UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

NATÁLIA LIMA LIRA

COMPOSIÇÃO DO ICTIOPLÂNCTON POR DNA METABARCODING COMO FERRAMENTA DE AVALIAÇÃO DE POTENCIAIS ÁREAS DE PRESERVAÇÃO NO ENTORNO DO REFÚGIO BIOLÓGICO DE SANTA HELENA - LAGO DE ITAIPU -

PR

SANTA HELENA 2022

NATÁLIA LIMA LIRA

COMPOSIÇÃO DO ICTIOPLÂNCTON POR DNA METABARCODING COMO FERRAMENTA DE AVALIAÇÃO DE POTENCIAIS ÁREAS DE PRESERVAÇÃO NO ENTORNO DO REFÚGIO BIOLÓGICO DE SANTA HELENA - LAGO DE ITAIPU -PR

Composition of ichthyoplankton by DNA metabarcoding as a tool for evaluating potential conservation areas around the Santa Helena Biological Refuge - Lake Itaipu – PR.

Dissertação apresentada como requisito para obtenção do título de Mestre em Recursos Naturais e Sustentabilidade ao Programa de Pós-Graduação em Recursos Naturais e Sustentabilidade da Universidade Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Daniel Rodrigues Blanco

Coorientador: Prof. Dr. Cláudio de Oliveira

SANTA HELENA 2022

Esta licença permite remixe, adaptação e criação a partir do trabalho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es) e que licenciem as novas criações sob termos idênticos. Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Santa Helena

NATALIA LIMA LIRA

COMPOSIÇÃO DO ICTIOPLÂNCTON POR DNA METABARCODING COMO FERRAMENTA DE AVALIAÇÃO DE POTENCIAIS ÁREAS DE PRESERVAÇÃO NO ENTORNO DO REFÚGIO BIOLÓGICO DE SANTA HELENA - LAGO DE ITAUPÚ PR.

Trabalho de pesquisa de mestrado apresentado como requisito para obtenção do título de Mestra Em Recursos Naturais E Sustentabilidade da Universidade Tecnológica Federal do Paraná (UTFPR). Área de concentração: Recursos Naturais E Sustentabilidade.

Data de aprovação: 30 de Maio de 2022

Dr. Daniel Rodrigues Blanco, Doutorado - Universidade Tecnológica Federal do Paraná

Dra. Fernanda Simoes De Almeida, Doutorado - Universidade Estadual de Londrina (Uel)

Dr. Heleno Brandao, Doutorado - Universidade Tecnológica Federal do Paraná

Documento gerado pelo Sistema Acadêmico da UTFPR a partir dos dados da Ata de Defesa em 31/05/2022.

Dedico esse trabalho àqueles que tanto me apoiaram e me apoiam para seguir em frente mesmo diante das dificuldades, às pessoas especiais da minha vida que me incentivam e me dão suporte, sem vocês esse trabalho não seria possível.

AGRADECIMENTOS

Agradeço primeiramente à minha família, minha mãe dona Zeneide, por todos esses anos de incentivo e suporte durante todo meu percurso, além de todo amor e cuidado durante toda a minha vida. E ao meu irmão Victor pelos momentos de leveza, carinho e apoio que me proporciona.

Agradeço imensamente, meu grande amor e parceiro de todas as horas Sandro, por cada momento de felicidade e por estar sempre presente nos momentos que eu mais precisei de alguém me apoiando. Por me incentivar a continuar quando eu pensava em desistir, por me aliviar nos momentos de crise, e por compartilhar os momentos da sua vida comigo.

Agradeço também ao meu pai científico e orientador Prof. Dr. Daniel Rodrigues Blanco, por todo incentivo profissional e pessoal durante todos os anos de graduação e mestrado, nunca duvidando da minha capacidade, sempre me incentivando e auxiliando.

Um agradecimento especial ao Prof. Dr. Cláudio de Oliveira, e ao Laboratório de Biologia e Genética de Peixes da UNESP de Botucatu – SP e Instituto de Biotecnologia (IBTEC) pela estrutura e auxílio financeiro com as amostras. Aos queridos Gabriela Omura e Bruno Rossini por todas as horas de auxílio e parceria durante todo o processo das minhas amostras, meu muito obrigada, sem vocês eu não teria conseguido.

Agradeço aos meus queridos amigos que participaram da minha jornada e compartilharam uma parte de suas jornadas comigo: Rafael, Lucas, Erick, Lallucha, Josiane, Marcos P., Aline, Marco T., Isabela, Kelin, Chrystian, Taiane, Bárbara, Camila, Geovanna, Jeniffer S., Katiane, e Daiana, meu muito obrigada por tudo. Aos integrantes do GEIN (Grupo de Estudos em Ictiologia Neotropical), em especial ao Sr. João Maicrovicz e Prof. Dr. Heleno Brandão por todo o suporte nas coletas. Agradeço também ao Ricardo pelo auxílio nas coletas como piloto do nosso barco.

Agradeço à Universidade Tecnológica Federal do Paraná – Campus Santa Helena por ter sido a minha casa durante todos esses anos, e todos os docentes e funcionários pelo ótimo trabalho. Ao Programa de Pós-Graduação em Recursos Naturais e Sustentabilidade da UTFPR-SH, por possibilitar a minha pós-graduação, assim como a Coordenação de Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES pelo fomento financeiro. Ao CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) pelo fomento, e ao ICMBio pela autorização para as coletas.

"Há mais coisas boas em você do que você sabe, filho do gentil Oeste. Alguma coragem e alguma sabedoria, misturadas na medida certa. Se mais de nós déssemos mais valor a comida, bebida e música do que a tesouros, o mundo seria mais alegre."

- Thorin Escudo de Carvalho - O Hobbit - J.R.R. Tolkien, 1937.

RESUMO

O Refúgio Biológico de Santa Helena (RBSH) é uma Área de Relevante Interesse Biológico (ARIE) que faz parte das unidades de conservação (UC) municipais do estado do Paraná, sendo componente da Área de Preservação Permanente do Lago de Itaipu. Possui uma área total de 1.482,05 ha, estando localizado na Bacia Hidrográfica Paraná III no município de Santa Helena, extremo oeste do estado. A área da UC abrange apenas o ambiente terrestre, segundo o plano de manejo, o ambiente aquático é considerado como Zona de Amortecimento (ZA). Considerando que falta monitoramentos na ZA, a criação de novas áreas de proteção efetiva na parte aquática, mais especificamente no entorno do RBSH, se torna imprescindível. Muitas dessas áreas são utilizadas como local de desova e berçário de diferentes espécies de peixes residentes e migratórias, tornando-se importantes áreas para a ictiofauna. As abordagens conservacionistas envolvendo os estudos dos estágios iniciais da vida dos peixes têm se tornado cada vez mais comuns e importantes para a implantação de medidas de orientação e proteção dessas áreas. Tradicionalmente a identificação de ictioplâncton utiliza taxonomia clássica, entretanto, há uma extrema dificuldade em obter uma identificação precisa, visto a similaridade dos espécimes nessa fase. Com o advento da Biologia Molecular, a utilização de marcadores específicos possibilitou uma maior precisão nessas identificações. Por meio da técnica DNA metabarcoding, foram identificadas quais espécies estão desovando no entorno do RBSH, e através desses dados, espera-se que haja subsídios suficientes para a ampliação da área de preservação do RBSH. As amostragens de ictioplâncton foram realizadas ao longo de um ciclo reprodutivo (2020/2021), distribuídas em dez pontos localizados em regiões estratégicas do RBSH, na área de influência do Lago de Itaipu, pertencente à bacia do Alto rio Paraná. Neste período, foram realizadas sete amostragens por ponto, totalizando 70 amostras. O material coletado foi submetido a um sequenciamento massivo, utilizando a técnica de DNA metabarcoding com dois conjuntos de seis primers. Os 6.068 ovos / larvas coletados resultaram em 1.848 sequências viáveis, possibilitando a identificação de 82 táxons, pertencentes a sete ordens, 26 famílias e oito subfamílias. Este trabalho contribui com o registro de 25 identificações a nível de gênero e 57 a nível de espécie, identificamos também a presença de duas espécies introduzidas do continente africano e cinco espécies e quatro gêneros de peixes migradores de longa distância.

Palavras-chave: unidade de conservação; genética; ovos e larvas de peixes.

ABSTRACT

The Santa Helena Biological Refuge (RBSH) is an Area of Relevant Biological Interest (ARIE) that is part of the municipal conservation units (UC) in the state of Paraná, being a component of the Permanent Preservation Area of Lake Itaipu. It has a total area of 1,482.05 ha, located in the Paraná III Hydrographic Basin in the municipality of Santa Helena, in the extreme west of the state. The UC area covers only the terrestrial environment, the protection of the aquatic environment is only the responsibility of the Buffer Zone area (ZA). Considering that the ZA lacks monitoring, the creation of new restriction areas in the aquatic part around the RBSH becomes essential. Many of these areas are used as a spawning ground for local and migratory fish species, making them important nursery areas for the ichthyofauna. Conservation approaches involving studies of the early stages of fish life have become increasingly common and important for the implementation of measures to guide and protect these areas. Traditionally, the identification of ichthyoplankton uses classical taxonomy, however, it is extremely difficult to obtain a precise identification, given the similarity of the specimens at this stage. With the advent of Molecular Biology, the use of specific markers made these identifications more accurate. It is expected that through the DNA metabarcoding technique, it is possible to identify which species are spawning around the RBSH, so that through these data there are subsidies for the expansion of the RBSH preservation area. In this scenario, the ichthyoplankton samples were carried out over a reproductive cycle (2020/2021), distributed in ten essential points in strategic regions of ARIE-SH, in the area of influence of Lake Itaipu, belonging to the Upper Rio basin Paraná. During this period, seven samplings were performed per point, totaling 70 samples. The collected material was subjected to massive sequencing, using the DNA metabarcoding technique with two sets of six primers. The 6,068 eggs / larvae collected resulted in 1,848 viable sequences, allowing the identification of 82 taxa, belonging to seven orders, 26 families and eight subfamilies. This work contributes with the record of 25 identifications at the genus level and 57 at the species level, we also identified the presence of two species introduced from the African continent and five species and four genera of long-distance migratory fish.

Keywords: conservation unit; genetics; fish eggs and larvae.

LISTA DE ILUSTRAÇÕES

Figura 1 – Pontos de coleta localizados no entorno da Área de Relevante Interesse Ecológico de Santa H	elena -
ARIE-SH (Refúgio Biológico de Santa Helena – RBSH), na área de influência do Lago de I	taipu –
PR. Os pontos estão enumerados de 1 a 10.	30
Figura 2 – Fotos dos pontos de coleta localizados no entorno da Área de Relevante Interesse Ecológico de Helena - ARIE-SH. Os pontos estão numerados de P01 a P10.	e Santa 31

CAPÍTULO I

Figura 1 – Diferenças nos métodos padrão para DNA barcode e DNA metabarcode. Enquanto o DNA bar	code se
concentra em uma espécie específica, o DNA metabarcode examina várias espécies ao	mesmo
tempo	49
-	

CAPÍTULO II

gura 1 – Quantitativo de ovos e larvas de peixes coletados por ponto amostral do RBSH
gura 2 – Riqueza de espécies coletadas por ponto amostral do RBSH63
gura 3 – Total de sequências identificadas por ponto amostral do RBSH63
gura 4 – Quantidade de espécies de peixes identificadas por ordens71
gura 5 – Quantidade de ordens identificadas por ponto71
gura 6 – Quantidade de espécies identificadas por família72
gure 7 – Quantidade de famílias identificadas por ponto74
gura 8 – Quantidade de famílias identificadas por ponto74
gura 9 – Quantidade de sequencias de ovos e larvas de peixes migradoresde longa distância identificadas por pontos de coleta

LISTA DE TABELAS

Tabela 1 – Cara	acterização	física do	s locais	de	coleta,	localizados	na	parte	aquática	no	entorno	do	Refúgio
Bie	ológico de S	Santa Hel	ena – PR.										32

- Tabela 2 Quantidade de indivíduos coletados (ovos e larvas) organizados por pool. (') simboliza amostras subdivididas (subpools).
 33
- Tabela 3 Conjuntos de primers de PCR utilizados para amplificar o gene Citocromo c Oxidase Subunidade I (COI). Primers externos (FishF1, FishF2, FishF6, FishR1, FishR2 e FishR7) e internos (219F, 217F, 214F, 433R, 432R e 434R).

 37
- Tabela 4 Concentração de DNA inicial dos pools utilizados para montagem da biblioteca final. Todos os pools foram padronizados para uma concentração final de 20 ng/μL. Pools identificados com (') são amostras subdivididas, quantificações que não foram possíveis de medir estão marcadas com (--).40

CAPÍTULO I

- Tabela 2 Estudos envolvendo análise morfológica e identificação por DNA barcode de ovos e larvas de peixes de águas continentais entre os anos de 2011 a 2021. Na ausência de informações utilizamos (-)... 51

CAPÍTULO II

LISTA DE SIGLAS, ACRÔNIMOS E ABREVIATURAS

ICMBio	Instituto Chico Mendes de Conservação da Biodiversidade
MMA	Ministério do Meio Ambiente
UC	Unidade de Conservação
ARIE	Área de Relevante Interesse Ecológico.
SH	Santa Helena (cidade do oeste do estado do Paraná).
RBSH	Refúgio Biológico de Santa Helena
ZA	Zona de amortecimento.
ICMS	Imposto sobre Operações relativas à Circulação de Mercadorias e sobre
	Prestações de Serviços de Transporte Interestadual e Intermunicipal e de
	Comunicação.
NGS	Next Generation Sequencing
Contig	Sequências maiores de DNA que são montadas por meio de sobreposição
	de <i>reads</i> .
Reads	Resultado obtido após o sequenciamento de genomas por sequenciadores
	de alto desempenho. Corresponde a uma pequena sequência de poucos
	pares de base.

1	INTRODUÇÃO	13
2	OBJETIVOS	16
2.1.	Objetivo Geral	16
2.2.	Objetivos específicos	16
3	REVISÃO BIBLIOGRÁFICA	17
3.1.	Refúgio Biológico de Santa Helena	17
3.2.	Qual o motivo de escolher as áreas do RBSH para proteção e conservaçã	o18
3.3.	Importância do estudo de ictioplâncton	19
3.4.	DNA barcoding (COI) em Ictioplâncton marinho	21
3.5.	DNA barcoding (COI) em Ictioplâncton de Águas Continentais	25
3.6.	Metabarcoding	27
4	MATERIAL E MÉTODOS	30
4.1.	Local de estudo e amostragens	30
4.2.	Extração do DNA	33
4.3.	Amplificação da região COI	37
4.4.	Preparo da biblioteca	
4.5.	Normalização e sequenciamento das amostras	39
4.6.	Análises bioinformáticas	43
5	RESULTADOS	44
5.1. 20 DNA	Capítulo I - Identificação de ovos e larvas de peixes: das metodologias clá	issicas 45
40 D 11A	Importância do estudo de ictionlancton	- 5 45
512	DNA barcode	47
5.1.3.	Resultados	49
5.1.3.1.	DNA <i>barcode</i> em ictioplâncton marinho	53
5.1.3.2.	DNA <i>barcode</i> em ictioplâncton de águas continentais	53
5.1.3.3.	DNA metabarcode	54
5.1.4.	Considerações finais	57
5.2.	Capítulo II - Caracterização do ictioplâncton por DNA metabarcoding no)
entorno	da ARIE Santa Helena - Paraná.	58
5.2.1.	Introdução	58
5.2.2.	Material e métodos	59
5.2.2.1.	Obtenção das amostras	59
5.2.2.2.	Análises moleculares - DNA metabarcoding	60
5.2.2.2.	Análises bioinformáticas	61

SUMÁRIO

		12
5.2.3.	Resultados e Discussão	61
5.2.3.1.	Caracterização e composição da Ictiofauna	<u>64</u>
5.2.4.	Considerações Finais	.78
6 CON	NCLUSÕES	.79
REFERÍ	ÈNCIAS	80
APÊNDI	ICE A - Tabela de quantidade de Reads	.95
APÊNDI	CE B - Tabel de identificação das sequencias obtidas1	01

1 INTRODUÇÃO

O Brasil possui muitas espécies de peixes de água doce, ocupando o primeiro lugar no mundo em quantidade (McAllister et al., 1997). Porém, segundo o Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, produzido pelo Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) na edição de 2018 (Portarias MMA n° 444 e 445/2014), de um total de 3.148 espécies de peixes continentais, 312 foram consideradas ameaçadas no território Nacional. Os motivos são o aumento contínuo da poluição, a pesca predatória, as mudanças climáticas, desmatamento, barramentos dos rios, dentre outros impactos antrópicos que de forma conjunta ameaçam as espécies de extinção (Agostinho et al., 2003; Junk et al., 2021; Pelicice et al., 2021).

O Refúgio Biológico de Santa Helena (RBSH) é uma Área de Relevante Interesse Biológico (ARIE) que faz parte das unidades de conservação municipais do estado do Paraná (Kliver, 2010). Possui uma área total de 1.482,05 ha, estando localizado na Bacia Hidrográfica Paraná III no município de Santa Helena, extremo oeste do estado (Kliver, 2010). Existe uma grande pressão na questão de que, os recursos financeiros são considerados estáveis pela disponibilidade do ICMS ecológico, mas não são aplicados o suficiente na manutenção da unidade de conservação (UC), além da insuficiência de monitoramento, levando a atividades como a caça ilegal e a pesca amadora tanto dentro do RBSH quanto em Zonas de Amortecimento (ZA) (Kliver, 2010).

Levando em consideração que a área da UC abrange apenas o ambiente terrestre a proteção do ambiente aquático fica apenas a cargo da área da Zona de Amortecimento (entorno de uma unidade de conservação, onde as atividades humanas estão sujeitas a normas e restrições específicas, com o propósito de minimizar os impactos negativos sobre a unidade - limite que é disciplinado pela Lei nº 9.985, de 18 de julho de 2000). E, considerando a falta de monitoramentos na ZA, se torna imprescindível a criação de novas áreas de preservação levando em consideração a forte pressão de pesca existente nessa região, bem como também a introdução indevida de espécies não nativas, realizadas por exemplo, em períodos de pesca esportiva, com solturas de espécies criadas em tanques redes ou escavados, o que acaba comprometendo a biodiversidade local. Muitas dessas áreas são utilizadas pelas espécies de peixes como um local de desova de espécies locais e migratórias, tornando-se importantes áreas de berçário para a ictiofauna (Kliver, 2010).

Uma identificação precisa das áreas de desova e desenvolvimento dos peixes tem fundamental importância para o estabelecimento de medidas de proteção dessas áreas (Nakatani et al., 2001; Frantine-Silva et al., 2015), pois, ter o conhecimento sobre os locais de reprodução e desova, bem como suas características e dimensões, dão bases para as ações que visam o manejo e o aumento da preservação das espécies presentes nesses locais (Bialetzki et al., 2005).

Tradicionalmente a identificação de ictioplâncton utiliza caracteres morfológicos, entretanto, há uma extrema dificuldade em obter uma identificação precisa. Com o advento da Biologia Molecular, a utilização de marcadores específicos possibilitou uma maior precisão taxonômica e compreensão de onde e quando estão ocorrendo migrações de peixes e suas possíveis rotas subsidiando, assim estudos referentes à impactos ecológicos e ambientais, compensação da pesca e gestão de recursos (Moura et al., 2008; Valdez-Moreno et al., 2010).

O gene citocromo c oxidase I é utilizado como marcador animal no sistema de identificação de espécies (DNA *Barcoding*) proposto por Hebert et al. (2003), e tem apresentado grande sucesso, por possuir alta variabilidade interespecífica e reduzida variabilidade intraespecífica, baixa recombinação e ausência de *introns*, existência de *primers* bem estabelecidos para amplificação em grande parte dos animais, e melhor potencial de sinal filogenético do que outros genes mitocondriais (Hebert et al., 2003).

A ferramenta de DNA *barcoding* normalmente pode identificar apenas uma amostra de cada vez, não podendo identificar várias espécies no caso de amostras com mistura de espécies diferentes. Para auxiliar na resolução desse problema, e com os avanços na tecnologia de sequenciamento, agora é possível avaliar a composição de espécies de um ecossistema, incluindo amostras ambientais como solo, sedimentos e água, em apenas um único sequenciamento, não havendo necessidade em sequenciar amostras de espécies individualmente (Pavan-Kumar et al., 2015). Essa técnica é denominada DNA *metabarcoding* e é baseada em sequenciamento de segunda geração (*New Generation Sequencing* - NGS) (Taberlet et al., 2012).

Visto que não há fiscalização efetiva no Refúgio Biológico de Santa Helena, identificar berçários de peixes pode gerar dados para criar delimitações estratégicas para manutenção da ictiofauna. O aumento da área, além de preservar, também poderia aumentar o ICMS ecológico recebido pelo município, gerando renda aos moradores locais, e, consequentemente aumentando a renda destinada a questões ambientais, visto que a preservação desses berçários manteria a variabilidade genética, permitindo a manutenção natural das espécies.

2 OBJETIVOS

2.1. Objetivo Geral

Avaliar, por meio do registro e identificação de ovos e larvas de peixes, as áreas do entorno do Refúgio Biológico de Santa Helena, que possuem potencial para tornarem-se áreas de preservação.

2.2. Objetivos específicos

- Identificar quais espécies de peixes estão desovando no entorno do Refúgio Biológico de Santa Helena (Lago de Itaipu);
- Detectar se existem espécies de peixes migradores utilizando o entorno do RBSH como área de "berçário" e desenvolvimento;
- Verificar qual a efetividade da técnica de DNA metabarcoding para identificação de ovos e larvas de peixes;
- Constatar se as áreas aquáticas no entorno do RBSH possuem potencial para se tornarem áreas de preservação

3 REVISÃO BIBLIOGRÁFICA

3.1. Refúgio Biológico de Santa Helena

A Área de Relevante Interesse Ecológico do município de Santa Helena – PR (ARIE - SH), conhecida na região como "Refúgio Biológico de Santa Helena" (RBSH) é uma Unidade de Conservação Municipal, possui uma área total de 1.482,05 hectares e é constituída geograficamente por uma península transformada em ilha (Kliver, 2010). Trata-se de uma área de proteção privada pertencente à empresa Itaipu Binacional, sendo componente da Área de Preservação Permanente do Lago de Itaipu (Kliver, 2010). A característica privada do Refúgio deve-se à bi nacionalidade da empresa, o que impede a sua denominação como terras públicas. Contudo, seu uso, responsabilidade e administração são prerrogativas da prefeitura municipal de Santa Helena - PR, conforme acordo firmado entre as partes (Convênio n° 5606/98: Instrumento particular de convênio de cooperação entre Itaipu Binacional e a prefeitura municipal de Santa Helena) (Kliver, 2010).

A área foi instituída pela empresa para proteger a fauna silvestre resgatada após o represamento do Rio Paraná para a construção do Reservatório da Hidrelétrica de Itaipu (1975-1982), através da Reunião de Diretoria Executiva n° 50/1984 (Agostinho et al., 2007). Originalmente foi declarada como Reserva Biológica de Santa Helena por decreto inspirado na Lei Federal n° 5.197/67 vigente à época de sua criação. Em 1984, passou à categoria de Refúgio por meio de decreto estadual, passando em seguida para a categoria de Área de Relevante Interesse Biológico (ARIE) para se adequar à Lei nº 6. 938/81. Com o cadastramento, o local passa a receber o Imposto sobre Circulação de Mercadorias e Serviços – ICMS ecológico, cujo maior objetivo é o de destinar as ações necessárias ao local (Kliver, 2010).

Apesar de ser uma propriedade privada, foi cadastrada como ARIE por dois motivos: 1) devido à sua dimensão estar enquadrada dentro do limite máximo de 5 mil hectares previsto para essa categoria; 2) devido à inexistência de legislação específica para a soltura de animais em reservas de propriedade privada quando realizado o seu enquadramento, visto que a categoria de unidade de conservação denominada RPPN (Reserva Particular do Patrimônio Natural) foi instituída somente em 1990 por meio do Decreto Federal nº 98.9 (Kliver, 2010).

O RBSH está inserido dentro do domínio fitogeográfico da Mata Atlântica, sendo sua fitofisionomia principal classificada como Floresta Estacional Semidecidual. A área é considerada de prioridade para conservação pelo Ministério do Meio Ambiente, pois é parte integrante do Corredor de Biodiversidade Iguaçu-Paraná, estando localizada entre o Parque Nacional do Iguaçu e o Parque Nacional de Ilha Grande, que são importantes Unidades de Conservação de Proteção Integral que integram o Programa Paraná Biodiversidade (Kliver, 2010).

3.2. Qual o motivo de escolher as áreas do RBSH para proteção e conservação

No Plano de Manejo do Refúgio Biológico de Santa Helena (Kliver, 2010) é possível notar um grande número de programas e ações que visam conscientização quanto a conservação do RBSH, tais como o programa Cultivando Água Boa que surgiu da parceria entre a ITAIPU e o município, e o projeto Caminhos do Turismo Integrado ao Lago de Itaipu, parceria entre o Conselho de Desenvolvimento dos Municípios Lindeiros ao Lago de Itaipu com o SEBRAE, FEPESE e UFSC (Kliver, 2010). No entanto, existe uma grande pressão na questão de que, os recursos financeiros são considerados estáveis pela disponibilidade do ICMS ecológico, mas não são aplicados o suficiente na conservação da unidade de conservação (UC), além da insuficiência de monitoramento, levando a atividades como a caça ilegal e a pesca amadora tanto dentro do RBSH, quanto em zonas de amortecimento (entorno da unidade de conservação), que teriam a função de proteger a periferia dessa UC (Kliver, 2010).

É importante ressaltar que a pesca recreativa (amadora/esportiva) está bem estabelecida no reservatório, impulsionada pelo apoio de prefeituras locais, gerando recursos financeiros para os estabelecimentos comerciais na cidade. Segundo Agostinho et al. (2007), em 2004 os torneios de pesca chegaram a envolver pelo menos 1.117 pessoas, considerando apenas aqueles que informavam sobre suas pescarias, com um total de 700kg de peixes pescados. Além disso, cerca de 90% dos pescadores comerciais do reservatório de Itaipu são filiados a colônias de pescadores ao longo do reservatório, incluindo o município de Santa Helena, os 10% restantes praticam a pesca ilegal (Agostinho et al., 2007).

A existência da grande pressão de pesca seletiva, acaba trazendo uma degradação genética decorrente da exploração dos indivíduos maiores, o que leva a uma escassez de fêmeas grandes, que possuem como papel, uma desova mais vigorosa e com maior número de ovócitos nos berçários, levando a larvas e alevinos que terão seu crescimento mais acelerado, proporcionando uma produtividade pesqueira maior. A retirada desses indivíduos irá reduzir a diversidade genética em nível populacional, levando a diminuição do tamanho médio dos peixes do estoque, levando também a um crescimento mais lento dessas larvas e alevinos (Agostinho et al., 2007; Agostinho et al., 2016). De uma perspectiva voltada para produção pesqueira, proteger áreas de berçário de dano antrópicos leva a um desenvolvimento maior tanto das espécies residentes, quanto das migratórias.

Pelo exposto acima, é possível observar que a conservação do RBSH é de suma importância, pois abriga um número significativo de espécies de peixes tanto nativas, quanto migadores de longa distância. É preciso ressaltar, que a conservação desses locais beneficiará a biodiversidade nas esferas internacional, nacional e estadual. Isso porque ele está localizado a poucos metros do Refúgio Biológico do Capará no território paraguaio, e porque é parte integrante do Corredor de Biodiversidade do Rio Paraná, estando conectado por este corredor ao Parque Nacional do Iguaçu e ao Parque Nacional de Ilha Grande (Kliver, 2010). Considerando o contexto, o estudo de ictioplâncton vem se mostrando uma ferramenta de grande importância, por fornecer informações tanto para a ictiologia quanto para o inventário ambiental (Frantine-Silva et al., 2015).

3.3. Importância do estudo de ictioplâncton

As primeiras pesquisas envolvendo ovos e larvas de peixes (ictioplâncton), foram realizadas em 1865 por Georg Ossian Sars, dando início a uma série de outras pesquisas sobre o ciclo de vida de várias espécies economicamente importantes na Europa. De modo que até o fim de 1900 muitas dessas espécies já tinham seus estágios iniciais de vida conhecidos (Ré, 1999). No Brasil, o primeiro estudo realizado com ictioplâncton ocorreu no litoral brasileiro, com ovos de *Engraulis anchoita* Hubbs & Marini, 1935 (sardinha), por Juana Yolanda Dziekonska de Ciechomski em 1970 (Orsi et al., 2016). Mas foi apenas a partir das pesquisas realizadas por Yasunobu Matsuura, com *Sardinella brasiliensis* (Steindachner, 1879) (sardinha brasileira), que esses estudos com ovos e larvas vieram a ser efetivados no Brasil (Matsuura, 1975, 1977).

Em águas continentais brasileiras, as primeiras pesquisas com ovos e larvas foram realizadas por Carlos Alberto Rego Monteiro Araújo-Lima em 1984, com larvas de Characiformes coletadas no Rio Solimões (Amazonas) (Araujo-Lima, 1984). Seguido por Keshiyu Nakatani, publicando as primeiras descrições e distribuição de ovos e larvas de *Plagioscion squamosissimus* (Heckel, 1840), *Catathyridium jenynsii* (Günther, 1862) e de *Hypophthalmus edentatus* Spix & Agassiz, 1829 do reservatório da Usina Hidroelétrica de Itaipu, na bacia do Rio Paraná (Nakatani, 1994; Nakatani et al., 1998).

A partir dessas pesquisas foram realizadas várias análises envolvendo estudos com ovos e larvas em bacias hidrográficas brasileiras. Esses estudos se concentram na bacia amazônica (Araujo-Lima et al., 2001; Leite et al., 2006), na bacia do rio Uruguai (Hermes-Silva, 2003; Corrêa, 2008) e na bacia do rio Paraná (Nakatani et al., 1997; Bialetzki et al., 1999; Galuch et al., 2003; Nascimento, Nakatani, 2006; Baumgartner et al., 2008; Daga et al., 2009; Kipper et al., 2011). Dentre essas, a mais estudada é a Bacia do Rio Paraná, que possui uma área total de 1,5 milhões km², onde 800.000 km² estão localizadas no território brasileiro. Além do Brasil, ela abrange a região nordeste da Argentina, leste do Paraguai e norte do Uruguai.

O estudo do ictioplancton tem sua importância demonstrada em diferentes esferas, tais como algumas áreas da sistemática (Ahlstrom, Moser, 1976), biologia reprodutiva (Miller, Kendall, 2009), ecologia (Ré, 1999), identificação e avaliação de recursos pesqueiros (Hempel, 1973), aquicultura (Lasker, 1987), além de estudos em conservação cada vez mais frequentes (Nakatani et al., 2001). Por meio desses trabalhos é possível avaliar como as ações antrópicas como a poluição (Campagna et al., 2006; Rodrigues et al., 2010; Rocha et al., 2011), a fragmentação de habitat (Sanches et al., 2006), e a introdução de espécies não nativas (Bialetzki et al., 2004; Kipper et al., 2011), vem tendo efeito sobre a biologia, composição, distribuição e abundância do ictioplâncton. Existem também estudos demonstrando a relevância de se conservar de áreas livres de barramentos para a reprodução e desenvolvimento de espécies de peixes, especialmente espécies migradoras (Baumgartner et al., 2004a; Reynalte-Tataje et al., 2011, 2013; Ziober et al., 2015).

A maioria desses estudos revela a grande dificuldade em se obter uma precisa identificação taxonômica dos materiais coletados, por serem organismos que possuem uma morfologia muito similar em seus primeiros estágios de vida, mesmo sendo de espécies distintas. A falta de caracteres diagnósticos que diferenciem essas espécies nessas fases não é o único problema; por serem indivíduos frágeis, podem ser facilmente danificados nas coletas, tornando-se inadequados para análises morfológicas, além ainda da escassez de chaves de identificação de espécies de peixes em suas fases iniciais de vida, fatores que tornam a pesquisa com ictioplâncton extremamente desafiadora (Baumgartner et al., 1997, 2004, 2008; Bialetzki et al., 1999; Nakatani et al., 2001; Pegg et al., 2006; Barzotto et al., 2015; Orsi et al., 2016; Suzuki, Pompeu, 2016).

Levando em consideração a dificuldade na identificação por vias morfológicas, a ferramenta de identificação molecular se torna uma opção mais viável para esses organismos. Com o avanço das metodologias moleculares, o uso de marcadores específicos permite a identificação de espécies quando métodos tradicionais não são aplicáveis (Ward et al., 2009).

3.4. DNA barcoding (COI) em Ictioplâncton marinho

Ward et al. (2005) foram os primeiros a obterem êxito na utilização de DNA barcoding para identificação de peixes, estimulando a criação de uma campanha chamada Fish Barcode of Life, onde foi realizada uma colaboração internacional de pesquisa para montagem de uma biblioteca de sequências de DNA de referência padronizada (sequências do gene COI) para todas as espécies de peixes do mundo. O DNA barcode de qualquer peixe, filé, nadadeira, ovo ou larva pode ser comparada com essas sequências de referência usando a plataforma BOLD (*Barcode of Life Data System - http://www.barcodinglife.org*). O DNA *barcoding* é uma técnica universal de identificação genética de espécies de peixes e tem sido aplicada em todo o mundo, com pelo menos 23.698 espécies de Actinopterygii identificadas no banco de dados BOLD (BOLD, 2022).

De forma geral, as pesquisas realizadas utilizando DNA barcoding apresentaram altas taxas de sucesso para identificação de peixes, sejam marinhos (Ward et al., 2009; Zhang, Hanner, 2011) ou de águas continentais (Ardura et al., 2010; Ortiz, 2010). Os primeiros estudos sobre a análise de DNA de ictioplâncton em ambiente marinho foram realizados por Hyde et al. (2005) que usando a fração do gene citocromo b identificou larvas de *Tetrapturux audax* (Phillippi, 1887) popularmente conhecido como marlin listrado, no Havaí. Utilizando o mesmo marcador, Richardson et al. (2007) sequenciaram larvas de atum e peixe-agulha na Flórida, identificando com sucesso, na primeira tentativa, 89% das amostras.

Em 2006, Pegg e colaboradores utilizaram duas abordagens distintas para investigar métodos de análise de DNA que permitissem a identificação inequívoca de larvas de peixes ou ovos planctônicos, ambas as abordagens envolvendo sequencias mitocondriais, sendo elas os genes HVR1 (D-loop) e cox1 (sinônimo de COI). Para todas as espécies de peixes testadas foi possível concluir que a sequência de mtDNA COI deve ser utilizada em estudos futuros como marcador, pois o método de amplificação e sequenciamento permite a identificação de larvas e ovos de peixes por meio da comparação com DNA de espécimes de peixes previamente listados em bancos de dados internacionais, fornecendo um grande avanço para biólogos, taxonomistas e reguladores pesqueiros (Pegg et al., 2006).

Utilizando sequência parcial do COI, Valdez-Moreno et al. (2010), identificaram seis espécies de peixes analisando ovos, e 34 espécies analisando larvas, em um montante de 1.392 indivíduos coletados na Península de Yucatan, México. Também na península de Yucatan, um estudo realizado por Leyva-Cruz et al. (2016) conseguiu obter 139 sequencias de ovos de peixes, que foram comparadas com dados depositados no *Barcode of Life Database* (BOLD), identificando 33 espécies, 35 gêneros e 24 famílias. Nesse estudo, foram descritas novas características morfológicas para 21 espécies, bem como novas informações sobre a localidade e tempo de desova para 16 espécies.

Com o objetivo de avaliar a precisão de análises morfológicas Ko et al. (2013) coletaram larvas de peixes em Taiwan, para serem identificadas morfologicamente por cinco laboratórios diferentes. As identificações morfológicas foram validadas com o marcador molecular COI que foi amplificado com os *primers* descritos por Ward et al. (2005). De um total de 100 espécimes sequenciados, 87 foram identificados em nível de família, 79 em nível de gênero e 69 em nível de espécie, com base no banco de dados disponível. As taxas médias de acerto das identificações morfológicas pelos cinco laboratórios foram baixas: 80,1% para o nível de família, 41,1% para o nível de gênero e 13,5% para o nível de espécie. Chegando-se à conclusão de que a identificação por DNA *barcoding* continua sendo um dos melhores métodos para confirmar a identificação das espécies.

Em 2015, Pappalardo e colaboradores realizaram análises que permitiram a identificação de larvas de peixes até o momento desconhecidas, indicando que existe uma

relativa congruência entre as abordagens de identificação morfológica e molecular. Os dados desse estudo para espécies de Myctophidae confirmam que o gene COI pode ser usado como um ótimo marcador espécie-específico, sendo eficiente também para avaliar a origem geográfica de larvas. Com o intuito de estabelecer uma base para monitoramento da atividade de desova de peixes em áreas de proteção marinhas, Harada et al. (2015) identificaram ovos de peixes, via sequenciamento de DNA *barcoding*, utilizando como marcador o gene COI ou o rRNA 16S. Todos os ovos que foram sequenciados com sucesso puderam ser identificados a partir de bancos de dados moleculares de espécies de peixes da Califórnia. Utilizando os mesmos marcadores Camacho-Gastélum et al. (2017), realizaram estudos com larvas de Sciaenidae coletadas no Golfo Superior da Califórnia, que foram identificadas e descritas com base em análises morfológicas e genéticas, nesse estudo as análises morfológicas não foram suficientes para distinguir todas as espécies, uma identificação precisa para nivelar as espécies, foi obtida somente com base na análise genética.

Ainda em 2016, Lewis et al. utilizaram o DNA *barcoding* para identificar ovos de peixes preservados em etanol, que foram coletados entre 2002-2012 ao longo da plataforma continental do nordeste dos EUA. Em comparação com tentativas anteriores de identificação que utilizaram somente de análises morfológicas, as identificações moleculares realizadas pelos autores revelaram uma maior diversidade de ovos, deixando evidente que a identificação por intermédio de DNA *barcoding* em ovos de peixes é suficientemente eficiente para ser incorporado em programas de monitoramento de ictioplâncton.

Na costa sudeste do Brasil, Rodrigues et al. (2017) identificaram a ocorrência de larvas e ovos de peixes-de-bico em Vitória (ES), Rio de Janeiro (RJ) e Ilhabela (SP) durante duas temporadas no verão (2012/2013 e 2013/2014). Em 2012/2013 foram identificadas cinco larvas de *Istiophorus platypterus* e duas de *Kajikia albida*, sendo que em 2013/2014 foram identificadas duas larvas de *K. albida* duas de *I. platypterus*, além de dois ovos de *Xiphias gladius* (espadarte). O estudo confirmou através da identificação por DNA *barcoding* pela primeira vez na costa brasileira a ocorrência de larvas de ovos de veleiro (*I. platypterus*), marlin branco (*K. albida*) e espadarte (*X. gladius*).

No mesmo ano, Pulido (2017), em sua tese analisou larvas de peixes dos gêneros *Bothus* e *Sparisoma* do Golfo do México utilizando análises morfológicas e os marcadores moleculares 16S e COI. Com a identificação morfológica, a discriminação foi alcançada até o nível de gênero dos espécimes do gênero *Sparisoma*, e para *Bothus* a

discriminação foi alcançada até o nível de espécie. Com o uso de marcadores moleculares, a identificação dos espécimes de *Sparisoma* foi complementada, fornecendo as informações necessárias para discriminar 4 espécies de *Sparisoma*. Para as larvas de *Bothus*, apenas um organismo foi identificado como *B. ocellatus* e o restante com base em suas sequências foi identificado como *B. robinsi*. Desta forma, ficou evidente que somente as informações dos guias de identificação não foram suficientes para discriminar em nível de espécie os exemplares de *Sparisoma* e que não permitiram distinguir entre *B. ocellatus* e *B. robinsi*, reforçando a necessidade e importância da utilização de marcadores moleculares.

Collet et al. (2018) demonstraram que as larvas de peixes identificadas usando sequências do gene COI oferecem uma oportunidade única para melhorar o conhecimento da riqueza de peixes locais. Nesse estudo, larvas de peixes foram coletadas no final de sua fase pelágica usando armadilhas luminosas na costa oeste da Ilha La Reunion, sudoeste do Oceano Índico, uma vez por mês de outubro de 2014 a março de 2015. Dessas larvas coletadas, foram selecionados 214 espécimes morfologicamente diferentes, sendo obtidos 196 sequencias de COI com sucesso, que originaram 101 *Barcode Index Numbers* (BINs). Dentre esses BINs, 55 nunca haviam sido registrados na zona econômica exclusiva (ZEE) da ilha La Reunion e 13 eram novos para o banco de dados do BOLD.

As larvas da família Bathymasteridae (ronquils) são um componente abundante da comunidade ictioplanctônica no leste do Oceano Pacífico Norte e no Mar de Bering, mas não podem ser prontamente identificadas em nível de espécie usando abordagens morfológicas ou merísticas. Em 2019, Canino et al. desenvolveram um protocolo de polimorfismo de comprimento de fragmento de restrição (RFLP) baseado na variação do gene mitocondrial (COI) para identificar larvas de três espécies do gênero *Bathymaster: B. leurolepis* (ronquil de boca pequena), *B. caeruleofasciatus* (ronquil do Alasca) e *B. signatus* (ronquil pesquisador). Com isso, foram corretamente identificados 259 de 260 indivíduos para as espécies supracitadas, fornecendo os primeiros dados sobre a ocorrência sazonal de estágios iniciais de história de vida em levantamentos de ictioplâncton para essas espécies.

A ausência de dados precisos, e a dificuldade na identificação por vias taxonômicas clássicas de espécies de ictioplâncton levou Azmir et al. (2020) a analisar larvas da Península da Malásia, enquanto Hou et al. (2020) e Mateos-Rivera et al. (2020) analisaram ovos do norte do Mar da China Meridional e das regiões centro e norte do Mar do Norte respectivamente, todos utilizaram a ferramenta de DNA *barcoding* para identificar esses ovos

e larvas de diferentes espécies de peixes. Juntamente com as identificações foi possível ainda inferir sobre áreas de desova e distribuição de ovos, gerando informações que podem ser usadas para melhorar a conservação dos locais de desova e o manejo da pesca dos locais. Com base nesses estudos é possível concluir que a ferramenta de DNA *barcoding* é mais eficaz e precisa na identificação de ovos e larvas em nível de espécie do que a taxonomia clássica. No entanto, a identificação por taxonomia clássica ainda é necessária para fornecer informações sobre os estágios de desenvolvimento. Mesmo que seja intimidador para taxonomistas, a integração de ambos os métodos ajuda principalmente na resolução da identidade de amostras fenotipicamente ambíguas.

A maior parte dos estudos em ictioplâncton se dá em ambiente marinho, porém, Ram et al. (2020) realizaram um estudo em uma região de Manguezal da costa noroeste da Índia, onde a diversidade de larvas de peixes foi caracterizada pela abordagem de DNA *barcoding* (COI). Cerca de 50% dos indivíduos amostrados puderam ser identificados até o nível de espécie sem ambiguidade. O estudo concluiu que muitas espécies de peixes comerciais e ecologicamente importantes, como *Pampus argenteus, Pampus chinensis, Sillago sihama* e *Lutjanus johnii* estão utilizando manguezais da costa noroeste da Índia como berçário, fornecendo uma linha de base dados para a diversidade de peixes de manguezais da costa noroeste da Índia.

3.5. DNA barcoding (COI) em Ictioplâncton de Águas Continentais

Com relação à identificação de ictioplâncton em águas continentais por DNA *barcoding* (COI), resultados encontrados por García-Dávila et al. (2011), em larvas de Siluriformes na Amazônia peruana, demonstram que o sequenciamento de nucleotídeos pode ser considerado uma ferramenta poderosa na identificação das espécies de bagres em suas formas larvais, desde que sejam comparadas com sequências de adultos perfeitamente identificados.

Para investigar qual a vantagem de integrar o DNA *barcoding* (COI) e a taxonomia clássica na identificação de ictioplâncton, Becker et al. (2015) compararam a precisão da identificação morfológica de ovos e larvas de peixes de duas bacias hidrográficas neotropicais conduzida por dois laboratórios independentes, com a identificação fornecida por

DNA *barcoding*. Os autores não encontraram resultados conflitantes entre a identificação morfológica e o *barcode* das larvas, no entanto, espécimes que apresentavam sua morfologia danificada foram identificados apenas via molecular, o que ilustra um problema recorrente na identificação do ictioplâncton apenas com base em características morfológicas. Quanto à identificação morfologica dos ovos, os autores obtiveram uma baixa taxa de precisão por taxonomia clássica, obtendo uma identificação precisa apenas com o *barcode*, no qual foram detectados ovos de espécies até o momento não registradas na região de estudo.

Ainda para analisar a eficácia e validar o DNA *barcode* como uma forma legítima de identificar ictioplâncton, Frantine-Silva et al. (2015) examinaram o ictioplâncton de afluentes e reservatórios ao longo do trecho médio do rio Paranapanema - o principal afluente da bacia do Alto Paraná no sul do Brasil, uma das áreas mais impactadas por projetos hidrelétricos na região Neotropical. Os resultados revelaram 37 espécies em 27 gêneros, 15 famílias e quatro ordens, cerca de 23,8% das espécies de peixes documentadas no rio Paranapanema, confirmando a eficácia do DNA *barcoding* na identificação do ictioplâncton neotropical.

Almeida et al. (2018) coletaram espécimes de peixes em 14 locais nas regiões baixa e média do Rio Paranapanema ao longo de três períodos reprodutivos de 2012 a 2015. No total, 75 ovos e 170 larvas de 13 espécies de peixes não nativos foram identificados. As espécies mais abundantes foram *Plagioscion squamosissimus* (75 espécimes) e *Serrasalmus marginatus* (68 espécimes). O DNA *barcoding* se mostrou uma ferramenta útil para identificar peixes não nativos durante sua fase reprodutiva, o registro da presença de espécies potencialmente invasivas em seus estágios iniciais de desenvolvimento fornecem informações úteis para o controle rápido e eficaz dessas espécies.

A fim de determinar quais espécies de peixes usam o ambiente da província de Misiones (Argentina) para reprodução, Briñoccoli et al. (2020) utilizaram o DNA *barcoding* (COI) para identificação de larvas de peixes. Os autores conseguiram identificar larvas da familia Sciaenidae, e os resultados do barcode indicaram a presença de larvas de *Plagioscion ternetzi* e larvas de *Pachyurus bonariensis*, e pela primeira vez em afluentes da região, *Plagioscion squamosissimus*. Com relação ao uso de DNA *barcoding* para levantamento de informações sobre distribuição e riqueza de espécies de peixes, Lima et al. (2020), utilizaram DNA *barcoding* para identificação de ovos de peixes nos rios Tibagi e Cinzas, revelando ovos de espécies raras e ameaçadas de extinção no local, indicando esses tributários como áreas de desova. Chen et al. (2021) identificaram ovos e larvas de peixes do Rio Hongshuihe (localizado na região de Guangxi Zhuang, no sul da China), obtendo ainda dados sobre períodos de desova de várias espécies de peixes, incluindo espécies migradoras raras no local. Os resultados demonstram a importância da identificação de ovos de peixes em ambientes influenciados por reservatórios para o reconhecimento de áreas de reprodução de espécies nativas e ameaçadas de extinção.

3.6. Metabarcoding

A técnica de DNA *barcoding* é útil para atribuir táxons a espécimes desconhecidos, porém é importante também caracterizar a diversidade e abundância das espécies dentro de um ecossistema para compreender mudanças na diversidade das mesmas. Com os avanços na tecnologia de sequenciamento, agora é possível avaliar a composição de espécies de ecossistemas, incluindo amostras ambientais como solo, sedimento e água em um trecho, em vez de examinar espécimes individuais por vez, como é o caso do sequenciamento por *Sanger* (Pavan-Kumar et al., 2015).

A técnica de DNA *metabarcoding* foi introduzida por Taberlet et al. (2012), com a premissa de poder identificar de forma automática muitas espécies ao mesmo tempo, utilizando o DNA total ou de uma única amostra ambiental contendo DNA degradado (solo, água, fezes, etc.), ou de amostras de organismos inteiros em muita quantidade. Hänfling et al. (2016) aplicaram essa metodologia com DNA ambiental (*eDNA*), utilizando regiões dos genes mitocondriais 12S e citocromo b, para analisar amostras de água, com o intuito de caracterizar a composição da comunidade de peixes de três grandes lagos no Reino Unido. Os resultados demonstraram que, de 14 espécies historicamente listadas na região, 16 espécies foram detectadas com *eDNA*, ultrapassando os resultados anteriores onde foram utilizadas redes de espera e apenas quatro espécies haviam sido identificadas. Demonstrando alta sensibilidade na identificação pela técnica de metabarcode utilizando *eDNA*.

O *metabarcoding* também pode ser utilizado como uma ferramenta para estudos em ecologia, como nos estudos realizados por Maggia et al. (2017) na bacia amazônica, e por Kimmerling et al., (2018) no Golfo de Aqaba. Em ambos estudos foram coletadas larvas de peixes utilizando o gene COI para identificação. Com os resultados obtidos

foi possível reconstruir a comunidade larval, em nível de espécie, permitindo uma estimativa robusta das distribuições espaço-temporais das larvas. Os autores conseguiram documentar o fluxo larval de espécies cujos adultos nunca foram documentados nas regiões de estudo, e até mesmo larvas de vários peixes de profundidade foram encontradas em águas rasas, demonstrando que o DNA metabarcoding é uma excelente ferramenta para auxiliar na conservação dos recifes de coral e permitindo a aquisição de grandes conjuntos de dados, abrindo caminho para um melhor entendimento da dinâmica reprodutiva e dos padrões de recrutamento de espécies de peixes tropicais, com importantes implicações para o manejo e conservação da pesca.

Ainda na bacia amazônica, Mariac et al. (2018), propuseram um novo método para identificação de espécies amazônicas chamado de "*Metabarcoding by Capture using a Single Probe*" (*MCSP*), que se baseia na captura por hibridização do DNA do gene COI de uma espécie de peixe ausente da área de estudo (*Danio rerio*), para sequenciamento simultâneo de diferentes ordens de peixes. Segundo os autores essa metodologia permitiu o desenvolvimento de uma abordagem quantitativa, além de reduzir o esforço de sequenciamento em quarenta vezes, podendo gerar implicações importantes para a ecologia, gestão pesqueira e conservação em *hotspots* de biodiversidade de peixes em todo o mundo, podendo ser estendida a outros táxons de plantas e animais (Mariac et al., 2018).

Nobile et al. (2019) desenvolveram um protocolo simples de *metabarcoding* para testar a eficiencia da ferramenta quando comparada ao *barcoding*, para isso, os autores decidiram investigar se é possível detectar e quantificar todas as espécies de peixes presentes em um *pool* de organismos. A partir daí, 230 larvas de peixes foram divididas ao meio, sendo metade para analise utilizando sequenciamento de *Sanger* e a outra metade para sequenciamento por meio de sequenciamento de nova geração (NGS). Os resultados do sequenciamento *Sanger* permitiram a identificação de quase todas as larvas em nível de espécie, e os resultados do *NGS* mostrou uma média de 95% de acerto na identificação de todas as amostras, demonstrando a precisão de identificação por meio da técnica de DNA *metabarcoding*.

Duke, Burton (2020) avaliaram a eficacia da ferramenta por meio de uma uma comunidade artificial, utilizando DNA de ovos de peixe previamente identificados, com o intuito de testar se o metabarcode seria uma ferramenta eficiente para monitorar espécies de peixes marinhos a partir de seus ovos. Os resultados obtidos com os métodos utilizados pelos autores demonstraram uma detecção de espécies em proporções de entrada muito baixas, no entanto, foi notado que os níveis de detecção bem-sucedidos dependeram dos marcadores utilizados na amplificação, sugerindo que o utilizar vários marcadores é interessante.

Em 2021 Ratcliffe et al., usando amostras de larvas de peixes em massa dos mares da Irlanda e Céltico, realizaram uma comparação da sensibilidade e precisão da abordagem do DNA *metabarcoding* com a identificação morfológica tradicional, para avaliar se o *metabarcoding* pode ser uma alternativa viável e rápida para a avaliação tradicional para estimar a riqueza, diversidade e comunidade de larvas de peixes métricas de composição. Os resultados mostraram que essa ferramenta molecular pode ser usada para monitorar mudanças na abundância de larvas de peixes e na composição da comunidade. Isso representa uma alternativa viável, eficiente e mais rápida aos métodos morfológicos que podem ser aplicados a habitats terrestres e aquáticos.

4 MATERIAL E MÉTODOS

4.1. Local de estudo e amostragens

As amostragens de ictioplâncton foram realizadas ao longo de um ciclo reprodutivo (2020/2021), distribuídas em dez pontos localizados em regiões estratégicas no entorno da Área de Relevante Interesse Ecológico de Santa Helena (ARIE-SH), na área do Lago de Itaipu, pertencente à bacia do Alto rio Paraná (**Figura 1 e 2**).

Figura 1 – Pontos de coleta localizados no entorno da Área de Relevante Interesse Ecológico de Santa Helena - ARIE-SH (Refúgio Biológico de Santa Helena – RBSH), na área do Lago de Itaipu – PR. Os pontos estão enumerados de 1 a 10.

🔹 Pontos de Coleta 記 Refúgio Biológico de Santa Helena - RBSH 🗾 Massa de água 📰 Municipio de Santa Helena - SH 🗾 Estado do Paraná - PR 📰 Brasil - BR

Natália Lima Lira, 2022.

Fonte: Autoria própria (2022)

Figura 2 – Fotos dos pontos de coleta localizados no entorno da Área de Relevante Interesse Ecológico de Santa Helena - ARIE-SH. Os pontos estão numerados de P01 a P10.

Fonte: Autoria própria (2022)

Local	Vegetação flutuante	Vegetação costeira	Ambiente
P01	Presenca de <i>Eichhornia</i> sp. e <i>Elodea</i> sp	Formação de capim distribuídos até	Semi lêntico
101	resença de Elementa sp., e Eleaca sp.	o corpo d'água	
P02	Nenhuma	Formação de capim distribuídos até	Semi lêntico
102	1 (onitalita	o corpo d'água	
P03	Nenhuma	Formação de capim distribuídos até	Lotico
105	Tomana	o corpo d'água	Louico
P04	Grande quantidade de Eichhornia sp., Salvinia	Formação de capim distribuídos até	Lotico
104	sp., Pistia sp., e Elodea sp	o corpo d'água	Louico
P05	Nenhuma	Nenhuma	Lotico
D06	Dressence de Eichhermig en le Fleder en	Formação de capim distribuídos até	Semi lêntico
P00	Presença de <i>Elennornia</i> sp., e <i>Elodea</i> sp.	o corpo d'água	
D07	Drogonog da Fishhannig an a Fladag an	Formação de capim distribuídos até	Semi lêntico
F0/	Flesença de <i>Elennornia</i> sp., e <i>Elodea</i> sp.	o corpo d'água	
DUS	Drasanca da Fichhornia sp. a Fladea sp.	Formação de capim distribuídos até	Lântico
108	r resença de <i>Elennornia</i> sp., e <i>Elodea</i> sp.	o corpo d'água	Lentico
DUO	Drasanca da Fichhornia sp. a Fladea sp.	Formação de capim distribuídos até	Semi lêntico
109	r resença de <i>Elennornia</i> sp., e <i>Eloueu</i> sp.	o corpo d'água	
P 10	Grande quantidade de <i>Elodea</i> sp	Formação de capim distribuídos até	Lântico
110		o corpo d´água	Lentico

Fonte: Autoria própria (2022)

Foram realizadas sete amostragens por ponto, totalizando 70 amostras (a escolha dos pontos levou em consideração aspectos físicos do local (**Tabela 1**), e a quantidade de amostragens levou em consideração a duração do período reprodutivo). A captura foi realizada utilizando-se de redes de ictioplâncton com formato cônico, com malha 0,5 mm, área de 0,1963 m², com um copo acoplado para armazenar as amostras (Licença SisBio 75912-1), o projeto possui aprovação da Comissão de Ética no Uso de Animais (CEUA) da UTFPR (protocolo 2021-1) e está cadastrado no Sistema de Gestão de Patrimônio Genético e Conhecimento Tradicional Associado - SISGEN (protocolo nº AF2039B).

As redes foram posicionadas cerca de 20 cm abaixo da superficie (subsuperficie) da água e arrastadas por uma embarcação em baixa e constante velocidade durante 10 minutos por ponto, conforme sugerido por Frantine-Silva et al. (2015). Ainda em campo, as amostras coletadas foram imediatamente imersas em solução de eugenol e ainda no local, foram fixadas em etanol a 96% em uma quantidade correspondente ao dobro do volume da amostra, de modo que a concentração final da mistura ficou igual ou superior a 70%. Ao chegar no laboratório, foi realizada a troca da solução de etanol 96% para armazenamento à -20°C.

Posteriormente, o material foi colocado em placas de Petri para ser triado e consequentemente, separado de materiais não desejados, como por exemplo: partes vegetais,

outros organismos, detritos, sedimentos, entre outros. A triagem foi realizada utilizando-se de um estereomicroscópio em aumento de 40x, sendo os ovos separados das larvas por ponto amostral e data da coleta. Durante a triagem, o material permaneceu sempre em etanol 70% e após a triagem os ovos e as larvas foram mantidos em etanol 96% até o procedimento molecular.

4.2. Extração do DNA

Das 70 amostragens, seis amostras continham mais de 200 larvas, e duas amostras continham larvas muito grandes para apenas 1 tubo, sendo estas subdivididas em amostras menores (*subpools*). Após a divisão, foram formados 117 *pools* (28 *pools* de ovos; 89 *pools* de larvas), os quais variaram de 1 a 74 organismos no caso de ovos, e de 1 a 200 organismos no caso de larvas (**Tabela 2**).

n° <i>pool</i>	Quantidade ovos	Quantidade larvas
1		7
2		5
3		54
4		74
5		4
6		21
7		16
8	2	
9	5	
10		45
11	2	
12		24
13		4
14		8
15		17
16		101
17	19	
18		10
19	25	
20-1'		146
20-2'		200
20-3'		200
20-4'		146

 Tabela 2 – Quantidade de indivíduos coletados (ovos e larvas) organizados por *pool.* (') simboliza amostras subdivididas (*subpools*).

n° <i>pool</i>	Quantidade ovos	Quantidade larvas
21	2	
22		14
23		5
24	22	
25-1'		200
25-2'		200
25-3'		200
25-4'		200
25-5'		200
25-6'		200
25-7'		200
25-8'		126
26	74	
27		3
28	1	
29		2
30	41	
31		67
32	24	
33		36
34		129
35	7	
36-1'		200
36-2'		48
37	6	
38		51
39	58	
40		128
41	21	
42		3
43	3	
44		25
45		24
46		19
47		8
48		19
49		9
50		17
51		19
52		64
53-1'		80
53-2'		42
53-3'		80
53-4'		80
53-5'		42

n° <i>pool</i>	Quantidade ovos	Quantidade larvas
54	8	
55		17
56		16
57	15	
58		6
59	2	
60		3
61		2
62		5
63-1'		123
63-2'		123
63-3'		123
63-4'		123
64-1'		82
64-2'		82
65		30
66		147
67		140
68	30	
69 =0		3
70		24
71		15
72		/
73		57
/4		69
15		97
70		15
79 1		0
/0-1 78 2,		77
70-2		33
80		55 4
81		3
82		12
83	1	12
84	-	71
85-1'		78
85-2'		78
85-3'		78
86		14
87		1
88		15
89	2	
90	8	
91	- 1	
n° <i>pool</i>	Quantidade ovos	Quantidade larvas
----------------	---------------------	-------------------
92	1	
93	3	
94	3	
95	6	
117 tubos	392	5676
]	Fonte: Autoria prój	pria (2022)

O DNA total genômico dos pools de ovos ou larvas, separados por data e pontos de amostragem foi obtido utilizando uma adaptação do protocolo descrito por Green, Sambrook (2012), utilizando proteinase K e fenol:clorofórmio, seguindo os seguintes passos: Os organismos passaram por uma etapa de secagem, onde foram retirados do etanol (vertendo o tudo) e colocados para secar em ThermoBlock (Applied biosystems) à 50°C por 2 a 3 minutos, com posterior transferência para tubos tipo eppendorfs de 1,5 mL com 500µL de tampão de lise e 50µL de Proteinase K (20 mg/ml), e incubados a 56°C overnight; A próxima etapa foi a de isolamento do DNA, onde foi adicionado um volume de 500 μL (quantia igual ao tampão de lise) de fenol puro, com inversão de cada tubo por 10 minutos formando uma emulsão, com posterior centrifugação a 10.000 rpm por 15 minutos. Essa etapa foi repetida duas vezes (2x) com fenol puro e uma vez (1x) com uma mistura contendo fenol:clorofórmio:álcool isoamílico (25: 24: 1), a cada repetição, a fase aquosa dos materiais foi passada para um novo microtubo. Após a última troca, em um novo microtubo, ocorreu a precipitação do DNA em 80 µL (0,2 volumes) de acetato de amônia 10M e 800µL (2 volumes) de etanol 100%, os microtubos foram invertidos vagarosamente até a mistura do material, e deixados 1hr no freezer.

A próxima etapa foi a recuperação do DNA por centrifugação a 10.000 RPM por 10 minutos com posterior lavagem do pellet de DNA em etanol 70%, a etapa foi repetida duas vezes (2x). Após as lavagens, o pellet de DNA foi seco para retirar todo o etanol, e posteriormente ressuspendido em volume apropriado de Elution Buffer (Tampão TE) préaquecido à 56°C. Os microtubos ficaram armazenados por pelo menos um dia (1 dia) na geladeira para eluir o DNA no tampão.

4.3. Amplificação da região COI

Posteriormente à extração de DNA, cada um dos *pools* foi quantificado no Qubit 4.0 *Fluorometer* (Invitrogen), visualizados em gel de agarose 1% e submetidos à amplificação da região COI por *PCR* utilizando conjuntos de *primers* diferentes, aqui chamados de coquetéis FishR2 (Ward et al., 2005) e os *primers* FishF6 e FishR7 (Jennings et al., 2019). Os outros seis *primers* utilizados 214F, 217F, 2019F, 432R, 433R e 434R (da Costa, 2021), contém adaptadores para as regiões P5 e P7 para uso em tecnologia Illumina de sequenciamento de nova geração (**Tabela 3**).

Tabela 3 - Conjuntos de *primers* de *PCR* utilizados para amplificar o gene Citocromo c Oxidase Subunidade I (COI). *Primers* externos (FishF1, FishF2, FishF6, FishR1, FishR2 e FishR7) e internos (219F, 217F, 214F, 433R, 432R e 434R).

Nome	Sequência do <i>primer</i> 5' → 3'	Referência
FishF1	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCAACCAAC	(Ward et al., 2005)
FishF2	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGACTAATCATAAAGATATCGGCAC	(Ward et al., 2005)
FishF6	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACYAAYCACAAAGAYATTGGCA	(Jennings et al., 2019)
FishR1	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGACTTCTGGGTGGCCAAAGAATCA	(Ward et al., 2005)
FishR2	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTTCAGGGTGACCGAAGAATCAGAA	(Ward et al., 2005)
FishR7	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTARACTTCTGGRTGDCCRAAGAAYCA	(Jennings et al., 2019)
219F	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCCGACATRGCATTCCCYC	(da Costa, 2021)
217F	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCCCCGACATRGCMTTCCC	(da Costa, 2021)
214F	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGDGCCCCCGACATAGCATTY	(da Costa, 2021)
433R	GTCTCGTGGGGCTCGGAGATGTGTATAAGAGACAGCCCGACATAGYATTCCCHC	(da Costa, 2021)
432R	GTCTCGTGGGGCTCGGAGATGTGTATAAGAGACAGCCCCTAGAATTGAGRAAACHCC	(da Costa, 2021)
434R	GTCTCGTGGGGCTCGGAGATGTGTATAAGAGACAGAGCCCCTAGAATTGAGGARACHC	(da Costa, 2021)

Fonte: Autoria própria (2022)

As etapas de *PCR* referem-se à amplificação do gene COI em fragmentos diferentes de aproximadamente 450pb visando a otimização do sequenciamento em cartuchos 2 x 250pb ou 2 x 300pb (*Illumina Miseq*) de modo a garantir sobreposição de fragmentos com ao menos 30pb entre os pares de *reads* e leitura completa dos fragmentos. No modelo utilizado por Costa (2021), os *primers* FishF1, FishF2, FishF6, FishR1, FishR2 e FishR7 atuam com flanqueadores externos à sequência COI e os *primers* 219F, 217F, 214F, 433R, 432R e 434R, atuam como internos para que possam ser produzidos dois fragmentos que foram indexados e sequenciados juntos, de modo a formar a sequência completa, em torno de 650pb do gene analisado (COI). Desta forma, o uso em conjunto dos *primers* internos e externos eleva a probabilidade de sucesso na etapa de amplificação do gene em diversos táxons de peixes e outros vertebrados, assim como no estudo de Ivanova et al. (2007).

A primeira etapa da amplificação dos fragmentos cada reação de *PCR* continha 1,0 μ L de DNA, 12,5 μ L de Master Mix (Promega), 10 μ L do primeiro coquetel de *primers* (C1) (FishF1+FishF2+FishF6+433R+432R+434R), o qual foi formado por 50 μ L de cada *primer* a 10mM e 1,5 μ L de água em um volume final de 25 μ L. As condições da *PCR* foram 95 °C por 3 min; 5 ciclos de 95 °C por 30 s, 50 °C por 1 min e 72 °C por 1 min; 30 ciclos de 95 °C por 30 s, 54 °C por 1 min e 72 °C por 20 min. Para a segunda etapa, cada reação continha 1,0 μ L de DNA, 12,5 μ L de *Master Mix*, 10 μ L do segundo coquetel de *primers* (C2) (FishR1+FishR2+FishR7+219F+217F+214F), o qual foi formado por 50 μ L de cada *primer* a 10mM e 1,5 μ L de água em um volume final de 25 μ L. As condições da *PCR* foram 95 °C por 3 min; 30 ciclos de 95 °C por 30 s, 56 °C por 1 min e 72 °C por 20 min. Para a segunda etapa, cada reação continha 1,0 μ L de DNA, 12,5 μ L de *Master Mix*, 10 μ L do segundo coquetel de *primers* (C2) (FishR1+FishR2+FishR7+219F+217F+214F), o qual foi formado por 50 μ L de cada *primer* a 10mM e 1,5 μ L de água em um volume final de 25 μ L. As condições da *PCR* foram 95 °C por 3 min; 30 ciclos de 95 °C por 30 s, 56 °C por 1 min e 72 °C por 1 min; e extensão final à 72°C por 20 min.

Posteriormente, a integridade e o tamanho do DNA foram verificados em gel de agarose à 1%, com *ladder* 1kb *plus* (de 100bp em 100 bp), à 100V por 40 min, utilizando 2 µL do produto de cada *PCR*. Para o preparo dos géis foram utilizados 0,50g de Agarose e 50 mL de TAE 1X (20mL de TAE 10X; 980mL de água). Para a corrida eletroforética se utilizou tampão TAE 1X em presença do corante fluorescente *GelRed*TM. Após a eletroforese o gel foi submetido à luz UV em transiluminador para visualização da região gênica amplificada.

Para as amostras que não amplificaram, foram realizadas novas amplificações testes, alterando a quantidade de DNA da reação de *PCR* conforme as quantificações de DNA realizadas no Qubit 4.0 *Fluorometer* (Invitrogen) após a etapa de extração, por exemplo, nas amostras com quantificação acima de 100 ng/µL foram adicionados à reação de *PCR* de 0,5µL

a 0,2 μ L de DNA, enquanto que em amostras com quantificações abaixo de 10 ng/ μ L foram adicionados 3,0 μ L de DNA.

4.4. Preparo da biblioteca

Na etapa de preparo das bibliotecas, utilizou-se uma metodologia similar à proposta pelo guia de preparação da Illumina 16S *Metagenomic Sequencing Library* (https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf) para sequenciamento de *amplicons*: os fragmentos foram purificados utilizando esferas magnéticas *Agencourt AMPure* XP (Beckman Coulter) de acordo com o protocolo do fabricante e então o DNA foi ressuspendido em 50µL de Tris-HCl 10mM (pH 8,5). Todos os *amplicons* purificados foram duplamente indexados com o Nextera Index Kit (Illumina), Index 1 (n° N7XX) e Index 2 (n° S5XX) e novamente purificados de acordo com protocolo. A reação de indexação foi realizada com 25µL de *Master Mix*; 5 µL de cada Index (1 e 2); 10 µL de água ultrapura estéril e um volume de 5µL de DNA, totalizando uma reação de 50µL de volume final e o regime de ciclo aplicado foi: 3 minutos a 95°C, seguido de 8 ciclos de 30 segundos a 95°C, 30 segundos a 52°C, 30 segundos a 72°C e, em seguida, 5 minutos a 72°C.

4.5. Normalização e sequenciamento das amostras

As bibliotecas foram quantificadas utilizando o Qubit 4.0 *Fluorometer* (Invitrogen) com o *Kit Qubit dsDNA HS Assay* (Invitrogen) e após esta etapa de quantificação, cada amostra teve sua concentração padronizada em 20 ng/ μ L. Para montagem da biblioteca final foi feito um *pool* utilizando 5 μ L das amostras atendendo a concentração estabelecida (**Tabela 4**).

Identificação do Pool	Quantificação Qubit
1	75,45
2	69,05
3	54,45
4	57,45
5	56,55
6	60,5
7	41,7
8	48,35
9	44,05
10	64,7
11	26,2
12	
13	59,9
14	62,55
15	56,8
16	19,1
17	34,2
18	73,65
19	29,1
20-1'	65,75
20-2'	
20-3'	59,15
20-4'	54,25
21	63,15
22	55,45
23	59,6
24	
25-1'	36,45
25-2'	57,05
25-3'	49,7
25-4'	42,55
25-5'	39,6
25-6'	5,975
25-7'	36,2
25-8'	50,5
26	
27	45,7
28	26,9
29	54,65
30	

31

Tabela 4 – Concentração de DNA inicial dos pools utilizados para montagem da biblioteca final. Todos os pools foram padronizados para uma concentração final de 20 ng/μL. Pools identificados com (') são amostras subdivididas, quantificações que não foram possíveis de medir estão marcadas com (--).

Identificação do Pool	Quantificação Qubit
32	25,3
33	
34	27,2
35	43,3
36-1'	
36-2'	35,95
37	50,25
38	41,55
39	
40	86,2
41	34,6
42	55,2
43	41,3
44	42,45
45	64
46	
47	66,35
48	41,35
49	69,75
50	57,1
51	40,3
52	16,85
53-1'	37,6
53-2'	38,2
53-3'	44,45
53-4'	53,85
53-5'	65,25
54	30
55	41,65
56	32
57	48,75
58	59,15
59	68
60	64,7
61	61,6
62	44,3
63-1'	62,6
63-2'	11,85
63-3'	33,05
63-4'	55,2
64-1'	36,95
64-2'	39,2
65	
66	49,3
67	55.85

Identificação do Pool	Quantificação Qubit
68	
69	56,35
70	58,8
71	67,45
72	38,65
73	44,25
74	40,7
75	29,35
76	49,85
77	61,9
78-1'	44,45
78-2'	38,55
79	
80	41,05
81	69,05
82	38,9
83	39,45
84	49,25
85-1'	44,5
85-2'	49,5
85-3'	
86	44,45
87	35,55
88	32,2
89	48,1
90	23,85
91	41,35
92	53,8
93	21,75
94	33,95
95	

Fonte:	Autoria	própria	(2022)
--------	---------	---------	--------

Posteriormente, a biblioteca foi quantifica uma última vez por meio do Qubit e *qPCR (Real time quantitative* PCR), a fim de otimizar a geração de *clusters*. As bibliotecas foram normalizadas à 10 pM, diluídas em TRIS-HCl 10 nM pH 8.5 com 0.1% de Tween 20, e adicionado 30% de PhiX à 12 pM, para posteriormente serem sequenciadas na plataforma MiSeq Illumina com o MiSeq *Reagent* Nano Kit v2 (500 ciclos).

4.6. Análises bioinformáticas

Após o sequenciamento das amostras na plataforma *Illumina Miseq*, o processamento dos dados brutos obtidos incluiu filtragem por qualidade, na qual foram eliminadas os *reads* com *Q score* (*Índices de qualidade*) inferior a 20 (99% de chance de uma determinada base ser designada incorretamente pelo sequenciador), com posterior emparelhamento destas utilizando a ferramenta *Paired-End reAd mergeR* (PEAR) v.0.9.11 (Zhang et al., 2014). Os *reads* com menos de 30 pares de bases de sobreposição foram excluídos, e os *primers* foram removidos utilizando o *software* CUTADAPT v.3.4 (Martin, 2011) de modo a reduzir as chances de alinhamento entre sequências de diferentes espécies (sequências quimeras).

Em seguida, as sequências passaram por uma etapa de eliminação de *reads* idênticos (desreplicação; opção -fastx_uniques), e de sequências quimeras (opção - uchime3_denovo), utilizando o algoritmo USEARCH versão 11.0.667 (Edgar, 2010). Por fim, foi realizada a montagem e edição das sequências utilizando o programa Geneious® 7.1.3 (Biomatters Ltd), os *contigs* obtidos foram então comparados com o banco de dados do NCBI utilizando o software Blast2GO versão 6.0.3 (Conesa et al., 2005), sendo considerados a nível de espécie apenas os contigs com 90% ou mais de similaridade e aqueles com menos de 90% foram considerados apenas o gênero.

5 RESULTADOS

Os resultados do desenvolvimento dessa pesquisa e dissertação resultaram em dois trabalhos, que são apresentados a seguir, em dois capítulos: (Capítulo I) "Identificação de ovos e larvas de peixes: das metodologias clássicas ao DNA *metabarcoding*" e (Capítulo II) "Caracterização do ictioplancton no entorno da ARIE Santa Helena, Paraná por DNA *metabarcoding*". Ao longo do primeiro capítulo é discutido aspectos relacionados técnica de DNA *barcode* e *metabarcode* como ferramenta precisa de identificação de ovos e larvas de peixes. O segundo capítulo traz uma caracterização do ictioplâncton coletado no entorno do Refúgio Biológico de Santa Helena – PR, na área de influencia do Lago de Itaipu, utilizando o DNA *metabarcoding* como ferramenta para identificação desses indivíduos.

5.1. Capítulo I - Identificação de ovos e larvas de peixes: das metodologias clássicas ao DNA *metabarcoding*

5.1.1. Importância do estudo de ictioplancton

As primeiras pesquisas envolvendo ovos e larvas de peixes (ictioplâncton) foram realizadas em 1865 por Georg O. Sars. As pesquisas realizadas por Sars estimularam várias outras entre 1878 e 1900, particularmente na Europa, as quais tinham como principal objetivo entender o ciclo de vida das espécies, principalmente aquelas de interesse econômico. Deste modo, ao final do século dezenove, os estágios iniciais do ciclo de vida de cerca de 80% das espécies de importância comercial na Europa já eram conhecidos (Ré, 1999).

Na costa brasileira, o primeiro estudo com ovos de peixes foi realizado em 1970 por Juana Yolanda Dziekonska de Ciechomski, que teve como objetivo realizar um levantamento da abundância e distribuição dos ovos de uma espécie de sardinha, *Engraulis anchoita* Hubbs & Marini, 1935 (Orsi et al., 2016). No entanto, a implementação desses estudos com ovos e larvas no Brasil vieram a ocorrer de fato, a partir das pesquisas feitas por Yasunobu Matsuura, com *Sardinella brasiliensis* (Steindachner, 1879) (sardinha brasileira) (Matsuura, 1977, 1975).

Os primeiros estudos realizados em águas continentais com ictioplâncton no Brasil datam da década de 80, especificamente 1984 na Amazônia por Carlos Alberto Rego Monteiro Araújo-Lima, que realizou sua pós-graduação (Mestrado) com larvas de Characiformes coletadas do Rio Solimões (Araujo-Lima, 1984). No mesmo período, Keshiyu Nakatani iniciava seus estudos na bacia do Rio Paraná com ovos e larvas coletados no reservatório da Usina Hidroelétrica de Itaipu, de onde saíram os primeiros trabalhos com a descrição e distribuição das larvas de *Plagioscion squamosissimus* (Heckel, 1840), de *Catathyridium jenynsii* (Günther, 1862) e de *Hypophthalmus edentatus* Spix & Agassiz, 1829 (Nakatani, 1994; Nakatani et al., 1998).

Após essas pesquisas, diversas análises de ovos e larvas foram realizadas em bacias hidrográficas brasileiras. A maioria desses estudos revela uma grande dificuldade em obter uma identificação taxonômica precisa das amostras coletadas, tornando as pesquisas de ictioplâncton extremamente desafiadoras (Barzotto et al., 2015; Baumgartner et al., 2008, 2004, 1997; Bialetzki et al., 1999; Suzuki, Pompeu, 2016). A principal dificuldade no estudo de ovos e larvas deve-se à grande similaridade morfológica encontrada nos primeiros estágios de desenvolvimento das diferentes espécies de peixes, aliada à carência de chaves de identificação precisas para as formas larvais (Orsi et al., 2016). Além disso, por serem um material frágil, muitos indivíduos coletados não ficam em condições adequadas para análises morfológicas. Do mesmo modo, a identificação de fases iniciais de desenvolvimento dos organismos fica comprometida, se tornando em muitos casos inviáveis, uma vez que muito dos caracteres diagnósticos não estão presentes, ou suficientemente diferenciados para comparação (Nakatani et al., 2001; Pegg et al., 2006).

A importância de estudos envolvendo ovos e larvas de peixes podem ser observadas em diferentes âmbitos científicos, trazendo significantes contribuições nas áreas de sistemática (Ahlstrom, Moser, 1976), biologia reprodutiva (Miller, Kendall, 2009), ecologia (Ré, 1999), identificação e avaliação de recursos pesqueiros (Hempel, 1973), aquicultura (Lasker, 1987), e estudos em conservação (Nakatani et al., 2001). Os estudos envolvendo estágios iniciais da vida dos peixes com viés conservacionista têm se tornado frequentes e valiosos, avaliando os efeitos das intervenções antrópicas sobre a biologia, composição, distribuição e abundância de ovos e larvas de peixes, como a poluição (Campagna et al., 2006; Rocha et al., 2011; Rodrigues et al., 2010), a fragmentação de habitat, (Sanches et al., 2006), além da introdução de espécies não nativas (Bialetzki et al., 2004; Kipper et al., 2011). Mostrando também a importância da manutenção de áreas livres de barramentos para a reprodução e desenvolvimento, com foco em espécies migradoras (Baumgartner et al., 2004; Reynalte-Tataje et al., 2013, 2011; Ziober et al., 2015).

Tradicionalmente, a descrição e identificação de ictioplâncton utiliza como caracteres a forma do corpo, pigmentação, contagens e medições (Matarese et al., 2011), porém, na maioria das vezes, estes caracteres não são suficientes para distinguir espécies. Com o advento das técnicas de Biologia Molecular, a utilização de marcadores específicos possibilitou uma maior precisão taxonômica, auxiliando na compreensão de eventos de migração e suas possíveis rotas, subsidiando assim estudos referentes a impactos ecológicos e ambientais, compensação da pesca e gestão de recursos (Moura et al., 2008; Valdez-Moreno et al., 2010).

5.1.2. DNA barcode

Por muitos anos a identificação de espécies de peixes por análises moleculares tem sido empregada. A princípio, variantes de aloenzimas eram utilizadas (Avise, 1974), seguido pela utilização do DNA mitocondrial (Avise, 1994). Os métodos embasados em DNA têm várias vantagens, quando comparados com métodos baseados em proteínas, pois o DNA é menos sensível à degradação (Hanner et al., 2005) e pode ser obtido em todos os estágios de vida. Ademais, métodos envolvendo DNA são mais fáceis de replicar em laboratórios e os protocolos de amplificação por reação em cadeia da polimerase (PCR) tornam possíveis que pequenas quantidades de tecido sejam analisadas (Ward et al., 2009).

Bartlett and Davidson (1992) foram uns dos primeiros a utilizar o sequenciamento do DNA mitocondrial (*mtDNA*) na identificação de peixes, onde a utilização do gene citocromo B possibilitou a distinção de quatro espécies de atum (Bartlett, Davidson, 1992). Em animais o *mtDNA* apresenta uma taxa de evolução mais acelerada que o DNA nuclear (Brown et al., 1979), visto que, além de estar presentes em maior número de cópias por célula, a molécula não possui mecanismos eficientes de reparo acumulando, assim, uma maior quantidade de mutações que o DNA nuclear (Clayton et al., 1974). O pequeno tamanho deste genoma e a alta taxa de mutação quando comparado com o genoma nuclear fazem do *mtDNA* um bom marcador em estudos comparativos entre espécies (Boore, 1999; Harrison, 1989; Rawlings, Collins, 2001; Yamazaki et al., 1997).

Dentre os genes que compõem o DNA mitocondrial, se destaca o citocromo oxidase, que possui duas subunidades (I e II), no qual a maior delas, citocromo c oxidase I (COI) é utilizada como marcador espécie-específico. Uma das porções deste gene, que apresenta aproximadamente 648bp, garante inúmeras combinações de sequências, possibilitando assim a identificação única de cada espécie, com divergências intraespecíficas de aproximadamente 2% ou menores, enquanto na comparação entre espécies apresenta uma maior divergência (Ratnasingham, Hebert, 2013). A divergência intraespecífica e interespecífica tem sua precisão descrita pela extensão e separação entre suas curvas: quanto maior a distância, mais precisa ela torna-se e quanto maior a sobreposição, menor a precisão. A distância entre as curvas intraespecífica e interespecífica é descrita como "*Barcoding Gap*" (Meyer, Paulay, 2005).

O gene citocromo c oxidase I é utilizado como marcador animal no sistema de identificação de espécies (DNA *Barcode*) proposto por Hebert et al. (2003) e tem apresentado grande sucesso, uma vez que possui alta variabilidade interespecífica e reduzida variabilidade intraespecífica, baixa recombinação e ausência de *íntrons*, possui *primers* bem estabelecidos para amplificação em grande parte dos animais e melhor potencial de sinal filogenético do que outros genes mitocondriais, exibindo maiores taxas de evolução quando comparadas a outros genes como o *rDNA* 12S, 16S e *Cytb* (Hebert et al., 2003).

Os primeiros resultados bem-sucedidos de DNA Barcode para peixes foram publicados por Ward et al. (2005) e incentivaram a criação do Fish Barcode of Life, o FISHBOL, iniciativa global para compilação de uma biblioteca de sequências do gene COI de todas as espécies de peixes do mundo. Os benefícios da criação da plataforma online incluem facilitar a identificação de espécies para todos os usuários, incluindo taxonomistas; destacando espécimes que representam uma grande expansão de espécies conhecidas; sinalizando espécies previamente não reconhecidas; e talvez o mais importante, permitindo identificação de espécies quando os métodos tradicionais não são aplicáveis como por exemplo exemplares com caracteres taxonômicos danificados, ou em estágios de vida iniciais, para os quais não há chave de identificação. De forma geral, as pesquisas realizadas utilizando DNA Barcode apresentaram altas taxas de sucesso para identificação de peixes, sejam marinhos (Bingpeng et al., 2018; Landi et al., 2014; Ward et al., 2009; Zhang, Hanner, 2011) ou de águas continentais (Ardura et al., 2010; Ortiz, 2010; Pandey et al., 2020). O DNA Barcoding é uma técnica universal de identificação genética de espécies de peixes e tem sido aplicada em todo o mundo, com pelo menos 23,698 espécies de Actinopterygii identificadas com Barcode na base de dados do Barcode of Life Data System (BOLD, 2022).

O DNA *barcode* é útil na atribuição de táxons a espécimes desconhecidos, comparando a semelhança de sequência do gene do código de barras de cada espécime com o banco de dados de referência. Até o momento, a maioria dos estudos de DNA *barcode* teve como objetivo desenvolver bancos de dados de referência, gerando DNA *barcodes* espécies específicos a partir de espécimes individuais. No entanto, também é importante caracterizar/avaliar a diversidade e abundância de espécies dentro de um ecossistema como um todo para entender as mudanças espaciais e temporais. A abordagem de DNA *barcode* usando o método de sequenciamento Sanger pode identificar apenas uma amostra de cada vez e não pode identificar várias espécies se a amostra contiver uma mistura de espécies diferentes (**Figura 1**). Com os avanços na tecnologia de sequenciamento, agora é possível avaliar a composição de espécies dos ecossistemas, incluindo amostras ambientais como solo, sedimento e água em um trecho, em vez de examinar espécimes individuais de cada vez (Pavan-Kumar et al., 2015).

Figura 1. Diferenças nos métodos padrão para DNA *barcode* e DNA *metabarcode*. Enquanto o DNA *barcode* se concentra em uma espécie específica, o DNA *metabarcode* examina várias espécies ao mesmo tempo.

Fonte: Autoria própria (2022)

Nosso trabalho tem como objetivo mostrar o estado da arte das pesquisas envolvendo o DNA *barcode* como ferramenta para identificação de ovos e larvas de peixes em diferentes ambientes, bem como demonstrar a eficiência e os avanços da ferramenta de identificação molecular nestes organismos.

5.1.3. Resultados

Um total de 38 artigos usando código de barras de DNA envolvendo ictioplâncton de ambientes marinhos e de águas continentais foram encontrados publicados até agora. Nos estudos envolvendo peixes marinhos (22 artigos – **Tabela 1**), seis analisaram apenas ovos de peixes, 11 analisaram apenas larvas de peixes e cinco analisaram ovos e larvas de peixes (**Ta**-

bela 1). Entre os estudos em ictioplâncton de águas continentais (9 artigos – **Tabela 2**), três analisaram apenas larvas de peixes, dois analisaram apenas ovos e quatro analisaram ambos os estágios de vida (**Tabela 2**). Em relação aos trabalhos com DNA *metabarcode* envolvendo ictioplâncton, foram encontrados sete artigos publicados até então (**Tabela 3**), dos quais apenas um analisou ovos e larvas, enquanto os outros seis analisaram apenas larvas de peixes.

% Acerto % Acerto % Acerto % Acerto N° de N° de Referências Morfologia Morfologia Localização Barcode Barcode Ovos Larvas Ovos Larvas Ovos Larvas Hyde et al. 231 291 _ -_ 95,20% Havaí (2005) Pegg et al. 0 1 a 100 50% ---Austrália (2006) Richardson et 0 89% 493 _ _ _ Flórida al. (2007) Valdez-Península de Yucatan -20% 85% Moreno et al. 25 757 _ _ México (2010) 80,1% nível 87% nível de família, 79% de família, Ko et al. 41,1% nível nível de 0 100 Taiwan (2013) de gênero, gênero, 69% 13,5% nível nível de de espécie espécie Burghart et al. 4467 276 -100% 100% costa oeste da Flórida _ (2014) Hubert et al. Ilha Moorea - Polinésia 0 505 _ _ -93% (2015)Francesa Harada et al. 21269 0 62% Califórnia _ _ -(2015) Pappalardo et 0 48% 94% Estreito da Sicília 65 _ _ al. (2015) Leyva-Cruz et Península de Yucatan -1391 0 _ 85,7% _ _ al. (2016) México Lewis et al. 1603 0 93,26% Nordeste dos EUA -_ _ (2016) Identificado Camachoapenas a Golfo Superior da Gastélum et 0 571 _ 86 - 100% nível de Califórnia al. (2017) família Hofmann et 0 96,80% 98% Mar Celta 500 _ _ al. (2017) Rodrigues et 4 391 1,80% 50% Litoral Sudeste do Brasil -_ al. (2017)

Tabela 1. Estudos envolvendo análise morfológica e identificação por DNA *barcode* de ovos e larvas de peixes marinhos entre os anos de 2005 a 2020. Na ausência de informações utilizamos (-).

Pulido (2017)	0	106	-	68% nível de gênero, 32% nível de espécie	-	96 - 100%	Golfo do México
Collet et al. (2018)	0	214	-	-	-	92%	Ilha da Reunião
Canino et al. (2019)	0	260	-	-	-	99,61%	Golfo do Alasca e Mar de Bering
Kerr et al. (2020)	564	0	-	-	36%	-	Noroeste de Cuba e Estreito da Flórida
Azmir et al. (2020)	0	177	-	-	-	95%	Península da Malásia
Hou et al. (2020)	1405	0	-	-	95%	-	Norte do Mar da China Meridional
Mateos- Rivera et al. (2020)	2342	392	5%	89%	94%	98%	Mar do Norte
Ram et al. (2020)	0	80	-	-	-	53%	Costa Noroeste da Índia

Fonte: Autoria própria (2022)

Tabela 2. Estudos envolvendo análise morfológica e identificação por DNA *barcode* de ovos e larvas de peixes de águas continentais entre os anos de 2011 a 2021. Na ausência de informações utilizamos (-).

Referências	N° de Ovos	N° de Larvas	% Acerto Morfologia Ovos	% Acerto Morfologia Larvas	% Acerto <i>Barcode</i> Ovos	% Acerto <i>Barcode</i> Larvas	Localização
García-Dávila et al. (2011)	0	10	-	-	-	99-100%	Amazônia peruana
García-Dávila et al. (2014)	0	689	-	-	-	100%	Amazônia peruana
Becker et al. (2015)	40	57	25%	43%	100%	100%	Alto Rio Paraná e Rio São Francisco - Brasil
Frantine- Silva et al. (2015)	293	243	-	-	99,25%	99,25%	Rio Paranapanema - Brasil
Larson et al., (2016)	41	0	-	-	97%	-	Rio Mississippi - EUA
Almeida et al. (2018)	849	649	-	-	100%	100%	Rio Paranapanema - Brasil
Briñoccoli et al. (2020)	0	10	-	-	-	100%	Misiones - Argentina
de Lima et al. (2020)	928	0	-	-	99,78%	-	Rios Tibagi e Cinza - Brasil
Chen et al. (2021)	397	17	_	-	98,74%	88%	Rio Hengshui - China

Fonte: Autoria própria (2022)

Referências	N° de Ovos	N° de Larvas	% Acerto Morfologia Ovos	% Acerto Morfologia Larvas	% Acerto <i>Barcode</i> Ovos	% Acerto <i>Barcode</i> Larvas	Localização	
Maggia et al. (2017)	0	372	-	-	-	100%	Rios Napo, Ucayalí e Marañon - Peru	
Kimmerling et al. (2018)	0	9933	-	-	-	91,80%	Golfo de Aqaba	
Mariac et al. (2018)	0	995	-	-	-	88,40%	Bacia do Amazonas	
Nobile et al. (2019)	0	230	-	-	-	95%	Rio Mogi-guaçu - Brasil	
Miranda- Chumacero et al. (2020)	49	404	-	-	100%	100%	Rio Beni - Bolívia	
Duke & Burton (2020)	1000	0	-	-	-	100%	San Diego, Califórnia, EUA	
Ratcliffe et al. (2021)	0	98 fa 0 332 - ge		98% nível de família, 77% nível de gênero, 30% nível de espécie	-	100% nível de família, 86,3% nível de gênero, 40% nível de espécie	Mar da Irlanda e Mar Celta	

Tabela 3. Estudos envolvendo análise morfológica e identificação por DNA metabarcode de ovos e larvasde peixes entre os anos de 2017 a 2021. Na ausência de informações utilizamos (-).

Fonte: Autoria própria (2022)

De forma simples e resumida, o histórico de estudos envolvendo DNA *barcode* e DNA *metabarcode* em ovos e larvas de peixes está representado na **Figura 2**.

Fonte: Autoria própria (2022)

5.1.3.1. DNA barcode em ictioplâncton marinho

Estudos envolvendo DNA *barcode* de ovos de peixes marinhos foram conduzidos por Harada et al. (2015), Leyva-Cruz et al. (2016), Lewis et al. (2016), Hofmann et al. (2017), Kerr et al. (2020), e Hou et al. (2020). Na **Tabela 1** é possível observar que quase nenhum estudo tenta identificar os ovos de peixes por morfologia, uma vez que esta é uma tarefa quase impossível. Nos dois únicos estudos em que foram feitas tentativas para identificar morfologicamente os ovos (Hofmann et al., 2017; Mateos-Rivera et al., 2020) a identificação foi mais precisa por meio de DNA *barcode* (**Tabela 1**). Por outro lado, dez estudos identificaram ovos com DNA *barcode* com taxas de sucesso que variam de 20 a 100% (**Tabela 1**). Juntamente com as identificações, também foi possível inferir áreas de desova e distribuição de ovos, gerando informações que podem ser utilizadas para melhorar a conservação dos locais de desova e o manejo da pesca nessas áreas. Com base nesses estudos, é possível concluir que o DNA *barcode* é mais eficaz e preciso na identificação de ovos ao nível de espécie do que a morfologia clássica.

Muitos dos estudos encontrados nesta pesquisa envolveram apenas larvas de peixes marinhos (**Tabela 1**). A maioria dos autores mostrou que larvas de peixes identificadas usando sequências de genes COI oferecem uma oportunidade única para melhorar o conhecimento da riqueza local de peixes. Os dados desses estudos confirmam que o COI pode ser usado como um excelente marcador espécie-específico, sendo uma ferramenta eficiente para avaliar a origem geográfica das larvas, bem como a ocorrência sazonal de seus estágios iniciais da história de vida. Dentre os estudos envolvendo o ambiente marinho, apenas os estudos realizados por Hyde et al. (2005), Valdez-Moreno et al. (2010), Burghart et al. (2014), Rodrigues et al. (2017), e Mateos-Rivera et al. (2020) analisaram ovos e larvas com a técnica de DNA *barcode*, encontrando uma maior variedade de espécies de peixes.

5.1.3.2. DNA barcode em ictioplâncton de águas continentais

Sobre a identificação do ictioplâncton em águas continentais, apenas os trabalhos publicados por Larson et al. (2016) e De Lima et al. (2020) utilizaram DNA *barcode* para identificar apenas ovos de peixes, trazendo a importância de preservar subconjuntos de ovos coletados para análise genética para confirmar a identificação morfológica, principalmente

quando há pouca informação disponível sobre tamanhos de ovos para espécies comparativamente raras; e a importância da identificação de peixes em ambientes influenciados por reservatórios para o reconhecimento de áreas de reprodução de espécies nativas e ameaçadas de extinção.

Resultados encontrados por García-Dávila et al. (2011), García-Dávila et al. (2014) e Briñoccoli et al. (2020), em análises utilizando apenas larvas de peixes, identificadas por DNA *barcode*, a presença de espécies comercialmente importantes em locais de alto impacto antrópico geram informações importantes para o estabelecimento de estratégias de conservação e manejo desses recursos pesqueiros. Alguns autores também demonstraram que o sequenciamento de nucleotídeos pode ser considerado uma ferramenta poderosa para a identificação de espécies em suas formas larvais, uma vez que são comparadas com sequências de adultos precisamente identificados.

Os trabalhos publicados por Becker et al. (2015), Frantine-Silva et al. (2015), Almeida et al. (2018) e Chen et al. (2021), validaram o DNA *barcode* como uma forma legítima de identificar o ictioplâncton. Os resultados encontrados por alguns autores também mostraram que a ferramenta é eficiente para identificar quais espécies estão se reproduzindo no local; bem como obter dados sobre os períodos de desova de espécies migratórias raras na área de estudo.

5.1.3.3. DNA metabarcode

Taberlet et al. (2012) introduziram o termo DNA *metabarcode* para designar a identificação automática de muitas espécies usando o DNA total ou de uma única amostra ambiental contendo DNA degradado (solo, água, fezes, etc.), ou de amostras de organismos inteiros em massa. Com relação ao uso de metabarcode em DNA ambiental (*eDNA*), Hänfling et al. (2016) utilizaram amostras de água para caracterizar a composição da comunidade de peixes em três grandes lagos (Lake Windermere, Derwent Water e Bassenthwaite Lake) no Reino Unido. As amostras de água foram analisadas por eDNA metabarcode das regiões 12S mitocondrial e do citocromo b. Quatorze das 16 espécies historicamente registradas em Windermere foram detectadas usando *eDNA*, em comparação com quatro espécies no levantamento mais recente utilizando redes de pesca, demonstrando que o *eDNA* é extremamente sensível para a detecção de espécies. Os resultados do estudo realizado demonstram que o *metabarcode* de *eDNA* pode descrever comunidades de peixes em grandes lagos, tanto qualitativa quanto quantitativamente, e tem grande potencial como uma ferramenta complementar aos métodos de monitoramento estabelecidos.

O *metabarcode* também pode ser utilizado como uma ferramenta para estudos em ecologia, como no estudo realizado por Kimmerling et al. (2018), no qual foram analisadas larvas coletadas no Golfo de Aqaba, uma região que é habitada por mais 500 espécies de peixes de recife. Com os resultados obtidos foi possível reconstruir a comunidade larval em nível de espécie permitindo uma estimativa robusta das distribuições espaço-temporais das larvas. Os autores conseguiram documentar o fluxo larval de espécies cujos adultos nunca foram documentados na região, e até mesmo larvas de vários peixes de profundidade foram encontradas em águas rasas, demonstrando que o metabarcode é uma excelente ferramenta para auxiliar na conservação dos recifes de coral e nos esforços de gestão da pesca.

Com o intuito de conseguir mais iformações acerca da ecologia de larvas de peixes da bacia amazônica, e validar o *metabarcode*, Maggia et al. (2017) realizaram coletas em três afluentes do rio Amazonas: Napo, Ucayalí e Marañon no Peru. E para identificar essas larvas, se concentraram no marcador mitocondrial COI, e utilizaram tanto o sequenciamento de Sanger quanto o sequenciamento de próxima geração (*NGS*). O sequenciamento por *NGS* se mostrou muito mais eficiente em questões de tempo e custo reduzido, permitindo a aquisição de grandes conjuntos de dados, abrindo caminho para um melhor entendimento da dinâmica reprodutiva e dos padrões de recrutamento de espécies de peixes tropicais, com importantes implicações para o manejo e conservação da pesca.

Ainda na bacia amazônica, Mariac et al. (2018), propuseram um novo método para identificação de espécies amazônicas chamado de "*Metabarcoding by Capture using a Single Probe*" (*MCSP*), que se baseia na captura por hibridização do DNA do gene COI de uma espécie de peixe ausente da área de estudo (*Danio rerio*). A sequência COI desta espécie é equidistante de todos os COI de espécies amazônicas disponíveis, essa sequência foi utilizada como sonda, que facilitou a identificação simultânea de larvas de peixes pertencentes à ordem Siluriformes e aos Characiformes representados nas amostras de ictioplâncton. Segundo os autores as frequências relativas das espécies, estimadas pelo número de leituras, apresentaram correlações quase perfeitas com as frequências verdadeiras estimadas por uma abordagem de Sanger, permitindo o desenvolvimento de uma abordagem quantitativa, além de permitir reduzir o esforço de sequenciamento em 40 vezes. Essa metodologia pode ter implicações im-

portantes para a ecologia, gestão pesqueira e conservação em hotspots de biodiversidade de peixes em todo o mundo, podendo ser estendida a outros táxons de plantas e animais.

Para testar se o *metabarcode* é realmente mais eficiente e viável que o *barcode*, Nobile et al. (2019) desenvolveram um protocolo simples, para investigar se é possível detectar e quantificar todas as espécies de peixes presentes em um pool de organismos. Para isso, 230 larvas de peixes foram cortadas ao meio, uma metade foi sequenciada pela técnica de Sanger e a outra metade foi usada para compor seis matrizes com um pool de larvas que foram sequenciadas por meio de uma técnica de *NGS*. Os resultados do sequenciamento Sanger permitiram a identificação de quase todas as larvas em nível de espécie, e os resultados do *NGS* mostraram alta acurácia na detecção das espécies, variando de 83% a 100%, com média de 95% em todas as amostras, demonstrando a precisão de identificação por meio da técnica de DNA *metabarcode*.

Duke e Burton (2020) também analisaram a eficácia do *metabarcode*, porém os autores criaram uma comunidade artificial, utilizando DNA de ovos de peixe previamente identificados, com o intuito de testar se o metabarcode seria uma ferramenta eficiente para monitorar espécies de peixes marinhos a partir de seus ovos. Seis comunidades simuladas foram construídas com proporções conhecidas de espécies, também foi utilizada uma população natural para comparar os resultados de *metabarcode* e métodos de DNA *barcode* tradicionais. Os autores descobriram que os métodos de *metabarcode* utilizados foram capazes de detectar espécies em proporções de entrada muito baixas, no entanto, os níveis de detecção bemsucedida dependeram dos marcadores usados na amplificação, sugerindo que o uso de vários marcadores é desejável.

Em alguns dos estudos encontrados por este levantamento, foi feita uma comparação entre a eficiência da identificação taxonômica clássica e a eficiência da identificação molecular, como nos estudos publicados por Ko et al. (2013), Pappalardo et al. (2015), Camacho-Gastélum et al. (2017), Hofmann et al. (2017), Rodrigues et al. (2017), Pulido (2017) e Mateos-Rivera et al. (2020) em ambiente marinho, Becker et al. (2015) em águas continentais, e Ratcliffe et al. (2021) usando a técnica de DNA *metabarcode*. Foi possível observar que a análise morfológica teve variação de 1,8% a 98% para identificação de larvas, e de 5% a 96,8% para ovos. Já as análises moleculares obtiveram uma variação de 86% a 100% na identificação de larvas, e uma variação de 50% a 100% na identificação de ovos de peixes. Os autores não encontraram resultados conflitantes entre identificação morfológica e molecular, entretanto, espécimes com morfologia danificada foram identificados apenas via molecular, o que ilustra um problema recorrente na identificação do ictioplâncton com base apenas em características morfológicas. No entanto, vale ressaltar que os altos valores nos acertos de identificação morfológica são apenas no nível de família, com valores mais baixos sendo obtidos para identificações no nível de espécie.

Resumindo, os resultados encontrados nestes estudos demonstram que ainda existem desafios significativos, principalmente para o uso do DNA *metabarcode*, como estimar a composição proporcional das espécies, embora os primeiros passos já tenham sido dados e pareça possível em um futuro próximo ser replicado para vários locais. Além disso, os artigos forneceram informações importantes sobre como interpretar os dados, contribuindo para o desenvolvimento de métodos moleculares eficientes para monitoramento biológico.

5.1.4. Considerações finais

Podemos observar a evolução da ferramenta de identificação molecular do ictioplâncton via DNA *barcoding*, que vem sendo cada vez mais utilizada nas últimas décadas: (1) de 2000 a 2010, foram publicados 4 artigos; (2) enquanto de 2011 a 2021, foram publicados 34 trabalhos que vão desde o uso do sequenciamento de Sanger, onde as identificações são "individuais", até o surgimento do DNA *metabarcoding*, onde um sequenciamento massivo é utilizado por meio de plataformas *NGS* e podemos identificar muitas espécies ao mesmo tempo. Pudemos observar também a eficiência da ferramenta de identificação molecular em relação à identificação taxonômica, com variações de 1,8% a 98% para identificação de larvas e de 5% a 96,8% para ovos, enquanto as análises moleculares variaram de 86% a 100% na identificação de larvas, e uma variação de 50% a 100% na identificação de ovos de peixe. Nesta revisão, mostramos o estado da arte dos estudos que utilizam DNA *barcoding* para identificar ovos e larvas de peixes em diferentes ambientes, além de mostrar quais estudos utilizaram o DNA *metabarcoding* para identificar o ictioplâncton.

5.2. Capítulo II - Caracterização do ictioplâncton por DNA *metabarcoding* no entorno da ARIE Santa Helena - Paraná.

5.2.1. Introdução

A Área de Relevante Interesse Ecológico do município de Santa Helena – PR (ARIE-SH), conhecida localmente como Refúgio Biológico de Santa Helena (RBSH) é uma Unidade de Conservação Municipal, constituída geograficamente por uma península transformada em ilha (Kliver, 2010). Trata-se de uma área de proteção privada pertencente à empresa Itaipu Binacional, sendo componente da Área de Preservação Permanente do Lago de Itaipu. O RBSH possui uma área total de 1.482,05 hectares, estando localizado na Bacia Hidrográfica Paraná III no município de Santa Helena, extremo oeste do estado. A ARIE-SH se encontra inserida no Terceiro Planalto, e este se encontra quase todo drenado pela bacia hidrográfica dos rios Iguaçú e Paraná, que contém o reservatório da Hidrelétrica de ITAIPU (Kliver, 2010).

O reservatório de Itaipu tem uma extensão de 151 km e área de 1.350 km² e sua porção presente no RBSH representa, no corpo principal do reservatório, uma zona de transição que no estudo de Ribeiro Filho et al. (2011) apresentou maior abundância de zooplâncton, relacionando-se às grandes concentrações de clorofila, devido ações antrópicas, observadas nas bacias dos rios São Francisco Verdadeiro e Falso. Essa área caracteriza-se ainda por uma grande quantidade de vegetação semi-submersa e uma grande proporção de vegetação aquática flutuante, o que proporciona uma maior disponibilidade de abrigo e alimento a ictiofauna jovem, proporcionando também locais para refúgio de presas, além de ser uma região na qual confluem grandes tributários em ambas as margens (Benedito Cecilio et al., 1997; Kliver, 2010). A ictiofauna do Alto Paraná, desde Porto Primavera até o reservatório de Itaipu e áreas de influência é composta por dez ordens, 41 famílias, 126 gêneros e 211 espécies que estão associados a todos os ambientes do reservatório, e a sua zona de transição apresenta uma maior abundância de peixes onívoros, piscívoros e zooplanctófagos (Ribeiro Filho et al., 2011; Ota et al., 2018).

A parte aquática no entorno do Refúgio Biológico de Santa Helena é considerada como zona de amortecimento, segundo seu plano de manejo. Brandão et al. (*in press*) amostraram duas classes, oito ordens, 27 famílias e 74 espécies no entorno do RBSH, o que torna imprescindível a criação de novas áreas de preservação, levando em consideração a

forte pressão de pesca existente nessa região, bem como a introdução indevida de espécies não nativas, Adicionalmente, acredita-se que, muitas dessas áreas no entorno do RBSH são utilizadas pelas espécies de peixes como um local de desova de espécies residentes e migratórias, tornando-se importantes áreas de berçário para a ictiofauna (Kliver, 2010).

A identificação precisa das áreas de desova e de criadouros naturais de peixes tem importância fundamental para a implantação de medidas de preservação e proteção dessas áreas (Nakatani et al., 2001; Frantine-Silva et al., 2015), o que torna importante o estudo de espécies de peixes em seus primeiros estágios de vida, mais conhecidos como ictioplâncton. Adicionalmente, as informações acerca da localização, dimensão e caracterização dos locais de reprodução, são básicas para ações de manejo, visando o aumento da preservação das espécies (Bialetzki et al., 2005). No entanto, a identificação taxonômica desses indivíduos se torna um desafio por conta de seus caracteres morfológicos que ainda não estão completamente desenvolvidos, tornando-os muito similares mesmo entre espécies muito distintas (Nakatani et al., 2001; Pegg et al., 2006; Barzotto et al., 2015; Orsi et al., 2016; Suzuki, Pompeu, 2016).

Considerando o contexto supracitado, a ferramenta de identificação molecular se torna uma opção mais viável para esses organismos. Com o avanço das metodologias moleculares, como a técnica de DNA *metabarcoding* utilizando o sequenciamento de nova geração (NGS), pode-se obter uma identificação automática de muitas espécies utilizando o DNA total, uma amostra ambiental com fragmentos de DNA ou até mesmo amostras com muitos organismos ao mesmo tempo, poupando tempo e identificando espécies de maneira precisa (Taberlet et al., 2012). Assim, O presente trabalho teve por objetivo identificar e caracterizar, por meio de DNA *metabarcoding*, ovos e larvas de peixes coletados nas áreas do entorno do Refúgio Biológico de Santa Helena – PR, situado na área de influência do Lago de Itaipu.

5.2.2. Material e métodos

5.2.2.1. Obtenção das amostras

As coletas foram realizadas ao longo de um ciclo reprodutivo (2020/2021), em dez pontos (Tabela 1), localizados no entorno da Área de Relevante Interesse Ecológico de Santa Helena (ARIE-SH), na área de influência do Lago de Itaipu – PR. A captura foi

realizada utilizando-se de redes de ictioplâncton com formato cônico, com malha 0,5 mm, área de 0,1963 m², com um copo acoplado para armazenar as amostras (Licença SisBio 75912-1). As redes foram posicionadas subsuperficie da água e arrastadas por uma embarcação em baixa e constante velocidade durante 10 minutos por ponto, conforme sugerido por Frantine-Silva et al. (2015). Foram realizadas sete amostragens por ponto, totalizando 70 amostras. O projeto possui aprovação da Comissão de Ética no Uso de Animais (CEUA) da UTFPR (protocolo 2021-1) e está cadastrado no Sistema de Gestão de Patrimônio Genética e Conhecimento Tradicional Associado - SISGEN (protocolo nº AF2039B).

Ainda em campo, as amostras coletadas foram imediatamente imersas em solução de eugenol (4%) e ainda no local, foram fixadas em etanol a 96%. No laboratório, o material foi triado em esteromicroscópio (aumento de 40x), sendo os ovos separados das larvas por ponto amostral e data da coleta. Após a triagem os ovos e as larvas foram mantidos em etanol 96% até o procedimento molecular.

 Tabela 1 – Coordenadas geográficas dos pontos amostrais localizados no entorno da Área de Relevante
 Interesse Ecológico de Santa Helena (ARIE-SH), na área do Lago de Itaipu – PR.

Pontos	Latitude	Longitude
P01	24°51'03.6"S	54°21'21.6"W
P02	24°50'56.4"S	54°22'26.4"W
P03	24°50'31.2"S	54°22'33.6"W
P04	24°49'37.2"S	54°21'32.4"W
P05	24°48'14.4"S	54°22'04.8"W
P06	24°47'34.8"S	54°21'50.4"W
P07	24°48'28.8"S	54°21'00.0"W
P08	24°49'12.0"S	54°20'45.6"W
P09	24°50'06.0"S	54°20'49.2"W
P10	24°50'31.2"S	54°20'42.0"W

Fonte: Autoria própria (2022)

5.2.2.2. Análises moleculares - DNA metabarcoding

As 70 amostragens obtidas resultaram em 117 *pools*, sendo 28 *pools* de ovos e 89 *pools* de larvas. A extração do DNA total do indivíduos foi realizada de acordo com o protocolo descrito por Green, Sambrook (2012), utilizando proteinase K e fenol:clorofórmio. Para a amplificação e sequenciamento do gene citocromo C oxidase subunidade I (COI), Foram utilizados 12 *primers*, sendo: FishF1, FishF2, FishR1, FishR2 (Ward et al., 2005), FishF6, FishR7 (Jennings et al., 2019), 214F, 217F, 2019F, 432R, 433R e 434R (da Costa, 2021). Posteriormente, as amostras foram agrupadas e os passos seguintes de limpeza, indexação e montagem de bibliotecas, foram realizados de acordo com o guia de preparação da Illumina 16S *Metagenomic Sequencing Library*. Em seguida, as amostras foram sequenciadas em um sequenciador automático de nova geração MiSeq da Illumina.

5.2.2.3. Análises bioinformáticas

Após a submissão das amostras na plataforma Illumina Miseq, o processamento dos dados brutos obtidos incluiu filtragem por qualidade, na qual foram eliminadas os reads com Q score inferior a 20, com posterior emparelhamento utilizando o *Paired-End reAd mergeR* (PEAR) v.0.9.11 (Zhang et al., 2014). Os *reads* com menos de 30 pares de bases de sobreposição foram excluídos e os *primers* foram removidos utilizando o *software* CUTADAPT v.3.4 (Martin, 2011). Em seguida, foram eliminados *reads* idênticos (opção -fastx_uniques) e sequências quimeras (opção -uchime3_denovo) utilizando o algoritmo USEARCH versão 11.0.667 (Edgar, 2010). Por fim, foi realizada a montagem e edição das sequências utilizando o programa Geneious® 7.1.3 (Biomatters Ltd), os *contigs* obtidos foram então comparados com o banco de dados do NCBI utilizando o software Blast2GO versão 6.0.3 (Conesa et al., 2005), sendo considerados a nível de espécie apenas os *contigs* com 90% ou mais de similaridade, aqueles com menos de 90% foram considerados apenas o gênero.

5.2.3. Resultados e Discussão

Dentre as 70 amostragens analisadas foi possível obter um total de 6.068 indivíduos (392 ovos e 5676 larvas de peixes), sendo que a quantidade de ovos por pontos de coleta variou de 16 a 109 e a quantidade de larvas variou de 64 a 1.922 (**Tabela 2, Figura 1**). O maior número de espécimes capturados foi no ponto P10 (2031 indívíduos), sendo 109 ovos e 1922 larvas, que resultaram na identificação de 29 espécies para este ponto (**Figura 2**), demonstrando também ser o ponto onde obtivemos mais sequências identificadas (259) (**Figura 3**). Ainda que localizado próximo a um local de forte ação antrópica (Balneáreo de Santa Helena), durante as coletas esse ponto apresentou uma grande quantidade de plantas aquáticas, se tornando um local excelente para abrigo de larvas.

Ao compararmos quantitativamente indivíduos capturados com espécies identificadas, obtivemos valores diferentes, sendo o ponto com maior riqueza de espécies foi o P01 com 40 espécies identificadas, seguido do P09 com 39 espécies (**Figura 2**). A possível causa de o P01 ter apresentado uma riqueza maior, mesmo com uma baixa quantidade de indivíduos coletados, pode ser o fato que durante as coletas este ponto amostral apresentou baixa profundidade e muita vegetação, dificultando o acesso aos indivíduos. Entretanto, não podemos desconsiderar o fato de que esse local apresenta uma pressão de pesca quase nula quando comparado aos outros pontos amostrais, por se localizar em frente a um posto da polícia ambiental, preservando a riqueza de espécies do local. O ponto P04 teve a menor quantidade de larvas coletadas (64), obtendo o menor valor de riqueza entre os pontos amostrados (15 espécies) (**Figura 1 e 2**).

Tabela 2 – Quantidade de ovos e larvas de peixes coletados em cada ponto amostral do RBSH.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10
Ovos	19	43	27	16	26	31	60	23	38	109
Larvas	110	64	158	167	376	1091	1053	250	485	1922
Total	129	107	185	183	402	1122	1113	273	523	2031

Fonte: Autoria própria (2022)

Figura 1 - Quantitativo de ovos e larvas de peixes coletados por ponto amostral do RBSH.

Fonte: Autoria própria (2022)

Figura 2 – Riqueza de espécies coletadas por ponto amostral do RBSH.

Fonte: Autoria própria (2022)

Figura 3 – Total de sequências identificadas por ponto amostral do RBSH.

Fonte: Autoria própria (2022)

Após o processamento dos indivíduos, foram obtidos 95 *pools*, sendo 12 foram descartados por não atingir a concentração suficiente de DNA após a amplificação restando, assim, 83 *pools* viáveis que resultaram em um total de 637.304 *reads* pela plataforma Illumina *Miseq* (média de 7.678 *reads* brutos por *pool* gerado). Cada amostra gerou *reads* pareados variando de 1.555 a 8.593 *reads* filtrados (média de 4.827), com obtenção de fragmentos que variaram de 638 pb a 3.540 pb após as montagens, sendo utilizados somente os fragmentos acima de 600 pb (**Apendice A**).

5.2.3.1. Caracterização e composição da Ictiofauna

O sequenciamento das bibliotecas, após as filtragens, gerou um total de 1.848 sequências viáveis, que resultaram na identificação de 82 táxons, pertencentes a 7 ordens, 26 famílias e 8 Subfamílias. Dos 82 táxons, 25 foram identificados a nível de gênero e 57 a nível de espécie (**Tabela 3**).

Tabela 3 – Espécies de peixes identificadas via DNA *metabarcoding* a partir de amostras de ictioplâncton coletadas na parte aquática do Refúgio Biológico de Santa Helena – PR, na área do Lago de Itaipu. Os valores indicam quantidade de sequências de cada espécie por ponto (P01 até P10). MLD = Espécies migradoras de longa distância (Baseado em Ota et al., 2018 e Reis, 2003).

lingrauor as de longa distanci	ia (Das	cauo		ia ei a	1., 201	0 C N	cis, 20	18, 2005).			
TAXONS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	TOTAI
CLASSE: ACTINOPTERYGII											
ORDEM: CHARACIFORMES											
Família: Cynodontidae											
Rhaphiodon vulpinus Spix & Agassiz, 1829 (MLD)	1		2	1	2		1			1	8
Família: Characidae											
Subfamília: Aphyocharacinae											
Aphyocharax dentatus Eigenmann & Kennedy, 1903	6			1							7
Subfamília: Stethaprioninae											
Astyanax									1		1
Astyanax biotae Castro, Vari, 2004	1										1
Astyanax bockmanni Vari, Castro, 2007			1	1		1		2	1	1	7
Astyanax lacustris (Lütken, 1875)	8	2	5	3	3	9	4	5	6	10	55
Hemigrammus marginatus Ellis, 1911	2	1	1	1		1					6
Hyphessobrycon	2	1	3	3	1	1			1	1	13
Hyphessobrycon eques (Steindachner, 1882)									1		1
Moenkhausia forestii Benine, Mariguela, Oliveira, 2009	4		2	1		1		1	1		10
Moenkhausia sanctaefilomenae (Steindachner, 1907)									1		1
Oligosarcus	1										1
Oligosarcus paranensis Menezes, Géry, 1983			1								1
Psalidodon fasciatus (Cuvier, 1819)										1	1
Psellogrammus kennedyi (Eigenmann, 1903)								1			1
Subfamília: Characinae											
Galeocharax gulo (Cope, 1870)	2	1		1			1				5
Roeboides descalvadensis Fowler, 1932	3	2	2	2	2	3	1	1	3	4	23
Subfamília: Stevardiinae											

										6	5
Bryconamericus	1		2	3	2	5	1	3	1	3	21
Bryconamericus aff. iheringii (Boulenger, 1887)					1						1
Bryconamericus exodon Eigenmann, 1907					1						1
Diapoma			4	2	9	6	5	7	6	1	40
Knodus						2				1	3
Piabina									1		1
Piabina argentea Reinhardt, 1867	1	1							1		3
Planaltina britskii Menezes, Weitzman, Burns, 2003	1								1		2
Subfamília: Cheirodontinae											
Aphyocheirodon hemigrammus Eigenmann, 1915	1	1		2	1		1	1	1	4	12
Serrapinnus sp. 1						1					1
Serrapinnus sp. 2					1						1
Família: Bryconidae											
Brycon (MLD)					1			1	1		3
Família:Crenuchidae											
Characidium	3		2	1	1	1	2	2	4	2	18
Characidium gomesi Travassos, 1956	1						1				2
Characidium sp.			1								1
Characidium zebra Eigenmann, 1909							1				1
Família: Curimatidae											
Cyphocharax	1								2		3
Cyphocharax modestus (Fernández-Yépez, 1948)	1								1	1	3
Cyphocharax nagelii (Steindachner, 1881)	2	1		4	1	1	1	1	2	2	15
Família: Erythrinidae											
Hoplias aff. malabaricus (Bloch, 1794)	2										2
Hoplias intermedius (Günther, 1864)				1							1
Hoplias sp.						1		2	1	1	5
Família: Parodontidae											
Apareiodon					2				2		4
Apareiodon affinis (Steindachner, 1879)	88	132	90	109	104	140	137	78	114	170	1162
Parodon nasus Kner, 1859	2		1	2		1	1	1		1	9
Família: Prochilodontidae											
Prochilodus				1							1
Prochilodus lineatus (Valenciennes 1836) (MLD)			1		1	1	1	2	2		8
Família: Anostomidae											
Leporinus (MLD)			1	1	3		1	2		1	9
Leporinus amblyrhynchus Garavello, Britski, 1987					1						1

									66	;
				1						1
1		1								2
		2			1					3
			1	5	1			1		8
		1						1		2
			1							1
		1								1
3	4		12	1	2	2	3	3	10	40
7		1	1		2	1		1		13
12	2	5	9	5	7	1	5	8	11	65
1		1			1					3
2		1		2	2		2	1		10
1					1			2		4
1		1		1	1				1	5
1										1
			2		2	1		3	3	11
	1	1		1		1	1	1	1	7
					1					1
1				1						2
1										1
			1	1		1	2	1	1	7
			1			1				2
								1		1
	1 3 7 12 1 1 1 1	1 3 4 7 2 12 2 1 1 1 1 1 1 1	1 1 1 1 3 4 7 1 12 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 3 4 12 3 4 12 7 1 1 12 2 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

										67	
Trichomycterus	5	1		3		2	1	1		4	17
ORDEM: GYMNOTIFORMES											
Família: Gymnotidae											
Gymnotus				1							1
Gymnotus sylvius Albert & Fernando-Matioli, 1999				1						1	2
Família: Sternopygidae											
Eigenmannia							1				1
Eigenmannia virescens (Valenciennes, 1836)	2		2	3	1	1	1	1	2	1	14
Família: Rhamphichthyidae											
Rhamphichthys				2							2
ORDEM: CICHLIFORMES											
Família: Cichlidae											
Cichla								1			1
Cichlasoma	2		2		1						5
Coptodon rendalli (Boulenger, 1897)					1						1
Satanoperca sp.					1						1
INCERTAE SEDIS											
Família: Sciaenidae											
Plagioscion squamosissimus (Heckel, 1840)	18	5	23	8	11	15	7	10	10	13	120
ORDEM: PLEURONECTIFORMES											
Família: Achiridae											
Catathyridium jenynsii (Günther, 1862)					4		3		5	3	15
ORDEM: CYPRINODONTIFORMES											
Família: Poeciliidae											
Pamphorichthys hollandi (Henn, 1916)									1		1
Total species = 82											1848

Fonte: Autoria própria (2022)

A espécie com maior número de sequências amostradas foi da família Parodontidae, *Apareiodon affinis* (Steindachner, 1879), popularmente conhecida como "charuto" ou "canivete", é considerada uma espécie nativa da região segundo Ota et al. (2018) (**Tabela 4**), com um total de 1162 sequencias distribuídas entre todos os pontos de coleta (**Tabela 3**), essa ampla distribuição pode ser em virtude da flexibilidade de habitats que essa espécie apresenta, bem como sua característica reprodutiva de possuir uma desova parcelada e sazonal sem apresentar cuidado parental (Vazzoler, 1996; Bialetzki et al., 1998), estendendo seu período reprodutivo, como no estudo realizado por Bialetzki et al. (1998), onde foram registradas capturas de larvas dos meses de Agosto a Fevereiro no alto rio Paraná, com maiores densidades nos meses de novembro, dezembro e fevereiro.

Além de *Apareiodon affinis*, as espécies *Astyanax lacustris* (Lütken, 1875), *Pyrrhulina australis* Eigenmann, Kennedy, 1903, *Roeboides descalvadensis* Fowler, 1932, e *Plagioscion squamosissimus* (Heckel, 1840), sendo estas duas últimas considerada como nãonativas por Ota et al. (2018), foram coletadas em todos os pontos amostrais do presente estudo. Essas espécies também foram coletadas no levantamento realizado por Brandão et al. (*in press*) na mesma região (RBSH).

Outras espécies que foram coletadas no presente estudo e merecem destaque são: Clarias gariepinus (Burchell, 1822), popularmente conhecida como"bagre-africano", coletado em 3 pontos (P01 - ovo, P06 e P09 - larvas) e Coptodon rendalli (Boulenger 1897), popularmente conhecida como "tilápia", coletada em 1 ponto (P05 - ovo), que foram introduzidas do continente africano e são amplamente distribuídas no Brasil. Considerando a grande quantidade de pisciculturas estabelecidas na região de estudo, aliado ao fato do apreço comercial destas duas espécies, possivelmente estas espécies são oriundas de escapes de cativeiro. É sabido que a introdução, acidental ou antrópica, de espécies exóticas é um dos maiores riscos para a biodiversidade local, visto que além dessas espécies geralmente não terem predadores naturais, há concomitante introdução de novas doenças (parasitárias ou não) no ambiente (Vitule, 2009; Vitule, Prodocimo, 2012; Gallardo et al. 2016; Garcia et al., 2021). Essas introduções também podem gerar pressão de predação alterando a estrutura das comunidades locais, alterações na produção primária, homogeneização biótica causando eliminação de espécies nativas (Magalhães, 2006, Magalhães et al. 2020), podendo ainda, em último caso causar extinção de espécies (Blackburn et al. 2014). Nossos registros indicam, além da presença dessas espécies exóticas no lago, que as mesmas se estabeleceram e estão se reproduzindo no entorno do RBSH, dando um caráter de espécie invasora em fase de estabelecimento para essas espécies exóticas (Garcia et al., 2021)

Tabela 4 – Espécies coletadas no entorno do RBSH no presente estudo, comparadas com o estudo de Brandão et al. (in press), e ocorrência segundo Ota et al. (2018). sim = coletada na região; não = não coletada na região. ^{EX} = espécies exóticas. *** Nome atual da única espécie deste gênero com registro na região = *Satanoperca setepele*.

Espécies coletadas no presente estudo	ente estudo Brandão et al., (<i>in press</i>)			
Apareiodon affinis (Steindachner, 1879)	Sim	Nativa		
Aphyocharax dentatus Eigenmann & Kennedy, 1903	Não	Não-nativa		

Espécies coletadas no presente estudo	Brandão et al., (<i>in press</i>)	Ota et al., 2018
Aphyocheirodon hemigrammus Eigenmann, 1915	Não	Nativa
Astyanax biotae Castro, Vari, 2004	Não	Nativa
Astyanax bockmanni Vari, Castro, 2007	Não	Nativa
Astyanax lacustris (Lütken, 1875)	Sim	Nativa
Bryconamericus aff. iheringii (Boulenger, 1887)	Não	Nativa
Bryconamericus exodon Eigenmann, 1907	Não	Não-nativa
Catathyridium jenynsii (Günther, 1862)	Sim	Não-nativa
Cetopsorhamdia iheringi Shubarti, Gomes, 1959	Não	Nativa
Characidium gomesi Travassos, 1956	Não	Nativa
Characidium zebra Eigenmann, 1909	Nim	Não-nativa
Clarias gariepinus (Burchell, 1822) EX	Não	Não-nativa
Coptodon rendalli (Boulenger 1897) EX	Não	Não-nativa
Cyphocharax modestus (Fernández-Yépez, 1948)	Não	Nativa
Cyphocharax nagelii (Steindachner, 1881)	Não	Nativa
Eigenmannia virescens (Valenciennes, 1836)	Não	Não-nativa
Galeocharax gulo (Cope, 1870)	Sim	Nativa
Gymnotus sylvius Albert, Fernandes-Matioli, 1999	Sim	Não-nativa
Hemigrammus marginatus Ellis, 1911	Sim	Nativa
Hoplias aff. malabaricus (Bloch, 1794)	Sim	Não-nativa
Hoplias intermedius (Günther, 1864)	Sim	Nativa
Hyphessobrycon eques (Steindachner, 1882)	Sim	Nativa
Hypostomus cf. strigaticeps (Regan, 1908)	Sim	Nativa
Hypostomus commersoni Valenciennes, 1836	Não	Não-nativa
Hypostomus margaritifer (Regan, 1908)	Não	Nativa
Leporinus amblyrhynchus Garavello, Britski, 1987	Não	Nativa
Leporinus lacustris Campos, 1945	Sim	Nativa
Leporinus octofasciatus Steindachner, 1915	Não	Nativa
Leporinus striatus Kner, 1858	Não	Nativa
Leporinus tigrinus Borodin, 1929	Sim	Não-nativa
Loricaria prolixa Isbrücker, Nijssen, 1978	Não	Nativa
Megaleporinus obtusidens (Valenciennes, 1836)	Sim	Nativa
Moenkhausia forestii Benine, Mariguela, Oliveira, 2009	Sim	Não-nativa
Moenkhausia sanctaefilomenae (Steindachner, 1907)	Não	Não-nativa
Oligosarcus paranensis Menezes, Géry, 1983	Não	Nativa

Espécies coletadas no presente estudo	Brandão et al., (<i>in press</i>)	Ota et al., 2018
Pamphorichthys hollandi (Henn, 1916)	Sim	Nativa
Parodon nasus Kner, 1859	Não	Nativa
Phenacorhamdia tenebrosa (Schubart, 1964)	Não	Nativa
Piabina argentea Reinhardt, 1867	Não	Não-nativa
Plagioscion squamosissimus (Heckel, 1840)	Sim	Não-nativa
Planaltina britskii Menezes, Weitzman, Burns, 2003	Não	Nativa
Prochilodus lineatus (Valenciennes, 1836)	Sim	Nativa
Psalidodon fasciatus (Cuvier, 1819)	Sim	Nativa
Psellogrammus kennedyi (Eigenmann, 1903)	Sim	Não-nativa
Pterygoplichthys ambrosettii (Holmberg, 1893)	Sim	Não-nativa
Pyrrhulina australis Eigenmann, Kennedy, 1903	Sim	Nativa
Rhaphiodon vulpinus Spix, Agassiz, 1829	Sim	Nativa
Roeboides descalvadensis Fowler, 1932	Sim	Não-nativa
Satanoperca sp.***	Sim	Não-nativa
Serrasalmus maculatus Kner, 1858	Sim	Nativa
Serrasalmus marginatus Valenciennes, 1837	Sim	Não-nativa
Trachelyopterus galeatus (Linnaeus, 1766)	Sim	Nativa

Fonte: Autoria própria (2022)

Em um contexto geral, foram identificadas 07 ordens de peixes, sendo Characiformes a mais representativa (68%), seguida por Siluriformes (17%) (**Figura 4**). A predominância de espécies coletadas das ordens Characiformes e Siluriformes está de acordo com resultados encontrados por diversos outros autores, visto que essas ordens detêm a representatividade predominante na ictiofauna de sistemas fluviais da América do Sul, com Characiformes demonstrando superioridade em relação às demais ordens (Agostinho & Júlio Jr., 1999; Lowe-McConnell, 1999; Shibatta et al., 2002; Agostinho et al., 2004; Pelicice et al., 2005). Em um levantamento de ictiofauna no mesmo local do presente estudo (RBSH), Brandão et al., (*in press*), também chegaram ao mesmo resultado, sendo que das 74 espécies coletadas, 40 foram da ordem Characiformes e 17 de Siluriformes, ou seja, com valores porcentuais muito similares ao encontrados no resente trabalho.

Analisando quais ordens foram coletadas por ponto, Characiformes foi a ordem com maior representatividade em todos os pontos variando de 67% (P05) a 79% (P02) em relação às outras ordens por ponto, também seguida de Siluriformes que variou de 12% (P04) a 23% (P03) (**Figura 5**). As ordens Pleuronectiformes e Cyprinodontiformes não tiveram

representantes coletados nos pontos P01, P02, P03, P04, P06 e P08. Os pontos P05 e P09 obtiveram representantes de quase todas as ordens, com excessão de Cyprinodontiformes para o P05 e Cichliformes para o P09. A ordem Cyprinodontiformes foi coletada apenas no ponto P09.

Fonte: Autoria própria (2022)

Figura 5 - Quantidade de ordens identificadas por ponto.

Fonte: Autoria própria (2022)
O ponto com menor diversidade de ordens registradas foi o P02, tendo sido amostrado somente Characiformes, Siluriformes e representantes *Incertae sedis*. Considerando que esta área sofre muita influência do nível do reservatório, a baixa diversidade de ordens capturadas pode ser oriunda tanto da sazonalidade local (em épocas a região está seca com vegetação e em outras está alagada) tanto pela dificuldade em se coletar ovos e larvas neste ambiente.

Dentre as famílias coletadas no presente trabalho, Characidae foi a mais representativa (33%), seguida da família Anostomidae (11%) e Loricariidae (7%) (**Figura 6**). No estudo realizado por Agostinho et al. (2004) Characidae obteve a maior representatividade (aproximadamente 40 espécies), porém foi seguida pelas famílias Pimelodidae e Loricariidae (cada uma com aproximadamente 14 espécies), e só então pela família Anostomidae (aproximadamente 11 espécies). Em contrapartida, Brandão et al. (*in press*) encontraram Characidae como sendo a família com maior número de espécies coletada (18), seguida por Cichlidae (9), Anostomidae (7) e Pimelodidae (5). Esta diferença encontrada pelos autores quando comparada com os dados apresentados do presente trabalho podem ser explicados pela diferença dos métodos de coleta, visto que tanto no Agostinho et al. (2004) quanto Brandão et al. (*in press*) fizeram coletas e análises de indivíduos adultos. Desta forma, fica evidente que nem todas as famílias presentes em abundância na área de estudos desovam neste local.

Figura 6 – Quantidade de espécies identificadas por família.

Fonte: Autoria própria (2022)

Com relação ao quantitativo de famílias amostradas por ponto, Characidae teve o maior destaque, sendo a mais representada em sete dos dez pontos amostrais (P01, P02, P03, P04, P05, P06 e P09) (**Figura 7 e 8**), possivelmente por ser a maior família de peixes neotropicais e por apresentar, associado ao modo de vida e reprodução de seus representantes (Britski et al., 2007).

Além de Characidae, Anostomidae apresentou alta frequência nos pontos amostrais P03 e P05 (**Figura 7**). Assim como discutido anteriormente, estes ambientes apresentam vegetação apenas de capim, que durante as cheias do Lago de Itaipu, acabam virando zonas submersas, momento em que aliado a outros fatores climáticos, membros da família Anostomidae costumam desovar, aproveitando o sentido da correnteza para direcionar os ovos e larvas para seus locais de desenvolvimento (alimentação e refúgio) (Santos, 1982).

Nos 4 últimos pontos (P07 a P10) a família Loricariidae foi a mais representada, juntamente com outras famílias (P07 – Crenuchidae e Loricariidae; P08 e P10 – Parodontidae e Loricariidae; e P09 – Characidae e Loricariidae) (**Figura 8**). Todos esses pontos estão localizados em regiões fora do canal principal, em zonas mais protegidas semelhantes à pequenas baías, onde o ambiente era mais estável e apresentava uma grande quantidade de matéria orgânica, assim como a presença de muita *Elodea* sp. E demais macrófitas, servindo tanto como um local para alimentação quanto para abrigo para estas espécies.

É pertinente destacar que em somente um ponto amostral (P02) houve apenas oito famílias identificadas (**Figura 7**). Como relatado anteriormente, o local de coleta apresentava muita vegetação, devido ao aumento do nível do reservatório, inviabilizando o acesso a margem e dificultando a coleta. Adicionalmente, observações *in loco* puderam constatar muitas aves no local, podendo apresentar um risco de predação maior dos indivíduos nesse local.

Figura 7 – Quantidade de famílias identificadas por ponto. Pontos P01 a P06

Fonte: Autoria própria (2022)

Figura 8 – Continuação da Figura 7. Pontos P07 a P10.

Fonte: Autoria própria (2022)

A maioria das espécies coletadas no presente trabalho possuem hábito sedentário ou realiza curtas migrações reprodutivas. Esta composição é esperada visto que o RBSH fica inserido na planície de inundação do Reservatório de Itaipu, apresentando elevadas concentrações de nutrientes, o que o torna um ambiente no qual essas espécies conseguem manter suas populações viáveis (Thorton et al., 1990; Agostinho et al., 2007; Ribeiro Filho et al., 2011). Adicionalmente, foram identificadas cinco espécies que são classificadas pela literatura como migradoras de longa distância (MLD), e quatro gêneros também considerados como migradores (Reis, 2003; Ota et al., 2018) (**Tabela 5**).

Dentre os MLDs coletados, as espécies *Prochilodus lineatus* (Valenciennes 1836) e *Rhaphiodon vulpinus* Spix & Agassiz, 1829 se encontram presentes em quase todos

os pontos (**Tabela 5**, **Figura 9**). É possível notar uma predominância na quantidade de ovos coletados, quando comparados com larvas, para todas as espécies migradoras registradas, sendo que nos pontos P01, P04, P09 e P10 apenas ovos foram coletados. Não foram coletadas larvas das espécies *Leporinus lacustris* Campos, 1945 e *Megaleporinus obtusidens* (Valenciennes 1836). O ponto P07 foi o únicio em que não foi verificada a presença de ovos de migradores, apenas larvas. O único ponto onde não houve registro de nenhuma espécie de migrador de longa distância foi no ponto 02, possivelmente pelos aspectos do local anteriormente discutidos. (**Figura 9**).

Tabela 5 – Quantidade de sequencias identificadas por espécies de peixes migradores de longa distância (MLD) coletados.

					0	vos									La	rvas				
Migradores Longa Distância	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Leporinus lacustres	1		1																	
Leporinus octofasciatus						1							2							
Megaleporinus obtusidens				1																
Prochilodus lineatus			1		1			1	2							1	1	1		
Rhaphiodon vulpinus	1		2	1	2					1							1			
Megaleporinus			1						1											
Schizodon													1							
Leporinus			1	1				2		1					3		1			
Brycon					1			1	1											

Fonte: Autoria própria (2022)

Figura 9 – Quantidade de sequencias de ovos e larvas de peixes migradores de longa distância identificadas por pontos de coleta.

Fonte: Autoria própria (2022)

As espécies de peixes MLD possuem estações de desova bem definidas, realizando-as de forma total no início da estação de cheia (geralmente de novembro a fevereiro), para que suas larvas se alimentem nas planícies de inundação. Essa estratégia de migrar entre ambientes de desova e alimentação é característico de grandes migradores, pois permite que essas espécies consigam os melhores locais para cada etapa do ciclo de vida, visto que o sucesso reprodutivo dessas espécies depende que a desova ocorra no melhor local e no momento em que as condições ambientais se apresentem mais favoráveis para a sobrevivência dos descendentes, mantendo sua diversidade genética pelas futuras gerações (Zaniboni-Filho, 1985; Vazzoler, 1996; Lowe-McConnel, 1999).

Geralmente espécies que apresentam comportamento migrador, escolhem lagoas marginais que ocupam as depressões laterais dos rios e que possuam uma conexão intermitente com o mesmo. Desta forma, esses ambientes em sistemas de rio-planície de inundação são importantes na manutenção e integridade da biodiversidade regional, agindo como criadouro natural das espécies de importância comercial que em grande parte são migradores de longa distância (Agostinho et al., 1993; 2000; Souza Filho e Stevaux, 1995). Por fim, a diversidade e o tamanho dos estoques das espécies MLD dependem da conservação e integridade desses criadouros naturais, pois sem estas áreas as populações desses migradores podem chegar ao colapso, com a diminuição de variabilidade genética, o que levaria estas à extinção (Petry et al., 2002; Nunes et al., 2019). Frente aos resultados encontrados no presente estudo, o RBSH demonstra ser um local adequado para desova dessas espécies e a prosperidade dos estoques destas espécies de MLD dependem da preservação desta área.

5.2.4. Considerações Finais

Considerando os dados supracitados fica evidente que a técnica de levantamento da composição de ictioplâncton por DNA *metabarcoding* é extremamente eficiente, principalmente quando comparado com o levantamento e identificação clássica por caracteres morfológicos. Tal eficiência pode ser corroborada quando comparado com levantamentos tradicionais de indivíduos adultos. Com relação ao RBSH, o quantitativo de espécies levantadas que desovam na área, tanto residentes como especialmente os MLD, reforçam a necessidade de se estender a área de proteção permanente ao perímetro aquático, visto que esta se trata de uma área de desova e é essencial para preservação da biodiversidade ictiofaunística local.

6 CONCLUSÕES

Considerando os dados obtidos no presente trabalho, no primeiro capítulo pudemos observar a evolução da ferramenta de identificação molecular de ictioplâncton via DNA barcoding e, ainda, a eficiência dessa ferramenta em relação à identificação taxonômica. Mostramos o estado da arte dos estudos que utilizam DNA barcoding para identificar ovos e larvas de peixes em diferentes ambientes, além de evidenciar quais estudos utilizaram o DNA metabarcoding para identificação de ictioplâncton. Considerando os dados do segundo capítulo, fica evidente que a técnica de levantamento da composição de ictioplâncton por DNA metabarcoding é extremamente eficiente, e a eficiência pode ser corroborada quando comparado com levantamentos tradicionais de indivíduos adultos. Os dados apresentados por este trabalho trazem novas informações sobre quais espécies utilizam o RBSH como área de desova e desenvolvimento, além de inventariar quais espécies apresentam ocorrência nessa área. Com relação ao RBSH, o quantitativo de espécies levantadas que desovam na área, tanto residentes como especialmente os migradores de longa distância, reforçam a necessidade de se estender a área de proteção permanente ao perímetro aquático, visto que esta se trata de uma área de "berçário", sendo essencial para preservação da biodiversidade ictiofaunística local.

REFERÊNCIAS

AGOSTINHO A. A. et al. **Migratory Fishes of South America.** 2003. doi: https://doi.org/10.1596/1-5525-0114-0.

AGOSTINHO A. A.; GOMES L. C.; PELICICE F. M. Ecologia e Manejo de Recursos Pesqueiros em Reservatórios do Brasil. Uem. 2007:501.

AGOSTINHO, A. A. et al. Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. **Fisheries Research**, v. 173, p. 26-36, 2016.

AGOSTINHO, A. A., et al. **Biodiversity in the high Paraná River Floodplain.** In. B. GOPAL, WJ JUNK & JA DAVIS. Biodiversity in wetlands: assessment, function and conservation. 2000.

AGOSTINHO, A. A., et al. Estratificación espacial y comportamiento de *Prochilodus scrofa* em distintas fases del ciclo de vida, em la planície de inundación del alto rio Paraná y embalse de Itaipu, Paraná, Brasil. ver. **d'Hydrobiol. Trop.**, v.26, n 1, p.79-90, 1993.

AGOSTINHO, A. A., et al. **Fish Assemblages.** In: THOMAZ, S.M.; AGOSTINHO, A.A.; HAHN, N.S. (Ed.). The Upper Paraná River and its floodplain: physical aspects, ecology and conservation. Leiden: Backhuys Publishers, 2004. chap.10, p.223-246.

AGOSTINHO, A. A.; JÚLIO JR., H. F. Peixes da bacia do alto rio Paraná. In: Estudos ecológicos de comunidades de peixes tropicais. R. H. Lowe-McConnell (ed.). Edusp, São Paulo. pp.374-400. 1999.

AHLSTROM E. H.; MOSER H. G. Eggs and larvae of fishes and their role in systematic investigations in fisheries. **Rev Des Trav l'Institut Des Pêches Marit.** 1976; 40(3–4):379–98.

ALMEIDA F. S. et al. DNA barcoding as a useful tool for identifying non-native species of freshwater ichthyoplankton in the neotropics. **Hydrobiologia.** 2018; 817(1):111–9. doi: https://doi.org/10.1007/s10750-017-3443-5.

ARAUJO-LIMA C. Distribuição espacial e temporal de larvas de Characiformes em um sector do rio Amazonas, próximo a Manaus, AM. 1984:84.

ARAUJO-LIMA C. et al. Diel variation of larval fish abundance in the Amazon and Rio Negro. **Brazilian J Biol.** 2001; 61(3):357–62. doi: https://doi.org/10.1590/S1519-69842001000300003.

ARDURA A. et al. DNA barcoding for conservation and management of Amazonian commercial fish. **Biol Conserv.** 2010; 143(6):1438–43. doi: https://doi.org/10.1016/j.biocon.2010.03.019.

AVISE J. C. Molecular markers, natural history and evolution. Chapman & Hall, New York; 1994.

AVISE J. C. Systematic value of electrophoretic data. **Syst Biol.** 1974; 23(4):465–81. doi: https://doi.org/10.1093/sysbio/23.4.465.

AZMIR I. A. et al. DNA barcoding analysis of larval fishes in Peninsular Malaysia. J Environ Biol. 2020; 41(5(SI)):1295–308. doi: https://doi.org/10.22438/jeb/41/5(SI)/MS_23.

BARTLETT S. E.; DAVIDSON W. S. FINS (forensically informative nucleotide sequencing): A procedure for identifying the animal origin of biological specimens. **Biotechniques.** 1992; 12(3):408–11.

BARTLETT S. E.; DAVIDSON W. S. Identification of *Thunnus tuna* species by the Polymerase Chain Reaction and Direct Sequence Analysis of their Mitochondrial Cytochrome b Genes. **Can J Fish Aquat Sci.** 1991; 48(2):309–17. doi: https://doi.org/10.1139/f91-043.

BARZOTTO E. et al. Larvae of migratory fish (Teleostei: Ostariophysi) in the lotic remnant of the Paraná River in Brazil. **Zool.** 2015; 32(4):270–80. doi: https://doi.org/10.1590/S1984-46702015000400002.

BAUMGARTNER G. et al. Fish larvae from the upper Paraná River: Do abiotic factors affect larval density?. **Neotrop Ichthyol.** 2008; 6(4):551–8. doi: https://doi.org/10.1590/s1679-62252008000400002.

BAUMGARTNER G. et al. Identification of spawning sites and natural nurseries of fishes in the upper Paraná River, Brazil. **Environ Biol Fishes.** 2004; 71(2):115–25. doi: https://doi.org/10.1007/s10641-004-0098-z.

BAUMGARTNER G. et al. Some aspects of the ecology of fish larvae in the floodplain of the

high Paraná River, Brazil. **Rev Bras Zool.** 1997; 14(3):551–63. doi: https://doi.org/10.1590/s0101-81751997000300005.

BECKER R. A. et al. DNA barcoding and morphological identification of neotropical ichthyoplankton from the Upper Paraná and São Francisco. **J Fish Biol.** 2015; 87(1):159–68. doi: https://doi.org/10.1111/jfb.12707.

BENEDITO CECILIO E. et al. Colonização ictiofaunística do Reservatório de Itaipu e áreas adjacentes. **Rev Bras Zool.** 1997; 14(1):1–14. doi: https://doi.org/10.1590/s0101-81751997000100001.

BIALETZKI A. et al. Caracterização morfológica e distribuição temporal de larvas e juvenis de *Apareiodon affinis* (Steindachner) (Osteichthyes, Parodontidae) no alto rio Paraná, Paraná. **Revista Brasileira de Zoologia**, 15, 1037-1047. 1998.

BIALETZKI A. et al. Drift of ichthyoplankton in two channels of the Paraná River, between Paraná and Mato Grosso do Sul states, Brazil. **Brazilian Arch Biol Technol.** 1999; 42(1). doi: https://doi.org/10.1590/s1516-89131999000100008.

BIALETZKI A. et al. Eggs and larvae of the "curvina" *Plagioscion squamosissimus* (Heckel, 1840) (Osteichthyes, Sciaenidae) in the Baía River, Mato Grosso do Sul State, Brazil. J
Plankton Res. 2004; 26(11):1327–36. doi: https://doi.org/10.1093/plankt/fbh123.

BIALETZKI A. et al. Larval fish assemblage in the Baía River (Mato Grosso do Sul State, Brazil): Temporal and spatial patterns. **Environ Biol Fishes.** 2005; 73(1):37–47. doi: https://doi.org/10.1007/s10641-004-3795-3.

BINGPENG X. et al. Dna barcoding for identification of fish species in the taiwan strait. **PLoS One.** 2018; 13(6):e0198109. doi: https://doi.org/10.1371/journal.pone.0198109.

BLACKBURN, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. **Plos Biology**, 12(5), e1001850. 2014. DOI: 10.1371/journal.pbio.1001850

BOLD. The Barcode of Life Data System. 2022.

http://www.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxid=77 (accessed January 28, 2022).

BOORE J. L. Animal mitochondrial genomes. Nucleic Acids Res. 1999; 27(8):1767–80. doi: https://doi.org/10.1093/nar/27.8.1767.

BRANDÃO H. et al. Ichthyofauna of Santa Helena Relevant Ecological Interest Area (REIA), Paraná State, Brazil. Biota Neotropica (*in press*).

BRIÑOCCOLI Y. F.; GARRIDO G. G.; ALVAREZ A. Dna barcoding identifies three species of croakers (Pisces, sciaenidae) in the ichthyoplankton of the high Paraná river. **An Acad Bras Cienc.** 2020; 92(1):1–14. doi: https://doi.org/10.1590/0001-3765202020180783.

BRITSKI, H. A.; GARAVELLO, J. C. Família Anostomidae. Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro: Museu Nacional, 23-27. 2007.

BRITSKI, H. A.; SILIMON, K. Z. S.; LOPES, B. S. Peixes do Pantanal: manual de identificação. 2. ed. Brasília, DF: Embrapa Informação Tecnológica. 2007.

BROWN W. M.; GEORGE M.; WILSON A. C. Rapid evolution of animal mitochondrial DNA. **Proc Natl Acad Sci U S A.** 1979; 76(4):1967–71. doi: https://doi.org/10.1073/pnas.76.4.1967.

BURGHART S. E. et al. Disparity between planktonic fish egg and larval communities as indicated by DNA barcoding. **Mar Ecol Prog Ser.** 2014; 503(Hare 2005):195–204. doi: https://doi.org/10.3354/meps10752.

CAMACHO-GASTÉLUM R. et al. Molecular identification and morphological description of *Micropogonias megalops*, *Cynoscion othonopterus*, *C. reticulatus* and *Menticirrhus nasus* larvae, collected in the upper Gulf of California during Summer 2012. **Mitochondrial DNA Part A DNA Mapping, Seq Anal.** 2017; 28(3):416–23. doi: https://doi.org/10.3109/19401736.2015.1136302.

CAMPAGNA A. F. et al. Dimethoate 40% organosphosphorous pesticide toxicity in *Prochilodus lineatus* (Prochilodontidae, Characiformes) eggs and larvae. **Brazilian J Biol.** 2006; 66(2 B):633–40. doi: https://doi.org/10.1590/S1519-69842006000400007.

CANINO M. F.; PAQUIN M. M.; MATARESE A.C. Molecular identification of *Bathymaster* spp. (Bathymasteridae) larvae in the Gulf of Alaska and eastern Bering Sea. **Mar Biodivers**. 2019; 49(1):539–45. doi: https://doi.org/10.1007/s12526-017-0803-3.

CHEN W. et al. DNA barcoding reveals the temporal community composition of drifting fish eggs in the lower Hongshui River, China. **Ecol Evol.** 2021; 11(16):11507–14. doi: https://doi.org/10.1002/ece3.7943.

CLAYTON D. A.; DODA J. N.; FRIEDBERG E. C. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. **Proc Natl Acad Sci U S A.** 1974; 71(7):2777–81. doi: https://doi.org/10.1073/pnas.71.7.2777.

COLLET A. et al. DNA barcoding post-larvae can improve the knowledge about fish biodiversity: an example from La Reunion, SW Indian Ocean. **Mitochondrial DNA Part A DNA Mapping, Seq Anal.** 2018; 29(6):905–18. doi: https://doi.org/10.1080/24701394.2017.1383406.

CONESA A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. **Bioinformatics (Oxford, England).** 2005; 21(18), 3674-6.

CORRÊA R. N. Distribuição e abundância de ovos e larvas de peixes em três tributários do alto rio uruguai. 2008.

DA COSTA G. O. Aprimoramento de protocolo de DNA metabarcoding para aplicação na identificação de áreas prioritárias à conservação da ictiofauna do rio Mogi-Guaçu. Dissertação. 2021:95.

DAGA V. S. et al. Fish larvae assemblages in two floodplain lakes with different degrees of connection to the paraná river, brazil. **Neotrop Ichthyol.** 2009; 7(3):429–38. doi: https://doi.org/10.1590/s1679-62252009000300010.

DE LIMA M. C. C. et al. Use of DNA barcode in the identification of fish eggs in tributaries of the paranapanema river basin. **Genet Mol Biol.** 2020; 43(3):1–9. doi: https://doi.org/10.1590/1678-4685-gmb-2019-0352.

DUKE E. M.; BURTON R. S. Efficacy of metabarcoding for identification of fish eggs evaluated with mock communities. **Ecol Evol.** 2020; 10(7):3463–76. doi: https://doi.org/10.1002/ece3.6144.

EDGAR R. C. Search and clustering orders of magnitude faster than BLAST. **Bioinformatics.** 2010; 26(19):2460–1. doi: https://doi.org/10.1093/bioinformatics/btq461. FRANTINE-SILVA W. et al. DNA barcoding of freshwater ichthyoplankton in the Neotropics as a tool for ecological monitoring. **Mol Ecol Resour.** 2015; 15(5):1226–37. doi: https://doi.org/10.1111/1755-0998.12385.

GALLARDO, B. et al. Global ecological impacts of invasive species in aquatic ecosystems. **Global Change Biology**, 22(1), 151–163. 2016. DOI: 10.1111/gcb.13004

GALUCH A. V. et al. Desenvolvimento inicial e distribuição temporal de larvas e juvenis de *Bryconamericus stramineus* Eigenmann, 1908 (Osteichthyes, Characidae) na planície alagável do alto rio Paraná, Brasil. **Acta Sci Biol Sci.** 2003; 25(2):335–43. doi: https://doi.org/10.4025/actascibiolsci.v25i2. 2021.

GARCÍA-DÁVILA C. et al. Avances del uso del "barcoding" en la identificación de larvas de bagres (siluriformes) en la amazonia peruana. In: Rodríguez JN, Koo FC, Porto JR, Dávila CRG, editors. **Biol. las Poblaciones Peces Amaz. y Piscic.** Manaus: 2011. p.61–9.

GARCÍA-DÁVILA C. et al. Diversidad de ictioplancton en los ríos Curaray, Ararbela y Napo (Amazoniana Peruana) [Evaluation of ichthyoplankton diversity in high water and low water in the Curaray, Arabela and Napo Rivers (Peruvian Amazon)]. **Folia Amaz.** 2014; 23(1):67–78.

GARCÍA-DÁVILA C. et al. Peixes não-nativos em riachos no Brasil: Estado da arte, lacunas de conhecimento e perspectivas. **Oecologia Australis**, 25(2), 587. 2021. DOI: https://doi.org/10.4257/oeco.2021.2502.21

GREEN M. R.; SAMBROOK J. **Manual, Molecular Cloning:** A Laboratory. 4th ed. Cold Spring 44 Harbor: Cold Spring Harbor Laboratory Press; 2012.

HÄNFLING B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. **Mol Ecol.** 2016; 25(13):3101–19. doi: https://doi.org/10.1111/mec.13660.

HANNER R.; CORTHALS A.; DESSAUER H. C. Salvage of genetically valuable tissues following a freezer failure. **Mol Phylogenet Evol.** 2005; 34(2):452–5. doi: https://doi.org/10.1016/j.ympev.2004.10.008.

HARADA A. E. et al. Monitoring spawning activity in a Southern California marine protected area using molecular identification of fish eggs. **PLoS One.** 2015; 10(8):1–21. doi:

https://doi.org/10.1371/journal.pone.0134647.

HARRISON R. G. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. **Trends Ecol Evol.** 1989; 4(1):6–11. doi: https://doi.org/10.1016/0169-5347(89)90006-2.

HEBERT P. D. N. et al. Biological identifications through DNA barcodes. **Proc R Soc B Biol** Sci. 2003; 270(1512):313–21. doi: https://doi.org/10.1098/rspb.2002.2218.

HEBERT P. D. N.; RATNASINGHAM S. The Barcode of Life Data System BOLD. **Mol Ecol Notes.** 2007; 7(3):355–64. doi: https://doi.org/10.1111/j.1471-8286.2006.01678.x.

HEBERT P. D. N.; RATNASINGHAM S.; WAARD J. R. Barcoding animal life:
Cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B
Biol Sci. 2003; 270(SUPPL. 1):96–9. doi: https://doi.org/10.1098/rsbl.2003.0025.

HEMPEL G. Fish Egg and Larval Surveys: Contributions to a Manual. **FAO Fish Tech.** 1973(Papers 122):1–82.

HERMES-SILVA S. Distribuição espacial e temporal do ictioplâncton no Alto Rio Uruguai. 2003.

HOFMANN T. et al. Egg identification of three economical important fish species using DNA barcoding in comparison to a morphological determination. **J Appl Ichthyol.** 2017; 33(5):925–932. doi: https://doi.org/10.1111/jai.13389.

HOU G. et al. Molecular and Morphological Identification and Seasonal Distribution of Eggs of Four Decapterus Fish Species in the Northern South China Sea: A Key to Conservation of Spawning Ground. **Front Mar Sci.** 2020; 7. doi: https://doi.org/10.3389/fmars.2020.590564.

HUBERT N. et al. Identifying the ichthyoplankton of a coral reef using DNA barcodes. **Mol Ecol Resour.** 2015; 15(1):57–67. doi: https://doi.org/10.1111/1755-0998.12293.

HYDE J. R. et al. Shipboard identification of fish eggs and larvae by multiplex PCR, and description of fertilized eggs of blue marlin, shortbill spearfish, and wahoo. **Mar Ecol Prog Ser.** 2005; 286:269–77. doi: https://doi.org/10.3354/meps286269.

IVANOVA N. V. et al. Universal primer cocktails for fish DNA barcoding. **Mol Ecol Notes.** 2007; 7(4):544–8. doi: https://doi.org/10.1111/j.1471-8286.2007.01748.x.

JENNINGS W. B. et al. Barcoding the Neotropical freshwater fish fauna using a new pair of universal COI primers with a discussion of primer dimers and M13 primer tails. **Genome.** 2019; 62(2):77–83. doi: https://doi.org/10.1139/gen-2018-0145.

JUNK, W. J. et al. Macrohabitat classification of wetlands as a powerful tool for management and protection: The example of the Paraná River floodplain, Brazil. **Ecohydrology & Hydrobiology**, v. 21, n. 3, p. 411-424, 2021.

KERR M. et al. DNA barcoding of fish eggs collected off northwestern Cuba and across the Florida Straits demonstrates egg transport by mesoscale eddies. **Fish Oceanogr.** 2020; 29:340–8. doi: https://doi.org/10.1111/fog.12475.

KIMMERLING N. et al. Quantitative species-level ecology of reef fish larvae via metabarcoding. **Nat Ecol Evol.** 2018; 2(2):306–16. doi: https://doi.org/10.1038/s41559-017-0413-2.

KIPPER D.; BIALETZKI A.; SANTIN M. Composição taxonômica da assembleia de larvas de peixes no reservatório de Rosana, Rio Paranapanema, Brasil. **Biota Neotrop.** 2011; 11(1):421–6.

KLIVER, S. M. Plano de Manejo Área de Relevante Interesse Ecológico Santa Helena ARIE-SH Refúgio Biológico Santa Helena RBSH. Santa Helena. 2010.

KO H. L. et al. Evaluating the Accuracy of Morphological Identification of Larval Fishes by Applying DNA Barcoding. **PLoS One.** 2013; 8(1):3–9. doi: https://doi.org/10.1371/journal.pone.0053451.

LANDI M. et al. DNA barcoding for species assignment: The case of Mediterranean marine fishes. **PLoS One.** 2014; 9(9):1–9. doi: https://doi.org/10.1371/journal.pone.0106135.

LARSON J. H. et al. Genetic analysis shows that morphology alone cannot distinguish asian carp eggs from those of other cyprinid species. **North Am J Fish Manag.** 2016; 36(5):1053–8. doi: https://doi.org/10.1080/02755947.2016.1185057.

LASKER R. Use of fish eggs and larvae in probing some major problems in fisheries and aquaulture. **Am Fish Soc Symp.** 1987; 2:1–16.

LEITE R. G.; DA SILVA J. V. V.; FREITAS C. E. Abundance and distribution of fish larvae in

Catalão Lake and in the confluence of the Solimões and Negro River, Amazon, Brazil. Acta Amaz. 2006; 36(4):557–62. doi: https://doi.org/10.1590/S0044-59672006000400018.

LEWIS L. A. et al. Integrating DNA barcoding of fish eggs into ichthyoplankton monitoring programs. **Fish Bull.** 2016; 114(2):153–65. doi: https://doi.org/10.7755/FB.114.2.3.

LEYVA-CRUZ E. et al. Identifying pelagic fish eggs in the southeast Yucatan Peninsula using DNA barcodes. **Genome.** 2016; 59(12):1117–29. doi: https://doi.org/10.1139/gen-2015-0151.

LIMA M. C. C. DE. Use of DNA barcode in the identification of fish eggs in tributaries of the Paranapanema River basin. **Genet Mol Biol.** 2020; 43(3). doi: https://doi.org/10.1590/1678-4685-gmb-2019-0352.

LOWE-MCCONNELL, R. H. Estudos ecológicos de comunidades de peixes tropicais. Translation of A. E. A. M. VAZZOLER; A. A. AGOSTINHO; P. CUNNIGHAN. São Paulo. Ed. da Universidade de São Paulo. Original title: Ecological studies in tropical fish communities, 535p. 1999.

MAGALHÃES, A. L. B. et al. All the colors of the world: biotic homogenizationdifferentiation dynamics of freshwater fish communities on demand of the Brazilian aquarium trade. **Hydrobiologia**, 847, 3897–3915. 2020. DOI: 10.1007/s10750-020-04307-w

MAGALHÃES, A. L. B. First record of lernaeosis in a native fish species from a natural environment in Minas Gerais state, Brazil. **Pan-American Journal of Aquatic Sciences**, 1(8), 1–10. 2006.

MAGGIA M. E. et al. DNA metabarcoding of amazonian ichthyoplankton swarms. **PLoS One.** 2017; 12(1):1–14. doi: https://doi.org/10.1371/journal.pone.0170009.

MARIAC C. et al. Metabarcoding by capture using a single COI probe (MCSP) to identify and quantify fish species in ichthyoplankton swarms. **PLoS One.** 2018; 13(9):1–15. doi: https://doi.org/10.1371/journal.pone.0202976.

MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads. **EMBnetJournal.** 2011; 17(1):10–2. doi: https://doi.org/10.14806/ej.17.1.200.

MATARESE A. C. et al. Early larvae of *Zesticelus profundorum* (family Cottidae) identified using DNA barcoding. **Ichthyol Res.** 2011; 58(2):170–4. doi: https://doi.org/10.1007/s10228-

010-0198-7.

MATEOS-RIVERA A. et al. Comparison of visual and molecular taxonomic methods to identify ichthyoplankton in the North Sea. Limnol Oceanogr Methods. 2020; 18(10):599–605. doi: https://doi.org/10.1002/lom3.10387.

MATSUURA Y. A study of the life history of Brazilian sardine, *Sardinella brasiliensis*: IV. Distribution and abundance of sardine larvae. **Bol Do Inst Ocean.** 1977; 26(2):219–47. doi: https://doi.org/10.1590/s0373-55241977000200002.

MATSUURA Y. A study of the life history of Brazilian sardine, *Sardinella brasiliensis*: II. spawning in 1970 and 1971. **Bol Do Inst Ocean.** 1975; 24(0):01–16. doi: https://doi.org/10.1590/s0373-55241975000100001.

MCALLISTER D. E.; HAMILTON A. L.; HARVEY B. Global freshwater biodiversity: striving for the integrity of freshwater ecosystems. vol. 11. Ottawa, ON, CA: Sea wind: **bulletin of Ocean Voice International;** 1997.

MEYER C. P.; PAULAY G. DNA barcoding: Error rates based on comprehensive sampling. **PLoS Biol.** 2005; 3(12):1–10. doi: https://doi.org/10.1371/journal.pbio.0030422.

MILLER B. S.; KENDALL A. W. Early Life History of Marine Fishes. 1st ed. Berkeley: University of California Press; 2009.

MIRANDA-CHUMACERO G. et al. Threatened fish spawning area revealed by specific metabarcoding identification of eggs and larvae in the Beni River, upper Amazon. **Glob Ecol Conserv.** 2020; 24. doi: https://doi.org/10.1016/j.gecco.2020.e01309.

MOURA T. et al. Molecular barcoding of north-east Atlantic deep-water sharks: Species identification and application to fisheries management and conservation. **Mar Freshw Res.** 2008; 59(3):214–23. doi: https://doi.org/10.1071/MF07192.

NAKATANI K. Estudo do ictioplâncton no reservatório de Itaipu (rio Paraná - Brasil): levantamento das áreas de desova.

NAKATANI K. et al. **Ovos e larvas de peixes de água doce:** desenvolvimento e manual de identificação. 1st ed. Maringá: Eduem; 2001.

NAKATANI K.; BAUMGARTNER G.; BAUMGARTNER M. Do S. T. Larval development

of *Plagioscion squamosissimus* (heckel) (perciformes, sciaenidae) of itaipu reservoir (Parana River, Brazil). **Revta Bras ZooI**. 1997; 14(1):35–44.

NAKATANI K.; BAUMGARTNER G.; LATINI J. D. Morphological description of larvae of the Mapará *Hypophthalmus edentatus* (Spix) (Osteichthyes, Hypophthalmidae) in the Itaipu reservoir (Parana River, Brazil). **Rev Bras Zool.** 1998; 15(3):687–96. doi: https://doi.org/10.1590/s0101-81751998000300013.

NASCIMENTO F. L.; NAKATANI K. Relações entre fatores ambientais e a distribuição de ovos e larvas de peixes na sub-bacia do rio Ivinhema, Estado de Mato Grosso do Sul, Brasil. Acta Sci - Biol Sci. 2006; 28(2):117–22. doi:

https://doi.org/10.4025/actascibiolsci.v28i2.1027.

NOBILE A. B. et al. DNA metabarcoding of Neotropical ichthyoplankton: Enabling high accuracy with lower cost. **Metabarcoding and Metagenomics.** 2019; 3:69–76. doi: https://doi.org/10.3897/mbmg.3.35060.

NUNES, M. U. S.; HALLWASS, G.; SILVANO, R. A. M. Fishers' local ecological knowledge indicate migration patterns of tropical freshwater fish in an Amazonian River. **Hydrobiologia**, v. 833, n. 1, p. 197-215, 2019. ISSN 0018-8158.

ORSI M. L. et al. **Ovos, larvas e juvenis dos peixes da Bacia do Rio Paranapanema uma avaliação para a conservação.** Assis - SP: Triunfal Gráfica & Editora; 2016.

ORTIZ M DE F. Validação do DNA Barcode como identificador de espécies: um estudo de ampla amostragem com o gênero Pseudoplatystoma (Siluriformes, Pimelodidae) na Amazônia.

OTA, R.R. et al. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: Revised, annotated and updated. **Neotrop. Ichthyol.** 16(2):1-111. 2018.

PANDEY P. K. et al. DNA barcoding and phylogenetics of freshwater fish fauna of Ranganadi River, Arunachal Pradesh. **Gene.** 2020; 754(April):144860. doi: https://doi.org/10.1016/j.gene.2020.144860.

PAPPALARDO A. M. et al. DNA barcoding and COI sequence variation in Mediterranean lanternfishes larvae. **Hydrobiologia.** 2015; 749(1):155–67. doi: https://doi.org/10.1007/s10750-014-2161-5.

PAVAN-KUMAR A.; GIREESH-BABU P.; LAKRA W. S. DNA Metabacoding: a new approach for rapid biodiversity assessment. **J Cell Sci Mol Biol.** 2015; 2(1):111.

PEGG G. G. et al. MtDNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. **Sci Mar.** 2006; 70(SUPPL. 2):7–12. doi: https://doi.org/10.3989/scimar.2006.70s27.

PELICICE, F. M. et al. Human impacts and the loss of neotropical freshwater fish diversity. Neotropical Ichthyology, v. 19, 2021.

Pelicice, F. M., Agostinho, A. A., & Thomaz, S. M. (2005). Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecologica, 27(1), 9-16.

PETRY, A. C. et al. Assembléias de Peixes das Lagoas. Publ. UEPG Ci. Biol. Saúde, Ponta Grossa, 12 (1): 39-46, mar. 2006. Sazonalmente isoladas da Planície de Inundação do Alto Rio Paraná. Maringá, PR. Universidade Estadual de Maringá, Nupélia/PEA. 2002.

PULIDO J. M. M. Identificación morfológica y molecular de especies de larvas de peces del Golfo de México.

RAM R. et al. Identification of Fish and Shellfish Larvae from Mangroves Using DNA Barcodes. **J Coast Res.** 2020; 36(5):1106–10. doi: https://doi.org/10.2112/JCOASTRES-D-19-00172.1.

RATCLIFFE F. C. et al. Quantitative assessment of fish larvae community composition in spawning areas using metabarcoding of bulk samples. **Ecol Appl.** 2021; 31(3):1–10. doi: https://doi.org/10.1002/eap.2284.

RATNASINGHAM S.; HEBERT P. D. N. A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN). **System. PLoS One.** 2013; 8(7). doi: https://doi.org/10.1371/journal.pone.0066213.

RAWLINGS T. A.; COLLINS T. M. A Major Mitochondrial Gene Rearrangement Among Closely Related Species. **Mol Biol Evol.** 2001; 18(8):1604–9.

RÉ P. M. A. B. Ictioplâncton estuarino da Península Ibérica - Guia de identificação dos ovos e estados larvares planctónicos. Lisboa: 1999.

REIS, R. E. Check list of the freshwater fishes of South and Central America. Edipucrs. 2003.

REIS, R. E. et al. Fish biodiversity and conservation in South America. Journal of fish biology, v. 89, n. 1, p. 12-47, 2016.

REYNALTE-TATAJE D. A. et al. Temporal distribution of ichthyoplankton in the Ivinhema River (Mato Grosso do Sul State/ Brazil): Influence of environmental variables. **Neotrop Ichthyol.** 2011; 9(2):427–36. doi: https://doi.org/10.1590/S1679-62252011005000017.

REYNALTE-TATAJE D. A.; AGOSTINHO A. A.; BIALETZKI A. Temporal and spatial distributions of the fish larval assemblages of the Ivinheima River sub-basin (Brazil). **Environ Biol Fishes.** 2013; 96(7):811–22. doi: https://doi.org/10.1007/s10641-012-0073-7.

RIBEIRO FILHO, R. A. et al. Itaipu reservoir limnology: eutrophication degree and the horizontal distribution of its limnological variables. **Braz. J. Biol.** [online]. 2011, vol.71, n.4 [cited 2022-05-17], pp.889-902. Available from:

<http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842011000500010&lng=en&nrm=iso>. ISSN 1519-6984. https://doi.org/10.1590/S1519-69842011000500010.

RICHARDSON D. E. et al. High-throughput species identification: From DNA isolation to bioinformatics: Technical article. **Mol Ecol Notes.** 2007; 7(2):199–207. doi: https://doi.org/10.1111/j.1471-8286.2006.01620.x.

ROCHA P. S. et al. Sediment-contact fish embryo toxicity assay with *Danio rerio* to assess particle-bound pollutants in the Tietê River Basin (São Paulo, Brazil). **Ecotoxicol Environ Saf.** 2011; 74(7):1951–9. doi: https://doi.org/10.1016/j.ecoenv.2011.07.009.

RODRIGUES R. V. et al. Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey *Odontesthes argentinensis* larvae. **Sci Total Environ.** 2010; 408(9):2054–9. doi: https://doi.org/10.1016/j.scitotenv.2010.01.063.

RODRIGUES T. et al. Ocorrência e identificação de larvas de istiophoridae e ovos de xiphiidae na costa sudeste Brasileira. **Bol Do Inst Pesca.** 2017; 43(1):78–86. doi: https://doi.org/10.20950/1678-2305.2017v43n1p78.

SANCHES P. V. et al. Flow regulation by Dams affecting ichthyoplankton: The case of the

Porto Primavera Dam, Paraná River, Brazil. **River Res Appl.** 2006; 22(5):555–65. doi: https://doi.org/10.1002/rra.922.

SANTOS, G. M. DOS. Caracterização, hábitos alimentares e reprodutivos de quatro espécies de "aracus" e considerações ecológicas sobre o grupo no lago Janauacá-AM. (Osteichthyes, Characoidei, Anostomidae). Acta Amazonica [online]. 1982, v. 12, n. 4 [Acessado 17 maio 2022], pp. 713-739. Disponível em: https://doi.org/10.1590/1809-43921982124713>. ISSN 1809-4392. https://doi.org/10.1590/1809-43921982124713>.

SHIBATTA, O. A. et al. Diversidade e distribuição de peixes na bacia do rio Tibagi. A bacia do rio Tibagi, 1. 2002.

SOUZA FILHO, E. E.; STEVAUX, J. C. Geologia e geomorfologia fluvial. In: FINEP. Estudos ambientais da planície de inundação do Rio Paraná, no trecho compreendido entre a foz do Rio Paranapanema e o Reservatório de Itaipu: Relatório final de projeto. Maringá: FUEM-Nupelia; São Paulo: FINEP. p. 205-235. 1995.

SUZUKI F. M.; POMPEU P. S. Influence of abiotic factors on ichthyoplankton occurrence in stretches with and without dams in the upper Grande River basin, south-eastern Brazil. **Fish Manag Ecol.** 2016; 23(2):99–108. doi: https://doi.org/10.1111/fme.12159.

TABERLET P. et al. Towards next-generation biodiversity assessment using DNA metabarcoding - TABERLET - 2012 - Molecular Ecology - Wiley Online Library. Mol Ecol. 2012; 21:2045–50.

THORNTON, K. W. Perspectives on reservoir limnology. Pp. 1-13. In: THORNTON, K.W., B. L. KIMMEL & F. E. PAYNE (Eds.). Reservoir limnology: ecological perspectives.New York, John Wiley & Sons, 246p. 1990.

VALDEZ-MORENO M. et al. Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: Potential in fisheries management. **Mar Freshw Res.** 2010; 61(6):665–71. doi: https://doi.org/10.1071/MF09222.

VAZZOLER A. E. A. M. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá: EDUEM, 1996. VITULE, J. R. S. Introdução de peixes em ecossistemas continentais brasileiros: revisão, comentários e sugestões de ações contra o inimigo quase invisível. **Neotropical Biology and Conservation**, 4(2), 111–122. 2009.

VITULE, J. R. S.; PRODOCIMO, V. Introdução de espécies não nativas e invasões biológicas. Estudos De Biologia, 34(83). 2012. https://doi.org/10.7213/estud.biol.7335

WARD R. D. et al. DNA barcoding Australia's fish species. **Philos Trans R Soc B Biol Sci.** 2005; 360(1462):1847–57. doi: https://doi.org/10.1098/rstb.2005.1716.

WARD R. D.; HANNER R.; HEBERT P. D. N. The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol. 2009; 74(2):329–56. doi: https://doi.org/10.1111/j.1095-8649.2008.02080.x.

YAMAZAKI N. et al. Evolution of pulmonate gastropod mitochondrial genomes: Comparisons of gene organizations of Euhadra, Cepaea and Albinaria and implications of unusual tRNA secondary structures. **Genetics.** 1997; 145(3):749–58. doi: https://doi.org/10.1093/genetics/145.3.749.

ZANIBONI-FILHO E. Biologia da reprodução do matrinxã, *Brycon cephalus* (Guntther, 1869) (Teleostei: Characidae). 134f. Dissertação (Mestrado) - Instituto Nacional de Pesquisas da Amazônia, Manaus, 1985.

ZHANG J. BIN.; HANNER R. DNA barcoding is a useful tool for the identification of marine fishes from Japan. **Biochem Syst Ecol.** 2011; 39(1):31–42. doi: https://doi.org/10.1016/j.bse.2010.12.017.

ZHANG J. et al. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. **Bioinformatics.** 2014; 30(5):614–20. doi: https://doi.org/10.1093/bioinformatics/btt593.

ZIOBER S. R.; REYNALTE-TATAJE D. A.; ZANIBONI-FILHO E. The importance of a conservation unit in a subtropical basin for fish spawning and growth. **Environ Biol Fishes.** 2015; 98(2):725–37. doi: https://doi.org/10.1007/s10641-014-0307-y.

D 1		Nº orga-		N° <i>reads</i> pós	Pares de bases	Pares de bases pós
Pool	Ovos/Larvas	nismos	IN ^a reaas brutos	filtragem	processados	filtragem
1	1	7	7 207	2,865	1 201 052 hr	1,150,443 bp
1	larvas	/	/,30/	(39.209%)	1,291,053 bp	(89.1%)
2	1	5	(717	4,797	2 207 77(h.	1,973,864 bp
Z	larvas	3	0,/1/	(71.416%)	2,207,776 bp	(89.4%)
2	lamias	51	10 225	1,976	010 022 ha	909.926 hm (99.00/)
3	larvas	54	19,555	(10.220%)	910,023 bp	808,830 bp (88.9%)
4	lamias	74	5.054	4,202	1 024 120 hm	1,732,229 bp
4	larvas	/4	5,954	(70.574%)	1,934,139 op	(89.6%)
5	lamias	4	1 025	1,555	714.060 hz	629.677 hr (90.20/)
3	larvas	4	1,925	(80.779%)	/14,900 bp	038,077 bp (89.3%)
6	lamias	21	° ° 20	3,443	1 555 406 hr	1,387,248 bp
0	larvas	21	8,820	(39.036%)	1,555,400 bp	(89.2%)
7	lomica	16	0 208	2,645	1 108 001 hr	1,068,945 bp
/	laivas	10	9,208	(28.725%)	1,198,001 op	(89.2%)
ø	01/05	2	4 400	3,807	1.740.627 hp	1,561,244 bp
0	0005	2	4,409	(86.346%)	1,749,057 op	(89.2%)
0	01/05	5	6 867	6,104	2 810 476 hp	2,513,329 bp
,	0005	5	0,802	(88.954%)	2,810,470 bp	(89.4%)
10	lomias	45	11 251	2,660	1 221 425 bp	1,094,080 bp
10	laivas	45	11,231	(23.642%)	1,221,425 op	(89.6%)
11	OVOS	2	7 607	6,600	3 037 354 bp	2,715,436 bp
11	0,03	2	7,007	(86.762%)	5,057,554 op	(89.4%)
12	larvas	24				
13	larvas	4	12 718	3,068	1 396 228 bn	1,249,150 bp
15	iui (ub	·	12,710	(24.123%)	1,590,220 op	(89.5%)
14	larvas	8	9 000	3,010	1 354 123 bn	1,206,543 bp
11	iui vub	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(33.444%)	1,55 1,125 0p	(89.1%)
15	larvas	17	10 166	2,754	1 257 693 hn	1,125,519 bp
15	iui vub	17	10,100	(27.090%)	1,237,095 0p	(89.5%)
16	larvas	101	5 338	4,932	2 277 381 hn	2,039,547 bp
10	iai vas	101	5,550	(92.394%)	2,277,301 0p	(89.6%)
17	0708	19	6 547	5,718	2,630,811 bn	2,354,687 bp
1/	0105	17	0,077	(87.338%)	2,000,011 0p	(89.5%)
18	larvas	10	9 300	4,123	1 857 157 bp	1,656,172 bp
io lar	141 7 43	10	2,500	(44.333%)	1,057,157 0р	(89.2%)

Tabela de quantidade de *reads* e pares de bases brutos e filtrados, organizados por *pool*, quantidade de indivíduos e tipos de indivíduos por *pool*.

						97
Pool	Ovos/Larvas	№ orga-	N° <i>reads</i> brutos	Nº <i>reads</i> pós	Pares de bases	Pares de bases pós
		nismos		filtragem	processados	filtragem
19	ovos	25	8.086	7,194	3.316.818 bp	2,971,486 bp
17	0,00	20	0,000	(88.969%)	5,510,010 op	(89.6%)
20	larvas	602	8 235	5,811	2 677 304 bp	2,396,839 bp
20	141 v 45	092	0,235	(70.565%)	2,077,504 0p	(89.5%)
21		2	(570	6,059	2 701 227 h	2,499,189 bp
21	ovos	2	0,370	(92.222%)	2,/91,327 bp	(89.5%)
				4,601	0.101.505.1	1,901,054 bp
22	larvas	14	5,157	(89.219%)	2,121,737 bp	(89.6%)
				2,781		1,134,600 bp
23	larvas	5	8,070	(34.461%)	1,270,185 bp	(89.3%)
24	ovos	22				
				7.747		3.200.700 bp
25	larvas	1526	17,671	(43 840%)	3,574,679 bp	(89.5%)
26	OVOS	74		(15.61070)		(0).570)
20	0703	/ 4		4 097		1 687 680 bp
27	larvas	3	5,406	4,097	1,885,538 bp	(80, 5%)
				(73.780%)		(89.3%)
28	ovos	1	6,652	6,217	2,865,079 bp	2,569,003 bp
				(93.461%)		(89.7%)
29	larvas	2	4,888	3,875	1,783,833 bp	1,594,529 bp
				(79.276%)	-	(89.4%)
30	ovos	41				
31	larvas	67				
32	OVOS	24	7 827	6,814	3 156 832 hn	2,837,527 bp
52	0105	21	7,027	(87.058%)	5,150,052 op	(89.9%)
33	larvas	36				
24	lomion	120	6 744	5,953	2.757.090 hp	2,468,838 bp
54	larvas	129	0,244	(95.340%)	2,737,980 bp	(89.5%)
25		-	5.260	4,274	1 070 410 1	1,766,269 bp
35	ovos	7	5,360	(79.739%)	1,970,412 bp	(89.6%)
36.1	larvas	200				
				4,550		1,877,476 bp
36.2	larvas	48	5,735	(79.337%)	2,098,382 bp	(89.5%)
				5.269		2.170.399 hn
37	ovos	6	5,685	(92,682%)	2,423,749 bp	(89.5%)
				<u>4</u> 199		1.731.384 hn
38	larvas	51	5,032	(83 446%)	1,934,855 bp	(89 5%)
				(0.5.770/0)		(07.370)

		NTO		N TO 7 7	D 1. 1	<u>98</u>
Pool	Ovos/Larvas	N° orga-	N° <i>reads</i> brutos	N° reads pos	Pares de bases	Pares de bases pos
		nismos		filtragem	processados	filtragem
39	ovos	58				
40	larvas	128	19,068	2,051 (10.756%)	947,549 bp	843,379 bp (89.0%)
41	ovos	21	6,834	5,628 (82,353%)	2,589,769 bp	2,317,020 bp (89,5%)
42	larvas	3	8,540	3,657 (42.822%)	1,685,785 bp	(57.876) 1,508,887 bp (89.5%)
43	ovos	3	6,214	5,787 (93.128%)	2,662,371 bp	2,379,864 bp (89.4%)
44	larvas	25	6,710	4,475 (66.692%)	2,060,474 bp	1,842,162 bp (89.4%)
45	larvas	24	5,230	4,515 (86.329%)	2,079,378 bp	1,861,016 bp (89.5%)
46	larvas	19				
47	larvas	8	4,450	3,480 (78.202%)	1,603,038 bp	1,440,163 bp (89.8%)
48	larvas	19	5,788	5,045 (87.163%)	2,324,978 bp	2,081,675 bp (89.5%)
49	larvas	9	6,058	5,483 (90.508%)	2,527,436 bp	2,262,487 bp (89.5%)
50	larvas	17	3,044	2,368 (77.792%)	1,089,438 bp	973,346 bp (89.3%)
51	larvas	19	5,974	4,987 (83.478%)	2,301,051 bp	2,059,263 bp (89.5%)
52	larvas	64	4,888	4,082 (83.511%)	1,880,746 bp	1,682,103 bp (89.4%)
53	larvas	324	13,701	8,120 (59.266%)	3,741,526 bp	3,345,232 bp (89.4%)
54	ovos	8	7,574	6,849 (90.428%)	3,177,240 bp	2,860,269 bp (90.0%)
55	larvas	17	6,031	5,180 (85.890%)	2,383,053 bp	2,131,248 bp (89.4%)
56	larvas	16	12,569	8,097 (64.420%)	3,729,634 bp	3,340,811 bp (89.6%)
57	ovos	15	5,198	4,808 (92.497%)	2,214,567 bp	1,978,709 bp (89.3%)

		Nº orga		Nº roads nós	Paras da hasas	99 Paros do basos pós
Pool	Ovos/Larvas	nismos	N° <i>reads</i> brutos	filtragem	processados	filtragem
				3 642	Freedomatics	1 501 969 bp
58	larvas	6	4,983	(73.089%)	1,674,729 bp	(89.7%)
				2.837		1.170.876 bp
59	ovos	2	11,748	(24.149%)	1,308,908 bp	(89.5%)
				5,045		2,081,220 bp
60	larvas	3	5,337	(94.529%)	2,325,898 bp	(89.5%)
				3,672		1,531,141 bp
61	larvas	2	10,100	(36.356%)	1,703,076 bp	(89.9%)
(2)		-		4,229	1 0 45 50 1 1	1,741,690 bp
62	larvas	5	5,755	(73.484%)	1,947,531 bp	(89.4%)
(2)	1	402	10 500	7,366	2 407 271 1	3,055,498 bp
63	larvas	492	12,583	(58.539%)	3,407,271 bp	(89.7%)
64	lamias	164	12 496	6,319	2.016.160 hr	2,611,267 bp
04	larvas	104	12,480	(50.609%)	2,910,100 bp	(89.5%)
65	larvas	30				
66	larvas	147	7 800	4,961	2 284 841 hn	2,041,457 bp
00	00 laivas	177	7,000	(63.603%)	2,204,041 0p	(89.3%)
67	larvas	140	8 012	4,954	2 266 241 hn	2,026,009 bp
07	lui vus	140	0,012	(61.832%)	2,200,241 0p	(89.4%)
68	ovos	30				
69	larvas	3	6.060	4,704	2.166.539 bp	1,948,115 bp
		-	.,	(77.624%)	_,,	(89.9%)
70	larvas	24	4,680	3,833	1,766,720 bp	1,580,764 bp
				(81.902%)		(89.5%)
71	larvas	15	4,579	4,285	1,973,030 bp	1,769,148 bp
				(93.579%)		(89.7%)
72	larvas	7	6,391	4,928	2,265,736 bp	2,023,810 bp
				(77.108%)		(89.3%)
73	larvas	57	5,679	5,263	2,421,145 bp	2,173,391 bp
				(92.675%)		(89.8%)
74	larvas	69	9,716	4,906	2,252,561 bp	2,010,804 bp
				(50.494%)		(89.3%)
75	larvas	97	7,035	J,8/9	2,700,284 bp	2,410,513 bp
				(03.308%) 1 395		(09.3%)
76 la	larvas	13	5,171	4,383	2,021,920 bp	1,003,338 bp
				(84.800%)		(89.2%)

		Nº orga-		Nº <i>reads</i> nós	Pares de bases	10 Pares de bases nós
Pool	Ovos/Larvas	nismos	N° <i>reads</i> brutos	filtragem	processados	filtragem
				4,538	1	1.869.287 bp
77	larvas	6	5,429	(83.588%)	2,089,847 bp	(89.4%)
				8,593		3,540,182 bp
78	larvas	154	17,004	(50.535%)	3,958,307 bp	(89.4%)
79	larvas	33				
0.0	1	4	5 540	4,088	1 000 0171	1,679,304 bp
80	larvas	4	5,540	(73.791%)	1,880,017 bp	(89.3%)
0.1	1	2	11.574	2,821	1 207 150 1	1,163,928 bp
81	larvas	3	11,574	(24.374%)	1,297,150 bp	(89.7%)
0 7	lamon	10	6 660	4,886	2 261 201 hr	2,030,496 bp
82	larvas	12	0,000	(73.363%)	2,201,501 bp	(89.8%)
02	ovor	1	6 075	5,273	2,420,100 hp	2,182,095 bp
85	0005	1	0,075	(86.798%)	2,430,108 bp	(89.8%)
84	larvas	71	5 650	5,321	2 451 381 bn	2,196,293 bp
07	141 v 45	/ 1	5,050	(94.177%)	2,431,361 0p	(89.6%)
85	larvas	234	10 177	5,980	2 758 867 hn	2,468,819 bp
05	141 V 43	254	10,177	(58.760%)	2,750,007 0p	(89.5%)
86	larvas	14	5 479	3,729	1 713 887 bn	1,532,135 bp
00	iui vus	11	5,175	(68.060%)	1,710,007 0p	(89.4%)
87	larvas	1	10.384	5,185	2.391.733 bp	2,144,051 bp
07	iui vus	Ĩ	10,001	(49.933%)	2,591,705 op	(89.6%)
88	larvas	15	7.779	7,171	3.317.024 bp	2,966,356 bp
00		10	1,112	(92.184%)	<i>0,017,0</i> <u>1</u> 0p	(89.4%)
89	ovos	2	5.854	5,077	2.348.347 bp	2,109,283 bp
			- ,	(86.727%)	_;;;;;;;;;;;;	(89.8%)
90	ovos	8	7,547	6,051	2,778,440 bp	2,484,742 bp
				(80.178%)		(89.4%)
91	ovos	1	6,957	6,046	2,788,556 bp	2,502,599 bp
				(86.905%)		(89.7%)
92	ovos	1	6,335	5,137	2,365,476 bp	2,123,053 bp
				(81.089%)		(89.8%)
93	ovos	3	7,369	5,847	2,683,718 bp	2,398,894 bp
				(79.346%)	-	(89.4%)
94	ovos	3	6,423	5,386	2,475,386 bp	2,212,723 bp
0.5		-		(83.855%)		(89.4%)
95	ovos	6				

Fonte: Autoria própria (2022)

Tabela de identificação das sequencias obtidas a partir de ovos e larvas de peixes coletados no entorno do Refúgio Biológico de Santa Helena – PR, na área de influência do La-

Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
01_contig_2_consensus_sequence	Apareiodon affinis	93.97	P01	larvas
01_contig_7_consensus_sequence	Apareiodon affinis	97.62	P01	larvas
01_contig_8_consensus_sequence	Apareiodon affinis	92.99	P01	larvas
01_contig_13_consensus_sequence	Apareiodon affinis	90.68	P01	larvas
01_contig_14_consensus_sequence	Apareiodon affinis	91.78	P01	larvas
01_contig_16_consensus_sequence	Apareiodon affinis	96.53	P01	larvas
01_contig_18_consensus_sequence	Apareiodon affinis	96.27	P01	larvas
01_contig_19_consensus_sequence	Apareiodon affinis	91.19	P01	larvas
01_contig_22_consensus_sequence	Apareiodon affinis	93.06	P01	larvas
01_contig_27_consensus_sequence	Apareiodon affinis	96.61	P01	larvas
01_contig_31_consensus_sequence	Apareiodon affinis	96.21	P01	larvas
01_contig_34_consensus_sequence	Apareiodon affinis	96.0	P01	larvas
01_contig_40_consensus_sequence	Apareiodon affinis	92.48	P01	larvas
01_contig_52_consensus_sequence	Apareiodon affinis	90.51	P01	larvas
01_contig_56_consensus_sequence	Apareiodon affinis	97.86	P01	larvas
02_contig_01_consensus_sequence	Apareiodon affinis	93.17	P02	larvas
02_contig_2_consensus_sequence	Apareiodon affinis	91.91	P02	larvas
02_contig_3_consensus_sequence	Apareiodon affinis	97.5	P02	larvas
02_contig_7_consensus_sequence	Apareiodon affinis	94.86	P02	larvas
02_contig_10_consensus_sequence	Apareiodon affinis	93.2	P02	larvas
02_contig_13_consensus_sequence	Apareiodon affinis	96.56	P02	larvas
02_contig_14_consensus_sequence	Apareiodon affinis	97.24	P02	larvas
02_contig_15_consensus_sequence	Apareiodon affinis	93.99	P02	larvas
02_contig20_consensus_sequence	Apareiodon affinis	95.51	P02	larvas
02_contig23_consensus_sequence	Apareiodon affinis	97.25	P02	larvas
02_contig_25_consensus_sequence	Apareiodon affinis	93.09	P02	larvas
02_contig_29_consensus_sequence	Apareiodon affinis	97.4	P02	larvas
02_contig_31_consensus_sequence	Apareiodon affinis	94.86	P02	larvas
02_contig_32_consensus_sequence	Apareiodon affinis	91.94	P02	larvas
02_contig_33_consensus_sequence	Apareiodon affinis	96.18	P02	larvas
02_contig_36_consensus_sequence	Apareiodon affinis	98.07	P02	larvas
02_contig_39_consensus_sequence	Apareiodon affinis	96.16	P02	larvas
02_contig_40_consensus_sequence	Apareiodon affinis	97.39	P02	larvas
02_contig_47_consensus_sequence	Apareiodon affinis	94.43	P02	larvas
02_contig_53_consensus_sequence	Apareiodon affinis	97.66	P02	larvas
02_contig_54_consensus_sequence	Apareiodon affinis	96.98	P02	larvas
02_contig_61_consensus_sequence	Apareiodon affinis	83.18	P02	larvas
02_contig_85_consensus_sequence	Astyanax lacustris	81.86	P02	larvas
02_contig_88_consensus_sequence	Apareiodon affinis	84.42	P02	larvas
02_contig_89_consensus_sequence	Piabina argentea	83.96	P02	larvas

go de Itaipu.

				103	
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva	
03_contig_1_consensus_sequence	Apareiodon affinis	92.55	P03	larvas	
03_contig_3_consensus_sequence	Apareiodon affinis	91.52	P03	larvas	
03_contig_4_consensus_sequence	Apareiodon affinis	97.49	P03	larvas	
03_contig_6_consensus_sequence	Apareiodon affinis	97.72	P03	larvas	
03_contig_10_consensus_sequence	Apareiodon affinis	96.0	P03	larvas	
03_contig_12_consensus_sequence	Apareiodon affinis	91.83	P03	larvas	
03_contig_14_consensus_sequence	Apareiodon affinis	95.44	P03	larvas	
03_contig_15_consensus_sequence	Apareiodon affinis	93.11	P03	larvas	
03_contig_16_consensus_sequence	Apareiodon affinis	95.9	P03	larvas	
03_contig_17_consensus_sequence	Apareiodon affinis	96.94	P03	larvas	
03_contig_18_consensus_sequence	Apareiodon affinis	96.69	P03	larvas	
03_contig_22_consensus_sequence	Apareiodon affinis	95.88	P03	larvas	
03_contig_23_consensus_sequence	Apareiodon affinis	95.21	P03	larvas	
03_contig_24_consensus_sequence	Apareiodon affinis	93.9	P03	larvas	
03_contig_25_consensus_sequence	Apareiodon affinis	91.22	P03	larvas	
03 contig 30 consensus sequence	Apareiodon affinis	90.85	P03	larvas	
03 contig 31 consensus sequence	Apareiodon affinis	93.51	P03	larvas	
03 contig 32 consensus sequence	Apareiodon affinis	92.94	P03	larvas	
03 contig 39 consensus sequence	Roeboides descalvadensis	84.05	P03	larvas	
04 contig 1 consensus sequence	Apareiodon affinis	94.56	P04	larvas	
04 contig 2 consensus sequence	Apareiodon affinis	96.24	P04	larvas	
04 contig 4 consensus sequence	Apareiodon affinis	95.03	P04	larvas	
04 contig 5 consensus sequence	Apareiodon affinis	90.5	P04	larvas	
04 contig 6 consensus sequence	Apareiodon affinis	97.97	P04	larvas	
04 contig 7 consensus sequence	Apareiodon affinis	96.75	P04	larvas	
04 contig 10 consensus sequence	Apareiodon affinis	95.43	P04	larvas	
04_contig_11_consensus_sequence	Apareiodon affinis	97.12	P04	larvas	
04_contig_13_consensus_sequence	Apareiodon affinis	92.5	P04	larvas	
04_contig_14_consensus_sequence	Apareiodon affinis	92.75	P04	larvas	
04_contig_17_consensus_sequence	Apareiodon affinis	92.17	P04	larvas	
04_contig_18_consensus_sequence	Apareiodon affinis	97.22	P04	larvas	
04_contig_23_consensus_sequence	Apareiodon affinis	92.6	P04	larvas	
04_contig_24_consensus_sequence	Apareiodon affinis	93.05	P04	larvas	
04_contig_25_consensus_sequence	Apareiodon affinis	90.82	P04	larvas	
04_contig_26_consensus_sequence	Apareiodon affinis	97.82	P04	larvas	
04_contig_29_consensus_sequence	Cyphocharax nagelii	81.82	P04	larvas	
04_contig_30_consensus_sequence	Apareiodon affinis	95.28	P04	larvas	
04_contig_33_consensus_sequence	Apareiodon affinis	97.08	P04	larvas	
04_contig_36_consensus_sequence	Apareiodon affinis	97.35	P04	larvas	
04_contig_40_consensus_sequence	Apareiodon affinis	94.66	P04	larvas	
04_contig_45_consensus_sequence	Apareiodon affinis	97.48	P04	larvas	
04_contig_46_consensus_sequence	Apareiodon affinis	92.73	P04	larvas	
04_contig_49_consensus_sequence	Apareiodon affinis	95.2	P04	larvas	
04 contig 65 consensus sequence	Pyrrhulina australis	89.7	P04	larvas	

				104
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
04_contig_68_consensus_sequence	Plagioscion squamosissimus	82.1	P04	larvas
04_contig_87_consensus_sequence	Astyanax lacustris	83.92	P04	larvas
04_contig_89_consensus_sequence	Hoplias intermedius	81.04	P04	larvas
04_contig_91_consensus_sequence	Hyphessobrycon	83.86	P04	larvas
05_contig_2_consensus_sequence	Apareiodon affinis	92.91	P05	larvas
05_contig_3_consensus_sequence	Apareiodon affinis	97.18	P05	larvas
05_contig_4_consensus_sequence	Apareiodon affinis	98.1	P05	larvas
05_contig_9_consensus_sequence	Apareiodon affinis	95.22	P05	larvas
05_contig_10_consensus_sequence	Apareiodon affinis	95.96	P05	larvas
05_contig_14_consensus_sequence	Apareiodon affinis	92.64	P05	larvas
05_contig_26_consensus_sequence	Apareiodon affinis	94.44	P05	larvas
05_contig_27_consensus_sequence	Apareiodon affinis	97.28	P05	larvas
05_contig_31_consensus_sequence	Apareiodon affinis	97.22	P05	larvas
05_contig_32_consensus_sequence	Apareiodon affinis	94.06	P05	larvas
05_contig_53_consensus_sequence	Plagioscion squamosissimus	81.9	P05	larvas
06_contig_1_consensus_sequence	Apareiodon affinis	98.04	P06	larvas
06_contig_3_consensus_sequence	Apareiodon affinis	97.94	P06	larvas
06_contig_4_consensus_sequence	Apareiodon affinis	93.63	P06	larvas
06_contig_10_consensus_sequence	Apareiodon affinis	96.73	P06	larvas
06_contig_14_consensus_sequence	Apareiodon affinis	94.86	P06	larvas
06_contig_15_consensus_sequence	Apareiodon affinis	94.4	P06	larvas
06_contig_16_consensus_sequence	Apareiodon affinis	93.52	P06	larvas
06_contig_17_consensus_sequence	Apareiodon affinis	97.21	P06	larvas
06_contig_18_consensus_sequence	Apareiodon affinis	98.04	P06	larvas
06_contig_20_consensus_sequence	Apareiodon affinis	93.02	P06	larvas
06_contig_22_consensus_sequence	Apareiodon affinis	94.09	P06	larvas
06_contig_42_consensus_sequence	Apareiodon affinis	97.22	P06	larvas
06 contig 43 consensus sequence	Apareiodon affinis	97.85	P06	larvas
06 contig 47 consensus sequence	Apareiodon affinis	97.22	P06	larvas
06 contig 50 consensus sequence	Apareiodon affinis	97.42	P06	larvas
06 contig 68 consensus sequence	Apareiodon affinis	97.54	P06	larvas
06 contig 69 consensus sequence	Apareiodon affinis	96.58	P06	larvas
06 contig 78 consensus sequence	Apareiodon affinis	96.71	P06	larvas
07 contig 1 consensus sequence	Apareiodon affinis	98.04	P07	larvas
07 contig 2 consensus sequence	Apareiodon affinis	94.79	P07	larvas
07 contig 3 consensus sequence	Apareiodon affinis	93.5	P07	larvas
07 contig 20 consensus sequence	Apareiodon affinis	96.95	P07	larvas
07 contig 54 consensus sequence	Apareiodon affinis	97.28	P07	larvas
07 contig 55 consensus sequence	Apareiodon affinis	97.24	P07	larvas
07 contig 67 consensus sequence	Pyrrhulina australis	87.28	P07	larvas
08 contig 2 consensus sequence	Plagioscion sauamosissimus	81.94	P08	ovos
08 contig 9 consensus sequence	Plaaioscion sauamosissimus	82.1	P08	OVOS
08 contig 13 consensus sequence	Cvphocharax naaelii	81.82	P08	ovos
08 contig 16 consensus sequence	Serrasalmus maculatus	82.44	P08	0105
		52.77	100	0,03

% Similari-Identificação sequencias Espécies **Ponto Coletado Ovo/Larva** dade 08 contig 36 consensus sequence Moenkhausia forestii P08 84.86 ovos 08_contig_41_consensus_sequence **Bryconamericus** 84.86 P08 ovos 08_contig_43_consensus_sequence Apareiodon affinis 88.2 P08 ovos 08_contig_50_consensus_sequence Apareiodon affinis 89.74 P08 ovos 08_contig_54_consensus_sequence Hoplias sp. 81.09 P08 ovos 94.0 P08 08 contig 64 consensus sequence Characidium ovos 08_contig_68_consensus_sequence Eigenmannia virescens 81.87 P08 ovos 08_contig_69_consensus_sequence Roeboides descalvadensis 84.54 P08 ovos 08 contig 75 consensus sequence Proloricaria prolixa P08 82.17 ovos 08 contig 76 consensus sequence Pyrrhulina australis 88.66 P08 ovos 08_contig_82_consensus_sequence Characidium 87.48 P08 ovos P08 08_contig_89_consensus_sequence Parodon nasus 89.9 ovos 08 contig 90 consensus sequence Trichomycterus 82.85 P08 ovos Pseudocorynopoma heteran-08 contig 92 consensus sequence P08 82.15 ovos dria 08 contig 100 consensus sequence Prochilodus lineatus 83.75 P08 ovos 08 contig 105 consensus sequence Astyanax lacustris 84.55 P08 ovos 08_contig_106_consensus_sequence Pyrrhulina australis 83.55 P08 ovos P08 08_contig_116_consensus_sequence Pyrrhulina australis 83.48 ovos 08_contig_117_consensus_sequence Psellogrammus kennedyi 84.43 P08 ovos 08 contig 118 consensus sequence Leporinus 82.06 P08 ovos 08_contig_123_consensus_sequence Pyrrhulina australis P08 84.38 ovos 08_contig_124_consensus_sequence Astyanax bockmanni 83.49 P08 ovos 08_contig_145_consensus_sequence Apareiodon affinis 97.62 P08 ovos 08_contig_160_consensus_sequence Brycon 82.5 P08 ovos 09 contig 2 consensus sequence Diapoma 92.81 P09 ovos P09 09_contig_8_consensus_sequence Piabina argentea 81.09 ovos 09_contig_9_consensus_sequence Diapoma 92.81 P09 ovos 09 contig 13 consensus sequence Cyphocharax nagelii 81.25 P09 ovos 09 contig 17 consensus sequence Serrasalmus maculatus 82.36 P09 ovos 09_contig_20_consensus_sequence Apareiodon affinis 92.76 P09 ovos 09 contig 24 consensus sequence Apareiodon affinis 91.74 P09 ovos 09_contig_27_consensus_sequence Astyanax lacustris 83.81 P09 ovos 09_contig_28_consensus_sequence Piabina 83.29 P09 ovos 09 contig 31 consensus sequence Plagioscion squamosissimus 81.34 P09 ovos 09 contig 35 consensus sequence Plagioscion squamosissimus 81.61 P09 ovos 09_contig_40_consensus_sequence Diapoma 88.7 P09 ovos 09 contig 65 consensus sequence Astyanax lacustris 83.59 P09 ovos 09_contig_68_consensus_sequence Megaleporinus 81.43 P09 ovos 09_contig_76_consensus_sequence Diapoma 89.11 P09 ovos 09 contig 82 consensus sequence **Bryconamericus** 85.14 P09 ovos 09 contig 83 consensus sequence Apareiodon affinis 91.84 P09 ovos 09_contig_94_consensus_sequence Eigenmannia virescens 81.87 P09 ovos 09_contig_95_consensus_sequence Hyphessobrycon 85.04 P09 ovos 09 contig 100 consensus sequence 82.83 P09 Pyrrhulina australis ovos

Identificação sequencias	Espécies	% Similari-	Ponto Coletado	Ovo/Larva
09 contig 105 consensus sequence	Corvdoras	82.93	P09	0705
09 contig 114 consensus sequence	Diapoma	91.75	P09	ovos
09 contig 125 consensus sequence	Apareiodon affinis	91.16	P09	OVOS
09 contig 126 consensus sequence	Leporinus striatus	82.59	P09	OVOS
09 contig 130 consensus sequence	Plaaioscion sauamosissimus	81.97	P09	OVOS
09 contig 131 consensus sequence	Pseudopimelodus	82.33	P09	0005
09 contig 132 consensus sequence	Roeboides descalvadensis	84.73	P09	0005
09 contig 133 consensus sequence	Characidium	94.31	P09	OVOS
09 contig 134 consensus sequence	Moenkhausia forestii	81.78	P09	0005
09 contig 153 consensus sequence	Astvanax bockmanni	83.79	P09	0005
09 contig 159 consensus sequence	Characidium	87.39	P09	0705
09 contig 160 consensus sequence	Figenmannia virescens	85.15	P09	0005
09 contig 182 consensus sequence	Pyrrhuling australis	85 78	P09	0105
10 contig 1 consensus sequence	Anareiodon affinis	97 94	P10	larvas
10 contig 3 consensus sequence	Angreiodon affinis	92.33	P10	larvas
10 contig 4 consensus sequence	Angreiodon affinis	91.2	P10	larvas
10 contig 5 consensus sequence	Apareiodon affinis	91 47	P10	larvas
10 contig 6 consensus sequence	Apareiodon affinis	02 22	P10	larvas
10 contig 11 consensus sequence	Apareiodon affinis	92.22	P10	larvas
10_contig_12_consensus_sequence	Apareiodon affinis	94.88	P10	larvas
10_contig_12_consensus_sequence	Apareiodon affinis	93.98	P10	larvas
10_contig_14_consensus_sequence	Apareiodon affinis	97.5	P10	larvas
10_contig_10_consensus_sequence	Apareiodon affinis	92.17	P10	larvas
10_contig_17_consensus_sequence	Aparelodon ajjinis	92.48	P10	larvas
10_contig_21_consensus_sequence		96.79	P10	IdiVdS
10_contig_29_consensus_sequence	Apareloaon affinis	97.88	P10	larvas
10_contig_31_consensus_sequence	Aparelodon ajjinis	97.69	P10	larvas
10_contig_32_consensus_sequence	Apareloaon affinis	97.64	P10	larvas
10_contig_41_consensus_sequence	Apareiodon affinis	95.55	P10	larvas
10_contig_42_consensus_sequence	Apareiodon affinis	92.18	P10	larvas
10_contig_43_consensus_sequence	Apareiodon affinis	96.95	P10	larvas
10_contig_51_consensus_sequence	Apareiodon affinis	95.43	P10	larvas
10_contig_53_consensus_sequence	Aparelodon affinis	95.46	P10	larvas
10_contig_54_consensus_sequence	Apareiodon affinis	93.81	P10	larvas
10_contig_57_consensus_sequence	Aparelodon affinis	97.63	P10	larvas
10_contig_70_consensus_sequence	Apareiodon affinis	84.55	P10	larvas
11_contig_2_consensus_sequence	Pyrrhulina australis	90.31	P10	OVOS
11_contig_3_consensus_sequence	Pyrrhulina australis	87.98	P10	OVOS
11_contig_11_consensus_sequence	Serrasalmus maculatus	82.44	P10	OVOS
11_contig_13_consensus_sequence	Astyanax lacustris	83.0	P10	ovos
11_contig_32_consensus_sequence	Cyphocharax nagelii	81.98	P10	ovos
11_contig_35_consensus_sequence	Astyanax lacustris	82.82	P10	ovos
11_contig_36_consensus_sequence	Apareiodon affinis	91.72	P10	ovos
11_contig_43_consensus_sequence	Serrasalmus maculatus	82.51	P10	ovos
11_contig_44_consensus_sequence	Pyrrhulina australis	82.77	P10	ovos

Identificação sequencias	Espécies	% Similari-	Ponto Coletado	Ovo/Larva
11 contig 19 consensus sequence	Anhyocheiradan hemiarammus		P10	0\/05
11 contig 59 consensus sequence	Aphyochen odon nenngrummus	91.89	P10	0003
11 contig 61 consensus sequence	Roehoides descalvadensis	83.2	P10	0003
11 contig 62 consensus sequence	Angreiodon affinis	91.04	P10	0003
11 contig 64 consensus sequence	Trichomycterus	82.85	P10	0003
11 contig 65 consensus sequence	Trichomycterus	82.85	P10	0003
11_contig_66_consensus_sequence	Serrasalmus maculatus	82.82	P 10 P10	0005
II_contig_oo_consensus_sequence	Dseudocorynonoma heteran-	82.33	F 10	0003
11_contig_70_consensus_sequence	dria	82.77	P10	ovos
11_contig_71_consensus_sequence	Aphyocheirodon hemigrammus	81.7	P10	ovos
11_contig_74_consensus_sequence	Plagioscion squamosissimus	81.48	P10	ovos
11_contig_80_consensus_sequence	Bryconamericus	84.97	P10	ovos
11_contig_91_consensus_sequence	Aphyocheirodon hemigrammus	83.09	P10	ovos
11_contig_97_consensus_sequence	Psalidodon fasciatus	84.21	P10	ovos
11_contig_102_consensus_sequence	Trichomycterus	80.85	P10	ovos
11_contig_103_consensus_sequence	Roeboides descalvadensis	84.38	P10	ovos
11_contig_113_consensus_sequence	Pyrrhulina australis	88.79	P10	ovos
11_contig_121_consensus_sequence	Pyrrhulina australis	86.06	P10	ovos
11_contig_123_consensus_sequence	Apareiodon affinis	88.29	P10	ovos
11_contig_124_consensus_sequence	Hyphessobrycon	82.37	P10	ovos
11_contig_133_consensus_sequence	Characidium	94.0	P10	ovos
11_contig_134_consensus_sequence	Astyanax lacustris	84.25	P10	ovos
11_contig_135_consensus_sequence	Plagioscion squamosissimus	82.38	P10	ovos
11_contig_136_consensus_sequence	Proloricaria prolixa	82.06	P10	ovos
11_contig_144_consensus_sequence	Parodon nasus	89.9	P10	ovos
11_contig_145_consensus_sequence	Aphyocheirodon hemigrammus	82.88	P10	ovos
11_contig_158_consensus_sequence	Phenacorhamdia tenebrosa	92.0	P10	ovos
11_contig_166_consensus_sequence	Astyanax lacustris	82.62	P10	ovos
11_contig_197_consensus_sequence	Astyanax lacustris	83.2	P10	ovos
11_contig_204_consensus_sequence	Pyrrhulina australis	89.62	P10	ovos
11_contig_205_consensus_sequence	Plagioscion squamosissimus	82.07	P10	ovos
11_contig_206_consensus_sequence	Roeboides descalvadensis	86.37	P10	ovos
13_contig_1_consensus_sequence	Apareiodon affinis	97.84	P02	larvas
13_contig_2_consensus_sequence	Apareiodon affinis	92.95	P02	larvas
13_contig_9_consensus_sequence	Apareiodon affinis	91.3	P02	larvas
13_contig_12_consensus_sequence	Apareiodon affinis	97.47	P02	larvas
13_contig_14_consensus_sequence	Apareiodon affinis	96.71	P02	larvas
13_contig_15_consensus_sequence	Apareiodon affinis	96.71	P02	larvas
13_contig_20_consensus_sequence	Apareiodon affinis	97.93	P02	larvas
13_contig_30_consensus_sequence	Apareiodon affinis	93.67	P02	larvas
13_contig_32_consensus_sequence	Apareiodon affinis	92.23	P02	larvas
13_contig_44_consensus_sequence	Apareiodon affinis	94.39	P02	larvas
13_contig_53_consensus_sequence	Apareiodon affinis	93.1	P02	larvas
13_contig_55_consensus_sequence	Apareiodon affinis	92.44	P02	larvas
13 contig 56 consensus sequence	Apareiodon affinis	95.68	P02	larvas
				108
---------------------------------	-----------------------	---------------------	----------------	-----------
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
13_contig_60_consensus_sequence	Apareiodon affinis	92.11	P02	larvas
13_contig_61_consensus_sequence	Apareiodon affinis	97.43	P02	larvas
13_contig_64_consensus_sequence	Apareiodon affinis	95.22	P02	larvas
13_contig_67_consensus_sequence	Apareiodon affinis	92.06	P02	larvas
13_contig_68_consensus_sequence	Apareiodon affinis	92.73	P02	larvas
14_contig_2_consensus_sequence	Apareiodon affinis	97.78	P03	larvas
14_contig_3_consensus_sequence	Apareiodon affinis	97.94	P03	larvas
14_contig_4_consensus_sequence	Apareiodon affinis	98.45	P03	larvas
14_contig_9_consensus_sequence	Apareiodon affinis	96.44	P03	larvas
14_contig_16_consensus_sequence	Apareiodon affinis	92.5	P03	larvas
14_contig_17_consensus_sequence	Apareiodon affinis	93.98	P03	larvas
14_contig_19_consensus_sequence	Apareiodon affinis	97.78	P03	larvas
14_contig_22_consensus_sequence	Apareiodon affinis	95.35	P03	larvas
14_contig_23_consensus_sequence	Apareiodon affinis	97.21	P03	larvas
14_contig_29_consensus_sequence	Apareiodon affinis	97.65	P03	larvas
14_contig_31_consensus_sequence	Apareiodon affinis	97.64	P03	larvas
14_contig_34_consensus_sequence	Apareiodon affinis	97.43	P03	larvas
14_contig_38_consensus_sequence	Apareiodon affinis	97.35	P03	larvas
14_contig_58_consensus_sequence	Apareiodon affinis	97.06	P03	larvas
14 contig 70 consensus sequence	Apareiodon affinis	97.0	P03	larvas
14_contig_71_consensus_sequence	Apareiodon affinis	97.88	P03	larvas
14_contig_93_consensus_sequence	Pyrrhulina australis	89.98	P03	larvas
15_contig_1_consensus_sequence	Apareiodon affinis	97.78	P04	larvas
15_contig_2_consensus_sequence	Apareiodon affinis	97.78	P04	larvas
15_contig_3_consensus_sequence	Serrasalmus maculatus	97.64	P04	larvas
15_contig_4_consensus_sequence	Apareiodon affinis	97.78	P04	larvas
15_contig_5_consensus_sequence	Apareiodon affinis	93.77	P04	larvas
15_contig_8_consensus_sequence	Apareiodon affinis	95.96	P04	larvas
15_contig_11_consensus_sequence	Apareiodon affinis	97.34	P04	larvas
15_contig_13_consensus_sequence	Apareiodon affinis	96.35	P04	larvas
15_contig_16_consensus_sequence	Apareiodon affinis	98.29	P04	larvas
15_contig_17_consensus_sequence	Apareiodon affinis	93.31	P04	larvas
15_contig_26_consensus_sequence	Apareiodon affinis	97.43	P04	larvas
15_contig_27_consensus_sequence	Apareiodon affinis	97.78	P04	larvas
15_contig_28_consensus_sequence	Apareiodon affinis	97.66	P04	larvas
15_contig_29_consensus_sequence	Apareiodon affinis	97.66	P04	larvas
15_contig_30_consensus_sequence	Serrasalmus maculatus	91.55	P04	larvas
15_contig_41_consensus_sequence	Apareiodon affinis	96.57	P04	larvas
15_contig_48_consensus_sequence	Apareiodon affinis	92.41	P04	larvas
15_contig_49_consensus_sequence	Apareiodon affinis	91.79	P04	larvas
15_contig_62_consensus_sequence	Apareiodon affinis	91.52	P04	larvas
16_Contig_2consensus_sequence	Apareiodon affinis	98.04	P05	larvas
16_Contig_4_consensus_sequence	Apareiodon affinis	97.57	P05	larvas
16 Contig 5 consensus sequence	Apareiodon affinis	98.45	P05	larvas

			109	
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
16_Contig_9_consensus_sequence	Apareiodon affinis	97.3	P05	larvas
16_Contig_11_consensus_sequence	Apareiodon affinis	97.86	P05	larvas
16_Contig_12_consensus_sequence	Apareiodon affinis	94.9	P05	larvas
16_Contig_15_consensus_sequence	Apareiodon affinis	94.26	P05	larvas
16_Contig_16_consensus_sequence	Apareiodon affinis	94.21	P05	larvas
16_Contig_20_consensus_sequence	Apareiodon affinis	91.81	P05	larvas
16_Contig_21_consensus_sequence	Apareiodon affinis	94.56	P05	larvas
16_Contig_22_consensus_sequence	Apareiodon affinis	98.04	P05	larvas
16_Contig_23_consensus_sequence	Apareiodon affinis	96.25	P05	larvas
16_Contig_29_consensus_sequence	Apareiodon affinis	97.88	P05	larvas
16_Contig_31_consensus_sequence	Apareiodon affinis	94.96	P05	larvas
16_Contig_34_consensus_sequence	Apareiodon affinis	93.42	P05	larvas
16_Contig_35_consensus_sequence	Apareiodon affinis	96.74	P05	larvas
16_Contig_36_consensus_sequence	Apareiodon affinis	97.94	P05	larvas
16_Contig_38_consensus_sequence	Apareiodon affinis	92.37	P05	larvas
16_Contig_39_consensus_sequence	Apareiodon affinis	96.96	P05	larvas
16_Contig_46_consensus_sequence	Apareiodon affinis	96.32	P05	larvas
16_Contig_53_consensus_sequence	Apareiodon affinis	97.51	P05	larvas
16_Contig_54_consensus_sequence	Apareiodon affinis	94.06	P05	larvas
16_Contig_59_consensus_sequence	Apareiodon affinis	97.52	P05	larvas
16_Contig_62_consensus_sequence	Apareiodon affinis	91.46	P05	larvas
16_Contig_76_consensus_sequence	Apareiodon affinis	96.39	P05	larvas
16_Contig_77_consensus_sequence	Plagioscion squamosissimus	82.1	P05	larvas
17_Contig_2_consensus_sequence	Pyrrhulina australis	89.75	P05	ovos
17_Contig_8_consensus_sequence	Pyrrhulina australis	90.99	P05	ovos
17_Contig_9_consensus_sequence	Plagioscion squamosissimus	81.94	P05	ovos
17_Contig_10_consensus_sequence	Diapoma	92.81	P05	ovos
17_Contig_11_consensus_sequence	Apareiodon affinis	83.97	P05	ovos
17_Contig_20_consensus_sequence	Plagioscion squamosissimus	81.81	P05	ovos
17_Contig_27_consensus_sequence	Cyphocharax nagelii	81.52	P05	ovos
17_Contig_33_consensus_sequence	Rhaphiodon vulpinus	82.36	P05	ovos
17_Contig_34_consensus_sequence	Prochilodus lineatus	82.05	P05	ovos
17_Contig_37_consensus_sequence	Diapoma	88.98	P05	ovos
17_Contig_46_consensus_sequence	Diapoma	90.78	P05	ovos
17_Contig_51_consensus_sequence	Plagioscion squamosissimus	82.0	P05	ovos
17_Contig_52_consensus_sequence	Rhaphiodon vulpinus	82.58	P05	ovos
17_Contig_53_consensus_sequence	Apareiodon affinis	87.04	P05	OVOS
1/_Contig_5/_consensus_sequence	Corydoras	82.93	P05	OVOS
1/_Contig_68_consensus_sequence	Diapoma	87.93	P05	OVOS
1/_Contig_/4_consensus_sequence	Diapoma	88.21	P05	OVOS
17_Contig_/5_consensus_sequence	Bryconamericus	84.86	P05	OVOS
1/_Contig_/6_consensus_sequence	Astyanax lacustris	82.97	P05	OVOS
17_Contig_86_consensus_sequence	Apareiodon affinis	91.68	P05	OVOS
17_Contig_104_consensus_sequence	Apareiodon affinis	88.83	P05	ovos

Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
17 Contig 105 consensus sequence	Plagioscion squamosissimus	81.94	P05	ovos
17 Contig 115 consensus sequence	Apareiodon affinis	92.18	P05	ovos
17_Contig_116_consensus_sequence	Diapoma	92.93	P05	ovos
17_Contig_121_consensus_sequence	Pyrrhulina australis	88.99	P05	ovos
17_Contig_122_consensus_sequence	Pseudocorynopoma heteran- dria	81.96	P05	ovos
17_Contig_128_consensus_sequence	Bryconamericus iheringii	82.67	P05	ovos
17_Contig_160_consensus_sequence	Plagioscion squamosissimus	82.03	P05	ovos
17_Contig_161_consensus_sequence	Phenacorhamdia tenebrosa	80.86	P05	ovos
17_Contig_169_consensus_sequence	Serrapinnus sp. 2	83.19	P05	ovos
17_Contig_170_consensus_sequence	Hypostomus margaritifer	84.36	P05	ovos
17_Contig_206_consensus_sequence	Tilapia rendalli	80.28	P05	ovos
18_Contig_1_consensus_sequence	Apareiodon affinis	92.99	P06	larvas
18_Contig_2_consensus_sequence	Apareiodon affinis	98.04	P06	larvas
18_Contig_3_consensus_sequence	Apareiodon affinis	97.78	P06	larvas
18_Contig_8_consensus_sequence	Apareiodon affinis	93.51	P06	larvas
18_Contig_14_consensus_sequence	Apareiodon affinis	98.13	P06	larvas
18_Contig_15_consensus_sequence	Apareiodon affinis	98.29	P06	larvas
18_Contig_18_consensus_sequence	Apareiodon affinis	97.26	P06	larvas
18_Contig_20_consensus_sequence	Apareiodon affinis	97.76	P06	larvas
18_Contig_26_consensus_sequence	Apareiodon affinis	92.41	P06	larvas
18_Contig_29_consensus_sequence	Apareiodon affinis	96.57	P06	larvas
18_Contig_34_consensus_sequence	Apareiodon affinis	97.32	P06	larvas
18_Contig_41_consensus_sequence	Apareiodon affinis	97.25	P06	larvas
18_Contig_51_consensus_sequence	Apareiodon affinis	98.04	P06	larvas
18_Contig_54_consensus_sequence	Apareiodon affinis	94.4	P06	larvas
18_Contig_65_consensus_sequence	Apareiodon affinis	92.63	P06	larvas
18_Contig_68_consensus_sequence	Apareiodon affinis	96.16	P06	larvas
18_Contig_76_consensus_sequence	Apareiodon affinis	97.4	P06	larvas
18_Contig_82_consensus_sequence	Apareiodon affinis	96.12	P06	larvas
18_Contig_97_consensus_sequence	Apareiodon affinis	97.29	P06	larvas
18_Contig_119_consensus_sequence	Pyrrhulina australis	89.72	P06	larvas
18 Contig 126 consensus sequence	Pyrrhulina australis	89.49	P06	larvas
19_Contig_10_consensus_sequence	Diapoma	92.97	P06	ovos
19 Contig 18 consensus sequence	Plagioscion squamosissimus	81.94	P06	ovos
19_Contig_22_consensus_sequence	Apareiodon affinis	98.04	P06	ovos
19 Contig 27 consensus sequence	Plagioscion squamosissimus	81.15	P06	ovos
19 Contig 36 consensus sequence	Apareiodon affinis	92.16	P06	ovos
19 Contig 37 consensus sequence	Astyanax lacustris	82.71	P06	ovos
19 Contig 41 consensus sequence	Corydoras	82.93	P06	ovos
19 Contig 47 consensus sequence	Plagioscion squamosissimus	81.97	P06	ovos
19 Contig 48 consensus sequence	Plagioscion squamosissimus	82.0	P06	ovos
19 Contig 50 consensus sequence	Plagioscion squamosissimus	81.94	P06	ovos
19 Contig 51 consensus sequence	Diapoma	88.38	P06	ovos
19_Contig_53_consensus_sequence	Pseudocorynopoma heterandria	83.17	P06	ovos

% Similari-Identificação sequencias Espécies **Ponto Coletado** Ovo/Larva dade 19 Contig 56 consensus sequence Diapoma 92.77 P06 ovos 19_Contig_72_consensus_sequence Apareiodon affinis 91.78 P06 ovos 19_Contig_82_consensus_sequence Diapoma 88.66 P06 ovos 19 Contig 83 consensus sequence 84.97 P06 **Bryconamericus** ovos 19_Contig_92_consensus_sequence Plagioscion squamosissimus 81.99 P06 ovos 19 Contig 95 consensus sequence 82.06 P06 Plagioscion squamosissimus ovos 19_Contig_98_consensus_sequence Apareiodon affinis 92.01 P06 ovos 19_Contig_112_consensus_sequence Plagioscion squamosissimus 81.58 P06 ovos 19 Contig 133 consensus sequence 88.31 P06 Pyrrhulina australis ovos 84.5 19 Contig 134 consensus sequence Hyphessobrycon P06 ovos 19_Contig_135_consensus_sequence Roeboides descalvadensis 81.35 P06 ovos P06 19_Contig_172_consensus_sequence Serrasalmus marginatus 83.11 ovos 19 Contig 183 consensus sequence Trichomycterus 80.87 P06 ovos 19 Contig 195 consensus sequence Astyanax lacustris 82.36 P06 ovos 19_Contig_208_consensus_sequence 93.45 P06 Leporinus octofasciatus ovos 19 Contig 209 consensus sequence Serrasalmus maculatus 78.12 P06 ovos 20_Contig_1_consensus_sequence Apareiodon affinis P07 97.46 larvas 20_Contig_2_consensus_sequence Apareiodon affinis 97.57 P07 larvas 20_Contig_3_2_consensus_sequence Apareiodon affinis 97.88 P07 larvas 20_Contig_9_2_consensus_sequence Apareiodon affinis 96.6 P07 larvas 20_Contig_11_consensus_sequence Apareiodon affinis 95.97 P07 larvas P07 20_Contig_13_consensus_sequence Apareiodon affinis 93.58 larvas 20 Contig 14 2 consensus sequence P07 Apareiodon affinis 92.0 larvas 20 Contig 15 2 consensus sequence Apareiodon affinis 97.06 P07 larvas 20 Contig 16 consensus sequence Apareiodon affinis 92.21 P07 larvas 20_Contig_17_2_consensus_sequence Apareiodon affinis 97.85 P07 larvas 20_Contig_20_consensus_sequence Apareiodon affinis 97.86 P07 larvas 20 Contig 26 2 consensus sequence Apareiodon affinis 92.06 P07 larvas Apareiodon affinis 92.51 P07 20 Contig 32 consensus sequence larvas 20_Contig_33_2_consensus_sequence Apareiodon affinis 96.92 P07 larvas P07 20_Contig_37_2_consensus_sequence Apareiodon affinis 97.79 larvas P07 20 Contig 43 2 consensus sequence Apareiodon affinis 96.11 larvas 20_Contig_44_consensus_sequence Apareiodon affinis 98.03 P07 larvas 20_Contig_50_2_consensus_sequence Apareiodon affinis 94.86 P07 larvas 20_Contig_55_consensus_sequence Apareiodon affinis 93.32 P07 larvas 20_Contig_63_2_consensus_sequence Apareiodon affinis 94.76 P07 larvas 20_Contig_69_2_consensus_sequence Apareiodon affinis 94.96 P07 larvas 20 Contig 76 consensus sequence 95.91 P07 Apareiodon affinis larvas 20_Contig_78_2_consensus_sequence Apareiodon affinis 91.78 P07 larvas 20_Contig_82_consensus_sequence Astyanax lacustris 82.14 P07 larvas 21_Contig_8_consensus_sequence Plagioscion squamosissimus 81.81 P07 ovos P07 21_Contig_13_consensus_sequence Serrasalmus maculatus 82.51 ovos Pseudocorynopoma heteran-21_Contig_17_consensus_sequence 82.86 P07 ovos dria 21 Contig 21 consensus sequence Cyphocharax nagelii 81.82 P07 ovos

			112		
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva	
21_Contig_27_consensus_sequence	Plagioscion squamosissimus	82.1	P07	ovos	
21_Contig_30_consensus_sequence	Catathyridium jenynsii	95.44	P07	ovos	
21_Contig_31_consensus_sequence	Diapoma	80.69	P07	ovos	
21_Contig_34_consensus_sequence	Astyanax lacustris	83.0	P07	ovos	
21_Contig_37_consensus_sequence	Diapoma	92.97	P07	ovos	
21_Contig_40_consensus_sequence	Apareiodon affinis	86.51	P07	ovos	
21_Contig_55_consensus_sequence	Characidium	94.15	P07	ovos	
21_Contig_57_consensus_sequence	Galeocharax gulo	83.32	P07	ovos	
21_Contig_58_consensus_sequence	Pimelodus	84.36	P07	ovos	
21_Contig_59_consensus_sequence	Apareiodon affinis	87.76	P07	ovos	
21_Contig_60_consensus_sequence	Diapoma	92.58	P07	ovos	
21_Contig_61_consensus_sequence	Proloricaria prolixa	82.06	P07	ovos	
21_Contig_62_consensus_sequence	Apareiodon affinis	86.99	P07	ovos	
21_Contig_68_consensus_sequence	Astyanax lacustris	82.97	P07	ovos	
21_Contig_69_consensus_sequence	Diapoma	92.74	P07	ovos	
21_Contig_82_consensus_sequence	Plagioscion squamosissimus	81.13	P07	ovos	
21_Contig_88_consensus_sequence	Apareiodon affinis	95.1	P07	ovos	
21_Contig_90_consensus_sequence	Hypostomus strigaticeps	82.81	P07	ovos	
21_Contig_91_consensus_sequence	Aphyocheirodon hemigrammus	83.22	P07	ovos	
21_Contig_94_consensus_sequence	Trichomycterus	82.82	P07	ovos	
21_Contig_100_consensus_sequence	Apareiodon affinis	90.88	P07	ovos	
21_Contig_101_consensus_sequence	Catathyridium jenynsii	95.37	P07	ovos	
21_Contig_107_consensus_sequence	Roeboides descalvadensis	84.22	P07	ovos	
21_Contig_108_consensus_sequence	Diapoma	91.88	P07	ovos	
21_Contig_117_consensus_sequence	Plagioscion squamosissimus	80.92	P07	ovos	
21_Contig_139_consensus_sequence	Apareiodon affinis	92.6	P07	ovos	
21_Contig_140_consensus_sequence	Astyanax lacustris	82.62	P07	ovos	
21_Contig_141_consensus_sequence	Characidium	87.55	P07	ovos	
21_Contig_167_consensus_sequence	Plagioscion squamosissimus	82.12	P07	ovos	
21_Contig_179_consensus_sequence	Serrasalmus marginatus	84.59	P07	ovos	
21_Contig_196_consensus_sequence	Eigenmannia virescens	81.71	P07	ovos	
21_Contig_204_consensus_sequence	Characidium zebra	83.28	P07	ovos	
21_Contig_213_consensus_sequence	Characidium gomesi	82.55	P07	ovos	
22_Contig_1_consensus_sequence	Apareiodon affinis	97.78	P08	larvas	
22_Contig_3_consensus_sequence	Apareiodon affinis	91.41	P08	larvas	
22_Contig_5_consensus_sequence	Apareiodon affinis	91.51	P08	larvas	
22_Contig_6_consensus_sequence	Apareiodon affinis	97.94	P08	larvas	
22_Contig_7_consensus_sequence	Apareiodon affinis	97.34	P08	larvas	
22_Contig_10_consensus_sequence	Apareiodon affinis	93.53	P08	larvas	
22_Contig_15_consensus_sequence	Apareiodon affinis	96.96	P08	larvas	
22_Contig_17_consensus_sequence	Apareiodon affinis	95.23	P08	larvas	
22_Contig_19_consensus_sequence	Apareiodon affinis	97.3	P08	larvas	
22_Contig_25_consensus_sequence	Apareiodon affinis	94.17	P08	larvas	
22_Contig_29_consensus_sequence	Apareiodon affinis	91.76	P08	larvas	

				113
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
22_Contig_39_consensus_sequence	Apareiodon affinis	98.29	P08	larvas
22_Contig_42_consensus_sequence	Apareiodon affinis	97.27	P08	larvas
22_Contig_52_consensus_sequence	Apareiodon affinis	93.6	P08	larvas
22_Contig_54_consensus_sequence	Apareiodon affinis	93.6	P08	larvas
22_Contig_58consensus_sequence	Apareiodon affinis	97.87	P08	larvas
22_Contig_64_consensus_sequence	Apareiodon affinis	93.44	P08	larvas
22_Contig_67_consensus_sequence	Apareiodon affinis	92.74	P08	larvas
22_Contig_87_consensus_sequence	Apareiodon affinis	97.67	P08	larvas
23_Contig_2_consensus_sequence	Apareiodon affinis	98.29	P09	larvas
23_Contig_5_consensus_sequence	Apareiodon affinis	98.13	P09	larvas
23_Contig_7_consensus_sequence	Apareiodon affinis	97.15	P09	larvas
23_Contig_8_consensus_sequence	Apareiodon affinis	92.11	P09	larvas
23_Contig_9_consensus_sequence	Apareiodon affinis	94.46	P09	larvas
23_Contig_12_consensus_sequence	Apareiodon affinis	91.88	P09	larvas
23_Contig_17_consensus_sequence	Apareiodon affinis	92.54	P09	larvas
23_Contig_24_consensus_sequence	Apareiodon affinis	95.77	P09	larvas
23_Contig_28_consensus_sequence	Apareiodon affinis	97.34	P09	larvas
23 Contig 31 consensus sequence	Apareiodon affinis	91.13	P09	larvas
23_Contig_32_consensus_sequence	Apareiodon affinis	93.33	P09	larvas
23 Contig 34 consensus sequence	Apareiodon affinis	96.17	P09	larvas
23 Contig 38 consensus sequence	Apareiodon affinis	90.74	P09	larvas
23_Contig_39_consensus_sequence	Apareiodon affinis	91.98	P09	larvas
23 Contig 53 consensus sequence	Apareiodon affinis	95.04	P09	larvas
23 Contig 54 consensus sequence	Apareiodon affinis	91.03	P09	larvas
23 Contig 63 consensus sequence	Apareiodon affinis	92.6	P09	larvas
23 Contig 64 consensus sequence	Apareiodon affinis	96.63	P09	larvas
25 Contig 1 consensus sequence	Apareiodon affinis	97.94	P10	larvas
25 Contig 2 consensus sequence	Apareiodon affinis	98.2	P10	larvas
25 Contig 5 consensus sequence	Apareiodon affinis	97.46	P10	larvas
25 Contig 6 consensus sequence	Apareiodon affinis	91.71	P10	larvas
25 Contig 7 consensus sequence	Apareiodon affinis	97.82	P10	larvas
25 Contig 12 consensus sequence	Apareiodon affinis	97.94	P10	larvas
25 Contig 15 consensus sequence	Apareiodon affinis	97.94	P10	larvas
25 Contig 23 consensus sequence	Apareiodon affinis	93.48	P10	larvas
25_Contig_25_consensus_sequence	Apareiodon affinis	97.82	P10	larvas
25_Contig_26_consensus sequence	Apareiodon affinis	91.0	P10	larvas
25_Contig_29_consensus_sequence	Pyrrhulina australis	88.18	P10	larvas
25_Contig_33_consensus sequence	Apareiodon affinis	97.94	P10	larvas
25_Contig_34_consensus sequence	Apareiodon affinis	97.11	P10	larvas
25_Contig_37_consensus sequence	Apareiodon affinis	91.21	P10	larvas
25_Contig_40_consensus sequence	Apareiodon affinis	96.65	P10	larvas
25_Contig_42_consensus_sequence	Apareiodon affinis	97.94	P10	larvas
25_Contig_44_consensus_sequence	Apareiodon affinis	92.04	P10	larvas
25 Contig 46 consensus sequence	Apareiodon affinis	95.88	P10	larvas

				114	
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva	
25_Contig_48_consensus_sequence	Apareiodon affinis	92.66	P10	larvas	
25_Contig_51_consensus_sequence	Plagioscion squamosissimus	81.94	P10	larvas	
25_Contig_52_consensus_sequence	Apareiodon affinis	97.97	P10	larvas	
25_Contig_56_consensus_sequence	Apareiodon affinis	92.97	P10	larvas	
25_Contig_57_consensus_sequence	Hisonotus	79.11	P10	larvas	
25_Contig_61_consensus_sequence	Apareiodon affinis	97.41	P10	larvas	
25_Contig_62_consensus_sequence	Apareiodon affinis	93.21	P10	larvas	
25_Contig_67_consensus_sequence	Bryconamericus	81.05	P10	larvas	
25_Contig_68_consensus_sequence	Apareiodon affinis	91.75	P10	larvas	
25_Contig_69_consensus_sequence	Apareiodon affinis	95.26	P10	larvas	
25_Contig_70_consensus_sequence	Apareiodon affinis	97.02	P10	larvas	
25_Contig_74_consensus_sequence	Apareiodon affinis	98.29	P10	larvas	
25_Contig_75_consensus_sequence	Knodus	80.72	P10	larvas	
25_Contig_79_consensus_sequence	Apareiodon affinis	93.04	P10	larvas	
25_Contig_86_consensus_sequence	Apareiodon affinis	97.79	P10	larvas	
25_Contig_89_consensus_sequence	Apareiodon affinis	91.72	P10	larvas	
25_Contig_93_consensus_sequence	Apareiodon affinis	94.31	P10	larvas	
25_Contig_104_consensus_sequence	Pseudocorynopoma heteran- dria	82.2	P10	larvas	
25_Contig_114_consensus_sequence	Astyanax bockmanni	81.85	P10	larvas	
25_Contig_119_consensus_sequence	Astyanax lacustris	82.35	P10	larvas	
25_Contig_121_consensus_sequence	Apareiodon affinis	89.92	P10	larvas	
25_Contig_122_consensus_sequence	Pseudocorynopoma heteran- dria	83.09	P10	larvas	
25_Contig_126_consensus_sequence	Apareiodon affinis	86.1	P10	larvas	
25_Contig_127_consensus_sequence	Cyphocharax modestus	84.51	P10	larvas	
27_Contig_2_consensus_sequence	Apareiodon affinis	98.13	P01	larvas	
27_Contig_3consensus_sequence	Apareiodon affinis	97.87	P01	larvas	
27_Contig_4_consensus_sequence	Apareiodon affinis	98.13	P01	larvas	
27_Contig_5_consensus_sequence	Apareiodon affinis	92.45	P01	larvas	
27_Contig_6_consensus_sequence	Apareiodon affinis	90.76	P01	larvas	
27_Contig_12_consensus_sequence	Apareiodon affinis	92.76	P01	larvas	
27_Contig_13_consensus_sequence	Apareiodon affinis	94.84	P01	larvas	
27_Contig_14_consensus_sequence	Apareiodon affinis	97.28	P01	larvas	
27_Contig_17_consensus_sequence	Apareiodon affinis	97.45	P01	larvas	
27_Contig_18_consensus_sequence	Apareiodon affinis	91.65	P01	larvas	
27_Contig_20_consensus_sequence	Apareiodon affinis	96.07	P01	larvas	
27_Contig_22_consensus_sequence	Apareiodon affinis	94.6	P01	larvas	
27_Contig_23_consensus_sequence	Apareiodon affinis	92.45	P01	larvas	
27_Contig_24_consensus_sequence	Apareiodon affinis	93.04	P01	larvas	
27_Contig_27_consensus_sequence	Apareiodon affinis	97.47	P01	larvas	
27_Contig_31_consensus_sequence	Apareiodon affinis	97.6	P01	larvas	
27_Contig_33_consensus_sequence	Apareiodon affinis	97.87	P01	larvas	
27_Contig_35_consensus_sequence	Apareiodon affinis	90.95	P01	larvas	
27 Contig 40 consensus sequence	Apareiodon affinis	97.87	P01	larvas	

				115
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
27_Contig_41_consensus_sequence	Apareiodon affinis	95.15	P01	larvas
27_Contig_49_consensus_sequence	Plagioscion squamosissimus	80.59	P01	larvas
27_Contig_60_consensus_sequence	Moenkhausia forestii	81.6	P01	larvas
27_Contig_61_consensus_sequence	Pyrrhulina australis	82.36	P01	larvas
27_Contig_62_consensus_sequence	Plagioscion squamosissimus	82.05	P01	larvas
28_Contig_2_consensus_sequence	Pyrrhulina australis	89.98	P01	ovos
28_Contig_7_consensus_sequence	Moenkhausia forestii	83.89	P01	ovos
28_Contig_9_consensus_sequence	Apareiodon affinis	91.74	P01	ovos
28_Contig_16_consensus_sequence	Plagioscion squamosissimus	82.81	P01	ovos
28_Contig_19_consensus_sequence	Serrasalmus maculatus	81.76	P01	ovos
28_Contig_20_consensus_sequence	Trichomycterus	79.63	P01	ovos
28_Contig_24_consensus_sequence	Plagioscion squamosissimus	81.47	P01	ovos
28_Contig_29_consensus_sequence	Apareiodon affinis	91.74	P01	ovos
28_Contig_33_consensus_sequence	Plagioscion squamosissimus	81.92	P01	ovos
28_Contig_34_consensus_sequence	Cyphocharax nagelii	81.82	P01	ovos
28_Contig_35_consensus_sequence	Bryconamericus	84.86	P01	ovos
28_Contig_41_consensus_sequence	Plagioscion squamosissimus	81.62	P01	ovos
28_Contig_42_consensus_sequence	Galeocharax gulo	83.99	P01	ovos
28_Contig_43_consensus_sequence	Plagioscion squamosissimus	82.46	P01	ovos
28_Contig_45_consensus_sequence	Serrasalmus maculatus	82.02	P01	ovos
28_Contig_49_consensus_sequence	Apareiodon affinis	89.94	P01	ovos
28_Contig_55_consensus_sequence	Aphyocheirodon hemigrammus	82.29	P01	ovos
28_Contig_59_consensus_sequence	Pyrrhulina australis	88.08	P01	ovos
28_Contig_71_consensus_sequence	Eigenmannia virescens	81.87	P01	ovos
28_Contig_72_consensus_sequence	Moenkhausia forestii	81.89	P01	ovos
28_Contig_81_consensus_sequence	Corydoras	82.93	P01	ovos
28_Contig_82_consensus_sequence	Plagioscion squamosissimus	81.41	P01	ovos
28_Contig_85_consensus_sequence	Pyrrhulina australis	86.81	P01	ovos
28_Contig_94_consensus_sequence	Astyanax lacustris	83.92	P01	ovos
28_Contig_100_consensus_sequence	Rhaphiodon vulpinus	80.84	P01	ovos
28_Contig_101_consensus_sequence	Astyanax lacustris	83.0	P01	ovos
28_Contig_116_consensus_sequence	Hypostomus margaritifer	84.22	P01	ovos
28_Contig_117_consensus_sequence	Plagioscion squamosissimus	82.0	P01	ovos
28_Contig_118_consensus_sequence	Roeboides descalvadensis	84.24	P01	ovos
28_Contig_119_consensus_sequence	Hyphessobrycon	82.37	P01	ovos
28_Contig_129_consensus_sequence	Astyanax lacustris	82.41	P01	ovos
28_Contig_137_consensus_sequence	Leporinus lacustris	84.17	P01	ovos
28_Contig_138_consensus_sequence	Roeboides descalvadensis	83.96	P01	ovos
28_Contig_145_consensus_sequence	Cichlasoma	81.79	P01	ovos
28_Contig_146_consensus_sequence	Apareiodon affinis	90.93	P01	ovos
28_Contig_147_consensus_sequence	Pyrrhulina australis	83.29	P01	ovos
28_Contig_151_consensus_sequence	Pyrrhulina australis	84.53	P01	ovos
28_Contig_164_consensus_sequence	Apareiodon affinis	96.14	P01	ovos
28_Contig_165_consensus_sequence	Parodon nasus	90.29	P01	ovos

				116	
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva	
28_Contig_166_consensus_sequence	Characidium	90.24	P01	ovos	
28_Contig_167_consensus_sequence	Moenkhausia forestii	81.45	P01	ovos	
28_Contig_175_consensus_sequence	Serrasalmus marginatus	82.58	P01	ovos	
28_Contig_176_consensus_sequence	Hyphessobrycon	84.55	P01	ovos	
28_Contig_196_consensus_sequence	Characidium gomesi	82.21	P01	ovos	
28_Contig_220_consensus_sequence	Apareiodon affinis	84.52	P01	ovos	
29_Contig_1_consensus_sequence	Apareiodon affinis	97.53	P02	larvas	
29_Contig_6_consensus_sequence	Apareiodon affinis	97.85	P02	larvas	
29_Contig_8_consensus_sequence	Apareiodon affinis	97.16	P02	larvas	
29_Contig_9_consensus_sequence	Apareiodon affinis	98.29	P02	larvas	
29_Contig_13_consensus_sequence	Apareiodon affinis	92.31	P02	larvas	
29 Contig 14 consensus sequence	Apareiodon affinis	97.65	P02	larvas	
29 Contig 21 consensus sequence	Apareiodon affinis	98.13	P02	larvas	
29 Contig 22 consensus sequence	Apareiodon affinis	96.88	P02	larvas	
29 Contig 24 consensus sequence	Apareiodon affinis	91.93	P02	larvas	
29 Contig 25 consensus sequence	Apareiodon affinis	92.57	P02	larvas	
29 Contig 27 consensus sequence	Apareiodon affinis	96.94	P02	larvas	
29 Contig 43 consensus sequence	Apareiodon affinis	91.65	P02	larvas	
29 Contig 52 consensus sequence	Apareiodon affinis	98.29	P02	larvas	
29 Contig 62 consensus sequence	Serrasalmus maculatus	82.44	P02	larvas	
29 Contig 63 consensus sequence	Plagioscion squamosissimus	82.33	P02	larvas	
29 Contig 68 consensus sequence	Galeocharax aulo	82.36	P02	larvas	
29 Contig 69 consensus sequence	Hyphessobrycon	81.63	P02	larvas	
32 Contig 5 consensus sequence	Dianoma	92.97	P03		
32 Contig 8 consensus sequence	Diapoma	92 74	P03	0005	
32 Contig 14 consensus sequence	Diapoma	92.87	P03	0005	
32 Contig 19 consensus sequence	Anarejodon affinis	92.0	P03	0005	
32 Contig 20 consensus sequence	Pyrrhuling australis	90.22	P03	0105	
32_Contig_26_consensus_sequence	Pseudocorynopoma heteran- dria	82.83	P03	ovos	
32 Contig 28 consensus sequence	Plaaioscion sauamosissimus	82.07	P03	ovos	
32 Contig 35 consensus sequence	Cichlasoma	81.48	P03	ovos	
32 Contig 41 consensus sequence	Astvanax lacustris	81.75	P03	OVOS	
32 Contig 48 consensus sequence	Diapoma	92.81	P03	ovos	
32 Contig 52 consensus sequence	Plagioscion squamosissimus	81.1	P03	ovos	
32 Contig 61 consensus sequence	Figenmannia virescens	81.87	P03	ovos	
32 Contig 80 consensus sequence	Hyphessobrycon	82.37	P03	0005	
32 Contig 84 consensus sequence	Serrasalmus marainatus	82.93	P03	ovos	
32 Contig 85 consensus sequence	Astvanax lacustris	83.0	P03	ovos	
32 Contig 93 consensus sequence	Rhaphiodon vulninus	82.06	P03	0005	
32 Contig 99 consensus sequence	Rhaphiodon vulpinus	82.56	P03	0005	
32 Contig 102 consensus sequence	Plagioscion squamosissimus	82.22	P03	0005	
32 Contig 111 consensus sequence	Bryconamericus	84 7	P03	0005	
32_Contig_112_consensus_sequence	Pseudocorynopoma heteran- dria	81.81	P03	ovos	

				117	
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva	
32_Contig_119_consensus_sequence	Apareiodon affinis	98.04	P03	ovos	
32_Contig_145_consensus_sequence	Apareiodon affinis	97.82	P03	ovos	
32_Contig_178_consensus_sequence	Hyphessobrycon	84.4	P03	ovos	
32_Contig_196_consensus_sequence	Apareiodon affinis	95.1	P03	ovos	
34_Contig_1_consensus_sequence	Apareiodon affinis	94.94	P05	larvas	
34_Contig_5_consensus_sequence	Apareiodon affinis	94.68	P05	larvas	
34_Contig_11_consensus_sequence	Apareiodon affinis	97.69	P05	larvas	
34_Contig_15_consensus_sequence	Apareiodon affinis	92.3	P05	larvas	
34_Contig_23_consensus_sequence	Apareiodon affinis	90.48	P05	larvas	
34_Contig_32_consensus_sequence	Plagioscion squamosissimus	81.94	P05	larvas	
34_Contig_37_consensus_sequence	Apareiodon affinis	90.99	P05	larvas	
34_Contig_40_consensus_sequence	Leporinus tigrinus	94.25	P05	larvas	
34_Contig_45_consensus_sequence	Apareiodon affinis	92.22	P05	larvas	
34_Contig_49_consensus_sequence	Apareiodon affinis	97.02	P05	larvas	
34_Contig_50_consensus_sequence	Apareiodon affinis	90.65	P05	larvas	
34_Contig_53_consensus_sequence	Apareiodon affinis	91.76	P05	larvas	
34 Contig 58 consensus sequence	Apareiodon affinis	98.29	P05	larvas	
34 Contig 101 consensus sequence	Cichlasoma	82.0	P05	larvas	
34 Contig 104 consensus sequence	Astyanax lacustris	82.37	P05	larvas	
35 Contig 1 consensus sequence	, Catathvridium ienvnsii	99.46	P05	ovos	
35 Contig 4 consensus sequence	Catathyridium jenynsii	93.42	P05	ovos	
35 Contig 5 consensus sequence	Plagioscion squamosissimus	81.94	P05	ovos	
35 Contig 6 consensus sequence	Diapoma	90.68	P05	ovos	
35 Contig 9 consensus sequence	Catathvridium ienvnsii	99.46	P05	ovos	
35 Contig 13 consensus sequence	Plaaioscion sauamosissimus	81.71	P05	ovos	
35 Contig 20 consensus sequence	Astvanax lacustris	83.05	P05	ovos	
35 Contig 23 consensus sequence	Plaaioscion sauamosissimus	81.1	P05	ovos	
35 Contig 28 consensus sequence	Diapoma	87.03	P05	ovos	
35 Contig 30 consensus sequence	Diapoma	92.81	P05	ovos	
35 Contig 33 consensus sequence	Pvrrhulina australis	83.71	P05	ovos	
35 Contig 35 consensus sequence	Bryconamericus exodon	88.75	P05	ovos	
35 Contig 58 consensus sequence	Corvdoras	82.93	P05	ovos	
35 Contig 64 consensus sequence	Apareiodon affinis	88.7	P05	ovos	
35 Contig 70 consensus sequence	Catathyridium ienynsii	99.12	P05	ovos	
35 Contig 76 consensus sequence	Eigenmannia virescens	85.0	P05	ovos	
35 Contig 80 consensus sequence	Aphyocheirodon hemiarammus	82.31	P05		
35 Contig 85 consensus sequence	Roeboides descalvadensis	84.38	P05	0005	
35 Contig 94 consensus sequence	Characidium	87.96	P05		
35 Contig 96 consensus sequence	Proloricaria prolixa	82.06	P05	0005	
35 Contig 122 consensus sequence	Pyrrhulina australis	82.83	P05	0105	
35_Contig_128_consensus_sequence	Pseudocorynopoma heteran-	82.08	P05	ovos	
35 Contig 134 consensus sequence	Bryconamericus	84 86	POS	0//05	
35 Contig 143 consensus sequence	Angreiodon affinis	94.00		0105	
35 Contig 144 consensus sequence	Hypostomus striggticens	82 65		0103	
JJ_CONUE_144_CONSCIISUS_SEQUENCE	hypostonius striguticeps	02.05	105	0,03	

			1	
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
35_Contig_149_consensus_sequence	Apareiodon affinis	97.03	P05	ovos
35_Contig_157_consensus_sequence	Brycon	82.5	P05	ovos
35_Contig_159_consensus_sequence	Satanoperca pappaterra	78.76	P05	ovos
36-2_Contig_1_consensus_sequence	Apareiodon affinis	97.63	P06	larvas
36-2_Contig_5_consensus_sequence	Apareiodon affinis	97.1	P06	larvas
36-2_Contig_10_consensus_sequence	Apareiodon affinis	97.78	P06	larvas
36-2_Contig_11_consensus_sequence	Apareiodon affinis	93.95	P06	larvas
36-2_Contig_14_consensus_sequence	Apareiodon affinis	95.97	P06	larvas
36-2_Contig_18_consensus_sequence	Apareiodon affinis	97.24	P06	larvas
36-2_Contig_31_consensus_sequence	Apareiodon affinis	96.08	P06	larvas
36-2_Contig_32_consensus_sequence	Apareiodon affinis	93.47	P06	larvas
36-2_Contig_35_consensus_sequence	Apareiodon affinis	97.34	P06	larvas
36-2_Contig_38_consensus_sequence	Apareiodon affinis	92.0	P06	larvas
36-2_Contig_39_consensus_sequence	Apareiodon affinis	96.93	P06	larvas
36-2_Contig_45_consensus_sequence	Apareiodon affinis	93.07	P06	larvas
36-2_Contig_49_consensus_sequence	Apareiodon affinis	94.15	P06	larvas
36-2_Contig_50_consensus_sequence	Apareiodon affinis	97.74	P06	larvas
36-2 Contig 51 consensus sequence	Apareiodon affinis	92.63	P06	larvas
36-2_Contig_71_consensus_sequence	Apareiodon affinis	95.99	P06	larvas
36-2 Contig 74 consensus sequence	Apareiodon affinis	91.62	P06	larvas
36-2_Contig_77_consensus_sequence	Plagioscion squamosissimus	81.58	P06	larvas
36-2_Contig_81_consensus_sequence	Apareiodon affinis	95.81	P06	larvas
36-2 Contig 87 consensus sequence	Bryconamericus	84.18	P06	larvas
37 Contig 2 consensus sequence	Pyrrhulina australis	89.6	P06	ovos
37 Contig 9 consensus sequence	Plagioscion squamosissimus	80.58	P06	ovos
37 Contig 15 consensus sequence	Cyphocharax nagelii	81.59	P06	ovos
37 Contig 17 consensus sequence	Plagioscion squamosissimus	81.98	P06	ovos
37 Contig 22 consensus sequence	Diapoma	90.19	P06	ovos
37 Contig 32 consensus sequence	Diapoma	92.69	P06	ovos
37 Contig 36 consensus sequence	Apareiodon affinis	91.36	P06	ovos
37_Contig_41 consensus sequence	Apareiodon affinis	85.73	P06	ovos
37 Contig 44 consensus sequence	Plagioscion squamosissimus	81.92	P06	ovos
37 Contig 48 consensus sequence	Astyanax lacustris	82.87	P06	OVOS
37 Contig 50 consensus sequence	Astyanax lacustris	82.69	P06	ovos
37 Contig 57 consensus sequence	Astyanax lacustris	82.57	P06	ovos
37 Contig 58 consensus sequence	Moenkhausia forestii	84.14	P06	OVOS
37 Contig 60 consensus sequence	Apareiodon affinis	82.71	P06	OVOS
37 Contig 66 consensus sequence	Bryconamericus	83.9	P06	OVOS
37 Contig 76 consensus sequence	Astyanax bockmanni	83.18	P06	OVOS
37 Contig 77 consensus sequence	Apareiodon affinis	88.12	P06	OVOS
37 Contig 87 consensus sequence	Trichomycterus	82.82	P06	OVOS
37 Contig 93 consensus sequence	Hoplias sp.	81.75	P06	OVOS
37 Contig 94 consensus sequence	Roeboides descalvadensis	84.38	P06	OVOS
37 Contig 97 consensus sequence	Hemiarammus marainatus	92.84	P06	OVOS
				0.00

				119	
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva	
37_Contig_98_consensus_sequence	Leporinus striatus	82.74	P06	ovos	
37_Contig_110_consensus_sequence	Plagioscion squamosissimus	81.97	P06	ovos	
37_Contig_115_consensus_sequence	Astyanax lacustris	83.47	P06	ovos	
37_Contig_117_consensus_sequence	Eigenmannia virescens	81.87	P06	ovos	
37_Contig_122_consensus_sequence	Characidium	87.97	P06	ovos	
37_Contig_130_consensus_sequence	Pyrrhulina australis	86.51	P06	ovos	
37_Contig_131_consensus_sequence	Pyrrhulina australis	83.06	P06	ovos	
37_Contig_132_consensus_sequence	Apareiodon affinis	91.73	P06	ovos	
37_Contig_147_consensus_sequence	Bryconamericus	85.53	P06	ovos	
37_Contig_154_consensus_sequence	Serrasalmus marginatus	83.27	P06	ovos	
37_Contig_155_consensus_sequence	Roeboides descalvadensis	84.28	P06	ovos	
37_Contig_169_consensus_sequence	Astyanax lacustris	84.33	P06	ovos	
37_Contig_187_consensus_sequence	Serrapinnus sp. 1	81.07	P06	ovos	
37_Contig_188_consensus_sequence	Parodon nasus	89.77	P06	ovos	
37_Contig_189_consensus_sequence	Trachelyopterus galeatus	81.35	P06	ovos	
37_Contig_196_consensus_sequence	Phenacorhamdia tenebrosa	86.55	P06	ovos	
38_Contig_2consensus_sequence	Apareiodon affinis	91.53	P07	larvas	
38_Contig_3_consensus_sequence	Apareiodon affinis	95.4	P07	larvas	
38_Contig_6_consensus_sequence	Apareiodon affinis	97.41	P07	larvas	
38_Contig_10_consensus_sequence	Apareiodon affinis	93.8	P07	larvas	
38_Contig_13_consensus_sequence	Apareiodon affinis	95.51	P07	larvas	
38_Contig_15_consensus_sequence	Apareiodon affinis	92.04	P07	larvas	
38_Contig_17_consensus_sequence	Apareiodon affinis	97.06	P07	larvas	
38_Contig_18_consensus_sequence	Apareiodon affinis	98.13	P07	larvas	
38_Contig_21_consensus_sequence	Apareiodon affinis	97.94	P07	larvas	
38_Contig_24_consensus_sequence	Apareiodon affinis	96.55	P07	larvas	
38_Contig_29_consensus_sequence	Apareiodon affinis	97.94	P07	larvas	
38_Contig_30_consensus_sequence	Apareiodon affinis	92.16	P07	larvas	
38_Contig_32_consensus_sequence	Apareiodon affinis	96.09	P07	larvas	
38_Contig_33_consensus_sequence	Apareiodon affinis	94.26	P07	larvas	
38_Contig_34_consensus_sequence	Apareiodon affinis	95.49	P07	larvas	
38_Contig_38_consensus_sequence	Apareiodon affinis	93.77	P07	larvas	
38_Contig_40_consensus_sequence	Apareiodon affinis	92.97	P07	larvas	
38_Contig_47_consensus_sequence	Apareiodon affinis	92.1	P07	larvas	
38_Contig_54_consensus_sequence	Apareiodon affinis	91.07	P07	larvas	
38_Contig_60_consensus_sequence	Apareiodon affinis	92.85	P07	larvas	
40_Contig_1_consensus_sequence	Apareiodon affinis	91.29	P08	larvas	
40_Contig_2_consensus_sequence	Apareiodon affinis	96.8	P08	larvas	
40_Contig_6_consensus_sequence	Apareiodon affinis	94.83	P08	larvas	
40_Contig_8_consensus_sequence	Apareiodon affinis	97.58	P08	larvas	
40_Contig_11_consensus_sequence	Apareiodon affinis	91.5	P08	larvas	
40_Contig_12consensus_sequence	Apareiodon affinis	93.63	P08	larvas	
40_Contig_20_consensus_sequence	Apareiodon affinis	97.72	P08	larvas	
40_Contig_22_consensus_sequence	Apareiodon affinis	97.44	P08	larvas	

				120
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
40_Contig_25_consensus_sequence	Apareiodon affinis	92.81	P08	larvas
40_Contig_27_consensus_sequence	Apareiodon affinis	91.55	P08	larvas
40_Contig_42_consensus_sequence	Apareiodon affinis	89.42	P08	larvas
40_Contig_43_consensus_sequence	Apareiodon affinis	97.19	P08	larvas
40_Contig_44_consensus_sequence	Pyrrhulina australis	88.31	P08	larvas
40_Contig_45_consensus_sequence	Apareiodon affinis	88.92	P08	larvas
40_Contig_46_consensus_sequence	Apareiodon affinis	83.28	P08	larvas
41_Contig_12_consensus_sequence	Diapoma	92.81	P08	ovos
41_Contig_15_consensus_sequence	Apareiodon affinis	92.16	P08	ovos
41_Contig_16_consensus_sequence	Plagioscion squamosissimus	81.94	P08	ovos
41_Contig_18_consensus_sequence	Leporinus	83.6	P08	ovos
41_Contig_26_consensus_sequence	Diapoma	92.87	P08	ovos
41_Contig_28_consensus_sequence	Plagioscion squamosissimus	81.59	P08	ovos
41_Contig_29_consensus_sequence	Diapoma	88.65	P08	ovos
41_Contig_44_consensus_sequence	Corydoras	82.94	P08	ovos
41_Contig_46_consensus_sequence	Serrasalmus maculatus	82.51	P08	ovos
41_Contig_51_consensus_sequence	Diapoma	87.0	P08	ovos
41_Contig_75_consensus_sequence	Diapoma	91.53	P08	ovos
41_Contig_90_consensus_sequence	Diapoma	87.82	P08	ovos
41_Contig_95_consensus_sequence	Apareiodon affinis	95.37	P08	ovos
41_Contig_107_consensus_sequence	Bryconamericus	84.97	P08	ovos
41_Contig_108_consensus_sequence	Apareiodon affinis	90.81	P08	ovos
41_Contig_121_consensus_sequence	Diapoma	89.04	P08	ovos
41_Contig_130_consensus_sequence	Aphyocheirodon hemigrammus	80.8	P08	ovos
41_Contig_160_consensus_sequence	Astyanax bockmanni	83.2	P08	ovos
41_Contig_169_consensus_sequence	Hypostomus strigaticeps	82.65	P08	ovos
41_Contig_177_consensus_sequence	Plagioscion squamosissimus	82.0	P08	ovos
41_Contig_196_consensus_sequence	Cichla	80.87	P08	ovos
42_Contig_1_consensus_sequence	Apareiodon affinis	96.54	P09	larvas
42_Contig_2_2_consensus_sequence	Apareiodon affinis	96.91	P09	larvas
42_Contig_3_consensus_sequence	Apareiodon affinis	92.24	P09	larvas
42_Contig_4_consensus_sequence	Apareiodon affinis	91.62	P09	larvas
42_Contig_5_consensus_sequence	Apareiodon affinis	96.74	P09	larvas
42_Contig_6_consensus_sequence	Apareiodon affinis	98.13	P09	larvas
42_Contig_7_consensus_sequence	Clarias gariepinus	83.77	P09	larvas
42_Contig_8_consensus_sequence	Apareiodon affinis	96.55	P09	larvas
42_Contig_16_consensus_sequence	Hisonotus	79.13	P09	larvas
42_Contig_17_consensus_sequence	Apareiodon affinis	91.23	P09	larvas
42_Contig_19_consensus_sequence	Apareiodon affinis	92.16	P09	larvas
42_Contig_20_consensus_sequence	Apareiodon affinis	98.29	P09	larvas
42_Contig_22_consensus_sequence	Apareiodon affinis	97.52	P09	larvas
42_Contig_23_consensus_sequence	Apareiodon affinis	95.75	P09	larvas
42_Contig_31_consensus_sequence	Apareiodon affinis	97.78	P09	larvas
42_Contig_32_consensus_sequence	Apareiodon affinis	90.79	P09	larvas

				121
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
42_Contig_33_consensus_sequence	Apareiodon affinis	91.87	P09	larvas
42_Contig_36_consensus_sequence	Apareiodon affinis	97.44	P09	larvas
42_Contig_40_consensus_sequence	Apareiodon affinis	83.83	P09	larvas
42_Contig_46_consensus_sequence	Apareiodon affinis	91.44	P09	larvas
42_Contig_47_consensus_sequence	Apareiodon affinis	92.34	P09	larvas
42_Contig_48_consensus_sequence	Apareiodon affinis	96.87	P09	larvas
42_Contig_51_consensus_sequence	Apareiodon affinis	97.22	P09	larvas
42_Contig_52_consensus_sequence	Apareiodon affinis	92.55	P09	larvas
42_Contig_53_consensus_sequence	Apareiodon affinis	97.0	P09	larvas
42_Contig_64_consensus_sequence	Pamphorichthys hollandi	94.49	P09	larvas
42_Contig_71_consensus_sequence	Apareiodon affinis	91.06	P09	larvas
42_Contig_79_consensus_sequence	Apareiodon affinis	92.06	P09	larvas
42_Contig_80_consensus_sequence	Apareiodon affinis	92.17	P09	larvas
43_Contig_1_consensus_sequence	Apareiodon affinis	85.13	P09	ovos
43_Contig_3_consensus_sequence	Cyphocharax nagelii	81.98	P09	ovos
43 Contig 10 consensus sequence	Plagioscion squamosissimus	81.78	P09	ovos
43 Contig 13 consensus sequence	Apareiodon	80.04	P09	ovos
43 Contig 17 consensus sequence	Apareiodon affinis	92.0	P09	ovos
43 Contig 23 consensus sequence	Cyphocharax modestus	81.51	P09	ovos
43 Contig 27 consensus sequence	Plaaioscion sauamosissimus	82.58	P09	ovos
43 Contig 32 consensus sequence	Serrasalmus maculatus	80.11	P09	ovos
43 Contig 40 consensus sequence	Apareiodon affinis	97.82	P09	ovos
43 Contig 43 consensus sequence	Pvrrhulina australis	86.88	P09	ovos
43 Contig 45 consensus sequence	Apareiodon affinis	84.66	P09	ovos
	Pseudocorynopoma heteran-			
43_Contig_49_consensus_sequence	dria	82.4	P09	ovos
43_Contig_64_consensus_sequence	Prochilodus lineatus	82.84	P09	ovos
43 Contig 70 consensus sequence	Apareiodon affinis	89.43	P09	ovos
43 Contig 74 consensus sequence	Astyanax lacustris	81.43	P09	ovos
43 Contig 75 consensus sequence	Apareiodon affinis	90.38	P09	ovos
43 Contig 80 consensus sequence	Cyphocharax	80.2	P09	ovos
43 Contig 84 consensus sequence	Cyphocharax	81.46	P09	ovos
43 Contig 89 consensus sequence	Roeboides descalvadensis	84.33	P09	ovos
43 Contig 95 consensus sequence	Astvanax	81.38	P09	ovos
43 Contig 101 consensus sequence	Serrasalmus marainatus	83.16	P09	ovos
43 Contig 103 consensus sequence	Roeboides descalvadensis	84.38	P09	ovos
43 Contig 115 consensus sequence	Plagioscion squamosissimus	82.88	P09	ovos
43 Contig 122 consensus sequence	Aphyocheirodon hemiarammus	80.8	P09	ovos
43 Contig 136 consensus sequence	Planaltina britskii	84.41	P09	0005
43 Contig 139 consensus sequence	Apareiodon affinis	90.98	P09	0000
43 Contig 142 consensus sequence	Characidium	94.0	P09	0105
13 Contig 143 consensus sequence	Hypostomus striggticens	87 19	P09	0,003
A3 Contig 144 consensus sequence	Moenkhausia sanctaefilomenae	82.15	PUQ	0,005
13 Contig 150 consensus sequence	Characidium	86 Q2	F 0 <i>3</i> D/\0	0005
12 Contig 157 conconsus converse		00.95 92 EC	F 03	0005

				122
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
43_Contig_162_consensus_sequence	Proloricaria prolixa	82.27	P09	ovos
43_Contig_168_consensus_sequence	Pyrrhulina australis	83.26	P09	ovos
43_Contig_174_consensus_sequence	Diapoma	92.64	P09	ovos
43_Contig_175_consensus_sequence	Plagioscion squamosissimus	90.45	P09	ovos
43_Contig_176_consensus_sequence	Astyanax lacustris	81.23	P09	ovos
44_Contig_1_consensus_sequence	Apareiodon affinis	96.63	P10	larvas
44_Contig_2_consensus_sequence	Apareiodon affinis	96.43	P10	larvas
44_Contig_4_consensus_sequence	Apareiodon affinis	92.68	P10	larvas
44_Contig_9_consensus_sequence	Apareiodon affinis	92.74	P10	larvas
44_Contig_10_consensus_sequence	Apareiodon affinis	92.15	P10	larvas
44_Contig_11_consensus_sequence	Apareiodon affinis	97.66	P10	larvas
44_Contig_12_consensus_sequence	Apareiodon affinis	95.45	P10	larvas
44_Contig_16_consensus_sequence	Apareiodon affinis	94.92	P10	larvas
44_Contig_18_consensus_sequence	Apareiodon affinis	96.31	P10	larvas
44_Contig_19_consensus_sequence	Apareiodon affinis	91.79	P10	larvas
44_Contig_21_consensus_sequence	Apareiodon affinis	96.11	P10	larvas
44_Contig_24_consensus_sequence	Apareiodon affinis	93.53	P10	larvas
44_Contig_26_consensus_sequence	Apareiodon affinis	97.85	P10	larvas
44_Contig_27_consensus_sequence	Apareiodon affinis	92.69	P10	larvas
44_Contig_28_consensus_sequence	Apareiodon affinis	97.62	P10	larvas
44_Contig_29_consensus_sequence	Apareiodon affinis	97.29	P10	larvas
44_Contig_32_consensus_sequence	Hisonotus	79.27	P10	larvas
44_Contig_33_consensus_sequence	Apareiodon affinis	96.2	P10	larvas
44_Contig_39_consensus_sequence	Apareiodon affinis	91.47	P10	larvas
44_Contig_40_consensus_sequence	Apareiodon affinis	91.6	P10	larvas
44_Contig_41_consensus_sequence	Apareiodon affinis	91.81	P10	larvas
44_Contig_47_consensus_sequence	Apareiodon affinis	95.3	P10	larvas
44_Contig_50_consensus_sequence	Apareiodon affinis	94.18	P10	larvas
44_Contig_59_consensus_sequence	Apareiodon affinis	97.4	P10	larvas
44_Contig_72_consensus_sequence	Apareiodon affinis	96.57	P10	larvas
44_Contig_77_consensus_sequence	Apareiodon affinis	82.85	P10	larvas
45_Contig_1_consensus_sequence	Apareiodon affinis	94.28	P01	larvas
45_Contig_5_consensus_sequence	Apareiodon affinis	92.42	P01	larvas
45_Contig_6_consensus_sequence	Apareiodon affinis	92.37	P01	larvas
45_Contig_8_consensus_sequence	Apareiodon affinis	91.31	P01	larvas
45_Contig_10_consensus_sequence	Plagioscion squamosissimus	81.56	P01	larvas
45_Contig_12_consensus_sequence	Apareiodon affinis	97.37	P01	larvas
45_Contig_18_consensus_sequence	Apareiodon affinis	92.26	P01	larvas
45_Contig_21_consensus_sequence	Apareiodon affinis	96.62	P01	larvas
45_Contig_22_consensus_sequence	Plagioscion squamosissimus	80.94	P01	larvas
45_Contig_23_consensus_sequence	Apareiodon affinis	96.35	P01	larvas
45_Contig_26_consensus_sequence	Pyrrhulina australis	83.2	P01	larvas
45_Contig_32_consensus_sequence	Hoplias malabaricus	79.77	P01	larvas
45_Contig_33_consensus_sequence	Apareiodon affinis	92.66	P01	larvas

% Similari-Identificação sequencias Espécies Ponto Coletado Ovo/Larva dade 45 Contig 36 consensus sequence Apareiodon affinis 93.32 P01 larvas 45_Contig_37_consensus_sequence Pyrrhulina australis 82.8 P01 larvas 95.69 45_Contig_38_consensus_sequence Apareiodon affinis P01 larvas 45_Contig_41_consensus_sequence Apareiodon affinis 95.5 P01 larvas 45_Contig_45_consensus_sequence Plagioscion squamosissimus 81.36 P01 larvas 45 Contig 46 consensus sequence Apareiodon affinis 93.84 P01 larvas 45_Contig_48_consensus_sequence Apareiodon affinis 97.43 P01 larvas 45_Contig_50_consensus_sequence Apareiodon affinis 92.73 P01 larvas 45 Contig 58 consensus sequence Astyanax lacustris 82.97 P01 larvas 45 Contig 59 consensus sequence 97.83 P01 Apareiodon affinis larvas 45_Contig_63_consensus_sequence Apareiodon affinis 92.0 P01 larvas Pseudocorynopoma heteran-45_Contig_65_consensus_sequence 82.46 P01 larvas dria P01 45_Contig_76_consensus_sequence 83.43 Galeocharax qulo larvas 45_Contig_80_consensus_sequence 82.1 P01 Pseudocorynopoma larvas 45 Contig 91 consensus sequence Phenacorhamdia tenebrosa 91.43 P01 larvas 45_Contig_96_consensus_sequence Apareiodon affinis 96.9 P01 larvas 45_Contig_98_consensus_sequence Hemigrammus marginatus 85.55 P01 larvas P01 45_Contig_100_consensus_sequence Astyanax lacustris 82.11 larvas P01 45_Contig_108_consensus_sequence Hoplias malabaricus 82.17 larvas 94.27 47 Contig 1 consensus sequence Apareiodon affinis P03 larvas 47_Contig_2_consensus_sequence Apareiodon affinis 93.51 P03 larvas 47_Contig_3_consensus_sequence Apareiodon affinis 91.8 P03 larvas 47_Contig_4_consensus_sequence Apareiodon affinis 92.6 P03 larvas 47_Contig_5_consensus_sequence Apareiodon affinis 94.19 P03 larvas 47_Contig_7_consensus_sequence Apareiodon affinis 93.2 P03 larvas 96.69 P03 47_Contig_12_consensus_sequence Apareiodon affinis larvas 47_Contig_18_consensus_sequence Apareiodon affinis 97.04 P03 larvas 47_Contig_20_consensus_sequence Apareiodon affinis 94.61 P03 larvas 47 Contig 21 consensus sequence Apareiodon affinis 94.32 P03 larvas 47_Contig_27_consensus_sequence Apareiodon affinis 95.4 P03 larvas 47_Contig_29_consensus_sequence Apareiodon affinis 92.98 P03 larvas 47_Contig_30_consensus_sequence Apareiodon affinis 97.72 P03 larvas Apareiodon affinis 97.39 P03 47_Contig_31_consensus_sequence larvas 47 Contig 34 consensus sequence Apareiodon affinis 94.16 P03 larvas 47 Contig 35 consensus sequence Apareiodon affinis 96.32 P03 larvas 47_Contig_37_consensus_sequence Apareiodon affinis 95.38 P03 larvas 47 Contig 38 consensus sequence Apareiodon affinis 95.91 P03 larvas 47_Contig_46_consensus_sequence Apareiodon affinis 91.54 P03 larvas P03 47_Contig_48_consensus_sequence Apareiodon affinis 95.41 larvas 47 Contig 50 consensus sequence Apareiodon affinis 91.51 P03 larvas 47_Contig_54_consensus_sequence Apareiodon affinis 92.59 P03 larvas 47_Contig_57_consensus_sequence Apareiodon affinis 92.75 P03 larvas P03 47_Contig_59_consensus_sequence Apareiodon affinis 96.36 larvas Apareiodon affinis 96.53 P03 47 Contig 63 consensus sequence larvas

				124
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
47_Contig_68_consensus_sequence	Schizodon	90.79	P03	larvas
47_Contig_69_consensus_sequence	Plagioscion squamosissimus	81.46	P03	larvas
48_Contig_3_2_consensus_sequence	Apareiodon affinis	97.14	P04	larvas
48_Contig_4_consensus_sequence	Apareiodon affinis	93.01	P04	larvas
48_Contig_7_consensus_sequence	Apareiodon affinis	97.78	P04	larvas
48_Contig_8_consensus_sequence	Apareiodon affinis	97.16	P04	larvas
48_Contig_10_consensus_sequence	Apareiodon affinis	97.24	P04	larvas
48_Contig_14_consensus_sequence	Apareiodon affinis	91.74	P04	larvas
48_Contig_16_consensus_sequence	Apareiodon affinis	96.53	P04	larvas
48_Contig_17_consensus_sequence	Apareiodon affinis	94.98	P04	larvas
48_Contig_18_consensus_sequence	Apareiodon affinis	97.94	P04	larvas
48_Contig_21_consensus_sequence	Apareiodon affinis	92.89	P04	larvas
48 Contig 23 consensus sequence	Apareiodon affinis	97.41	P04	larvas
48 Contig 24 consensus sequence	Apareiodon affinis	97.24	P04	larvas
48 Contig 25 consensus sequence	Apareiodon affinis	93.14	P04	larvas
48 Contig 26 consensus sequence	Plaaioscion sauamosissimus	82.02	P04	larvas
48 Contig 27 consensus sequence	Apareiodon affinis	92.12	P04	larvas
48 Contig 30 consensus sequence	Anareiodon affinis	96.85	P04	larvas
48 Contig 33 consensus sequence	Apareiodon affinis	97.82	P04	larvas
48 Contig 39 consensus sequence	Apareiodon affinis	97.48	P04	larvas
48 Contig 46 consensus sequence	Apareiodon affinis	90.86	P04	larvas
48 Contig 50 consensus sequence	Apareiodon affinis	92.0	P04	larvas
48 Contig 69 consensus sequence	Astvanax lacustris	82.5	P04	larvas
48 Contig 77 consensus sequence	Anarejodon affinis	96.26	P04	larvas
48 Contig 78 consensus sequence	Aparenou on ajjinis	90.20 80.94	P04	larvas
48_Contig_85_consensus_sequence	Pseudocorynopoma heteran- dria	82.79	P04	larvas
48 Contig 96 consensus sequence	Pyrrhulina australis	88.92	P04	larvas
49 Contig 1 consensus sequence	Apareiodon affinis	96.83	P05	larvas
49 Contig 2 consensus sequence	Apareiodon affinis	91.48	P05	larvas
49 Contig 3 consensus sequence	Apareiodon affinis	96.02	P05	larvas
49 Contig 6 consensus sequence	Apareiodon affinis	98.04	P05	larvas
49 Contig 8 consensus sequence	Apareiodon affinis	95.71	P05	larvas
49 Contig 12 consensus sequence	Apareiodon affinis	94.31	P05	larvas
49 Contig 14 consensus sequence	Apareiodon affinis	98.03	P05	larvas
49 Contig 19 consensus sequence	Apareiodon affinis	92.6	P05	larvas
49 Contig 23 consensus sequence	Anareiodon affinis	97.24	P05	larvas
49 Contig 29 consensus sequence	Anareiodon affinis	93 14	P05	larvas
49 Contig 30 consensus sequence	Apareiodon affinis	93.88	P05	larvas
49 Contig 33 consensus sequence	Anarejodon affinis	95.00	P05	larvas
49 Contig 34 consensus sequence	Anarejodon affinis	96 Q1	POS	larvas
49 Contig 35 consensus sequence	Angreiodon affinis	02 02		larvas
49_contig_52_consensus_sequence	Apareiodon effinis	J2.0J		
49_Contig_55_Consensus_sequence	Apareiodon effinic	97.24		Idi VdS
49_contig_59_consensus_sequence	Apareiodon ajjinis	97.01	PU5	lamas
49_Contig_69_consensus_sequence	Apareiodon affinis	93.98	P05	larvas

				125
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
49_Contig_81_consensus_sequence	Apareiodon affinis	97.03	P05	larvas
49_Contig_102_consensus_sequence	Apareiodon affinis	97.45	P05	larvas
49_Contig_103_consensus_sequence	Apareiodon affinis	97.04	P05	larvas
49_Contig_109_consensus_sequence	Apareiodon affinis	97.44	P05	larvas
49_Contig_127_consensus_sequence	Hyphessobrycon	83.81	P05	larvas
50_Contig_1_consensus_sequence	Apareiodon affinis	97.94	P06	larvas
50_Contig_2_consensus_sequence	Apareiodon affinis	92.48	P06	larvas
50_Contig_9_consensus_sequence	Apareiodon affinis	98.29	P06	larvas
50_Contig_13_consensus_sequence	Apareiodon affinis	98.29	P06	larvas
50_Contig_16_consensus_sequence	Apareiodon affinis	91.5	P06	larvas
50_Contig_17_consensus_sequence	Apareiodon affinis	97.55	P06	larvas
50_Contig_18_consensus_sequence	Apareiodon affinis	95.61	P06	larvas
50_Contig_28_consensus_sequence	Apareiodon affinis	93.55	P06	larvas
50_Contig_33_consensus_sequence	Apareiodon affinis	92.86	P06	larvas
50_Contig_37_consensus_sequence	Apareiodon affinis	92.34	P06	larvas
51_Contig_1_consensus_sequence	Apareiodon affinis	94.44	P07	larvas
51_Contig_3_consensus_sequence	Apareiodon affinis	95.09	P07	larvas
51_Contig_7_consensus_sequence	Apareiodon affinis	92.55	P07	larvas
51_Contig_9_consensus_sequence	Apareiodon affinis	98.29	P07	larvas
51_Contig_14_consensus_sequence	Apareiodon affinis	97.45	P07	larvas
51_Contig_15_consensus_sequence	Apareiodon affinis	98.29	P07	larvas
51_Contig_16_consensus_sequence	Apareiodon affinis	97.39	P07	larvas
51_Contig_18_consensus_sequence	Apareiodon affinis	92.36	P07	larvas
51_Contig_22_consensus_sequence	Apareiodon affinis	94.61	P07	larvas
51_Contig_23_consensus_sequence	Apareiodon affinis	92.2	P07	larvas
51_Contig_25_consensus_sequence	Apareiodon affinis	91.81	P07	larvas
51_Contig_29_consensus_sequence	Apareiodon affinis	94.63	P07	larvas
51_Contig_34_consensus_sequence	Apareiodon affinis	97.71	P07	larvas
51_Contig_45_consensus_sequence	Apareiodon affinis	96.17	P07	larvas
51_Contig_46_consensus_sequence	Apareiodon affinis	92.71	P07	larvas
51_Contig_50_consensus_sequence	Apareiodon affinis	95.1	P07	larvas
51_Contig_53_consensus_sequence	Apareiodon affinis	97.66	P07	larvas
51_Contig_54_consensus_sequence	Apareiodon affinis	96.0	P07	larvas
51_Contig_56_consensus_sequence	Apareiodon affinis	92.8	P07	larvas
51_Contig_57_consensus_sequence	Apareiodon affinis	94.23	P07	larvas
51_Contig_71_consensus_sequence	Apareiodon affinis	90.47	P07	larvas
51_Contig_88_consensus_sequence	Plagioscion squamosissimus	81.94	P07	larvas
52_Contig_1_consensus_sequence	Apareiodon affinis	96.09	P08	larvas
52_Contig_2_consensus_sequence	Apareiodon affinis	93.61	P08	larvas
52_Contig_6_consensus_sequence	Apareiodon affinis	92.3	P08	larvas
52_Contig_8_consensus_sequence	Apareiodon affinis	92.49	P08	larvas
52_Contig_9_consensus_sequence	Apareiodon affinis	97.78	P08	larvas
52_Contig_12_consensus_sequence	Apareiodon affinis	92.5	P08	larvas
52_Contig_13_consensus_sequence	Apareiodon affinis	95.05	P08	larvas

				126
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
52_Contig_18_consensus_sequence	Apareiodon affinis	91.45	P08	larvas
52_Contig_19_consensus_sequence	Apareiodon affinis	92.03	P08	larvas
52_Contig_21_consensus_sequence	Apareiodon affinis	97.74	P08	larvas
52_Contig_22_consensus_sequence	Apareiodon affinis	97.06	P08	larvas
52_Contig_23_consensus_sequence	Apareiodon affinis	93.65	P08	larvas
52_Contig_25_consensus_sequence	Apareiodon affinis	91.8	P08	larvas
52_Contig_30_consensus_sequence	Apareiodon affinis	97.37	P08	larvas
52_Contig_33_consensus_sequence	Apareiodon affinis	96.97	P08	larvas
52_Contig_35_consensus_sequence	Apareiodon affinis	90.74	P08	larvas
52_Contig_37_consensus_sequence	Apareiodon affinis	91.23	P08	larvas
52_Contig_48_consensus_sequence	Apareiodon affinis	96.56	P08	larvas
52_Contig_55_consensus_sequence	Apareiodon affinis	96.56	P08	larvas
52_Contig_65_consensus_sequence	Plagioscion squamosissimus	82.1	P08	larvas
53_Contig_1_consensus_sequence	Apareiodon affinis	97.78	P09	larvas
53_Contig_2_consensus_sequence	Apareiodon affinis	94.23	P09	larvas
53_Contig_3_consensus_sequence	Apareiodon affinis	98.13	P09	larvas
53_Contig_4_consensus_sequence	Apareiodon affinis	90.66	P09	larvas
53 Contig 8 consensus sequence	Apareiodon affinis	92.36	P09	larvas
53_Contig_11_consensus_sequence	Apareiodon affinis	91.09	P09	larvas
53 Contig 13 consensus sequence	Apareiodon affinis	91.6	P09	larvas
53_Contig_16_consensus_sequence	Hisonotus	79.27	P09	larvas
53_Contig_17_consensus_sequence	Apareiodon affinis	90.45	P09	larvas
53 Contig 19 consensus sequence	Apareiodon affinis	97.48	P09	larvas
53_Contig_21_consensus_sequence	Apareiodon affinis	95.3	P09	larvas
53 Contig 24 consensus sequence	Hisonotus	79.13	P09	larvas
53_Contig_33_consensus_sequence	Apareiodon affinis	92.45	P09	larvas
53_Contig_34_consensus_sequence	Apareiodon affinis	91.31	P09	larvas
53 Contig 37 consensus sequence	Apareiodon affinis	96.82	P09	larvas
53_Contig_40_consensus_sequence	Plagioscion squamosissimus	82.1	P09	larvas
53 Contig 41 consensus sequence	Apareiodon affinis	90.87	P09	larvas
53_Contig_42_consensus_sequence	Apareiodon affinis	95.98	P09	larvas
53_Contig_43_consensus_sequence	Apareiodon affinis	92.56	P09	larvas
53_Contig_45_consensus_sequence	Apareiodon affinis	94.28	P09	larvas
53_Contig_46_consensus_sequence	Apareiodon affinis	91.76	P09	larvas
53_Contig_47_consensus_sequence	Apareiodon affinis	90.98	P09	larvas
53_Contig_48_consensus_sequence	Apareiodon affinis	96.83	P09	larvas
53_Contig_51_consensus_sequence	Apareiodon affinis	95.77	P09	larvas
53_Contig_52_consensus_sequence	Apareiodon affinis	97.94	P09	larvas
53_Contig_53_consensus_sequence	Apareiodon affinis	98.04	P09	larvas
53_Contig_63_consensus_sequence	Apareiodon affinis	89.49	P09	larvas
53_Contig_64_consensus_sequence	Apareiodon affinis	97.51	P09	larvas
53_Contig_67_consensus sequence	Apareiodon affinis	94.32	P09	larvas
53_Contig_86_consensus_sequence	Apareiodon affinis	86.18	P09	larvas
53 Contig 87 consensus sequence	Serrasalmus maculatus	82.51	P09	larvas

				127
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
53_Contig_88_consensus_sequence	Apareiodon affinis	91.24	P09	larvas
53_Contig_91_consensus_sequence	Apareiodon affinis	91.85	P09	larvas
53_Contig_99_consensus_sequence	Astyanax lacustris	82.85	P09	larvas
53_Contig_105_consensus_sequence	Apareiodon affinis	96.4	P09	larvas
53_Contig_106_consensus_sequence	Apareiodon affinis	91.99	P09	larvas
53_Contig_114_consensus_sequence	Clarias gariepinus	83.81	P09	larvas
53_Contig_115_consensus_sequence	Apareiodon affinis	97.6	P09	larvas
53_Contig_141_consensus_sequence	Pyrrhulina australis	87.53	P09	larvas
53_Contig_166_consensus_sequence	Pyrrhulina australis	89.78	P09	larvas
54_Contig_6_consensus_sequence	Pyrrhulina australis	89.32	P09	ovos
54_Contig_20_consensus_sequence	Catathyridium jenynsii	99.4	P09	ovos
54_Contig_39_consensus_sequence	Catathyridium jenynsii	99.3	P09	ovos
54_Contig_48_consensus_sequence	Hoplias sp.	80.09	P09	ovos
54_Contig_52_consensus_sequence	Catathyridium jenynsii	99.24	P09	ovos
54_Contig_61_consensus_sequence	Catathyridium jenynsii	98.27	P09	ovos
54_Contig_80_consensus_sequence	Prochilodus lineatus	82.56	P09	ovos
54_Contig_81_consensus_sequence	Catathyridium jenynsii	99.24	P09	ovos
54_Contig_93_consensus_sequence	Plagioscion squamosissimus	81.81	P09	ovos
54_Contig_98_consensus_sequence	Apareiodon affinis	90.99	P09	ovos
54_Contig_143_consensus_sequence	Apareiodon affinis	88.9	P09	ovos
54_Contig_144_consensus_sequence	Brycon	81.36	P09	ovos
55_Contig_1_2_consensus_sequence	Apareiodon affinis	97.28	P10	larvas
55_Contig_2_consensus_sequence	Apareiodon affinis	97.84	P10	larvas
55_Contig_4_consensus_sequence	Apareiodon affinis	96.81	P10	larvas
55_Contig_5_consensus_sequence	Apareiodon affinis	96.9	P10	larvas
55_Contig_6_consensus_sequence	Apareiodon affinis	89.5	P10	larvas
55_Contig_8_consensus_sequence	Apareiodon affinis	94.77	P10	larvas
55_Contig_14_consensus_sequence	Apareiodon affinis	93.29	P10	larvas
55_Contig_15_consensus_sequence	Apareiodon affinis	94.1	P10	larvas
55_Contig_16_consensus_sequence	Apareiodon affinis	94.77	P10	larvas
55_Contig_17_consensus_sequence	Apareiodon affinis	97.37	P10	larvas
55_Contig_19_consensus_sequence	Apareiodon affinis	97.97	P10	larvas
55_Contig_21_consensus_sequence	Apareiodon affinis	95.41	P10	larvas
55_Contig_23_consensus_sequence	Apareiodon affinis	96.81	P10	larvas
55_Contig_24_consensus_sequence	Apareiodon affinis	97.05	P10	larvas
55_Contig_29_consensus_sequence	Apareiodon affinis	93.25	P10	larvas
55_Contig_31_consensus_sequence	Apareiodon affinis	97.97	P10	larvas
55_Contig_32_consensus_sequence	Apareiodon affinis	95.35	P10	larvas
55_Contig_38_consensus_sequence	Apareiodon affinis	92.51	P10	larvas
55_Contig_52_consensus_sequence	Apareiodon affinis	92.91	P10	larvas
55_Contig_64_consensus_sequence	Plagioscion squamosissimus	79.89	P10	larvas
55_Contig_68_consensus_sequence	Apareiodon affinis	84.12	P10	larvas
56A_Contig_1_consensus_sequence	Apareiodon affinis	97.69	P01	larvas
56A_Contig_2_consensus sequence	Apareiodon affinis	97.94	P01	larvas

				128
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
56A_Contig_5_consensus_sequence	Apareiodon affinis	91.94	P01	larvas
56A_Contig_9_consensus_sequence	Apareiodon affinis	97.38	P01	larvas
56A_Contig_11_consensus_sequence	Apareiodon affinis	92.73	P01	larvas
56A_Contig_15_consensus_sequence	Apareiodon affinis	91.97	P01	larvas
56A_Contig_22_consensus_sequence	Apareiodon affinis	96.26	P01	larvas
56A_Contig_23_consensus_sequence	Apareiodon affinis	98.04	P01	larvas
56A_Contig_25_consensus_sequence	Apareiodon affinis	97.64	P01	larvas
56A_Contig_26_consensus_sequence	Apareiodon affinis	94.71	P01	larvas
56A_Contig_28_consensus_sequence	Apareiodon affinis	96.79	P01	larvas
56A_Contig_29_consensus_sequence	Apareiodon affinis	94.04	P01	larvas
56A_Contig_34_consensus_sequence	Apareiodon affinis	95.27	P01	larvas
56A_Contig_35_consensus_sequence	Apareiodon affinis	97.72	P01	larvas
56A_Contig_37_consensus_sequence	Apareiodon affinis	92.96	P01	larvas
56A_Contig_39_consensus_sequence	Plagioscion squamosissimus	81.94	P01	larvas
56A_Contig_42_consensus_sequence	Apareiodon affinis	95.64	P01	larvas
56A_Contig_43_consensus_sequence	Apareiodon affinis	92.56	P01	larvas
56A_Contig_51_consensus_sequence	Apareiodon affinis	97.2	P01	larvas
56A_Contig_61_consensus_sequence	Apareiodon affinis	95.78	P01	larvas
56A_Contig_73_consensus_sequence	Apareiodon affinis	95.15	P01	larvas
56A Contig 75 consensus sequence	Apareiodon affinis	96.04	P01	larvas
56A_Contig_78_consensus_sequence	Corydoras	82.94	P01	larvas
56A_Contig_86_consensus_sequence	Apareiodon affinis	92.39	P01	larvas
56A Contig 91 consensus sequence	Apareiodon affinis	96.94	P01	larvas
56A_Contig_97_consensus_sequence	Apareiodon affinis	97.0	P01	larvas
56A Contig 108 consensus sequence	Apareiodon affinis	93.92	P01	larvas
56A_Contig_121_consensus_sequence	Roeboides descalvadensis	79.36	P01	larvas
56A_Contig_122_consensus_sequence	Pseudocorynopoma heteran- dria	83.01	P01	larvas
57_Contig_51_consensus_sequence	Cyphocharax modestus	82.0	P01	ovos
57 Contig 85 consensus sequence	Apareiodon affinis	93.33	P01	ovos
57_Contig_88_consensus_sequence	Plagioscion squamosissimus	80.77	P01	ovos
58A_Contig_1_consensus_sequence	Apareiodon affinis	96.8	P02	larvas
58A_Contig_2_consensus_sequence	Apareiodon affinis	92.72	P02	larvas
58A_Contig_3_consensus_sequence	Apareiodon affinis	91.12	P02	larvas
58A_Contig_5_consensus_sequence	Apareiodon affinis	97.05	P02	larvas
58A_Contig_6_consensus_sequence	Apareiodon affinis	92.55	P02	larvas
58A_Contig_7_consensus_sequence	Apareiodon affinis	97.19	P02	larvas
58A Contig 12 consensus sequence	Apareiodon affinis	96.22	P02	larvas
58A Contig 15 consensus sequence	Apareiodon affinis	96.81	P02	larvas
58A Contig 17 consensus sequence	Apareiodon affinis	97.15	P02	larvas
58A_Contig_19_consensus sequence	Apareiodon affinis	93.03	P02	larvas
58A_Contig_23 consensus sequence	Apareiodon affinis	93.34	P02	larvas
58A_Contig_25_consensus sequence	Apareiodon affinis	97.79	P02	larvas
58A_Contig_27_consensus_sequence	Apareiodon affinis	96.58	P02	larvas
58A_Contig_28_consensus_sequence	Apareiodon affinis	94.23	P02	larvas

				129
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
58A_Contig_29_consensus_sequence	Apareiodon affinis	97.63	P02	larvas
58A_Contig_30_consensus_sequence	Apareiodon affinis	93.62	P02	larvas
58A_Contig_31_consensus_sequence	Apareiodon affinis	97.97	P02	larvas
58A_Contig_32_consensus_sequence	Apareiodon affinis	95.86	P02	larvas
58A_Contig_33_consensus_sequence	Apareiodon affinis	91.7	P02	larvas
58A_Contig_38_consensus_sequence	Apareiodon affinis	97.97	P02	larvas
58A_Contig_40_consensus_sequence	Pyrrhulina australis	89.4	P02	larvas
58A_Contig_41_consensus_sequence	Apareiodon affinis	92.26	P02	larvas
58A_Contig_42_consensus_sequence	Apareiodon affinis	97.34	P02	larvas
58A_Contig_43_consensus_sequence	Apareiodon affinis	93.76	P02	larvas
58A_Contig_46_consensus_sequence	Apareiodon affinis	96.79	P02	larvas
58A_Contig_53_consensus_sequence	Apareiodon affinis	95.42	P02	larvas
58A_Contig_60_consensus_sequence	Plagioscion squamosissimus	82.12	P02	larvas
58A_Contig_64_consensus_sequence	Serrasalmus maculatus	82.6	P02	larvas
59_Contig_1_consensus_sequence	Apareiodon affinis	98.32	P02	ovos
59_Contig_3_consensus_sequence	Apareiodon affinis	92.33	P02	ovos
59_Contig_5_consensus_sequence	Apareiodon affinis	97.85	P02	ovos
59_Contig_6_consensus_sequence	Apareiodon affinis	97.97	P02	ovos
59_Contig_8_consensus_sequence	Apareiodon affinis	97.82	P02	ovos
59_Contig_13_consensus_sequence	Plagioscion squamosissimus	82.1	P02	ovos
59_Contig_15_consensus_sequence	Apareiodon affinis	95.57	P02	ovos
59_Contig_17_consensus_sequence	Apareiodon affinis	97.97	P02	ovos
59_Contig_20_consensus_sequence	Apareiodon affinis	92.2	P02	ovos
59_Contig_21_consensus_sequence	Cyphocharax nagelii	81.82	P02	ovos
59_Contig_22_consensus_sequence	Apareiodon affinis	97.21	P02	ovos
59_Contig_24_consensus_sequence	Roeboides descalvadensis	94.25	P02	ovos
59_Contig_25_consensus_sequence	Apareiodon affinis	96.03	P02	ovos
59_Contig_27_consensus_sequence	Apareiodon affinis	97.97	P02	ovos
59_Contig_30_consensus_sequence	Apareiodon affinis	97.64	P02	ovos
59 Contig_34 consensus sequence	Apareiodon affinis	91.85	P02	ovos
59_Contig_35_consensus_sequence	Serrasalmus maculatus	82.44	P02	ovos
59 Contig_37 consensus_sequence	Aphyocheirodon hemigrammus	82.48	P02	ovos
59_Contig_41_consensus_sequence	Pyrrhulina australis	89.61	P02	ovos
59_Contig_43_consensus_sequence	Apareiodon affinis	93.89	P02	ovos
59 Contig 44 consensus sequence	Apareiodon affinis	97.21	P02	ovos
59 Contig 55 consensus sequence	Roeboides descalvadensis	82.2	P02	ovos
59 Contig 57 consensus sequence	Astyanax lacustris	82.41	P02	ovos
59 Contig 58 consensus sequence	Apareiodon affinis	92.77	P02	ovos
59 Contig 63 consensus sequence	Hemigrammus marginatus	90.89	P02	ovos
59 Contig 69 consensus sequence	Hypostomus strigaticeps	82.34	P02	ovos
59_Contig_72_consensus_sequence	Pseudocorynopoma heteran- dria	83.15	P02	ovos
59 Contig 73 consensus sequence	Apgreiodon affinis	81.4	P02	OVOS
59 Contig 76 consensus sequence	Plagioscion sauamosissimus	87.01	P02	ovos
59 Contig 86 consensus sequence	Trichomycterus	78.23	P02	OVOS

Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
60_Contig_2_consensus_sequence	Leporinus octofasciatus	92.1	P03	larvas
60_Contig_3_consensus_sequence	Leporinus octofasciatus	92.66	P03	larvas
60_Contig_16_consensus_sequence	Leporinus paranensis	92.51	P03	larvas
60_Contig_18_consensus_sequence	Leporinus paranensis	95.49	P03	larvas
60_Contig_32_consensus_sequence	Leporinus paranensis	88.98	P03	larvas
60_Contig_60_consensus_sequence	Leporinus paranensis	91.06	P03	larvas
60_Contig_78_consensus_sequence	Plagioscion squamosissimus	80.96	P03	larvas
60_Contig_89_consensus_sequence	Astyanax bockmanni	82.01	P03	larvas
60_Contig_101_consensus_sequence	Apareiodon affinis	86.0	P03	larvas
61_Contig_1_consensus_sequence	Rhamphichthys	82.2	P04	larvas
61_Contig_6_consensus_sequence	Serrasalmus maculatus	97.75	P04	larvas
61_Contig_8_consensus_sequence	Serrasalmus maculatus	97.94	P04	larvas
61_Contig_23_consensus_sequence	Hisonotus	79.3	P04	larvas
61_Contig_28_consensus_sequence	Hisonotus	80.87	P04	larvas
61_Contig_50_consensus_sequence	Bryconamericus	80.58	P04	larvas
61 Contig 51 consensus sequence	Serrasalmus maculatus	97.24	P04	larvas
61 Contig 59 consensus sequence	Apareiodon affinis	97.94	P04	larvas
61 Contig 80 consensus sequence	Rhamphichthys	81.75	P04	larvas
61 Contig 90 consensus sequence	Plagioscion squamosissimus	82.1	P04	larvas
62 contig 1 consensus sequence	Apareiodon affinis	93.63	P05	larvas
62 contig 3 consensus sequence	Apareiodon affinis	97.82	P05	larvas
62 contig 5 consensus sequence	Apareiodon affinis	97.5	P05	larvas
62 contig 7 consensus sequence	Apareiodon affinis	93.48	P05	larvas
62 contig 8 consensus sequence	Apareiodon affinis	97.62	P05	larvas
62 contig 9 consensus sequence	Apareiodon affinis	97.4	P05	larvas
62 contig 16 consensus sequence	Apareiodon affinis	90.27	P05	larvas
62 contig 17 consensus sequence	Apareiodon affinis	92.93	P05	larvas
62 contig 18 consensus sequence	Apareiodon affinis	97.57	P05	larvas
62 contig 29 consensus sequence	Apareiodon affinis	94.28	P05	larvas
62 contig 30 consensus sequence	Apareiodon affinis	96.24	P05	larvas
62 contig 40 consensus sequence	Apareiodon affinis	94.03	P05	larvas
62 contig 54 consensus sequence	Apareiodon affinis	94.72	P05	larvas
62 contig 58 consensus sequence	Apareiodon affinis	97.22	P05	larvas
62 contig 65 consensus sequence	Roeboides descalvadensis	83.8	P05	larvas
62 contig 68 consensus sequence	Serrasalmus maculatus	82.51	P05	larvas
63 contig 2 consensus sequence	Angreiodon affinis	95.67	P06	larvas
63 contig 9 consensus sequence	Angreiodon affinis	93.23	P06	larvas
63 contig 10 consensus sequence	Angreiodon affinis	94 17	P06	larvas
63 contig 11 consensus sequence	Angreiodon affinis	97 78	P06	larvas
63 contig 16 consensus sequence	Angreiodon affinis	96 55	P06	larvas
63 contig 19 consensus sequence	Angrejodon affinis	93.25	P06	larvas
63 contig 23 consensus sequence	Angreiodon affinis	92.20	P06	larvas
63 contig 26 consensus sequence	Clarias aarieninus	92.05 8 <u>4</u> 1	POG	larvas
63 contig 27 consensus sequence	Angreiodon affinis	98 20	POG	larvas
05_contig_27_consensus_sequence	πραιεισαστι αjjinis	50.25	100	101 405

				131
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
63_contig_28_consensus_sequence	Apareiodon affinis	97.4	P06	larvas
63_contig_36_consensus_sequence	Apareiodon affinis	95.0	P06	larvas
63_contig_42_consensus_sequence	Apareiodon affinis	91.89	P06	larvas
63_contig_43_consensus_sequence	Apareiodon affinis	94.77	P06	larvas
63_contig_45_consensus_sequence	Apareiodon affinis	92.11	P06	larvas
63_contig_49_consensus_sequence	Apareiodon affinis	97.78	P06	larvas
63_contig_53_consensus_sequence	Apareiodon affinis	95.66	P06	larvas
63_contig_54_consensus_sequence	Apareiodon affinis	96.9	P06	larvas
63_contig_55_consensus_sequence	Apareiodon affinis	95.48	P06	larvas
63_contig_57_consensus_sequence	Knodus	80.42	P06	larvas
63_contig_63_consensus_sequence	Knodus	80.11	P06	larvas
63_contig_71_consensus_sequence	Plagioscion squamosissimus	81.94	P06	larvas
63 contig 72 consensus sequence	Hypostomus commersoni	82.7	P06	larvas
63_contig_73_consensus_sequence	Apareiodon affinis	96.61	P06	larvas
63_contig_74_consensus_sequence	Apareiodon affinis	96.78	P06	larvas
63 contig 77 consensus sequence	Apareiodon affinis	93.65	P06	larvas
63 contig 82 consensus sequence	Apareiodon affinis	96.45	P06	larvas
63 contig 87 consensus sequence	Apareiodon affinis	95.58	P06	larvas
63 contig 91 consensus sequence	Apareiodon affinis	95.18	P06	larvas
63 contig 96 consensus sequence	Apareiodon affinis	91.55	P06	larvas
63 contig 101 consensus sequence	Apareiodon affinis	96.57	P06	larvas
63 contig 108 consensus sequence	Apareiodon affinis	92.52	P06	larvas
63 contig 109 consensus sequence	Apareiodon affinis	96.13	P06	larvas
63 contig 119 consensus sequence	Pyrrhulina australis	87.42	P06	larvas
63 contig 120 consensus sequence	Astyanax lacustris	82.82	P06	larvas
63 contig 121 consensus sequence	Apareiodon affinis	93.16	P06	larvas
63 contig 122 consensus sequence	Hisonotus	78.14	P06	larvas
63 contig 132 consensus sequence	Corvdoras	82.62	P06	larvas
63 contig 136 consensus sequence	Prochilodus lineatus	82.47	P06	larvas
63 Contig 150 consensus sequence	Astyanax lacustris	82.99	P06	larvas
64 contig 1 consensus sequence	Apareiodon affinis	97.78	P07	larvas
64 contig 5 consensus sequence	Leporinus	83.45	P07	larvas
64 contig 8 consensus sequence	Apareiodon affinis	95.65	P07	larvas
64 contig 9 consensus sequence	Apareiodon affinis	97.51	P07	larvas
64 contig 11 consensus sequence	Apareiodon affinis	92.91	P07	larvas
64 contig 13 consensus sequence	Apareiodon affinis	91.9	P07	larvas
64 contig 23 consensus sequence	Hisonotus	79.27	P07	larvas
64 contig 25 consensus sequence	Apareiodon affinis	94.01	P07	larvas
64 contig 30 consensus sequence	Apareiodon affinis	92.08	P07	larvas
64 contig 34 consensus sequence	Apareiodon affinis	89.5	P07	larvas
64 contig 35 consensus sequence	Apareiodon affinis	90.55	P07	larvas
64 contig 42 consensus sequence	Anareiodon affinis	91 84	P07	larvas
64 contig 43 consensus sequence	Apareiodon affinis	96.99	P07	Jarvas
64 contig 48 consensus sequence	Anarejodon affinis	94 18	P07	larvas

1	22
1	SZ

Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
64_contig_51_consensus_sequence	Apareiodon affinis	97.66	P07	larvas
64_contig_56_consensus_sequence	Apareiodon affinis	91.47	P07	larvas
64_contig_60_consensus_sequence	Apareiodon affinis	84.26	P07	larvas
64_contig_61_consensus_sequence	Apareiodon affinis	97.69	P07	larvas
64_contig_79_consensus_sequence	Apareiodon affinis	93.1	P07	larvas
64_contig_83_consensus_sequence	Apareiodon affinis	96.98	P07	larvas
64_contig_86_consensus_sequence	Prochilodus lineatus	84.08	P07	larvas
64_contig_90_consensus_sequence	Parodon nasus	79.52	P07	larvas
64_contig_92_consensus_sequence	Apareiodon affinis	98.2	P07	larvas
64_contig_99_consensus_sequence	Rhaphiodon vulpinus	84.06	P07	larvas
64_contig_104_consensus_sequence	Pseudocorynopoma heteran- dria	82.89	P07	larvas
64_contig_112_consensus_sequence	Leporinus obtusidens	82.92	P07	larvas
66_contig_2_consensus_sequence	Apareiodon affinis	97.94	P09	larvas
66_contig_7_consensus_sequence	Apareiodon affinis	96.54	P09	larvas
66_contig_8_consensus_sequence	Apareiodon affinis	92.41	P09	larvas
66_contig_11_consensus_sequence	Apareiodon affinis	96.39	P09	larvas
66_contig_17_consensus_sequence	Apareiodon affinis	93.36	P09	larvas
66_contig_21_consensus_sequence	Apareiodon affinis	92.28	P09	larvas
66_contig_22_consensus_sequence	Apareiodon affinis	97.78	P09	larvas
66_contig_26_consensus_sequence	Apareiodon affinis	92.17	P09	larvas
66_contig_27_consensus_sequence	Apareiodon affinis	95.87	P09	larvas
66_contig_28_consensus_sequence	Plagioscion squamosissimus	81.17	P09	larvas
66_contig_35_consensus_sequence	Apareiodon affinis	90.99	P09	larvas
66_contig_39_consensus_sequence	Apareiodon affinis	82.71	P09	larvas
66_contig_47_consensus_sequence	Pyrrhulina australis	89.32	P09	larvas
66_contig_51_consensus_sequence	Apareiodon affinis	92.63	P09	larvas
66_contig_53_consensus_sequence	Apareiodon affinis	97.64	P09	larvas
66_contig_63_consensus_sequence	Apareiodon	81.94	P09	larvas
67_contig_1_consensus_sequence	Apareiodon affinis	97.28	P10	larvas
67_contig_2_consensus_sequence	Apareiodon affinis	97.09	P10	larvas
67_contig_4_consensus_sequence	Plagioscion squamosissimus	89.49	P10	larvas
67_contig_5_consensus_sequence	Plagioscion squamosissimus	90.74	P10	larvas
67_contig_7_consensus_sequence	Apareiodon affinis	92.35	P10	larvas
67_contig_10_consensus_sequence	Apareiodon affinis	91.66	P10	larvas
67_contig_11_consensus_sequence	Apareiodon affinis	92.26	P10	larvas
67_contig_12_consensus_sequence	Apareiodon affinis	96.27	P10	larvas
67_contig_17_consensus_sequence	Plagioscion squamosissimus	86.76	P10	larvas
67_contig_18_consensus_sequence	Apareiodon affinis	94.03	P10	larvas
67_contig_22_consensus_sequence	Apareiodon affinis	95.45	P10	larvas
67_contig_27_consensus_sequence	Apareiodon affinis	95.86	P10	larvas
67_contig_28_consensus_sequence	Apareiodon affinis	92.03	P10	larvas
67_contig_76_consensus_sequence	Apareiodon affinis	91.93	P10	larvas
69_contig_4_consensus_sequence	Aphyocharax dentatus	88.52	P01	larvas
69_contig_7_consensus_sequence	Aphyocharax dentatus	89.44	P01	larvas

				133	
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva	
69_contig_14_consensus_sequence	Serrasalmus marginatus	90.93	P01	larvas	
69_contig_15_consensus_sequence	Aphyocharax dentatus	88.38	P01	larvas	
69_contig_21_consensus_sequence	Plagioscion squamosissimus	81.9	P01	larvas	
69_contig_32_consensus_sequence	Aphyocharax dentatus	89.79	P01	larvas	
69_contig_41_consensus_sequence	Aphyocharax dentatus	87.79	P01	larvas	
69_contig_48_consensus_sequence	Serrasalmus maculatus	82.57	P01	larvas	
69_contig_50_consensus_sequence	Serrasalmus marginatus	95.09	P01	larvas	
69_contig_57_consensus_sequence	Aphyocharax dentatus	87.92	P01	larvas	
69_contig_65_consensus_sequence	Serrasalmus marginatus	92.35	P01	larvas	
69_contig_73_consensus_sequence	Serrasalmus marginatus	92.12	P01	larvas	
69_contig_75_consensus_sequence	Cyphocharax	80.76	P01	larvas	
69_contig_76_consensus_sequence	Serrasalmus marginatus	98.16	P01	larvas	
69_contig_80_consensus_sequence	Apareiodon affinis	92.71	P01	larvas	
69_contig_93_consensus_sequence	Serrasalmus marginatus	91.72	P01	larvas	
70_contig_1_consensus_sequence	Apareiodon affinis	94.94	P02	larvas	
70_contig_4_consensus_sequence	Apareiodon affinis	97.78	P02	larvas	
70_contig_6_consensus_sequence	Apareiodon affinis	97.78	P02	larvas	
70_contig_7_consensus_sequence	Apareiodon affinis	92.95	P02	larvas	
70_contig_13_consensus_sequence	Apareiodon affinis	97.82	P02	larvas	
70_contig_15_consensus_sequence	Apareiodon affinis	98.29	P02	larvas	
70_contig_19_consensus_sequence	Apareiodon affinis	91.89	P02	larvas	
70_contig_20_consensus_sequence	Apareiodon affinis	97.4	P02	larvas	
70_contig_21_consensus_sequence	Apareiodon affinis	96.82	P02	larvas	
70_contig_22_consensus_sequence	Apareiodon affinis	97.97	P02	larvas	
70_contig_23_consensus_sequence	Apareiodon affinis	91.7	P02	larvas	
70_contig_26_consensus_sequence	Apareiodon affinis	91.76	P02	larvas	
70_contig_28_consensus_sequence	Apareiodon affinis	92.78	P02	larvas	
70_contig_29_consensus_sequence	Apareiodon affinis	92.42	P02	larvas	
70_contig_35_consensus_sequence	Apareiodon affinis	98.29	P02	larvas	
70_contig_37_consensus_sequence	Apareiodon affinis	93.47	P02	larvas	
70_contig_39_consensus_sequence	Apareiodon affinis	95.1	P02	larvas	
70_contig_62_consensus_sequence	Apareiodon affinis	95.99	P02	larvas	
70_contig_67_consensus_sequence	Plagioscion squamosissimus	80.78	P02	larvas	
71_contig_1_consensus_sequence	Plagioscion squamosissimus	90.13	P03	larvas	
71_contig_2_consensus_sequence	Plagioscion squamosissimus	89.14	P03	larvas	
71_contig_4_consensus_sequence	Plagioscion squamosissimus	88.81	P03	larvas	
71_contig_7_consensus_sequence	Plagioscion squamosissimus	90.15	P03	larvas	
71_contig_14_consensus_sequence	Plagioscion squamosissimus	90.78	P03	larvas	
71_contig_18_consensus_sequence	Apareiodon affinis	98.29	P03	larvas	
71_contig_22_consensus_sequence	Plagioscion squamosissimus	87.36	P03	larvas	
71_contig_24_consensus_sequence	Apareiodon affinis	97.84	P03	larvas	
71_contig_26_consensus_sequence	Plagioscion squamosissimus	89.31	P03	larvas	
71_contig_28_consensus_sequence	Plagioscion squamosissimus	88.86	P03	larvas	
71_contig_31_consensus_sequence	Plagioscion squamosissimus	89.61	P03	larvas	

134 % Similari-Identificação sequencias Espécies Ponto Coletado **Ovo/Larva** dade 71 contig 35 consensus sequence Plagioscion squamosissimus 90.21 P03 larvas Apareiodon affinis 71_contig_38_consensus_sequence 98.29 P03 larvas 71_contig_50_consensus_sequence Plagioscion squamosissimus 88.47 P03 larvas 71 contig 56 consensus sequence Apareiodon affinis 95.69 P03 larvas P03 71_contig_67_consensus_sequence Apareiodon affinis 98.2 larvas 71 contig 92 consensus sequence Plagioscion squamosissimus P03 88.16 larvas 72_contig_2_consensus_sequence Apareiodon affinis 95.13 P04 larvas 72_contig_4_consensus_sequence Apareiodon affinis 98.08 P04 larvas 72 contig 5 consensus sequence Apareiodon affinis 92.34 P04 larvas 89.4 P04 72_contig_6_consensus_sequence Pyrrhulina australis larvas 72_contig_8_consensus_sequence Apareiodon affinis 94.67 P04 larvas Apareiodon affinis 97.78 P04 72_contig_11_consensus_sequence larvas 72 contig 12 consensus sequence Apareiodon affinis 96.35 P04 larvas 72_contig_17_consensus_sequence Apareiodon affinis 92.18 P04 larvas 72_contig_18_consensus_sequence Apareiodon affinis 94.62 P04 larvas 72 contig 22 consensus sequence Plagioscion squamosissimus 81.94 P04 larvas 72_contig_23_consensus_sequence Apareiodon affinis 95.9 P04 larvas 72_contig_24_consensus_sequence Apareiodon affinis 97.63 P04 larvas 72 contig 26 consensus sequence Apareiodon affinis 97.24 P04 larvas 72_contig_27_consensus_sequence Apareiodon affinis 95.5 P04 larvas 72_contig_29_consensus_sequence Apareiodon affinis 96.4 P04 larvas P04 72_contig_30_consensus_sequence Apareiodon affinis 93.12 larvas P04 72 contig 32 consensus sequence Apareiodon affinis 96.64 larvas 72 contig 34 consensus sequence Apareiodon affinis 94.56 P04 larvas 72 contig 35 consensus sequence Apareiodon affinis 95.79 P04 larvas 72_contig_37_consensus_sequence Apareiodon affinis 97.43 P04 larvas 73_contig_1_consensus_sequence Leporinus striatus 85.07 P05 larvas 73 contig 2 consensus sequence Leporinus striatus 84.63 P05 larvas Apareiodon affinis 98.29 P05 73_contig_4_consensus_sequence larvas 73_contig_7_consensus_sequence Leporinus 84.17 P05 larvas Apareiodon affinis 92.5 P05 73_contig_18_consensus_sequence larvas Apareiodon affinis 98.13 P05 73 contig 19 consensus sequence larvas 73_contig_24_consensus_sequence Leporinus striatus 84.3 P05 larvas 73_contig_42_consensus_sequence Apareiodon affinis 94.76 P05 larvas 95.93 P05 73_contig_45_consensus_sequence Apareiodon affinis larvas 73_contig_56_consensus_sequence Apareiodon affinis 95.09 P05 larvas 73_contig_65_consensus_sequence Apareiodon affinis 92.17 P05 larvas 74 contig 1 consensus sequence Apareiodon affinis 95.13 P06 larvas 74_contig_2_consensus_sequence Apareiodon affinis 97.63 P06 larvas 74_contig_4_consensus_sequence Apareiodon affinis 94.03 P06 larvas 74_contig_8_consensus_sequence Apareiodon affinis 97.41 P06 larvas Apareiodon affinis 98.11 P06 74_contig_10_consensus_sequence larvas 92.9 74_contig_11_consensus_sequence Apareiodon affinis P06 larvas 74_contig_17_consensus_sequence Apareiodon affinis 96.18 P06 larvas

				135
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
74_contig_26_consensus_sequence	Apareiodon affinis	95.95	P06	larvas
74_contig_27_consensus_sequence	Apareiodon affinis	97.43	P06	larvas
74_contig_28_consensus_sequence	Apareiodon affinis	97.53	P06	larvas
74_contig_29_consensus_sequence	Apareiodon affinis	97.78	P06	larvas
74_contig_30_consensus_sequence	Apareiodon affinis	93.72	P06	larvas
74_contig_34_consensus_sequence	Apareiodon affinis	95.79	P06	larvas
74_contig_44_consensus_sequence	Apareiodon affinis	92.8	P06	larvas
74_contig_50_consensus_sequence	Apareiodon affinis	97.65	P06	larvas
75_contig_1_consensus_sequence	Apareiodon affinis	94.82	P07	larvas
75_contig_2_consensus_sequence	Apareiodon affinis	98.04	P07	larvas
75_contig_3_consensus_sequence	Apareiodon affinis	95.0	P07	larvas
75_contig_4_consensus_sequence	Apareiodon affinis	97.6	P07	larvas
75_contig_5_consensus_sequence	Apareiodon affinis	94.28	P07	larvas
75_contig_6_consensus_sequence	Apareiodon affinis	90.32	P07	larvas
75_contig_7_consensus_sequence	Apareiodon affinis	95.76	P07	larvas
75_contig_8_consensus_sequence	Apareiodon affinis	91.65	P07	larvas
75_contig_10_consensus_sequence	Apareiodon affinis	95.54	P07	larvas
75_contig_11_consensus_sequence	Apareiodon affinis	95.94	P07	larvas
75_contig_13_consensus_sequence	Apareiodon affinis	97.01	P07	larvas
75_contig_15_consensus_sequence	Apareiodon affinis	97.85	P07	larvas
75_contig_17_consensus_sequence	Apareiodon affinis	95.5	P07	larvas
75_contig_19_consensus_sequence	Apareiodon affinis	96.29	P07	larvas
75_contig_21_consensus_sequence	Apareiodon affinis	91.74	P07	larvas
75_contig_26_consensus_sequence	Apareiodon affinis	96.43	P07	larvas
75_contig_32_consensus_sequence	Apareiodon affinis	91.76	P07	larvas
75_contig_33_consensus_sequence	Apareiodon affinis	96.81	P07	larvas
75_contig_34_consensus_sequence	Apareiodon affinis	91.67	P07	larvas
75_contig_36_consensus_sequence	Apareiodon affinis	97.75	P07	larvas
75_contig_37_consensus_sequence	Apareiodon affinis	93.94	P07	larvas
75_contig_42_consensus_sequence	Apareiodon affinis	97.0	P07	larvas
75_contig_53_consensus_sequence	Catathyridium jenynsii	99.14	P07	larvas
75_contig_57_consensus_sequence	Plagioscion squamosissimus	79.9	P07	larvas
75_contig_74_consensus_sequence	Serrasalmus maculatus	82.6	P07	larvas
75_contig_82_consensus_sequence	Eigenmannia	82.45	P07	larvas
76_contig_1_consensus_sequence	Apareiodon affinis	94.82	P08	larvas
76_contig_2_consensus_sequence	Apareiodon affinis	97.34	P08	larvas
76_contig_3_consensus_sequence	Apareiodon affinis	98.13	P08	larvas
76_contig_4_consensus_sequence	Apareiodon affinis	98.29	P08	larvas
76_contig_8_consensus_sequence	Apareiodon affinis	92.64	P08	larvas
76_contig_11_consensus_sequence	Apareiodon affinis	97.53	P08	larvas
76_contig_12_consensus_sequence	Apareiodon affinis	91.16	P08	larvas
76_contig_23_consensus_sequence	Apareiodon affinis	95.19	P08	larvas
76_contig_28_consensus_sequence	Apareiodon affinis	97.64	P08	larvas
76 contig 32 consensus sequence	Apareiodon affinis	93.69	P08	larvas

136 % Similari-Identificação sequencias Espécies **Ponto Coletado Ovo/Larva** dade 76 contig 35 consensus sequence Apareiodon affinis 95.4 P08 larvas 76_contig_38_consensus_sequence Apareiodon affinis 96.89 P08 larvas 76_contig_45_consensus_sequence Apareiodon affinis 97.73 P08 larvas 76 contig 53 consensus sequence Apareiodon affinis 97.5 P08 larvas 76_contig_71_consensus_sequence Plagioscion squamosissimus 82.07 P08 larvas 76 contig 72 consensus sequence Apareiodon affinis 93.73 P08 larvas 76_contig_73_consensus_sequence Apareiodon affinis 97.35 P08 larvas 76_contig_81_consensus_sequence Apareiodon affinis 92.9 P08 larvas 76 contig 98 consensus sequence Corydoras 82.94 P08 larvas 76 contig 99 consensus sequence Prochilodus lineatus P08 90.06 larvas 77_contig_1_consensus_sequence Apareiodon affinis 91.67 P09 larvas Apareiodon affinis 94.72 P09 77_contig_2_consensus_sequence larvas 77 contig 7 consensus sequence Apareiodon affinis 94.41 P09 larvas 77 contig 14 consensus sequence Apareiodon affinis 91.22 P09 larvas 77_contig_15_consensus_sequence Apareiodon affinis 96.97 P09 larvas 77_contig_17_consensus_sequence Apareiodon affinis 93.74 P09 larvas 77_contig_25_consensus_sequence Apareiodon affinis 95.25 P09 larvas 77_contig_32_consensus_sequence Apareiodon affinis 97.47 P09 larvas 77 contig 37 consensus sequence Apareiodon affinis 97.63 P09 larvas 77_contig_40_consensus_sequence Apareiodon affinis 97.73 P09 larvas 77_contig_51_consensus_sequence Apareiodon affinis 91.4 P09 larvas 96.57 P09 77_contig_54_consensus_sequence Apareiodon affinis larvas P09 77 contig 77 consensus sequence Hyphessobrycon eques 83.62 larvas 78 contig 1 consensus sequence Apareiodon affinis 97.94 P10 larvas 78 contig 2 consensus sequence Apareiodon affinis 97.49 P10 larvas 78_contig_3_consensus_sequence Apareiodon affinis 93.76 P10 larvas 78_contig_4_consensus_sequence Apareiodon affinis 95.5 P10 larvas 78 contig 5 consensus sequence Apareiodon affinis 98.45 P10 larvas Apareiodon affinis 98.04 P10 78_contig_8_consensus_sequence larvas 78_contig_9_consensus_sequence Apareiodon affinis 97.69 P10 larvas 78_contig_10_consensus_sequence Apareiodon affinis 92.09 P10 larvas 98.29 P10 78 contig 11 consensus sequence Apareiodon affinis larvas 78_contig_14_consensus_sequence Apareiodon affinis 97.68 P10 larvas 78_contig_18_consensus_sequence Apareiodon affinis 96.93 P10 larvas 78_contig_21_consensus_sequence Apareiodon affinis 96.95 P10 larvas 78_contig_24_consensus_sequence Apareiodon affinis 92.04 P10 larvas 78_contig_25_consensus_sequence Apareiodon affinis 93.99 P10 larvas 78 contig 29 consensus sequence Apareiodon affinis P10 93.46 larvas 78_contig_30_consensus_sequence Apareiodon affinis 92.71 P10 larvas 78_contig_33_consensus_sequence Apareiodon affinis 97.71 P10 larvas 78_contig_34_consensus_sequence Apareiodon affinis 95.41 P10 larvas Apareiodon affinis 92.08 P10 78_contig_35_consensus_sequence larvas 97.5 78_contig_41_consensus_sequence Apareiodon affinis P10 larvas 78_contig_43_consensus_sequence Hisonotus 78.99 P10 larvas

				137
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
78_contig_45_consensus_sequence	Apareiodon affinis	98.04	P10	larvas
78_contig_50_consensus_sequence	Apareiodon affinis	92.04	P10	larvas
78_contig_53_consensus_sequence	Apareiodon affinis	90.94	P10	larvas
78_contig_54_consensus_sequence	Apareiodon affinis	92.52	P10	larvas
78_contig_58_consensus_sequence	Apareiodon affinis	95.35	P10	larvas
78_contig_67_consensus_sequence	Apareiodon affinis	97.55	P10	larvas
78_contig_68_consensus_sequence	Apareiodon affinis	97.18	P10	larvas
78_contig_74_consensus_sequence	Apareiodon affinis	90.44	P10	larvas
78_contig_90_consensus_sequence	Pyrrhulina australis	90.53	P10	larvas
78_contig_96_consensus_sequence	Apareiodon affinis	86.98	P10	larvas
78_contig_131_consensus_sequence	Apareiodon affinis	87.51	P10	larvas
78_contig_132_consensus_sequence	Apareiodon affinis	85.03	P10	larvas
80_contig_1_consensus_sequence	Apareiodon affinis	93.57	P02	larvas
80_contig_2_consensus_sequence	Apareiodon affinis	97.75	P02	larvas
80_contig_3_consensus_sequence	Apareiodon affinis	96.55	P02	larvas
80_contig_4_consensus_sequence	Apareiodon affinis	95.61	P02	larvas
80_contig_5_consensus_sequence	Apareiodon affinis	91.75	P02	larvas
80_contig_11_consensus_sequence	Apareiodon affinis	90.57	P02	larvas
80_contig_12_consensus_sequence	Apareiodon affinis	97.43	P02	larvas
80_contig_13_consensus_sequence	Apareiodon affinis	97.64	P02	larvas
80_contig_14_consensus_sequence	Apareiodon affinis	97.82	P02	larvas
80_contig_18_consensus_sequence	Apareiodon affinis	97.06	P02	larvas
80_contig_19_consensus_sequence	Apareiodon affinis	98.29	P02	larvas
80_contig_22_consensus_sequence	Apareiodon affinis	96.61	P02	larvas
80_contig_27_consensus_sequence	Apareiodon affinis	92.84	P02	larvas
80_contig_29_consensus_sequence	Apareiodon affinis	94.59	P02	larvas
80_contig_30_consensus_sequence	Apareiodon affinis	93.3	P02	larvas
80_contig_35_consensus_sequence	Apareiodon affinis	94.96	P02	larvas
80_contig_43_consensus_sequence	Apareiodon affinis	91.9	P02	larvas
80_contig_53_consensus_sequence	Apareiodon affinis	95.84	P02	larvas
80_contig_60_consensus_sequence	Serrasalmus maculatus	81.73	P02	larvas
81_contig_1_consensus_sequence	Apareiodon affinis	97.97	P03	larvas
81_contig_2_consensus_sequence	Apareiodon affinis	92.47	P03	larvas
81_contig_3_consensus_sequence	Apareiodon affinis	98.04	P03	larvas
81_contig_5_consensus_sequence	Apareiodon affinis	91.5	P03	larvas
81_contig_6_consensus_sequence	Apareiodon affinis	98.04	P03	larvas
81_contig_7_consensus_sequence	Apareiodon affinis	97.79	P03	larvas
81_contig_9_consensus_sequence	Apareiodon affinis	92.68	P03	larvas
81_contig_10_consensus_sequence	Apareiodon affinis	97.78	P03	larvas
81_contig_13_consensus_sequence	Apareiodon affinis	97.65	P03	larvas
81_contig_25_consensus_sequence	Apareiodon affinis	91.27	P03	larvas
81_contig_31_consensus_sequence	Apareiodon affinis	92.25	P03	larvas
81_contig_38_consensus_sequence	Apareiodon affinis	91.45	P03	larvas
81_contig_42_consensus_sequence	Apareiodon affinis	97.24	P03	larvas

				138
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
81_contig_43_consensus_sequence	Apareiodon affinis	95.45	P03	larvas
81_contig_44_consensus_sequence	Apareiodon affinis	97.72	P03	larvas
81_contig_49_consensus_sequence	Apareiodon affinis	95.55	P03	larvas
81_contig_56_consensus_sequence	Hemigrammus marginatus	82.63	P03	larvas
81_contig_62_consensus_sequence	Apareiodon affinis	93.0	P03	larvas
82_contig_1_consensus_sequence	Apareiodon affinis	98.04	P04	larvas
82_contig_8_consensus_sequence	Apareiodon affinis	91.48	P04	larvas
82_contig_15_consensus_sequence	Apareiodon affinis	91.87	P04	larvas
82_contig_20_consensus_sequence	Apareiodon affinis	93.9	P04	larvas
82_contig_21_consensus_sequence	Apareiodon affinis	93.12	P04	larvas
82_contig_22_consensus_sequence	Apareiodon affinis	96.55	P04	larvas
82_contig_27_consensus_sequence	Apareiodon affinis	97.37	P04	larvas
82_contig_35_consensus_sequence	Apareiodon affinis	94.3	P04	larvas
82_contig_36_consensus_sequence	Apareiodon affinis	97.88	P04	larvas
82_contig_45_consensus_sequence	Apareiodon affinis	97.37	P04	larvas
82_contig_47_consensus_sequence	Pyrrhulina australis	88.67	P04	larvas
82_contig_51_consensus_sequence	Apareiodon affinis	94.82	P04	larvas
82_contig_54_consensus_sequence	Apareiodon affinis	96.81	P04	larvas
82_contig_56_consensus_sequence	Apareiodon affinis	93.53	P04	larvas
82_contig_57_consensus_sequence	Apareiodon affinis	91.24	P04	larvas
82_contig_58_consensus_sequence	Apareiodon affinis	96.88	P04	larvas
82_contig_59_consensus_sequence	Apareiodon affinis	97.7	P04	larvas
82_contig_70_consensus_sequence	Apareiodon affinis	95.98	P04	larvas
82_contig_71_consensus_sequence	Apareiodon affinis	92.06	P04	larvas
82_contig_74_consensus_sequence	Apareiodon affinis	96.11	P04	larvas
82_contig_78_consensus_sequence	Apareiodon affinis	91.59	P04	larvas
82_contig_84_consensus_sequence	Apareiodon affinis	95.1	P04	larvas
82_contig_109_consensus_sequence	Diapoma	82.85	P04	larvas
82_contig_111_consensus_sequence	Aphyocharax dentatus	86.61	P04	larvas
83_contig_23_consensus_sequence	Serrasalmus maculatus	82.44	P04	ovos
83_contig_32_consensus_sequence	Apareiodon affinis	91.45	P04	ovos
83_contig_60_consensus_sequence	Apareiodon affinis	94.35	P04	ovos
83_contig_61_consensus_sequence	Serrasalmus maculatus	91.68	P04	ovos
83_contig_62_consensus_sequence	Gymnotus	83.16	P04	ovos
83_contig_76_consensus_sequence	Cyphocharax nagelii	81.39	P04	ovos
83_contig_90_consensus_sequence	Rhaphiodon vulpinus	82.33	P04	ovos
83_contig_91_consensus_sequence	Apareiodon affinis	95.54	P04	ovos
83_contig_110_consensus sequence	Bryconamericus	84.61	P04	ovos
83_contig_115_consensus sequence	Trichomycterus	82.52	P04	ovos
83_contig_116_consensus_sequence	Parodon nasus	82.45	P04	ovos
83_contig_149_consensus sequence	Eigenmannia virescens	83.52	P04	ovos
83_contig_150_consensus_sequence	Prochilodus	83.66	P04	ovos
83_contig_159_consensus_sequence	Megaleporinus obtusidens	97.8	P04	ovos
84 contig 1 consensus sequence	Leporinus striatus	84.8	P05	larvas

139 % Similari-Identificação sequencias Espécies Ponto Coletado Ovo/Larva dade 84 contig 3 consensus sequence Apareiodon affinis 96.58 P05 larvas 84_contig_4_consensus_sequence Leporinus 87.0 P05 larvas P05 84_contig_12_consensus_sequence Leporinus 87.09 larvas 84 contig 14 consensus sequence Leporinus amblyrhynchus 84.19 P05 larvas Apareiodon affinis P05 84_contig_17_consensus_sequence 94.43 larvas 84 contig 24 consensus sequence Apareiodon affinis 91.27 P05 larvas 84_contig_27_consensus_sequence Apareiodon affinis 93.17 P05 larvas 84_contig_29_consensus_sequence Apareiodon 85.03 P05 larvas 84 contig 37 consensus sequence Leporinus striatus 85.15 P05 larvas 89.0 P05 84 contig 56 consensus sequence Apareiodon affinis larvas 84_contig_57_consensus_sequence Apareiodon affinis 93.73 P05 larvas Apareiodon affinis 92.6 P05 84_contig_68_consensus_sequence larvas 84 contig 74 consensus sequence Apareiodon 85.25 P05 larvas 84 contig 76 consensus sequence Apareiodon affinis 94.83 P05 larvas 85_contig_2_consensus_sequence Apareiodon affinis 93.76 P06 larvas P06 85 contig 4 consensus sequence Apareiodon affinis 97.66 larvas Apareiodon affinis 97.69 P06 85_contig_5_consensus_sequence larvas 85_contig_7_consensus_sequence Apareiodon affinis 92.75 P06 larvas 85 contig 10 consensus sequence Apareiodon affinis 97.88 P06 larvas 85_contig_11_consensus_sequence Apareiodon affinis 91.52 P06 larvas 85_contig_13_consensus_sequence Apareiodon affinis 92.21 P06 larvas 94.24 P06 85_contig_15_consensus_sequence Apareiodon affinis larvas 85 contig 25 consensus sequence Apareiodon affinis 95.82 P06 larvas 85 contig 27 consensus sequence Apareiodon affinis 92.03 P06 larvas 97.94 85 contig 28 consensus sequence Apareiodon affinis P06 larvas 85_contig_30_consensus_sequence Apareiodon affinis 95.38 P06 larvas 85_contig_31_consensus_sequence Apareiodon affinis 93.98 P06 larvas 85 contig 32 consensus sequence Apareiodon affinis 92.27 P06 larvas Apareiodon affinis 96.42 P06 85 contig 35 consensus sequence larvas 85_contig_45_consensus_sequence Hisonotus 78.97 P06 larvas 94.35 P06 85_contig_46_consensus_sequence Apareiodon affinis larvas Apareiodon affinis 97.88 P06 85 contig 49 consensus sequence larvas 85 contig 50 consensus sequence Apareiodon affinis 95.32 P06 larvas 85_contig_54_consensus_sequence Apareiodon affinis 95.12 P06 larvas 81.94 P06 85_contig_60_consensus_sequence Plagioscion squamosissimus larvas 85_contig_65_consensus_sequence Apareiodon affinis 91.21 P06 larvas 85_contig_71_consensus_sequence **Bryconamericus** 80.91 P06 larvas 85 contig 72 consensus sequence 92.43 P06 Apareiodon affinis larvas 85_contig_81_consensus_sequence Apareiodon affinis 94.45 P06 larvas 85_contig_97_consensus_sequence Apareiodon affinis 94.95 P06 larvas 85_contig_116_consensus_sequence Serrasalmus maculatus 82.35 P06 larvas Apareiodon affinis 97.78 P07 86_contig_1_consensus_sequence larvas P07 86_contig_2_consensus_sequence Apareiodon affinis 93.49 larvas 86_contig_3_consensus_sequence Apareiodon affinis 92.42 P07 larvas

				140
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
86_contig_4_consensus_sequence	Apareiodon affinis	91.99	P07	larvas
86_contig_5_consensus_sequence	Apareiodon affinis	97.21	P07	larvas
86_contig_6_consensus_sequence	Apareiodon affinis	93.05	P07	larvas
86_contig_7_consensus_sequence	Apareiodon affinis	94.22	P07	larvas
86_contig_11_consensus_sequence	Apareiodon affinis	95.2	P07	larvas
86_contig_12_consensus_sequence	Apareiodon affinis	92.98	P07	larvas
86_contig_13_consensus_sequence	Apareiodon affinis	97.97	P07	larvas
86_contig_17_consensus_sequence	Apareiodon affinis	89.99	P07	larvas
86_contig_19_consensus_sequence	Apareiodon affinis	92.22	P07	larvas
86_contig_24_consensus_sequence	Apareiodon affinis	97.53	P07	larvas
86_contig_25_consensus_sequence	Apareiodon affinis	90.76	P07	larvas
86_contig_26_consensus_sequence	Apareiodon affinis	97.64	P07	larvas
86_contig_27_consensus_sequence	Apareiodon affinis	96.93	P07	larvas
86_contig_29_consensus_sequence	Apareiodon affinis	94.2	P07	larvas
86_contig_39_consensus_sequence	Apareiodon affinis	91.8	P07	larvas
86_contig_40_consensus_sequence	Apareiodon affinis	90.96	P07	larvas
86_contig_59_consensus_sequence	Apareiodon affinis	97.4	P07	larvas
86_contig_64_consensus_sequence	Bryconamericus	89.42	P07	larvas
87_contig_4_consensus_sequence	Serrasalmus maculatus	82.44	P08	larvas
87_contig_15_consensus_sequence	Plagioscion squamosissimus	81.94	P08	larvas
87_contig_22_consensus_sequence	Pseudocorynopoma heteran- dria	81.81	P08	larvas
87_contig_33_consensus_sequence	Apareiodon affinis	91.74	P08	larvas
87_contig_34_consensus_sequence	Plagioscion squamosissimus	82.1	P08	larvas
87_contig_49_consensus_sequence	Astyanax lacustris	82.03	P08	larvas
87_contig_52_consensus_sequence	Astyanax lacustris	83.0	P08	larvas
87_contig_57_consensus_sequence	Apareiodon affinis	91.68	P08	larvas
87_contig_58_consensus_sequence	Apareiodon affinis	98.04	P08	larvas
87_contig_84_consensus_sequence	Bryconamericus	83.62	P08	larvas
87_contig_127_consensus_sequence	Hoplias sp.	81.22	P08	larvas
87_contig_132_consensus_sequence	Astyanax lacustris	82.48	P08	larvas
87_contig_138_consensus_sequence	Plagioscion squamosissimus	82.0	P08	larvas
87_contig_143_consensus_sequence	Astyanax lacustris	83.71	P08	larvas
87_contig_151_consensus_sequence	Proloricaria prolixa	81.68	P08	larvas
88_contig_3_consensus_sequence	Apareiodon affinis	98.13	P10	larvas
88_contig_4_consensus_sequence	Apareiodon affinis	94.14	P10	larvas
88_contig_5_consensus_sequence	Apareiodon affinis	98.29	P10	larvas
88_contig_11_consensus_sequence	Apareiodon affinis	92.38	P10	larvas
88_contig_14_consensus_sequence	Apareiodon affinis	91.64	P10	larvas
88_contig_18_consensus_sequence	Apareiodon affinis	91.64	P10	larvas
88_contig_20_consensus_sequence	Apareiodon affinis	92.12	P10	larvas
88_contig_22_consensus_sequence	Apareiodon affinis	97.62	P10	larvas
88_contig_26_consensus_sequence	Apareiodon affinis	97.03	P10	larvas
88_contig_28_consensus_sequence	Apareiodon affinis	92.2	P10	larvas
88_contig_31_consensus_sequence	Apareiodon affinis	95.1	P10	larvas

Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
88_contig_35_consensus_sequence	Apareiodon affinis	96.04	P10	larvas
88_contig_43_consensus_sequence	Apareiodon affinis	97.94	P10	larvas
88_contig_48_consensus_sequence	Apareiodon affinis	97.03	P10	larvas
88_contig_49_consensus_sequence	Apareiodon affinis	93.54	P10	larvas
88_contig_67_consensus_sequence	Pseudocorynopoma heteran- dria	82.86	P10	larvas
88_contig_73_consensus_sequence	Apareiodon affinis	96.43	P10	larvas
88_contig_74_consensus_sequence	Apareiodon affinis	97.7	P10	larvas
88_contig_80_consensus_sequence	Plagioscion squamosissimus	81.97	P10	larvas
88_contig_90_consensus_sequence	Plagioscion squamosissimus	81.61	P10	larvas
88_contig_124_consensus_sequence	Pseudocorynopoma heteran- dria	82.81	P10	larvas
89_contig_24_consensus_sequence	Serrasalmus maculatus	98.07	P10	ovos
89_contig_41_consensus_sequence	Serrasalmus maculatus	85.04	P10	ovos
89_contig_50_consensus_sequence	Serrasalmus maculatus	91.84	P10	ovos
89_contig_51_consensus_sequence	Serrasalmus maculatus	91.95	P10	ovos
89_contig_70_consensus_sequence	Cyphocharax nagelii	81.98	P10	ovos
89_contig_83_consensus_sequence	Apareiodon affinis	94.11	P10	ovos
89_contig_87_consensus_sequence	Apareiodon affinis	88.09	P10	ovos
89_contig_102_consensus_sequence	Diapoma	81.45	P10	ovos
89 contig 103 consensus sequence	Apareiodon affinis	92.97	P10	ovos
89_contig_112_consensus_sequence	Astyanax lacustris	84.98	P10	ovos
90 contig 1 consensus sequence	Pyrrhulina australis	87.39	P04	ovos
90 contig 2 consensus sequence	Cyphocharax nagelii	81.98	P04	ovos
90 contig 6 consensus sequence	Moenkhausia forestii	84.93	P04	ovos
90 contig 24 consensus sequence	Apareiodon affinis	84.83	P04	ovos
90 contig 26 consensus sequence	Galeocharax gulo	83.59	P04	ovos
90 contig 32 consensus sequence	Serrasalmus maculatus	80.17	P04	ovos
90 contig 34 consensus sequence	Hemigrammus marginatus	83.06	P04	ovos
90 contig 40 consensus sequence	Characidium	93.84	P04	ovos
90 contig 47 consensus sequence	Diapoma	92.47	P04	ovos
90 contig 53 consensus sequence	Trichomycterus	82.85	P04	ovos
90 contig 56 consensus sequence	Aphyocheirodon hemigrammus	82.36	P04	ovos
90 contig 58 consensus sequence	Roeboides descalvadensis	84.33	P04	ovos
90 contig 59 consensus sequence	Apareiodon affinis	86.17	P04	ovos
90 contig 64 consensus sequence	Pyrrhulina australis	89.98	P04	ovos
90 contig 65 consensus sequence	Proloricaria prolixa	82.06	P04	ovos
90 contig 72 consensus sequence	Plagioscion squamosissimus	80.44	P04	ovos
90 contig 102 consensus sequence	Plagioscion squamosissimus	80.55	P04	ovos
90 contig 111 consensus sequence	Pyrrhulina australis	88.5	P04	ovos
90 contig 116 consensus sequence	, Pyrrhulina australis	89.13	P04	ovos
90 contig 117 consensus sequence	, Gymnotus svlvius	84.06	P04	OVOS
90 contig 118 consensus sequence	Eigenmannia virescens	81.76	P04	OVOS
90 contig 125 consensus sequence	Astyanax bockmanni	83.18	P04	OVOS
90_contig_137_consensus sequence	Apareiodon affinis	97.94	P04	ovos
'				

			142		
Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva	
90_contig_149_consensus_sequence	Serrasalmus marginatus	83.11	P04	ovos	
90_contig_171_consensus_sequence	Plagioscion squamosissimus	83.66	P04	ovos	
90_contig_184_consensus_sequence	Hyphessobrycon	82.32	P04	ovos	
90_contig_195_consensus_sequence	Leporinus	79.96	P04	ovos	
90_contig_196_consensus_sequence	Parodon nasus	90.29	P04	ovos	
90_contig_197_consensus_sequence	Pimelodus	90.21	P04	ovos	
90_contig_207_consensus_sequence	Astyanax lacustris	82.59	P04	ovos	
90_contig_239_consensus_sequence	Leporinus striatus	86.83	P04	ovos	
90_Contig_246_2_consensus_sequence	Apareiodon affinis	91.0	P04	ovos	
91_contig_2_consensus_sequence	Catathyridium jenynsii	99.3	P10	ovos	
91_contig_5_consensus_sequence	Plagioscion squamosissimus	82.1	P10	ovos	
91_contig_8_consensus_sequence	Serrasalmus maculatus	82.38	P10	ovos	
91_contig_21_consensus_sequence	Astyanax lacustris	82.97	P10	ovos	
91_contig_22_consensus_sequence	Apareiodon affinis	92.0	P10	ovos	
91_contig_28_consensus_sequence	Plagioscion squamosissimus	81.31	P10	ovos	
91_contig_29_consensus_sequence	Serrasalmus maculatus	82.53	P10	ovos	
91_contig_30_consensus_sequence	Catathyridium jenynsii	99.46	P10	ovos	
91_contig_31_consensus_sequence	Apareiodon affinis	91.39	P10	ovos	
91_contig_32_consensus_sequence	Astyanax lacustris	82.64	P10	ovos	
91_contig_35_consensus_sequence	Trichomycterus	82.85	P10	ovos	
91_contig_40_consensus_sequence	Apareiodon affinis	88.55	P10	ovos	
91_contig_56_consensus_sequence	Catathyridium jenynsii	99.63	P10	ovos	
91_contig_57_consensus_sequence	Rhaphiodon vulpinus	83.91	P10	ovos	
91_contig_58_consensus_sequence	Pyrrhulina australis	88.51	P10	ovos	
91_contig_59_consensus_sequence	Bryconamericus	84.86	P10	ovos	
91_contig_62_consensus_sequence	Apareiodon affinis	91.5	P10	ovos	
91_contig_63_consensus_sequence	Pyrrhulina australis	82.78	P10	ovos	
91_contig_74_consensus_sequence	Roeboides descalvadensis	82.71	P10	ovos	
91_contig_91_consensus_sequence	Astyanax lacustris	83.02	P10	ovos	
91_contig_98_consensus_sequence	Leporinus	83.52	P10	ovos	
91_contig_103_consensus_sequence	Pyrrhulina australis	86.86	P10	ovos	
91_contig_108_consensus_sequence	Apareiodon affinis	92.32	P10	ovos	
91_contig_130_consensus_sequence	Serrasalmus maculatus	82.91	P10	ovos	
91_contig_148_consensus_sequence	Plagioscion squamosissimus	82.0	P10	ovos	
91_contig_149_consensus_sequence	Eigenmannia virescens	81.71	P10	ovos	
91_contig_167_consensus_sequence	Hypostomus strigaticeps	82.49	P10	ovos	
91_contig_175_consensus_sequence	Gymnotus sylvius	82.35	P10	ovos	
91_contig_183_consensus_sequence	Hoplias sp.	81.93	P10	ovos	
91_contig_202_consensus_sequence	Characidium	87.55	P10	ovos	
92_contig_19_consensus_sequence	Serrasalmus maculatus	98.05	P04	ovos	
92_contig_20_consensus_sequence	Hyphessobrycon	83.98	P04	ovos	
92_contig_43_consensus_sequence	Serrasalmus maculatus	93.47	P04	ovos	
92_contig_50_consensus_sequence	Serrasalmus maculatus	92.46	P04	ovos	
92_contig_54_consensus_sequence	Cyphocharax nagelii	81.82	P04	ovos	

Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
92_contig_56_consensus_sequence	Serrasalmus maculatus	81.67	P04	ovos
92_contig_80_consensus_sequence	Apareiodon affinis	91.74	P04	ovos
92_contig_89_consensus_sequence	Apareiodon affinis	92.33	P04	ovos
92_contig_106_consensus_sequence	Trichomycterus	82.87	P04	ovos
92_contig_112_consensus_sequence	Aphyocheirodon hemigrammus	82.42	P04	ovos
92_contig_121_consensus_sequence	Bryconamericus	85.41	P04	ovos
92_contig_144_consensus_sequence	Pyrrhulina australis	87.96	P04	ovos
92_contig_150_consensus_sequence	Roeboides descalvadensis	84.38	P04	ovos
92_contig_160_consensus_sequence	Eigenmannia virescens	81.8	P04	ovos
93_contig_1_consensus_sequence	Pyrrhulina australis	88.6	P01	ovos
93_contig_3_consensus_sequence	Pyrrhulina australis	87.39	P01	ovos
93_contig_7_consensus_sequence	Pyrrhulina australis	89.98	P01	ovos
93_contig_9_consensus_sequence	Cyphocharax nagelii	81.98	P01	ovos
93_contig_10_consensus_sequence	Astyanax lacustris	82.86	P01	ovos
93_contig_12_consensus_sequence	Apareiodon affinis	90.14	P01	ovos
93 contig_13 consensus sequence	Plagioscion squamosissimus	82.1	P01	ovos
93_contig_19_consensus_sequence	Plagioscion squamosissimus	81.94	P01	ovos
93 contig 20 consensus sequence	Apareiodon affinis	88.84	P01	ovos
93 contig 21 consensus sequence	Plagioscion squamosissimus	80.94	P01	ovos
93 contig 28 consensus sequence	Astyanax lacustris	83.59	P01	ovos
93 contig 46 consensus sequence	Cetopsorhamdia iheringi	85.0	P01	ovos
93 contig 55 consensus sequence	Pterygoplichthys ambrosettii	81.78	P01	ovos
93 contig 64 consensus sequence	Clarias gariepinus	82.27	P01	ovos
93 contig 69 consensus sequence	Trichomycterus	80.85	P01	ovos
93 contig 72 consensus sequence	Parodon nasus	89.9	P01	ovos
93 contig 73 consensus sequence	Trichomycterus	82.85	P01	ovos
93 contig 79 consensus sequence	Trichomycterus	82.68	P01	ovos
93 contig 87 consensus sequence	Eigenmannia virescens	81.66	P01	ovos
93 contig 99 consensus sequence	Piabina argentea	84.2	P01	ovos
93 contig 100 consensus sequence	Characidium	94.08	P01	ovos
93 contig 116 consensus sequence	Hemigrammus marginatus	92.71	P01	ovos
93 contig 138 consensus sequence	Astvanax lacustris	82.52	P01	ovos
93 contig 139 consensus sequence	, Trachelyopterus galeatus	82.52	P01	ovos
93 contig 152 consensus sequence	Pyrrhulina australis	86.35	P01	ovos
93 contig 172 consensus sequence	, Leporinus obtusidens	81.76	P01	ovos
93 contig 180 consensus sequence	, Planaltina britskii	84.46	P01	ovos
93 contig 186 consensus sequence	Astvanax biotae	84.93	P01	ovos
93 contig 187 consensus sequence	Trichomycterus	82.89	P01	ovos
93 contig 198 consensus sequence	Cichlasoma	81.63	P01	0005
93 contig 205 consensus sequence	Oliaosarcus	89.51	P01	ovos
93 contig 221 consensus sequence	Characidium	87.37	P01	OVOS
94 contig 1 consensus sequence	Plaaioscion sauamosissimus	80.08	P03	ovos
94 contig 8 consensus sequence	Plaaioscion sauamosissimus	81.61	P03	0005
94 contig 9 consensus sequence	Megalenorinus	80.84	P03	0005
5conde_5_conscisus_sequence	wieguiepornius	00.04	105	0,003
144

Identificação sequencias	Espécies	% Similari- dade	Ponto Coletado	Ovo/Larva
94_contig_10_consensus_sequence	Pyrrhulina australis	85.71	P03	ovos
94_contig_17_consensus_sequence	Apareiodon affinis	98.29	P03	ovos
94_contig_18_consensus_sequence	Plagioscion squamosissimus	80.9	P03	ovos
94_contig_19_consensus_sequence	Plagioscion squamosissimus	80.58	P03	ovos
94_contig_21_consensus_sequence	Apareiodon affinis	92.16	P03	ovos
94_contig_22_consensus_sequence	Bryconamericus	84.97	P03	ovos
94_contig_24_consensus_sequence	Apareiodon affinis	91.9	P03	ovos
94_contig_28_consensus_sequence	Pseudocorynopoma heteran- dria	82.88	P03	ovos
94_contig_29_consensus_sequence	Corydoras	82.93	P03	ovos
94_contig_30_consensus_sequence	Plagioscion squamosissimus	81.74	P03	ovos
94_contig_40_consensus_sequence	Astyanax lacustris	81.45	P03	ovos
94_contig_54_consensus_sequence	Moenkhausia forestii	81.09	P03	ovos
94_contig_56_consensus_sequence	Astyanax lacustris	83.95	P03	ovos
94_contig_66_consensus_sequence	Characidium	91.74	P03	ovos
94_contig_67_consensus_sequence	Oligosarcus paranensis	83.75	P03	ovos
94_contig_68_consensus_sequence	Pyrrhulina australis	88.73	P03	ovos
94_contig_77_consensus_sequence	Hyphessobrycon	81.64	P03	ovos
94_contig_86_consensus_sequence	Eigenmannia virescens	81.82	P03	ovos
94_contig_90_consensus_sequence	Hypostomus strigaticeps	82.65	P03	ovos
94_contig_100_consensus_sequence	Leporinus obtusidens	82.32	P03	ovos
94_contig_105_consensus_sequence	Astyanax lacustris	83.93	P03	ovos
94_contig_121_consensus_sequence	Pyrrhulina australis	85.97	P03	ovos
94_contig_129_consensus_sequence	Plagioscion squamosissimus	82.0	P03	ovos
94_contig_141_consensus_sequence	Phenacorhamdia tenebrosa	91.88	P03	ovos
94_contig_142_consensus_sequence	Trachelyopterus galeatus	82.52	P03	ovos
94_contig_143_consensus_sequence	Roeboides descalvadensis	83.54	P03	ovos
94_contig_151_consensus_sequence	Moenkhausia forestii	84.36	P03	ovos
94_contig_182_consensus_sequence	Leporinus lacustris	82.34	P03	ovos
94_contig_183_consensus_sequence	Parodon nasus	89.9	P03	ovos
94_contig_184_consensus_sequence	Characidium	87.5	P03	ovos
94_contig_193_consensus_sequence	Leporinus	79.88	P03	ovos
94_contig_194_consensus_sequence	Prochilodus lineatus	90.98	P03	ovos
94_contig_200_consensus_sequence	Characidium sp.	82.79	P03	ovos
94_contig_201_consensus_sequence	Cichlasoma	81.33	P03	ovos
94_contig_205_consensus_sequence	Apareiodon affinis	93.62	P03	ovos

Fonte: Autoria própria (2022)