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RESUMO

Esta tese apresenta novos métodos para monitorar temperatura e deformacao dindmica em ma-
quinas elétricas rotativas usando dois sensores de fibra 6ptica: 1) com redes de Bragg (FBG)
encapsulado em polimero reforgado com fibra de carbono (CFRP) e 2) com sensores de tem-
peratura distribuidos (DTS). Em maquinas elétricas, altas temperaturas e vibrac¢des, se nao de-
tectadas precocemente, podem desgastar o isolamento elétrico, aumentando o risco de falhas
de curto-circuito nas bobinas do estator. Esta tese € uma coleg¢ao de quatro artigos publicados:
os dois primeiros sao com sensores baseados em FBG, e os dois ultimos com sensores base-
ados em DTS. Devido os sensores serem mecanicamente frageis a tensbes de cisalhamento,
os encapsulamentos de CFRP conferem-lhes robustez sem alterar significativamente sua sen-
sibilidade. O primeiro sensor FBG foi construido em forma do nudcleo do estator de um motor
de inducéo trifasico (MIT), e este projeto foi patenteado. A dindmica do motor operando com
rolamentos novos e danificados, em vazio e com carga, foram avaliados em ambiente industrial.
O segundo sensor FBG foi projetado para operar em contato com o rolamento. Além de per-
mitir r4pida instalagcéo, a detecgdo dos defeitos concentram-se no mensurando. Na analise de
defeitos de rolamento, os resultados dos testes foram consistentes com os resultados tedricos
para ambos os sensores FBG. No terceiro artigo o objetivo foi monitorar a temperatura usando
um sensor DTS na regiao final da barra do estator de um gerador de 355 MW que superaquece
e tem dimensdes inferiores a 50 cm. No entanto, o equipamento de aquisicdo do sensor DTS
ndo detecta com precisdo os sinais com resolucéo espacial abaixo de 1 m. Para superar este
problema, um algoritmo de reconstrucéo de sinal baseado em deconvolucéo de sinal por total
variation foi usado, permitindo medigées em comprimentos de até 15 cm. O quarto artigo focou
na mapeamento de um MIT de 20 cv operando na industria papeleira. A instrumentacdo DTS é
realizada em todas as ranhuras do niicleos do estator com fibra ética revestida com Teflon ® 900
pm, para identificar regides quentes. Os resultados alcangados nos trabalhos demonstraram o
potencial dos métodos propostos para o monitoramento continuo de temperatura e deformacgéo

dindmica em maquinas elétricas.

Palavras-chave: deformagédo dindmica e sensoriamento de temperatura; maquinas elétricas
rotativas; redes de bragg em fibra ética; sensoriamento distribuido de temperatura; sensores

oticos integrados em fibra de carbono.



ABSTRACT

This thesis presents new methods for monitoring temperature and dynamic deformation in ro-
tating electrical machines using two optical fiber sensors: 1) a smart fiber Bragg grating (FBG)
sensor encapsulated in carbon fiber reinforced polymer (CFRP) and 2) a sensor based on dis-
tributed temperature sensing (DTS). In electrical machines, high temperatures and excessive
vibrations, if not detected early, can wear out the electrical insulation, increasing the risk of short-
circuit failures in stator coils. This thesis is a collection of four published papers: the first two deal
with sensors based on FBG, and the last two with sensors based on DTS. Because sensors are
mechanically fragile to shear stresses, CFRP encapsulations provide them robustness without
significantly altering their sensitivity. The first FBG sensor was built in the shape of the stator
core of a three-phase induction motor (TIM) , and this design was patented. The dynamics of
the motor operating with new and damaged bearings at no load and rated load were evaluated
in an industrial environment. The second FBG sensor was designed to operate in contact with
the bearing. In addition to allowing quick installation, the detection of defects focuses on the me-
asuring. In the analysis of bearing defects, the test results were consistent with the theoretical
results for both the FBG sensors. The third article aimed to monitor the temperature using a DTS
sensor in the end-winding region of the stator bar of a 355 MW generator that overheats and has
dimensions smaller than 50 cm. However, the optical interrogator of the DTS sensor does not
accurately detect signals with spatial resolution below 1 m. To overcome this problem, a signal
reconstruction algorithm based on signal deconvolution by total variation was used to improve
the spatial resolution up to 15 cm. The fourth article focused on the thermal mapping of a 20 hp
TIM operating in the paper-manufacturing industry. The DTS instrumentation is performed in all
stator core slots with optical fiber coated with Teflon ® 900 ;:m, to identify hot regions. The results
achieved in the works demonstrated the potential of the proposed methods for the continuous

monitoring of temperature and dynamic deformation in electrical machines.

Keywords: distributed temperature sensing; dynamic strain and temperature sensing; fiber

bragg gratings; optical sensors integrated in carbon fiber; rotative electrical machine.
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1 INTRODUCTION

1.1 Current Perspective and Motivations

Generators and electric motors are fundamental to electrical energy generation and
energy conversion systems. The lifespan of these machines significantly depends on their elec-
trical insulation. Materials that withstand high temperatures and have adequate electrical insula-
tion are used to construct the stator coil windings of these machines for their longevity. However,
premature aging may occur owing to vibration and heat caused by bearing failures, voltage imba-
lances, excessive loads, eccentricities, and phase imbalances (GRUBIC et al., 2008). In Brazil,
the industrial sector consumes approximately 43.7 % of the total energy generated. Industrial
electrical machines account for 68 % of this consumption. In addition, industrial machinery dri-
ven by electric motors consumes approximately 30 % of all electrical energy produced in the
country (ANEEL, 2015). Electric generators are the primary machines for generating electricity,
whether through hydroelectric, thermoelectric, or wind power (ANEEL, 2020).

Electric generators and motors are essential to socio-economic development. The growth
of every economic segment depends on the use of electrical energy to operate machinery and
devices. Global energy consumption increased by 3.5 % in 2018, the industrial sector being the
largest consumer (ANEEL, 2020). In Brazil , between November 2018 and November 2019, there
was a 3.5 % growth in consumption (EPE, 2019). Brazil has approximately 170 GW of installed
power, as shown in Figure 1 (ANEEL, 2020). Hydroelectric generators are the primary sources
of energy production. The uninterrupted supply of electrical energy comes from the constant
operation of electric generators, which stop only for scheduled maintenance.

The Empresa de Pesquisa Energética (EPE) publishes monthly data on electricity con-
sumption at the national, regional, and subsystem levels for segments such as residential, in-
dustrial, commercial, and others (rural, public service, and public lighting). In 2019, the total
energy consumption in the country was 482 million MWh, and the sector-wise consumption (in
percent) is shown in Figure 2 (EPE, 2020). Figure 3 shows the main industrial sectors based on
their energy consumption (EPE, 2020). The metallurgical industry consumed 28.1 %, followed
by the food (16.7 %) and chemical (12.8 %) industries. These energy-intensive industries use
electric motors in various capacities to operate hydraulic pumps, agitators, and conveyor belts
in the production line. These machines generally run continuously, stopping only for scheduled
maintenance. Unexpected stoppages result in financial losses and inconvenience because of
interruptions in water distribution, sewage treatment, food production, or electricity supply. The-
refore, appropriate maintenance of these machines is crucial. Maintenance can be corrective or
preventive: corrective measures are typically costlier than predictive ones. Preventive measures
can be further classified into systemic (scheduled) and predictive (based on monitoring). For
electric machines, predictive maintenance is the best option because performance is monitored
through periodic analysis of physical parameters (CHANG; HONG; CHANG, 2018).
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Figura 1 — Energy production in Brazil according to the type of generation.
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Figura 2 — Energy consumption by residential, industrial, commercial, and other segments (rural, public
service, and public lighting) in Brazil.
Industrial

19,12% Other

Commercial
Classes

29,44%

Residential

Source: Adapted from https://www.epe.gov.br/pt/publicacoes-dados-abertos/publiacoes
(Updated on 07/01/22)



12

Figura 3 — Industrial sectors with the highest electricity consumption (2019).
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Temperature and vibration are the fundamental parameters to be monitored owing to the
internal impact they cause in the machine. According to IEEE recommended practice (IEEE,
2006) 44 % of the failures caused in the three-phase induction motor (TIM) are related to bea-
rings. In theory, through vibration sensing, it is possible to verify whether the bearing is damaged
or a bearing element is defective (ORHAN; AKTURK; CELIK, 2006),(WANG et al., 2018), (HAN
Q.AND DING, 2019). The insulation of electrical machines can withstand temperatures between
100 °C and 200 °C. The heat generated during the operation of electrical machines must dis-
sipate into the external environment. Constant temperature monitoring prevents the insulation
from deteriorating prematurely and prolongs the life of machinery. The vibration sources in elec-
tric rotating machines may be bearing failure, shaft eccentricity, rotor balancing, and electrical
voltage imbalance, among others. Excessive vibrations may damage the insulation and cause
short circuits between turns and coils (ZHANG et al., 2011).

Previous studies have developed sensors to measure the temperature and vibration
in electric motors and generators to identify faults and demonstrated various ways of monito-
ring these variables (ZHANG, 2015), (BAZZO et al., 2015), (RESENDIZ-OCHOA et al., 2018),
(RESENDIZ-OCHOA et al., 2018), (HAN Q.AND DING, 2019), (MOHAMMED; MELECIO; DJU-
ROVI¢, 2019), (SARKAR et al., 2021). Conventional temperature sensors such as resistance
temperature detectors (RTDs) perform point measurements. Such sensors are installed in some
parts of the machine: they are installed in slots in generators (HUDON et al., 2013) and between
coils in motors (RANSOM; HAMILTON, 2011).

Typically, the temperature is measured only between two coils in motors (WEG, 2019).
Therefore, the temperature change must be uniform inside the motor, and it is difficult to detect
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the heating source. The sensor is usually inserted on the head of coils in the stator (where the
coil wires come out), a region with a higher heat concentration.

Vibration sensors are effective in monitoring the condition of rotating machinery, especi-
ally in diagnosing mechanical problems (TSYPKIN, 2017). Vibration data provide essential in-
formation about eccentricities, current and voltage imbalances, and problems in stator windings,
rotor bars, and core conditions (Kumar; Singh; Naikan, 2018). Vibration sensors gather data
using methods based on variable resistance, piezoelectricity, and electrodynamics. In electrical
machines, sensors, usually attached to the frame, are used only intermittently. Because, there is
no continuous monitoring, defects are not identified early. Many studies have demonstrated the
use of external vibration sensors in identifying electrical machine faults, including broken rotor
bars (KANQVI¢ et al., 2013), eccentricities (DEHINA et al., 2019), and faults in the coils (Kumar;
Singh; Naikan, 2018), drives (JOKIC; CINCAR; NOVAKOVIC, 2018) and bearings (DALVAND et
al., 2014). However, these sensors are susceptible to environmental interference, which compro-
mises measured data.

Another promising line of research employs artificial intelligence (Al) based techniques
and classical sensors (YAN et al., 2020). The measurements by sensors act as input data for
algorithms that diagnose faults. Lu et al. (2020) proposed using convolutional neural networks
(CNNSs) to diagnose in situ engine failures with an embedded system consisting of a Raspberry
Pi and signal acquisition and processing circuits. Similarly, Palacios et al. (2017) used the dis-
cretization of current and voltage amplitude signals in the time domain to identify multiple faults
in induction motors. Three types of intelligent classifiers were employed to diagnose engine
failures: artificial neural networks, k-nearest neighbor algorithm, and support vector machines
with minimal sequential optimization. Regarding mechanical failures, Lee et al. (2014) reviewed
methodologies that use algorithms and proposed fault analysis through prognostics of rotating
machines. Seera et al. (2014) proposed an ensemble intelligent hybrid model useful for moni-
toring induction motor conditions through motor current signature analysis (MCSA). The hybrid
intelligent model comprises the fuzzy min-max (FMM) neural network, random forest (RF), and
classification and regression tree (CART) models.

In the last decade, several studies have focused on identifying every possible component
failure in electrical machines. Generally, the physical parameters like current, voltage, vibration,
torque, and magnetic field are measured, and the readings are processed and analyzed through
time function, frequency response function (FRF), fast Fourier transform (FFT), predictive torque
control (PTC), rotational magnetic field (RMF) analysis, frequency response analysis (FRA),
magnetic field signature analysis (MFSA), fuzzy logic, wavelet analysis, or a combination of
these. Table 1 presents a summary of research according to fault types and the corresponding
analysis methods.

Typically, Hall sensors are used in measurements; as transducers, these sensors de-
tect the magnetic field and convert it into voltage signals using the Hall effect. These signals
processed through intelligent algorithms, such as neural networks (BAZAN et al., 2019), have
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Tabela 1 — Bibliographies according to types of failures found in electric rotative machines.

Types of Faults Identification Unit Analysis / Processing Reference
Current FRF (FROSINI; BASSI, 2010)
Vibration FRF (IMMOVILLI et al., 2013)
Bearing Vibration Neural Networks (PRIETO et al., 2013)
Voltage FRF (DALVAND et al., 2014)
Vibration FFT (ZHANG et al., 2020)
Voltage / Torque PTC (NEMEC et al., 2010)
External Magnetic Field FFT (CEBAN; PUSCA; ROMARY, 2012)
Rotor Current MCSA (LEE et al., 2016)
Internal Magnetic Field RMF (SOLEIMANI; CRUZ; HAGHJOO, 2019)
Vibration DFT (TREML et al., 2019)
Current Fuzzy Logic (AZGOMI; POSHTAN, 2013)
Stator Current 3D Ellipse of Currents (EFTEKHARI et al., 2014)
Impedance FRA (RATHNAYAKA; SEE, 2017)
Current Wavelet (DEVI; SARMA; RAO, 2016)
Current Neural Networks (BAZAN et al., 2019)
Current MCSA/FFT (BESSOUS et al., 2017)
Current e Torque Wavelet (AHMADI; POSHTAN; POSHTAN, 2013)
Eccentricity Acoustic Noise Finite Element (KIM et al., 2014)
External Manetic Field MFSA (XU; QIU; WU, 2017)
Internal Magnetic Field Time (MIRZAEVA; SAAD, 2018)

been used to identify failures in electrical machines. However, these methods require accurate
and instantaneous data, which may be difficult to acquire using conventional sensors. Moreover,
electromagnetic interference may limit the functioning of conventional electric sensors. In the
case of copper transmission lines using conventional sensors, the distance between the instal-
led sensors and command cabins and the number of sensors are limited.

Optical fiber sensors overcome these difficulties in monitoring temperature and vibra-
tion for identifying faults in electrical machines (TWERDOCHLIB; EMERY; BRANDT, 1989),
(THEUNE et al., 2002), (BAZZO et al., 2015), (SOUSA et al., 2016), (LINESSIO et al., 2016). The
primary advantages of optical fiber sensors over conventional sensors are immunity to electro-
magnetic interference , high galvanic isolation, and small size (KERSEY, 2000), (MOHAMMED;
DJUROVIE, 2018). In distributed temperature sensing (DTS), the entire machine can be mo-
nitored with only one optical fiber embedded with numerous sensors throughout the structure
(HUDON et al., 2013), (BAZZO et al., 2015).

DTS sensors have stimulated several industrial applications, particularly for large sys-
tems. Most commercial equipment uses DTS technology. DTS sensors are based on the thermal
sensitivity of optical fibers, which act as sensor elements (HU et al., 2011). In this study, sensors
based on Raman distributed temperature sensing (RDTS) (hereinafter called RDTS sensors)
was used, whose working principle is Raman scattering (BOLOGNINI, 2013). RDTS sensors
emit a short-duration laser pulse in optical fiber and analyze the intensity of the backscatte-
red light spectrum through photodetectors. For the temperature measurements, the Stokes and
anti-Stokes Raman spectra were considered.

However, a using the RDTS system in small and medium-sized electrical machines is
disadvantageous because its spatial resolution is in the order of meters. The spatial resolution of
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RDTS sensors indicates the minimum length over which the fiber must be sensitized to guarantee
the accuracy of the measurements. The stator size varies according to motor power, and most
slot lengths are less than 1 m, which RDTS sensors fail to measure accurately. However, some
signal-reconstruction algorithms used with available RDTS sensors may overcome the problem
caused by the order of spatial resolution. Some studies have demonstrated that this technique
significantly improves the signal (WANG et al., 2018), (SAXENA et al., 2015), (BAZZO J. P,; PIPA,
2016). This thesis presents a signal processing algorithm to improve the spatial resolution of
RDTS sensors validated experimentally. This experiment was conducted to identify faults in the
busbar of a hydroelectric generator and stator of the induction motor.

In addition to temperature, vibration is another important parameter in the analysis of
electrical machines. The RDTS sensors could only monitor the temperature. However, fiber
Bragg grating (FBG) sensors can over this limitation. Measurements performed with FBG and op-
tical frequency domain reflectometry (OFDR) sensors have numerous advantages owing to the
characteristics of the fiber (SOUSA et al., 2012), (MOHAMMED; DJURQVI¢, 2018) (MOHAM-
MED; MELECIO; DJUROQVIE, 2019), (ZHU et al., 2019). OFDR is an optical interrogation techni-
que that allows meticulous analysis of the measured signal (EICKHOFF; ULRICH, 1981). Optical
fibers are fragile and should be handled with extreme care, limiting the large-scale deployment
of FBG sensors. This study focused on identifying techniques to protect the optical fiber without
altering its measurement capacity. One such technique is encapsulating the FBG sensors in
carbon fiber reinforced polymer (CFRP) (GALVAO et al., 2018). The properties of carbon fibers,
such as their high mechanical strength, low density, and high elastic modulus, make the sensor
more robust and adaptable.

Because of these advantages, a sensor integrated into a CFRP was built and a utility
model application for this novel system was filed (INPI: BR 20 2020 001730 1). The sensor de-
sign, based on the shape of a TIM stator core, was built and tested in an industrial environment.
Vibration analyses were performed under actual operating conditions and the effects of the new
and used bearings were compared. The frequency analysis results indicated similarity with the
theoretical calculations of the bearing defects. Based on the results, this device shows great
potential for vibration analysis in electrical machines of any size. This study provides a new te-
chnique to prevent significant damage with continuous monitoring of the functional parameters

of electric motors and generators.

1.2 GENERAL OBJECTIVE

This work aims to develop measurement techniques with optical sensors to monitor tem-
perature, dynamic deformation, voltage imbalance, and eccentricity in rotating electrical machi-

nes.
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1.2.1 SPECIFIC OBJECTIVE

» Experimentally identify the leading causes that generate defects in rotating electrical
machines;

» Apply optical sensors without having to change the machine design;

+ Evaluate the feasibility of applying distributed optical sensors (DTS) for monitoring the
stator temperature of medium and large electrical machines;

» To evaluate the feasibility of applying FBGs sensors integrated into carbon fiber com-
posite to measure temperature and dynamic deformation;

» Develop a sensor based on FBGs integrated into carbon fiber reinforced composite for
easy application in rotating electrical machines;

» Implement the sensor developed in induction motors to carry out experimental tests and
verify the performance of the proposed device;

 Implement instrumentation (DTS) in the stator slots of the induction motor without inter-
fering with the operating mode;

+ Perform dynamic tests on the induction motor, induce failures and analyze instrumen-
tation data in order to identify defects;

» Analyze the experimental results obtained with proposed methods and verify the possi-
bility of making it a predictive maintenance tool for rotating electrical machines.

1.3 Thesis Structure

This thesis comprises four papers published in reputable engineering journals. The first
two articles focus on FBG sensors encapsulated in CFRP and the last two on DTS sensors.

The first paper presents the design of an FBG sensor encapsulated in CFRP for mo-
nitoring rotating electrical machines. The sensor underwent manufacturing, calibration, experi-
mental validation in the laboratory, and testing in an industrial environment. The measurements
were carried out at the Induspel Paper Mill (Morretes, PR, Brazil). The new sensor provides data
that allow the evaluation of the state of rotating electrical machines during operation based on
continuous monitoring of temperature variables and dynamic deformation of the stator. Signal
acquisition is a recurring problem in hostile environments . The first article, therefore, focuses on
the analysis of bearings. By measuring the dynamic deformation, the frequencies generated by
the bearing were diagnosed, and the bearing elements with defects were identified.

The second paper presents a dedicated FBG sensor encapsulated in CFRP for monito-
ring bearing failures. There are numerous sources of vibration in the industry, such as rotating
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electrical machines, compressors, pipelines, transport vehicles, etc. These vibrations can wear
out bearings, form cracks, loosen screws, and cause structural failures and short circuits (RAO,
2008). Bearing failures can be divided into two groups: premature and regular steel fatigue failu-
res (IMMOVILLI et al., 2009). Failures are usually attributed to faulty lubrication, improper han-
dling, wrong bearing selection, and carelessness during shaft or housing design (NSK, 2019). In
electric motors, the damaged bearing can burn the stator coils and cause an imbalance of the
rotor allowing it to touch the stator core and damage the motor. The bearing consists of an outer
race, an inner race, a rolling element, and a cage. When these constituent elements become
defective, they cause an increase in vibrational energy. This increase appears as a pulse at a
single frequency and can be determined from the dimensions of the bearing (ORHAN; AKTURK;
GELIK, 2006). In electrical machines, vibration analysis is an excellent technique for monitoring
the operating conditions and identifying faults at a stage that precedes major damage (JANDA;
MAKKI; KONICEK, 2014). Studies related to vibration monitoring have mostly focused on iden-
tifying machine faults, detecting excessive vibration levels, and determining when to shut down
the machine to avoid possible damage caused by severe vibration. The measured vibration data
can be compared to a standard of vibrations (RILEY et al., 1999). Vibration sensors available on
the market can be installed in the machine housing. However, this region is susceptible to inter-
ference from external oscillations. The difference between the developed FBG sensor and the
conventional sensor is the position where they are installed. The developed sensor is installed in
contact with the bearing under examination, allowing early detection of faults.

The third paper discusses monitoring with DTS sensors to identify hot regions of the
stator bar of a 355 MW hydroelectric generator in the laboratory. Although this method has limi-
tations in terms of spatial resolution, a technique that applies reconstruction algorithms to the
measured signal was implemented, validated, and experimentally tested. The results indicate the
possibility of measuring the temperature every 15 cm from the end of the bar where the optical
fiber is installed. The region of the coil heads where connection closures are performed is an im-
portant area for temperature monitoring. With hundreds of interconnected bars and anti-vibration
shims, the heads of the coils form a complex region to maintain adequate ventilation. High tem-
peratures above 100 °C in the stator bars limit the useful life of insulating materials (KOKKO,
2012). Overheating can damage the insulation system, causing critical generator failure (LIU et
al., 2007), (WANG et al., 2018). To avoid installing dozens or hundreds of conventional sensors,
DTS is a plausible technique for monitoring each bus with as many points as possible.

The fourth article presents the diagnosis of faults and voltage imbalances in an electric
motor through thermal mapping by RDTS sensors. Motors heat naturally because of the Joule
heating. The electric current flowing through the coils produces heat, which is dissipated outside
the motor housing with help of a fan mounted on the motor shaft. The wind produced by the fan is
directed by the deflector cover through the fins, removing hot air. Adequate dissipation depends
on the efficiency of the ventilation system, total dissipation area of the housing, and temperature
difference between the external surface of the housing and ambient air (1.,; — 1) (WEG, 2019).
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According to the Weg Specifications Guide, obtaining the winding temperature with conventional
sensors is difficult because of the temperature difference between any two points on the motor
. The maximum operating temperatures allowed for the induction motors are defined according
to ABNT NBR 17094, and IEC 60034-1 (IEC, 2010). The temperature exceeding this thermal
limit causes gradual insulation degradation in motors and reduces their expected life. According
to Pawlus (PAWLUS; KHANG; HANSEN, 2017), the life of a motor is reduced by 50 % for each
increase of 10 °C above the thermal limit.
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Optical Fiber Sensor Encapsulated in Carbon
Fiber Reinforced Polymer for Fault Detection
In Rotating Electrical Machines

Jessé de Pelegrin, Uilian José Dreyer, Cicero Martelli, and Jean Carlos Cardozo da Silva

Abstract—This paper introduces a novel fiber-based sen-
sor for dynamic strain and temperature measurements in the
stator of rotating electrical machines. Fiber Bragg grating
sensors were integrated into carbon fiber reinforced polymer.
The encapsulation has appropriate mechanical energy trans-
fer to measure dynamic strain and temperature. The proposed
sensor is installed in the stator of the induction motor allowing
to analyze the dynamic strain generated by the machine.
The main failure in induction motors is attributed to bearing
failures. In this work, the tests were performed operating at full
load with new and defective bearings. The results show the
main peaks of frequency caused by strain observed coincide
with the electrical supply frequency (60 Hz) and mechanical
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bearing forces (30 Hz), with harmonic components at 120, 180, and 240 Hz. However, for the damaged bearings frequencies
of 89.8, 116.5, 146.4, and 149.7 Hz were identified. These frequency components were generated by defects in the outer
race, rolling element and inner race. The fundamental components of 30 and 60 Hz between the new and damaged
bearings presents an increase of more than 75 %. Results show the potential of the proposed sensor in the monitoring

of temperature and dynamic strain in electrical machines.

Index Terms— Carbon fiber reinforced polymer, fiber Bragg gratings, rotative electrical machine, dynamic strain and

temperature sensing.

|. INTRODUCTION

LECTRIC generators and motors are fundamental
elements in the electromechanical energy conversion
process. Approximately 40 % of the total global consump-
tion of energy can be attributed to electric motors [1]. The
global power generation matrix is based on rotating electrical
machines. Therefore, it is very important to operate these
machines for as long as possible.
The identification of faults in rotating electrical machines
has been the focus of considerable research interest over the
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last 30 years [2]. Such faults are often caused by premature
aging, which occurs due to vibrations and excessive heat
caused by bearing failures, electrical voltage imbalance, over-
load, and eccentricity [3]-[6].

With an increase in the production of electric vehicles [7]
and wind turbines [8], along with the use of machines in the
industrial sector, new research is being conducted to improve
energy efficiency and prevent machine failure. Three-phase
induction motors (TIM) represent about 68 % of the electricity
consumed in the Brazilian industrial sector [9].

According to an IEEE study [10], 44 % of failures
in TIMs can be attributed to bearing faults, 26 % to sta-
tor faults, 8 % to rotor faults, and 22 % to other factors.
Several studies have proposed methods to monitor machines
to predict possible failures. Glowacz and Glowacz [11]
used thermal image processing with neural networks to
identify machine failures through analysis and comparison.
Dalvand et al. [12] used the frequency component analysis
of the machine’s electrical supply voltage to identify bearing
failures. Similarly, Giantomassi et al. [13] and Han et al. [14]
used spectral analysis of the electric current to identify motor
failures. Although these studies have proposed solutions for
monitoring electrical machines, there are some difficulties in
implementing them in the industrial sector. To obtain a thermal

republication/redistribution requires IEEE permission.
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image, it is necessary to easily access an electrical machine,
which is generally not possible in industrial plants. In the
case of voltage and current analysis, these components are
susceptible to electrical network noise. Depending on the type
of machine start-up, the results can differ due to the high
inertia loads. This condition generates voltage fluctuations and
noise in the electrical network [15].

Other types of sensors have gained popularity in recent
years. This work is focused on optical fiber sensors, which
have properties that are essential for electrical machine
applications, such as small dimensions, fast responses, and
immunity to electromagnetic interference. Generally, optical
sensors are applied to measure temperature and strain to
indicate possible machine failures. To check for rotor bro-
ken bars, Sousa et al. [16] used optical fiber Bragg grating
(FBG) sensors installed in the stator tooth to analyze the
frequency characteristics between a rotor in good condition
and that with a broken bar. To identify faults in the stator,
Mohammed et al. [17], [18] installed FBGs inside the
grooves and between the coil turns to observe thermal behav-
ior. For temperature distribution and vibration, among other
physical quantities, Fabian et al. [19] presented a FBG-
based system allowed for the simultaneous monitoring of the
machine.

Commercial electrical sensors, which are used in vibra-
tion measurement, are installed on the outside of electrical
machines. Owing to their high cost, they are only used
in specific applications [20]. In such cases, measurements
must be made with the system in operation, which makes
performing the task difficult and puts the person responsible
for the measurement at risk. In industrial areas of great prod-
uct demand as electric generation, mining, and water/sewage
treatment, the electric machines are frequently unavailable due
to its importance within the process. In such cases, there must
be an online detection tool for measurements to take place
even during the uninterrupted machine operation.

Since the bearing faults are the major reasons for the
failure of the TIM, the sensor was developed to identify
these faults. The FBG is sensitive to shear; the fiber was
encapsulated in CFRP, which allows for higher stress limits,
flexibility and fracture resistance [21]. The encapsulation of
the FBG influences the sensitivity of the sensor. However,
some compensation methods can be used [22], [23]. Since
the optical fiber and the CFRP in which it is embedded have
different material properties, strain in both materials will not
be equal when load is applied [24]. The measurements with the
proposed sensor are intended to identify the difference between
TIM in good condition and with defects, so the encapsulation
does not influence the results.

This paper is organized as follows: Section II presents the
theoretical analysis of the bearings. Section III presents the
materials and methods with the development of the sensor,
which includes FBGs integrated into a carbon fiber composite
material, its calibration and installation, and tests on the TIM
applied in an industrial plant environment. Section IV presents
the results and discussion of the measurements made with the
proposed sensor during two specific conditions: one with new
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Fig. 1. Mechanical construction of the rolling bearing.

bearings and one with faulty bearings. Section V presents the
conclusions.

II. THEORETICAL ANALYSIS

A TIM may exhibit undesirable behavior during operation
due to problems of electrical, magnetic, or mechanical origin.
These defects can be detected by analyzing the frequencies in
the electromechanical vibration spectrum of the machine [25].
Problems of electromagnetic origin are caused by voltage
imbalance between the phases, failures in the stator winding,
dynamic, and static eccentricity that cause variations in the
magnetic flux [26]. Mechanical problems are related to imbal-
ance, misalignment, and mechanical looseness, usually caused
by bearing failure. In this paper, bearings faults are addressed
in the bearings and their associated frequencies.

The bearing comprises an inner race, outer race, rolling
element, and cage, as shown in Fig. 1. Each part introduces
a frequency element within the vibration spectrum. Radially
loaded rolling element bearings generate vibrations even if
they are geometrically perfect. It happens due to the use of
finite rolling elements. The bearing races generate vibrations
owing to a change in the direction of the contact forces applied
by the rolling elements [27]. Hence, it is possible to calculate
the natural frequency from the bearing’s geometric dimensions
and operating conditions.

In TIM, the rolling element bearings are commonly used
to provide rotor support [28]. Each bearing element has a
characteristic rotation frequency which can be calculated using
equations 1, 2, 3, and 4 [29]:

r=L [1 _ %cos(a):|, (1)
Fo= f (%) [1 _ dD—ZCOSZ(a)i|, @)
Fr = N2 [1 + %cos(a)i|, 3)
For = 00 [1 _ %cos(a}], 4)

where F. is the cage fault frequency, F;. is the rolling element
fault frequency, Fj, is the inner raceway fault frequency, F,, is
the outer raceway fault frequency, N, is the number of rolling
element, d is the diameter of the rolling element, D is the
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pitch diameter, o is the contact angle, and f, is the rotational
frequency [29].

Bearings can have defects such as roughness, waviness, mis-
aligned races, off-size rolling elements, cracks, pits, and spalls
on the rolling surfaces [28]. The presence of defects causes
a significant increase in the level of mechanical vibration in
the amplitude of spectral components. Through the spectral
analysis of vibration, it is possible to determine the wear level
of the bearings. For a vibration sensor to identify the beginning
of the problem, it must perform continuous monitoring. In this
paper, a robust optical fiber sensor that is intrinsic to the
electric machine was developed to measure the dynamic strain
and temperature.

[1l. MATERIALS AND METHODS

A. Sensor Development

The proposed sensor consists of FBGs recorded in optical
fibers that are integrated into a carbon fiber composite material.
FBG is a periodic refractive index modulation into the fiber
core inscribed when it is exposed to a transversal UV light
interference pattern of laser light [30]-[32]. According to
Bragg’s law, a fraction of the incident power is reflected
around the Bragg wavelength, which is given by:

75 = 2Anesy, 5)

where n.sr is the effective refractive index of the fiber in the
fundamental mode in which the FBG is imprinted and A is
the period of the refractive index modulation of the FBG [33].

The wavelength reflected by the FBG structure shifts with
a variation in the strain and/or temperature to which it is
exposed. The wavelengths reflected by the grating to change;
these wavelengths change with the variation in the mechanical
deformation (A¢) and temperature (A7) to which they are
exposed. Equation 6 represents the displacement of the Bragg
wavelength (Alp) [34],

Adp=2g[(af +EAT + (1 - p)Ac], (6)

where a is the thermal expansion coefficient, which has a
typical value of 0.55 x 107® °C~!, for silica. The term ¢
represents the thermo-optic coefficient (% 6 —9 x 1076 °C~1)
and p is the photoelastic coefficient that represents the physical
elongation of the fiber [30].

The FBGs were recorded using the phase mask technique
onto a Ge-doped photosensitive fiber (fiber type: GF1, (SMF)
Nufern®). The FBGs were written using an excimer laser
(Xantos XS 500 - 193 nm-XS-L Coherent®) as the ultra-
violet (UV) light source with 25 W, 5 ns pulses, frequency
ranging from 250 to 300 Hz, and pulse energy ranging
from 3 to 4.5 mJ/pulse. A total of six FBGs were written
with different wavelengths (1526, 1532, 1537, 1550, 1556,
and 1560 nm).

In order to protect the FBGs, the optical fiber was inte-
grated between two layers of carbon fiber composite of both
bidirectional and unidirectional carbon-fiber fabric twill type
(200 g/m?) and epoxy resin (331), and thermosetting type
with hardener (043), manufactured by Dow Chemical Com-
pany. The carbon fiber reinforced polymer (CFRP) has a low
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Fig.2. Diagram of the developed sensor with six evenly distributed FBGs
integrated in CFRP.

coefficient of thermal expansion of approximately 1.1076/°C
[35], [36]. The elasticity coefficient depends on the num-
ber of layers of the CFRP; for two layers, it corresponds
to 3.8 GPa [37].

The first layer of the carbon fiber was impregnated with
epoxy resin, hermetically sealed, and heated to perform the
curing process. A vacuum pump removed the air particles
while the compound was cured at 120 °C for 8 h. This first
layer was cut into the shape of the stator core plates and is
the basis for positioning the FBGs. The FBGs were evenly
distributed, as one can see in Fig. 2. The second layer of
the CFRP is placed over the first layer with the FBGs and
underwent the same vacuum curing process.

The encapsulation has the mechanical energy transfer char-
acteristics appropriate for measuring vibration and tempera-
ture [21]. This format assisted in measurements and facilitated
installation in the machine’s core. Fig. 2 shows the model of
the sensor built with six FBGs integrated into the CFRP and
an optical connector.

B. Calibration

To verify the sensor’s behavior integrated into the carbon
fiber, a sample of a sensor with the same characteristics was
subjected to thermal analysis. For thermal characterization,
it was used a LAUDA model ECO RE415 thermal bath.
Data acquisition was performed using the SM130 optical
interrogator, manufactured by Micron Optics, which has a
sample rate of 1 kHz. The sample was subjected to thermal
variation in the range of 20-90 °C at intervals of 5 °C. Four
repetitions were performed, and the average of the points
obtained was linearly adjusted. This generated a correlation
coefficient of 0.99821. The thermal sensitivity was found to
be 0.00526 nm/°C.
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Fig. 3. Experimental setup in field with pump and motor used for water
treatment.

The temperature sensitivity of an FBG is normally between
8 and 12 pm /°C [33]. For encapsulated FBG sensors, the tem-
perature sensitivity is influenced by the material used to
integrate the sensor [38]. That is why the found thermal
sensitivity in this work differs from the one found in the
literature.

The electrical machine’s internal temperature is related
to the silicon steel sheets that make up the stator core.
These sheets present a thermal expansion coefficient of
11.9 x 1076/°C at temperatures between 20 and 100 °C [39].
Considering the thermal expansion of the CFRP [21] and
the core plates, the average expanded uncertainty was 5 pm,
which corresponded to 1 °C. This uncertainty was sufficient
to monitor the TIM temperature, as the thermal limits for the
insulation classes presented this magnitude [17], [40].

C. Industrial Plant Tests

The developed sensor was applied to a TIM operating
in a recycled paper processing plant. The motor is coupled
to a pump that recirculates the water through a closed-
loop system, thereby avoiding environmental contamination.
This plant plays an important role as being environmentally
friendly; its production depends exclusively on recycled paper,
and it operates at the lowest possible water consumption levels.
During recycled production, all the water removed is reused
after treatment. Fig. 3 shows the motor, pump, and tank. The
hydraulic pump must not be inoperative for more than two
consecutive hours; otherwise, production problems may occur.

The motor operates in a hostile environment and is exposed
to high humidity. Thus, the bearings suffer frequent wear,
requiring constant replacement to avoid damage to the motor
and losses in production. The bearings of this motor are
replaced every 6 months following a preventive maintenance
procedure.

In this study, the spare motor was used to install the sensor
integrated with the composite. The motor underwent a recon-
ditioning process, enabling instrumentation with the proposed
sensor in the stator core. Table I presents the parameters of
the TIM.
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TABLE |
PARAMETERS OF INDUCTION MOTOR

Rated Power
Poles

14920 W (20 Hp)
4

Rated Voltage 380 V
Rated Current 30 A
Frequency 60 Hz
Speed 1755 rpm
Sensor Stator Core
-
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Fig. 4. Schematic of the sensor installation on the TIM stator core.

The sensor was fixed to the stator core using Araldite
LY5052 epoxy resin and HY5052 amine hardener with a
mixture ratio of (LY) 100: 40 (HY) parts by weight, parallel
to the core, as shown in Fig. 4. The bonding was performed in
the entire contact area of the core and the sensor, including the
stator tooth, which provided greater sensitivity in measuring
vibration and temperature. The schematic drawing of the
experimental setup with the acquisition, optical interrogator,
FBG sensor encapsulated in CFRP, and sensor attached to the
TIM stator core are shown in Fig. 5. It can be seen from the
shape of the sensor that it does not interfere with the stator
reconditioning process, which is one of the advantages of this
sensor. In addition to the shape, the thickness of the sensor
(2 mm) aids in avoiding space loss inside the motor without
the invasive effect that other conventional sensors can cause.
For this motor, the coils have a 1:10:12 pass and are inserted
concentrically in the grooves. At the end of the reconditioning
process, the bearings were replaced, and the motor was tested.

Firstly, the motor was started under no-load conditions. This
first test aimed to verify the simultaneous behavior of dynamic
strain and temperature. Fig. 6 shows the measurements made
by one of the FBGs during motor startup. Initially, the motor
was not running, and the temperature measured was 22 °C.
The motor started at 1.6 min; it was operated until 3.4 min
and then turned off. When starting the motor, the sensor
detected temperature and strain quick transient that is related
to the moment of inertia of the rotor. During operation,
the measured signal increased until the motor was switched
off. The temperature measured by the sensor shifts of 12 °C
was expected according to the thermal characteristics on the
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Fig. 5. Schematic drawing of the experimental setup with acquisition, optical interrogator, FBG sensor encapsulated in CFRP and sensor attached

to the TIM stator core.
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Fig. 6. Graphic showing the temperature and strain variation during a
no load test of the instrumented TIM.

empty machine. In particular, a difference in the amplitude of
dynamic strain in the motor between the turn off state and the
running state was evident.

With the motor coupled to the hydraulic pump, tests were
carried out initially with new bearings and then with damaged
bearings. In the faulty bearing, visible defects are identified
as ball fault (oxidation), inner raceway damage (broken), and
outer raceway damage (snap), as shown in Fig. 7. The faulty
bearings used are from the motor before reconditioning with
six months of operation. Bearing 6309 had greater deteri-
oration because of the motor side of the hydraulic pump
connection.

Each part of the bearing construction contributes to
a certain frequency component of the vibration spectra.
Table II presents the physical dimensions of the bearings
6209 and 6309. Applying the data from each bearing in the
equations 1-4, the following frequencies can be determined for
each bearing: For bearing 6209, the following were obtained:
F. = 11.66 Hz, F,, = 14243 Hz, F;, = 138.71 Hz

Outer raceway

Ball Fault

Inner raceway

damage\ damage

Fig. 7. Image of 6209 and 6309 ball bearings with visible defects
identified: ball fault (oxidation), inner raceway damage (broken), and
outer raceway damage (snap).

TABLE Il
PARAMETERS OF INDUCTION MOTOR BEARINGS
Parameters | Types of Bearings
6209 6309

Number of Balls (N3) 8 8
Ball diameter (d) 13 mm 17.6 mm
Outer diameter (O4) 75.19 mm 86.7 mm
Inner diameter (1) 57.60 mm 62.18 mm
Pitch diameter (D = (Oq + 14)/2) 66.39 mm 74.44 mm

Contact angle (o) 0 0

and F,, = 93.28 Hz. For bearing 6309, the following were
obtained: F, = 11.16 Hz, Fy, = 116.79 Hz, F;, = 144.66 Hz
and F,, = 89.33 Hz.

Moreover, the tests performed with faulty and good bear-
ings were carried out with direct start-up of the motor. The
current supply was kept at 30 A by controlling the pump-tank
water flux valve with this intention. The supply current was
maintained at 30 A, which was possible due to the regulation
of the opening of the pump valve.
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Fig. 8. Frequency response of the six FBGs that constitute the sensor
installed on the motor with new bearings.

IV. RESULTS AND DISCUSSION

The frequency response of the six integrated FBG sensors
measuring vibration with new bearings is shown in Fig. 8. It is
possible to note that the frequencies that stood out are only
those of the mechanical origin at 30 Hz, electrical origin at
120 Hz, and its harmonic components at 60, 180, and 240 Hz
[26], [33]. In FBGS5 and FBG®6, the signal amplitude at 120 Hz
was smaller than the others, likely due to the fixation position
in the carbon fiber impregnation process. There were no other
frequency components observed as the bearings were new.

The results with the faulty bearings are shown in Fig. 9.
A comparison of the measurements between the new and the
damaged bearings showed that in the 6 FBGs, there was an
increase of up to 130 % (FBG3) in the amplitude of the
mechanical frequency (30 Hz) and up to 100 % (FBGS5) in the
electrical frequency (120 Hz). In addition to the frequencies
of 30 and 120 Hz, new components were identified at 89.8,
116.5, 146.4, and 149.7 Hz.

The new frequency components appeared due to the faults
in the components of the damaged bearings. The six inte-
grated FBGs presented these frequencies, and the signals

Fig. 9. Frequency response of the six FBGs that constitute the sensor
installed on the motor with damaged bearings.
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Fig. 10. Comparative analysis of the results between the new and

damaged bearings loaded with sensor FBG3.

from FBG3 and FBG5 were analyzed to assess the strain in
two different phases. Fig. 10 shows the measurements made
with FBG3 using both new and damaged bearings, where the
components appeared due to the outer race defect at 89.9 Hz,
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TABLE Il
CALCULATED FREQUENCIES AND MEASUREMENTS
OF THE ELEMENTS THAT MAKE UP THE BEARINGS
Frequency Types of Bearings
of each 6209 6309
element Calculated | Measured | Calculated | Measured
F. 11.66 Hz - 11.16 Hz -
Fre 14243 Hz | 1464 Hz | 116.79 Hz | 116.5 Hz
Fip 138.71 Hz - 144.66 Hz 149.7 Hz
For 93.28 Hz - 89.33 Hz 89.89 Hz
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Fig. 11. Comparative analysis of the results between the new and

damaged bearings loaded with sensor FBG5.
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Fig. 12.  Comparative analysis of the results between the new and

damaged bearings loaded with the sensor FBG1.

ball defect at 116.5 Hz, and inner race defect at 146.4 and
149.7 Hz. Fig. 11 shows the FBGS frequency response for
the damaged bearings; the outer race defect and ball defect
presented a strain of 52 e at 89.8 Hz and 83 ue 116.5 Hz,
respectively. A comparison between the frequencies calcu-
lated by the dimensions of the bearings and the frequencies
measured by the sensor is shown in Table III. The cages of
both bearings did not present frequency measurements. For
the bearing 6209, the inner race and the outer race also did
not identify any frequencies; this implies that these elements
had no defects.
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As shown in Fig. 12 the strain at a frequency of 29.97 Hz
was 69.3 ue for the new bearings and increased to 121.7 ue,
for the damaged bearings; an increase of 75.6 %. Strain at the
frequency of 59.89 Hz was 36.7 pe for the new bearings. For
the damaged bearings, the frequency shifted to 60 Hz, and the
strain was 81.2 ue, which was approximately 121 % higher.

V. CONCLUSION

In this paper, a new sensor based on fiber optics integrated
into a carbon fiber composite material was presented. The
developed sensor was installed in the core of a TIM dur-
ing its reconditioning process. In this condition, the sensor
is protected from external interference, environmental noise.
These results were obtained in an industrial environment under
real operating conditions. The tests were carried out in two
situations: one with new bearings and one with damaged
bearings. The dynamic readings showed results that helped
identify the faults in the elements that made up the bearings.
The strain levels between the new and the damaged bearings
were measured through the frequency spectrum. For the new
bearings, the sensor measured only the mechanical (30 Hz)
and electrical (120 Hz) frequencies. However, for the damaged
bearings, the sensor identified frequencies at 89.8, 116.5,
146.4, and 149.7 Hz, which corresponded to the defects in
the elements that comprised the bearings. Using the fault
detection bearing theory, the frequencies generated by each
bearing element were calculated. The frequencies measured
by the sensor coincided with match the calculated frequencies.
Therefore, the proposed sensor showed to be able to identify
the defects in the inner race, outer race and rolling element.
Also, at the mechanical frequency of 30 Hz, there was an
increase of up to 130 % and electrical frequency of 120 Hz,
there was an increase of up to 100 %.

This sensor can be used in all rotating electrical machines,
as it can be built in any radial dimension. Moreover, because
it has a 2 mm thickness, it is adaptable to the designs of
existing machines. Its intrinsic installation in electric machines
allows dynamic and safe monitoring for the operator. New
research is needed regarding the diagnosis of failures in
electrical machines. This sensor offers a promising solution
for the identification of eccentricity behavior, phase imbalance,
rotating magnetic fields, and rotor bar failures.
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Abstract— This article describes the development of a fiber Bragg

grating (FBG) sensor encapsulated in carbon-fiber reinforced CFRP Top Layer

polymer to detect faults in rotating electrical machine bearings. P e R e S

The proposed sensor was based on the temperature and strain /—f"‘ o,
sensitivity of the FBG sensor and the robustness of carbon Q <:> \)
fiber as an encapsulation. The sensor was composed of three : 4
FBGs, one of which was packaged in a glass tube. The behavior P __,.__.——"'
characteristics of the developed sensor were evaluated in the i e —

calibration process. The experimental setup and measurement YG'“”'?L«—-@{*:"““'———'T_B_‘G‘;——___\

The sensor was implemented in an induction motor operating at a
controlled full load. The tests were performed with new and faulty
bearings. The results, for the faulty bearing frequencies of 147.5, <& _— g :
296.6, and 439.0 Hz, were identified. These frequency components Optical T BBGY e
were generated by defects in the inner raceway. Comparing the ~ Connector Optical Fiber
amplitude spectrum between the signal of the new and faulty CFRP Bottom Layer

bearing, a variation of approximately 96% was found. The FBG reinforced sensor can identify bearing integrity in real-
time and be a preventive maintenance tool for bearing monitoring.

system were discussed and analyzed under dynamic conditions. (/ %

Index Terms— Bearings faults, carbon fiber reinforced polymer, electrical machines, optical fiber Bragg grating.

. INTRODUCTION severity [5].

In previous articles, several techniques and tools have been
developed in the context of diagnosing bearing failures in their
early stages [6]- [14]. In general, the methods use conventional
sensors that can be installed on the machine frame, on the
power cables, or through thermal imaging. Analyses can be
performed by the grades of vibration [6] [7], current [8],
magnetic field [9], and temperature [10]. The methods based
on vibration signals are commonly used, as they measure
and provide dynamic data that represent specific defects of
the elements that make up the bearing [11]. Khadersab et al
[12] experimentally investigated bearing failures using various
vibration analysis techniques in the time, frequency, and time-
frequency domains. Hoang et al. [13] established through
vibration signals as input data an automatic fault diagnosis
system with convolutional neural network and vibration image.

This work was supported in part by the CAPES - Coordenagdo de  Cui et al [14] have presented a dynamic analysis method for
Aperfeicoamento de Pessoal de Nivel Superior, in part by the CNPq  ¢]agsifying fault severity and size estimation for ball bearings
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part by the FINEP - Financiadora de Estudos e Projetos, in part by based on the vibration mechanism. The method consists of nu-
the Fundagdo Araucaria, in part by the SETI - Secretaria da Ciéncia, merical analysis in the nonlinear dynamic ball bearing model,

Eeaﬁgzlr?eg;iee ”E:résino Superior, and in part by the Federal Institute  \hich considers the geometric properties and deformation of
Jd. Pelegrin, U. J. Dreyer, KM. Sousa, and J. C. Cardozo the balls. . . .

da Silva are with the Graduate Program in Electrical and Com- In order to identify bearing faults, data must be collected

puter Engineering, Federal University of Technology-Parana, Cu-  with the system in operation. In oil. minin aper. or mills
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iandreyer@utfpr.edu.br; kleitonsousa@utfpr.edu.br; Correspondence: industries, IMs are usually in difficult to access places. In

jeanccs@uitfpr.edu.br). addition, the collected signals are mixed with ambient noise

EARINGS are essential mechanical elements in trans-

ferring rotational movements. In rotating electrical ma-
chines, they are fundamental for the movement of the rotor.
The bearings used in electrical machines are relatively inex-
pensive, but faults in these elements can cause the interruption
of a production line, causing material and financial losses
[1] [2]. Bearings are the leading cause of failures in electric
machines, approximately 44% [3]. Because of the importance
of induction motors (IMs) in the industrial environment, the
prior diagnosis of bearing failures is essential to maintain the
integrity of the machine and the operating system. Therefore,
to have a reliable and safe system, it is necessary to monitor
and diagnose the bearing faults continuously [4]. As important
as diagnosing and characterizing the fault is to estimate its

. . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/ ubIications/r)ights/index.htmll for more information.
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[15]. To get around these problems, this article presents the
development of a sensor based on optical fiber Bragg grating
(FBG) integrated in carbon-fiber reinforced polymer (CFRP).
Fiber Bragg grating sensors have peculiar characteristics, such
as good sensitivity, immune to electromagnetic interference,
remote-sensing capability, and multiplexing [16] - [18]. These
features are favored in electrical machine applications. Re-
search using FBG in electrical machines showed promising
results [19] - [21]. However, these works used bare optical
fiber; because of the optical fiber fragility, application, and
repeatability, this technique could be limited to laboratory
tests. An alternative is to encapsulate optical sensors in a
way that does not compromise measurement sensitivity. In this
regard, CFRP is viable because it is a material that can be
manufactured in various formats adaptable to each application
[22].

The encapsulation of FBG sensors in CFRP, in addition to
offering mechanical protection, does not significantly interfere
with temperature and strain measurements [23] - [26]. Re-
cently, some studies used FBG sensor encapsulated in CFRP
in electrical machine applications. Kuhn et al [27] used the
embedded FBG sensors in CFRP for vibration and temperature
measurement in power transformer iron core. Pelegrin et al
[28] developed the optical fiber sensor encapsulated in CFRP
to detect the fault in rotating electrical machines’ stator. The
contribution of the present work is the development of a robust
sensor capable of withstanding mechanical stresses without
losing the measurement sensitivity characteristic of FBGs
sensors. This sensor can be adapted to different dimensions,
satisfying all bearing sizes. The advantages of the sensor in
relation to the one developed by Pelegrin et al [28] are the
direct contact of the sensor with the measurand. Direct contact
makes it possible to identify incipient faults and significantly
reduce the influence of external noise. Another novelty is the
temperature measurement without the influence of strain due
to the glass tube package in one of the FBGs, in addition to
allowing an easy installation of the sensor without altering the
machine’s integrity.

This article proposes an optical fiber sensor based on
dynamic strain and temperature measurements in the bearings
of rotating electrical machines. The article is organized as
follows: Section II presents the rolling-bearing design. Section
III presents the development of the FBG reinforced sensor. The
thermal calibration of the FBG reinforced sensor is shown in
Section IV. Section V presents the experimental setup with
sensor installation details. Section VI presents the results and
discussion of the measurements performed. Finally, Section
VII presents the conclusions and future perspectives.

Il. ROLLING BEARING DESIGN

The studied IM has installed the SKF-6310 ball bearing
on the shaft side. Figure 1 presents the dimensions of the
bearing that are used to determine the frequencies produced
by the elements: balls, outer race, inner race, and cage. Defects
in these elements generate frequencies that can be measured
by frequency analyzers estimating the integrity of the bearing
[29].

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/
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Fig. 1. Mechanical construction of the 6310 bearing.

The frequency analysis in IM bearings is detailed in the
literature [1] - [4]. The bearings consist of an inner race, an
external race, balls, and a cage. Defects caused by each bearing
part generate a specific vibration frequency component. Each
component can be calculated using Equations 1, 2, 3, and 4,

fo= % {1 - gcos(a)} , ey

= d _1 @ o 2
pon (D)) Eeie]. o
fir =ML :1 4 gcos(a)} , 3)
Jor = Nb% :1 — gcos(a)} , 4)

where f. is the cage fault frequency; fp, the ball fault
frequency; f;., the inner raceway fault frequency; f,., the
outer raceway fault frequency; IV, the number of balls; d, the
diameter of the ball; D = ((d; 4+ d,/2)), the pitch diameter;
«, the contact angle; and f,, the rotational frequency [30].
Table I shows the calculated frequencies of the 6310 bearing
elements used for the 60 and 50 Hz power supply frequency.

TABLE |
CALCULATED FREQUENCIES OF THE 6310 ELEMENTS THE BEARING TO
60 AND 50 HZ POWER SUPPLY FREQUENCY.

Dimensions | Frequency 60 Hz 50 Hz
Balls = 8 fr 29.5 Hz 24.5 Hz
d =18 mm - [T4Hz | 94 Hz
D = 80 mm Ffir 144.1 Hz | 120.1 Hz
a=0 for 91.2 76.0 Hz
fv 6.3 Hz 5.2 Hz

i
rom |EEE )gplore. Restrictions apply.

hts/index.html for more information.
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I1l. DEVELOPMENT OF THE FBG REINFORCED SENSOR

Fiber Bragg grating are the periodic refractive index mo-
dulation into the fiber core inscribed when exposed to a
transversal UV light interference pattern of laser light [31]
[32]. According to Bragg’s law, a fraction of the incident
power is reflected around the Bragg wavelength, which is

given by:
®)

where n.y ¢ is the effective refractive index of the fiber in the
fundamental mode in which the FBG is imprinted and A is the
period of the refractive index modulation of the FBG [34]. The
FBG is sensitive to external disturbances, such as temperature
and strain; these disturbances change the central wavelength,
as it can be expressed as follows [32]:

)\B =2 A ’I’Leff,

AXp = (1 —p.)Ac + (o + E)AT, (6)

where p.is the photoelastic coefficient; Ae the strain change;
« is thermal expansion coefficient; £, the thermal-optic coe-
fficient; and AT is temperature change.

The CFRP has mechanical energy transfer characteristics
appropriate for measuring temperature and vibration [25]. The
CFRP has a low coefficient of thermal expansion, approxi-
mately 1 x 1076°C~1 [26]. The elasticity coefficient depends
on the number of layers of the CFRP; for two layers used in
this work, it corresponds to 3.8 GPa [27].

The FBG reinforced sensor contains three FBGs multiplexed
in one optical fiber and integrated in a carbon-fiber composite
material. The FBGs were written using the phase mask tech-
nique onto a Ge-doped photosensitive fiber (fiber type: GF1,
SMF Nufern) at the Photo Refractive Devices Unit at Universi-
dade Tecnoldgica Federal do Parand, with Bragg wavelengths
of 1526, 1532, and 1554 nm. Each FBG is approximately 3
to 5 mm in length. The FBGs’ main characteristics are the
full width at half maximum of approximately 0.3 nm and
reflectively of 80%. Figure 2 presents the sensor developed
for implementation in the ball bearing SKF-6310. FBG1 was
encapsulated by a glass tube with an inner diameter of 1.0 mm
and an outer diameter of 1.5 mm to eliminate the strain cross-
sensitivity effect for temperature measurement. Cyanoacrylate
glue was used at the ends of the glass tube. FBG2 and FBG3
were encapsulated directly in CFRP. The optical fiber was
integrated between two layers of carbon-fiber composite of
both bidirectional and unidirectional carbon-fiber fabric twill
type (200 g/m?) and epoxy resin (331), and thermosetting
type with hardener (043), manufactured by Dow Chemical
Company.

The first layer of the carbon fiber was impregnated with
epoxy resin, hermetically sealed, and heated to perform the
curing process. The optical fibers with the FBG sensors were
positioned under the first layer and coated by the second layer.
A vacuum pump was used to remove air particles, whereas the
compound was cured at 120 °C for 8 hours. The dimensions
of 108 and 52 mm in diameter, as well the thickness of
approximately 3 mm, were defined because of the bearing and
end shield measurements of the IM under study. The fiber was
installed in the center of the CFRP (80 mm in diameter), and
the FBGs were positioned at 120° of symmetry.
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Fig. 2. Development of the FBG sensor encapsulated in CFRP.

Figure 3 shows the position of the sensor next to the
bearing. This positioning allows identifying early bearing
problems and as diminishing the influence of the external
environment over the sensor. The end shield fixes the sensor
to the bearing, without the need to use glue for example. The
optical connector exits through the grease inlet as the bearing
used is armored.

B —
-

Fig. 3. Image of the FBG sensor positioned next to the bearing.

IV. THERMAL CALIBRATION OF THE FBG REINFORCED
SENSOR

The thermal calibration of the FBG reinforced sensor was
carried out in two ways. First, the encapsulated sensor is
calibrated using the thermal bath LAUDA model ECO RE415
submitting the sensor to different temperatures. The second
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calibration process was performed with the encapsulated sen-
sor already installed on the motor shaft, attached to the
bearing, using the SOLAB thermal chamber model SL-100,
according to Figure 4. Calibration procedures were the same
for both situations. Data acquisition was performed using the
SM130 optical interrogator, manufactured by Micron Optics,
with a sample rate of 1 kHz. The sensor was subjected to
thermal variation in the range of 20°C to 100°C at intervals
of 10°C. This temperature was established because of the
allowed operating range for the bearing model used [33].
Five repetitions were performed, and the average of the points
obtained was linearly adjusted. A type K thermocouple probe
sensor measured by a Fluke® 754 was inserted next to the
sensor to confirm temperature stability. The sensor response
was the same for the thermal bath and the chamber. Figure 4
shows the thermal chamber with the sensor in the measurement
position. Despite being in contact with the bearing and end
shield, there was no influence of the iron’s thermal expansion
for the analyzed temperatures as the maximum temperature
was 100°C.

Optical ] Temperature |,
Interrogator Measurement |

Rotor, bearings,
end shield,
and sensor

Thermal Chamber

Fig. 4. Thermal calibration of the developed sensor.

Figure 5 presents the FBG1 calibration that is inside the
glass tube. Because of the physical insulation of the tube,
FBG1 does not demonstrate influences from the CFRP encap-
sulation. The calculated uncertainty for FBG1 at the measure-
ment position was 1.0°C. The average temperature sensitivity
determined by the calibration test was ~ 10.0 pm/°C, and cor-
relation coefficient was 0.99976. Figure 6 presents the calibra-
tion of FBG2 and FBG3, which were encapsulated only in the
CFPR. In this case, FBG2 and FBG3 were influenced by the
CFRP encapsulation; the average temperature sensitivity de-
termined by the calibration test was ~ 15.6 and 18.0 pm/°C,
and generated a correlation coefficient of 0.99974 and 0.99854,
respectively. The difference observed in FBG2 and FBG3
was due to the resin concentration in each FBG because the
manufacturing process was manual. However, FBG1, being
inside the glass tube, has a lower temperature sensitivity than

© 2022 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
ederal do Parana. Downloaded on June 12,2022 at 23:35:41 UT

Authorized licensed use limited to: Universidade Tecnologica

FBG2 and FBG3, influenced by CFRP.

T Measuruments range
— Linear fit

100

90 R

80 |-

70

60

40

FBG1 Measured Temperature (°C)

30

20

1 1 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100 110
Set Temperature (°C)
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V. EXPERIMENTAL SETUP

The experimental tests were carried out on an IM, 4-poles,
15 HP, 1750 revolutions/min, and A-connected and operated
at 220 V. Figure 7 shows the test platform used to perform the
tests. For loading purposes, the IM was coupled to an electric
generator that was controlled to reach a desired operating point
through resistive loads. Measurement of the bearing sensor
was performed by the optical interrogator and analyzed with
the commercial software catmanEasy — HBM®. The three-
phase line current and voltage were measured by three Hall
Effect Current Sensors LA 55-P (LEM®) and three Hall Effect
Voltage Sensors LV 25-600/SP7 (LEM®), respectively. Current
and voltage measurements were used to calculate the IM load.

The IM was started up at full load with direct-online
starter. The frequency converter was not used in this test. The
vibration tests were conducted with the bearing on the side of
the shaft 6310, comparing new and faulty bearing. Figure 8
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Fig. 7. Test platform for electrical machines.

shows the damaged bearing used in this article as the faulty
bearing. The fault was generated by its use in an industrial
plant over a period of 6 months.

Fig. 8. Faulty bearing removed from the IM after 6 months of operation
showing crack in the inner raceway.

VI. RESULTS AND DISCUSSION
A. Temperature Analysis in FBG1

The IM was connected for 30 minutes at rated load con-
dition. Figures 9 and 10 show the FBG1 measurements of
the new and faulty bearings, respectively. The temperature
variation measured during the operation was 10.0°C to new
and 15.0°C to the faulty bearing. This variation of 5.0°C is due
to the friction of the balls and the inner race of the bearing
that has failures. When the motor started and shutdown, a
wavelength quick transient was detected, which is related to
the bearing friction and mechanical accommodation of the
CFRP encapsulation. However, these transients do not influ-
ence the temperature measurement, as it has a slow response.
The faulty bearing has wear in its elements; these problems
generate losses that justify the increase in temperature because
of time of use. It is important to emphasize that the allowable
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Fig. 9. Temperature measured by the new bearing with the motor

operating at full load for 30 minutes.

T T T T T
39 F
36 | Motor Shutdown
3
H
533 -
£ AT=15.0°C
:
=30 F -
27 + -
24 Motor Start —— FBG1 faulty bearing| |
—— FBG filtered
1 1 1 L 1 L 1 L 1 L 1
300 600 900 1200 1500 1800 2100
Time (s)
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operating at full load for 30 minutes.

operating temperature for deep groove ball bearings can be
limited by the dimensional stability of the bearing rings and
balls, cage, seals, and lubricant [33]. In addition, it is a
region that does not have forced ventilation, contributing to
the increase in temperature [19].

B. Strain Analysis in FBG2 and FBG3

The frequency domain analysis is performed using the
fast Fourier transform algorithm of MATLAB, applied to the
acquired data at a 1.0 kHz sample rate. The obtained frequency
spectrum provides the bearing integrity information when ana-
lyzing each frequency component related to the correspondent
bearing elements. The FBG2 and FBG3 that integrate the
FBG reinforced sensor are used to measure the bearing strain.
According to this presented work the temperature events have
temporal dynamics less than the dynamic strain events we are
measuring to detect bearing failures.
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faulty bearing with FBG2, indicating frequencies based on the defects in
the inner raceways, to the IM operating at 60 Hz.

Figures 11 and 12 show the strain measurement of the
new (blue) and faulty (red) bearing of the FBG2 and FBG3
sensors, respectively. The observed frequency components
were the mechanical frequencies (f,) at 29.5 Hz and harmonic
components at 59.0, 88.5 Hz. The power supply frequency
(fs) is also detected in 120 Hz. These components are under
the influence of IM slip due to load and, for this reason,
are slightly less than the power supply frequency [35]. When
comparing the results between the new and the defective
bearing, we highlight (dash dot), the frequency components
in 147.5 Hz (f;), 296.6 Hz (2f;,), and 439.0 Hz (3 f;,.).

Through the physical dimensions of the 6310 bearing,
Table I determines the frequency of 144.1 Hz relating to the
inner raceway. The frequency of the inner raceway had a
difference of 3.4 Hz, which is related to the bearing wear.
Because of the sensitivity of the FBG sensors, for the new
bearing a certain level of amplitude is also identified for the
frequencies related to the bearing. This amplitude increases as
the bearing wore out. Fiber Bragg gratings were positioned
in different positions, allowing to identify the failure at an
early stage. The amplitude of the signal measured by FBG2
is greater than that of FBG3, meaning that FBG2 is closer
to the defect; however, the same frequencies are identified by
FBG3. In FBG2, the measured amplitude on the new bearing
was -73 dB, and for the faulty bearing, -3 dB, an increase of
approximately 24 times. Note that the amplitude of frequencies
related to f, and f, increases for faulty bearing. This is due to

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.og/ ublications/rights/index.html for more information.
ederal do Parana. Downloaded on June 12,2022 at 23:35:41 UTC from IEEE

Authorized licensed use limited to: Universidade Tecnologica

faulty bearing with FBG3, indicating frequencies based on the defects in
the inner raceways, to the IM operating at 60 Hz.

the greater friction that bearing defects add to rotor movement.

In order to certify the frequencies measured by the FBG
reinforced sensor, the tests were also performed with the
IM operating at 50 Hz. Figures 13 and 14 show the strain
measurement. As expected, the f. measured was 24.7 Hz,
and f; 100 Hz. Therefore, with the smaller rotor speed,
the f;- measured was 123.1 Hz, and harmonic components
246.6 (2f;r) and 369.6 Hz (3f;.). The frequencies measured
based on the defects in the inner raceways coincide with the
calculated values (Table I). The amplitude of the fundamental
frequency measured at 50 Hz, was the same as that at 60 Hz,
indicating the same degree of defect in the inner raceway.

The proposed sensor was subjected to repeatability tests
to analyze the integrity due to friction and the related im-
pact on bearing performance. The case analyzed was for
the faulty bearing measured by the FBG3 to 60 and 50 Hz
power supply frequency. Table II shows the results of three
tests under the same conditions comparing (f) e (f;-). The
linear fittings present an R? > 0.99. The most significant
uncertainties correspond to bearing failure on the inner race,
possibly due to the gradual increase in wear. In terms of
reproducibility, several tests were carried out over 3 months,
with changes between new and faulty bearings. During this
period, the proposed sensor did not present changes in its
sensing capabilities, maintaining the sensitivity and integrity
even in the face of bearing vibration. Therefore, the proposed
sensor is reproducible.
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TABLE Il
FBG3 SENSOR UNCERTAINTY ANALYSIS FOR THREE TESTS
PERFORMED AT 60 AND 50 HZ POWER SUPPLY FREQUENCY.

Frequency 60 Hz 50 Hz
Variables t-(Hz) | fir(Hz) | f-(Hz) | fir(Hz2)
Calculated 29.5 144.1 24.5 120.1
Test 1 29.5 147.5 24.7 123.1
Test 11 29.4 146.8 24.6 122.5
Test 11T 29.5 147.1 24.5 121.8
Uncertainty 0.03 0.20 0.06 0.37

Although the FBG reinforced sensor was built manually,
demonstrating limitations in relation to the positioning of the
FBGs and possible curvatures, the results presented overcome
such limitations. It is important to mention that the bearing
defect was not produced manually, but caused by the time of
use. Even so, the sensor was able to identify the faulty inner
raceway. Comparing similar methods [21], which insert FGB
sensor into a groove made in the bearing [36] [37], which fix
the FBG sensor in the machine external region, the advantage
of using the sensor presented in this article is the direct contact
with the measuring, allowing the identification of vibrations at
an early stage. In addition, to the practicality of installing the
sensor without changing the bearing or machine structure. In
this sense, the encapsulation with CFRP proved to be efficient
to protect optical sensors and still allowed sensitivity for strain
and temperature measurements of FBG sensors. Furthermore,
the sensor can be built in any dimension, adaptable to different
rotating electrical machines.

VIl. CONCLUSION

In this article, an FBG sensor encapsulated in CFRP to
measure the temperature and strain of bearings of electrical
machines was developed. The FBG reinforced sensor was
based on three FBGs integrated into a carbon-fiber composite
material. FBG1 was coated with capillary glass to diminish the
dynamic strain influence and was used to measure temperature.
FBG2 and FBG3 were encapsulated directly in the CFRP to
measure strain. The sensor was subjected to two calibration
processes, in a thermal bath and in situ operation, showing the
same characteristics. The sensor was installed in an IM, and
tests were performed for a new and faulty bearing. An increase
of 5°C was observed between new and defective bearings
at the same time and load conditions. The bearing strain
measurements presented theoretically predicted frequencies,
indicating faults in the inner raceways of the bearing. In
the strain analysis, an increase of 96% was identified in
the amplitude of faults in the inner raceways. The findings
demonstrate an analysis of the mechanical and thermal in-
tegrity of the bearing during the IM operation, which, through
constant reading, detects the gradual faulty of the bearing. The
FBG reinforced sensor offers an effective solution to identify
faulty bearings. As it is in direct contact with the bearing,
the sensor allows detecting failures in its initial stage. The
sensor opens the way for further research in different operating
situations of electrical machines, for example, bearing service
life, eccentricity, analysis of different IM starts and loads,
unbalanced voltage, and broken bars.
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Abstract: The temperature on the busbars of electric generators in the end-winding region needs to be monitored continuously.
High temperature is associated with curvatures, seams, and poor ventilation. However, this solution has limitations, such as the
number of measurement points. This article presents a reconstruction algorithm to estimate high-resolution signals, from
readings of a distributed temperature system for monitoring high-power generator bars. The purpose of this work is to measure
the temperature in the end-winding region with optical sensors based on Raman distributed temperature sensing (RDTS). The
ability of RDTS equipment to perform a measurement is limited by its spatial resolution of 1 m. The proposed algorithm reduces
spatial resolution through signal processing without changing the equipment hardware. Through the experimental results, it was
possible to perform accurate temperature measurements for lengths up to 15 cm using the sensor element. With this method,
the final winding of a generator bar of a 355 MW hydroelectric plant was instrumented in the laboratory. The results show that it
is possible to monitor the temperature over this region, which has a length of 45 cm. Therefore, the proposed method has the

potential for the use of RDTS systems for temperature acquisition of small, medium, and large electrical machines.

1 Introduction

Electric generators have an operational limit due to the overheating
of the stator windings. The end winding of the generator
experiences greater heating because the magnetic flux is not axial
to the core segments [1-4]. Low ventilation in this region results in
lowering the machine efficiency and further wearing of the bar's
isolation materials leading to a generator shutdown. [5].
Temperature monitoring in this region is essential to ensure smooth
operation and performance of the machine. Usually, conventional
sensors used in the temperature measurement are PT100 or
resistance temperature detector (RTD). These devices are suitable
for monitoring point temperatures during the standard operation.
However, to obtain monitoring along the bar, it is necessary to
install several reading units, resulting in numerous power and
measurement cables. Additionally, they use electronic transducers
that are sensitive to magnetic interference [6, 7]. Regarding the
presented, optical fibre sensors have characteristics that can solve
several problems.

The evolution of photonic equipment, reduction in optical
system costs, reliability and increased demand in industrial
applications are part of the problems solved by optical fibre
sensors. The oil and gas industry began the adoption of distributed
optical sensor (DTS) technology in the 1990s in pipeline
monitoring and fire detection [8]. Subsequently, other areas started
to use it as a system of power, energy transmission and conveyor
belts, among others [9-13].

The advantages of using the distributed systems include the
elimination of the need for multichannel data acquisition systems
instead of traditional methods; and identifying each channel and
the location of the sensors is unnecessary. This allows a reduction
in the number of cables connected. Another advantage is the ability
to multiplex data; and a single fibre capable of producing two sets
of vital information (that is regarding temperature and fault
location), while conventional technology retains the need to deploy
thermocouples, thermistors or RTDs. Furthermore, the calibration
time is much shorter when compared to conventional technology.
With the distributed fibre technology it is possible to determine the
fail location within a metres range [14]. With these advantages, the
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industrial sector is replacing conventional sensors for distributed
Sensors.

The DTS is a system with great potential for applications in
electrical machines. Advantages include the possibility of using the
fibre itself with a sensor element, immunity to electromagnetic
interference, galvanic isolation and electrical passivity. The
measurement was carried out based on the scattering of the
backscattering of light, using the principles of Rayleigh, Brillouin
or Raman. Among these, the Raman scattering stands out as
commercial equipment [15]. Unlike traditional sensors, which
measure point temperatures, the Raman distributed temperature
sensing (RDTS) system is capable of measuring the temperature
along the whole optical fibre. The equipment is generally applied
in large systems because commercial DTS can measure
temperature in fibres longer than 30 km, with a detection accuracy
0f 0.1°C and a spatial resolution of 1 m [16].

To correctly measure the temperature, the spatial resolution (8,)
is the minimum length required for the RDTS system. It is defined
as the spatial distance between the 10 and 90% levels of the
response to a temperature step. For situations where the
temperature reading is measured at length less than the spatial
resolution, the measured temperature will not correspond with the
actual temperature. This limitation imposes reading errors in
systems that require measurements of temperature in fibres of
length <1 m [16].

Other methods also allow the reduction of spatial resolution,
such as scattering Brillouin (which performs distributed
temperature and strain measurements) [17] and scattering
Rayleigh's (which presents proper spatial resolutions in 10 cm)
[15]. Although both methods demonstrate significant results, the
equipment that incorporates them is expensive, with their costs
being ~75% higher than that of RDTS.

To improve the spatial resolution of RDTS without interfering
with the hardware, algorithms can be developed and implemented
in temperature monitoring systems [18, 19]. This technique was
implemented in a hydroelectric generator, where the temperature
readings were obtained at a spatial resolution of 15 cm. [20, 21]
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In general, electrical machines need to be monitored, especially
regarding their temperature [22]. High temperatures indicate
possible failures of parts of the generator, such as the stator, rotor
or bearings [23]. Generators often operate at their power limit
constantly for hours, working at high temperatures that impair the
insulation of the machine [24].

In this paper, a method is presented to improve the spatial
resolution of equipment (RDTS) through a signal processing
algorithm based on deconvolution by a total variation of
temperature measurement in the end-winding of a high-power
generator (355 MW). The reconstruction algorithm was tested and
validated experimentally. The implementation of this proposed
technique is performed on a segment of a bar that makes up the
stator of a hydroelectric generator. This method can contribute to
temperature measurements in regions of small, medium and large
electrical machines.

2 Materials and methods
2.1 RDTS system model identification

The mathematical model of the RDTS system was built using
techniques implemented for the identification of linear systems
[25]. 1t was considered that the RDTS system is a linear time-
invariant system, according (1), where f(z) is the real temperature
profile, A(z) the impulse response of the RDTS system and g(z) is
the signal convolution response. The Laplace transform was
applied to obtain (2). The poles (f;) and zeros (;) of the function
H(s) were estimated, according to (3) [18]:

2(2) = h(2) * f(2) 1)

G(s) = H(s)F(s) )

Ot ek T )
S"+as" "+ +a, .- 5)

We consider a discretised version of the observation model in (1).
For better visualisation, it is rewritten in matrix notation, according
to (4). The data obtained by the RDTS system are represented by g,
the impulse response is the matrix H, the temperature profile f'and
the vector n represents all noise sources that are inherent to the
measurement system, which can be originated by the
optoelectronic circuit noise, connector coupling and environment
where the equipment was installed. For approximation purposes,
such noise sources are well represented by the white Gaussian
noise:

g=Hf+n )
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RDTS equipment has the characteristic of low-pass systems and
impulse spreads. Thus, the solution discovered was the application
of total variation that regulates the signal. Through (6), the
reconstruction of images is acquired [18]:

A

f = arg min | g~ HJ I} + 41 DS Il ©)

The reconstructed signal f results from a balance between a data-
fidelity term and a prior term based on finite differences. The
balance is controlled by the parameter A: higher values of 1 yield to
smoother reconstructed signals. Furthermore, one can control the
assumed distribution of the residuals by changing 0 < p < 2.

The high-resolution algorithm is illustrated in Fig. 1. The DTS
detects the signal of the fibre optic sensor and generates a g(z)
signal. Then, the temperature distribution is reconstructed by
applying a deconvolution algorithm using the total variation
regularisation in the signal g(z). The regularisation parameter is
determined using the L-curve method as the basis for the
adjustment. This approach privileges temperature distributions that
are piecewise constant while matching DTS readings. The
implementation details in Matlab are shown in the Algorithm (see
Fig. 2).

2.2 Experimental setup

2.2.1 Design of validation plate: The proposed algorithm
enables the reading of distributed temperature sensors that can
measure variations in structures with dimensions <1 m, reaching up
to 15 cm. To validate this proposal, an experiment was set up, as
shown in Fig. 3. An aluminium plate (1.40 m x 1.40 m), with a
triangular cutout, was fixed on a wooden plate. Behind this
aluminium plate, the electrical resistance was distributed following
the same triangular shape. This distribution allows temperature
measurements with resolutions ranging from 5 to 140 cm.

At the top of the plate, an optical fibre (50/125 pm multimode
gradual indexes) is glued to the aluminium plate with an insulating
epoxy resin (ROYAPOX 512), with a spacing of ~5 cm, which
allows continuous measurements on the aluminium plate heated by
the resistance. At each passage of the optical fibre through the
aluminium plate, a buffer of ~3 m was attached to the ends of the
plate to ensure that the measured value returned to room
temperature.
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Require: g % DTS Reading, H % Sensitivity Matrix, D % Finite Difference Matrix

Require: \ =0.6
Require: f=H’ * g

% Regularization Parameter
% Initial Solution

Require: ¢ = 10" — 9 % Avoids Zero Division

- fo=f

: W= diag(1./(abs(D * ) + ¢)

AN DN = W N =

- stop = norm(f — fo) / norm(fo)
7: end while

: Wh = diag(1./(abs(g - H*f) + ¢))

: while stop > le — 3 % Minimum Update to Stop

% Data Term Weights
% Penalization Term Weights

:f= (H*Wh*H + )\ « (D’*WI*D)) (H’*Wh¥*g) % Leastsquares

% Stopping Criterion

Fig. 2 Reconstruction algorithm
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Fig. 3 Design of the validation plate, consisting of the base of wood, aluminium plate with resistive heating and fibre optic glued to the surface

The temperature measures were performed with the RDTS AP
Sensing commercial equipment model N4385B with a spatial
resolution of 1 m and sensitivity of +0.1°C/m. This equipment
uses the multimode fibre, owing to a more significant numerical
aperture, allowing higher coupling of backscattered light power,
using the simplest detectors for Raman signals. This fibre is coated
with Teflon ® 900 pm, which facilitates handling, and offers more
resistance to mechanical traction. Before the acquisition
temperature, the RDTS is duly calibrated with a LAUDA thermal
bath-model ECO RE415. When the temperature is stabilised at
50°C, the system is calibrated with 10 m of fibre dipped in the
RDTS software as a reference. RDTS software is provided by the
equipment manufacturer, which has a calibration tool for adjusting
the measurement parameters.

2.2.2 Instrumentation bar generator: One of the stator bars from
a 355 MW hydroelectric generator was instrumented in the region
outside the magnetic core. This region in the generator stator has
low ventilation due to the connection settings. In this way,
overheating occurs, which must be monitored to avoid further
damage such as the premature ageing of insulation. This bar is
composed of copper, an inner layer of conductive tape, ground-
wall insulation and an outer layer of the conductive tape. Fig. 4
shows the installation of the fibre in a segment of the stator bar,
which is 45 cm long. To generate the heating of the bar, the
electrical resistance of nickel-chrome tape (5 mm X 0.1 mm) was
inserted at the bottom of the bar, with four connection outputs,
allowing heating in different parts (15, 30 and 45 cm). The
materials used for fixing the fibre are the same as those used in the
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isolation of generators and mica paper tape. This way, it facilitates
the implementation of this method on a generator in the operation.

The bars end winding have curvatures to assist in connections
between bars. At these points, the heat produced limits the
efficiency of the machine. Constant monitoring of temperature is
fundamental, as the maximum generation can be extracted this way
using the machine without the risk of heat failure.

2.3 Results and discussions

The results of the validation of the algorithm are presented through
the plate test. The resistance power is turned on until the maximum
temperature is reached (~75°C). Heat is distributed throughout the
aluminium plate, where the fibre is glued. The lengths of the
measured fibre were 5, 15, 20, 30, 39, 50, 62, 68, 75, 86 and 100
cm. Fig. 5 shows the original RDTS reading for each length located
on the heated plate. Using this result, the algorithm is applied to
obtain Fig. 6, which shows the reconstructed signal.

To obtain the real temperature for each length, a PT100 sensor,
type K, with Fluke ® equipment 754 is employed. The ambient
temperature during the whole test duration was 28°C. Note that for
100 cm, the temperature was 75.6°C, and because of the fibre
length on the heated plate decreased, the temperature measured by
RDTS was also lower. This occurs because the spatial resolution of
the equipment is 1 m. Using the results measured by the RDTS
system, the algorithm is applied for signal reconstruction.

To view the temperature distribution throughout the plate, a
thermal camera was used with Fluke ® Ti25. Fig. 7 shows a real
image of the plate temperature (a) and the signal image
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Fig. 6 Results measured by PT100 and reconstructed signal with the algorithm

reconstructed (b), which were generated from the data of the
algorithm applied to the SolidWorks ® software. This software
presents a finite element system, which supplies temperatures to
generate the temperature distribution, owing to its material

(aluminium).
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The proposed algorithm allows the reconstruction of the
measured signal up to 15 cm in length. The value measured by the
RDTS system was 35.5°C, and the reconstructed value was 55.4°C
or an error of 0.2%. At a length of 5 cm, the temperature was not

IET Optoelectron., 2020, Vol. 14 Iss. 6, pp. 343-349
© The Institution of Engineering and Technology 2020



a Fiber length on the board b

Fig. 7 Image of the plate

(a) Thermal image of the plate, highlighting the measured temperatures at the established lengths, (b) Results of image reconstruction, from the proposed algorithm, represented in

the thermal analysis of the software SolidWorks ®
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Fig. 8 Bar segment temperature for the three tests performed
(a) Heating of 15 cm, () Heating of 30 cm, (¢) Heating of 45 cm

close to the actual measured value 50.2°C,
improvement was observed.

After the performance of the algorithm validation tests the
temperature sensing of a stator bar was arried out. The ambient
temperature during the whole test duration was 25°C. The installed
electrical resistance has four terminals, so the tests were divided
into three stages. First, 15 cm of resistance was heated until the
surface of the bar reached a reference temperature of 65°C.
Afterwards, 30 cm and finally 45 cm were heated, until the entire
segment of the bar remained at approximately the same reference
temperature. Fig. 8 shows the behaviour bar temperature for the
three heating stages (a—c). In (a), the temperature remained at
65°C, in the 15 cm while the resistance was on, in the rest of the
bar the temperature was dissipated until it reached 38.5°C. In (b)
the resistance was heated to 30 cm at a temperature of ~65°C. In
step (c), the entire end winding of the bar was heated and
maintained at 65°C. As the bar is made of metal alloy, the
temperature dissipates along the bar but does not affect the results.

Fig. 9 shows the result of the original signal, the real hot step
and the signal reconstructed by the algorithm for 45 cm (a), 30 cm
(b) and 15cm (c). For the measured lengths, as the spatial
resolution is 1 m, the result acquired by RDTS does not match the
real value of 65°C established by the hot step. For 45 cm, the
temperature at the maximum point measurement was 57°C, and an
error of 12.3% with the temperature reconstruction algorithm was
corrected to the actual value. Another critical factor was the length

although an
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estimated by the reconstruction on the step, which approached the
real measurement of 44 cm. For the 30 cm, the measured
temperature by RDTS was 48°C, and the reconstructed signal
reached 65°C, with a step length close to the measured length,
reaching 28 cm. For 15 cm, the temperature measured by the
equipment was 33°C. As the algorithm can reconstruct the signal
up to 15 cm, when applying it under these conditions, it was
possible to re-establish the actual measured signal 65°C until this
measurement. Besides, the reconstruction improved the step
estimate, reducing the error observed at the start and end of the
step, which reached 15cm. The results show that the high
resolution allows the correction of temperature measurements for
hot regions with lengths up to six times smaller than the spatial
resolution of RDTS.

3 Conclusion

This paper presents the development of a high-resolution algorithm
implemented at an RDTS to monitor high-power generator bars.
Using a commercial RDTS, which has a spatial resolution of 1 m,
an algorithm was developed, capable of reconstructing the signal
measured by the equipment. The method uses the equipment's
original signal, and through the processing of signals by total
variation deconvolution, the signal is reconstructed. With the
construction of an experiment, the algorithm was validated, and it
displayed an error of ~0.2% for 15 cm. The results demonstrate
that it is possible to perform measurements in critical regions and
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small dimensions on electrical machines. The method also corrects Electr Mach.  Syst., 2019, 3, (2), pp. 210-215. doi:10.30941/

the width of the measured section, approaching the real value.
Using this algorithm, we were able to perform temperature
measurements on the head generator coils. This region of the 355
MW generator bar has a length of 45 cm. Its mounting in the stator
configuration presents dimensions that are difficult to access.
Owing to these dimensions and the need to monitor along the bar,
the RTDS system with its high-resolution algorithm is a good
alternative. In the laboratory, a bar of this generator showed
satisfactory results for monitoring the temperature in the end-
winding region. Tests show that it is possible to measure the
temperature in different boom segments with a single sensor
element. The proposed method presents great potential for the
monitoring of electrical machines because of the characteristics of
the optical fibre and the high-resolution algorithm allows the
identification of regions with temperature variations of up to 15 cm
in length.
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Abstract—In the industry, productionlines depend on small
and medium-sized electrical machines, and for this reason,
continuous monitoring of these machines is important to
avoid unexpectedinterruptions. Excessiverise in temperature
during electric motor operation is usually associated with
several causes, including voltage unbalance and overload.
This article presents the measurements taken using a Raman
Distributed Temperature Sensing (RTDS) device with 1 m
spatial resolution to identify induction motor (IM) faults. In this
regard, an algorithm to improving spatial resolution through
signal processing allows measuring lengths of up to 15 cm.
Experimental tests showed that it was possible to identify
the temperature increase in four slots with an improvement

of 60%. In addition, it was possible to detect faults in conditions of unbalanced voltage through temperature measure-
ments. The proposed method shows that the measurements acquired by the distributed sensors installed in the IM stator

allow thermal mapping of the machine’s entire structure.

Index Terms— Distributed temperature sensing, electric machines, fault diagnosis, improving spatial resolution, optical

fiber sensor.

[. INTRODUCTION

NDUCTION motors (IMs) are used largely in the industry

because of its reliability and robustness. These rotating
electrical machines are fundamental in production systems,
such as the oil industry, woodworking machines, mining
industry, automotive industry, and railway applications [1].
Generally, these industries operate continuously, requiring
uninterrupted operation of IMs. Therefore, continuous mon-
itoring of the IM parameters is necessary to predict possible
faults.

Faults occur primarily the stator, rotor or bearings, and are
usually associated to an excessive rise in temperature and
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vibration [2]. Rise in temperature and vibration levels are
caused by voltage unbalance, eccentricity, and overload, which
in turn lead to insulation degradation [3].

Stator faults represent 26% of defects occurring in electric
motors [4]. These faults usually occur in the stator winding,
such as short circuits between turns of phases, open circuit
fault when winding develops breaks, turn to turn fault, and
coil to coil fault [5]. Voltage unbalance is a common phe-
nomenon in industrial plants, and contributes significantly in
causing IM stator faults [6]. Voltage unbalance causes different
current distributions that result in temperature asymmetry in
the coils [7]. The presence of these faults generates punctual
heating that deteriorates the electrical insulation [8].

Operating with IM at temperatures above the nominal value
causes electrical insulation problems, reducing the motors
durability. In operations where high torque is required, it is
possible to apply a current higher than the rate for a period
of time. This is allowed because the motor’s thermal time
constants are much larger than the electrical and mechan-
ical [9]. When frequency converters are applied to supply
motors and when the speed is below the nominal, the internal
temperature increases because the ventilation cannot dissipate
heat when there is no forced ventilation [10]. Among the
temperature measurement techniques used in IMs, the most
used are installation of thermocouple sensors, thermistors or

republication/redistribution requires IEEE permission.
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semiconductor-based devices. However, these techniques do
not provide adequate thermal mapping because of non-uniform
heating of the IM components, including windings [11].
Thermal mapping through measurements of the IM’s tem-
perature distribution would be important to preserve integrity
and ensure efficiency. However, for such measurements to be
possible, it would be necessary to use dozens of punctual
temperature sensors and/or the use of calculations methods
to gather measurements in a 3D model, for example [12].
Another way of temperature mapping is by using finite ele-
ment method (FEM) models applying current and voltage
measurements [13]. As an alternative to these methods, this
study proposes the alternative through optical sensors based
on Raman distributed temperature sensing (RDTS). The opti-
cal fiber has characteristics such as small size, distributed
measurement, and immunity to electromagnetic interference,
which are essential for electrical machines [14]. In this way,
Fiber Bragg Gratings (FBGs) sensors also have advantages,
mainly due to recent researches seeking to reduce costs and
improve durability through embedded sensors [15]-[17].
Bazzo et al. used the RDTS system for thermal imaging
of hydroelectric generator stator [18]. The thermal image
was generated by combining the information of temperature
and the sensor’s spatial position with the 3D model of the
structure. The RDTS system used is based on Raman Optical
Time-Domain Reflectometry technique (ROTDR). The com-
mercial RDTS equipment available measures the temperature
in fibers greater than 30 km, with detection precision of 0.1 °C
and a spatial resolution of 1 m [19]. The spatial resolution
is the minimum length required for the RDTS system to
measure the temperature correctly. This 1 m spatial resolution
feature has limitations when temperature monitoring should
be performed in environments with dimensions smaller than
1 m. To work around this limitation Bazzo et al. proposed
improving spatial resolution of RDTS using Total Variation
Deconvolution [20]. This method uses the equipment’s original
signal, and through the processing of signals by total variation
deconvolution, the signal is reconstructed. Following the same
methodology, Pelegrin et al. validated and applied the strategy
of the final winding of a generator bar of a 355 MW hydro-
electric plant instrumented in the laboratory [21]. However,
the researchers were carried out on machines with dimensions
larger than 2 m. Thus, the main contribution of this work is
the thermal mapping of small and medium-sized electrical
machines, on the scale of centimeters, with the possibility
of identifying faults that compromise the integrity of the IM.
The proposed method can increase the machine’s operational
availability, avoiding interruptions in essential and aggressive
systems such as water distribution, refineries, and mining.

[l. MATERIALS AND METHODS

A. Distributed Temperature Sensing System
The main technologies of Distributed Temperature Sens-
ing (DTS) are based on Rayleigh, Brillouin, and Raman scat-
tering. Rayleigh scattering is usually thought to be insensitive
to temperature, and special optical fibers have to increase
sensitivity [22]. Brillouin scattering are caused by lattice
vibrations from the propagating light pulse. These peaks are
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Fig. 1. Operation of the DTS from the emission of the pulsed laser,
detection of heatin 1 m of fiber and return of backscattered light. In detail,
backscattered spectral components.

spectrally close to the primary laser pulse, that it is difficult
to separate them from the Rayleigh signal [23].

The RDTS system used is based on the varied properties
produced in fiber optic cables through Raman scattering
because of temperature changes. An optical source emits
a laser pulse that propagates through the fiber, returning
scattered light to a photodetector [24]. The pulsed laser inter-
acts with the fiber molecules generating an energy exchange
between the photons of the incident light and the fiber
molecules. New electromagnetic fields are generated with
different frequencies that are backscattered by the fiber. For
backscattered light with a frequency lower than the incident
light, the effect is known as Stokes and if the backscattered
light has a higher frequency than the incident light, the effect
is known as anti-Stokes [25].

Fiber molecules associated with light scattering are sensitive
to temperature variations. Therefore, from the Stokes and
anti-Stokes scattering, it is possible to estimate the fiber’s
temperature value [26]. Fig. 1 shows the DTS emitting the
laser pulse and receiving the scattered light after detecting
heat in 1 m of fiber. The analysis is performed in the bands
referring to Raman anti-Stokes and Stokes, which are more
sensitive to heat variation. The temperature can be determined
by the relationship between the power of Stokes and anti-
Stokes, according to Eq. 1 [27],

ray=2F : (1)
k(€] — [ 251+ Aa

where T'(/) is the temperature at a distance [ along the fiber;
AE represents the difference in molecular energy states that
drive Raman scattering; k is the Boltzmann constant; C is a
calibration parameter at the DTS system; Ps(l) and P,s(l)
represent the power of the bands of Stokes and anti-Stokes
at distance [, respectively; Aa is the difference of attenuation
between the power of the Stokes and anti-Stokes signals.
Although the RDTS system has easy applicability, the tem-
perature measurement precision depends on the parameter
determined spatial resolution (J;). The spatial resolution is the
minimum length required for the RDTS to perform the correct
measurement. It is defined as the spatial distance between the
10% and 90% levels of the response to a temperature step [19].
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The spatial resolution of 1 m is related to the laser pulses width
of the equipment, which is 10 ns. Temperature measurements
performed on fiber length less than the equipment’s spatial
resolution indicated lower temperature, not corresponding to
the actual temperature [28].

To apply RDTS to electrical machines a better spatial
resolution must be achieved to monitor hot spots smaller
than 1 m. There are commercial types of equipment with a
spatial resolution of 10 cm, such as those using Brillouin
backscattered components. These devices are complex and
expensive. The pulse of light propagation is spectrally so close
to the primary laser pulse that it is not easy to separate them
from the Rayleigh signal [23]. Therefore, optical sensors based
on RDTS are an appropriate option for monitoring electrical
machines. However, to make it possible to apply this technique
to smaller electrical machines, it is necessary to improve
spatial resolution.

B. Improving Spatial Resolution
Improving spatial resolution has been studied in the sci-
entific community in recent years [29]-[31]. Early research
generally focused on Eq. 2 that determines the spatial
resolution [32],
C,.T

5 =
: 2.ngy

2)

where C, is the speed of light vacuum, 7 is laser pulse dura-
tion, and ng, is the group refractive index of the fiber core. The
problem in this method is that the equipment hardware needs
to be modified. Therefore, the methods that have been used
are mathematical models [30]. With mathematical models, it is
not necessary to change the hardware of the equipment, but
implementing algorithms on the measured results are adequate.

In this article, an algorithm is used to improve the spatial
resolution of the RDTS equipment through a signal processing
algorithm based on deconvolution by a total variation to
map the temperature of an IM. The method is based on
the mathematical model developed by Bazzo et al. [20] and
adapted for application in small and medium-sized electri-
cal machines. The method is capable of improving spatial
resolution by up to 15 cm. The algorithm is based on a
signal deconvolution process that uses the linear model of the
RDTS and total variation regularization. The working principle
of the algorithm is summarized in block diagram shown in
Fig. 2, where f(z) is the real temperature profile, h(z) is the
impulse response of the RDTS system and g(z) is the signal
convolution response. The Laplace transform was applied to
obtain G(s). The poles (f;) and zeros («;) of the function
H(s) were estimated. It is rewritten in a matrix notation and
considers vector n as all noise sources that are inherent to the
measurement system. To regulate the signal, total variation
was applied because of the fact that the RDTS equipment has
characteristics of a low-pass systems and impulse spreads.

The reconstructed signal f results from a balance between a
data-fidelity term and a prior term based on finite differences.
The balance is controlled by the parameter A: higher values
of A yields to smoother reconstructed signals. Furthermore,
one can control the assumed distribution of the residuals by
changing 0 < p <= 2.

2(z) =h (z)%f(z) Transform
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Fig. 2. Block diagram of the algorithm used improve the spacial
resolution of the RDTS equipment.

The algorithm was tested experimentally and the results
demonstrated the effectiveness of the proposed method [20].
The algorithm was applied to measure the temperature in the
end-winding region with optical sensors based on RDTS [21].

C. Unbalance Voltage on Induction Motor

The IM operates with best efficiency when connected to a
perfectly symetrical power source. However, industrial plants
may show voltage fluctuations because of irregular distrib-
ution by phase and type of connected loads. IM operation
under unbalanced voltages can cause serious effects, such as
overheating, decreased efficiency, and reduced torque [33].
As it is a recurring problem in the industry and given the
importance of the effects caused, this study, will investigate
the effect of the voltage unbalance on the temperature in the
IM stator. Although IMs support small unbalanced voltage,
with the passage of time, the effects compromise the integrity
of the IM. To avoid these problems, it is important to diagnose
them at the incipient stage [34]. The unbalance of the phase
voltage can be determined by Eq. 3 [35],

MV D

Vave
where MVD is the maximum voltage deviation from the
average line voltage magnitude; Vayg is the average line
voltage magnitude.

According to IEEE Guide for AC Motor, voltage deviation
is +/—10% of their rated value, and the ratio between the
negative and positive sequence voltage components should not
exceed 2%. Given the insulation system’s dielectric properties
for a 10°C increase in temperature, the life of the motor
halves [36].

%PVUr =

.100 3)

[11. DESIGN AND INSTALLATION PRINCIPLES
A. Experimental Setup

The experimental setup is shown schematically in Fig. 3,
where the yellow line indicates the optical fiber. The instru-
mentation is used to obtain the temperature of the IM when
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Fig. 3. Experimental setup.

subjected to unbalanced voltage. The electrical resistance is
used to produce a voltage drop of about 38 V,,s. Three
tests were carried out with the IM operating with unbalanced
voltage in each of the phases, respectively. The three-phase
line current and voltage are measured by three Hall Effect
Current Sensors LA 55-P (LEM®) and three Hall Effect
Voltage Sensors LV 25-600/SP7 (LEM®), respectively. A data
acquisition (DAQ) system is used for the signal conditioning
of the current and voltage sensors. The used DAQ system was
the Quantum X-840, with eight input channels and a maximum
sampling rate of 20 kHz, manufactured by HBM®. The optical
fiber is measured by RDTS AP Sensing commercial equipment
model N4385B with a spatial resolution of 1 m and sensitivity
of £0.1 °C/m.

Data acquisition was performed with the commercial soft-
ware catmanEasy — HBM®, which allows the simultaneous
acquisition of the current and voltage signals from the Hall
sensors. For RDTS measurements, the software used is DTS
Configurator - AP Sensing®.

B. Stator Instrumentation

The instrumented IM comprises 4-pole, 15 HP, connected
to 220 V, 60 Hz, insulation class F, 48 slots, 12 coils, double
layer winding, and 1-11 coil span. Fig 4 shows a partial stator
planified scheme to illustrate the electrical resistance and the
optical fiber installation in the stator. The electrical resistance
was inserted in four slots where a coil that constitutes one
of the phases is inserted. This installation allows inducing
heating in a small IM stator portion emulating the effect of an
unbalanced voltage.

The stator’s optical instrumentation used a multimode fiber
50/125 um graded-index coated with a protective Teflon®
900 um cover. This fiber is compatible with the specifi-
cations of RDTS, allowing greater power coupling of the
back-scattered light. The coating with Teflon® 900 um pro-
vides greater resistance to mechanical traction allowing safe
handling of stator rewinding. The fiber was installed inside the
stator slot between the core and the insulating paper, before
the insertion of the coils. The maximum hotspot temperature
allowed in IMs is 155°C [36]. This temperature is compatible
with the optical fiber installed, offering greater instrumentation

18 cm

N\

10 cm

Slot

7

Optical Fiber

Electrical

Resistance 16 cm

Fig. 4. Planified stator scheme with optical fiber and inner slots electric
resistance.

durability. The configuration of the optical fiber installation
must be uniform following the configuration of the coils. This
way, there is no influence between temperature measurements
of different coils, and it is possible to identify the heating
region. The advantages of this instrumentation method are
that the sensor is directly in contact with the measuring, can
be installed on new or rewound machines, and it is easy to
implement.

Fig. 4 shows the dimensions related to the length of the
installed optical fiber. The length of the slot is 10 cm, the fiber
at the top is 18 cm and the bottom is 16 cm, totaling
approximately 16 m of fiber installed in the stator. The fiber
curves do not present losses that could influence the system.
In the slots with the resistance there are 40 cm of fiber,
of which for each 1 m of fiber we have 20 cm in the region
of the resistance. This length is enough for the algorithm to
be able to reconstruct the temperature RDTS measurement.
A type K thermocouple probe sensor, a Fluke ® 754, installed
inside the slot, was used to measure the resistance’s accurate
temperature.

C. Testing Procedures

The thermal mapping of the IM stator is performed with
the motor operating at rated load. An electrical generator
connected to variable resistive loads is coupled to the IM, pro-
ducing different load profiles. In the tests, the IM is activated
until the temperature stabilizes at 43°C. This temperature was
established through the simulation, and measured using the K
thermocouple probe. A variable voltage source connects the
inserted electrical resistance. The temperature produced by the
electrical resistance is monitored by the K thermocouple sen-
sor to prevent damage to the IM electrical insulation. To map
the temperature, measurements are monitored by RDTS.
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Fig. 5. Instrumentation of the fiber between the stator core and the
insulating paper.

Before the acquisition temperature, the RDTS is duly cal-
ibrated with a LAUDA thermal bath-model ECO RE415.
RDTS software is provided by the equipment manufacturer,
which has a calibration tool for adjusting the measurement
parameters.

In the calibration procedure, 20 m of optical fiber are
immersed in the thermal bath at a temperature of 50°C, 10 m
before instrumenting the IM, and 10 m at the end. This
procedure is essential for the accurate measurement of the
RDTS system, so that the algorithm also reaches the expected
results.

To evaluate the use of the RDTS system to map the
temperature and diagnose faults in the proposed IM, two faults
were experimentally induced in the IM through the installed
electrical resistance that produces heating in four slots and
through the IM supply’s unbalanced voltage. The electrical
resistance is connected in series in one of the phases that
supply the motor to generate the unbalanced voltage. Tests
with the electrical resistance in series are implemented in
the three phases separately. To predict the temperature in
the IM, in Section IV-A, simulations were performed. Based
on the theoretical results, experimental tests were conducted,
maintaining the electrical insulation’s integrity in the face of
the increase in temperature.

IV. SIMULATION, EXPERIMENTAL RESULTS
AND DiscussION

A. Temperature Simulation of the Instrumented IM
To compare the practical and theoretical effects of the
temperature behavior in the instrumented IM, simulations were
performed using the Motor-CAD software. Motor-CAD is
the dedicated electric motor design software for multiphysics
simulation of electrical machines. With the characteristics and
dimensions of the IM, the simulation is performed under rated
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Fig. 6. Simulation of the IM temperature with the Motor-Cad software.
(a) Cross section. (b) Longitudinal section of the IM.

load. Fig. 6 presents the simulated temperature results for the
IM of 15 HP; with load, (a) shows a cross section, and (b)
shows the longitudinal section of the IM.

The temperature in the simulation indicates 43.2°C in the
inside the slot, stator iron 39.2°C, and enclosure 37.5°C.
In the region between the slots, called teeth, the temperature is
40.3°C. Other temperature points are rotor bars 48.3°C, rotor
47.9°C, and top of the teeth 42.1°C. As the objective of the
study is to monitor the temperature of the stator, we will
concentrate on stator inside slots. Using the results of the
simulation, the temperature limits are established allowing
the experimental tests to be carried out without damaging
the machine.
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Fig. 7. Motor stator temperature measurement with induced heating in 4
slots.

B. Faults Analysis Produced in a Coil by
Heating the Resistance

Based on the experimental setup developed using the
proposed instrumentation and the simulation, the tests are
conducted to identify the temperature increase in the IM
stator caused by faults. Fig. 7 shows the measurement of
IM temperature with RDTS system at full load. The ambient
temperature during the whole test duration was 25°C. The IM
remained on until the temperature stabilized, approximately
at 40°C (green line). Subsequently, the electrical resistance
was switched on until the temperature reached 80°C measured
by K thermocouple sensor installed inside the slot. This
value, despite being high, does not damage the electrical
insulation of the IM, as the insulating paper used supports
200 °C. As the temperature increases, the RDTS identifies the
temperature increase between the lengths 2500 and 2625 cm
of the fiber with a peak of 48°C (blue line). This value
does not correspond to the actual temperature of the 80°C.
This occurs because the spatial resolution of the equipment
is 1 m. Using the results measured by the RDTS system,
the algorithm is applied for signal reconstruction. The high
resolution algorithm identifies the peak temperature and recon-
structs the signal with the real temperature value. The algo-
rithm allows the reconstruction of the measured signal up to
15 cm in length. As medium and large seized IMs have slots
greater than 15 cm, it is possible to estimate the temperature
with the proposed system. However, even without using the
algorithm to improve spatial resolution, the peak temperature
measured by RDTS is already an indication of fault to be
considered.

To visualize the heating, COMSOL® software is used. The
analysis is performed considering the thermal conductivity
of copper and iron with 400 (W/m.K) and 150 (W/m.K),
respectively. Fig 8 shows that the IM stopped when the
electrical resistance was connected indicating the spread of
the temperature caused by the electrical resistance. The region
near the resistance shows a temperature of 80°C that scatters
through the stator iron core. Fig. 9 presents the IM operating
under load and the electrical resistance connected. Knowing
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Fig. 8. Thermal image of the stator with the IM stopped and electrical
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Fig. 9. Thermal image of the stator with the IM operating under load
and electrical resistance on.

the length of the fiber, it is possible to verify the region in
which the faults occur through the image.

C. Temperature Rise During Voltage Unbalance

The efficiency and integrity of IM depends on balanced
supply voltages. Under conditions of unbalanced voltage,
the IM presents temperature variations that compromise the
electrical insulation. Using the experimental setup described
in Section III, unbalanced voltage tests were performed. The
IM was activated with electrical resistance in series in one
of the phases at time and operated at rated load at time.
Fig. 10 shows the waveform of the voltages with the electrical
resistance in the A phase. The voltage of phase B (blue line)
and voltage of phase C (black line) maintained the rated peak
voltage of 311 V (220 V,,,,5). The voltage of phase A (red line)
presented a voltage drop of 18%. The waveform of the currents
is shown in Fig. 11. The currents of phases B and C were
measured to be 23.8 A,,s. However, the current of phase A
showed a reduction of 41% concerning the currents B e C and
a delay of 4.6 ms concerning the original position. The delay
occurs because of the weakening of the electromagnetic field
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Fig. 11. Measurements of the electrical currents the IM with unbalance

voltage of phase.

at A phase [37]. The electrical resistance was also inserted in
series with the B and C phases, and they present the same
unbalances shown in the A phase.

The unbalance voltage (UV) caused temperature variations
in the IM measured by the RDTS system. Fig 12 presents
four measurements, without UV, UV phase A, B and C.
It was noted that under normal conditions the temperature
remained constant throughout the structure, at approximately
40 °C. It can be seen that in the lower region of the IM
where the maximum heat dissipation occurs, the temperature
is slightly lower. However, for each phase in which the
unbalanced voltage was subjected, the temperature measured
changed according to the fiber distribution in the stator.
Despite presenting little variation, a difference in temperature
is perceived according to the phase in which the voltage unbal-
ance occurs. Unbalanced voltage of phase A showed a higher
temperature between 1180-1440 cm and 2280-2550 cm. In the
unbalanced voltage of phase C, the temperature increased
between 1600-1900 cm and 2430-2650 cm. In the unbal-
anced voltage of phase B, the increase in temperature was
only in 1810-2425 cm. As the objective was to measure the
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Fig. 12. IM temperature measurements, under normal conditions and

with unbalance voltage.

temperature of the coils, there was no need to apply the
algorithm, as the spatial resolution of 1 m was sufficient. That
is because the distribution of the optical fiber is the same as
that of the coils.

The results identify an imbalance in temperature in different
parts of the IM structure. As the fiber installation followed the
same settings as the coils that are a double layer winding
(2 coils in the same slots), the measured temperature was
influenced by the overlap of the coils. However, it was possible
to identify the unbalance voltage even in a double layer
winding. That is, even for a single layer winding, it is possible
to detect the unbalanced voltage.

V. CONCLUSION

This article presents a different technique for monitoring
the stator temperature of medium sized induction motor using
distributed temperature sensing. The experiments are per-
formed in the induction motor instrumented internally with
optical fiber before the insertion of the coils. Despite being
a known method, they are generally used on large dimension
machines, and this study shows that it can also be applied on
smaller machines. Through improving the spacial resolution
algorithm, it was shown that it is possible to obtain temperature
measurements up to 15 cm in length. With the algorithm
applied to the measured signal it was possible to obtain an
improvement of 60% in relation to the original signal.

The results demonstrate that it is possible to diagnose
faults in the windings as well as unbalanced voltage through
temperature. With the uniform distribution of the optical fiber
through the slots, if heat sources can be detected even in their
initial stage, repairing becomes simpler, reducing downtime,
thereby increasing the induction motor’s operational efficiency.

The constant monitoring of the internal temperature of the
induction motor can be a fundamental, predictive maintenance
tool. As the high temperature degrades the electrical insulation,
the proposed application method evaluates if the temperature
degree has exceeded the limit. Another relevant factor is
the possibility of identifying the region of the structure in
which the defect occurred. Therefore, the instrumentation
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described in this study offers a promising alternative in the
thermal mapping of electrical machines. The instrumentation
will allow detailing the 3D thermal mapping in future work.
The proposed method can still be improved by changing
the installation configuration of the optical fiber and through
optical systems with better spatial resolutions.
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6 CONCLUSION

6.1 General Conclusions

This thesis presented the monitoring of dynamic deformation and temperature in rotating
electrical machines using optical sensors. The monitoring techniques used the photorefractive
optical FBG sensors integrated into CFRP and DTS sensors. Given the importance of rotating
electrical machines in Industry 4.0, the sensors and methods proposed in this thesis offer pro-
mising alternatives. Compared to conventional sensing techniques, the main advantages of the
fiber-optic sensors include immunity to electromagnetic interference, the use of only one opti-
cal cable as a sensor, reduced size, resistance to high temperatures, and robustness because
of CFRP encapsulation. The experimental results performed in a 20 hp three-phase induction
motor and the bar of a 355 kW hydroelectric generator instrumented in the laboratory have de-
monstrated the potential of optical sensors in monitoring the state of electrical machines.

The use of optical sensors to identify failures in electrical machines proved to be relevant
in preventing damage that could compromise the performance and integrity of the machine.
Conventional sensors such as RTDs, accelerometers, and piezoelectrics are complex to install,
prone to electromagnetic interference, and punctual. These sensors are limited to the peripheral
measurements of the installation point. By contrast, a DTS system has been shown to have
many sensors embedded in a single optical cable, thus simplifying installation. Similar to DTS
sensors, FBG sensors are immune to electromagnetic interference, a fundamental factor in the
measurement of electrical machines. In addition, the thesis has outlined that the size of the
optical sensors allows its installation close to the element under examination without interfering
with the machine structure.

In terms of innovation, the first paper has presented a device to simultaneously measure
vibration, temperature, and rotating magnetic field, resulting in a utility model application (INPI:
BR 20 2020 001730 1). This sensor is adaptable to several machine designs because it can
be constructed in any radial dimension and is only 2 mm thick. Its installation is intrinsic to the
electrical machine, and the reading of several FBG sensors embedded in a single optical cable
allows dynamic and safe monitoring. Because the sensor structure is fixed to the core, it must be
installed before inserting the coils constitute the stator to ensure greater sensitivity. Despite this
challenge, the results obtained during the experimental tests demonstrate the robustness and
measurement sensitivity of FBG sensors encapsulated in CFRP.

Similarly, the second paper outlined a CFRP-encapsulated FBG sensor to monitor bea-
rings. Owing to the difficulty in installing stator sensors, the newly developed sensor was installed
next to the bearing without rewinding the machine. One of the highlights of this sensor is its direct
contact with the bearing without damaging its measurement capacity and altering the integrity of
the machine. Thus, the sensor can detect a failure in any element that constitutes the bearing at
an early stage. In the analysis of the good and damaged bearings, the sensor detects faults in
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the bearing elements. The paper demonstrated that the measurements remain the same despite
several bearing changes and numerous tests. Therefore, it can be concluded that the bearing
sensor exhibits good repeatability and reproducibility. Compared with existing sensors in the
market, this sensor offers all the positive characteristics of optical sensors, particularly the redu-
ced size and immunity to electromagnetic interference. Another critical factor is the possibility of
applying this sensor to any system with bearings, for example, in a line of paper dryer cylinders,
where all the bearings can be monitored simultaneously, with dynamic data in real-time, allowing
reliability of the system.

Regarding the instrumentation of the stator bar of a hydroelectric generator in the labo-
ratory, the thesis described a practical and safe way to install sensors in generators in operation.
Thus, the fiber was installed longitudinally at the end of the bar, a region located outside the
stator, known as the head of the coils. Because the DTS sensor has a spatial resolution of 1 m, a
high-resolution signal reconstruction algorithm was used to measure the temperature in sections
up to 15 cm in length. Compared with conventional sensors, the proposed method has advanta-
ges such as immunity to electromagnetic interference, reduced dimensions, and a single sensor
element. The experimental results obtained in the stator bar of the generator have demonstrated
the possibility of using this sensor for monitoring the temperature variation at the heads of the
coils for the extraction of the maximum power without harming the insulation of the system.

Moreover, the thesis outlined a DTS sensor used to instrument a 20 hp TIM stator. Optical
fiber was installed between the stator core and coils in all slots. Temperature monitoring in motors
is typically spot-on, and a conventional sensor is mounted between two coils or in a slot, limiting
the temperature measurement to a small region. With the distributed sensor, the entire internal
region of the motor stator was monitored . The experimental results show an improvement of
60 % in the original signal measured by the RDTS when processed through the high-resolution
signal reconstruction algorithm. This instrumentation is advantageous in the integrated monito-
ring of the internal region of the TIM. These data can reproduce three-dimensional images of the
machine, allowing instantaneous monitoring of the temperature distribution, making it possible
to identify anomalies, including voltage imbalance in the supply.

Tests performed on electrical machines have electromagnetic influences and are suscep-
tible to the induction and circulation of electrical currents through the housing. Because optical
fiber is an insulating material, there is no risk of damage to the measuring equipment. Another
essential feature is the reduced fiber size, which made it possible to implement the sensors
without changing the machine’s constructive characteristics. In cases of significant mechanical
stress, encapsulation with CFRP is essential to provide robustness while maintaining the sensi-
tivity of the FBG sensors. In addition, the sensors are adaptable to different formats to facilitate
and speed up their installation. Thus, this thesis demonstrates the effectiveness of implemen-
ting optical sensors in electrical machinery and offers techniques for preventive maintenance to
ensure extended operational life.
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6.2 SUGGESTIONS FOR FUTURE WORKS

The techniques developed and the results obtained in this study suggest avenues for
further research. New tests for diagnosing different defects, such as eccentricity, broken rotor
bar, and phase imbalance, can be performed using the sensor coupled to the TIM stator. Indivi-
dual analysis of FBG sensors and examination of the pattern of the rotating magnetic field are
also suggested, where different failure situations can be analyzed. Other encapsulation mate-
rials can be tested, such as fiberglass, to integrate the optical fiber for mechanical protection
while maintaining the sensor characteristics. The sensor can also be built and implemented in to
monitor the performance of machines of different sizes.

For bearing sensors, new materials can be tested in a package such as a stator sensor.
The results can be processed using new conversion techniques, filters, or artificial intelligence to
identify measured frequency components in isolation. Through neural networks, the signals me-
asured by FBG sensors can be processed to classify and recognize faults, as shown in (YONG
et al., 2020).

In the case of distributed temperature sensors, an improvement in the signal reconstruc-
tion algorithm yielding satisfactory results for up to 15 cm can be suggested. Other techniques
can be used to reduce the spatial resolution, thereby increasing the number of sensors. For the
hydroelectric generator bar with a higher measurement number, the installation configuration can
be radial; therefore, there would be a more accurate measurement of the temperature. Owing to
the galvanic isolation of the optical fiber, it can be implemented in the lower region of the insula-
tion; thus, the temperature would be relative to the copper bar. In the thermal mapping of TIM,
a dedicated algorithm or software can be developed to monitor the temperature instantly with
overheating alerts in the case of defects. The supervision of electrical machines is fundamental
in identifying faults, especially in the case of internal quantities that are difficult to access.
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