
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

JOCELEIDE DALLA COSTA MUMBELLI

APLICAÇÃO DE REDES ADVERSARIAIS GENERATIVAS PARA
MELHORAR A INSPEÇÃO AUTOMÁTICA EM LINHAS DE

MONTAGEM AUTOMOTIVA

DISSERTAÇÃO

PATO BRANCO

2022



JOCELEIDE DALLA COSTA MUMBELLI

APLICAÇÃO DE REDES ADVERSARIAIS GENERATIVAS PARA
MELHORAR A INSPEÇÃO AUTOMÁTICA EM LINHAS DE

MONTAGEM AUTOMOTIVA

AN APPLICATION OF GENERATIVE ADVERSARIAL NETWORKS
TO IMPROVE AUTOMATIC INSPECTION IN AUTOMOTIVE

ASSEMBLY LINES

Dissertação apresentado(a) como requisito par-
cial à obtenção do título de Mestre em Engen-
haria Elétrica, do Programa de Pós-Graduação
em Engenharia Elétrica, da Universidade Tec-
nológica Federal do Paraná.

Orientador: Prof. Dr. Marcelo Teixeira
Coorientador: Prof. Dr. Dalcimar Casanova

PATO BRANCO

2022

4.0 Internacional

Esta licença permite remixe, adaptação e criação a partir do trabalho, para fins não

comerciais, desde que sejam atribuídos créditos ao(s) autor(es). Conteúdos elaborados por

terceiros, citados e referenciados nesta obra não são cobertos pela licença.

https://creativecommons.org/licenses/by-nc/4.0/deed.pt_BR
https://creativecommons.org/licenses/by-nc/4.0/deed.pt_BR
https://creativecommons.org/licenses/by-nc/4.0/deed.pt_BR
https://creativecommons.org/licenses/by-nc/4.0/deed.pt_BR
https://creativecommons.org/licenses/by-nc/4.0/deed.pt_BR


Ministério da Educação 
Universidade Tecnológica Federal do Paraná 

Campus Pato Branco

 
 

JOCELEIDE DALLA COSTA MUMBELLI

AN APPLICATION OF GENERATIVE ADVERSARIAL NETWORKS TO IMPROVE AUTOMATIC
INSPECTION IN AUTOMOTIVE ASSEMBLY LINES

Trabalho de pesquisa de mestrado apresentado como
requisito para obtenção do título de Mestra Em Engenharia
Elétrica da Universidade Tecnológica Federal do Paraná
(UTFPR). Área de concentração: Sistemas E Processamento
De Energia.

Data de aprovação: 14 de Março de 2022

Prof Marcelo Teixeira, Doutorado - Universidade Tecnológica Federal do Paraná

Prof Dalcimar Casanova, Doutorado - Universidade Tecnológica Federal do Paraná

Prof Giovanni Alfredo Guarneri, Doutorado - Universidade Tecnológica Federal do Paraná

Prof Yuri Kaszubowski Lopes, Doutorado - Fundação Universidade do Estado de Santa Catarina (Udesc)

Documento gerado pelo Sistema Acadêmico da UTFPR a partir dos dados da Ata de Defesa em 14/03/2022.

 



À meu namorado, amigos e família, pelo apoio

de sempre.



ACKNOWLEDGEMENTS

Este trabalho não poderia ser terminado sem a ajuda de diversas pessoas e/ou instituições

às quais presto minha homenagem. Certamente esses parágrafos não irão atender a todas as

pessoas que fizeram parte dessa importante fase de minha vida. Portanto, peço desculpas àquelas

que não estão presentes entre estas palavras, mas elas podem estar certas que fazem parte do

meu pensamento e de minha gratidão.

Inicialmente agradeço a Deus, por sempre me guiar e pela proteção durante todo esse

período de mestrado e pandemia.

A minha família, pelo carinho, incentivo e total apoio em todos os momentos da minha

vida.

A meu namorado, pela compreensão e apoio nos momentos difíceis.

Ao meu orientador e coorientador, que me mostraram os caminhos a serem seguidos.

A todos os professores do departamento, banca avaliadora, e demais que ajudaram de

forma direta e indireta na conclusão deste trabalho.

O presente trabalho foi realizado com apoio financeiro do Edital 21/2019 do Programa

de Bolsas Fundação Araucária e Renault do Brasil, chamada pública 6/2019. Em parceria com a

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de

Financiamento 001, aos quais deixo aqui meu agradecimento.



Pois eu, o senhor teu Deus, eu te seguro pela

mão e te digo: "Nada temas, eu venho em teu

auxílio." Isaías 41:13



ABSTRACT

MUMBELLI, Joceleide Dalla Costa. Aplicação de Redes Adversariais Generativas para
melhorar a inspeção automática em linhas de montagem automotiva. 2022. 42 p.
Dissertation (Master’s Degree in Electrical Engineering) – Universidade Tecnológica Federal do
Paraná. Pato Branco, 2022.

In manufacturing systems, quality inspection is a critical issue. This can be performed by humans,
or by means of Computer Vision Systems (CVS), which are trained using representative sets
of images, modeling classes of defects that may possibly occur. In practice, the construction
of such datasets strongly limits the use of most CVS methods, as the variety of defects is of
combinatorial nature. Alternatively, instead of recognizing defects, a system can be trained
to detect non-defective cases, becoming appropriate for some application profiles. In flexible
automotive manufacturing, for example, parts are assembled within a reduced set of correct
combinations, while the number of possible incorrect assembling is enormous. In this paper,
we show how a CVS can be extended with a Deep Learning-based approach that exploits a
Generative Adversarial Network (GAN) to detect non-defective production eliminating the need
for constructing expensive defect image datasets. The proposal is tested over the assembly line of
Renault, in Brazil. Results show that our approach has better accuracy in inspection, compared
with the currently used CVS. We also show that the same method can be used in different
components inspection, without any modification.

Keywords: Automatic inspection. Deep learning. Generative Adversarial Networks. Automotive
manufacturing.



RESUMO

MUMBELLI, Joceleide Dalla Costa. Aplicação de Redes Adversariais Generativas para
melhorar a inspeção automática em linhas de montagem automotiva. 2022. 42 f.
Dissertação (Mestrado em Engenharia Elétrica) – Universidade Tecnológica Federal do Paraná.
Pato Branco, 2022.

Em sistemas de manufatura, a inspeção de qualidade é uma questão crítica. Isso pode ser feito
por humanos, ou por meio de Sistemas de Visão Computacional (CVS), que são treinados usando
conjuntos representativos de imagens, modelando classes de defeitos que eventualmente possam
ocorrer. Na prática, a construção de tais conjuntos de dados limita fortemente o uso da maioria
dos métodos CVS, pois a variedade de defeitos é de natureza combinatória. Alternativamente, ao
invés de reconhecer defeitos, um sistema pode ser treinado para detectar casos não defeituosos,
tornando-se apropriado para alguns perfis de aplicação. Na fabricação automotiva flexível, por
exemplo, as peças são montadas dentro de um conjunto reduzido de combinações corretas,
enquanto o número de possíveis montagens incorretas é enorme. Neste artigo, mostramos como
um CVS pode ser estendido com uma abordagem baseada em Deep Learning que explora uma
Generative Adversarial Network (GAN) para detectar produção não defeituosa, eliminando a
necessidade de construir conjuntos de dados de imagem de defeito. A proposta é testada na
linha de montagem da Renault, no Brasil. Os resultados mostram que nossa abordagem melhor
precisão na inspeção, em comparação com o CVS atualmente usado. Mostramos também que
o mesmo método pode ser utilizado em diferentes inspeções de componentes, sem nenhuma
modificação.

Palavras-chave: Inspeção automática. Aprendizagem profunda. Redes Adversárias Geradoras.
Fabricação automotiva .
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1 INTRODUCTION

As Manufacturing Systems (MSs) (KIRAN, 2019; YIN et al., 2018; ESMAEILIAN

et al., 2016) progress towards digitalization, they require more flexibility to process multiple

types of products over the same plant. An example emerges from the automotive domain,

where different models of vehicles are manufactured, each using its own set of components.

Environments like this create new challenges and requirements for classic control and automation

practices, such as the need for visual inspections to be integrated at many steps of manufacturing,

over many types of assembly sets (CAPUTO et al., 2015). Inspections aim to guarantee that

manufactured products are zero-defect and meet certain security and quality requirements.

In practice, several types of defects can be inspected, e.g., component placement,

position, soldering, type consistency, etc. The inspection task is in general conducted by a human

agent, so that faulty components are sent back to rework, while the others progress through

the process. As this is error-prone and unproductive, there are many attempts to replace human

inspection by automatic decisions taken by CVS (BOUDELLA et al., 2018). A CVS includes a

capture camera and embedded computing that allow to infer about visual details into an image.

Unfortunately, the accuracy of a CVS still fails to match visual inspections for most

applications, despite so many efforts in the literature (FENG et al., 2019). The main barrier

is that the result of a CVS inspection varies according to the problem nature, suffering from

environmental influences, such as noise, lighting, and angle of image capturing (QUINTANA

et al., 2015). In the classic view of CVS inspection, each type of defect requires a specialized

computational method to be detected, implying substantial efforts in research, engineering, and

implementation.

Recent novelties in DL have fulfilled many gaps of CVS, making them more applicable

and accurate to industry (LI et al., 2018; LUCKOW et al., 2016; MAZZETTO et al., 2019),

with promising impact on the automotive domain (HUVAL et al., 2015; POMERLEAU, 1991;

MAZZETTO et al., 2020). Yet, classical DL approaches (i.e., based on supervised training) still

rely on the dataset quality and representativeness. In fact, most DL methods are trained over

datasets that include a significant number of images, that represent each type/class of defect

that may possibly occur in manufacturing. When therefore the diversity of defects is wide and

combinatorial, the construction of such a dataset imposes a strong limitation for the use of most

DL CVS in a supervised way, making them weakly generalizable to industry.
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Alternatively, instead of training the DL method on a supervised way, with a reasonable

set of image samples for each possible defect, a system could be trained to detect only non-

defective cases, so that any situation otherwise is considered a defect. This becomes appropriate

for applications where the number of possible defects is (much) greater than the non defective

cases. In flexible automotive manufacturing, for example, parts are presumably assembled within

a reduced set of correct combinations, while the number of possible incorrect assembling is

enormous. Thus, training a CVS to recognize incorrect cases may be an exhaustive, sometimes

unfeasible, task that delays the production flow and allows errors to survive post production.

Computationally, this approach can be seen as an anomaly detection task, and the

Generative Adversarial Networks (GANs) are nowadays the most promising unsupervised

learning method to address it (MATTIA et al., 2019). GANs dispense the construction of image

datasets to represent defects, as their training requires only correct images, which are in general

easier to define and much more available in factory floors. Therefore, GANs are expected to

generalize better for the automatic inspection of several types of defects, evidencing practical

appeal to industry. GANs have been applied to agriculture (WANG et al., 2019), optimization

problems (MUKHERJEE et al., 2021), general manufacturing (SAIZ et al., 2021; KUSIAK,

2019), machining (DESHPANDE et al., 2020a), surface inspection (PERES et al., 2021), among

others. Yet, applications for visual inspection in the automotive assembly lines are still incipient.

This paper extends a CVS currently used by Renault, in Brazil. This system faces

limitations related to the number of points that need to be verified, speed required for image

processing, and verification angle. Those difficulties, in conjunction with the classical CVS

embedded on the capturing system, reduce the quality of inspection, affecting the advantages

of the CVS. The approach proposed here is a DL-based inspection system that exploits a GAN

to improve the automatic inspection tests along a flexible automotive assembly line at Renault.

By dismissing defective images examples in the training phase, our approach recognizes more

defective types with a single model, evidencing better performance in comparison with the

current CVS system.

It is further shown that the same method can be generalized and applied to several types

of components without modifications. Tests suggest an increase of 2,13% in the mean accuracy

for detecting defects that, comparably, are also detected by the current CVS, and identification

of countless other defects that currently have not yet being captured.

Structurally, the manuscript is organized as follows: a literature is presented in Chapter 2;
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Chapter 3 presents the related concepts; Chapter 4 introduces the main results; while conclusions

and perspectives are discussed in Chapter 5.
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2 RELATED WORK

In industry, automatic inspection is usually made by humans. This has been gradually

replaced by robots that embed CVSs to perceive the environment, collect, and process informa-

tion, taking decisions accordingly. A sketch of this relation, with some options available in the

literature, is shown in Figure 1.

Figure 1 – Overview of the possible manufacturing defects detection pathways based on the two main
directions: human-centered and automatic approaches. In bold, we identify the path pursued in
this research, while the dashed lines highlight options in the literature that are not exploited here.

A CVS takes pictures of a certain region of interest in objects that include points to be

verified. These images may be processed with or without automatic learning. Feature extraction

via contour detection (MARTIN et al., 2004), for example, checks the edges of an image to

determine classes within it belongs. Its main gap is to be dependent extensively on human effort

to complete each test.

Recent advances in and DL have shown potential to eliminate human dependency

to some extent, and have been the base for inspecting, for instance, aircraft fuselage

(MALEKZADEH et al., 2017), cement cracks (CHA et al., 2017), conformance of automotive

assembling (MAZZETTO et al., 2020), besides having been served well for the metallurgical

industry (MERY et al., 2005; MERY; FILBERT, 2002). Despite their usefulness, DL approaches

require image datasets to be constructed in such a way that every possible defect to be detected

is represented by a significant number of images, so that its identification can be learned after

training. Computationally, this approach is called supervised learning.

This is simple to be done when defects have minor diversity, i.e., when they belong

to a limited set of types, facilitating them to be mapped by images. In some applications, e.g.
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automotive manufacturing, defects have high diversity, challenging the construction of a dataset

that reasonably reflects this.

One option is to complement the dataset with images generated artificially to represent

a defect. DL itself can be used to generate images that improve the defects diversity. Recur-

rent Neural Networks (RNNs) (OORD et al., 2016), Restricted Boltzmann Machines (RBMs)

(HINTON et al., 2006; HUANG et al., 2017), and Variational Autoencoders (VAEs) (KINGMA;

WELLING, 2013), are examples of such techniques. They work well for low resolution images,

but may be unsuitable when defects are sensitive and require more precise images.

In this case, an alternative is to assume that, instead of recording every possible man-

ufacturing defect, one can record and learn/model only over correct cases, so that any other

possible variation is a defect. Computationally this defect is called an anomaly/outlier on the

dataset. More specifically, when training data is not polluted by outliers, and we are interested in

detecting whether a new observation is an outlier, we call this task as novelty detection. Novelty

detection is a semi-supervised task, because it is known that the training step includes only

normal (i.e. non-defective) samples. A DL method that implement this idea of novelty detection

as semi-supervised task is the GANs. This method simultaneously trains a generator, to produce

fake images, and a discriminator, to distinguish between real and fake images. Images generated

by GANs have in general good quality and are qualified to enrich image datasets for classification

tasks subject to high diversity of defects.

Variations of GANs include: Deep Convolutional Generative Adversarial Networks

(DCGANs), which uses convolution to ensure stability and convergence during training (RAD-

FORD et al., 2015); Wasserstein Generative Adversarial Networks (WGANs) (ARJOVSKY

et al., 2017), which uses the Wasserstein distance to effectively solve the problem of gradient

disappearance during training; Cycle Generative Adversarial Networks (CycleGANs) (ZHU

et al., 2017), which allows images from two domains to be generated without paired images,

among many others (MATTIA et al., 2019).

In industry, GANs have been tested in steel defect classification (DESHPANDE et al.,

2020b), palm print recognition (WANG et al., 2018), people identification (ZHENG et al., 2017),

vehicle license plate recognition (WANG et al., 2017), medical image synthesis (FRID-ADAR

et al., 2018; SHIN et al., 2018), texturing industry (CARRARA et al., 2021), among others.

However, applications in the automotive domain are still emerging. Examples can be found in

autonomous vehicles to model longitudinal errors of sensors (ARNELID, 2018), or to generate
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sensor errors as an attempt to test the safety of advanced driver assistance systems (ZEC et

al., 2019). In this paper, GANs are exploited for: (i) increasing the dataset that maps critical

manufacturing defects in vehicles production; and (ii) learning how to differentiate defective and

non-defective images without having images for all possible defects that may occur.
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3 COMPUTER VISION SYSTEMS TO AUTOMATIC INSPECTION

Parallel and multidisciplinary advances in engineering have allowed the industry to

produce flexibly, on demand, quickly, and at reduced costs (SALDIVAR et al., 2015). Attempts to

adapt the factory floor to these concepts are non-trivial and require the integration of multiple and

complex technologies. Among them, the cognitive approaches, which aim to enrich automatic

production systems with abilities hitherto only perceived by humans, such as touch, hearing, and

vision. The latter is of particular interest in this article.

3.1 COMPUTER VISION CHALLENGES

Specially in manufacturing systems, it is usual to face multiple types of components

and to handle dynamic assemblies that constantly move throughout the factory. They need to be

inspected to avoid defects and to meet the expected security and quality requirements.

However, automatic inspection results are usually not-trivial to be obtained, mainly

because objects used in manufacturing may have a quite similar visual appearance, and defects

may be caused by minor physical details. Besides, it is possible that the same object appears

differently based on the light, observation angle, distortion and occlusion of the environment, etc.

(GAD et al., 2018).

This diverse mix of features makes visual inspection difficult to be fully automated, and

it remains a human-centered task. As such, it is monotonous, not rarely impacting on the human

health, causing stress, burnout, and also ergonomic problems (GENAIDY et al., 1993), besides

tending to be imprecise. The essence of a CVS is to reproduce the visual ability of humans,

aiming at reducing dependency and improving precision (SZELISKI, 2010).

Usually, a CVS includes the orderly steps of acquisition, pre-processing, feature extrac-

tion, segmentation, and classification. The first two steps extract and process the images obtained

from the manufacturing environment, making them suitable for identifying features, after mathe-

matical processing, and isolating segments containing such features. Finally, classifier algorithms

identify patterns in those segments, usually by evaluating similarities between regions of interest

and predefined templates, comparing the values of pixels within an acceptance threshold.

Commercially, image acquisition systems are composed of modern equipment that

seek to improve environmental interference, such as lighting and sharpness. An example is
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shown in Figure 2, which is a hardware from Keyence1. It has a quadrant lighting system, called

Multi-spectrum, with LEDs of eight different colors and a monochrome camera. In theory, system

like this should solve most of the problems related to environment instability. Yet, they evidence

several limitations, such as the short distance required between the the camera and the object

under observation. In practice, this simple detail makes unfeasible the application of image

treatment approaches that require more general images of the problem, as for example images

with several checkpoints within.

Figure 2 – Example of industrial device for CVS.

Commercially, companies that work with this type of solution usually apply photo-

comparison and contour-detection methods (KEYENCE, 2020; WENGLOR, 2020; COGNEX,

2020) to do automatic inspection.
1 Keyence manufactures sensors, machine vision systems, measuring instruments, barcode scanners, and other

factory automation products (KEYENCE, 2020).
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3.2 AUTOMATIC INSPECTION CHECK ON AUTOMOTIVE ASSEMBLY LINE

A domain application for which automatic inspection is clear is automotive manufac-

turing. Here, the quality of the manufactured product is associated with aesthetics, safety, and

human life risks (PACANA; CZERWIŃSKA, 2020), besides to be linked with the high added

value of the product. Thus, any anomaly in manufacturing implies restarting a long, complex,

and expensive chain of rework, sometimes after the product is already in use.

Ensuring the quality of a vehicle depends directly on the quality of the parts, their

compatibility of type, and how they are assembled. Thus, defects can be physical (e.g., the

morphology of a part), or logical (e.g., the use of a non-defective part in the wrong vehicle).

Therefore, detect and preventing possible errors is decisive (CZERWIŃSKA et al., 2019), and

improving the CVSs for this job becomes strategic (APOSTOLOPOULOS; TZANI, 2020;

WANG et al., 1998).

In contrast, most commercial CVS do not generalize well for real problems in man-

ufacturing. For instance, the need to manually define the template for classification, both for

pre-processing methods and for lighting adjustments, are strong limitations of a CVS. In fact,

this depends on experts to be set up, and may vary from one application to another. Also the

manual definition of thresholds for classification requires experienced knowledge.

The use of DL-based techniques has shown potential to reduce these limitations by

automating some of the expert-dependent tasks (APOSTOLOPOULOS; TZANI, 2020), (HAN

et al., 2018). Yet, this alternative still faces a crucial problem: the number of possibilities in

which a defect can be created and interpreted. When a manufacturing system requires this type of

multiple-objects flexibly-assembled inspection, the use of CVSs becomes practically unfeasible

due to their weak generalization capabilities to recognize multiple and unexpected defects.

The proposal in this article emerges from this reasoning and hypothesizes that those

limitations can be overcome, to some extent, by applying modern learning systems based on

Generative Adversarial Networks (GANs) (CARRARA et al., 2021).

3.3 GENERATIVE ADVERSARIAL NETWORKS

A Generative Adversarial Network (GAN) is part of a deep neural network architecture

that consists in training two models (players) to take decision by competing. One player, called

generator (𝐺), is a neural network that generates new (fake) data instances, while the other,
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called discriminator (𝐷), evaluates their authenticity. By analogy, 𝐺 acts like an intruder who

tries to create and spread false leads to make its identification harder, while 𝐷 is a detective who

tries to sort out the leads that make sense.

In order to make the false leads, 𝐺 applies random noises to generate data as real as

possible to those in a training dataset. This aims to fool 𝐷, which then has to decide whether or

not each data instance belongs to the training dataset, or it has been created by 𝐺. The Figure 3

illustrates a GAN scheme.

Figure 3 – GAN architecture.

The game challenge can then be summarized as follows: given a dataset with training

data samples, a generator of fake samples 𝐺, and a discriminator of instances 𝐷, consider that 𝐷

is trained to maximize the chances of assigning a correct label for samples coming indistinctly

from the dataset or from 𝐺; inversely, 𝐺 is trained to minimize the hits of 𝐷.

Remark that the rules for 𝐺 and 𝐷 to compete can be intuitively seen as a two-player

minimax game, inherited from the Games Theory (OWEN, 2013). It assumes that there is always

a rational solution to a well-defined conflict between two individuals whose interests are opposite.

By following this reasoning, 𝐺 and 𝐷 can be seen as two opposite players that take optimized

decisions though a value function 𝑉 (𝐺,𝐷) (GOODFELLOW et al., 2014), according to the

Eq. (1):
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min

𝐺

max

𝐷

𝑉 (𝐷,𝐺) = Ex∼p𝑑(x)[log(𝐷(x))]

+ Ez∼pz (z)[log(1-𝐷(𝐺(z))] (1)

where: x is the real data sample, with distribution p𝑑(x), that approximates the expected

value Ex ; and pz(z) is a latent variable associated with an input noise vector with random uniform

distribution 𝑧 ∼ 𝑈(−1,1), that approximates the expected value Ez . Then, 𝐺(z) generates data

from the input noise pz(z), while 𝐷(x) ∈ [0, 1] discerns how likely its input is to be true, or

inversely fake.

The GAN training converges when Nash-equilibrium is reached in the minimax (zero-

sum) game (KREPS, 1989). In Game Theory, the Nash-Equilibrium is reached when the actions

of one player do not change depending on the opponent’s actions. Here, this means that the

GAN generator 𝐺(z) produces realistic images, and the discriminator 𝐷(x) outputs random

predictions (probabilities close to 0.5) (YEH et al., 2017).

However, GANs are typically trained using gradient descent techniques that are de-

signed to find a minimum for a cost function, instead of finding the Nash-Equilibrium, as it

may lead the search not to converge (GOODFELLOW, 2014). In other words, achieving Nash-

equilibrium often proves difficult due to training instability (SALIMANS et al., 2016), and

approaches such as Wasserstein GANs arise.

3.3.1 WGAN

The Wasserstein GANs (WGANs) are alternatives for training conventional GANs that

tend to improve the learning stability. This also prevents problems like the mode collapse, and

provide meaningful learning curves that are useful for debugging and hyperparameter searches

(ARJOVSKY et al., 2017).

Here, 𝐷(h) ∈ R is an auxiliary scalar function, which is used to calculate the Wasser-

stein distance that replaces 𝐷(x), in the minimax game, so that:

min

𝐺

max

𝐷

𝑉 (𝐷,𝐺) = Eh∼𝑝𝑑(h)[(𝐷(h))]

− Ez∼𝑝𝑧(z)[𝐷(𝐺(z))]· (2)
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In this way, the 𝐷 function moves from a classifier to a critic, producing an authenticity

score. This tends to assign high scores to real samples, and low scores to simulated samples.

More details on WGANs can be found in (GULRAJANI et al., 2017; PETZKA et al., 2017).

In addition to the WGANs, other variations of GANs have emerged to optimize the

original theory, as it is the case of the BiGANs and CBiGANs.

3.3.2 BiGAN

These are GANs improved to optimize the latent space, exposing this space to the

discriminator along with the images generated from it (BERG et al., 2019). A codifier module,

denoted 𝐸(h), is introduced and trained in conjunction with 𝐺, in a way to map the real samples

to their respective latent spaces. The discriminator 𝐷(h, z) ∈ [0, 1] is trained to discern whether

the couple (h, z) comes from a real or generated image. The minimax problem for BiGANs can

then be introduced as follows:

min

𝐺,𝐸

max

𝐷

𝑉 (𝐷,𝐸,𝐺) = Eh∼𝑝𝑑(h)[log𝐷((h),𝐸(h))]

+ Ez∼𝑝𝑧(z)[log(1-𝐷(𝐺(z)), z)))]· (3)

Thus, fooling 𝐷 causes 𝐺 and 𝐸 to minimize the difference between the ordered pairs

(𝐺(z), z) and (h, 𝐸(h)).

3.4 CBIGAN

The Consistency BiGAN (CBiGAN) (CARRARA et al., 2021) aims to combine features

from WGAN and BiGAN. This approach improves the modeling of the latent space by exposing

it to the discriminator (BiGAN) and also produces authenticity scores (not classification) from

WGAN. In this way the CBiGAN tackles anomaly detection as a one-class classification problem,

assuming for the training only non-anomalous samples. Given a test sample, the CBiGAN labels

it as normal/nonanomalous/defect-free (considering a negative class) or anomalous (otherwise).

CBiGAN can be seen as a GAN that captures the distribution of latent space 𝑍 = R𝑛.

The generative model is a BiGAN and the loss function is modeled as Wasserstein distance.
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Then, the new minimax problem can be stated as:

min

𝐺,𝐸

max

𝐷

𝑉 (𝐺,𝐸,𝐷) = Eh∼𝑝𝑑(h)[𝐷(h,𝐸(h)] - (4)

Ez∼𝑝𝑧(z)[𝐷(𝐺(z), z))]

where:

• 𝐺 : 𝑍 ↦−→ ℎ is the generator that produces false images of latent variable associated with

an input noise vector.

• 𝐸 : ℎ ↦−→ 𝑍 is an encoder that map real samples to the corresponding latent space and

trained together with 𝐺.

• 𝐷 : ℎ × 𝑍 ↦−→ R is the discriminator/critic that produces authenticity scores to each

samples using Wasserstein distance.

This model is of particular interest in this work, since our training is performed only

on non-anomalous/defect-free samples. They are easily acquired in the industrial environment,

while samples with defects are more rare and variable.



24

4 APPLICATION

This section introduces our approach to detect defects that currently results from the

experimental CVS at the Renault manufacturing.

A condensed version of the real process is shown in Figure 4. This environment is

called image island. It was created by Renault to carry out the final inspection of the underside

of the vehicles, just before it is attached to the painted body. It consists of a CVS that includes

robotic arms, two high resolution cameras, and a computing system. The production line aims to

deliver 60 cars per hour, and the cycle time is 54 seconds. Therefore, at each point on the line,

employees or equipment have 54 seconds to complete their work, while the remaining 6 seconds

are spent for a vehicle to pass from one checkpoint to another.

Figure 4 – Representation of an image island at Renault, with a car positioned under the two cameras that
capture images from points of interest.

Each car that passes though the island is seen as two parts, A and B, that are positioned

in front of two cameras, 1 and 2. They both collect images of certain regions of interest, first from

A and then from B. Remark that cars belong to different models, so that the image processing

consists in automatic inspection of many components of several car models.

For the automated checking, A and B are further conceptually split in 4 sections. Each

section has a number of points to be verified, which varies from one section to another. In total, at
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most 11 points are checked through the 4 sections, which may vary according to the model. The

line does not stop during the verification, so that a sensor detects the presence of a new vehicle

and starts the verification process automatically. When a car enters the inspection cell, a PLC

controller receives an “ok" signal and then it informs to the robot controller the coordinates of the

point to be checked. When the arm reaches that correct position, its controller reports this to the

PLC, which finally authorizes the camera controller to collect an image of the item to be verified.

For each image capture, the lighting ring switches on and off, in order to achieve best shooting

condition possible after the image is captured, the native verification algorithm is triggered for

that particular point and it returns a Boolean value associated with the anomalous/defect or

non-anomalous/defect-free assembled component. The test result is informed to the main PLC,

which interfaces it though a man-machine interface. The same procedure repeats for the other

points.

The main problems with the aforementioned system is that it uses classic methods,

that are not suitable for the problem to be addressed, mainly because its training is limited by

the lack of images representing defects. As a result, the equipment returns a substantial rate of

false negatives (FN) (i.e., images with correct components, defect-free, correctly assembled,

but detected as defective), and some false positives (FP) (i.e., images for which it has not been

possible to be sure about correctness, but the equipment detected as correct).

Implications of mistaken inspections can be severe: first, all cars detected as defective

need to leave the line and go through a thorough manual inspection. Cars detected as defective

that are really defective, would have to be reworked anyway, so they are an inevitable problem.

Cars that are not really defective, but have been classified as such, i.e., that lead to FN (more

rare events in this case study, but still) are also a problem because they are removed from the

line unnecessarily, consuming time and resources. However, the main problem with the current

CVS appears from FP classification, i.e., with defective cars that are detected as normal by the

CVS. This type of verification error is quite unacceptable in practice, as it takes effort and time,

increases production costs, besides to jeopardize the final integrity of the product and human

lives. The next section quantifies the error rate of the existing CVS.

4.1 PROBLEM QUANTIFICATION

The production line was observed for a time window during which 10 cars were

inspected. Among these cars, 7 were of the same model and included 11 verification points in
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their underbase. The current automatic inspection system resulted in 77 verified points, from

which 62 were evaluated as non defective, and 15 as defective.

After manual inspection, it was confirmed that the 15 points initially classified as defec-

tive were actually correctly assembled, that is, they were FN points. This outcome corresponds

to an error rate of 19.5%, which is impractical and makes the equipment unfeasible to be used,

as it implied in 15 completely unnecessary rechecks.

Tables 1 and 2 show respectively the confusion matrix and the accuracy for some

points that was checked for a time window. A defect-free inspection is represented as positive

classifications (P), while a defect is expressed as negative classifications (N), which are further

associated with a Boolean value to form the following assertions:

• TP = Positive evaluated as positive (true defect-free).

• TN = Negative evaluated as negative (true defect).

• FP = Negative evaluated as positive (false defect-free).

• FN = Positive evaluated as negative (false defect).

Component TP TN FN FP
C20 102 0 1 1
C60 105 0 1 0

C100 270 0 0 0
C147 256 1 5 3
C231 96 0 28 0
C259 238 0 34 2
C267 232 10 32 0
C287 101 5 8 17
C329 40 0 0 1
C369 247 0 0 0
C492 254 4 14 0

Table 1 – Confusion matrix of the current CVS model. It considers each component of a given car model that
was checked over a certain time window.

Table 1 reveals a larger amount of classification errors (FN and FP). For example, the

amount of FN reaches 34 cases for the component number C259, while FP reaches 17 for the

component C287. These were the most extreme cases of errors observed on the dataset.

For testing, we selected the sets of components that included reliable amount of TN

images, which were the components C147 and C287. Some components have many TN images,

but they were detected as unreliable, as they contain noises like the hand of operators or other

objects captured in from of the camera. The component C369 was also selected for testing, as it
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refers to a part similar to others available outside the factory environment, which allowed us to

better compare our results. Table 2 shows the accuracy of the tested items.

Component Accuracy
C147 96.88
C287 76.41
C369 100.00

Table 2 – Accuracy of the current CVS at Renault manufacturing system checking the components of a given
car model over a certain time window.

Components C147 and C287 have low accuracy when it comes to the industrial envi-

ronment. Although C369 has acceptable accuracy, it is a component that has not been exposed

to any possibility of failure, and the result when exposed to defects is unclear. Therefore, the

practical use of the equipment is compromised by the lack of classification confidence.

4.2 IMAGE DATASET AND EXPERIMENTAL SETUP

Our experiments exploit two distinct setups: one including images collected directly

from the assembly line; and another, called controlled setup, constructed with real workpiece

images that were collected outside the factory floor. In this second setup, the workpiece was

physically modified to simulate a number of possible anomalies to be detected by the inspection

system. The two setups are described as follows.

4.2.1 DATASET 1 - real images

The first dataset (DS1) is composed of images collected from the real production

environment. With the factory in its full production, the images were captured from the island by

cameras attached to robotic arms. This dataset includes 3 distinct partitions, each one referring

to a distinct type of component, each type is further divided into train and test data, as follows:

• Component C147: Steering Case Pin Rubber.

• Component C287: Gearbox Sensor.

• Component C369: Exhaust Pipe Screw.

Samples of each type of component are shown in Figures 5a, 5b, and 5c. The configura-

tion of training and testing datasets is presented in Table 3. All the images into the training set
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are TP images, i.e., without defects, while the testing dataset include indistinctly TP and TN

images.

Partition Profile C147 C287 C369
Train dataset 165 48 176

Total 165 48 176
Test dataset 35 20 25

65 63 46
Total 100 83 71

Total dataset 265 131 247
Table 3 – DS1 partition settings for training and testing.

As the image capturing system is positioned considerably distant from the components

(approximately 40 cm) the resulting images include fragments do not associated with the defects

under analysis (e.g., background and border mechanical sets). Thus, a preliminary region of

interest (ROI) was defined to allow focusing on particular objects under consideration. The result

of this pre-processing phase can be seen in Figures 5d, 5e, and 5f.

Figure 5 – Original images (a), (b), and (c), for the components C147, C287, and C369, captured directly
from the assembly line, and respective ROIs version (d), (e), and (f).

For the training dataset, a DA technique was applied in order to increase the number

of training images. We applied variations of rotations, width and height shifts, zoom scale, and

filling mode. The final number of images of each component after augmentation can be seen in

Table 4.

Remark that training our method requires only non-defective images to be available,

which is a huge advantage in comparison with other approaches in the literature. In fact, TP

images are usually more frequent and easier to obtain, in contrast with DL-based approaches that

require to collect a reasonably large set of TN images, including all possible types of defects.
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Partition Profile C147 C287 C369
Train Defect− free Real 165 48 176

Defect− free DA 1650 1344 1760
Total dataset 1815 1392 1936

Table 4 – Training DS1 after DA.

After the training phase, it is necessary to evaluate the accuracy and stability of the

trained model when subject to an independent dataset that may include both TP and TN images.

As the images are captured in a real environment, real defects are less frequent events. Therefore,

to fairly test the model face to more complex classification tasks, we conducted a manual DA

over the test images so that more instances of TN parts are produced. The imposed defects are

similar to real defects, observed in real TN images, extended with new features of possible

defects. The defects have been separated into small and large size defects, as listed in Table 5.

Examples of TN images in the testing dataset with real defects (when they exist) and manually

added defects, can be seen in Figure 6.

Partition Class Profile C147 C287 C369
Train dataset Defect− free 1815 1392 1936

Total 1815 1392 1936
Test dataset Defect− free 35 20 25

Total 35 20 25
Defect Real 04 22 00

Manual small 32 19 23
Manual huge 29 22 23
Total 65 63 46

Total dataset 1925 1475 2007
Table 5 – Number of images in training and test DS1 after DA.

4.2.2 DATASET 2 - controlled images

The second dataset (DS2) was composed with images of parts collected by a photograph

camera apart from the island in the assembly line. This controlled images generation allows to

represent a large number of possible defects and test whether or not the model can recognize

them.

The Table 6 summarizes the number of images in DS2. As DS2 consists of only 1 part,

and this part is the same as C369 of DS1, the total of images contained in DS2 is equal to DS1

for the part C369. Analogous to DS1, DA was also applied to the training images in DS2 in

order to make them comparable.

From the controlled dataset DS2, we can simulate a wide diversity of defects. The test
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Figure 6 – Production line DS1 parts defects

Partition Profile CR
Training dataset Defect− free 1936

Total 1936
Defect− free 25

Test dataset Defect 46
Total 71

Total dataset 2007
Table 6 – DS2 partition settings for training and testing datasets.
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dataset did not undergo any computational manipulation, so the defects present in this DS2

partition are defects that would actually pass through the assembly line, that is, the photographed

part was defective, with no need to create defects via software. Examples of images used for

training and testing are shown in Figure 7.

Figure 7 – Images with (a) and without (b) defect from the controlled dataset DS2.

4.2.3 Experimental analysis

In order to assess the performance of both experiments, we used the 2-way holdout

(training/test split) method, with confidence interval via normal approximation. We feed the

training data to the method to learn from, and then we estimated the performance over unseen

data, i.e., the test was entirely conducted over images not used for training. No cross-validation or

hypermeter adjustment scheme was applied to perform the model selection, since this is already

known in the literature (CARRARA et al., 2021), and also due to the computational costs that

this would require.
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As our primary evaluation, we measured the accuracy of correct classifications between

TP and TN assembly parts. Accuracy is a simple metric that represents the number of correct

predictions of the model. It can be defined as the number of correctly classified test cases, divided

by the total number of test cases. We then compare these results with those returned by the CVS

installed on the real manufacturing line.

Figures 8, 9 and 10 show examples of the images created by CBiGAN. The network

was trained with images of parts from the industrial environment, that is, the generated images

are very similar to factory floor images.

Figure 8 – Image produced by CBiGAN for part C147, which shows in its lines the training and test images, in
addition to the images generated by CBiGAN and the difference between the input and generated
images.

The Figures 8, 9 and 10 são divididas ao meio de forma horizontal, cada uma das

colunas da parte superior representa uma peça diferente contida no banco de testes, o mesmo

acontece na parte inferior. Já no caso das linhas, considerando a primeira metade das Figuras,

iniciando pela linha superior, elas representam respectivamente, imagens de peças contidas no

banco de testes, imagens dessas peças recriadas pela rede, e a diferença entre ambas. As linhas

da segunda segunda metade da imagem são divididas da mesma maneira.

Tables 7 and 2 show the accuracy obtained by our tests, compared with the performance
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Figure 9 – Image produced by CBiGAN for part C287, which shows in its lines the training and test images, in
addition to the images generated by CBiGAN and the difference between the input and generated
images.

of the Renault equipment to classify each type of parts.

Component Accuracy %
C147 98.4
C287 85.9
C369 100.0

Table 7 – Accuracy achieved in the test with CBiGAN for each set of components.

One observes an accuracy increase from 96.88% to 98.4% to classify the component

C147. The improvement rate, in this case, seems to be low, which is explained by the low amount

of images of defects of this component. Differently, when classifying the component C287, the

accuracy increase was from 76.41% to 85,9%, which is more than 10%. This could be further

improved by a more robust training step, including more images of real defects to feed the model.

Finally, for the component C369 the obtained accuracy was on the order of 100%, both for DS1

and DS2.

Upon comparison, we conclude that our model was capable of improving, or at least

maintaining, the accuracy of the real vision system for all the image profiles we tested. We

highlight, however, that our model is further advantageous in the sense that it also identifies
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Figure 10 – Image produced by CBiGAN for part C369, which shows in its lines the training and test images,
in addition to the images generated by CBiGAN and the difference between the input and
generated images.

abnormal components and is able to identify all possible defective components, as it considers

defective anything different from a good component used for training.

To verify that the proposed method is able to identify all possible defective components

the DS2 was created, containing a wide diversity of defects. With the aim of simulate a wide

diversity of defects. The Figure 11 shows examples of images generated by the CBiGAN using

DS2.

As DS2 is composed of the same C369 component as DS1, we were able to compare

how CBiGAN behaves with controlled images. In our tests, the result was considered excellent,

keeping an accuracy of 100%. Although more real tests on the floor of the industry are needed, it

is a good indication that the method can bring real benefits in the identification of defects.
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Figure 11 – In the picture we can see some real images, some produced by CBiGAN, and the different between
them for the DS2 set of components.
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5 CONCLUSIONS AND PERSPECTIVES

In industry, ensuring product quality is increasingly important and challenging, es-

pecially in flexible manufacturing plants. In the automotive industry, for example, a single

production line is usually responsible for manufacturing several models of cars, each one with

multiple components. When a car has problems after sold, it denigrates the brand image and

increases costs due to repairs. In this context, applying manual inspection as a quality control

mechanism is usually not the most efficient; therefore, approach and and automated visual

inspections emerge as feasible alternatives.

This type of technological solution, however, has two strong limitations: (1) the need

for a specialized solution for each type of defect in each product; and (2) the need for examples

(i.e., images) of any and all possible types of defect, for all components to be inspected. This

work presented a method that allows to tackle both limitations in parallel. The proposed GAN

model only needs defect-free images to be trained, thus solving limitation (2) and, additionally,

it also solves limitation (1) as the same model can be used for different components, requiring

only one retraining with the images of the component to be inspected.

The proposal was validated using 2 different scenarios. The first exploited a real

industrial manufacturing environment with multiple components. The second, used images

with acquisition and simulation of controlled defects. In scenario 1, the same method was used

to inspect 3 different components, without the need for adaptations in the GAN. The result

evidenced an increase in accuracy of inspection and identification of defects, compared with the

current system used in the factory floor. In scenario 2, it was concluded that a wide variety of

defects can be identified without the need for them to be part of the training step.

The obtained increase in the quality of inspection results in substantial gains along the

manufacturing process, as each anticipated error implies less manual re-checking and avoids

having to stop of the production line. In future researches we aim to extend the GAN-based

approach to cover other types of inspection, such as conformance tests, which is the kernel for

successful applications in flexible manufacturing.
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