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Abstract

Like many technological inventions of its kind, Quartz Crystal Microbalances (
QCMs ) have been applied to various different fields, from explosive detections to alcohol
vapors classification. One field it has seldom seen use is in the detection of contaminants in
aqueous environments, and in addition, few fully-formed contamination detection systems
have been fully developed for the QCM platform. Therefore this work aims to develop a
novel aqueous ammonia detection system along with the complete set of auxiliary systems
for its operation, such as a graphical user interface and email notifications. The sensor film
that coated the QCM was a polyaniline(PANI)/Reduced Graphene Oxide(rGO) composite
that, when testing with the QCM system, achieved a range of 1mg/L to 100mg/L with an
R2 value of 0.9633, with a response time ranging from 290s to 25s, being comparable in
response time and sensitivity to other sensors. Paving way to a novel class of usages of
electrochemical sensors and resonant piezoelectric crystals.

Key-words: Aqueous Ammonia, Electrochemical Sensor, PANI, QCM, QCM-R.
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1 Introduction

The number of data capturing systems have grown exponentially throughout the previ-
ous years, from applications such as systems integrity monitoring, to industrial quality control,
garnering a large amount of interest from a diverse number of industries in the development of
novel types of sensors and sensor systems (HADANO et al., 2021)(LI et al., 2020). One such
application that is vital for many of society’s needs is in the constant quality control and con-
tamination detection of drinkable water or water that is present in streams and rivers that have
pollution-sensitive species such as a variety of species of mollusks and crustaceans (HUFF et
al., 2013). An example of such pollution that is one of the most prevalent is ammonia, being
extremely toxic in high concentrations to a few species of fish and mollusks and a strong indi-
cator of other pollutants, its early detection in drinkable water is a vital component of its quality
control (HUFF et al., 2013).

In this context, Quartz Crystal Microbalances (QCMs) have amassed interest from the
scientific community by providing a novel, simple way of implementing a variety of types of
sensors, such as antigen-based virus sensors (LIU; ZHANG, 2013), electrochemical explosive
detectors (ESLAMI; ALIZADEH, 2019) and a variety of drug and contamination detectors
(SONG et al., 2017). In addition, a large set of novel ammonia-sensitive films have been de-
veloped over the past decade, showing consistent improvements over previous sensors (LI et
al., 2020). An example of such a sensor is a Polyaniline (PANI) and Reduced Graphene Oxide
(rGO) composite film, which has been validated with the work presented in (HADANO et al.,
2021), showing a great improvement in gaseous ammonia sensing.

The aim of this work is to combine all of these concepts in the usage of this novel
PANI/rGO composite film within a QCM based sensor system in order to develop a real-time
ammonia-contamination detection system.

1.1 Problem and Premises

The problem at hand is the detection of ammonia in water, one important distinction
to be made is that this is a detection problem, as opposed to a classification or quantification
problem, therefore, the main problem to be solved is to detect, above a certain concentration
threshold, the presence of ammonia within a certain controlled water sample, meanwhile, ques-
tions as to which contaminant is present in the water and how much of that contaminant there
is in the water, are not the main focus of this work, limitations of which are partially imposed
by the inherent characteristics of QCM systems, as will be further described in Section 3.1.2.

The structure of this problem can be divided into two main parts: (i) the sensing of
ammonia and (ii) its detection within a certain water sample. The sensing (i) pertains to the
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development of the sensitive film and QCM systems in combination, as well as a study of how
they behave together, characteristics and limitations. The detection (ii) applies to the back-end
system that uses the readings provided by the QCM system in order to detect whether or not
there has been a contamination or not within a given control sample and to signal, both the user
and the system that that event has occurred.

In order to restrict the scope of this work, a few premises must be put in place:

• There are no contaminants at time t = 0: This simplifies the scope of the system by
implying there is a control substance, whose readings can be used as a comparison in
order to detect the contamination. The reason why this premise must exist for a QCM
system is further exemplified in Section 3.1.2;

• A Contamination below a given threshold range can be ignored: This means that
the contamination must be above the threshold defined in this work in order for it to be
defined as a true contaminant.

• The contamination happens in normal controlled conditions: The environmental con-
ditions will affect a measurement directly in a variety of different manners, the most
notable of which are the effects of temperature, therefore, this work will restrict its envi-
ronmental conditions to a temperature-controlled room at around 22oC.

1.2 Objectives

1.2.1 General Objectives

To implement a continuous real-time contamination detection system utilizing Quartz
Crystal Microbalance Sensors.

1.2.2 Specific Objectives

• To develop an experimental setup for QCM measurements of different substances:
In order to develop the system, there must be a consistent and repeatable experimental
setup in place so that the tests and experiments can be validated;

• To define control measures in order to validate the experiment: The implementation
of this setup needs to take into account that any contaminants above a certain threshold
need to be detects, that threshold needs to be duly justified through quantitative data;

• To identify the best detection method of contaminations: In order to optimize the per-
formance of the system, a prior study of some detection methods must be performed
based on what is known from the data;
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• To develop a detection model for the contaminants: Based on what was seen in the
analysis of detection methods, to develop a detection model based on the data collected
from the QCM;

• To test and evaluate the contamination detection model: To test the model and evaluate
its performance and whether or not it is a valid model. In case it isn’t, it must be adapted
in order to fit its goals based on the control measures.

1.3 Methodological Procedures

This work was divided into 4 distinct phases: the initial study of the problem, the de-
sign of the solution, the development/implementation of the system and the tests and evalua-
tion/results of the sensor and detection system.

The study of the problem starts with the familiarization with the QCM based on prior
research and documentation written on it, which provides a body of knowledge of its advantages
and limitations and the necessary basis on which the system needs to be designed on. In this
phase, the control measures will be brought up to be used as performance markers later on the
project.

Based on that, the design of the solution will be created through the architecture of the
system, the synthesis and test of the polymer coating and choosing the detection algorithms.

In the development and test phase, the system will be continuously tested and developed
on in order to fit the necessary requirements set in the design phase of the project.

1.4 Structure of this Document

This document is organized in the following manner: Chapter 2 analyses related works
in the field of electrochemical sensors, QCM-based gaseous ammonia sensors and other conta-
mination detection systems that utilize electrochemical films for their sensing mechanism.

Chapter 3 explains how the theoretical foundation of how the QCM coated PANI/rGO
sensor works, some of their advantages over other sensors, and their limitations. While Chapter
4 specifies the requirements that the system will have to undertake and some of their corollary
functional requirements.

In Chapter 5.2, the development of the system and some preliminary results are shown
and the, along with the architecture of the system and the models implemented for further testing
in Chapter 6. Chapter 6 discusses the results obtained through the tests performed with the
setup developed in Chapter 5.2, and finishes the implementation of the contamination detection
system based on the results with the dataset collected from the experiments.
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And in Chapter 7, discusses the results obtained and remarks about possible future
works to be done as a consequence of this work.
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2 State of the art and Related Works

2.1 Scope of the search

Due to the novelty of this work, there is amount of related works that tackle using QCMs
in the detection of ammonia in aqueous environments, therefore, in this review of the state of the
art, a broader approach looking at electrochemical sensors that use PANI, and related polymers;
and QCM sensors separately is going to be used.

In the field of electrochemical sensors there are an extremely wide range of possibilities
of combinations of conducting polymers and modifications, therefore, to reduce the scope, the
search looked for works that used PANI and polypyrrole to sense the concentration of ammonia
in the water.

For QCMs, the search was done to works that used QCMs for detecting ammonia in
either gases or in water using PANI as a conductive polymer. This is done because no high
relevance works have been published using QCMs using PANI/rGO composites for aqueous
ammonia detection.

For the detection system, however, an in-depth review was done on other state-of-the-
art monitoring systems of simple sensors such as the one seen in QCM’s and how they were
evaluated.

2.2 PANI-based Aqueous Ammonia Sensors

In the work of (WU et al., 2017), K. Wu et. al. developed a highly sensitive aqueous
ammonia sensor using a deposition of PANI on copper and silver wires, with an linear range of
10µM−10mM and 100µM−100mM respectively. Y.F. Huang et. al. achieved a fast response
time sensor T < 1s with linear range of 100µM−100mM through the usage of films composed
of a copolymer of aniline and 2,5-Dimethoxyaniline and PANI around a silver wire (HUANG
et al., 2015). In the work of (KAN et al., 2016), Y. Kan et. al. presents a PANI and poly (o-
phenylenediamine) on a silver nanoparticle substrate with a very large linear range for ammonia
of 20µM−100mM and fast response time T 0.5−2s.

2.3 QCM-based ammonia sensors

In the field of using QCMs in the sensing of gaseous ammonia: In R. Roto et al.’s work,
a QCM-based gaseous ammonia sensor was developed by enveloping the QCM crystal with a
polyvinyl acetate nanofiber film doped with boric acid. It achieved a detection limit of 650ppb

(ROTO et al., 2020). In Ying-hu et al’s, a polyacrylic acid-doped polyvinyl alcohol nanofiber
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film was used on a QCM crystal for gaseous ammonia sensing and a detection limit as low as
100ppb was found (HU et al., 2018).

2.4 QCM-based Substance Classification Systems

In X. Su et al.’s work, a QCM-D was used with a coated quartz crystal in multi-
resonance mode, obtaining the frequency and dissipation shifts in several harmonics (6MHz,
18MHz, 30MHz and 42MHz), collecting multi-dimensional data used for a classification of se-
veral volatile gaseous compounds such as Ethanol, N-heptane, Benzyl alcohol, Acetone, Ben-
zene and others, achieving a 97.5% accuracy (SU et al., 2020). In S. Okur et al.’s work an array
of 12 quartz crystals functionalized with 12 different coatings and materials were used for the
classification between 6 different mint compounds, after collecting approximately 1800 obser-
vations, a KNN and LDA based classifier achieved a prediction accuracy of 90.6% (OKUR et
al., 2021). In L. Qiang et al’s work, an array of 8 QCM crystals functionalized with 8 different
polymer coatings were used in classifying 10 different Chinese liquours and using a multi-
dimensional scaling SVM classifier, it was able to achieve a prediction accuracy of 98.3% (LI;
GU; JIA, 2017).
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3 Theoretical Foundation

3.1 Contamination sensor

3.1.1 Poly-aniline and Reduced Graphene oxide composite sensor

3.1.1.1 Poly-aniline

Poly-aniline(PANI) is an inexpensive and easy to produce conductive polymer that is
often used in a multitude of sensors for a variety of different analytes such as Ammonia in both
aqueous and gaseous forms (WU et al., 2013) (HADANO et al., 2021) (CROWLEY et al., 2008)
(MAITY; MANOHARAN; KUMAR, 2020), chloroform (Mohamad Ahad et al., 2018) and
other organic compounds . The main characteristic that drives the wide-spread usage of poly-
aniline as an electrochemical sensor is the fact that it has several different oxidation states that
present varied physical and electrical properties such as electrical resistance (VIRJI et al., 2004)
and shear stress response (FANG; SUNG; CHOI, 2006) conditions that can be distinguished
between one another.

The main oxidation states that are pertinent to the usage of PANI as a sensor are the
emeraldine base and the emeraldine salt states, shown in Figure 1 (HADANO et al., 2021).
This is due to the fact that the presence of a dopant element, such as positively charged com-
pounds or molecules, will reduce the emeraldine-base into the emeraldine-salt form, displaying
an increased conductivity and changing its polymeric structure (HADANO et al., 2021). Mo-
reover, if the emeraldine-salt is exposed to a negatively charged ion such as ammonia (NH4),
it will oxide back into its emeraldine-base form, lowering its conductivity (HADANO et al.,
2021). Since these reactions are reversible in both directions makes this sensor reusable and its
measurements repeatable (VIRJI et al., 2004).

The reaction can be seen in Equation 1, one consequence of the changes in PANI’s poly-
meric structure is that its viscoelastic properties will also change. According to (SHAKTAWAT;
SAXENA; SHARMA, 2011), PANI in its salt form will have a more rigid nature, while in its
base form, it will have a more viscous one (SHAKTAWAT; SAXENA; SHARMA, 2011).

3.1.1.2 Reduced Graphene Oxide

Graphene, a carbon-based structure formed as a two-dimensional honeycomb-shaped
lattice built on sp2 bonds between its atoms, has garnered much interest in recent years due
to its unique electrochemical and mechanical properties. Having been used as an electrode in
chemical sensors (HADANO et al., 2021), field-effect transistors (FET) (OH et al., 2017), elec-
trodes for super-capacitors (CHEN et al., 2020), and others, Graphene and Graphene-based
compounds demonstrate a large array of possible applications and it is mainly due to the fol-
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lowing merits (HADANO et al., 2021) (RAY, 2015):

(i) its two-dimensional structure allows most of its carbon atoms to be exposed to the en-
vironment to be sensed, maximizing the surface area of the sensor, providing a higher
sensitivity to its analytes;

(ii) its inherently low electrical noise due to its high quality pure carbon structure;

Due to those advantages, graphene sheets have been widely studied in composition with
other materials such as conducting polymers, metals and metal oxides, and it has been shown
that it plays important roles in the improvement of the sensitivity and selectivity of sensors
(RAY, 2015).

In its reduced oxidized form, reduced Graphene oxide (rGO) presents many of the afo-
rementioned characteristics in addition to also being able to react with different analytes (RAY,
2015). One common interaction it presents is the reduction of its carboxyl groups due to the pre-
sence of negatively charged analytes (RAY, 2015). This reaction is illustrated in Figure 1 and
it results in an increase in electrical resistance of the rGO structure (HADANO et al., 2021).
The honeycomb structure of rGO is shown in Figure 1 where the carboxyl groups, called the
dangling bonds of rGO, are clearly seen in relation to the rest of the structure.

Figure 1 – Notable chemical reactions between rGO and Pani with ammonia

Source: Hadano, Fabio et al (HADANO et al., 2021)
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One phenomenon that has been studied in rGO and its non-reduced counterpart (Graphene
Oxide) is its semi-conductive behavior, showing much of the same characteristics as a p-type
semiconductor, meaning that the decrease in electrical conductivity of the rGO chain, through
its interaction with negatively charged particles, can be, in part, explained through the removal
of majority charge carriers (protons) (MAJUMDAR; BASKEY; SAHA, 2011). This effect is
a possible explanation as to why the addition of rGO in composite materials leads to an im-
provement of their selectivity and sensitivity to certain analytes through the enlargement of
depletion layers in semi-conductive hetero-junctions formed by rGO and the other material in
the composition 3.1.1.3 (MAJUMDAR; BASKEY; SAHA, 2011).

3.1.1.3 Poly-aniline/Reduced Graphene Oxide Composite

The composition of PANI and rGO has been studied under a myriad of different settings,
having been applied in fields from the creation of films for flexible super-capacitors (CHEN et
al., 2020), to sensors for humidity (LEE; WANG, 2019) and ammonia (HADANO et al., 2021)
in gases, the composite presents a variety of interesting features such as an improved sensitivity
in relation to PANI (HADANO et al., 2021)(HUANG et al., 2012) (WANG et al., 2019), good
energy storage (WAN; JIAO; LI, 2017), good sensing performance at room temperature and
improved sensing abilities like response time, recovery time, and others (LEE; WANG, 2019).

These features can be said to hail from different synergistic interactions between rGO
and PANI, the most important of which are (HADANO et al., 2021) (MAJUMDAR; BASKEY;
SAHA, 2011): (i) the presence of similar interactions with analytes; (ii) the formation of elec-
tronic hetero-junctions at interfaces and (iii) the electric characteristics of rGO.

Starting from the similar interactions, as it has been described in Sections 3.1.1.1 and
3.1.1.2, both rGO and PANI react spontaneously with ammonia in the water due to the similar
dangling-bond structures of the Carboxyl groups from the rGO structure and the emeraldine-
salt. By having similar interactions, the composition of rGO into PANI will not have any detri-
mental effects in its sensing capacity (HADANO et al., 2021).

In addition, as it was shown in (MAJUMDAR; BASKEY; SAHA, 2011), the interface
between rGO and PANI presents Schottky hetero-junctions that will create conductive and de-
pletion regions at the interfaces and the addition of analytes, such as NH3, to those hetero-
junctions will increase the size of the depletion regions, increasing drastically the electrical
resistance of the composite (MAJUMDAR; BASKEY; SAHA, 2011). Moreover, as it was dis-
cussed in Section 3.1.1.2, rGO has an exceptionally high conductivity, improving its ability to
be added to other sensors without a detriment to their sensitivities (HADANO et al., 2021).

3.1.2 Quartz Crystal Microbalance

Quartz Crystal Microbalance (QCM) devices are sensors that have the ability to me-
asure characteristics such as weight at a scale of nano-grams (LIU; ZHANG, 2013) and are
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commonly employed to measure physical properties such as density, viscosity, elasto-viscosity
of polymers in different environments (LIU; ZHANG, 2013). By having the hability of me-
asuring such properties, by adding an adsorbed layer of molecules that interact with specific
foreign objects like other molecules or organisms such as protozoa, cells and other microor-
ganisms, changes in weight can be infered as interactions between the adsorbed layer material
and the environment, which can be used to detect the presence of a certain microorganism in
the environment (VAUGHAN; O’SULLIVAN; GUILBAULT, 2001). This is extremely useful
for the detection of common food pathogens in solutions, common water contaminants, the
study of the interactions between immuno-bodies and certain microorganisms (YILMAZ et al.,
2015) (VAUGHAN; O’SULLIVAN; GUILBAULT, 2001) (CHEN et al., 2016) and the study of
nanoparticle depositions (CHEN et al., 2016).

3.1.2.1 Working Principle

The main working principle of Quartz Crystal Microbalance systems is based on the
concept of Piezoelectricity, the property of a material being able to physically vibrate through
the injection of electrical current, commonly also used to generate electrical signals through the
physical deformations of the material (LIU; ZHANG, 2013) (CHEN et al., 2016). These Piezo-
electric materials, when under the influence of alternating currents, have a frequency response
with a resonant frequency that’s ultrasensitive to elements such as changes of mass adsorbed to
the crystal, temperature changes, and changes in the viscoelastic properties of the film coating
the crystal (if pressent) (LIU; ZHANG, 2013) (CHEN et al., 2016).

The changes in the resonant frequency are dictated by different equations depending on
the setup of the crystal. If the crystal is placed under a gaseous environment, it can be simply
described by the Sauerbrey equation, shown in Equation 3.1 (CHEN et al., 2016),

∆ f =−
2 f 2

0
A
√

ρqµq
∆m (3.1)

Where f0 is the resonant frequency of the crystal, A is the surface area of the crystal and
ρq and muq are the crystals density and shear modulus respectively. With the variables f0, A, ρq

and muq being approximately constant, they are usually condensed into only one constant value
(CHEN et al., 2016) (LIU; ZHANG, 2013).

∆ f =−C f ∆m (3.2)

Meaning that a change in resonant frequency of the crystal is directly and linearly re-
lated to a change in mass under the specific regime specified earlier. However, these equations
are very limited though, showing severe disparities when placing or flowing a liquid on the
crystal. This has been resolved by the Kanasawa Gordon equation shown in Equation 3.3 (LIU;
ZHANG, 2013).
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∆ f =− f 3/2
u

√
ρLηL

πρqµq
(3.3)

This Equation is used when the clean crystal is under liquid conditions, with ρL being
the density of the liquid and ηL being the liquids viscosity. This means that we can differentiate
different liquids through the differentiation of the different frequency responses associated with
the characteristic ρLηL of each liquid.

Another equation that can be used is the Butterworth Van Dyke equation, presented in
Equation 3.4 (LIU; ZHANG, 2013) that’s based on the Butterworth Van Dyke model of a quartz
crystal, it also only is valid when the crystal is clear.

∆R =
nωsLu

π

√
2ωsρLηL

ρqµq
(3.4)

Where n is the oscillating mode of the crystal, omegas is the unloaded resonance fre-
quency and Lu is the inductance of the resonator. This will be used to also characterize different
liquids through the product of ρLηL.

The measurement of the series motional resistance is done indirectly through the rela-
tion given by the equivalent resonant oscillating circuit, shown in Figure 2. It assumes that the
oscillator has a total phase shift of 360◦ and a unitary gain in order to have the relation shown
in Equation 3.5 (STANFORD, 2004).

Theoretically asserting that the electrical resistance of the material on adsorbed to the
crystal has no effect on the resistance measured by the device, except in cases of correlation
between electrical resistance and viscoelastic properties of the material.

Figure 2 – Equivalent circuit of the oscillator at series resonance.

Source: Stanford Research (STANFORD, 2004)

Rm = 10000×10−Vc/5 −75 (3.5)
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Although the system has a strong mathematical foundation, the crystals themselves will
show a change in their physical properties based on pressure, temperature, and pressure and
temperature hysteresis effects that are not yet well understood, some probable causes of those
effects can be a redistribution of contaminants in the crystal enclosure, hysteresis or thermal
gradients (STANFORD, 2004).

Experimentally, these hysteresis effects will lead the sensor to have a considerable
amount of drift in its measurements, leading to inaccuracies in its readings depending on tempe-
rature drifts, sudden temperature fluctuations. The expected drift in the measurements are given
by the Equations 3.6 and 3.7 where ∆T is the fluctuation in temperature, while ∆ f ∗ and ∆R∗ are
the expected Frequency and Resistance fluctuations based on temperature respectively.

∆ f ∗ = 8∗∆T (3.6)

∆R∗ =−4∗∆T (3.7)

Besides those disparities, when the crystal has a film placed on its surface, the changes
in frequency and motional resistance are no longer associated directly with the viscosity of the
fluid it is inserted in, instead, it is strongly associated with the viscoelastic properties of the film
itself (ARUGULA; SIMONIAN, 2016), being sensitive to changes in the polymer’s thickness,
roughness, viscoelastic changes, material adsorbtion, and other external factors (ARUGULA;
SIMONIAN, 2016). Due to these effects, most QCM-based sensors are better suited for detec-
tion tasks instead of measuring concentrations precisely.

One way to see the association between the viscoelastic properties of a material is as-
sociated with the readouts from the QCM is through the Butterworth-van-dyke model of shear
stress in the crystal, shown in relation to the motional resistance in Equation 3.8 (JOHANNS-
MANN, 2007).

R1 =
d2

q

8Aqe2
26

Zqnπtan(δ ) (3.8)

Where all parameters with the subscript q are the constant parameters of the crystal, dq

being the thickness, Zq the impedance and Aq the area of the crystal, besides those, e26 is the
constant piezoelectric stress coefficient and n is the overtone order, which for the purposes of
the 5MHz crystals used for this project, it is approximately 1, lastly, tan(δ ) is the related to the
ratio of the loss modulus (G′′) by the storage modulus G′ of the film, according to Equation 3.9
(JOHANNSMANN, 2007).

tanδ =
G′′

G′ (3.9)
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Figure 3 – Samples from the dataset built from the experiments performed

[Isolation of the inlier point x1 ] [Isolation of the outlier point x0 ]

Source: Liu Et. Al (LIU; TING; ZHOU, 2008)

Based on that, it can be said that the resistance of the material is directly proportional
to its loss modulus and inversely proportional to its storage modulus based on that equation.
Therefore, if the resistance is higher, it means that the film presents a more viscous nature,
otherwise, it would be evidence for the film presenting a rigid structure (JOHANNSMANN,
2007).

However, coating the crystal with an external sensitive film adds in the complexity of
the sensor system as a whole, by adding the sensitivities of the film to the realm of deviations
and drifts the sensor might have, one common of which one is sensor degradation, where the
film itself will degrade and have its viscoelastic and sensitive properties changed, causing a
permanent drift in the measurements of the sensor (ARUGULA; SIMONIAN, 2016). These
types of drifts are film-specific, therefore largely cannot be avoided without changing the setup
of the experiment or the film itself.

3.2 Contamination Detection Algorithms

3.2.1 Isolation Forest

In order to describe Isolation Forests as anomaly detection algorithms, it is first neces-
sary to describe Isolation Trees, their main component parts. Isolation trees are structures that,
at each node, will divide the feature space into two sections at a point q where one section
is comprised of the points p where p(q) < q and the other one where p(q) ≥ q (LIU; TING;
ZHOU, 2008).

If each point has an approximately unique set of tree nodes that describe its position
within the feature space, then it means that Isolation Trees are able to give approximate po-
sitional representations of those points based on how the path taken through its nodes. One
consequence of this is that the more sparsely the points are distributed, the less nodes it will ne-
eded to spacially represent it within a tree, thus the shorter the path length of its representation,
the more distant it is from other points in the feature space, and the more likely it is an anomaly
(LIU; TING; ZHOU, 2008). A visual representation of this effect in shown in Figures 3 and 3
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Figure 4 – Convergence of the average path length through the combination of isolation trees.

Source: Liu, et. al. (LIU; TING; ZHOU, 2008)

The number of nodes needed to traverse the tree in order to get to a point p is denominated its
"path length"P(p) (LIU; TING; ZHOU, 2008).

In order to train the trees, a preprocessing step is needed on the points present in the
features space. They first need to be subsampled, having the number of points in the feature
space limited to a set amount φ . This is done to reduce the model complexity and to avoid the
swamping effect, caused by the presence of anomaly clusters that might have long path lengths
that might be mistaken as normal data points (LIU; TING; ZHOU, 2008).

Then the trees are trained by, starting at the root node, selecting a random feature of the
feature space and choosing a point q that sits between the minimum and maximum of the points
within that feature and diving the space between two nodes points smaller than q and greater
than q. This is done recursively for each node created until the node cannot divide anymore
for only having one data point, or for having reached the maximum allowed height for the tree
(LIU; TING; ZHOU, 2008).

Combining these trees into an ensemble of forests, an Isolation Forest is created. By
averaging the path lenghts of a specific point for all trees in the forest, it is seen that its value
will converge to one specific number, as seen in Figure 4, larger for normal points and smaller
for anomalous points, creating a metric that can be normalized into an anomaly score. Providing
a solid foundation of an unsupervised anomaly detection algorithm that could also be utilized
as a contamination detection system (LIU; TING; ZHOU, 2008).

The algorithm does have its shortcomings, however. Its training step requires a subsam-
ple of the entire dataset, without regard to the possibility of local anomalies within the dataset,
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being less appropriate for its usage in datasets with highly contextual anomalies (GAO et al.,
2019). However, because of its simplicity, linear time complexity and low memory require-
ments, the isolation forest algorithm remains a widely used algorithm for anomaly detection in
several use cases (GAO et al., 2019).

3.2.2 One Class SVM

Regular Support Vector Machines (SVMs) are widely used in regression and classifica-
tion problems, however, they lack the ability to adapt to highly unbalanced datasets such as is
the case for anomaly detection datasets cases where the number of anomalous cases, by their
very nature, is extremely small in comparison to the number of regular data points. One class
SVM or OCSVM works on the fundamentals of regular SVMs for those specific cases.

The OCSVM algorithms work on the basis of fitting a hyperplane or hypersphere in the
data points’ feature space in order to encompass all of the data points. For any new data points
p, their anomaly score will be based on where it lies in relation to the fitted hyperplane.

Figure 5 – Comparison of different ν values for the SVM classifier

Source: Scikit-learn (PEDREGOSA et al., 2011)

The hyperplane that dictates the decision boundary of OCSVM algorithsm is similar to
the ones in SVM classifiers, in which they both require a kernel function in order to separate
non-linearly separable partitions of the dataset. A few common ones that are commonly used
are the linear, sigmoidal, polynomial and rbf kernels, their distinct effects on the output of the
SVM classifier is shown in Figures 6,6,6, and 6 respectively.

When the OCSVM algorithm is used for outlier detection, it utilizes the hyperparame-
ter of "contamination"(ν), that dictates the percentage of the dataset that is expected to be an
anomaly, a larger value will lead it to separate more of the input dataset as an anomaly, as it is
seen in Figure 5.
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Figure 6 – Samples from the dataset built from the experiments performed

[SVM with linear kernel ] [SVM with sigmoidal kernel ]

[SVM with Polynomial kernelSVM with sigmoidal kernel ] [SVM with RBF kernelSVM with sigmoidal kernel ]

Source: Scikit-Learn (PEDREGOSA et al., 2011)

3.2.3 Holt Winters Forecast Error

Different from the other anomaly detection techniques, Exponential Smoothing (ES)
forecast anomaly detection techniques are based on the concept of "forecast error", in which,
by making a prediction of how a time series will behave in the future and comparing it to the
actual values, it is possible to detect which data points are behaving in an unexpected way to
what it has been seen until that point.

The way in which the ES algorithms generally work is through the usage of the simple
weighted average of previous values, such as is defined in Equation 3.10, where y′(t) is the
smoothed/expected value of y(t), and α is the exponential decay coefficient of the system. The
output of this system and its forecasts are shown in Figure 7.

y′(t) = αy(t −1)+(1−α)y′(t −1) (3.10)

This concept is then expanded upon by the Holt Winters model, that uses the principle
of Exponential Smoothing to make predictions on the average level of the data, its trend com-
ponent, as well as its seasonal component in order to predict its output. Its base equations in its
additive form are shown in Equations 3.11, 3.12, 3.13 and 3.14.

lt = α(yt − st−m)+(1−α)(lt−1 +bt−1) (3.11)

bt = β (lt − lt−1)+(1−β )bt−1 (3.12)

st = γ(yt − lt−1 −bt−1)+(1− γ)st−m (3.13)
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Figure 7 – Effects of different levels of α in the predictions by a simple exponential smoothing forecaster

Source: Self authorship

y′t = lt +hbt + st−m+h (3.14)

Equation 3.11 describes the exponentially smoothed level lt of the data, where s is the
seasonality, t is the current time-step, m is the period of seasonality, b is the trend component
and α is the level decay coefficient.

Equation 3.12 defines the trend component by the difference of the two previous values
of the level component (similar to a derivative), β is the trend decay coefficient.

Equation 3.13 defines the seasonality component of the holt winters model and it se-
parates the actual value from the predicted trend and level component in order to create an
exponentially smoothed estimation of the seasonality of the data.

Lastly, Equation 3.14 combines all components into one equation, where h is the fore-
cast horizon. With this, it is possible to create more accurate predictions of the data by tuning
its different values of α , β , γ and m. For non seasonal holt-winters models, tuning the γ and m

are irrelevant, however. An example of the output given by a Holt Winters model can be seen in
Figure 8.

By comparing the error between the forecasted values with the actual values seen, it is
possible to obtain an error metric of how unexpected the actual value is based on the data seen
up until now, being able to be used as an anomaly detection algorithm.
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Figure 8 – Forecasting of the same data in Figure 7 with the holt winters model

Source: Self authorship
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4 Methodology

4.1 Specifications and Requirements

The functionalities described in this section is related to the objectives listed in Section
1.2, so that each one of them are properly achieved.

1. To develop an experimental setup for QCM measurements of different substances

• FR01: The experimental setup must be reproducible within separate days;

• FR02: The experimental setup must be suitable for monitoring of a control subs-
tance;

2. To define control measures in order to validate the experiment

• FR03: The system should have a defined contamination threshold over which all
contaminations must be detected;

3. To identify the best detection method of contaminations

• FR04: This report must have a well-defined justification as to why the detection
method was chosen and through which metrics it was evaluated as being sufficient;

– In order to reduce the scope of this statement, as to not compare every detec-
tion method in existence, a particular set of detection methods was used for
comparison and the results are shown in Section 5.2.1.1

4. To develop a detection model for the contaminants

• FR05: The detection model must have a surrounding graphical user interface (GUI)
in order to collect the measurements;

• FR06: The detection system around the detection model must notify its users that a
contamination was detected;

5. To test and evaluate the contamination detection model

• FR07: The detection model must be able to detect all contaminants above a certain
contamination threshold.

To further specify some of the functional requirements, they were broken down into
subrequirements as follows:

• FR05.1: The GUI must have a button and selector combo for the incoming data port;
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• FR05.2: The GUI must have a button and selector combo for the output data path;

• FR05.3: The GUI must have a button and selector combo for the notification route;

• FR06.1: The user can toggle on and off the notifications from the system as needed;

• FR06.2: The user can provide an email to be registered for it to be used for any notifica-
tions;

• FR06.3: The system must notify the user if any contaminations have been detected.

4.2 Project

The project was divided into two main components, the measurements and validation
of the QCM sensor system and the development of the contamination detection system. Since
these two are separate components, they were assigned to the measurement phase and the deve-
lopment phase of the project.

4.2.1 Measurement Phase

During the measurement phase, the sensor system were validated through repeated ex-
periments with increasing concentrations of contaminants, starting from a concentration that
is well below the limit imposed by external authorities, up to the concentration at which it is
deemed that the sensor has gone well past what would be feasible for it to be found in normal
environments.

Using this test methodology, the response of the sensor to an increase in contaminants
can be assessed at all normally/naturally attainable concentrations and, by analyzing the overall
response of the sensor, a limit of detection can be obtained and the response characteristics of
the sensor can be used in order to develop the contamination detection software.

Before this can be achieved, however, a standardized test setup/test workbench needs
to be devised so that the system can be repeatable through different days and even different
seasons.

4.2.2 Development Phase

During the development phase, the detection model and the detection system around the
model was developed using the data that was collected during the measurement phase as guides
in order for them to be in accordance to all of the requirements given by Objective 4. described
in Section 4.1.

After this development phase, an evaluation phase was performed, evaluating whether
or not the requirements set by Objective 5. described in Section 4.1 were met with the system
that was developed.
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Through preliminary results of the QCM in different test conditions, it can be seen
that the output of the sensor suffers from significant drift depending on test conditions such as
temperature and immersion depth, therefore, the detection system must take into account two
extra conditions for its operation:

• FR07.1: The Detection system must take into account the measurement drift between
measurements;

• FR07.2: The Detection system must be resistant to measurement drifts within one mea-
surement

Thus the detection system must take into account if there are any temperature changes
between different measurements and changes in the test conditions while the system is running,
such as gradients in the ambient temperature, temperature differences between the crystal and
water, etc.

4.3 Architecture

The architecture of the detection system follows a standard Model-View-Controller
(MVC) Architecture, this is further described in Section 5.2.3, however, the main part of its
core functionalities can be visualized in the Diagram shown in Figure 9.

Figure 9 – MVC-based architecture of the detection system

Source: Self authorship

In this architecture, there are 3 main components: (i) the View (ii) the Controller and
(iii) the Model. Starting from the View, it is the Graphical component of the system, the UI,
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buttons and other elements with which the user is able to interact directly with the system.
Usually this component is fused together with the Controller, who is the component that deals
with the internal logic of the system, like the internal state of the user interface, reading user
inputs, calling functions from the View component in order to update the user’s interface due to
an outside action and performing external actions such as API calls.

Lastly, there’s the Model, in which the internal logic around data components is handled,
this is where the detection model is stored, through which the controller knows whether or
not there has been a contamination in the previous sample collected. Furthermore, behind the
model there is an evaluation component, that uses the detection model in order to test it with
every sample, and with it, the evaluation component provides the recall metric for the detectors
tested.
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5 Development and Results

5.1 Measurement Phase

5.1.1 Synthesis of the Sensor

In order to start the measurements, we first needed to synthesize the film polymer com-
posite, to do that, first, using a Marte Shimadzu AY220 scale, shown in Figure 10, a 4:1 ratio
of PANI to rGO was measured into a polytetrafluoroethylene covered vial. This mixture was
then dissolved into 100µL of N-Methyl-2-pirrolidone (NMP) in order to make an suspension of
small and large pieces of rGO in a PANI solution.

Figure 10 – Scale used in this project

Source: Self authorship

One of RGO’s defining traits, as explained in Section 3.1.1.2, is that it increases the
surface area of the sensor, increasing its sensitivity, while also increasing its selectivity, however,
the larger pieces present in the suspension will decrease its overall surface area, leading to worse
results as a sensor. In order to circumvent this, the suspension was put into an ultra-sonic bath
for 20 minutes, making the larger pieces sink more readily towards the bottom of the vial,
effectively separating the pieces from one another.

After this procedure, using a TopScien 10− 100µL micropipette, 100µL from the top
part of the vial, where the smaller particles were suspended, was separated out and deposited on
the QCM crystal through spin coating. The resulting film has a blue and purple tonality, with a
few darker specks, which indicates that the PANI and rGO mixture has been deposited properly.
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The resulting sensor can be seen in Figure 11a, and a diagram with the respective components
of the sensor are shown in Figure 11b.

Figure 11 – The coated Quartz Crystal Microbalance Sensor

(a) Sensor coated with PANI and rGO

Source: Self authorship

(b) A rendered 3D model of the sensor

Source: Self authorship

In order to see the morphology of this sensor, it was put through a Taylor Hobson CCI

MP profilometer and the resulting image was processed using the MountainLabs 9 software, the
results can be seen in Figure 12, where it can be seen that the overall profile of the PANI/rGO
film contains a significantly rough nature to it, possibly indicating an increase in surface area in
comparison to pure PANI films (HADANO et al., 2021).

Figure 12 – Morphology analysis of the sensor synthesized

Source: Self authorship

5.1.2 Defining Control Measures

In order for this project to have a meaningful point of comparison with regulations and
with current literature standards of ammonia detection and sensing, one of the objectives of this
project is to define a control measure of what concentration of ammonia would be considered
to be the minimum that the system needs to be able to detect 100% of the time.
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To do this, firstly, regulations on ammonia regarding health and safety were surveyed,
and, according to the U.S. Environmental Protection Agency (EPA), chronic exposure of am-
monia, one that exceeds 30 days, is prejudicial to most aquatic life when in concentrations of
over 1.9mg/L (HUFF et al., 2013). Acute exposures, ones of approximately 1 hour, only show
prejudicial effects when in concentrations of over 17mg/L.

For humans, the concentrations in which these effects can be seen is in the case of
drinking water, where a concentration of over 23mg/L has shown effects of irritability and
lethargy in infants (KNOBELOCH et al., 2000). However this can be seen as an extreme case
of ammonia poisoning, in most cases, ammonia is not harmful to humans, but its presence in
clean water usually is a direct sign of external contamination (HUFF et al., 2013).

In other systems, ammonia can be an extremely toxic substance, according to the UN
Food and Agriculture Organization, some species of Cyprinid fish are sensitive to ammonia con-
centrations as low as 1.0mg/L and Salmonids to concentrations of 0.5mg/L (SVOBODOVÁ,
1993).

Besides the regulations already in place, the state of the art must also be taken into ac-
count in order to define what the threshold must be. As was seen in Section 2, some PANI-based
electrochemical aqueous ammonia sensors works since 2015 have had their data summarized
as seen in Table 1 where the Limit of Detection (LOD) and Range of Operation (Range) were
converted from µM to mg/L for consistency in the data.

Table 1 – Table of similar aqueous ammonia sensors since 2015

Active Sensor Range (mu M) Range (mg/L) LOD (mu M) LOD (mg/L) Ref.
PANI/Ag. 10 - 10000 0.18 - 180.39 - - (HUANG et al., 2015)
PANI/Ag. wire 100 - 100000 1.8 - 1803.9 - - (WU et al., 2017)
PANI/Ag. nano wire 20 - 100000 0.36 - 1803.9 12 0.216 (KAN et al., 2016)

It is important to note that the LOD is only an estimation of how low the concentration of
the analyte can get before it merges with its background noise (ANDERSON, 1989), therefore
it does not directly provide the control measure needed.

One way for the control measure to be defined is for it to be within the range of all
of these past works, having assumed that the sensor synthesized has similar characteristics.
Being based with PANI and an external conductive material, it would be safe to say that the
PANI/rGO sensor’s operational range will include 1.9mg/L, which is the upper limit for the
acceptable concentration of ammonia in water according to the EPA. Therefore, it can be used
as the control measure of this project, meaning it will be used as a threshold, over which all
contaminations must be detected.

5.1.3 Test Setup

In order to test the sensor, a test setup needs to be developed and tested, from what is
seen in the manual from the QCM200, two different setups for testing the sensor are appropriate:



Capítulo 5. Development and Results 37

(i) static and (ii) dynamic setups.

(i) Static setups require simply a volume of liquid in which the sensor can be immersed
in and a contaminant can come into contact with the liquid and spread out, coming in contact
with the sensor(STANFORD, 2004);

(ii) Dynamic setups on the other hand is reliant on mechanical systems to push liquids
through a flow cell that guides liquids through the surface of the crystal, in order to insert
controlled contaminants, a multi-port flow valve is needed to modulate the flow from the various
pumps to continuously push liquid through the flow cell. A diagram of this system is shown in
Figure 13 (STANFORD, 2004).

Figure 13 – Diagram of a dynamic test setup

Source: Stanford Research (STANFORD, 2004)

Dynamic setups, however, have a large amount of issues associated with their imple-
mentation that were raised within the development of this project, a few of them are listed
below:

i There is a large amount of mechanical parts

• The large large amount of moving parts attached to the QCM sensor made the sensor
readings very unstable when there were unexpected stoppages in the system and
due to the pressure hysteresis effect explained in Section 3.1.2, this leads extremely
unstable results (STANFORD, 2004).

ii The flow needs to have constant flow, and no bubbles

• The flow recommended for this sensor is of around 0.15mL/h (STANFORD, 2004),
which requires syringe pumps and surgical tubing for connecting the pumps, which
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usually lead to bubbles forming within the tubes or air pockets within the flow cell
itself, which requires a reset of the entire experiment.

iii Temperature gradients are amplified

• Due to the movement of the liquid, any temperature changes in the environment
leads to a faster, more abrupt response of the sensor. Furthermore, differences in
temperature between the liquid and the sensor will also cause large drifts in readouts
from the sensor.

Due to these added complexities, the Static setup was chosen for this project, it consists
in a beaker filled with the control liquid, distilled water, in the case of this experiment, and
the head of the QCM holder, shown in Figure 14, is immersed in it for the duration of the
experiment. Any contaminants to be inserted in this mixture are inserted after a set period of
time into the water and it diffuses into the rest of the solution.

Figure 14 – The Crystal Holder used for the project

Source: Self authorship

To build the setup, the holder was attached to a raised rubberized clamp and was hung
head-first into the beaker for testing, the height was adjusted in order for it to be immersed in a
way that it covers the entire crystal holder head. The entire setup with a clean CrAu crystal can
be seen in Figure 15.

As for the insertion of the contamination, ammonia needs to be introduced to the system,
in order to do this, concentrated ammonium hydroxide (NH4OH−) would be inserted into the
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Figure 15 – Final setup for the static experiments

Source: Self authorship

water of the beaker, the quantity inserted would be able to modulate the concentration of the
mixture according to the following instructions:

5.1.4 Building a dataset

To perform the tests needed for the development phase of this project, a set of controlled
experiments must be performed, the main requirements needed for the dataset are the following:

• At least one experiment for each relevant concentration beginning on a value smaller than
the control measure and ending in a value high enough to ensure that sensor saturation is
not an issue;

• At least one experiment of a blank insertion, in order to ensure that the act of inserting
something into the water is not affecting the sensor or the detection model in any mea-
ningful way.

With this, the requirement for FR07 from Section 4.1 can be tested and the low threshold
ammonium concentration detections can be verified against the blank insertions in order to en-
sure that the contamination detection mechanism does not have a significant amount of mea-
surement bias associated with it, in other words, ensure that the detection model is not simply
detecting the act of inserting something into the water.
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5.2 Development Phase

5.2.1 Contamination Detection Model

The contamination detection model was developed with the requirements set in Section
4.1 in mind. It consists of a combination of several models developed to detect changes in the
readings from the QCM200.

5.2.1.1 Algorithm implementation

The algorithms chosen needed to be able to detect the sudden change in the readings
of resistance and frequency, as well as to be able to adapt to any measurement drifts that could
occur within a single measurement or between different measurements. Taking inspiration from
the field of real-time unsupervised anomaly detection algorithms, the ones selected were the
One class Support Vector Machine (OCSVM), Isolation Forest, Exponential Forecast and Mean
deviation anomaly detection algorithms.

The OCSVM, and Isolation Forest algorithms were chosen for being well known algo-
rithms that are widely used in the field of real time anomaly detection, however, they suffer in
terms of model complexity and processing time in the context of the problem at hand (AHMAD
et al., 2017) (LAVIN; AHMAD, 2015).

They were both implemented using the Scikit learn package from python. In order to
run the preliminary test performed, the default parameters of both the Isolation Forest, as well
as the OCSVM algorithms were utilized, which implies the following parameters:

• OCSVM

– Kernel: Radial Basis Function

– Gamma: Scale

– Tolerance: 0.001

– ν : 0.5

• Isolation Forest

– Isolation Trees: 100

– Sampling size: Using all samples

– Contamination: Automatic

– Number of features: 2 (Frequency and Resistance)

Prior to its inclusion in the model the data was first preprocessed by taking the diffe-
rence/derivative between the current data points with the average of 180 seconds in the past.
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This normalizes the data to some extent, and taking using the difference in the model aids it in
reducing the effects of smoother measurement drifts while also amplifying short term deviations
of the data, this effect can be seen in Figure 16.

Figure 16 – Example of the advantages of preprocessing with a 15 minute deviation

Source: Self authorship

When the system reaches at least 5 minutes worth of data, it fits the models to the
collected resistance and frequency measurements, creating the fitted models for the OCSVM
and Isolation Forest Algorithm.

After that, after every minute of data collected, these models are used to predict whether
or not the newly collected data is anomalous or not. If so, it returns a list of the detections made.

The Exponential Forecast, described in Section 3, is used every minute to predict how
the data will behave in the next time step. To do this, the statsmodels module from python was
used in order to implement an additive non-seasonal HoltWinter model.

At every detection step, the model is fit to the newly seen data and is used to forecast
the next minute of data. When this minute passes, the new data collected is compared to the
previous forecast and if the deviation between theses two values exceeds 1% (defined as so due
to the results seen in Section 6), that data point is classified as an anomaly.

Lastly, the mean deviation algorithm is an extremely simple algorithm that was made
using the results obtained from the early tests performed for this project, and it strictly only uses
the QCM’s resistance measurements for its contamination detection.

It consists of the calculation of a large window moving average of the data. This ave-
raged data is then used by calculating the deviation of the current resistance value with the
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resistance measured 15 minutes prior, if this operation results in a deviation larger than 1.5%,
an anomaly is detected.

The numbers relative to the 1.5% threshold and 15 minutes are based on the response
and rise-time values seen in Section 6.

5.2.1.2 Model Implementation

The proper model implementation is composed of an ensemble of at least two of the
algorithms discussed previously, when only one model detects an anomaly/contamination, it is
considered a ’probable’ contamination, when more than one detects a contamination within a
certain time limit (set to 5 minutes in this project), a ’severe’ contamination is detected. Which
algorithms are going to be chosen for this ensemble is discussed in 6.

The main motivating factor for this type of model is that it is necessary to avoid false
negatives as much as possible, while also avoiding false positives. And when employing multi-
ple models with different operating principles at a time, false negatives are less likely, and false
positives can be classified differently at the stakeholder’s discretion.

To implement this model, separate classes were developed to implement each algorithm
explained in Section 5.2.1.1, each of them is connected to the DetectionVoter class that is
responsible for joining together all of the detections made from each other detector and merging
them into one single list of detections that can be used by the RunController.

The DetectionVoter class is also responsible for fusing together detections made in
quick succession and merging several "Probable"contamination detections into one "Severe"detection.

5.2.2 Email Notifications

In order to fulfill "FR06 - The detection system around the detection model must notify
its users that a contamination was detected", a simple cloud-based email service architecture
was implemented using an AWS server with the architecture shown in Figure 17.

Figure 17 – Architecture developed for the email functionality of the system.

Source: Self authorship
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In this architecture, the data is streamed from the QCM200 into a computer that has
access to the internet, after a contamination has been detected, the system makes an API request
to the AWS Api Gateway to get access into the programmed lambdda functions that are divided
into two: (i) the Email Verifier and (ii) the Email Sender.

The (i) email verifier is responsible for sending a verification email in order to register
the email in the AWS Simple Email Service (SES). Then, when the email has been verified,
when a detection is made within the system’s operation, the (ii) will receive a request with the
detection information, such as time, severity and the destination email, as parameters for it to
request the SES to send the appropriate email to the end user. All of these modules are monitored
through a programmed AWS Cloudwatch module that will notify the system’s administrator if
unexpected behaviors in the system occur in order for appropriate action to be taken.

5.2.3 System Architecture

The overall architecture of the system was first introduced in Section 4.3, and it presen-
ted an MVC-style architecture. Using that model in mind, the architecture shown in Figure 18
was implemented in python using the QT GUI framework to implement the user interface.

Figure 18 – Architecture Diagram of the System implemented

Source: Self authorship

In the implemented architecture, the ViewController is responsible for displaying the
GUI to the user, handling the user’s inputs into the system, and handling changes in the interface
such as events of connection with the QCM, readouts from the QCM and others.
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The ViewController and the RunController are very intimately connected, in the sense
that the RunController is responsible for managing the internal run-state of the system, such
as the state of the connections between the system and the QCM, the management of internal
memory access with Mutex elements and the creation and management of parallel threads. This
class is the one that controls the flow of the data that is being received from the QCM.

These two elements compose an element in the MVC architecture called the View-
Controller element, where both the handling of the user’s inputs and the displaying of informa-
tion to the user are both handled by a single class or by a set of classes. This is done so that the
handling of user information does not need to pass through a dedicated controller class to get to
the model, being more adequate to smaller systems such as the one being implemented.

Further back in the system there is the DetectionController and the DetectionVoter.
The DetectionController is responsible for keeping track of the detections that have been made,
which detectors have made the detection and of sending the detections back to the RunCon-
troller.

The DetectionVoter, as described in the previous section, is an intermediary class that
takes the QCM data from the DetectionController and sends it to all of its detectors, receiving
back their detections and voting whether or not there has been a detection and how severe that
detection is based on the current and previous detections.

Lastly, the test controller was the class responsible for the implementation of the tests
performed in Section 5.2.1.1, it acts as a simulated RunController and it records the detected
contaminations in order to check which ones were correct or not.

5.2.4 RS232 Interface

The interface with the QCM is made through the RS232 interface it provides. Its functi-
onality is based on commands that can be sent to the QCM or requests for information that can
be provided. Some of the possible commands are shown in Figure 19 (STANFORD, 2004).

To implement the interface with it, within the system, there is a parallel worker thread
that is responsible for asynchronously reading the interface with the QCM when requested to,
to do so it needs to query the absolute resistance and frequency, wait for the QCM to return the
required info, and return it to the RunController.

The query can done simply by sending either the "R"or "F"digits through the RS232
interface and waiting for a response from the RS232 bus. In order to treat edge cases of faulty
connections, the request can timeout after 1 second without a response from the QCM, in case
more than 10 timeouts happen in a row, the system will be disconnected from the QCM.
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Figure 19 – Commands available for the QCM 200

Source: Stanford Research (STANFORD, 2004)

5.2.5 Interface

In order to fulfill the FR05, the interface was developed using the python implemen-
tation of the QT front-end framework, it uses python code in order for it to render a 2D or
3D graphical user interfaces. It is implemented within the ViewController class described in
Section 4.3.

The interface implemented contains the main user menu on the left-hand side, providing
the buttons and input boxes for the input port, the output path, the email to be registered, along
with assisting buttons to refresh the serial ports available, to select the output path of the data
file, and to register the email. Along with these, there is a connect button for the system to
start communicating through the RS232 port with the QCM200. The GUI can be seen with an
example data streamed through it in Figure 20.
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Figure 20 – The GUI developed for the project

Source: Self authorship
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6 Results

6.1 Measurement Phase

6.1.1 Preliminary results

Using the setup defined in Section 15, the preliminary experiment was to (i) insert the
crystal in the water and examine its behavior, waiting for it to come to a stable state and (ii) to
insert a high concentration of ammonia in order to determine its response to it.

The definition of a high concentration of ammonia was deemed to be of around 5mg/L

of NH4OH−, based on the related works shown in Section 2 this is a concentration well above
what is expected for the sensors to respond.

Figure 21 – Preliminary experiment of 5mg/L

Source: Self authorship

The results of the experiment are shown in Figure 21, from which, we can clearly tell
that there was a significant reaction when the sensor was exposed to 5mg/L of ammonium
hydroxide. The interactions that can be seen are: (i) An increase of 24Ω in the crystal’s motional
resistance and (ii) A decrease in 78Hz in the crystal’s resonant frequency.

Effect (ii) of a decrease in the crystal’s resonant frequency, according to equation 3.1
could be attributed to an adherence of ammonia particles to the sensor through the interaction
between ammonia and the dangling bonds of the PANI/rGO composite, making the crystal have
more mass on its surface, decreasing its resonant frequency.

Effect (i) on the other hand is harder to describe analytically, it is the increase of the
motional resistance of the crystal/film interface, one possible explanation is the change of PANI
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being in its Emeraldine Salt form into its Emeraldine Base form, which has a more viscous
nature, raising the resistance the crystal has of displacing it on its surface.

To confirm these findings, the same experiment was done on 10mg/L of ammonium
hydroxide and the results can be seen in Figure 22, in which we can clearly see the same effects
taking place.

Figure 22 – Preliminary experiment of 10mg/L

Source: Self authorship

∆R5mg/L =
R f −R0

R0

∆R5mg/L =
400.63−386.51

386.51
= 0.0365

∆R5mg/L = 3.65%

∆R10mg/L =
R f −R0

R0

∆R10mg/L =
456.64−429.74

429.74
= 0.0626

∆R10mg/L = 6.26%

Further analyzing the resistance in the results of Figures 21 and 22, it can be seen that
the percentage difference in response to 5mg/L was of 3.65% and the one for 10mg/L was of
6.26% so an increase of almost double in the response, which means the sensor has a consistent
response to increasing concentrations of ammonia in water.

6.1.2 Calibration curve

To further study the behavior of the sensor, a series of experiments with increasingly
high concentrations of ammonia must be done in succession, this aids in the comprehension of
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how low the detections can be made, how good the sensor is in comparison to other state of the
art electrochemical sensors.

To do this, the contamination experiment that was done in Section 6.1.1 for 5mg/L and
10mg/L were repeated for the concentrations of 1mg/L, 3mg/L, 5mg/L, 10mg/L, 30mg/L,
50mg/L, 100mg/L and 200mg/L.

Figure 23 – Calibration Curve experiment results

Source: Self authorship

From the data, is it noticeable how noisy the resonant frequency is, this could be explai-
ned by its faster nature of it being related to the mass adsorbed on the surface of the crystal, as
opposed to the slower interaction between Emeraldine Salt and ammonia molecules that result
in the change in its motional resistance. To better analyze the results, the changes in resistance
were plotted in relation to the added ammonia to the water. The results are shown in Figure 24
in a semi-log scale.

These data were collected using only the resistance measurements because the fre-
quency data was too noisy to be able to be used as steady state measurements before and after
the contaminants were introduced.
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Figure 24 – Calibration Curve response fit results

Source: Self authorship

The fit in Figure 24 has an R2 value of 0.9633 and a pearson’s R score of 0.98148, from
which can be seen that the sensor has a range beyond the limits of 1mg/L and 100mg/L, and
from the data, the limit of detection can be calculated according to (ANDERSON, 1989) by the
following equation:

LODy/x = 3
σy/x

Sy/x

Applying this equation to the linear fit from Figure 24, an LOD of 458.29775µg/L of
Ammonium Hydroxide was found. To compare with regulatory requirements, the concentration
of ammonium hydroxide must be converted into total ammonia nitrogen (TAN), the main metric
used by regulatory organizations (HUFF et al., 2013). To do that, the LOD must be multiplied
by the ratio between the molecular weight of nitrogen and the molecular weight of ammonium
hydroxide, doing that yields an LODTAN of LODTAN = 183.20µg/L of TAN.

Doing a similar procedure to discover the LOD in M (mols/L), it can be found that the
LODmol = LOD/35.04 = 13.0792µM, being comparable to the other electrochemical sensors
shown in Section 2. Comparing this composite to a film of PANI by itself, and performing the
same procedures as those used to produce the graph in Figure 24 on the QCM coated only with
PANI, the results shown in Figure 25 was achieved.
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Figure 25 – Comparison of PANI/rGO and PANI on a QCM crystal

Source: Self authorship

In Figure 25, it can be seen that the the response achieve with only PANI on the QCM
was inferior to that achieved with the PANI/rGO composite. With the response of the PANI film
at 30mg/L being inferior to that of the PANI/rGO film at 1mg/L, and with a visible amount
of drop-off in response of the PANI film in concentrations above that, possibly indicating its
saturation point being lower than that of the PANI/rGO film. Therefore, it can be seen that there
is a significant improvement from the addition of the rGO film to the composite.

Another aspect that can be seen from the data in Figure 24 is that the response ∆R/R0

starts at around a 2% variation of the initial resistance level. This was used in Section 5.2 in
order to tune the thresholds of the Exponential Forecast and Mean Deviation detectors.

6.1.3 Building the dataset

The procedures brought up in Section 5.1.3 were followed and a series of experiments
were done in progressively bigger concentrations of ammonium hydroxide, starting from the
concentration of 0.5mg/L of it. One new addition to the tests is the presence of longer ex-
periments that would leave the sensor for over 8 hours submerged to see if temperature and
measurement drifts would be an issue. A sample of the results of those experiments can be seen
in the figures presented in Figure 26
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Figure 26 – Samples from the dataset built from the experiments performed

[Hard water insertion] [Long water exposure - 42h] [Long exposure before 10mg/L contamination]

[1 mg/L contamination] [3 mg/L contamination] [5 mg/L contamination]

[10 mg/L contamination] [30 mg/L contamination] [50 mg/L contamination]

Source: Self authorship

6.2 Development Phase

6.2.1 Algorithms analysis

In Section 5.2, the algorithms relevant to this project were implemented around the
DetectionVoter, seen in Figure 18. To evaluate them, all of the tests performed with the QCM
sensor were compiled and the correct times for contamination detection were tabulated, and,
along with the TestController class, used for evaluating each algorithm and how many false
positives and true positives it had. The results obtained are shown in Table 2.

Table 2 – Results of each algorithm

Algorithm False Positives True Positives Recall
Isolation Forest 694 264 38.0%
OCSVM 20 20 50.0%
Exponential Forecast 0 20 100.0%
Mean Deviation 0 30 100.0%

With these results, it can be seen that the simpler methods have far outperformed the
commonly used anomaly detection methods, this might be because of the simpler nature of
the data from the QCM, being more adequate to be used by less complex models that were
calibrated with real experiment data, something that is not easily embedded in models such as
OCSVM and Isolation Forests.

Examples of the detections made by each of the algorithms are shown in Figures 28, 29,
27, and 30. Figures 28, 29 and 27 show that in experiments without noise or measurement drift,
all algorithms were able to perform well, having their detections withi a valid detection zone.
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Figure 27 – Detections made by each algorithm in a 5mg/L contamination of NH4OH

Source: Self authorship

Figure 28 – Detections made by each algorithm in a 10mg/L contamination of NH4OH

Source: Self authorship

Figure 29 – Detections made by each algorithm in a 10mg/L contamination of NH4OH

Source: Self authorship

However, when there is considerable drift caused by temperature changes or any kind of
deviation from the norm, such as is the case in the experiment shown in Figure 30 in which the
sensor was left overnight and then was exposed to the contamination. In this experiment, both
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the OCSVM and Isolation Forest Algorithms detected several anomalies due to the drift caused
by the change in temperature throughout the night, while the Mean Deviation and Exponential
Forecast algorithms detected the contamination correctly.

Figure 30 – Detections made by each algorithm in a long water water exposure experiment, the contamination is
of 10mg/L of NH4OH

Source: Self authorship

There is an argument to be made that OCSVM and Isolation Forest would outperform
the Exponential forecast if subjected to hyper-parameter tuning, but considering the computa-
tional cost of both methods in lieu of the performance achieved with the Exponential Forecast
and Mean Deviation Techniques, they were discarded for the rest of the project and only the
Exponential Forecast and Mean Deviation detectors were used.

There were only 2 cases where the mean deviation and exponential forecast systems
gave a false negative prediction to an experiment but in both situations, the contamination was
under the control measure stipulated in this project, these experiments are shown in Figures
31 and 32. Meaning that a combination of both the exponential forecast and mean deviation
algorithms could still be used as an appropriate detector along with the mean deviation detec-
tor. With this, the main component of FR07 was achieved from the performance of both the
Exponential Forecast and Mean Deviation algorithms.
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Figure 31 – Detections made by each algorithm in a the contamination of 0.5mg/L of NH4OH

Source: Self authorship

Figure 32 – Detections made by each algorithm in a contamination of 1mg/L of NH4OH

Source: Self authorship

6.2.2 Final system assembly

By joining together all of the components as described in Figure 18. The system was
assembled and it was tested with a contamination of 5mg/L of Ammonium Hydroxide and the
result in the GUI is shown in Figure 33
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Figure 33 – Final interface with a contamination of 5mg/L of ammonium hydroxide, with the detected contamina-
tions visible from the graph

Source: Self authorship

The resulting contaminations led to the system sending an email to the email registered
on the text field on the left side of the GUI, and the email received is shown in Figure 34

Figure 34 – Resulting email from the detected contamination

Source: Self authorship
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7 Final Considerations

7.1 Final Considerations

In summary, through an analysis of the different capabilities of the Quartz Crystal Mi-
crobalance and PANI/rGO sensor system, a reproducible experimental setup was developed for
testing of water under various conditions. Along with that, considering the consequences of
both acute an long-term exposure to ammonia in different concentrations, and analyzing the
current state-of-the-art polyaniline ammonia sensors, a control measure was defined in order to
validate the system.

After that, a comparative test with different detection models was performed on the data
collected from several ammonia contaminations on the test setup and it was chosen that the sim-
ple Mean-deviation and the Exponential Forecast algorithms had the best overall performances
and were chosen in order to be components of an ensemble-like contamination detection mo-
del. This model was developed using python along with an auxiliary graphical user interface in
order for it to be used in a real world setting. As an added feature, an email notification system
was developed using an AWS cloud-based infrastructure, so that remote personnel would be
able to be notified in case a contamination was detected and for the relevant data to be logged
in their emails.

With that, the model was tested and the GUI and email functionalities were tested. All
of the tests were correctly assessed by the ensemble system, therefore passing the validation
criteria imposed previously.

7.2 Future works

Due to the scope of this work, there are several possibilities of future developments for
this work, a few of which are listed below.

• The execution of repeatability and selectivity tests of the PANI/rGO films on QCM crys-
tals, in order to assert how reproducible and selective these results are; as well as how
durable the sensor is;

• An expansion of the GUI functionalities, expanding the email notifications functionality
into an email-login system that could lock the interface with a password;

• An auxiliary setting to tune how sensitive the system is to any contaminations;
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• The development of a packaged, embedded solution that would contain the system deve-
loped without the bulk needed by the QCM200, enabling the system to be either handheld
or easily portable;

• Utilizing more than one QCM crystal in tandem, in order to classify different contami-
nants using more sophisticated classifier, such as KNN, Principal component analysis and
SVM.
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