represen-

tations. According to Hao et al. (2016), “deep learning is a branch of machine learning that tries

to model high-level abstractions of data using multiple layers of neurons consisting of complex
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structures or non-liner transformations”.

To LeCun et al. (2015), deep learning methods are “representation-learning methods

with multiple levels of representation, obtained by composing simple but non-linear modules that

each transform the representation at one level (starting with the raw input) into a representation

at a higher, slightly more abstract level”.

In a more simple way, Goodfellow et al. (2016) describes deep learning as an AI field

responsible to solve “tasks that are easy for people to perform but hard for people to describe

formally — problems that we solve intuitively, that feel automatic, like recognizing spoken

words or faces in images”. Also, according to the author, deep learning models “is to allow

computers to learn from experience and understand the world in terms of a hierarchy of concepts,

with each concept defined through its relation to simpler concepts”, and because this hierarchy

of concepts is deep, with many layers, “we call this approach to AI deep learning”.

While conventional neural networks are formed by simple layers, deep networks are

formed by a higher number of layers (Figure 4).

Figure 4 – Simple Neural Network and Deep Neural Network (Deep Learning).

Source: Academy (2022, access in April 21st, 2022).

Different from shallow or simple machine learning, “deep learning uses a cascade of

layers of nonlinear processing units for feature extraction and transformation. It allows computers

to learn from a hierarchical representation of the data where higher level features are derived

from lower level features” (HAO et al., 2016).

Deep learning introduced the concept of end-to-end learning, where the machine is just

given a dataset of information and a deep learning model is trained on the given data to discover

the underlying patterns in classes (O’MAHONY et al., 2019).

There are a huge number of variants of deep architectures, and different architectures can
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be used to represent different data sources. For example, CNN is the most popular architecture

for image recognition, and Recurrent Neural Network (RNN) is more applicable to sequential

tasks such as handwriting or speech recognition (HAO et al., 2016).

CNN is structured as a series of stages (Figure 5). Units in a convolutional layer are

organized in feature maps, within which each unit is connected to local patches in the feature

maps of the previous layer through a set of weights called a filter bank (LECUN et al., 2015).

Figure 5 – Inside a convolutional network.

Source: LeCun et al. (2015).

“A CNN comprises three main types of neural layers, namely, (i) convolutional layers,

(ii) pooling layers, and (iii) fully connected layers. Each type of layer plays a different role”

(VOULODIMOS et al., 2018) (Figure 6).

Figure 6 – Example architecture of a CNN for a computer vision task (object detection).

Source: Voulodimos et al. (2018).

As the deep learning in general, CNN also have a huge number of popular architectures,

currently used as base network to feature extractor, for example. These networks include AlexNet
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(KRIZHEVSKY et al., 2017), ZF Net (ZEILER; FERGUS, 2013), VGG Net (SIMONYAN;

ZISSERMAN, 2014), GoogLeNet (SZEGEDY et al., 2015a), Microsoft ResNet (HE et al., 2015),

R-CNN (GIRSHICK et al., 2014), Fast R-CNN (GIRSHICK, 2015) and Faster R-CNN (REN et

al., 2017)), Generative Adversarial Networks (GOODFELLOW et al., 2014), Generating Image

Descriptions (KARPATHY; FEI-FEI, 2014) and Spatial Transformer Networks (JADERBERG

et al., 2015).

2.1.3 Transfer Learning

Bozinovski (2020) defines transfer learning as “a machine learning method where a

learning model developed for a first learning task is reused as the starting point for a learning

model in a second learning task”.

To Zhuang et al. (2019), transfer learning “aims at improving the performance of target

learners on target domains by transferring the knowledge contained in different but related source

domains”.

Complementary, Bozinovski (2020) cites that “it is a research problem in machine

learning that focuses on storing knowledge gained while solving one problem and applying it to

a different but related problem”.

In other words, the concept back to transfer learning is the same of human learning,

where a person who plays piano very well, for example, have the capability to transfer his/her

knowledge to another person who does not plays piano (WEISS et al., 2016). In this machine

learning case, a network previously trained in a specific scenario should transfer some information

to a new network, inheriting important information from that trained network.

Following Tan et al. (2018), transfer learning methods can be divided in four main

categories:

• Instances-based: “refers to use a specific weight adjustment strategy, select partial instances

from the source domain as supplements to the training set in the target domain by assigning

appropriate weight values to these selected instances” (Figure 7).

• Mapping-based: “refers to mapping instances from the source domain and target domain

into a new data space” (Figure 8).

• Network-based: “refers to the reuse of the partial network that pre-trained in the source
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domain, including its network structure and connection parameters, to transfer it to be a

part of deep neural network which used in target domain” (Figure 9).

• Adversarial-based: “refers to introduce adversarial technology inspired by GAN to find

transferable representations that are applicable to both the source domain and the target

domain” (Figure 10).

Figure 7 – Sketch map of instances-based deep transfer learning.

Source: Tan et al. (2018).

Figure 8 – Sketch map of mapping-based deep transfer learning.

Source: Tan et al. (2018).

Figure 9 – Sketch map of network-based deep transfer learning.

Source: Tan et al. (2018).
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Figure 10 – Sketch map of adversarial-based deep transfer learning.

Source: Tan et al. (2018).

In models where images are used, as CNN’s, for example, transfer learning allows

starting with the learned features on known datasets such as ImageNet (DENG et al., 2009),

FaceNet (SCHROFF et al., 2015), MS COCO (LIN et al., 2014), Google Open Images Dataset

(KUZNETSOVA et al., 2020), among others, and adjust these features and perhaps the structure

of the model to suit the new dataset/task instead of starting the learning process on the data from

scratch with random weight initialization (HUSSAIN et al., 2018).

2.1.4 Data Augmentation

Data is the main raw material in deep learning environments, specially when models

are applied to problems involving images. In some cases, obtain sufficient data to build robust

models and avoid overfiting, for example, is a great challenge (PEREZ; WANG, 2017).

As a way of circumventing these restrictions and barriers, data augmentation brings a

way to adding slightly modified copies of already existing data or a set of synthetic data obtained

from the original ones.

Shorten and Khoshgoftaar (2019) defines data augmentation as “a suite of techniques

that enhance the size and quality of training datasets such that better Deep Learning models can

be built using them”. The authors also presented a quick taxonomy of the data augmentations

methods (Figure 11).

Also, according Mikolajczyk and Grochowski (2018) and Shorten and Khoshgoftaar

(2019), there are a number of methods that can be applied to augment image data, which can be
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Figure 11 – A taxonomy of image data augmentation.

Source: Shorten and Khoshgoftaar (2019).

divided into a few categories:

• Traditional transformations: perform combination of the affine image transformations and

color modification such as rotation, translation, flipping, cropping, refection, scaling (zoom

in/out) and shearing, geometric distortions or deformations such as histogram equalization,

enhancing contrast or brightness, white-balancing, sharpening, noise injection and blurring.

• Generative Adversarial Networks: GANs are found to be extremely useful in many image

generation and manipulation problems like text-to-image synthesis, super-resolution (gen-

erating high-resolution image out of low-resolution one), image-to-image translation (e.g.

convert sketches to image), image blending (mixing selected parts of two images to get a

new one), image in painting (restoring missing pieces of an image).

• Texture transfer: the goal of the texture transfer is to synthesize a texture from a texture-

source image while constraining the semantic content of a content-source image.

Figure 12 presents a group of images generated by traditional data augmentation

methods, and Figure 13 presents a group of images generated by Cycle GANs data augmentation

methods.
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Figure 12 – Data augmentation samples.

Source: Shorten and Khoshgoftaar (2019).

Figure 13 – Data augmentation samples with Cycle GANs.

Source: Shorten and Khoshgoftaar (2019).

2.1.5 Object Location

An important class of problem in computer vision is related with object detection, i.e.,

given an image, identify objects in it, localizing the position of each item instance, drawing a

bounding box around de object.

Currently, deep learning are the most used approaches for this problem with the state-of-
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the-art in this area based on the evolution of the R-CNN networks, there are R-CNN (GIRSHICK

et al., 2014), Fast R-CNN (GIRSHICK, 2015), Faster R-CNN + RPN (REN et al., 2017) and

Mask R-CNN (HE et al., 2017), and YOLO networks (REDMON et al., 2015; REDMON;

FARHADI, 2016; REDMON; FARHADI, 2018; BOCHKOVSKIY et al., 2020), currently in

version 5.

Girshick et al. (2014) elaborates one of the first breakthroughs of the use of CNNs in

an object detection system called the R-CNN network that had a much higher object detection

performance than other popular methods at the time. The model is divided in three modules. The

first generates category-independent region proposals, defining the set of candidate detections

available to the detector. The second module is a large convolutional neural network that extracts

a fixed-length feature vector from each region. The third module is a set of class specific linear

SVMs (Figure 14).

Figure 14 – R-CNN architecture.

Source: Girshick et al. (2014).

Girshick (2015) employs several innovations to improve training and testing speed in

the original R-CNN network, while also increasing detection accuracy by training the very deep

VGG16 network, which was 9× faster than R-CNN and also more accurate (Figure 15).

Figure 15 – Fast R-CNN architecture.

Source: Girshick (2015).
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Ren et al. (2017) introduced a RPN that “shares full-image convolutional features

with the detection network, thus enabling nearly cost-free region proposals”. According to the

authors, “an RPN is a fully convolutional network that simultaneously predicts object bounds and

objectness scores at each position”. Also, “the RPN is trained end-to-end to generate high-quality

region proposals, which are used by Fast R-CNN for detection”. As a result, they presented a

network resulted by the merge RPN and Fast R-CNN into a single network called Faster R-CNN

(Figure 16).

Figure 16 – Faster R-CNN architecture. Left: Faster R-CNN is a single, unified network for object detection.
Center: RPN. Right: Example detections using RPN proposals on PASCAL VOC 2007 dataset
test.

Source: Ren et al. (2017).

After that, He et al. (2017) presented the Mask R-CNN, “a conceptually simple, flexible,

and general framework for object instance segmentation”. This network detects objects in an

image while simultaneously generating a high-quality segmentation mask for each instance.

Also, the network “extends FasterR-CNN by adding a branch for predicting an object mask in

parallel with the existing branch for bounding box recognition” (Figure 17).

Figure 17 – Mask R-CNN framework.

Source: He et al. (2017).

In Redmon et al. (2015), the authors “frame object detection as a regression problem to

spatially separated bounding boxes and associated class probabilities”. Then, “a single neural
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network predicts bounding boxes and class probabilities directly from full images in one eval-

uation. Since the whole detection pipeline is a single network, it can be optimized end-to-end

directly on detection performance” (Figure 18).

Figure 18 – The YOLO Detection System.

Source: Redmon et al. (2015).

2.2 TATTOO RECOGNITION

2.2.1 Tattoo Recognition Roadmap

The tattoo recognition roadmap comprehends a group of problems that covers the entire

cycle to recognize a tattoo, from detecting it on an image to classifying or re-identifying a

tattoo in a database. The source image can be an entire tattoo, a sketch or partial information,

and the expected result can be a corresponding image, a group of similar images, a class or

simply boolean information, a bounding box, a cropped or erased image. Because of that, tattoo

recognition roadmap requires a specific methodology for each step or related problem.

Basically, tattoo recognition roadmap is divided into three main groups of problems:

pre-processing, recognition and other (Figure 19).

The pre-processing step is not related to any recognition process itself, but rather to
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Figure 19 – Tattoo recognition roadmap.

Source: own author.

prepare the original image for the recognition step. It includes the following problems:

• Detection: determines whether an image (of a human) has a tattoo or not.

• Location: finds where in the image the tattoo is found, and returns a bounding-box around

the corresponding tattoo region.

• Contour Segmentation: crops out the exact contour of the tattoo from the rest of the image,

separating the tattoo area from the surrounding background.

• Semantic Segmentation: crops further the tattoo image, separating each distinct object

represented in the tattoo.

The pre-processing tasks have the challenge to prepare the image to be submitted to

the next step, receiving a raw image and returning an image without the noise represented by

the background. This process is as important as the recognition process because the better the

pre-processing, the more efficient the recognition.
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The recognition processing, which includes the methods that effectively perform the

tattoo recognition, addresses the following problems:

• Re-identification: searches for an image in a dataset of tattoo images, returning the one

that is the most similar to the searched tattoo. This process can be further divided into

other specific models:

– Image-to-Image: consists of, given a sample tattoo image, finding the most similar

image in a database.

– Sketch-to-Image: consists of, given a hand-drawn sketch of a tattoo, finding the most

similar image in a database which contains photos of real tattoos.

– Similar Groups: consists of, given a sample tattoo image, finding a group of tattoos

that are similar to the one searched and that have the same pattern, but not necessarily

the original image searched.

– Partial Image-to-Image: consists of, given a partially occluded tattoo image, finding

images that have the searched image as part of a complete image in the database.

• Classification: given a tattoo image, give a description for the object or objects that make

up that image, returning labels to the input image.

• De-Identification: consist of a process of erasing the tattoo from an image, a process also

known as anonymization.

Other problems that can help to improve the quality of the results in tattoo recognition,

include, but are not limited to, the following issues:

• Skin Detection: consists of, given an image, detecting regions that represent a person skin.

• Background Subtraction: consists of, given an image, subtracts all parts that do not

represent a person or parts of a person.

• Planeing: corrects an image in which the tattoo is in irregular areas, making it flat.

• Part-of-body Identification: consists of, given an image, determines which body parts are

present in the image.



33

Many of these tattoo problems have been studied in the last years, and some of them

have no published studies so far has this research gone. Figure 20 presents the number of

publication by theme over the years. This information was collected by an exhaustive search

on the main portals of scientific publications, including IEEEXplore, Scopus, Google Scholar,

Springer, ACM, Elsevier, and others, during all the development of this research. There were

considered all publications directly applied to some tattoo recognition theme. The problems not

presented in the figure indicates that no publication was found for that specific problem applied

to tattoos.

Figure 20 – Number of relevant publications by category and year.

Source: own author.

2.2.2 Tattoo Detection

The tattoo detection problem consists in determining whether an image contains a tattoo

or not. Figure 21 shows some examples of images of people with and without tattoos. Despite

the theoretical simplicity of the concept, the detection process is not such a simple task at all,

as there are no defined standards for what a tattoo is in terms of patterns of shape, color, size,

proportion to the individual and, mainly, its location on the body. In addition, a single image

can have several tattoos. Furthermore, the image background or colored clothes can introduce

significant noise to the detection process, since its complexity may be confused with tattoos.

Some of these issues are shown in the images shown in Figure 21, for both tattoo and non-tattoo
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images.

Figure 21 – Example of images, used for the detection task, of people with and without
tattoos. Image "a" is an example of a well-behaved situation, where the tattoo
is a well-defined, and the surrounding background is a clear skin. The Image
"b" there are multiple tattoos, and a bounding-box of them will include other
areas of the body where there is no tattoo. Also, the letters of the hat may disturb
the recognition process. In image "c" the painting in the backward has similar
patterns to the tattoo, and they are close to each other. The image "d" is a good
example of non-tattoo, easily identified. In the image "e", the design of the clothes
in contrast with the skin may be confused as a tattoo. In image "f" painted nails
may be confused as a tattoo.

Source: own author.

Tattoo detection plays a fundamental role in the initial image filtering and data selection,

and its importance has been neglected for many years by the scientific community Xu et al.

(2016), and the first publication on this topic came up only more recently, in 2015 Ngan and

Grother (2015).

After that seminal publication, several other studies followed. Table 2 presents a sum-

mary of the results recently published for the tattoo detection problem. In this table, column

“Best Result 1” refers to results obtained when using the same dataset for both, training the

model and testing the model, evaluating its accuracy. In the column “Best Result 2”, the accuracy

presented was achieved by testing the model using a different dataset from that used to train the

model (this issue will be addressed later in this work).

Table 2 – Tattoo Detection Published Results.
Reference Year Method Best Result 1 Best Result 2
Ngan et al. (2016) 2015 not cited 96.30% acc. -
Xu et al. (2016) 2016 CNN 98.80% acc. 93.78%
Di and Patel (2016) 2016 AlexNet + 2-Class SVM 99.83% acc. -
Di and Patel (2017) 2017 AlexNet + 2-Class SVM 99.83% acc. -
Xu and Kong (2016) 2016 Decision tree 52.38% acc. -
Sun et al. (2016) 2016 Faster R-CNN 98.25% acc. 80.66%

Han et al. (2019) 2019 Faster R-CNN
87.10% recall (WebTattoo)
61.70% recall (Tatt-C) 80.00%

Source: own author.
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In Table 2 it is noticed a diversity of machine learning methods as well as seemingly

good results. However, training and testing over the same dataset may lead to biased results, since

generalization capability of the classifiers are not evaluated. This fact raises an important issue,

the datasets used. Table 3 describes the databases used in each study. Due to the large diversity

of tattoo types and the lack of standards for capturing images, datasets can be very different from

each other. As a consequence, it is difficult or even unreasonable to compare results.

Table 3 – Tattoo datasets referenced in the tattoo detection bibliography.

Reference Dataset Name Tattoo
Images

Non-Tattoo
Images

Ngan et al. (2016) Tatt-C 1,349 1,000

Xu et al. (2016) Tatt-C 1,349 1,000
NTU_Flickr 5,740 4.260

Di and Patel (2016) Tatt-C 1,349 1,000
Di and Patel (2017) Tatt-C 1,349 1,000
Xu and Kong (2016) Unidentified 547 -

Sun et al. (2016)
Tatt-C 3,839 -
PASCAL Visual Object Classes (VOC) 2007 - 9,963
NTU_Flickr 5,740 4,260

Han et al. (2019) Tatt-C 1,349 1,000
NTU_Flickr 5,740 4.260

Source: own author.

The first published results appeared in response to the challenge published by National

Institute of Standards and Technology (NIST) (NGAN; GROTHER, 2015). In this scenario, four

institutions presented results, with the company MorphoTrek presenting the best performance

Ngan et al. (2016). Unfortunately, the algorithms used by the participants of the NIST competition

were not published. This fact turned out impossible to carry out external validation tests, which

was criticized in Xu et al. (2016).

Based on this scenario, Xu et al. (2016) suggested evaluating whether the dataset

available in Ngan and Grother (2015) and Ngan et al. (2016) was sufficiently comprehensive to

ensure that the results presented could be generalized. Therefore, the authors presented a CNN

trained in two scenarios: the Tatt-C dataset (NGAN; GROTHER, 2015) and a dataset obtained

from Flickr (NTU_Flickr). The experiment consisted of training the network with one of the

datasets and validating with the other, and vice-versa. Initially, in the same scenario presented in

Ngan et al. (2016), the CNN described in Xu et al. (2016) had a slightly higher performance,

increasing the previous accuracy. In subsequent tests, networks trained on the NIST dataset and

validated on the NTU_Flickr dataset performed worse than the other way around. Finally, the

authors showed that as the training dataset increases, the result accuracy also improves.
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In Di and Patel (2016) and Di and Patel (2017), the authors also propose using a CNN

for tattoo detection, also basing their study on the Tatt-C dataset. The proposed model consists in

extracting features through fine-tuning the AlexNet network and, then, applying a linear SVM to

determine whether an image has tattoos or not. The proposed algorithm was also compared with

Ngan et al. (2016), and obtained an improvement of 3.2% compared to the best initial result.

Another approach based on decision trees was presented by Xu and Kong (2016), this

time in its own dataset, with less expressive results.

In Sun et al. (2016) the authors present a deep learning region-based method to tattoo

detection, the Faster R-CNN, which is based on a fine-tuning of the VGG_CNN_M_1024

network. The training data was also based on Tatt-C dataset, but now joining other 9,963 images

without tattoos divided in 20 object categories from the PASCAL Visual Object Classes (VOC)

2007 dataset Everingham et al. (2010). Their results were also compared with those presented

in Ngan et al. (2016), and its performance had an accuracy 1.95% better than that presented by

MorphoTrek in Ngan et al. (2016).

More recently, Han et al. (2019) presented a detection model also using a Faster R-CNN.

In this model, the detection problem was classified as an instance of the image recovery system,

where learning and detection were performed simultaneously. The authors also present a result

based on the recall percentage, which was compared with the results obtained in Sun et al. (2016).

While Sun et al. (2016) presented a recall of 45% to 0.1 FPPI (false positive per image) for the

Tatt-C dataset, the authors in Han et al. (2019) presented a result of 61.7% for the same dataset

and 87.1% to a dataset obtained from the internet (called WebTattoo). In summary, it is difficult

to compare different works due to differences in test procedures, metrics and the datasets used.

2.2.3 Tattoo Location

The next step, after detecting a tattoo, is the tattoo location. This issue is essential for

the next steps of tattoo image processing, since it is responsible for removing most of the image

that is not useful, such as clothes and background.

Unlike the detection, which is a binary decision problem, tattoo location requires the

return of a set of coordinates that allows identifying the specific regions where tattoos are found

in an image. In other words, the challenge is to locate where one or more tattoos are found in the

original image, and enclose them into rectangular bounding boxes (Figure 22).

Usually, the bounding box created around a tattoo is defined by a set of coordinates
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Figure 22 – Examples of tattoo location.

Source: own author.

(𝑥, 𝑦, 𝑤, ℎ), such that 𝑥 and 𝑦 represent the initial coordinates of the bounding box, and 𝑤 and ℎ

represent the width and height of the frame, respectively (SUN et al., 2016). The objective is

to find, for each disjoint tattoo in the image, a frame with the minimal dimensions capable of

enclosing all the tattoo (KIM et al., 2016).

Table 4 shows a summary of the papers found in the literature, including methods and

results for each study. Although the first publications did not present numerical results, the most

recent studies took important contributions to the tattoo location problem using machine learning

methods.

Table 4 – Papers approaching the tattoo location problem.

Reference Method Best Result Dataset
Size

Marcetić et al. (2014)
Decision rules in RGB color space +
morphological operations 4.9% False Positive Rate 204

Ngan et al. (2016) not shown 97% acc. 16,716
Kim et al. (2016) Center-surround feature location 66.20% acc.@Tatt-C 4,308
Kim et al. (2016) Graph-cut 70.46% acc. @Tatt-C 4,308
Sun et al. (2016) Faster R-CNN 98.25% acc. 23,802

Han et al. (2019) Faster R-CNN
Tatt-C: 61:7% recall@0.1FPPI
WebTattoo: 87:1% recall@0.1FPPI 8,026

Source: own author.

Marcetić et al. (2014) proposed a two-step approach for locating tattoos in an image.

First, the skin is detected by applying decision rules in the RGB color space, followed by

geometric restrictions to eliminate skin-like color regions that do not belong to body parts. Next,

potential tattoo regions are located in the cropped regions with a different skin color, obtained by

the morphological operation of closure.

The location problem was also part of the NIST challenge mentioned before. The best

accuracy of 97% was achieved by the MorphoTrek company. However, algorithms, data used

and how the accuracy was measured were not made available for further validation tests.



38

Later, Kim et al. (2016) presented a specific study for tattoo location with two specific

methods. The first is a center-surround feature location method. The second method used a

graph-cut segmentation based on the image edges, a skin color model and a visual bump map.

To evaluate the results, images were previously cropped manually. The second method achieved

better accuracy than the first one, reaching 70.46% and 69.91% with the Tatt-C and Evil Tattoo

datasets, respectively.

Sun et al. (2016) customized a Faster R-CNN, by fine-tuning the VGG_CNN_M_1024

network. The model was trained with Tatt-C and PASCAL Visual Object Classes (VOC) datasets

with manually annotated bounding boxes around the tattoos. A validation step was done using

the Nanyang Technological University (NTU) dataset with 10,000 images. The best accuracy

was 98.25%, which was marginally higher (1.25%) than the results presented by Ngan et al.

(2016), which was used as basis for comparison.

Another work made by Han et al. (2019) also used the Faster R-CNN model, and

achieved 99% of accuracy when the method was applied to the Tatt-C dataset, in the same joint

training process presented in their tattoo detection model.

2.2.4 Tattoo Classification

The tattoo classification problem consists of, given a tattoo image, classifying its

semantic contents according to pre-established categories, such as person, animal, cat, dog, car,

flag, etc. (Figure 23). In other words, the challenge is to automatically “translate” a tattoo into

pre-established labels.

Some attempts to establish formal categories were presented by McCabe and Newton

(2007), Wing (2011), and cited in some publications Jain et al. (2007), Lee et al. (2012), Jain et

al. (2012), Marcetić et al. (2014), but ended up being questioned, since tattoos have many more

categories than those listed in the proposed standards, which contained only 8 classes divided

into 70 sub-classes. In Lee et al. (2012), for instance, manual annotations reached 1,737 different

classes, after analyzing 64,000 images.

In other publications, such as Jain et al. (2009), Lee et al. (2012), classes were used only

as pre-filter annotations on images as a way of decreasing the dataset breadth used re-identifying

tattoos problem.

In this way, the classifying tattoos problem is reported as a great complexity, since it is

about images without any pre-selected patterns, and it can still very often have multiple classes
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in the same image, or even be an abstract image, without a specific category. Because it is an

artistic work, there is no standard in what is tattooed on a person.

Perhaps because of this complexity, only a few studies have been published addressing

this topic, even though it has great practical applicability (Table 5). Also, the studies published

have been based in small number of classes and the datasets used are also small.

Figure 23 – Example of tattoos to be classified. Items “a", “b" and “c" shows images with
one label, like a butterfly, a cat and a flower. Images “d", “e" and “f" shows
tattoos with multiple labels, like a gun and flowers; a microphone, a person, a
car and sunglasses; a skull, flowers, a heart, a diamond and a cross.

Source: own author.

Table 5 – Tattoo Classification Published Results.
Reference Methods Classes Best Result Dataset Size
Heflin et al. (2012) 1-class SVM 15 many 18,922
Wilber et al. (2014) SVM 5 63.8% acc. 1,200
Jiawang and Yuan (2018) Triplet GAN - 82% acc. 200

Source: own author.

In the study of Heflin et al. (2012), authors, after locating and segmenting the tattoos,

apply 1-class SVM for classifying images. They used that method for training a classifier for each

class, separately, and repeated the procedure for 15 different classes divided in three different

classifiers: animals (6 classes), humans (3 classes) and miscellaneous (6 classes). The authors

present a plot of positive classification rate versus negative classification rate to each group of

classes as classification results, and a plot comparing the results achieved with an adaptation of

the method used by Lee et al. (2012), although the objective of this last work was not classifying

images, but re-identify them. Unfortunately, they did not present a specific numerical measure of

accuracy to the classifiers.

Wilber et al. (2014) proposed a mid-level classification, where they try to balance

the accuracy level with performance. They proposed a method called Exemplar Codes, based

on linear classifiers with probabilistic normalization to balance classifiers. First, features are
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extracted from tattoo images by using multi scale pyramid of HOG. Next, a SVM was used to

create the Exemplar Codes. This is done by classifying each simple positive class image with a

set of negative samples and, then, a set of exemplars is generated. In the next step, they used the

Random Forest method to classify the tattoo images, using the Exemplar Codes. All experiments

were carried out on 5 tattoos classes (butterfly, skull, flower, star and dragon), with 50 to 80

images per class, plus 400 images of negative classes.

More recently, Jiawang and Yuan (2018) presented a Triplet GAN model aiming at

obtaining a high accuracy in image classification with few labels. The model was initially trained

with the MNIST dataset and, then, applied to a dataset of 200 tattoo images obtained on the

internet. The results were compared with tests performed with the k-means, Linear SVM, k-

Nearest Neighbors (kNN) and Naive Bayes methods. Overall, the proposed model obtained

accuracy between 77% and 82%, while the other methods varied between 54% and 72%.

At the end, to the best of the knowledge gathered so far, no model was found in the

literature capable of addressing all the problems related to this roadmap at the same time. In

general, each problem is studied separately, using different approaches, methods and datasets, by

different authors.
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3 DATA AND METHODS

This study proposes three different methods, each one responsible for a different

problem, as presented before: tattoo detection, tattoo location and tattoo classification.

For each problem, specific datasets were proposed, each one having characteristics

related to data type, volume, balance, among others, as will be shown in detail below. The

datasets were also carefully elaborated, with the objective of creating a robust environment for

the application of the methods and evaluation of results.

3.1 TATTOO DETECTION

3.1.1 Methods

The first problem addressed is the tattoo detection. In tattoo recognition roadmap, this

method is important because it applies the first filter in a given image, determining whether the

image contains or not a tattoo.

For this problem, a transfer learning approach was used, which has been shown excellent

results in many classification problems, specially for image processing (ROMERO et al., 2020b;

GUTOSKI et al., 2021; ROMERO et al., 2020a). The basic idea is to use a CNN architecture,

trained for a given problem, and re-use part of its architecture for another problem (Figure 24).

Usually, this is accomplished by using the same type of data, in our case, images.

Figure 24 – Proposed tattoo detection transfer-learning model.

Source: own author.
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The last layers of the Pre-trained Model are excluded and the remaining are re-used

as a feature extractor. In other words, the knowledge learned by the trained network will be

transferred to another similar problem. Therefore, using this procedure, a pre-trained network

receives an image and provides a feature vector that represents that image in a high-dimensional

embedded space (Features Vector).

The dense layer is composed by two hidden layers with 1,024 and 512 neuron, respec-

tively, with ReLU activation function. Adam solver and categorical crossentropy loss function

were used in this network.

In this working pipeline, the images of the training set are presented to the feature

extractor and the output vector is forwarded to the input from a dense neural network, which is

the trainable classifier for tattoo or non-tattoo classes by using a binary output layer.

3.1.2 Datasets for Tattoo Detection

Datasets are a fundamental part for all machine learning methods. In the one hand,

choosing the correct dataset to perform a study is directly related to the quality of results. On the

other hand, looking at the results without evaluating the dataset used can lead to misconceptions

about the real quality of results. Considering that a dataset is a sample of the real world, it is

particularly important for the efficiency of machine learning methods that the datasets used

reflect the same diversity.

For multi-class datasets, the balance of samples in the classes is another important issue

since, in general, classifiers are strongly biased towards the majority class. Unfortunately, many

real-world datasets do not follow such principles. For instance, in the dataset Tatt-C, presented in

Ngan and Grother (2015) and widely used in the literature, has images of the non-tattoo class

predominantly of faces. Possibly, this can bias a classifier trained with this dataset, acquiring the

misconcept that images without tattoos are generally those with faces. This issue was criticized

by Xu et al. (2016) in their publication. Despite this, that database was the most used, to date,

for studies involving tattoos, although no longer available.

Considering the previous considerations, the datasets were designed for this specific

study, taking care to maximize the image diversity and minimize possible biases in the results.

Considering the need of two classes, namely, tattoo and non-tattoo, both must have diversity

not only in terms of the specific part of the body that is in focus but, also, in the amount of

background, distance to the tattoo within the image and framing pattern.
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In addition, it is desirable to obtain data from different sources, to avoid possible bias

due to the source of the information.

Two datasets were created, namely, TattDetectB and TattDetectF, with images extracted

from internet at Bing1 and Flickr2, respectively. Each dataset was composed of 2,000 images of

people, 1,000 for the tattoo and 1,000 for the non-tattoo class.

To obtain images for the proposed dataset, a web scraping technique was used. It

consists of scanning internet pages, identifying images, and capturing. A Python script was used

to perform web scrapping. For each website, we performed the web scraping, searching for

images with and without tattoos separately. Also, aiming at improving the diversity of images,

we searched for images with tattoos combined with specific parts of the body, such as back,

shoulder, arms, legs, etc. (see Figure 25). Such a procedure was done for both classes, tattoos

and non-tattoos of TattDetectB and TattDetectF. Overall, this procedure helped to provide a good

balance within the datasets.

Figure 25 – Samples of tattoo and non tattoo images in train datasets.

Source: own author.

1 http://bing.com
2 http://flickr.com

http://bing.com
http://flickr.com
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3.2 TATTOO LOCATION

3.2.1 Methods

Tattoo location is the second problem related to the preprocessing group in tattoo

recognition. This problem requires a method to find the exact tattoo location in a given image,

returning a group of coordinates containing a position (top and left coordinates) and a size (width

and height) representing the bounding box for each tattoo found.

For this problem, a Mask R-CNN network was used, which is one of the most recent

approaches used for problems related to image location and segmentation. Although this network

is capable of addressing those two problems at the same time, to this work only the tattoo location

problem was approached.

As presented in Section 2.1.5, the Mask R-CNN contains an object detection layer which

uses a RPN to locate objects and return a bounding box for each one. Therefore, the method

used for tattoo location consists in initializing the Mask R-CNN with its original weights, and

continue training the network by using a previously annotated tattoo dataset. Then, a fine-tuning

in the network hyper-parameters is done to obtain a new set of hyper-parameters that improves

the efficiency of the network for localizing tattoos in a given image (see Figure 26).

Figure 26 – Mask R-CNN for Tattoo Location Architecture.

Source: own author.

About the evaluation metrics, we used is the IoU (Figure 27) to compare a ground-truth

bounding box versus a predicted bounding box. In terms of positive comparison, it is considered

a positive pair if the IoU between the bounding boxes exceeds 0.7.
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Figure 27 – Computing the IoU is as simple as dividing
the area of overlap between the bounding
boxes by the area of union.

Source: Rosebrock (2016, access in May 2nd, 2022).

For a global measure of quality for a dataset submitted to the network, the mean Average

Precision (mAP) and standard deviation Average Precision (dvAP) metric were used, which

computes the general average of the IoU of all images in the dataset, and the respective standard

deviation. Using mAP it is possible to have an overview of how the network behaved for a

specific dataset, for example, as a general measure for the training and validation datasets.

3.2.2 Datasets for Tattoo Location

The datasets used for tattoo location methods require special attention, since each image

must be individually annotated with a specific bounding box information, i.e., the initial position

(𝑥,𝑦) of the bounding box and its width and height (𝑤,ℎ).

For this study, two datasets were created, one complementary to the other, containing

1,683 and 4,071 images, respectively, called TattLocA and TattLocB. Data were obtained from

Bing and Flickr websites through web scraping, executed in Python. To obtain the data, several

terms were used in order to obtain the largest possible variety of images in terms of size, style

and colors.

Each image was manually annotated by using a system specially developed for this

purpose, as shown in Figure 28. Annotations include the following information:

• Tattoo bounding box: coordinates and tattoo size.

• Person area: approximated area used by person on the image, used to calculate the propor-

tions of person and tattoo in the image.

• Tattoo style: indicates whether tattoo style is color, monochromatic or outline.

• Multiple tattoo: indicates the existence of one or more tattoos in the image.
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• Consider the image: indicates whether the image should be used or discarded. In general,

very confusing or irregular images were disregarded.

Figure 28 – Tattoo annotation system.

Source: own author.

After that, tattoos were classified in terms of style, color and proportion in the image

(Figure 29). Color tattoos are those that uses more than one color to be filled. Outline tattoos are

those unfilled, drawn only with lines. Monochromatic tattoos are those filled with only one color

(usually black). There are also the text tattoos, represented by those with only text, in general, a

particular case of outline tattoos.

In terms of size, tattoos were classified as small, medium and large. Small are those that

occupy less than 1/3 of the total image area, medium are those that occupy more than 1/3 and

less than 2/3 of the total image area, and large are those that occupy more than 2/3 of the total

image area.

Accordingly to what was previously defined, the specifications of TattLocA and Tatt-

LocB datasets are as shown in Table 6 and Table 7, respectively.
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Figure 29 – Sample of different tattoo styles and proportion. Image “a” represents a color tattoo, image “b”
represents an outline tattoo, image “c” represents a monochromatic tattoo, image “d” represents
a large size tattoo, image “e” represents a medium size tattoo, image “f” represents a small size
tattoo and image “g” represents a textual tattoo.

Source: own author.

Table 6 – Dataset for Tattoo Location - TattLocA.
Color Monochromatic Outline

Train Validation Total Train Validation Total Train Validation Total
Small 201 50 251 202 50 252 120 30 150
Medium 352 88 440 224 56 280 51 13 64
Large 123 31 154 62 16 78 11 3 14
Total 676 169 845 488 122 610 182 46 228

Source: own author.

Table 7 – Dataset for Tattoo Location - TattLocB.
Color Monochromatic Outline

Train Validation Total Train Validation Total Train Validation Total
Small 490 122 612 487 122 609 458 115 573
Medium 650 162 812 446 112 558 308 77 385
Large 222 55 277 100 25 125 96 24 120
Total 862 216 1,078 1,034 258 1,292 1,361 340 1,701

Source: own author.

3.3 TATTOO CLASSIFICATION

3.3.1 Methods

The last problem addressed in this work is the tattoo classification. Image classification

has a great application in real world, and the development of methods that improve the capability

of classifying objects is a great challenge.

Preliminary tests show that traditional methods, when applied to images with tattoos,

do not give good results. Networks like YOLO (REDMON; FARHADI, 2016; LI; YANG, 2018;

REDMON; FARHADI, 2018; BOCHKOVSKIY et al., 2020), for instance, cannot satisfactorily

classify tattoo images, most likely because they have not been trained with this sort of images.

Therefore, to tackle this problem, a transfer learning technique was also used. Similarly

to the model used in tattoo detection (Section 3.1.1), the basic idea is, again, to use a CNN archi-
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tecture, trained for a given problem, and re-use part of this architecture for other problem, now

classifying the contents of an image in specific classes, instead of a binary problem (Figure 30).

Figure 30 – Proposed tattoo classification transfer-learning model.

Source: own author.

The dense layer is composed by two hidden layers with 1,024 and 512 neuron, re-

spectively, with ReLU activation function. A total of 40 classes were selected to compose this

classifier, explained later in Section 3.3.2. As in the tattoo detection problem were tested many

feature extractors and the conclusion was that all of them achieved similar and good results,

now the chosen feature extractor was the SqueezeNet, to use a network with a small number of

features, unlike the first model. A final layer with softmax activator function was added with

40 outputs (classes). Adam solver and categorical crossentropy loss function were used in this

network.

3.3.2 Datasets for Tattoo Classification

The dataset created for tattoo classification, named TattClass40, was composed by 40

classes with 100 images of each class, as follows: angel, bird, butterfly, car, cat, clock, clown,

crucifix, demon, dog, dragon, eagle, eye, fish, flower, guitar, heart, horse, Jesus, joker, knife,

leprechaun, lion, man face, octopus, owl, scorpion, skull, snake, spider, spider web, star, taz, tiger,

weapon, wings, wizard, women face, yin-yang and zombie. Some image samples are shown in

Figure 31.

These classes were chosen according to two main criteria: similarity between classes

and its relevance for public security applications. For instance, angel, clown, demon, elf, Jesus,
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Figure 31 – Sample of tattoo classes.

Source: own author.

joker, man face, wizard, women face and zombie have characteristics of human face. Classes

such as bird, butterfly, dragon, eagle, owl and wings share, also, similar features, like wings.

Some classes have a special meaning to criminals, bringing a kind of encrypted com-

munication, as these messages can hide the history of a crime or reveal a life of misdeeds. The

following tattoos are examples of criminal meaning (MENEGHETTI, 2018, accessed in April

16th, 2022):

• Demon: “This is a tattoo usually done by someone who takes pleasure in killing. It is

common to find the design of the devil in gunmen and hired killers, dangerous bandits

who turn the act of taking the lives of other people (especially their rivals) into a craft”.

• Wizard: “Many inmates with a history of robberies on buses and commercial establishments

have a wizard or a witch tattooed on their body. Some of these “criminal wizards” are

specialists in weapons and explosives, with their favorite targets being stores with safes

and ATMs”.

• Scorpion, Yin-yang and Numbers: “The design of a scorpion was the first tattoo used

inside and outside São Paulo prisons to identify members of the First Capital Command

(PCC), a well-known criminal faction originating in the state of São Paulo. Likewise, the
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yin-yang tattooed on the body also indicates members of this organization. A tattoo with

equivalent meaning of the PCC members is the number 1533 - a reference to the 15th letter

of the alphabet (P) and the third one (C)”.

• Leprechaun: “Criminals who tattoo a leprechaun on their body have a history of trouble,

usually associated with drug abuse and trafficking. In the imprisoned population, the pixie

tattoo also suggests a drug treatment activity in the past”.

• Jesus: “On the arms, legs and chest, it is indicative of larceny (robbery followed by death).

If located on the back, it could be a request for protection from the criminal”.

• Clown: “If the tattoo has black tears, it means friends were killed by rivals. If the tears are

red, the comrades were killed by the police. And if the clown cartoon is accompanied by

skulls, it is almost certain that it is a police murderer. The number of skulls counts how

many police officers were killed by the tattooed person”.

• Spider: “In the criminal world, having a spider tattooed on the body means that one is a

bandit who acts in a group.”.

• Taz: “The popular cartoon Taz is the best representation for criminals indicted for theft

and robbery, and who act in a group”.

• Octopus: “It is very common to find this animal tattooed on people accused of theft and

burglary – usually bandits skilled in escaping”.

The images in the dataset are already cropped around the tattoo image. As the goal

is the tattoo classification, the images were prepared to have the lowest possible background,

simulating as if all original images were passed through the tattoo location method, for example.

As shown before in Section 2.2.3, all published approaches for tattoo classification

problem were applied in less diversified environments or with few samples and classes. So, the

creation of high-quality datasets with more classes is essential for the development of robust

models.
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4 EXPERIMENTS AND RESULTS

4.1 TATTOO DETECTION

The experiments in tattoo detection were carried out using the Orange platform (DEM-

SAR et al., 2013) and complemented with scripts in the Python language, both running in the

Windows 64 bits environment, on a desktop computer with Intel i7-8565U CPU @1.80GHz

processor, and 16 GB of memory.

Based on model presented in Section 3.1.1, the main objectives in this experiment are:

1. Evaluate different feature extractors and check which ones can bring better results in tattoo

detection.

2. Evaluate the effect of data augmentation on the classification results.

3. Compare results using different datasets.

4. Perform a qualitative analysis of the results.

4.1.1 Evaluation of Feature Extractors

In the first experiment, it was aimed at answering the following question: “Which

feature extractor can lead to better detection results?”. The following architectures were tested as

feature extractors: SqueezeNet (IANDOLA et al., 2016), Inception-v3 (SZEGEDY et al., 2015b),

VGG-16 and VGG-19 (SIMONYAN; ZISSERMAN, 2015). For these Deep Neural Networks

(DNNs), the length of the feature vectors are 1,000, 2,408, 4,096 and 4,096, respectively.

In order to evaluate the quality of the feature extractors, they were input to a dense

neural network (fully-connected) to classify each image into two classes: tattoo or non-tattoo.

Both datasets created (TattDetectB and TattDetectF) were used together, for training and testing

with the four DNNs mentioned before. A 10-fold cross-validation procedure was used, and the

average accuracy is reported in Table 8.

As shown, results were quite similar to each other, since all feature extractors achieved

good results. Therefore, since the difference between the performances of the feature extractors

was irrelevant, Inception-v3 was simply chosen for the next tattoo detection experiments.
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Table 8 – Results for feature extractors evaluation.

Feature Extractor F1-Score

Inception V3 0.965

VGG-16 0.969

VGG-19 0.956

SqueezeNet 0.962

Source: own author.

4.1.2 Evaluation of the Effect of Data Augmentation

In the literature, it is well-known that data augmentation is a valuable strategy for

improving the quality of the classifier (AQUINO et al., 2017), especially for improving its

generalization capability. Therefore, experiments were done to answer the question: “Does data

augmentation applied to the training set improves the detection capability of the classifiers?”

First, an “internal” baseline must be established. For this purpose, two experiments

were done: first training with TattDetectB and testing with TattDetectF and, then, vice-versa.

Results are shown on the left side of Table 9.

Next, two new groups of datasets were created. In the first, by augmenting each original

image 5 times, we created a dataset with 6,000 images (the 1,000 original images plus 5,000

augmented images). In the second, by augmenting 12 times each original image, we created a

training dataset with 13,000 images. The same data augmentation procedures were applied to

both, tattoo and non-tattoo images, of the original datasets. Therefore, the following new datasets

were created: TattDetectB_Aug6, TattDetectF_Aug6, TattDetectB_Aug13, and TattDetectF_-

Aug13.

For the first case, 5 randomly chosen transformations were applied, out of the 12 fol-

lowing ones: zoom, vertical mirroring, horizontal mirroring, rotation, warp perspective, Poisson

random noise, Gaussian random noise, salt and pepper random noise, random contrast and

brightness, Gaussian blur and a bilateral filter. For the second case, all the above-mentioned

transformations were applied once each.

Then, using the new augmented datasets, we aimed at verifying if data augmentation

can improve the baseline results. That is, if the use of an augmented dataset increases the

generalization ability of the classifier. Therefore, four experiments were run, and results are

shown on the right side of Table 9.

Comparing the accuracy (recall that all classes have a balanced number of samples) of
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Table 9 – Results for the data augmentation tests.

Baseline Augmented

Training Test Accuracy Training Test Accuracy

TattDetectB TattDetectF 93.95%
TattDetectB_Aug6 TattDetectF 94,90%

TattDetectB_Aug13 TattDetectF 95,10%

TattDetectF TattDetectB 88.40%
TattDetectF_Aug6 TattDetectB 89,39%

TattDetectF_Aug13 TattDetectB 90,24%

Source: own author.

the baseline and the augmented experiments, it is inferred that data augmentation does improve

the generalization capability of the classifier. The amount of improvement is small, possibly

because that the baseline is very high. Also, augmenting more (*_Aug13) the original dataset

leaded to even better results. Comparatively, the classifier trained with TattDetectB_Aug13 was

the best performing, and it will be used in the next experiments.

4.1.3 Comparison with Other Dataset

In order to perform an “external” evaluation of the proposed approach, it would be

desirable to compare its performance with other datasets published in the literature. However,

the direct comparison with those works is not possible because some works published results

by training and testing in the same dataset. In most cases, there is no information about how

the dataset was split into training and testing datasets or if cross-validation was used instead.

Besides, most of the datasets used in the previously published works are no longer available

for downloading. We succeeded to find only one dataset with reasonable parameters for testing,

the NTU_Flickr dataset, with two unbalanced classes and a large number of images (Table 3).

Therefore, the question to be answered is: “How does the proposed approach perform with an

external dataset?”.

The results for this experiment are presented in Table 10. We first trained the network

with the proposed datasets and, then, tested with the NTU_Flickr dataset. Next, it was trained

with the NTU_Flickr dataset and tested with the proposed datasets. Observe that the NTU_Flickr

is unbalanced, with more tattoo images than non-tattoo images (see Table 3). Consequently,

accuracy is an inadequate performance measure, and the F1-score is used instead. For a fair

comparison with the previous results (Table 9), it is necessary to report the corresponding F1-

score: when trained with TattDetectB_Aug13 and tested with TattDetectF, the F1-score was 0.95;

and when trained with TattDetectF_Aug13 and tested with TattDetectB, the F1 score was 0.90.



54

Table 10 – Results for the classification using an external dataset.

Training Test F1-score

TattDetectB_Aug13 NTU_Flickr 0.78

TattDetectF_Aug13 NTU_Flickr 0.79

NTU_Flickr TattDetectB 0.53

NTU_Flickr TattDetectF 0.56

Source: own author.

Based on the results of Table 9, it was used both the classifiers trained on the augmented

datasets, i.e., TattDetectB_Aug13 and TattDetectF_Aug13, to classify the NTU_Flickr dataset.

Results are shown in Table 10.

When training with the proposed datasets and testing with the NTU_Flickr, results were

reasonably good, despite the results were less than 10% lower than those achieved in Table 9.

On the other hand, when training with NTU_Flickr and testing with the proposed datasets, the

results showed a large drop in performance.

To investigate the possible reasons for these differences in performance, Figure 32

shows the confusion matrices for these experiments. In (a), results are seemingly relatively

balanced, although in (b) they are not, with many tattoo images being classified as non-tattoo.

A visual inspection of the TattDetectF_Aug13 dataset, regarding tattoo images classified as

non-tattoos, indicated that they were either tiny tattoos or tattoos covering a large part of the

body. This fact suggests that the TattDetectB_Aug13 dataset has a wider range of tattoo sizes in

the images, compared with the TattDetectF_Aug13.

Figure 32 – Confusion matrices for the experiments with an external dataset.

Source: own author.

Observing the results of the confusion matrix in (c) and (d), a systematic unbalance
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was found. The network trained with NTU_Flickr dataset classified wrongly as tattoo 44.2% of

the non-tattoos images of the TattDetectB dataset, and 43.2% of the TattDetectF dataset. The

reasoning for this requires a visual inspection of the NTU_Flickr dataset. It was built using only

human images in the tattoo class, and random images in the non-tattoo class, i.e., images of

animals, sights, objects, drawings, cars, flowers, etc. On the other hand, the proposed datasets

were built using only images of people and human body parts, with and without tattoos. This fact

misled the classifier trained with the NTU_Flickr to classify anything human-like as the tattoo

class.

4.1.4 Qualitative Analysis

Finally, a qualitative analysis was carried out with the objective of verifying in which

scenarios the proposed approach had classification errors, and answer the question “Is it possible

to identify a pattern in wrongly identified tattoos and non-tattoos?”. Such analysis could shed a

light into which sort of tattoos and non-tattoos are more difficult to be classified.

The confusion matrices from two of the best-performing train-test pairs of Table 9

are shown in Figure 33. On the one hand, when trained with TattDetectB_Aug13 and tested

with TattDetectF more non-tattoos were wrongly classified as tattoos (8.47%) than the opposite

(0.66%). On the other hand, when trained with TattDetectF_Aug13 and tested with TattDetectB

more tattoos were wrongly classified as non-tattoos (16.19%) than the opposite (0.25%).

Although the results are obtained in terms of overall accuracy, this qualitative analysis

helps to realize that the datasets still deserve a little more attention, especially regarding their

image diversity, since this is, possibly, the cause of the asymmetry in the results reported above.

In the case of the model trained with the TattDetectB_Aug13 dataset, which had a larger

error when classifying non-tattoos, the dataset was inspected. We observed that the non-tattoo

part of the dataset is composed of many clean images, with a large number of images with

light backgrounds, and without much visual pollution. On the other hand, the wrongly classified

non-tattoo images had more colorful backgrounds or people wearing more colorful clothes with

details.

The same qualitative analysis was done with the TattDetectF_Aug13 dataset. We found

that the wrongly classified images were those that had tattoos with fewer details, smaller in size

to the image or less colorful, a class of images with fewer samples in the trained dataset.

To illustrate the qualitative nature of this analysis, Fig. 34 brings some samples of images
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Figure 33 – Confusion matrices for different training and testing datasets.

Source: own author.

that were incorrectly classified as tattoos. It was possible to notice the following: elements with

high contrast (a, b), colorful backgrounds (c, d, e, h), many details (h, i), people wearing colorful

clothes (j, k), confused or blurred images (f), images with some colored element different from

the rest of the image (g – k).

Figure 34 – Examples of non-tattoos wrongly classified as tattoos.

Source: own author.

Similarly, Fig. 35 brings samples of images that had tattoos but were classified as

non-tattoos. In general, errors were due to the small size of the tattoo, especially when the tattoo

image size were hidden or tiny (a – f), with many people (e, f), person full of tattoos (g, h) or

unfocused (i).

4.2 TATTOO LOCATION

The experiments in tattoo location were carried out using scripts in the Python language,

running in a Linux Ubuntu environment with Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
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Figure 35 – Examples of tattoos wrongly classified as non-tattoos.

Source: own author.

processor, 64 GB of memory and NVIDIA TITAN Xp GPU with 12Gb of memory.

The process was based in two main experiments:

1. Evaluation of the Mask R-CNN with an initial dataset to verify the network’s adherence to

the tattoo location problem.

2. Application of the Mask R-CNN to a large dataset to evaluate the convergence capability

and a fine tune the model to improve results.

4.2.1 Evaluation of the Mask R-CNN for Tattoo Location

The first experiment aimed to answer the question: “Is the Mask R-CNN network

suitable for tattoo location?”. In other words, this experiment was performed to evaluate if,

even using a small dataset, Mask R-CNN can achieve promising results for the tattoo location

problem.

For this evaluation, we applied the model presented in Section 3.2.1 to the dataset

TattLocA (Table 6), divided into 1,350 images for training, and 333 images for validation. The

model was trained with 100 epochs and keeping the hyper-parameters fixed with the default

values (Appendix B). As result, Figure 36 shows the evolution of the loss during training.
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Figure 36 – Loss to tattoo dataset with default Mask R-CNN parameters.

Source: own author.

The objective of this first experiment was to verify if the Mask R-CNN network would

reach an acceptable initial convergence, giving some perspective of its robustness and adaptability

to the tattoo data.

Observing Figure 36, although the loss curve for the validation dataset shows an average

stationarity and did not converge with the training curve, its average value of 13.44% can be

considered a good starting point. Therefore, even though the loss curve is not showing a real

convergence, its initial level did not lead to an overfitting nor was it extremely high, which was

expected to classify it for the next experiments.

Finally, with this initial result it is possible to continue with the next experiments, aiming

at achieving even better results for tattoo location. In other words, it is possible to consider that

this initial experiment showed that Mask R-CNN has a great potential to be used in the tattoo

location problem.

4.2.2 Evaluation of Mask R-CNN and Fine-Tuning

Given that the initial experiment showed promising results, the following experiment

aimed to answer the question: “Does increasing the training dataset and fine-tuning the hyper-

parameters of the model lead to improve the results in terms of accuracy and generalization to

the tattoo location problem?”

In this group of experiments, the TattLocB dataset (Table 7) was used. This dataset is

composed by 4,071 images organized in terms of tattoo size, fill color and style.
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The main difficulty in using Mask R-CNN network for tattoo location was the identifica-

tion and adjustment of its more than 40 hyper-parameters used both in location and segmentation

tasks, and determine which of them have more positive impact in training the model. Appendix B

shows Mask R-CNN’ hyper-parameters, including, for instance learning rate, learning momen-

tum and weight decay, and parameters related to train Region Of Interest (ROI) per image, ROI

positive ratio and vectors of RPN anchor scales, backbone strides, among others. Since it is not

possible to previously know which set of parameters is dependent or independent, a series of tests

was performed until obtain a set of satisfactory hyper-parameters as presented in Appendix A.

After these experiments, the best set of hyper-parameters found are shown in Table 11.

Using such parameters, we obtained a loss average of 0.1135, as shown in Figure 37. Also, the

model reached mAP of 0.893 with dvAP of 0.266 in the training dataset, and mAP of 0.761 with

dvAP of 0.223 in the validation dataset (Table 12).

Table 11 – Hyper-parameters tested for Mask R-CNN tattoo location.
Hyper-Parameter Value
Epochs 50
Validation Steps 407
Backbone Strides 4, 8, 16, 32, 64, 96, 128
RPN Anchor Scale 32, 64, 128, 256, 512, 768, 1024
Weight Decay 0.5
Train BN True
ROI Positive Ration 0.7
Train ROIs per Image 512
Detection NMS Threshold 0.7
Image Min Dim 128
Max GT Instances 120
Detection Max Intances 120

Source: own author.

Figure 37 – Loss to tattoo dataset with fine tuning Mask R-CNN.

Source: own author.
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Table 12 – Final results for Mask R-CNN tattoo location.
Evaluation Train dataset Validation dataset
Minimum loss 0.034 0.092
Average loss 0.067 0.113
mAP 0.893 0.761
dvAP 0.266 0.223

Source: own author.

Because of the number of hyper-parameters and the high computational cost to train

the model, an automated factorial experiment was not possible to be done. However, the results

obtained showed that Mask R-CNN is quite adequate for the tattoo location problem.

Although these results cannot be directly compared with the previously results presented

in literature (see Table 4) because they used different datasets and quality metrics, the results

here presented achieved are very promising, considering both the model and the dataset.

In other words, the process of increasing the datasets, diversifying images in terms of

sizes and styles, and performing an adequate fine-tuning in the model parameters, brought more

comprehensive results with better assertiveness and generalization for the tattoo location problem

as a whole.

4.2.3 Qualitative Analysis

Finally, a qualitative analysis was carried out with the objective to find more evidence

about the characteristics of the images that were easily located, and those that took more difficulty

for being located. Therefore, it is aimed at answering the question: “Is it possible to identify

characteristics in the tattoos that were best and worse located?”.

Figure 38 presents a collection of images that obtained high IoU values using the

model’s validation dataset. In these images, it was possible to observe that the tattoos had a

prominent position in the image, and were clearly located within the person’s skin region. Also,

the tattoo images were not too large, regarding the total area of the image, and did not have a

lot of pollution around them. These characteristics may have favored better results for tattoo

location and point to a well-behaved image model for the tattoo location scenario. Regarding the

tattoo style, coloring and size, none of them presented a disadvantage in this scenario, as long as

they were well positioned and with less noise around them.

On the other hand, Figure 39 presents some examples of tattoos that obtained low IoU

values for the bounding box generated by the trained model. These images, in general, consisted
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Figure 38 – Sample of good location bounding boxes.

Source: own author.

of tattoos that occupied a large region of the image (see “b.1”, for instance), spread across the

contour region of the skin with the background of the image (“a.1”, “b.1”, “e.1”, “f.1”), were in

a diagonal position in relation to the image orientation (“a.1”, “e.1”, “g.1”), had poor lighting

(“g.1”), had less prominent information around the main image, as in example “c.2”, in which

the center of the tattoo is well-defined, but there is a continuation of detail around the entire

image.

Figure 39 – Sample of bad location bounding boxes.

Source: own author.

Also, image “d.1” in Figure 39 presents an example of wrong annotation in the original

dataset: there were two tattoos, but the annotation was made with only one bounding box around

both. In this case, only one of the tattoos was found, and the IoU calculation was impaired. The

tattoo exemplified in “h.1”, presents an example where the tattoo was not located. Probably, this

is because it is an example where the colors of the tattoo were confused with the colors of the
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clothing and, in addition, it is a quite small tattoo, and the network was unable to locate it despite

the correct annotation.

Although the model did not perform well for images with specific features, it performed

well in the general scope, and these unsuccessful examples can help to infer which characteristics

can be considered for further refinements of the model.

4.3 TATTOO CLASSIFICATION

The experiments in tattoo classification were carried out using scripts in the Python

language, running in a Linux Ubuntu environment with Intel(R) Core(TM) i7-9700K CPU @

3.60GHz processor, 64 GB of memory and NVIDIA TITAN Xp GPU with 12Gb of memory.

Based on the model presented in Section 3.3.1, the main objectives in this experiment

were:

1. Establish a baseline by performing simple training on the proposed model.

2. Evaluate the effect of data augmentation on the results.

3. Perform a qualitative analysis on the results.

4.3.1 Baseline Experiments

The first experiment in tattoo classification aimed to establish a baseline for the proposed

model, and answer the question: “Can the initial proposed model achieve levels of assertiveness

relevant to the proposed environment?”.

For this purpose, two experiments were carried out, both with the dataset manually

divided in 70% for training and 30% for testing. The initial classifier used had two hidden dense

layers with 512 and 256 neurons, respectively. The remaining parameters were: Adam optimizer

with learning rate of 0.001, categorical cross-entropy loss function, batch size of 32, using 50

epochs to train.

Firstly, the training returned overfitting. Even doing some changes in the network, such

as reducing the number of dense layers, number of neurons in each layer, using dropout, changing

optimizer, learning rate and regularization rate, the model still overfitted to the training data. For

these experiments, all accuracy and loss curves were similar to represented in Figure 40, and the
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respective confusion matrix is presented in Appendix C, Figure 48. The best result was for class

“eye” (0.88), and the worst for class “dragon” (0.3).

Figure 40 – Accuracy and loss curves to tattoo classification initial model.

Source: own author.

Overfitting may have occurred because the features created by the model during training

and used in the test dataset had low generalization capability, and/or because the datasets did not

contain enough images to generalize and separate adequately the classes.

Therefore, and based on the results of the first experiment, a second experiment was

performed using a 4-fold cross-validation procedure to get similar proportion of images in

training and test datasets, and performing some fine-tuning in the network parameters. After

testing different network configurations on the original model (Section 3.3.1) in terms of number

of hidden dense layers, number of neurons in each layer, dropout, changing optimizer, learning

rates and regularization rates, the best network was composed of two hidden layers, with 1,024

and 512 neurons respectively with L2 regularization rate of 0.01 and ReLU activation function

(Figure 41), categorical cross-entropy loss function and Adam optimizer, learning rate of 0.0005

and 100 epochs of training.

Figure 41 – Final tattoo classification dense network.

Source: own author.
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In this experiment, the network achieved a better convergence, compared with the

baseline, reaching an average accuracy of 61.68% in the test dataset, with a standard deviation

of 1.68%. Figure 42 shows the results achieved by the best fold in the cross-validation. Also,

Figure 49 in Appendix C presents its respective confusion matrix. The best result was for classes

“star”, “eye”, “down” and “scorpion” (1.00), and the worst for class “leprechaun” (0.26).

Figure 42 – Accuracy and loss curves to tattoo classification model with cross validation.

Source: own author.

Therefore, although the results in this experiment still do not show a very high accuracy,

it was possible to establish a new baseline for the next experiments since the model presented a

good convergence in accuracy and loss curves.

4.3.2 Evaluation of the Effect of Data Augmentation

Given the results obtained so far, the next question to be answered was: “Can the

application of data augmentation bring a significant improvement to the classifier results?”

For this, a new dataset was created by augmenting 4 times each original images,

generating a training dataset with 16,000 images. The following transformations were chosen

at random and applied to each image: zoom, vertical mirroring, horizontal mirroring, rotation,

warp perspective, Poisson random noise, Gaussian random noise, salt and pepper random noise,

random contrast and brightness, Gaussian blur and a bilateral filter.

After, using the new augmented dataset, the objective was to verify if the new augmented

dataset could improve upon the baseline results. In this experiment, considering the availability

of a larger number of images than before, a 10-fold cross-validation procedure was used.

At this point, care was taken so that the images chosen for the test dataset did not have
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their respective images enlarged in the training dataset.

For this experiment, the same network built before (Figure 41), with the best perfor-

mance in the initial experiments, was used. As a result, it was possible to achieve a better

convergence, reaching an average accuracy of 85.24%, with a standard deviation of 1.46% on

validation dataset. Figure 43 shows the results achieved by the best fold in the cross-validation

process. Also, Figure 50 in Appendix C presents its respective confusion matrix. The best result

was for classes “car”, “crucifix”, “star”, “eye”, “spider web” and “zombie” (1.00), and the worst

for class “wizard” (0.63).

Figure 43 – Accuracy and loss curves to tattoo classification model with cross validation and data augmenta-
tion.

Source: own author.

At this point, it is possible to observe that, although the model did not achieved a

high accuracy, there was a good convergence of the model as a whole, showing that the data

augmentation also had a significant contribution to improve the overall classification results.

In addition, the results indicate that, possibly, if the model is trained with a more robust

and diversified database, better results can still be achieved. In fact, and in comparison with the

other results presented so far in the literature (Table 5), the results achieved in terms of accuracy,

number of classes trained and size of the database, presented relevant results for this research

area.

4.3.3 Qualitative Analysis

After establishing a baseline and achieved a model with good accuracy, it was then

sought to qualitatively verify the strengths and weaknesses of the developed classifier. Then, the

objective was to answer some questions:
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• “Is it possible to identify characteristics in the images that make them more difficult to be

classified?”

• “How does the model behave with images of other classes not belonging to the training

set?”

• “How does the model behave with images having tattoos with more than one element?”

• “How does the model behave with images without tattoos?”

Firstly, observing the confusion matrix 50 in Appendix C, it is possible to identify the

classes in which the model had the highest difficulty to classify. Table 13 presents the 5 classes

with their respective accuracy in the test dataset.

Table 13 – Classes with the worst classification accuracy.
Class Accuracy
wizard 0.63
bird 0.71
joker 0.71
women face 0.72
fish 0.74

Source: own author.

The wizard class presented the lowest accuracy (0.63), and false positives were related

especially to the clown (0.07), tiger (0.07), gnome (0.05), women face (0.05) and lion (0.05)

classes. This example is interesting because it is common to expect that a class that is semantically

a person will be confused with other classes that also represent people. However, for this case,

classifications such as lion and tiger appeared.

However, looking at some examples of the original images (Figure 44), it is possible

to notice that the wizard (“a”, “b”, “c”, “d”, “e” and “f”) has a lot of beard, hat, and other

information around the face, which may have contributed to confusing with lion (“g”, “h”, “i”)

and tiger (“j”, “k”, “l”) classes.

Another example, however more expected, was the bird class, which had an accuracy of

0.71, and had an error of 0.08 when classified as an angel. On the other hand, the angel class had

an accuracy of 0.79 and its largest error was with the bird class (0.06).

The jocker class, in turn, presented a high error rate also with semantically similar

classes, being confused with leprechaun (0.07) and zombie (0.07). Similarly, the tiger class

presented an accuracy of 0.85 and was more confused with lion (0.06).
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Figure 44 – Sample tattoo images of wizard, lion and tiger.

Source: own author.

Therefore, we observed that the classes with the lowest classification accuracy have

similar visual characteristics to other classes, which were, possibly, the causes for their high

classification error rates. At this point, it should be noted that a precise analysis cannot be

performed, since the classification is performed based on the set of features generated via transfer

learning with the SqueezeNet network.

On the other hand, the most semantically different classes from the others, such as car,

crucifix, star, eye, and spider web, had achieved the best accuracies, what was already expected,

given that, visually speaking, they are quite different from the others and not have other classes

similar to them.

The next experiment aimed to verify how the model would behave when presented to

new images that did not belong to any known classes of the training set. This experiment could

give hints on how the classifier would classify the images considering their closest semantic

counterparts.

A new test database was created for this experiment, with 10 images for each of the

following 16 classes: baby, crown, dagger, dolphin, elephant, falcon, frog, gorilla, mandala,

moon, panther, shark, sun, unicorn, witch and wolf. An example of each of them can be seen in

Figure 45.

Observe that some of those tattoos have similarity with one or more known classes,
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Figure 45 – Example of tattoo classes not trained in the proposed model.

Source: own author.

such as baby, gorilla and witch that are similar to classes related to people. Dolphin and shark

classes are similar to fish. Falcon, panther and wolf also have their corresponding classes. The

other classes do not have any semantic correspondence with the other trained ones.

Table 14 presents a sample of the results predicted by unknown classes, and a complete

experiment results can be seen in Table 18, in Appendix D.

Table 14 – Sample of results of unknown classes classification.
Original Predicted Original Predicted Original Predicted Original Predicted
baby_01 women face wolf_01 demon frog_01 butterfly sun_01 flower
baby_02 women face wolf_02 dog frog_02 heart sun_02 spider
baby_03 man face wolf_03 cat frog_03 leprechaun sun_03 spider
baby_04 man face wolf_04 cat frog_04 leprechaun sun_04 heart
baby_05 women face wolf_05 car frog_05 butterfly sun_05 angel
baby_06 heart falcon_06 eagle mandala_06 taz moon_06 heart
baby_07 man face falcon_07 eagle mandala_07 fish moon_07 butterfly
baby_08 Jesus falcon_08 eagle mandala_08 demon moon_08 heart
baby_09 women face falcon_09 eagle mandala_09 spider moon_09 heart
baby_10 women face falcon_10 wings mandala_10 heart moon_10 heart

Source: own author.

On the one hand, the first two columns present results related to classes semantically

similar to the known ones. It is possible to verify that the model returned classes that really have

the same semantic meaning. On the other hand, the last two columns present classes that do

not correspond to the known classes and, as expected, the results were the most diverse, since

the proposed model was not generated to identify items that do not belong to any class in the

model. In this case, probably, the predicted class was based on visual similarity, such as the

correspondence of sun and spider, or mandala and heart. In this case, each pair would need a

visual inspection to identify possible visual similarities.
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This experiment allowed a deeper evaluation of the scope and robustness of the trained

model, and results showed that the network corresponded well to what was expected, and it

was able to predict semantically unknown classes with known classes. As for classes without

semantic correlation, it is not possible to predict the classification result.

The last experiment was performed with a set of images with more than one tattoo or

with tattoos that have more than one class known by the trained network. The objective was to

verify how the classification would behave in a less controlled environment than the one used so

far.

Figure 46 presents the images submitted to the classifier, and Table 15 presents the

reference of each tattoo, its known classes, the class predicted by the model and a check if the

predicted class corresponds to any of the true classes.

Figure 46 – Example of tattoo with more than one class or tattoo.

Source: own author.

We verify that the model does not behave very well in this experiment, since it was

able to correctly predict one of the tattoo classes in only 8 out of the 24 images. In the classes

in which there was a hit, we noticed that the model prioritized the dominant part of the image.

In the other images, probably the overlap between the elements may have tended the model to

interpret the image as a whole, leading to an error.

At this point, it is important to observe that the distance between the elements of the
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Table 15 – Results for classification in multi classes tattoos.
Reference Original Classes Predicted Is Correct?

01 skull, snake skull ✓
02 horse, man face horse ✓
03 horse, man face angel ✗
04 flower, skull, snake clown ✗
05 stars star ✓
06 snake, weapon women face ✗
07 eye, star star ✓
08 snake, weapon fish ✗
09 flower, skull, star taz ✗
10 flower, snake dragon ✗
11 crucifix, star knife ✗
12 cat, dog dog ✓
13 cat, dog dog ✓
14 eye, star bird ✗
15 crucifix, star joker ✗
16 eye, star star ✓
17 flower, skull clown ✗
18 flower, skull taz ✗
19 skull, snake skull ✓
20 crucifix, star, yin-yang heart ✗
21 stars butterfly ✗
22 horse, man face women face ✗
23 snake, weapon guitar ✗
24 skull, snake dragon ✗

Source: own author.

tattoo (separability) strongly influences the classifier success. For instance, in images 05, 12, 20

and 21, the tattoo location model would be of great help to separate each instance and deliver each

one separately to the classifier. However, for the other images, where the elements are intertwined,

it would be necessary to perform a semantic segmentation. That is, to submit the localized tattoo

to a model capable of identifying and separating the different elements superimposed or grouped

in the same scene.

Aiming at as practical application, a final experiment was performed with images

without tattoos (Figure 47) submitted to the classifier. As expected, the model returned some

class, but that does not make sense from a practical point of view, since the image is known to

have no tattoos. Just for reference, the classes returned were respectively: demon (“a”), guitar

(“b”), guitar (“c”), spider web (“d”), dragon (“e”), horse (“f”), flower (“g”) and crucifix (“h”).

The objective of this experiment was to highlight the importance of the pre-processing

models mentioned before, which aim to increase the accuracy of recognition methods.

Ultimately, this experiment helped to demonstrate that the classifier, as a stand-alone

method, may not have confidence for using in real problems under uncontrolled conditions. This

assertion reinforces the importance of pre-processing models in the presented tattoo recognition



71

Figure 47 – Images without tattoos.

Source: own author.

roadmap, which help to detect the presence of a tattoo in the image, locate and separate each

tattoo found, reduce the amount of irrelevant information, and segment each object instance.

Therefore, such a pre-processing process can deliver noise-free elements to the recognition

methods, which include classification and re-identification, in such a way to help to avoid

mistakes such as those presented before.
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5 CONCLUSIONS AND FUTURE WORKS

The present study aimed to develop computer vision-based methods for problems

related to tattoo image processing. More specifically, the problems of detecting, localizing and

classifying tattoos in images.

The first two problems approached here, detection and location, are related to prepro-

cessing part of the tattoo recognition roadmap, and the last, classification, is part of the tattoo

recognition problems (Figure 19).

From an application point of view and, specifically in applications for public security,

new approaches for tackling real-world tattoo recognition can significantly contribute to identify

individuals (criminals, or not) and, thus, contribute to enhance public security.

This research project obtained significant results, since it proposed new approaches for

the problems addressed, with robust solutions with potential use in the real-world.

The first problem addressed was the tattoo detection, and we used the transfer-learning

approach with DNNs and a dense neural network as a classifier, with 10-fold cross-validation.

All the tested models had good performance and similar results, reaching an average accuracy of

96.82%.

For this problem, data augmentation was applied to improve the robustness of the

classification process. A small difference in performance (~5%) was observed using TattDetectB_-

Aug13 and TattDetectF_Aug13 for feature extraction, and TattDetectF and TattDetectB for testing,

respectively. Results suggested that the datasets proposed in this work are more realistic than

NTU_Flickr, keeping in mind that tattoo identification only makes sense in images of humans. It

is possible that this fact contributed to reach better results.

However, it is important to emphasize that a quantitative comparison of tattoo detection

performance with other works is not possible due to the methodological differences between

works. It should be pointed, also, that the former studies with tattoos were based on the Tatt-C

dataset, provided by NIST, which was discontinued over time, and it is no longer available for

download. Currently, the lack of standardized datasets for tattoo detection is a great drawback

for this area of research.

Consequently, future work will include the expansion of all the datasets proposed in this

work, with increased diversity and quality, so that, once put in the public domain, more research

in this area will be fostered. Also, a more in-depth study about the effect of image properties,
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such as sizes, proportion of the tattoo in the image, illumination, effect of colors, effect of the

complexity of the tattoos, etc., will be interesting research directions to be sought in the near

future.

The second problem addressed was the tattoo location and, for this, we used the Mask

R-CNN network. The mAP values achieved were 0.893 and 0.761 for the training and validation

bases, which is quite significant for this problem.

Two datasets were created for this study, TattLocA and TattLocB, such that the latter is

much larger than the former. Experiments show the importance of the size and diversity of the

dataset used for training the model, since better results were obtained with TattLocB.

Similarly to the tattoo detection problem, the lack of publicly available datasets pre-

cluded comparisons with other published results. Also, published works in this area used different

quality metrics used in this work.

The main difficulty encountered in using the MaskR-CNN network was the perfor-

mance of fine-tuning, given the large amount of existing hyper-parameters and, given the high

computational cost taken for each test. Therefore, a factorial test was not performed.

As future works, the creation of larger and more diversified datasets could contribute to

the development of the model robustness, as well as a study with data augmentation. A more

in-depth study of the hyper-parameters of the network would also be helpful to achieve even

better results.

The last problem addressed was the tattoo classification, using a transfer approach,

based on the SqueezeNet DNNs. A specific dataset for tattoo classification was created, named

TattClass40. For this 40-classes classification problem, an average accuracy of 85.24% was

achieved.

A qualitative analysis helped to demonstrate that the model is robust and comprehensive

enough to also classify tattoos of unknown classes, with some semantic similarity with the

classes of the model. However, for images with complex, intertwined tattoos or with multiple

tattoos, the model showed to be limited.

Once again, it was not possible to compare the results obtained with the others in the

literature. However, in this case, the main factor was the number of classes of the dataset. As

far as the current search has gone, no study covering 40 classes of tattoos has been found, since

previous studies were limited up to 5 classes. Even so, the accuracy achieved here is superior to

that presented by previous smaller studies (Table 5).
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Furthermore, the qualitative experiments performed demonstrated the importance of

the pre-processing methods, including detection, localization and, especially, segmentation, to

provide more assertive results in this research area.

Therefore, future works will address the segmentation problem of tattoo images. Also,

the development of databases is a relevant topic, both in increasing the number of images of the

current dataset, and increasing the number of classes. The open world classification approach is

also an important topic to be developed, allowing to create models not only capable of identifying

the trained classes, but also recognizing objects that are not part of the set of known classes.

In addition to the developed models, other relevant contributions can be added. Initially,

the study brings a new set of high-quality tattoo datasets for tattoo detection, tattoo location and

tattoo classification. These datasets are highly complex to obtain, classify, annotate and organize,

which is not a trivial task in this context. As previously mentioned, the main datasets used in the

literature are no longer available and, in any case, those presented here were developed based on

a methodology that had not been used before, in addition to have a high number of images than

others cited in the literature.

The second important point to be studied in the future are quality metrics. In the

literature review presented in Chapter 2, there is no consensus on which are the best metrics to

be used for each of the several tattoo image processing problems. Thus, this is an area that is still

open for research aiming at establishing standards.

Another important contribution of this study is related to the tattoo recognition roadmap

(Figure 19). The studies carried out here show the relationship among some roadmap items,

including the importance of pre-processing methods for the recognition tasks. In addition, there

are still very few studies that correlate the methods with each other, and many of the problems

presented there still do not have any specific study published in the scientific literature.

It is emphasized that, not only for the problems approached here, but for all problems

related to tattoo image processing, the development of robust datasets is a very relevant issue,

since they are very scarce and, when found, they have low quality.

Overall, the development of models for problems related to tattoo recognition is an area

that is open for research and has many important challenges. New methods based on computer

vision, especially those involving deep learning, have great potential to help the evolution of this

research area.
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APPENDIX A – TATTOO LOCATION - MASK R-CNN FINE TUNING

Table 16 – Hyper-parameters tested in Mask R-CNN tattoo location.
Test Hyper-parameters Train Loss

01

EPOCHS = 50
LEARNING_MOMENTUM = 0.75
LEARNING_RATE = 0.0005
RPN_NMS_THRESHOLD = 0.6

02

EPOCHS = 50
LEARNING_MOMENTUM = 0.75
LEARNING_RATE = 0.0001
RPN_NMS_THRESHOLD = 0.6

03

EPOCHS = 50
LEARNING_MOMENTUM = 0.95
LEARNING_RATE = 0.005
RPN_NMS_THRESHOLD = 0.8

[Generate loss NaN and 0.000e+00 since first epoch.]

04 VALIDATION_STEPS = 200

(continue)
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Table 16 – Hyper-parameters tested in Mask R-CNN tattoo location.
(continuation)

Test Hyper-parameters Train Loss

05
EPOCHS = 50
LEARNING_RATE = 0.0005
VALIDATION_STEPS = 333

06

EPOCHS = 50
LEARNING_RATE = 0.0005
VALIDATION_STEPS = 333
RPN_ANCHOR_SCALES = (64, 128, 256,
512, 768)

07

EPOCHS = 50
VALIDATION_STEPS = 333
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
RPN_ANCHOR_RATIOS = [0.5, 1, 2]

(continue)
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Table 16 – Hyper-parameters tested in Mask R-CNN tattoo location.
(continuation)

Test Hyper-parameters Train Loss

08

EPOCHS = 50
VALIDATION_STEPS = 333
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
WEIGHT_DECAY = 0.1

09

EPOCHS = 50
VALIDATION_STEPS = 333
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
WEIGHT_DECAY = 0.5

10

EPOCHS = 50
VALIDATION_STEPS = 333
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
WEIGHT_DECAY = 0.5
TRAIN_BN = True

(continue)
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Table 16 – Hyper-parameters tested in Mask R-CNN tattoo location.
(continuation)

Test Hyper-parameters Train Loss

11

EPOCHS = 50
VALIDATION_STEPS = 333
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
WEIGHT_DECAY = 0.5
TRAIN_BN = True
ROI_POSITIVE_RATIO = 0.66
TRAIN_ROIS_PER_IMAGE = 512
DETECTION_NMS_THRESHOLD = 0.6

12

EPOCHS = 50
VALIDATION_STEPS = 333
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
WEIGHT_DECAY = 0.5
TRAIN_BN = True
ROI_POSITIVE_RATIO = 0.75
TRAIN_ROIS_PER_IMAGE = 512
DETECTION_NMS_THRESHOLD = 0.7

13

EPOCHS = 50
VALIDATION_STEPS = 407
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
WEIGHT_DECAY = 0.5
TRAIN_BN = True
ROI_POSITIVE_RATIO = 0.75
TRAIN_ROIS_PER_IMAGE = 512
DETECTION_NMS_THRESHOLD = 0.7

(continue)
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Table 16 – Hyper-parameters tested in Mask R-CNN tattoo location.
(continuation)

Test Hyper-parameters Train Loss

14

EPOCHS = 100
VALIDATION_STEPS = 407
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
WEIGHT_DECAY = 0.5
TRAIN_BN = True
ROI_POSITIVE_RATIO = 0.7
TRAIN_ROIS_PER_IMAGE = 512
DETECTION_NMS_THRESHOLD = 0.7

15

EPOCHS = 50
VALIDATION_STEPS = 407
BACKBONE_STRIDES = [4, 8, 16, 32, 64,
96, 128]
RPN_ANCHOR_SCALES = (32, 64, 128,
256, 512, 768, 1,024)
WEIGHT_DECAY = 0.5
TRAIN_BN = True
ROI_POSITIVE_RATIO = 0.7
TRAIN_ROIS_PER_IMAGE = 512
DETECTION_NMS_THRESHOLD = 0.7
IMAGE_MIN_DIM = 128
MAX_GT_INSTANCES = 120
DETECTION_MAX_INSTANCES = 120

Source: own author.
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APPENDIX B – MASK R-CNN DEFAULT PARAMETERS

Table 17 – Mask R-CNN Default Parameters.
Parameter Default Value
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 2
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.7
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 2
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 14
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [1024 1024 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001

LOSS_WEIGHTS
’rpn_class_loss’: 1.0, ’rpn_bbox_loss’: 1.0,
’mrcnn_class_loss’: 1.0, ’mrcnn_bbox_loss’: 1.0,
’mrcnn_mask_loss’: 1.0

MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100
MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
PRE_NMS_LIMIT 6000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 1000
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK False
USE_RPN_ROIS True
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001

Source: own author.
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APPENDIX C – TATTOO CLASSIFICATION CONFUSION MATRIX

Figure 48 – Retrieval results for tattoo classification initial model.

Source: own author.
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Figure 49 – Retrieval results for tattoo classification model with cross validation.

Source: own author.
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Figure 50 – Retrieval results for final tattoo classification model with cross validation and data augmentation.

Source: own author.
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APPENDIX D – RESULTS OF UNKNOWN CLASSES CLASSIFICATION

Table 18 – Results of the classification of unknown classes.
Original Predicted Original Predicted Original Predicted Original Predicted
baby_01 women face crown_01 taz dagger_01 leprechaun dolphin_01 fish
baby_02 women face crown_02 heart dagger_02 spider dolphin_02 horse
baby_03 man face crown_03 octopus dagger_03 horse dolphin_03 heart
baby_04 man face crown_04 angel dagger_04 guitar dolphin_04 butterfly
baby_05 women face crown_05 angel dagger_05 knife dolphin_05 taz
baby_06 heart crown_06 butterfly dagger_06 guitar dolphin_06 heart
baby_07 man face crown_07 clown dagger_07 taz dolphin_07 wings
baby_08 Jesus crown_08 guitar dagger_08 joker dolphin_08 star
baby_09 women face crown_09 cat dagger_09 taz dolphin_09 bird
baby_10 women face crown_10 clown dagger_10 flower dolphin_10 bird
elephant_01 fish falcon_01 wings frog_01 butterfly gorilla_01 clown
elephant_02 leprechaun falcon_02 guitar frog_02 heart gorilla_02 women face
elephant_03 horse falcon_03 flower frog_03 leprechaun gorilla_03 man face
elephant_04 leprechaun falcon_04 dog frog_04 leprechaun gorilla_04 man face
elephant_05 horse falcon_05 eagle frog_05 butterfly gorilla_05 lion
elephant_06 horse falcon_06 eagle frog_06 horse gorilla_06 Jesus
elephant_07 octopus falcon_07 eagle frog_07 butterfly gorilla_07 yin-yang
elephant_08 man face falcon_08 eagle frog_08 flower gorilla_08 Jesus
elephant_09 eagle falcon_09 eagle frog_09 octopus gorilla_09 man face
elephant_10 horse falcon_10 wings frog_10 butterfly gorilla_10 man face
mandala_01 dragon moon_01 yin-yang panter_01 horse shark_01 eagle
mandala_02 demon moon_02 yin-yang panter_02 horse shark_02 taz
mandala_03 taz moon_03 heart panter_03 dragon shark_03 taz
mandala_04 spider web moon_04 heart panter_04 dog shark_04 snake
mandala_05 yin-yang moon_05 dragon panter_05 flower shark_05 bird
mandala_06 taz moon_06 heart panter_06 horse shark_06 women face
mandala_07 fish moon_07 butterfly panter_07 dog shark_07 heart
mandala_08 demon moon_08 heart panter_08 horse shark_08 star
mandala_09 spider moon_09 heart panter_09 taz shark_09 guitar
mandala_10 heart moon_10 heart panter_10 cat shark_10 eagle
sun_01 flower unicorn_01 tiger witch_01 taz wolf_01 demon
sun_02 spider unicorn_02 horse witch_02 angel wolf_02 dog
sun_03 spider unicorn_03 star witch_03 leprechaun wolf_03 cat
sun_04 heart unicorn_04 taz witch_04 guitar wolf_04 cat
sun_05 angel unicorn_05 fish witch_05 clown wolf_05 car
sun_06 butterfly unicorn_06 joker witch_06 leprechaun wolf_06 dog
sun_07 spider unicorn_07 octopus witch_07 horse wolf_07 cat
sun_08 taz unicorn_08 horse witch_08 guitar wolf_08 dragon
sun_09 flower unicorn_09 dragon witch_09 horse wolf_09 cat
sun_10 wings unicorn_10 horse witch_10 clown wolf_10 tiger

Source: own author.
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