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RESUMO 

KARP, Joel Robert. Dinâmica de Gotas Compostas Escoando em um Fluido Viscoso 

Estagnado. Tese  Programa de Pós-Graduação em Engenharia Mecânica e de 

Materiais, Universidade Tecnológica Federal do Paraná. Curitiba, 120 p., 2021. 

Gotas compostas são partículas fluidas compostas por mais de um fluido. Sua 

estrutura complexa rege seu comportamento, cujo conhecimento é de importância em 

vários cenários envolvendo escoamento multifásico. O presente trabalho é dedicado à 

análise do movimento gravitacional de gotas compostas gás-líquido de tamanho na 

ordem de milímetros com alto número de Reynolds, aproximadamente de 70 a 700, 

em um fluido viscoso quiescente por meio de técnicas de visualização de escoamento. 

Para tanto, experimentos em ambiente isotérmico utilizando as técnicas de aquisição 

de imagens em alta velocidade e velocimetria de imagem de partículas (PIV) foram 

conduzidos no Laboratório de Visualização de Escoamentos nas dependências do 

Núcleo de Escoamento Multifásico (NUEM - UTFPR). A influência das propriedades 

dos fluidos e da geometria da gota composta foi investigada empregando diferentes 

fluidos (óleos de silicone, milho, e mineral) e alterando o tamanho da bolha interna. 

Dois regimes ascendentes foram identificados com base em uma faixa crítica de razão 

de diâmetro, a saber, os regimes retilíneo e oscilatório. Os efeitos governantes em cada 

regime de movimento foram discutidos. As gotas compostas preservaram sua forma 

esférica em todas as medições, sugerindo que o escoamento interno pode 

desempenhar um papel essencial na transição do movimento. O comportamento 

oscilatório é descrito pelos ângulos de orientação das fases da gota composta que 

seguem um movimento pendular. A bolha interna reduz a dissipação viscosa e o 

coeficiente de arrasto apresentou valores intermediários em relação às gotas e bolhas 

monofluido. A instabilidade da esteira é sugerida como a origem física das 

instabilidades na trajetória. Quando o tamanho da bolha excede um valor crítico, a 

simetria da esteira é perdida devido ao aumento da vorticidade. O número de Strouhal 

apresentou uma evolução diferente em comparação com bolhas, gotas e esferas, 

revelando diferentes mecanismos de oscilação. Essas observações são corroboradas 

por modelagem mecanicista e suportadas por dados experimentais. 

Palavras-chave: Instabilidade da trajetória, coeficiente de arraste, gota composta, 

esteira, modelagem 

 

 

 



ABSTRACT 

KARP, Joel Robert. The Dynamics of Compound Drops Rising in a Quiescent 

Viscous Fluid. Thesis  Postgraduate Program in Mechanical and Materials 

Engineering, Federal University of Technology  Parana. Curitiba, 120 pages, 2021. 

Compound drops are fluid particles composed by more than one fluid phase. Their 

complex structure governs their dynamic behavior, whose knowledge is of the utmost 

importance in several multiphase flow applications. The present work is devoted to 

the analysis of the gravitational motion of millimeter-sized gas-liquid compound 

drops in a quiescent viscous fluid at high Reynolds numbers, from 70 to 700 roughly, 

by means of flow visualization techniques. With this aim, experiments in an isothermal 

environment employing the high-speed shadowgraph and particle image velocimetry 

(PIV) techniques were conducted in the Flow Visualization Laboratory within the 

premises of the Multiphase Flow Research Center (NUEM – UTFPR). The influence of 

the properties of the fluids and the geometry of the compound drop was investigated 

by employing different fluids (silicone, corn, and mineral oils) and altering the size of 

the internal bubble. Two rising regimes were identified based on a critical range of 

diameter ratios, namely the rectilinear and the oscillatory motions. The governing 

effects of each motion regime were discussed. The compound drops preserved their 

spherical shape through all the measurements, suggesting that the internal fluid 

movement might play an essential role in the motion transition. The oscillatory 

behavior is described by the orientation angles of the phases of the compound drop 

that follow a pendular-like motion. The internal bubble reduces the viscous dissipation 

and the drag coefficient presented intermediate values compared to single-fluid drops 

and bubbles. The unsteadiness of the wake is at the onset of path instabilities. When 

the size of the bubble exceeds a critical value, the symmetry of the wake is lost due to 

the increased vorticity. The Strouhal number showed a different evolution compared 

to bubbles, drops, and spheres, revealing different mechanisms of oscillations. These 

observations are corroborated by mechanistic modeling and supported by the 

experimental data. 

Keywords: Path instability, drag coefficient, compound drop, wake, modeling 

 

 

 



NOMENCLATURE 

Roman letters: 

𝑎 Geometrical parameter of the compound drop 

𝑏 Geometrical parameter of the compound drop 

𝐶𝑑 Drag coefficient of the compound drop 

𝐶𝑑
𝑑 Drag coefficient of a single-fluid drop 

𝐶𝑑
𝑠 Drag coefficient of a rigid sphere 

𝐶𝑑
𝑏 Drag coefficient of a single-fluid bubble 

𝐶𝑐𝑑
∗  Normalized drag coefficient of the compound drop 

𝑑𝑏 Equivalent diameter of the internal phase of the compound drop 

𝑑𝑐𝑑 Equivalent diameter of the compound drop 

𝑭𝒈 Archimedes force 

𝑭𝒅 Drag force 

𝑭𝒊 Inertial force 

𝑭𝒗 Viscous dissipation force 

𝐹𝑟 Froude number 

𝐹𝑟∗ Modified Froude number 

𝑭𝑳 Lift force 

�̅�𝐿 Time-averaged lift force 

𝑓𝑝 Pendular oscillation frequency 

𝑓 Frequency of velocity fluctuations 

𝑓0 Surface oscillation of a drop in inviscid flow 

𝑓𝑠 Frequency of vortex shedding 

𝒈 Acceleration of gravity 

𝐻 Width of the external fluid at the bottom segment of the compound drop 

ℎ Width of the external fluid at the top segment of the compound drop 

𝐼 Turbulence intensity 

𝑘 
Prefactor employed in the modeling of the drag coefficient of compound drops in 

oscillatory motion 

𝑙 Distance between the external centroid and the top of the compound drop 

𝑙𝑐 Distance between the vortex centers in the wake of a compound drop 

𝑙𝑤 
Characteristic dimension of the interrogation window used in the PIV 

measurements 

𝑀𝑐𝑑 Major axis of the compound drop 

𝑚𝑐𝑑 Minor axis of the compound drop 

𝑀𝑏 Major axis of the internal phase of the compound drop 

𝑚𝑏 Minor axis of the internal phase of the compound drop 

𝑛 
Exponent employed in the modeling of the drag coefficient of compound drops in 

oscillatory motion 

𝑃 
Power-law coefficient employed in the modeling of the drag coefficient in 

rectilinear motion 

𝑟𝑏 Equivalent radius of the internal phase of the compound drop 

𝑆𝑡 Strouhal number 

𝑆𝑡𝑝 Strouhal number of the pendular oscillation 

𝑆𝑡𝑠 Strouhal number based on vortex shedding frequency 



𝑆0 Spreading coefficient 

𝑡 Time 

𝑡𝜃 
Time threshold for linear behavior of the orientation angle of the external phase of 

the compound drop 

𝑡𝜔 
Time threshold for linear behavior of the orientation angle of the internal phase of 

the compound drop 

𝑽𝒄𝒅 Rising velocity of the compound drop 

𝑉𝑧 Vertical component of the rising velocity of the compound drop 

𝑉𝑥 Horizontal component of the rising velocity of the compound drop 

𝑣𝑧 Velocity component of the continuous liquid in the 𝑧 direction 

𝑣𝑦 Velocity component of the continuous liquid in the 𝑦 direction 

𝑣𝑥 Velocity component of the continuous liquid in the 𝑥 direction 

𝑣𝑥
′  

Temporal fluctuations of the velocity component of the continuous liquid in the 𝑥 

direction 

𝑣𝑦
′  

Temporal fluctuations of the velocity component of the continuous liquid in the 𝑦 

direction 

�̅�𝑥 Time-averaged velocity component of the continuous liquid in the 𝑥 direction 

�̅�𝑦 Time-averaged velocity component of the continuous liquid in the 𝑦 direction 

 

Dimensionless numbers: 

 

𝑅𝑒 Reynolds number 

𝐵𝑜 Bond number 

𝑊𝑒 Weber number 

𝑀𝑜 Morton number 

𝑊𝑒𝑜/𝑔 Internal Weber number 

𝐵𝑜𝑜/𝑔 Internal Bond number 

 

Greek letters: 

 

𝛼 Constant used in the modeling of the aspect ratio of the internal fluid 

𝛾 Constant used in the modeling of the aspect ratio of the internal fluid 

𝛤 Interfacial tension 

𝛿 Distance travelled by the external centroid of the compound drop 

𝜖 Eccentricity of the compound drop 

𝜃 Orientation angle of the external phase of the compound drop 

𝜃𝑚𝑎𝑥 Orientation angle of the external phase of the compound drop at the inflexion point 

𝜃∗ Normalized orientation angle of the external phase of the compound drop 

𝜗𝑐𝑑 Volume of the compound drop 

𝜗𝑏 Volume of the internal phase of the compound drop 

𝜆 Wavelength of the pendular oscillation 

𝛬𝜃 Amplitude of the orientation angle of the external phase of the compound drop 

𝛬𝜔 Amplitude of the orientation angle of the internal phase of the compound drop 

𝛬𝑉𝑥  
Amplitude of fluctuations of the horizontal component of the rising velocity of the 

compound drop 

𝛬∗ Normalized amplitude of the orientation angles of the compound drop 

𝜇 Dynamic viscosity of the continuous fluid 

𝜇𝑏 Dynamic viscosity of the internal phase of the compound drop 



𝜇𝑜 Dynamic viscosity of the external phase of the compound drop 

𝜇𝑐𝑑 Effective dynamic viscosity of the compound drop 

𝜌 Density of the continuous fluid 

𝜌𝑏 Density of the internal phase of the compound drop 

𝜌𝑜 Density of the external phase of the compound drop 

𝜌𝑐𝑑 Effective density of the compound drop 

𝜎 Interfacial tension coefficient at the gas-water interface 

𝜎𝑔/𝑜 Interfacial tension coefficient at the oil-gas interface 

𝜎𝑜/𝑤 Interfacial tension coefficient at the oil-water interface 

𝜏 Fluid circulation 

𝜑 Viscosity ratio 

𝜑′ Effective viscosity ratio 

𝜑𝜔 Time lag of the external phase of the compound drop 

𝜒𝑐𝑑  Aspect ratio of the compound drop 

𝜒𝑏  Aspect ratio of the internal phase of the compound drop 

𝜔 Orientation angle of the internal phase of the compound drop 

𝜔𝑦 Normal vorticity (𝑥 − 𝑧 plane) 

𝜔𝑧 Streamwise vorticity (𝑥 − 𝑦 plane) 

𝜔∗ Normalized orientation angle of the internal phase of the compound drop 
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1 INTRODUCTION 

Compound drops appear in several multiphase flows in which the dispersed 

phase contains more than one fluid (Neeson et al., 2012; Mandal et al., 2016). Such 

objects consist of a liquid drop, immersed in an immiscible fluid, that contains a gas 

bubble or another immiscible liquid drop within it. Their study has received attention 

over the years because of their prevalence in industry and medical applications.  

In pharmaceutics, compound drops enable the synthesis of structured colloids, 

increasing the stability of the formed emulsions as well as the shelf life of the product 

(Abate & Weitz, 2009). In some medical procedures, compound drops can be 

intravenously administered into the blood stream to enhance ultrasound scattering, as 

illustrated in Figure 1-1. This procedure increases the diagnosis potential of tumor 

micro metastases, for example (Lindner, 2004; Sijl et al., 2010).  

Figure 1-1. Application of compound drops in medical procedures. 

 
Source: own authorship. 

Compound drops are also encountered in magmatic eruptions (Mungal et al., 

2015). The multiphase flow inside a volcano is composed primarily by hot magma with 
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water vapor bubbles and drops of undissolved sulphide, whose interaction may form 

gas-liquid compound drops. They float to the eruption site carrying sulfurous gases, 

whose emission is of environmental concern.  

The effectiveness of primary oil separation also relies on the formation of 

compound drops. In a flotation unit, oil drops are removed from the produced water 

by inserting gas bubbles into the stream (Saththasivam et al., 2016). Those bubbles 

attach themselves to the drops and increase their terminal velocity. The treated water 

is then safely disposed into the environment, in accordance with the increasingly 

rigorous environmental legislation.  

Figure 1-2. Scheme of compound drop formation within a gas flotation cell in oil recovery systems. 

 

Source: own authorship. 

The successful application of the aforementioned processes relies on the 

knowledge of the dynamic behavior of the compound drops under gravitational 

motion in a viscous fluid. Up to the present date, the design and operation of such 

separation vessels on offshore oil platforms are based on daily observations by 

operating personnel, whereas details regarding the formation of the compound drops 

and the influence of the internal bubble on the separation efficiency – to name just a 

few – have yet to be accounted for.  
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1.1 Objectives 

The main objective of this work is to experimentally investigate the dynamic 

behavior of gas-liquid compound drops rising in a viscous fluid for a wide range of 

Reynolds numbers. To achieve this, different geometrical parameters and 

combinations of fluids will be tested.  

The following specific objectives were also outlined: 

1) Investigate the configuration and shape of the compound drops; 
2) Analize the path and rising velocity and propose a transition criterion for 

path instabilities; 
3) Model the drag coefficient of the compound drops and compare with typical 

single-fluid particles; 
4) Investigate the effect of the compound structure in the dynamics of the 

oscillatory motion; 
5) Investigate the structure of the wake behind a compound drop and propose 

an underlying physical mechanism for the occurance of path instabilities. 

1.2 Contribution of the present work 

In the context of the aforementioned objectives, the general contribution of this 

work is to provide a detailed analysis of the dynamics of the compound drop for more 

realistic scenarios based on experiments and modeling that aim to fill the existing gap 

in literature. Other specific contributions can also be outlines: 

1) The effect of inertia on the dynamics of the compound drops is investigated 
over a wide range of Reynolds numbers; 

2) An intermediate behavior was observed for the terminal velocity of the 
compound drop, when compared to single-fluid particles; 

3) Similarly, the drag coefficient lies within the lower and upper limits of a 
single-fluid bubble and a rigid sphere, respectively, as corroborated by the 
modeling herein proposed; 

4) The wake instability is at the onset of path oscillations that consist of a 
pendular oscillation; 

5) A different dynamics is observed for the wake behind an oscillating 
compound drop; a direct consequence of their compound nature. 
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1.3 General presentation 

Chapter 2 reviews the existing literature on the motion of compound drops, 

after which the contribution of the present research is discussed. The experimental 

methodology is described in detail in chapter 3. The design of the apparatus as well as 

the image processing algorithm are described. 

The mechanistic modeling of the drag coefficient of the compound drops is 

presented in chapter 4 along with a description of the temporal parameters of the 

oscillatory motion. Chapter 5 is devoted to the general dynamics of the compound 

drops rising in a viscous fluid. With this aim, measurements of the rising path, 

terminal velocity, shape, and drag coefficient are presented. The analysis of the 

structure of the wake behind the compound drop is developed in chapter 6 where a 

physical mechanism for the origin of the oscillations is presented. 

Finally, the main conclusions drawn from the analysis of the results are 

discussed in chapter 7. Moreover, some insights towards the future prospects of the 

research in compound drop dynamics are sketched. 
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2 LITERATURE REVIEW 

This chapter provides a theoretical background regarding the dynamics of 

compound drops and a review of the specific literature. The contribution of the present 

research is depicted by describing the peculiarities of each study, focusing on the 

assumptions considered and the phenomena analyzed by the researchers. Firstly, the 

main aspects of the hydrodynamics of the motion of compound drops are presented 

in section 2.1. Focus is given to the configurations adopted by the compound drops, 

the forces acting on them, and the relevant dimensionless numbers. Then, a review of 

the specific literature is given at section 2.2.  

2.1 Hydrodynamic aspects 

The multiphase nature of the compound drops herein evaluated offers an 

increased structural complexity that makes the investigation of their dynamics far 

from trivial. This section provides an essential introduction to the main aspects of their 

dynamic behavior. Firstly, the possible configurations adopted by the fluids 

composing the compound drops are described based on the interfacial properties. 

Then, the compound nature of the drop is taken into account to describe the main 

hydrodynamic forces acting on it. Finally, the effect of these forces is evaluated in 

terms of the relevant dimensionless numbers. 

2.1.1 Equilibrium configurations 

According to Torza & Mason (1970), when two immiscible fluids - henceforth 

designated as Fluid 1 and Fluid 2 - interact when suspended in a third continuous fluid 

(Fluid 3), the equilibrium configuration is classified in terms of the resultant interfaces, 

as shown in Figure 2-1. The interfacial tension coefficients – designated here as 𝜎 – and 

the radii 𝑟 are also shown for each configuration. The interfacial tension coefficient 

seems a suitable parameter for the estimation of the equilibrium configuration since it 

arises from the cohesion at the fluid interface and is, therefore, related to its interfacial 
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energy. Thus, a higher interfacial tension coefficient implies in the minimization of the 

interfacial area. It can be seen from Figure 2-1 that depending on the combination of 

the interfacial tension coefficients, specific equilibrium configurations can be adopted 

as a consequence of the spreading of the fluids. Note that in this example the 

terminology surface tension is avoided, given that no restrictions were applied to the 

composition of the fluids, i.e., they can be either a gas or a liquid.  

In this example, the fluid with greater interfacial tension coefficient is 

designated as Fluid 1 (𝜎1/3 > 𝜎2/3). In the case of a neutrally buoyant compound drop, 

the final equilibrium state is determined by a balance between the interfacial tensions 

of the fluids and is classified as: 

●  Non-engulfed 

This configuration (Figure 2-1a) is characterized by the non-engulfment of the 

fluids. It occurs when Fluid 1 and Fluid 2 are in contact but without fluid spreading. 

The non-engulfed configuration corresponds to a condition where the spreading of 

Fluid 2 over Fluid 1 is not thermodynamically favorable, i.e., 𝜎1/2 > 𝜎1/3 + 𝜎2/3. In that 

case, the resultant interface between Fluid 1 and Fluid 2 (with 𝜎1/2) would increase the 

overall interfacial energy of the system; 

●  Completely engulfed 

Figure 2-1b shows that a complete engulfment occurs when Fluid 2 completely 

spreads over Fluid 1. It opposes to the non-engulfed configuration since the contact 

between Fluid 1 and Fluid 2 yields the formation of a single multiphase compound. 

This equilibrium configuration is encountered when 𝜎1/3 > 𝜎1/2 + 𝜎2/3, for which the 

interfacial energy of the compound drop is reduced when the interface between Fluid 

1 and Fluid 3 disappears completely; 

●  Partially engulfed 

Figure 2-1c shows the intermediate equilibrium configuration, where the 

spreading of Fluid 2 over Fluid 1 occurs partially. Thus, an additional interface 
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between Fluid 1 and Fluid 2 is formed, but both fluids still keep their interface with 

Fluid 3. As one might expect, this final state is achieved when none of the 

aforementioned conditions is fully met, i.e., 𝜎1/2 < 𝜎1/3 + 𝜎2/3 and 𝜎1/3 < 𝜎1/2 + 𝜎2/3. 

Figure 2-1. Equilibrium configurations of a compound drop. (a) Non-engulfed, (b) completely 
engulfed, and (c) partially engulfed. The interfacial tensions and equivalent ratios are displayed for 

each fluid phase. The dash-dotted line represents the axis of symmetry. 

   

𝜎1/2 > 𝜎1/3 + 𝜎2/3 𝜎1/3 > 𝜎1/2 + 𝜎2/3 
𝜎1/2 < 𝜎1/3 + 𝜎2/3 

𝜎1/3 < 𝜎1/2 + 𝜎2/3 

a) b) c) 

Source: adapted from Torza & Mason (1970). 

Note that the estimation of the equilibrium configurations shown in Figure 2-1 

do not take gravitational effects into account. Thus, for a rising compound drop where 

buoyant effects are relevant – the case of the compound drops studied here –, some 

deviations from the equilibrium configurations shown in Figure 2-1 may be observed 

depending on the motion parameters. 

2.1.2 Forces acting on a compound drop 

Let us consider a single compound drop with clean interfaces rising at terminal 

conditions in a quiescent and viscous fluid. The completely engulfed configuration 

(Figure 2-1b) is considered for the compound drop. As will be later corroborated by 

the experiments, this condition agrees well with the system of fluids herein 

investigated. For this configuration, Fluid 1 and Fluid 2 are typically denoted as the 

internal and external fluids, respectively, as schematically shown in Figure 2-2.  
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Water was chosen as the continuous fluid, whereas air and oil correspond to the 

internal and external fluids, respectively. The density and dynamic viscosity of each 

fluid are designated as 𝜌 and 𝜇, respectively. The subscripts 𝑏 and 𝑜 refer to the internal 

and external fluids, respectively. The interfacial tension coefficient is represented as 𝜎, 

with the subscripts 𝑔/𝑜 and 𝑜/𝑤 referring to the internal and external interfaces, 

respectively. The equivalent diameter of the internal fluid and the compound drop are 

designated respectively by 𝑑𝑏 and 𝑑𝑐𝑑.  

The main forces acting on a compound drop rising under gravitational motion 

in a uniform flow are shown in Figure 2-2. Insomuch as the compound drop is 

submitted to a gravitational field, 𝒈, it experiences a force that arises from the density 

difference in respect to the continuous fluid. This is known as the Archimedes force, 

𝑭𝒈, the resultant between the buoyancy and weight forces; 𝑭𝒈 is the driving force of 

buoyancy-driven flows and is calculated according to Legendre (1996): 

𝑭𝒈  =  (𝜌 − 𝜌𝑐𝑑)𝜗𝑐𝑑𝒈 2-1 

where 𝜌𝑐𝑑 is the effective density of the compound drop that will be defined later (Eq. 

3-4). The volume of a spherical compound drop, 𝜗𝑐𝑑, is: 

𝜗𝑐𝑑  =  
1

6
𝜋𝑑𝑐𝑑

3  2-2 

In the case of a stationary, quiescent, and uniform flow, the only supplementary 

force that acts on the compound drop is the viscous drag, 𝑭𝒅. For a spherical 

compound drop, the viscous drag is expressed by: 

𝑭𝒅 = 
1

8
𝜋𝜌𝐶𝑑𝑑𝑐𝑑

2 𝑽𝒄𝒅
2  2-3 
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where 𝐶𝑑 and 𝑽𝒄𝒅 are the drag coefficient and terminal velocity of the compound drop, 

respectively. 𝐶𝑑 is a dimensionless parameter to quantify the drag force and numerous 

models to predict this parameter are found in literature (Magnaudet, 1997).  

Figure 2-2. Scheme of the Archimedes and drag forces acting on a rising compound drop. The 
equivalent diameters and fluid properties of each phase are also shown. 

 
Source: own authorship. 

The gravitational motion of the compound drop is then determined by the 

aforementioned forces. Note that the force balance represented by Eq. 2-1 and Eq. 2-3 

is simplified, insomuch as the instabilities that arise from the non-uniformities of the 

flow are not considered. As will be evidenced by the experiments, other forces may be 

taken into account depending on the rising regime of the compound drop. This subject 

will be addressed later in this text. For now, this simplified approach is sufficient to 

derive the governing dimensionless numbers of the motion. 

During its rise, the compound drop experiences the effect of inertia as a 

consequence of the relative momentum of the flow. This effect is measured by the 

inertial force, 𝑭𝒊, calculated as proposed by Zhou et al. (2020): 

𝑭𝒊  =  𝜌𝑽𝒄𝒅
2 𝑑𝑐𝑑

2  2-4 

Similarly, some amount of work has to be done to deform the continuous fluid 

as the compound drop flows through it. This is a direct consequence of the viscosity 

of the fluid and is measured by the viscous force, 𝑭𝒗, calculated as: 

𝒈
𝑽𝒄𝒅𝑭𝒈

𝑭𝒅

𝜎𝑜/𝑤

𝜎𝑜/𝑔

𝒅𝒄𝒅

𝒅 

Water

𝜌 𝜇

Air

𝜌𝑏 𝜇𝑏

Oil

𝜌𝑜  𝜇𝑜



Literature review 28 

 

𝑭𝒗  =  𝜇𝑽𝒄𝒅𝑑𝑐𝑑 2-5 

Because of inertia, the shape of the compound drop may no longer be spherical. 

This deformation occurs when the magnitude of 𝑭𝒊 is sufficiently large to overcome 

the work necessary to deform the interface of the compound drop, 𝛤, calculated as: 

𝛤 =  𝜎𝑜/𝑤𝑑𝑐𝑑 2-6 

2.1.3 Dimensionless numbers 

The gravitational motion of the compound drop is characterized by the relative 

magnitude of the effects of inertia (Eq. 2-4), viscosity (Eq. 2-5), and interfacial tension 

(Eq. 2-6). They are represented by dimensionless groups that govern the motion. The 

Reynolds number, 𝑅𝑒, is defined as the ratio between the inertial effects and the 

viscous dissipation: 

𝑅𝑒 =  
𝜌𝑉𝑐𝑑𝑑𝑐𝑑

𝜇
 2-7 

Thus, the effect of inertia is negligible at low Reynolds numbers (𝑅𝑒 < 1), for 

which the terminologies creeping flow or Stokes flow are frequently used. The present 

study, however, focuses on the flow of compound drops at high Reynolds numbers, 

i.e., when inertial effects are dominant. The buoyancy-driven motion of millimeter-

sized particles usually fall into that category. 

Under those circumstances, the fluid particle might be deformed. Thus, the 

characterization of their shape requires the evaluation of the effect of interfacial tension 

over inertia or gravity. The Bond and Weber numbers, denoted here as 𝐵𝑜 and 𝑊𝑒, 

respectively, are frequently used with this aim. Many correlations provide the shape 

distortion as a function of these two parameters. They are defined as:  
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𝐵𝑜 =  
(𝜌 − 𝜌𝑐𝑑)𝑔𝑑𝑐𝑑

2

𝜎𝑜/𝑤
 2-8 

𝑊𝑒 =  
𝜌𝑉𝑐𝑑

2 𝑑𝑐𝑑
𝜎𝑜/𝑤

 2-9 

The Morton number, 𝑀𝑜, is also used in conjunction with the aforementioned 

dimensionless parameters to consider the properties of the fluids. For the compound 

drops herein evaluated, 𝑀𝑜 is defined as:  

𝑀𝑜 =  
𝑔𝜇4(𝜌 − 𝜌𝑐𝑑)

𝜌2𝜎𝑜/𝑤
3  2-10 

Note that since the compound drop has two interfaces, the definitions of 𝐵𝑜,  

𝑊𝑒, and 𝑀𝑜 are not straightforward. For now, only the external interface is considered 

and 𝜎𝑜/𝑤 is taken as the relevant interfacial tension coefficient.  

2.2 Literature review 

This section describes the state-of-the-art of the literature regarding the 

dynamics of compound drops in different flow conditions. Focus is given on the 

description of the main motion parameters for which the present work provides 

specific contribution. This work focuses on the case of completely engulfed compound 

drops (Figure 2-1b). For this configuration, the compound drops may assume a nearly 

spherical shape and a symmetry axis along the line connecting the two centroids (dash-

dotted line in Figure 2-1b). Note that the position of the internal and external centroids 

may or may not coincide, for which the compound drop is classified as concentric or 

eccentric, respectively. The details regarding the structure of the compound drop 

depend on several parameters, as will be outlined in this section. The shape of a 

compound drop is firstly considered. A review of the models of the drag coefficient 

and the behavior of the velocity is also provided. Then, their interfacial stability is 
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briefly addressed. Finally, the concepts related to the structure of the wake behind a 

compound drop and the onset of path instabilities are introduced.  

2.2.1 Shape and velocity 

As opposed to regular drops and bubbles, the fluid inclusion increases the 

structural complexity of the compound drops (see Figure 2-1b). Naturally, the 

configuration of the compound drop affects the flow parameters, e.g., rising path, 

terminal velocity, and shape deformation (Torza & Mason, 1970). To understand the 

motion of compound drops is therefore a challenging task, despite the efforts done by 

several researchers to comprehend their dynamic behavior.  

Torza & Mason (1970) were among the first to experimentally investigate the 

three-phase interactions covering a vast range of the configurations of the compound 

drops. The engulfment process of a liquid-liquid compound drop is shown in Figure 

2-3. The water drop (left) is completely engulfed by the polyglycol drop (right). 

Furthermore, a theoretical analysis of the configuration of static compound drops was 

included, albeit restricted to flows with the absence of gravitational effects. 

Figure 2-3. Steps in the engulfing process of a water drop (left) and a polyglycol drop (right) in 
silicone oil brought together in a combined shear and electrical field. 

 

Source: Torza & Mason, 1970. 

Further researchers investigated the case of a gas-liquid compound drop, e.g., 

when a gas bubble is engulfed by a liquid drop. Focus was given on the dynamics of 

the gravitational motion of these particles, also designated as coated or encapsulated 

bubbles. Hayakawa & Shigeta (1974) reported that their terminal velocity and drag 

coefficient are mainly governed by the volume ratio, that is, the relative volume of the 
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bubble with respect to the external liquid. However, the authors reprieved a detailed 

fluid mechanical analysis of the motion. 

Mori and collaborators (1977) studied the influence of the properties of the 

fluids in the terminal velocity. The relative size of the bubble in comparison to the drop 

seemed to govern the motion; interestingly, the properties of the continuous fluid had 

a minor effect in the terminal velocity. They compared the motion of their compound 

drops with theoretical predictions that do not consider the effect of inertia. Similar 

conclusions were drawn by Mercier et al. (1974) for the case of evaporating drops and 

condensing bubbles, where the compound drop is composed by one fluid only. 

Figure 2-4. (a) Silicone oil coated bubble rising in deionized water; and (b) shape of an uncoated 
(bottom) and silicone oil coated (top) bubbles in water. 

 

 

Coated 
bubble 

 

Uncoated 
bubble 

a) b)  
Source: Wang et al., 2018. 

Recently, it was observed that when oil coats a rising bubble it significantly 

affects its shape and terminal velocity (Wang et al., 2018). Most of the motion 

parameters showed an intermediate behavior in comparison to single-fluid bubbles 

and drops of correspondent magnitude; thus, the relative size of the compound drop 

may be a useful parameter to characterize the motion of the particles, based on their 

multiphase nature. Figure 2-4 illustrates how the compound structure of the drop 

affects its shape. The compound drops adopted an eccentric configuration (Figure 

2-4a), where the oil is placed essentially at the “rear end” of the compound drop due 

to the density difference. This equilibrium configuration led to a compound drop with 

nearly spherical shape, opposed to a typical bubble of comparable size (Figure 2-4b). 

An analytical expression of the terminal velocity of compound drops was firstly 

presented, presumably independently, by Johnson & Sadhal and Rushton & Davies in 
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1983. Their models of the drag force consider the diameter and viscosity ratios of the 

compound drop. Rushton & Davies (1983) considered the internal phase as a rigid 

sphere, whereas Johnson & Sadhal (1983) used the lubrication theory to address the 

flow by considering the external liquid as a thin film. Both studies presented similar 

results with the compound drop having intermediate behavior between the Stokes and 

Hadamard & Rybczynscki solutions (Clift et al., 1978). However, the effect of shape 

deformation was not evaluated, given that the models are restricted to creeping flows. 

Brunn & Roden (1985) also proposed a model for the drag of concentric 

compound drops in creeping flow. To enable an analytical solution, interfacial 

deformation was neglected by considering high values of interfacial tension. The 

compound drops behaved similarly to a rigid sphere when the external fluid was 

reduced to a thin film, suppressing the internal circulation. Thus, the compound drop 

is virtually a stationary fluid engulfed by an immobile shell. Furthermore, Brunn & 

Roden (1985) analyzed the conditions where mild inertial forces are added to the 

system, after which the compound nature of the drop appears to govern the motion 

and a concentric configuration is prevented. 

Over the past few decades, advances in computational methods have permitted 

the study of compound drops in more detail and for a wider range of parameters. 

Kawano & Hashimoto (1997) numerically studied the steady viscous flow past a 

sphere coated with a thin liquid film. Their simulations covered a Reynolds number 

up to 200 and analyzed the influence of physical properties of the fluid, as well as 

diameter and volume ratios. The authors extended the theory of Rushton & Davies 

(1983) and obtained an empirical model for the drag coefficient of compound drops at 

moderate Reynolds numbers. They found out that the drag of a compound drop 

behaves similarly as a rigid sphere, a probable consequence of the imposed 

considerations, mainly the absence of a disjoining pressure.  

Other recent numerical endeavors focused on specific applications of 

compound drops such as interactions in an ultrasound field (Liu et al., 2018), effect of 

surface contamination (Mandal et al., 2016) and microfluidics (Vu et al., 2019). 
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2.2.2 Compound drop stability 

The conditions of breakup of a spherical compound drop in Stokes flow was 

analyzed by Patzer & Homsy (1975) by means of a hydrodynamic stability theory. A 

stable concentric configuration was reported, with a critical film thickness of 

approximately 9000 Å for which the breakup occurs. However, the analysis was 

simplified by neglecting inertia and the density difference between the fluids. 

Landman (1985) investigated the shape oscillations of compound drops in potential 

flow. They addressed the stability of a concentric compound drop composed by 

Newtonian fluids. The compound drops are disturbed from their motionless spherical 

shape, followed by a damping phenomenon and out-of-phase displacements of the 

compound drop interfaces, according to the scheme shown in Figure 2-5. 

Figure 2-5. Configurations of the compound drop: (a) out-of-phase oscillations; and (b) in-phase 
oscillations. 

  

a) b) 

Source: Landman, 1985. 

Bazhlekov and collaborators (1995) extended this analysis to compound drops 

with eccentric configuration. They used a finite-element numerical simulation at 

moderate Reynolds number to address the shape evolutions and reported the 

formation of a thin film at the front end of the compound drop that experiences a swift 

draining process that leads to the breakup of the compound drop.  

Numerical studies also suggested that the presence of a fluid inclusion may 

increase the stability of compound drops in Stokes flow (Stone & Leal, 1990). Two 

modes of breakup were reported based on the distortion of the compound drop. The 

first mode refers to conditions of continuous extension; the second mode is caused by 

interfacial incompatibility for less distorted systems. In both scenarios, the presence of 
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the internal phase favors the destabilization of the compound drop in comparison to 

correspondent single-phase drops because of the formation of a thin film between the 

interfaces, as illustrated in Figure 2-6.  

Figure 2-6. Complete numerical simulation of deformation of compound drops in a uniaxial 
extensional flow. 

    

a) b) c) d) 

Source: Stone & Leal, 1990. 

Hua et al. (2014) studied the non-breakup behavior of the compound drop 

employing the immersed boundary method. They found the diameter ratio to be the 

major influential parameter in the three-dimensional shape deformation. The effect of 

the capillary number and the initial location of the inner drop were also evaluated. By 

employing similar numerical methods, it was also observed that the relative size 

influences the stability of compound drops (Hua et al., 2014; Chen et al., 2015).  

Recent endeavors focused on the stability of compound drops in more specific 

flow situations. Chaithanya & Thampi (2019) further addressed the stability of rotating 

concentric compound drops. The authors reported values of the force required to 

stabilize the compound drops in imposed flows in an inertia-less limit, and proposed 

a pulsatile flow of the continuous phase as the proper transport mechanism in order 

to prevent rupture. Deka et al. (2019) suggested that the coalescence dynamics of 

compound drops is similar to typical drops, as long as the fluid inclusion is small. 

However, the compound structure of the drop seemed to affect its impact onto a liquid 

pool, as investigated by Zhu et al. (2020). The authors also suggested that the 

compound drops may not be stable under certain impact conditions. A review of the 

underlying mechanisms governing the impact of compound drops in liquid and rigid 

surfaces may be found elsewhere (Blanken et al., 2021). 
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2.2.3 Path instabilities and wake structure 

It is well known that fluid particles may experience path oscillations induced 

by the inertia of the flow (Ern et al., 2012). Although this phenomenon is now nearly 

completely understood for air bubbles (Zenit & Magnaudet, 2009) and liquid drops 

(Albert et al., 2015), it remains unanswered for rising compound drops. For instance, 

millimeter-sized bubbles rising in water present either a zigzagging or spiraling path, 

opposed to smaller bubbles that rise in a straight line (Wu & Gharib, 2002). In the past 

few decades, many researchers have converged to a common conclusion to explain 

this behavior: the oscillations arise when the wake behind the particle becomes 

unstable due to subsequent symmetry breakdowns when a critical value of vorticity is 

reached (Magnaudet & Mougin, 2007; Zenit & Magnaudet, 2009).  

However, for the case of compound drops, an underlying mechanism for path 

instability to occur has yet to be reported. To the best of the current knowledge, the 

only study regarding the structure of the wake behind a compound drop had been 

conducted by Bazhlekov and collaborators (1995). The inertia of the flow led to a 

compound drop with a deformed shape with minor flow circulation behind it, as 

shown in Figure 2-7. However, no further information is available regarding the 

stability of this wake structure nor its connection to the onset of path instabilities. 

Figure 2-7. Streamlines around a deformed and eccentric gas-liquid compound drop. 

 

Source: Bazhlekov et al., 1995. 

The structure of the wake of a compound drop remains mostly unexplored to 

date. Thus, it is convenient to outline the major characteristics of the wake dynamics 
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of typical particles, e.g., gas bubbles, liquid drops, and rigid spheres, to check whether 

or not the compound drops will show a similar structure. 

Figure 2-8. Isosurfaces of streamwise vorticity isovorticity surfaces in the wake of an oscillating 
bubble. 

 

Source: Tripathi et al., 2015. 

The wake behind a rising bubble has been experimentally documented for the 

first time by Lunde & Perkins (1998) and Brücker (1999) using flow visualization 

techniques. In summary, the wake structure resembled the one of a rigid sphere with 

the presence of two counter-rotating trailing vortices at the bottom segment of the 

bubble. Furthermore, the periodic shedding of vortices led to specific three-

dimensional structures denoted as hairpin vortices, as shown in Figure 2-8.  

The instability of the wake emerged as a likely phenomenon to characterize the 

appearance of path instabilities. Direct numerical simulations by Mougin & 

Magnaudet (2001) and Magnaudet & Mougin (2007) for stress-free ellipsoidal bubbles 

corroborated this hypothesis. They showed that the unsteadiness of the wake is 

unambiguously the onset of path oscillations. The wake behind a bubble is stable and 

axisymmetric with the instabilities arising due to sequential symmetry breakdowns. 

Yang & Prosperetti (2007) reached a similar conclusion using a linear stability theory. 

Further experiments conducted by Zenit & Magnaudet (2009) for a clean bubble 

corroborated these observations. When the aspect ratio of the bubble exceeds a critical 

value, the generated vorticity behind the bubble creates two vorticity tubes that induce 

a horizontal force on the bubble. Thus, the sideways motion is triggered, characterizing 

the path instabilities. Moreover, the authors proposed the streamwise vorticity as the 
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key parameter for the path instabilities to appear when the bubble is rising in a low 

viscosity fluid. It should be noted that Zenit & Magnaudet (2009) were pioneers in the 

experimental characterization of the three-dimensional structure of the wake behind a 

rising bubble. As shown in Figure 2-9, the wake of a bubble in zigzagging motion 

consists of two vortex tubes that decrease with the distance from the bubble, in 

excellent agreement with previous numerical simulations.  

Figure 2-9. Isovorticity surfaces in the wake of an oscillating bubble (black line). Images (left and 
right) show different views of the same flow. 

  

Source: Zenit & Magnaudet, 2009. 

2.3 Final remarks 

The literature review presented in this chapter is summarized in  Table 2-1. For 

each topic discussed earlier, the main references are presented for bubbles, drops, rigid 

spheres, and compound drops.  The goal is to identify the gaps in the existing literature 

and provide a suitable background for the analysis presented in this study. 

As Table 2-1 indicates, the understanding of the motion parameters that were 

outlined is consolidated only for the typical particles, for which a wider range of 

parameters were evaluated and validated experimentally. As for the compound drops, 

most studies are restricted to creeping flow among other simplifications. Apparently, 

few studies offered some experimental validation for their claims. Thus, experiments 

involving compound drops are still valuable. This work aims to investigate some of 

these topics by using the experimental methodology presented in chapter 3.
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Table 2-1. Review on the literature of bubbles, drops, rigid spheres, and compound drops. The status of each motion parameter is classified as “well 
documented” (blue marker) or “incomplete” (yellow marker) based on the range of conditions evaluated. 

 Bubbles Drops Spheres Compound drop 

 Status References Status References Status References Status References 

Trajectory ✓ 

[2, 7, 12, 16, 18, 19, 
27, 31, 40, 44, 70, 71, 

72, 73, 76] 
✓ 

[1, 9, 10, 12, 17, 19, 
27, 69] 

✓ [12, 19, 53] ✓ [23, 38, 67] 

Shape ✓ 
[2, 7, 12, 16, 18, 19, 

27, 29, 34, 35, 39, 40, 
70, 71, 72, 73, 76] 

✓ 
[1, 4, 9, 10, 12, 17, 19, 

27, 46, 68, 69] 
n/a - ✓ 

[3, 6, 8, 11, 13, 15, 22, 
23, 25, 28, 33, 36, 38, 
41, 42, 45, 56, 61, 67] 

Velocity ✓ 

[2, 12, 16, 18, 19, 27, 
29, 30, 31, 35, 40, 70, 

71, 72, 76] 
✓ 

[1, 9, 12, 17, 19, 27, 
69] 

✓ [12, 19, 35, 51] ✓ 
[21, 23, 24, 26, 38, 49, 

67] 

Drag ✓ 
[12, 18, 19, 30, 31, 35, 

37, 46, 59, 71, 76] 
✓ [1, 9, 12, 19, 52, 69] ✓ 

[12, 19, 35, 46, 50, 51, 
53] 

✓ [6, 23, 24, 26, 49] 

Stability ✓ [5, 12, 16, 27, 34, 71] ✓ [10, 12, 17, 27] n/a - ✓ 

[3, 8, 11, 13, 14, 22, 23, 
28, 32, 33, 43, 45, 55, 

56, 57, 63, 74] 

Wake ✓ 
[7, 12, 18, 19, 30, 35, 
40, 47, 48, 62, 71, 73] 

✓ [1, 9, 12, 19, 46, 69] ✓ [12, 19, 20, 35, 50, 58] ✓ [3] 

Source: [1] Albert et al. (2015); [2] Aoyama et al. (2016); [3] Bazhlekov et al. (1995); [4] Becker et al. (1991); [5] Biesheuvel & Winjgaarden (1984); [6] Brunn & Roden (1985); [7] Brücker 
(1999); [8] Chaithanya & Thampi (2019); [9] Charin et al. (2019); [10] Chebel et al. (2012); [11] Chen et al. (2015); [12] Clfit et al. (1978); [13] Das et al. (2020); [14] Deka et al. (2019); [15] Dudek & Oye 
(2018); [16] Duineveld (1995); [17] Edge & Grant (1971); [18] Ellingsen & Risso (2001); [19] Ern et al. (2012); [20] Ghidersa & Dusek (2000); [21] Hayakawa & Shigeta (1974); [22] Hua et al. (2014); [23] 
Johnson & Sadhal (1985); [24] Johnson & Sadhal (1983); [25] Kan et al. (1998); [26] Kawano & Hashimoto (1997); [27] Lalanne et al. (2015); [28] Landman (1985); [29] Legendre et al. (2012); [30] 
Legendre (1996); [31] Lindt & de Groot (1974); [32] Liu et al. (2016); [33] Kiu et al. (2021); [34] Lunde & Perkins (1997); [35] Magnaudet & Mougin (2007); [36] Mandal et al. (2016); [37] Mei et al. 
(1994); [38] Mercier et al. (1974); [39] Moore (1965); [40] Mougin & Magnaudet (2001); [41] Mori (1978); [42] Mori et al. (1977); [43] Patzer & Homsy (1975); [44] Prosperetti et al. (2003); [45] Qu & 
Wang (2012); [46] Rachih et al. (2020); [47] Riboux et al. (2013); [48] Roig et al. (2012); [49] Rushton & Davies (1983); [50] Sakamoto & Haniu (1990); [51] Schiller & Naumann (1933); [52] Selecki & 
Gradon (1976); [53] Segré & Silberbeg (1962); [54] Shankar & Subramanian (1983); [55] Song et al. (2010); [56] Stone & Leal (1990); [57] Stroeve & Varanasi (1984); [58] Tamboulides & Orszag (2000); 
[59] Tomiyama et al. (1998); [60] Torza et al. (1972); [61] Torza & Mason (1970); [62] Tripathi et al. (2015); [63] Tsamopoulos & Brown (1987); [64] Ulbrecht et al. (1972); [65] De Vries et al. (2002); [66] 
Vu et al. (2019); [67] Wang et al. (2018); [68] Wellek et al. (1966); [69] Winnikov & Chao (1966); [70] Wu & Gharib (2002); [71] Yang & Prosperetti (2007); [72] Zenit & Magnaudet (2008); [73] Zenit & 
Magnaudet (2009); [74] Zhang et al. (2016); [75] Zhou et al. (2006); [76] Zhou et al. (2020); [77] Zhu et al. (2020).      
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3 EXPERIMENTAL METHODOLOGY 

This chapter describes the experimental techniques used to investigate the 

dynamics of compound drops. Section 3.1 describes the experimental setup for the 

high-speed shadowgraph visualization. The behavior of the continuous phase is 

analyzed using the particle image velocimetry (PIV) technique shown in section 3.2.  

3.1 High-speed shadowgraph 

The experiments were conducted in a 700 – mm high glass tank with a 150 – mm 

wide rectangular cross-section filled with tap water, as shown schematically in Figure 

3-1. The liquid was at room temperature (kept at 20 ºC using an air conditioning 

system) and atmospheric pressure. An acrylic dish (thickness of 10 mm) made the base 

of the tank where two capillary tubes were placed to generate the bubbles and drops.  

Figure 3-1. Sketch of the experimental apparatus used for the visualization of the motion of 
compound drops. 

 

Source: own authorship. 

 Different systems of capillaries with several internal diameters were used with 

this aim. While the size of the oil drop was kept nominally constant by using one 

capillary size, the size of the air bubbles was varied by using capillaries of different 
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internal diameters. In this way, the diameter ratio of the gas bubble and oil droplet 

was varied. Both the gas bubbles and oil drops were produced by means of the pinch-

off method.  The oil was injected by means of a pump and flowed through a capillary; 

the oil injection stopped once the droplet was formed. The droplet diameter was 

approximately 2.5 mm for all tests. The gas was injected through the second capillary 

tube, generating bubbles with an equivalent diameter ranging from 0.3 to 3.0 mm. 

Then, the bubble-drop compound was formed by manually manipulating the distance 

between the capillaries, moving the bubble slowly towards the drop. 

As shown in Figure 3-2, the gas bubble is completely engulfed by the drop, with 

the oil surrounding the bubble. For the range of parameters tested here, the compound 

drop is eccentric; hence, the bubble is not surrounded by a uniform distribution of oil, 

as shown in Figure 3-2, and in agreement with Wang et al. (2018). The distribution of 

the oil shell depends on the volume of the internal bubble, since the droplet volume is 

kept fixed. The compound droplets formed by this method were stable and slightly 

deformed with an axisymmetric shape. The composition of the compound drops was 

quantified by considering the size ratio 𝑑𝑏 𝑑𝑐𝑑⁄ , where 𝑑𝑏 and 𝑑𝑐𝑑 are the equivalent 

diameters of the internal bubble and the compound drop, respectively. 

3.1.1 Measurements and image processing 

Two different sets of measurements to characterize the dynamic behavior of the 

compound drops were designed, where both transient and stationary motions were 

captured. Firstly, the three-dimensional rise of the compound drops was obtained with 

a single high-speed camera (Photon SA4, Nikkon 60 mm). The camera was located in 

front of the cell to capture the 𝑥 − 𝑧 movement. To obtain the entire particle trajectory 

a mirror was placed at 45º with respect to the lateral wall, so that the 𝑦 − 𝑧 view could 

be recorded simultaneously. Additionally, an illumination system consisting of a LED 

lamp located in a backlight configuration was set to capture the contour of the drops. 

The mirror was also used to reflect light for the side view. From these measurements, 

the three-dimensional paths were reconstructed for each compound drop. This 

methodology was also used to carry out the transient motion experiments. 
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Figure 3-2. The compound drop formation process: the series of images show the bubble-drop 
attachment process, considering air and Oil 1 (see Table 3-1). The bubble and drop (on the left and 

right of image (a), respectively) diameters before attachment were 3.1 and 2.5 mm, respectively. 
Images (a) shows the initial contact between the phases; (b - e) the engulfment process of the oil 

over the surface of the bubble; (f - i) the detachment of the compound drop from the capillary and 
the initial stage of gravitational motion. 

   

a) t = 0.0 ms b) t = 16.4 ms c) t = 20.0 ms 

   
d) t = 22.2 ms e) t = 24.7 ms f) t = 26.7 ms 

   
g) t = 33.6 ms h) t = 36.1 ms i) t = 38.9 ms 

Source: own authorship. 

2 mm 



Experimental methodology 42 

A second set of images was also obtained to provide a more detailed 

visualization of the two different phases within the compound drop. The camera was 

placed higher (roughly 200 mm above the capillary bank) to ensure that the motion of 

the compound drop has achieved its terminal state. A high-magnification lens system 

(12X, LaVision) was used for capturing the stationary frontal-view of the rising 

compound drops. This methodology enabled the phase segmentation of the 

compound drop where both the internal and external fluids were analyzed separately.  

The images were processed using MATLAB®. Light non-uniformity and edge 

noise were reduced by standard image processing techniques. The images were then 

binarized. For the first set of measurements, aimed at determining the compound 

droplet trajectory, the image processing and binarization parameters were chosen to 

detect the external interface only.   

The second set of measurements of the image processing enabled the detection 

of both interfaces of the compound drop. This procedure is illustrated in Figure 3-3. 

From the raw image (Figure 3-3a), the external interface was characterized by simply 

detecting the contour of the compound drop (Figure 3-3b). As for the detection of the 

internal interface, two different conditions were recognized from the measurements of 

the compound drop formation. The first one referred to small internal bubbles that 

kept their nearly spherical shape even after the engulfment process, whereas the 

second condition involved larger internal bubbles that assumed an ellipsoidal shape.  

Figure 3-3. Image processing procedure of a compound drop. 

 

Source: own authorship. 

When the bubble is not distorted, the detection of the boundary was conducted 

by detecting spherical objects in the image. On the other hand, when the bubble is 

(a) Raw image (b) External interface (c) Internal interface (c) Phase segmentation
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deformed, a shape recognition methodology was developed for the characterization of 

the ellipsoidal contour from the identification of two spherical circles (Figure 3-3c). 

Finally, Figure 3-3d presents the processed compound drops with phase segmentation, 

which was composed by the junction of the previously detected interfaces. This 

allowed each phase of the compound drop to be analyzed separately. 

The volume of the compound droplet was obtained from the image processing, 

considering the 2D projection and the second theorem of Pappus, which states that the 

volume of a solid of revolution generated by the displacement of a lamina over an 

external axis is equal to the product of the area of such lamina by the distance travelled 

by its centroid. In the present case, the lamina to be rotated was a representative circle 

of the internal bubble, obtained by averaging the parameters of the two individual 

circles identified in the detection methodology. This averaged circle was rotated 

around the axis of symmetry of the object. The distance travelled by the lamina was 

calculated as the perimeter of the ellipsis formed as the centroid of the representative 

circle rotated around the axis. This ellipsis is described by the parameters 𝑎 and 𝑏 

which are, respectively, related to the major and minor axis of the internal bubble, as 

illustrated in Figure 3-4b. The calculation of the internal bubble volume followed this 

procedure according to: 

𝜗𝑏 = 2𝜋
√𝑎

2 + (
𝑏𝑎

𝑎 + 𝑟𝑏
)
2

2
𝜋𝑟𝑏

2 
3-1 

The shape of both fluid phases can be obtained thanks to the phase 

segmentation algorithm described above. The aspect ratio of the compound drop, 𝜒𝑐𝑑, 

and the internal bubble, 𝜒𝑏,  were calculated as: 

𝜒𝑐𝑑 =
𝑀𝑐𝑑

𝑚𝑐𝑑
   𝜒𝑏 =

𝑀𝑏

𝑚𝑏
 3-2 
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where 𝑀𝑖 and 𝑚𝑖  are the long and short axes, respectively. The suffix 𝑖 can either be 

𝑐𝑑 for the compound drop or 𝑏 for the bubble, as depicted in Figure 3-4. The equivalent 

diameter of the compound drop, 𝑑𝑐𝑑, was calculated as: 

𝑑𝑐𝑑 = (𝑀𝑐𝑑
2 ∙ 𝑚𝑐𝑑)

1
3 3-3 

assuming that the shape was close to that of an ellipsoid; 𝑑𝑏 was obtained directly from 

the volume of the internal bubble (Eq. 3-1). Note that these calculations were based on 

a 2D projection of the compound drops. 

Figure 3-4. Scheme of the long and short axes for: a) compound drop; and b) internal bubble. The 
yellow, green and blue dots indicate the center of mass of the compound drop, internal bubble and 

external fluid, respectively. Geometric parameters are also shown. 

 

Source: own authorship. 

The shape recognition methodology described earlier provided measurements 

of the geometrical parameters of the compound drop with adequate accuracy. 

However, some uncertainties are intrinsic to the Hough transform routine that was 

applied to the images for contour detection; since a certain quantity of pixels around 

the interfaces fell in a range of grayscale tones, the threshold applied to the algorithm 

provides fluctuating contours for the compound drop. Based on the standard 

deviation of the measurements, the uncertainties can be estimated as less than 2 %. 

Note that this is a rough estimation, since it depends on the quality of each frame. 

The cross-section of the compound drop was analyzed by measuring the width 

of the external phase at the bottom (𝐻) and top (ℎ) segments of the compound drop 

along the axis of symmetry (black line shown in Figure 3-5). The widths were 

𝑚𝑐𝑑

𝑀𝑐𝑑

(a)

𝑚𝑏

𝑀𝑏

𝑟𝑏

𝑎
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measured by attributing a specific value for each fluid phase - 1 and 0 for the pixels 

detected in the oil and bubble segments, respectively - and evaluating the value to each 

pixel along the axis of symmetry. Therefore, 𝐻 and ℎ were calculated as the distance 

for which every pixel equaled the unity. The distance between the external and internal 

centroids of the compound drop (blue and red dots in Figure 3-5, respectively) was 

defined as the eccentricity 𝜖 of the compound drop.  

Figure 3-5. Representative scheme of the geometrical parameters of an oscillating compound drop. 

 

Source: own authorship. 

Figure 3-5 also shows that the axes of the compound drop are not aligned with 

the vertical direction, i.e., the compound drop is inclined with regard to the Cartesian 

system shown in Figure 3-1. The orientation of the inner bubble was defined as the 

acute angle 𝜔 formed by the major axis (yellow line) with the vertical axis. Similarly, 

the orientation of the external phase 𝜃 was the acute angle formed by the green line 

with the horizontal axis. Accordingly, a maximum inclination was observed for 𝜃 → 0 

and 𝜔 → 0, when the compound drop was perpendicular to the vertical axis; on the 

other hand, a straight alignment was observed for 𝜃 𝜔 → 90°. 

3.1.2 Test fluids and operating conditions 

Three different oils were used to test the effect of the drop viscosity, density and 

interfacial tension. The properties of these fluids are shown in Table 3-1. Nitrogen 

(99.98% purity) was used as the gas, and tap water was used as the continuous fluid. 

Note that the condition of complete engulfment (see Figure 2-1b) is met for all fluids. 

𝜔

𝜃

𝜖

𝐻

ℎ
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Table 3-1. Physical properties of the working fluids used for the experimental measurements. 

Fluid 

Density Viscosity Interfacial tension 

[kg/m³] [Pa.s] x 10-3 [mN/m] 

𝜌 𝜇 𝜎 𝜎𝑜/𝑤 𝜎𝑜 𝑔⁄  

Tap water 998 1.002 73.5 - - 
Oil 1 (silicone oil, 47V350, Rhodorsil) 970 350 - 41.1 21.1 
Oil 2 (commercial corn oil) 915 59 - 26.0 31.6 
Oil 3 (mineral oil, 330779, Sigma-Aldrich) 838 13 - 18.0 28.6 

Source : Gaonkar, 1989; Huang et al., 1997; Bashir et al., 2014. 

It is necessary to define an effective density of the compound drop, i.e., the 

density of the individual fluids averaged by their relative size. For that purpose, an 

evaluation of the influence of the bubble size has to be considered to obtain a working 

density and to observe the influence of this parameter on the dynamics of the 

compound drops. Accordingly, since density is defined as the mass of a fluid 

contained in a certain volume, the final size of the compound drop was taken into 

account to quantify the effective density of the compound drop, expressed in the 

dimensionless form: 

𝜌𝑐𝑑 𝜌𝑜⁄  =  1 − (
𝑑𝑏
𝑑𝑐𝑑

)
3

 3-4 

where the subscript 𝑜 refers to the oil phase. Accordingly, 𝜌𝑐𝑑 𝜌𝑜⁄  represents the 

effective density of the compound drop with regard to the density of the external fluid. 

Essentially, it accounts for the reduction in density promoted by the engulfment 

process. Note that this parameter is used in the definition of the dimensionless 

numbers defined earlier. 

Table 3-2 presents the operating range of the dimensionless numbers that 

govern the motion of the compound drops, previously defined in chapter 2. The data 

are shown for all the experimental measurements conducted in the present work, 

enabling a comparison with the existing literature. The magnitude of the Reynolds (Eq. 

2-7), Bond (Eq. 2-8), Weber (Eq. 2-9), and Morton (Eq. 2-10) numbers illustrates the 
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relevance of hydrodynamic effects acting on the compound drop as a function of the 

physical properties of the working fluids and the geometry of the compound drops.  

Table 3-2. Range of evaluated dimensionless numbers for the produced compound drops for all 
measurements. 

 Oil 1 Oil 2 Oil 3 

𝑑𝑏 𝑑𝑐𝑑⁄  0.14 – 0.94 0.14 – 0.86 0.15 – 0.83 

Reynolds 62 - 732 197 - 616 201 – 706 

Bond 0.040 – 2.00 0.20 – 1.90 0.35 – 2.50 

Weber 0.045 – 3.45 0.55 – 4.40 0.95 – 7.60 

Morton 4.4 x 10-12 - 1.2 x 10-10 2.8 x 10-10 - 9.5 x 10-10 4.8 x 10-11 - 3.1 x 10-10 

Source: own authorship. 

3.2 Particle image velocimetry (PIV) 

To analyze the structure of the wake of a rising compound drop, a particle 

image velocimetry (PIV) system was implemented, as shown in Figure 3-6. The 

chamber was the same as previously shown in Figure 3-1. The laser sheet can be 

aligned vertically or horizontally in respect to the height the chamber to measure the 

velocity perturbation in the 𝑥 − 𝑧 and 𝑥 − 𝑦 planes, respectively. The flow was seeded 

with neutrally buoyant B-Rhodamine particles that acted as fluorescent tracers to 

reduce the reflections at the interfaces of the compound drop. A high-speed camera - 

same system used in the shadow measurements - was used to capture the motion of 

the tracers together with a continuous laser used to illuminate the PIV measurement 

region.  

The software FlowMaster (LaVision, Germany) was used to process the typical 

PIV images. The algorithm is based on an interactive multi-pass routine. Interrogation 

windows with final size of 32 x 32 pixels with an overlap of 50 % in both directions 

were used. The characteristic dimension of the interrogation area 𝑙𝑤 was 

approximately 1 mm for all the measurements, ensuring a minimum of 15 tracer 

particles per window. Near the external contour of the compound drop, measurements 
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closer than 𝑙𝑤 presented significant noise caused by reflection. Moreover, in this region 

the displacement of the particles between sequential frames was frequently greater 

than one quarter of the interrogation window. Thus, the velocity field was not 

calculated in this region and a geometric mask was added to the image as a pre-

processing stage. 

Figure 3-6. Experimental arrangement for the PIV measurements. Flow field detection in the 𝒙 − 𝒛 
(a) and 𝒙 − 𝒚 (b) planes. The visualization chamber is the same from in Figure 3-1. 

 

Source: own authorship. 

Subsequently, a validation of the correlation value was carried out, together 

with the application of special filter routines. The vorticity normal to the flow, 𝜔𝑦, and 

the streamwise vorticity, 𝜔𝑧, were calculated, respectively, as the curl of the velocity 

field in the 𝑥 − 𝑧 and 𝑥 − 𝑦  planes: 

𝜔𝑦 =
𝜕𝑣𝑧
𝜕𝑥

−
𝜕𝑣𝑥
𝜕𝑧

        𝜔𝑧 =
𝜕𝑣𝑦

𝜕𝑥
−
𝜕𝑣𝑥
𝜕𝑦

 3-5 

3.2.1 Operating conditions 

Three representative cases were chosen to be investigated with the PIV 

methodology, as listed in Table 3-3. As will be discussed later, those cases had specific 

values of diameter ratio 𝑑𝑏 𝑑𝑐𝑑⁄  that corresponded to a rectilinear motion, transitory 

flow, and fully developed oscillating motion. In all cases, Oil 1 was chosen as the 
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external fluid. Preliminary tests indicated that these three conditions represented well 

the motion of the compound drops in different regimes. 

Table 3-3. Conditions analyzed with the PIV methodology. The external fluid is Oil 1. 

Case Motion 𝑑𝑐𝑑 (mm) 𝑑𝑏 𝑑𝑐𝑑⁄  𝑅𝑒 

1 Straight 2.52 0.28 59 
2 Transition 2.72 0.61 319 
3 Oscillating 3.06 0.77 412 

Source: own authorship. 

 
Figure 3-7. 2D trajectories of compound drops at terminal conditions. The cases are the same from 

Table 3-3. Solid and dotted lines represent the position of the external and internal centroids in the 
𝒙 − 𝒛 plane, respectively. 

 

Source: own authorship. 

To illustrate the conditions analyzed in the PIV experiments, the rising path of 

the compound drops is briefly presented in Figure 3-7 for each case listed in Table 3-3. 

Note that the position of the compound drop in the 𝑥 − 𝑧 plane was made 

dimensionless by 𝑑𝑐𝑑. Also, the vertical position was set to zero at the final position of 

the compound drop (the position is approximated by neglecting the internal fluid). 

𝑥/𝑑𝑐𝑑

𝑧
/𝑑

𝑐
𝑑

−2 20

−0 6

0

6

12

𝑥/𝑑𝑐𝑑

−2 20

−0 6

0

6

13

𝑥/𝑑𝑐𝑑

−3 30

−0 6

0

 

15

(a) (b) (c)



Experimental methodology 50 

Above the compound drop, 𝑧 𝑑𝑐𝑑⁄  is negative, whereas positive values are found 

behind the compound drop. Note that, a prior, the trajectory of the compound drops 

appears to fluctuate in the 𝑥 − 𝑧 plane only. Details regarding the evolution of the 

rising regime with 𝑑𝑏 𝑑𝑐𝑑⁄  will be presented in chapter 5. 

Figure 3-8 shows sample images obtained with the PIV methodology for the 

cases listed in Table 3-3. The superposition of the images enabled the qualitative 

visualization of the velocity field in the 𝑥 − 𝑧 and 𝑥 − 𝑦 planes (top and bottom rows, 

respectively). The contours of the compound drop are also shown for the sake of 

clarity. A direct comparison with Figure 3-7 suggests that the regions with swirling 

fluid are connected to the path of the compound drop, as will be discussed in detail in 

chapter 6. 

Figure 3-8. Fluid motion for compound drop for the cases listed in Table 3-3. Top row shows frontal 
images of cases 1 (a), 2 (b), and 3 (c), respectively. Accordingly, bottom row shows the streamwise 

measurements. 

 

Source: own authorship. 

(a) (b) (c)
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4 MECHANISTIC MODELING  

 This chapter presents the mechanistic modeling of some of the relevant 

parameters of the motion of the compound drops. Section 4.1 proposes a modeling of 

the drag coefficient of compound drops in rectilinear motion. The transient behavior 

of the orientation of the compound drop is described in section 4.2 as a function of the 

geometry of the compound drop.  

4.1 Drag coefficient of a spherical compound drop  

This section aims to describe the drag coefficient of a single compound drop 

rising in quiescent water in rectilinear motion. The estimation of the drag coefficient, 

𝐶𝑑, is crucial in buoyant flows where the drag determines the magnitude of the 

terminal velocity. So far, the models that have been proposed for the determination of 

the 𝐶𝑑 of compound drops rely on the absence of inertial forces.  

The drag coefficient can be experimentally calculated according to the force 

balance schematically shown in Figure 2-2. The balance between the Archimedes (Eq. 

2-1) and drag (Eq. 2-3) results in the following expression: 

𝐶𝑑  =  
4𝑔𝑑𝑐𝑑(𝜌 − 𝜌𝑐𝑑)

3𝜌𝑉𝑐𝑑
2  4-1 

Note that the estimation of the drag coefficient by Eq. 4-1 is a simplified 

approach since the following assumptions were herein considered: 

1) The shape of the compound drop is spherical; 
2) The hydrodynamic effects that arise from the non-uniformities of the flow, 

in particular the lift force, are absent. 

These assumptions may or may not be adequate depending on the motion. For 

instance, for an ellipsoidal bubble, Eq. 4-1 is inaccurate and a different estimation for 

the 𝐶𝑑 is required (Ellingsen & Risso, 2001). However, according to Figure 3-2, the 
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compound drops studied here seem to be virtually spherical at terminal conditions. 

Further details regarding the shape of the compound drops will be presented later. 

Moreover, it is a common practice in gravitational flows to only consider forces that 

have a vertical component to calculate the 𝐶𝑑. Thus, as chapter 6 will show, even 

though a significant horizontal component of the lift force may be identified for 

oscillating compound drops, the estimation by Eq. 4-1 is fair (Sanada et al., 2008). 

Nonetheless, there are several flow situations where other forces should be considered, 

e.g., bubble motion in a cross-flow, hydrofoils, to name just a few. 

The first step towards the modeling of 𝐶𝑑 is to describe the dynamic behavior 

of a spherical compound drop in rectilinear motion, as schematically shown in Figure 

4-1. Note that the compound drop shown below is analogous to the force balance 

scheme depicted in Figure 2-2 where the Archimedes and drag forces are outlined. 

Additional attention is now given to the flow inside the fluids comprising the 

compound drop, insomuch as the drag of a fluid particle is greatly affected by its inner 

circulation (Clift et al., 1978). 

Firstly, the pressure component of the drag is disregarded by neglecting the 

presence of a wake; however, inner circulation and distribution of pressure should be 

influenced by the presence of a fluid inclusion. Ideas to describe the drag coefficient of 

a compound drop based on that assumption are now presented.  

Figure 4-1. Flow pattern of a single compound drop rising in straight motion at terminal conditions. 

 

Source: own authorship. 
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4.1.1 Proposal 1 

The first approach is based on the assumption of Hadamard & Rybczynski that 

states that the drag coefficient of a drop, 𝐶𝑑
𝑑, with viscosity 𝜇𝑜 in creeping flow is 

described by a modified Stokes solution: 

𝐶𝑑
𝑑  =  

24

𝑅𝑒
(
2 +  3𝜑

3 +  3𝜑
) 4-2 

where 24 𝑅𝑒⁄  is the classical solution for the drag coefficient of a sphere in the Stokes 

regime and 𝜑 is the viscosity ratio of the drop: 

𝜑 =  
𝜇𝑜
𝜇

 4-3 

that evaluates the internal shear and pressure distribution in terms of the relative 

viscosity of the fluid particle (Clift et al., 1978). Thus, as it can be seen from Eq. 4-2, the 

internal flows of a fluid particle act towards the reduction of its drag coefficient in 

comparison to a rigid sphere. Additionally, the viscosity of the fluid particle governs 

this behavior; the reduction in the drag coefficient is inversely proportional to 𝜑. 

However, Eq. 4-2 is valid for Stokes flow (𝑅𝑒 < 1) only, which is not the case of 

the compound drops herein considered (see Table 3-2). If the assumption of Hadamard 

& Rybczynski is extended to a fluid sphere at high Reynolds number, Eq. 4-2 becomes: 

𝐶𝑑
𝑑  =  𝐶𝑑

𝑠 (
2 +  3𝜑

3 +  3𝜑
) 4-4 

where 𝐶𝑑
𝑠 can be calculated from the classical Schiller & Naumann (1933) correlation 

for a rigid sphere with 𝑅𝑒 < 1000. This correlation has been extensively used in the 

past decades to account for the effect of inertia on the drag coefficient. The correlation 

is given by: 
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𝐶𝑑
𝑠  =  

24

𝑅𝑒
(1 +  0 15𝑅𝑒0 687) 4-5 

Moreover, the calculation of 𝜑 is not straightforward for the compound drop 

because of the internal bubble. However, an expression for the effective viscosity of 

the compound drop, 𝜇𝑐𝑑, can be derived analogously to its effective density defined 

by Eq. 3-4. If the reduction in the drag coefficient is more pronounced for a less viscous 

fluid particle as a consequence of the pressure distribution, it could be expected that 

the internal bubble is responsible for an additional reduction in the 𝐶𝑑 of a compound 

drop. Therefore, 𝜇𝑐𝑑 < 𝜇𝑜 and Eq. 4-4 can be written as a function of an effective 

viscosity ratio, that accounts for the presence of the internal bubble: 

𝜑′  =  
𝜇𝑐𝑑
𝜇

 4-6 

where 𝜇𝑐𝑑 is obtained by averaging the viscosity of each fluid phase in terms of the 

volume ratio:  

𝜇𝑐𝑑  =  𝜇𝑏 (
𝑑𝑏
𝑑𝑐𝑑

)
3

 +  𝜇𝑜 [1 − (
𝑑𝑏
𝑑𝑐𝑑

)
3

] 4-7 

For the compound drops studied here, 𝜇𝑏 ≪ 𝜇𝑜; thus, the effective viscosity 

becomes: 

𝜇𝑐𝑑  =  𝜇𝑜 [1 − (
𝑑𝑏
𝑑𝑐𝑑

)
3

] 4-8 

and an expression for the drag coefficient of a compound drop is given: 
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𝐶𝑑  =  𝐶𝑑
𝑠 (
2 +  3𝜑′

3 +  3𝜑′
) 4-9 

The effective viscosity ratio of the compound drop is obtained by dividing Eq. 

4-8 by 𝜇. Thus, the effect of the internal circulation on the drag coefficient of the 

compound drop is considered by the following term: 

𝜑′  =  𝜑 [1 − (
𝑑𝑏
𝑑𝑐𝑑

)
3

] 4-10 

The use of Eq. 4-9 and Eq. 4-10 provides the 𝐶𝑑 of a compound drop, based on 

the drag coefficient of a rigid sphere with the same Reynolds, for which extensive 

modeling can be found in literature. The compound nature of the drop promotes a 

reduction in its drag coefficient that depends on the viscosity of the internal and 

external fluids, as well as the diameter ratio. However, the estimation of the effective 

viscosity 𝜇𝑐𝑑 is based on an averaging of the viscosities of the individual fluids, which 

is clearly an approximation insomuch as the compound drop keeps its multiphase 

structure, i.e., the fluids are immiscible. Thus, the set of correlations grouped in Eq. 4-9 

and Eq. 4-10  provides no further physical insight, but it can be a useful tool to estimate 

the drag coefficient of a compound drop at high Reynolds numbers. 

4.1.2 Proposal 2 

Recently, Rachih et al. (2020) suggested that the drag coefficient of a drop, 𝐶𝑑
𝑑, 

spans between the limits of a rigid sphere, 𝐶𝑑
𝑠, and a gas bubble, 𝐶𝑑

𝑏. They used the 

hypothesis of Hadamard & Rybczynski and suggested that the highest drag coefficient 

of a three-dimensional body corresponds to a rigid sphere with the same Reynolds, 

i.e., where no internal fluid circulation occurs and the non-slip condition is met. 

Moreover, the lower limit of the drag coefficient corresponds to a spherical fluid 

particle with negligible viscosity, i.e., a spherical gas bubble with same Reynolds. 
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Thus, for a specific Reynolds number, the magnitude of 𝐶𝑑
𝑑 depends on the viscosity 

ratio according to Figure 4-2. It follows that: 

𝐶𝑑
𝑑  =  

𝐶𝑑
𝑏  +  𝜑𝐶𝑑

𝑠

1 +  𝜑
 4-11 

where 𝐶𝑑
𝑏 can be obtained by considering a clean and spherical bubble and the 

correlation proposed by Mei et al. (1994): 

𝐶𝑑
𝑏  =  

16

𝑅𝑒
(
16 +  3 315𝑅𝑒1 2⁄  +  3𝑅𝑒

16 +  3 315𝑅𝑒1 2⁄  +  𝑅𝑒
) 4-12 

Figure 4-2. Evolution of the drag coefficient for bubbles, droplets and solid particles. Comparison 
between the correlations by Eqs. 4-12 and 4-5 for bubbles and particles, respectively (solid lines). 

 

Source: adapted from Rachih et al., 2020. 

On extending the hypothesis by Rachih et al. (2020) to the compound drops 

studied here, an expression for the drag coefficient can be obtained:  

𝐶𝑑  =  
𝐶𝑑
𝑏  +  𝜑′𝐶𝑑

𝑠

1 + 𝜑′
 4-13 

where  𝜑′ is the same effective viscosity ratio given in Eq. 4-10. Note that Eq. 4-13 is 

analogous to the approach described earlier; the 𝐶𝑑 lies between the upper and lower 
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limits of a rigid sphere and a spherical bubble, respectively. The effective viscosity of 

the compound drop is the key parameter to describe its 𝐶𝑑. However, the use of Eq. 

4-13 provides an additional term in the estimation of the drag coefficient. By taking the 

drag of a gas bubble directly into account, the effects of shape deformation and 

interface contamination of the internal fluid can be accounted for. 

4.2 Compound drop orientation 

This section focuses on the case of an oscillating compound drop and aims to 

describe how its orientation (see definition in Figure 3-5) fluctuates in time. The goal 

is to investigate the effect of the compound nature of the drop on the dynamics of the 

oscillation. 

4.2.1 External phase 

Let us consider the idealized case of an oscillating spherical compound drop at 

high Reynolds numbers according to the scheme shown in Figure 4-3. It is assumed 

that the external centroid (blue dot) of the compound drop moves periodically with 

respect to the internal centroid (red dot).  

For the sake of simplicity, focus is given now on the oscillation of the external 

phase assuming that the internal fluid behaves similarly. Thus, 𝜃 varies with the 

distance travelled by the outer centroid, 𝛿, following a sinusoidal behavior with a 

wavelength 𝜆. This oscillation dynamics will be referred later in this text as the 

pendular oscillation of the compound drop. 

The amplitude of the oscillation plays an essential role in the description of its 

dynamic behavior. Based on the definition of the orientation angles discussed earlier, 

the oscillation amplitude is defined as: 

𝛬𝜃  =  90 – 𝜃𝑚𝑎𝑥 4-14 
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where 𝜃𝑚𝑎𝑥 is the orientation angle at the inflection points (𝛿 = 𝜆/4, 3𝜆/4 …). Note 

that, according to Figure 3-5, the vertical alignment of the compound drop corresponds 

to an orientation angle of 𝜃 = 90 º.  

Figure 4-3. Representative scheme of the pendular motion of an oscillating compound drop. The 
relative position of the external centroid is shown for different values of time. 

 

Source: own authorship. 

 Based on the scheme shown in Figure 4-3, the oscillation starts when 𝜃 = 90 º; 

then, 𝜃 increasingly decreases until the inflection points are reached. The first 

inflection point corresponds to 𝛿 = 𝜆/4 when the oscillation amplitude, 𝛬𝜃, is reached. 

Then, 𝜃 increases until reaching the vertical alignment once again, restoring its initial 

position at 𝛿 = 𝜆/2. Similarly, the orientation of the external phase continues to 

oscillate towards the opposite side of the compound drop until the oscillation cycle is 

complete at 𝛿 = 𝜆. Note that, according to its definition, only the magnitude of 𝜃 is 

considered; thus, 𝛬𝜃 > 0 regardless the direction of the pendular oscillation. Figure 4-3 

clarifies this behavior by showing that the oscillation cycle consists of two peaks, 

instead of a peak and a valley for a typical sinusoidal cycle. 
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This oscillation dynamics suggests that the external centroid of the compound 

drop fluctuates periodically with time. Thus, the typical sinusoidal equation seems to 

be suitable to describe the behavior of 𝜃 as follows: 

 𝜃(𝑡) =  𝛬𝜃𝑐𝑜𝑠(2𝜋𝑓𝑝𝑡 ) 4-15 

where 𝑓𝑝 is the pendular oscillation frequency. Note that the term 2𝜋 is required 

because the original definition of the sinusoidal equation is based on the angular 

frequency of the oscillation. 

  Despite its applicability to the oscillating compound drops herein analyzed, it 

should be emphasized that the terms in Eq. 4-15 are dimensional. From a fluid 

mechanical standpoint, it is convenient to describe the pendular motion of the 

compound drops as a function of dimensionless parameters. By doing so, it is possible 

to account for some effects of the motion, as will be shown later. 

With this aim, it is possible to define the Strouhal number of the pendular 

oscillation, 𝑆𝑡𝑝, as:  

𝑆𝑡𝑝 =
𝑓𝑝𝑑𝑐𝑑

𝑉𝑐𝑑
 4-16 

that corresponds to the pendular oscillation frequency made dimensionless by the 

equivalent diameter and the terminal velocity of the compound drop. The Strouhal 

number is a key parameter to describe the oscillation dynamics and is usually 

associated with the mechanism of the oscillation. 

 The insertion of Eq. 4-16 into Eq. 4-15 results in: 

𝜃(𝑡) =  𝛬𝜃𝑐𝑜𝑠 (2𝜋
𝑆𝑡𝑝𝑉𝑐𝑑

𝑑𝑐𝑑
𝑡 ) 4-17 
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where the temporal term remains in dimensional units. If the dimensionless time is 

defined as 𝑡√2𝑔 𝑑𝑐𝑑⁄ , Eq. 4-17 becomes: 

𝜃(𝑡) =  𝛬𝜃𝑐𝑜𝑠 (2𝜋
𝑆𝑡𝑝𝑉𝑐𝑑

𝑑𝑐𝑑

𝑡√2𝑔 𝑑𝑐𝑑⁄

√2𝑔 𝑑𝑐𝑑⁄
 ) 4-18 

 As can be seen in Eq. 4-18, it is still difficult to attribute a physical meaning to 

each term. However, some of the terms may be reorganized to improve their clarity.  

If the pendular oscillation arises from a balance between the inertia of the flow and 

gravitational effects the following dimensionless number can be considered: 

𝐹𝑟∗ =
2𝜋𝑉𝑐𝑑

√2𝑔𝑑𝑐𝑑
 4-19 

which is defined as the modified Froude number of the pendular oscillation. It 

accounts for the relation between the inertia of the flow and the external gravitational 

field. In typical flow situations, the limit of high Froude number is associated to a 

significant perturbation in the external field; this parameter can be useful in modeling 

the pendular oscillation of the compound drop. Finally, Eq. 4-15 becomes: 

𝜃∗(𝑡) = 𝑎𝑏𝑠 [𝑐𝑜𝑠 (𝑆𝑡𝑝𝐹𝑟
∗𝑡√2𝑔 𝑑𝑐𝑑⁄ )]   4-20 

where 𝜃∗ = 𝜃 𝛬𝜃⁄  is a normalized orientation angle that goes from zero (vertical 

alignment) to unity (inflection point). Note that Eq. 4-20 provides only absolute values 

of 𝜃∗  

4.2.2 Internal phase 

 A similar procedure may be adopted for the modeling of the sinusoidal 

behavior of the internal orientation angle 𝜔. For the sake of brevity, such procedure 
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will not be repeated here. Accordingly, the normalized orientation angle of the internal 

fluid, 𝜔∗ = 𝜔 𝛬𝜔⁄ , is: 

𝜔∗ = 𝑎𝑏𝑠 [𝑐𝑜𝑠 (𝑆𝑡𝑝𝐹𝑟
∗𝑡√2𝑔 𝑑𝑐𝑑⁄ ) − 𝜑𝜔𝑆𝑡𝑝𝐹𝑟

∗] 4-21 

However, one should be reminded that the internal fluid is surrounded by the 

highly viscous external layer. Thus, as a certain period of time is required for the 

vorticity to diffuse through the external fluid, the internal bubble would then need an 

extra time to readapt to the new flow conditions (see the inner circulation within the 

external layer in Figure 4-1). This effect is designated as the temporal lag of the 

pendular oscillation and is considered in the 𝜑𝜔 term. Note that the multiplication by 

(𝑆𝑡𝑝𝐹𝑟
∗) is to maintain the dimensional consistency of Eq. 4-21.  

4.3 Final remarks 

This chapter proposed mechanistic models to describe the dynamic behavior of 

compound drops outside the creeping flow regime. The drag coefficient of a 

compound drop can be estimated from Eqs. 4-9 and 4-13 that are based on the 𝐶𝑑 of a 

rigid sphere and gas bubble with the same Reynolds number such that 𝐶𝑑  =

 𝐶𝑑(𝑅𝑒  𝑑𝑏 𝑑𝑐𝑑 𝜑⁄ ). A summary of the aforementioned modeling is presented in Table 

4-1. Note that in these models the compound nature of the drop is simplified by 

assuming a fluid particle with averaged viscosity.  

To this date, there is a large gap in the literature regarding the modeling of the 

drag coefficient of a compound drop. As previously discussed in chapter 2, the 

behavior of the drag is restricted to simplified scenarios, e.g., where inertia is 

neglected, concentric configurations are considered, to name just a few. Thus, the 

modeling herein proposed contributes to filling this gap. 
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Table 4-1. Governing factors of the drag coefficient of spherical compound drops. 

 𝑑𝑏 𝑑𝑐𝑑⁄                                          < 0.35 

Trajectory Rectilinear  

Governing effect Viscosity  

Relevant dimensionless number Reynolds  

Drag coefficient, 𝐶𝑑 

𝐶𝑑  =  𝐶𝑑
𝑠 (
2 +  3𝜑′

3 +  3𝜑′
) 4-9 

𝐶𝑑  =  
𝐶𝑑
𝑏  +  𝜑′𝐶𝑑

𝑠

1 + 𝜑′
 4-13 

Source: own authorship. 

The time evolution of the orientation angles of the compound drop, 𝜃 and 𝜔, is 

described by assuming a sinusoidal behavior. A summary of the fitted equations is 

shown in Table 4-2 for each fluid phase of the compound drop. Note that the 

parameters 𝑆𝑡𝑝 and 𝐹𝑟∗ rely on experimental data. 

Note that in this work a novel oscillation mechanism is suggested for the 

compound drop, namely the pendular oscillation. Here, the compound nature of the 

drop is taken into account to describe its oscillatory behavior, where both fluid phases 

are analyzed separately. To the best of the current knowledge, such detailed 

description of the motion of compound drops has not yet been presented. 

Table 4-2. Fitting of the governing parameters of the oscillatory motion of compound drops. 

External phase Internal phase 

𝜃∗ = 𝑎𝑏𝑠 [𝑐𝑜𝑠 (𝑆𝑡𝑝𝐹𝑟
∗𝑡√2𝑔 𝑑𝑐𝑑⁄ )] 4-20 𝜔∗ = 𝑎𝑏𝑠 [𝑐𝑜𝑠 (𝑆𝑡𝑝𝐹𝑟

∗𝑡√2𝑔 𝑑𝑐𝑑⁄ ) − 𝜑𝜔𝑆𝑡𝑝𝐹𝑟
∗] 4-21 

𝑆𝑡𝑝 =
𝑓𝑝𝑑𝑐𝑑

𝑉𝑐𝑑
 4-16 

𝐹𝑟∗ =
2𝜋𝑉𝑐𝑑

√2𝑔𝑑𝑐𝑑
 4-19 

Source: own authorship.
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5 RESULTS – DRAG, SHAPE, AND TRAJECTORY 

This chapter analyses the behavior of compound drops rising in quiescent water 

at high Reynolds numbers. The dynamics of the compound drop is investigated by 

using the high-speed shadowgraph technique described in chapter 3. The path and 

rising velocity of the compound drops are investigated in section 5.1. The transition 

from the rectilinear to the oscillatory rising regimes is briefly investigated in section 

5.2. The shape deformation of the compound drops is analyzed in section 5.3, along 

with the proposal of the governing dimensionless numbers. Finally, section 5.4 

analyzes the behavior of the drag coefficient of the compound drops and compares 

with the modeling proposed in chapter 4.  

5.1 Path and rising velocity 

The analysis begins with the changes in the trajectory and velocity as the size of 

the inner bubble progressively increases. Figure 5-1 shows typical image sequences for 

the rise of an oil drop (a) and compound drops with three values of diameter ratio 

𝑑𝑏 𝑑𝑐𝑑⁄ = 0 25 (b), 0 50  (c) and 0 85 (d).  

Figure 5-1. Image sequences of rising drops (a) and compound drops (b - d) for Oil 1 and different 
diameter ratios. The scale of reference 2 mm is given by the horizontal arrow for each sequence. 

    

a) 𝑑𝑑 = 2 5 𝑚𝑚 b) 𝑑𝑏 𝑑𝑐𝑑⁄ = 0 25 c) 𝑑𝑏 𝑑𝑐𝑑⁄ = 0 50 b) 𝑑𝑏 𝑑𝑐𝑑⁄ = 0 85 

Source: own authorship. 

2 mm 2 mm 2 mm 2 mm
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The path of the compound drop changes from rectilinear to oscillatory as the 

size of the inner bubble increases. As shown in Figure 5-1d, the oscillating path is 

accompanied by a pendular oscillation of the relative position of the gas and the liquid 

inside the drop. The center of mass of the compound drop is then shifted towards the 

rear, contributing to the side-ways motion. In addition, the minor axis of the 

compound drop appears to be aligned with the axis of the drop velocity as observed 

for rising ellipsoidal bubbles (Ellingsen & Risso, 2001). The trajectories of the 

compound drops illustrated in Figure 5-1 are also shown in Figure 5-2.  

Figure 5-2. Trajectories of single-fluid (a) and compound drops (b - d) from the experiments shown 
in Figure 5-1. Top row: top-view of the measured trajectories. Bottom row: three-dimensional path. 

    

a) 𝑑𝑑 = 2 5 𝑚𝑚 b) 𝑑𝑏 𝑑𝑐𝑑⁄ = 0 25 c) 𝑑𝑏 𝑑𝑐𝑑⁄ = 0 50 b) 𝑑𝑏 𝑑𝑐𝑑⁄ = 0 85 

Source: own authorship. 

The time evolution of the vertical component of the rising velocity of the 

compound drops, 𝑉𝑧, is shown in Figure 5-3, considering Oil 1. The time was set to zero 

at the instant of the detachment from the capillary tube. The measurements are shown 

for three different values of diameter ratio. In all cases, the velocity of the compound 

drop undergoes a transient state before reaching terminal conditions. For small values 

of 𝑑𝑏 𝑑𝑐𝑑⁄ , the velocity reaches a constant value after the transient period; for 𝑑𝑏 𝑑𝑐𝑑⁄ >

0  5 oscillations are observed even after the transient period. For the sake of contrast, 

the measurements are compared to those obtained for a single oil drop and a single air 

bubble of approximately the same volume. While the oil droplet exhibits a rectilinear 
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trajectory with a constant velocity, the air bubble speed oscillates in time. The 

compound drops velocity measurements lie between these two cases. The same 

qualitative behavior is observed for the other fluids (Oil 2 and Oil 3 from Table 3-1). 

Figure 5-3. Time evolution of the vertical velocity of compound drops (Oil 1) for different diameter 
ratios. A single-fluid drop (Oil 1) and a single-fluid bubble are shown for comparison (solid lines). 

 

Source: own authorship. 

Figure 5-4a reports the terminal velocity of the compound drops as a function 

of the diameter ratio 𝑑𝑏 𝑑𝑐𝑑⁄  for all tests. The list of symbols used in this and 

subsequent plots is given in Table 5-1. As will be later corroborated by the 

experiments, the motion will be classified as rectilinear when 𝑑𝑏 𝑑𝑐𝑑⁄ < 0 35 and as 

oscillatory when 𝑑𝑏 𝑑𝑐𝑑⁄ > 0 50. However, details regarding the transition to the 

oscillatory regime are reserved for later. For now, this range for motion transition 

(0 35 < 𝑑𝑏 𝑑𝑐𝑑⁄ < 0 50) remains an approximation for the measurements hereby 

conducted. Note that different markers are assigned to each regime (see Table 5-1). The 

terminal velocity increases with the bubble size inside the drop, as a consequence of 

its increased buoyancy. For comparison, the experimental results of Hayakawa & 

Shigeta (1974) are also shown in Figure 5-4 for which a similar behavior is noted; 

however, the comparison is only qualitative because different fluids were used.  

The maximum amplitude of oscillation speed 𝛬𝑉𝑥 is reported in Figure 5-4b, for 

the cases of oscillatory trajectories, as a function of the diameter ratio. 𝛬𝑉𝑥 𝑉𝑧⁄  increases 

with 𝑑𝑏 𝑑𝑐𝑑⁄  reaching values as high as 0.4. Note that the behavior of the terminal 

velocity is crucial in the estimation of the separation efficiency in gas flotation units. 
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Figure 5-4. (a) Terminal velocity of the compound drops as a function of the diameter ratio. (×), 
experiments by Hayakawa & Shigeta (1974). (b) Normalized amplitude of the horizontal 

component of the  velocity. The symbols are shown according to the key given in Table 5-1. 

 
a) b) 

Source: own authorship. 

Table 5-1. Symbols used in the characterization of the dynamics of the compound drops. 

Fluid 
Marker 

Straight path Oscillating path 

Oil 1   
Oil 2   
Oil 3   

Source: own authorship. 

5.2 Motion transition  

As a consequence of the fluid inclusion, the effective density of the compound 

drop (Eq. 3-4) depends on its diameter ratio, as shown in Figure 5-5. Clearly, the 

dimensionless density is a sole function of the diameter ratio, as indicated by the 

superposition of the data within the entire 𝑑𝑏 𝑑𝑐𝑑⁄  range. For compound drops 

composed mainly by the oil phase (𝑑𝑏 𝑑𝑐𝑑⁄ < 0 35), the presence of the inner bubble 

has apparently little effect on the density, i.e., 𝜌𝑐𝑑 𝜌𝑜⁄ → 1. Thence, the properties of the 

compound and single-fluid drops are selfsame. However, for a larger internal bubble 

(𝑑𝑏 𝑑𝑐𝑑⁄ > 0 50), a significant reduction in the density of the compound drop is noted. 

From that point onwards, the density of the compound drop is affected by the presence 

of the internal bubble.  
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Figure 5-5. Dimensionless density of the compound drops as a function of the diameter ratio for all 
measurements. The symbols are shown according to the key given in Table 5-1. 

 

Source: own authorship. 

The dynamics is discussed in terms of the inertia that results from the internal 

bubble. With this aim, Figure 5-6 shows the governing dimensionless numbers as a 

function of the diameter ratio. Throughout those measurements, the Reynolds number 

spans between 70 and 750, as shown in Figure 5-6a. For the rectilinear regime, a nearly 

constant behavior of 𝑅𝑒 is observed and dependent on the properties of the fluid. Thus, 

it follows that the compound and single-fluid drop present similar inertial effects prior 

to the engulfment, with the influence of the internal bubble being negligible when the 

majority of the compound drop is composed by the oil phase.  

Figure 5-6. Reynolds (a) and Weber (b) numbers of the compound drops as a function of the 
diameter ratio. The symbols are shown according to the key given in Table 5-1. 

  

a) b) 

Source: own authorship. 
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However, the initial properties of the fluids are relevant when determining a 

critical range of 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0 50 that is associated to the increase of inertia. Furthermore, 

a converging trend is observed in the measurements of 𝑅𝑒, suggesting that inertia 

governs the motion when path instabilities are present, with the diameter ratio being 

the most relevant dimensionless number when the compound drop is mostly 

composed by gas.  

Figure 5-6b shows that a similar observation can be made when analyzing the 

Weber number of the compound drops. Thus, the transition may be characterized by 

either 𝑅𝑒 or 𝑊𝑒 and a more suitable transition criteria should involve both parameters, 

as shown in Figure 5-7. To account for the compound nature of the fluid particles 

analyzed in this work, the Reynolds number is modified by multiplying it by a 

viscosity ratio defined as (𝜇𝑜 𝜇⁄ )1/5. On doing so, a critical range of the Reynolds 

number (𝑅𝑒 × (𝜇𝑜 𝜇⁄ )1/5  ≈  900) is associated to the motion transition. Note that the 

modified viscosity ratio herein proposed provides no further physical insight, but acts 

towards the unification of the transition threshold, regardless of the fluids composing 

the compound drop. 

Figure 5-7. Motion regimes of compound drops in gravitational motion in a viscous fluid. The 
symbols are shown according to the key given in Table 5-1. 

 

Source: own authorship. 

From Figure 5-3, the path oscillation frequency can be determined to be roughly 

6 Hz (considering a double period). The normalized oscillating frequency, the Strouhal 

number, is defined as: 
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𝑆𝑡 =
𝑓𝑑𝑐𝑑
𝑉𝑐𝑑

 5-1 

where 𝑓 is the frequency of the velocity oscillation. The evolution of 𝑆𝑡 as a function of 

the compound drop Reynolds number is shown in Figure 5-8. A relatively constant 

value 𝑆𝑡 ≈ 0 1 is  observed for the range of Reynolds numbers considered here. 

Figure 5-8. Strouhal number as a function of the Reynolds number for compound drops for the 
three oils according to Table 5-1. The (×)  and (+) symbols show the  measurements for bubbles by 
(Lindt & de Groot, 1974) and (Riboux et al., 2013), respectively. (∗) shows the measurements for the 
vortex shedding of single-fluid drops (Albert et al., 2015; Charin et al., 2019). The black dashed line 

shows the trend of the data for rigid spheres considering the data from Clift et al. (1978) and 
Sakamoto & Haniu (1990). The solid, dashed and dashed-dotted red lines show the Strouhal 

number from the frequency obtained from  Eq. 5-2 for Oil 1, Oil 2 and Oil 3, respectively. The blue 
dashed line shows the calculation obtained with Eq. 5-3. 

 

Source: own authorship. 

It should be understood what the physical origin of the compound drop 

oscillations is. For bubbles and solid spheres, the oscillations are known to be the result 

of the instability of the wake as reported by several studies (Clift et al., 1978). 

Alternatively, surface oscillations (Lamb, 1932) or the observed pendular-like motion 

may lead to the appearance of trajectory oscillations.   

Path oscillations resulting from the wake instability are firstly considered. To 

gain some insight, Figure 5-8 also displays the experimental measurements of the 

Strouhal number obtained for a rigid sphere in a liquid flow (Clift et al., 1978; 

Sakamoto & Haniu, 1990); additionally, experimental results for bubbles from Lindt & 
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de Groot (1974) and Riboux et al. (2013) are shown. For solid spheres the oscillations 

appear at 𝑅𝑒 ≈ 300 with a Strouhal number of 𝑆𝑡 ≈ 0 055; then the value of 𝑆𝑡 

increases monotonically until 𝑅𝑒 ≈ 6000, beyond which the Strouhal number plateaus. 

For gas bubbles the Strouhal number shows a similar trend but smaller 𝑆𝑡 values; a 

plateau around 𝑆𝑡 ≈ 0 3 is reached for 𝑅𝑒 > 2000. 

One would expect the compound drops to behave similarly to a rigid sphere, 

due to the high viscosity of the external fluid. This seems to be the case since the 

Strouhal number has the same order of magnitude for 𝑅𝑒 ≈ 500. However, the 𝑆𝑡 

value for compound drops does not seem to increase significantly with 𝑅𝑒, as opposed 

to what is observed for solid spheres or bubbles. Furthermore, the values of the 

Strouhal number for compound drops seems to be bound within the limits for bubbles 

and solid spheres. Figure 5-8 also shows the frequencies of vortex shedding for single-

fluid drops rising in water (Albert et al., 2015; Charin et al., 2019).  

Now, according to Lamb (1932), the surface oscillation frequency of the second 

mode of a freely oscillating drop considering an inviscid flow is: 

𝑓𝑜 = √
48𝜎𝑜/𝑤

𝜋2𝑑𝑐𝑑
3 (3𝜌𝑐𝑑 + 2𝜌)

 5-2 

For the three oils and compound drop sizes considered here, 𝑓𝑜 ranges from 25 

to 30 Hz, which corresponds to a value of 𝑆𝑡 of 𝑂(1), which is about one order of 

magnitude higher than that found for the compound drops, as shown in Figure 5-8. 

This seems to indicate that shape oscillations could not significantly contribute to the 

path oscillations for compound drops. Moreover, experiments for drops settling in 

water (Winnikov & Chao, 1966) corroborate this observation. An approximate value 

of 0.26 has been reported for a similar range of 𝑅𝑒. The reduction in comparison to the 

prediction by Lamb indicates viscous damping. Nevertheless, the measurements still 

overestimate the data herein presented. 
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Lastly, the oscillation frequency of a pendulum, 𝑓𝑝, is considered. From a 

classical analysis: 

𝑓𝑝 =
1

2𝜋
√
𝑔

𝑙
 5-3 

where 𝑙 is the distance between the center of mass and the top of the drop; hence, 𝑙 ≈

𝑑𝑐𝑑 2⁄ ≈ 1  5 mm for most of the experiments herein conducted. Considering this 

length 𝑓𝑝 ≈ 12 Hz for the sizes herein considered. This value corresponds to a 𝑆𝑡 = 0 2, 

as shown in Figure 5-8, which is slightly higher than that measured for the rising 

compound drops but of the same order. Also, this prediction showed a slight decrease 

of 𝑆𝑡 with 𝑅𝑒, which resembles the experimental trend for compound drops. 

Therefore, considering the above arguments it is conjectured that the path 

oscillations of the compound drops result from the instability of the wake. However, 

it can also be argued that the pendular motion may not be responsible for the 

appearance of the oscillatory motion but it most likely affects the droplet trajectory 

oscillations. It is interesting that the Strouhal number does not increase significantly 

with 𝑅𝑒, so it is possible that the oscillations are affected by the pendular motion. 

Additional information regarding this subject is discussed in chapter 6 based on the 

measurements of the velocity field. 

5.3 Compound drop deformation 

The deformation of an object rising in a quiescent fluid can give an indication 

of the balance between inertial and surface tension effects. For the case of a compound 

droplet the presence of a bubble changes the internal pressure balance inside the drop. 

Also, the path instability of bubbles and drops is known to be strongly influenced by 

their deformation (Zenit & Magnaudet, 2008).  

Figure 5-9a shows the compound drop aspect ratio as a function of the diameter 

ratio. In these measurements, an averaged value of the aspect ratio of the compound 
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drop has been considered. Note that the plot is presented in terms of 𝜒𝑐𝑑 − 1, to 

accentuate the value of the deformation. In all cases, the deformation is rather small, 

increasing slightly for compound drops in the oscillatory regime, but still with values 

of 𝜒𝑐𝑑 below 1.1. Surface contamination probably plays a role in determining the 

droplet shape, as the experiments were conducted under ordinary laboratory 

conditions (Duineveld, 1995; Wu & Gharib, 2002); however, this effect was not 

quantified in this study.  

Figure 5-9b shows the value of the aspect ratio of the internal bubble as a 

function of the diameter ratio. Since both plots (Figure 5-9a and b) are presented using 

the same scale, a direct comparison is possible: the compound drop is much less 

deformed than the internal bubble. While the compound drop remains nearly 

spherical, the internal bubble deforms significantly. It should be noticed that the 

internal bubble deformation is significant in both rectilinear and oscillatory regimes. 

Additionally, the deformation of the internal bubble is larger than that of an isolated 

bubble with similar size: gas bubbles with 𝑑𝑏 < 1 mm - which in the measurements 

herein presented correspond to 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0 25 - have been reported to be close to 

spherical (Legendre et al., 2012). 

Figure 5-9. Aspect ratio of compound drops (a) and internal bubbles (b) as a function of the 
diameter ratio. The symbols are shown according to the key given in Table 5-1. 

Source: own authorship. 

(a) (b)
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Considering the shape of the internal bubble, its measured value can be 

analyzed as a function of the Weber number (Legendre et al., 2012; Moore, 1965). Here 

an internal Weber number, 𝑊𝑒𝑜/𝑔, is defined by using the properties of oil (since it 

surrounds the bubble):  

• Oil density 𝜌𝑜 (the external fluid of the compound drop); 
• Interfacial tension at the internal interface (oil-gas interface) 𝜎𝑜/𝑔; 

• Terminal velocity of the compound drop 𝑉𝑐𝑑. 

Hence, the internal Weber number is written as: 

𝑊𝑒𝑜/𝑔 =
𝜌𝑜𝑉𝑐𝑑

2 𝑑𝑏
𝜎𝑜/𝑔

 5-4 

Figure 5-10a shows the internal bubble aspect ratio 𝜒𝑏 as a function of 𝑊𝑒𝑜/𝑔. 

The plot also shows the following predictions from Moore (1965): 

𝜒𝑏 = 1 + 9/64𝑊𝑒𝑜/𝑔 5-5 

and Legendre et al. (2012): 

𝜒𝑏 = (1 − 9/64𝑊𝑒𝑜/𝑔) 
−1 5-6 

 as the dotted and dashed lines, respectively. Despite the data dispersion, it is clear 

that the deformation of the internal bubble is different from the predictions, which are 

valued for isolated single-fluid bubbles at high Reynolds numbers (Legendre et al., 

2012; Moore, 1965). A possible explanation is the non-uniform distribution of pressure 

inside the compound drop, due to its multiphase structure. 

In the case of a compound drop, the deformation of the internal bubble is 

affected by the gas-oil and oil-water interfaces. Since the bubble is immersed inside the 

oil drop, the inertia of the external flow is not directly balanced by the air-water 
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interfacial tension, as in the case of bubbles; therefore, the deformation can no longer 

be predicted by the classical approach (Moore, 1965).  

If the inertia of the external fluid does not directly control the deformation, the 

Bond number can be considered. For instance, Aoyama et al. (2016) proposes: 

𝜒𝑏 = (1 + 0 016𝐵𝑜𝑜/𝑔
1 12𝑅𝑒)

0 388
 5-7 

for an ellipsoidal bubble. Note that Eq. 5-7 was adapted to the system studied here by 

taking an internal Bond number 𝐵𝑜𝑜/𝑔 into account. The definition of the internal Bond 

number of the compound drop is analogous to Eq. 5-4: 

𝐵𝑜𝑜/𝑔 =
𝜌𝑜𝑔𝑑𝑏

2

𝜎𝑜/𝑔
 5-8 

Figure 5-10. Aspect ratio of the internal bubble as a function of the internal Weber number (Eq. 5-4) 
(a) and as a function of the internal Bond number (Eq. 5-8) (b). Dashed and dotted lines (a) indicate 
the predictions by Eq. 5-6 (Legendre et al., 2012) and Eq. 5-5 (Moore, 1965), respectively. The solid 

line (b) shows the trend of the measurements according to Eq. 5-7 (Aoyama et al., 2016). The 
symbols are shown according to the key given in Table 5-1. 

 

Source: own authorship. 

In Figure 5-10b, 𝜒𝑏 is reported as a function of 𝐵𝑜𝑜/𝑔. Although both data and 

prediction from Aoyama et al. (2016) appear closer and both show an increasing 

(a) (b)
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deformation with the internal Bond number, their slopes are different. In the 

experiments conducted in the present study, both 𝑊𝑒𝑜/𝑔  and 𝐵𝑜𝑜/𝑔 are of the same 

order of magnitude. Therefore, it not possible to completely separate the deformation 

mechanism between inertia and gravity. An empirical correlation can be proposed to 

describe the deformation of the internal bubble: 

𝜒𝑏 = 1 + 𝛼𝐵𝑜𝑜/𝑔
0 2 + 𝛾𝑊𝑒𝑜/𝑔

0 25 5-9 

where the constants 𝛼 and 𝛾 are 0.142 and 0.254, respectively, thus fitting the 

measurements herein presented (30 % accuracy). This expression does not provide 

further physical insight, but it is useful in determining the shape of the inner bubble 

which is needed to understand the surface energy balance within the compound drop. 

5.4 Drag coefficient of a compound drop 

The drag coefficient is shown in Figure 5-11 as a function of the compound drop 

Reynolds number 𝑅𝑒 for all the experiments. As expected, the drag coefficient 

decreases with 𝑅𝑒 until 𝑅𝑒 ≈ 400, beyond which a slight increase is observed. Note 

that the increase in the drag coefficient coincides with the transition to oscillatory 

behavior. To gain some insight about the origin of the drag force, the measurements 

are compared with known drag expressions for solid spheres, gas bubbles and drops. 

The predictions from Eqs. 4-5, 4-9, 4-12, and 4-13 are shown along with the 

experimental data in Figure 5-11. All the expressions predict a monotonic decrease of 

the drag coefficient with Reynolds number. The drag coefficient for solid particles is 

much higher than that for bubbles. As expected, the drag coefficient for compound 

droplets is between those for spheres and the ones for bubbles; however, the drag 

coefficient prediction is close to that for solid particles. This is expected since the oil 

viscosity is much larger than that of water, leading to a large value of 𝜑′ for which, 

according to Eq. 4-9 and Eq. 4-13, 𝐶𝑑
𝑑 → 𝐶𝑑

𝑠. Also note that the effects of surface 

contamination were not addressed, although are probably present (Chebel et al., 2012). 
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Figure 5-11. The drag coefficient as a function of the Reynolds number for all the measurements. 
(×) Experiments by Hayakawa & Shigeta (1974) for compound drops; Dotted (green), dashed (red) 

and dash-dotted (blue) lines, prediction for compound drops (for Oil 1, 2 and 3, respectively) by Eq. 
4-9. Similarly, dotted, dashed, and dash-dotted black lines show the prediction by Eq. 4-13 (for Oil 
1, 2, and 3, respectively); solid lines (black), predictions for a solid sphere (Eq. 4-5) and single-fluid 

bubble (Eq. 4-12). 

 

Source: own authorship. 

From Figure 5-11 it can be observed that for compound drops with rectilinear 

paths, 𝐶𝑑 decreases with the Reynolds number in agreement with the expressions 

reported above. The experimental value of 𝐶𝑑 is between the prediction for the solid 

spheres and spherical bubbles, but it is closer to the one for a solid sphere. For droplets 

with oscillating trajectories the drag coefficient exhibits more dispersion and a slight 

increase with 𝑅𝑒 is observed. Such an increase of the drag coefficient is in agreement 

with the experiments of Hayakawa & Shigeta (1974) for gas-liquid compound drops. 

A similar behavior is also observed for bubbles when they deform and follow a 

helicoidal of zig-zagging path (Ellingsen & Risso, 2001). 

5.4.1  Rectilinear path 

As described above, when the path of the compound drop is rectilinear, the 

value of  𝐶𝑑 is between those for solid spheres and the ones for spherical bubbles. 

Interestingly, 𝐶𝑑 is somewhat smaller than the prediction for a drop with an effective 

viscosity 𝜑′ as defined by Eq. 4-9 and 4-13. Thence, the sole effect of the effective 

internal viscosity dissipation does not predict the drag coefficient of a compound drop. 

It must be noted that, because of buoyancy, the internal bubble is not located in the 

center but rather near the upper edge of the compound drop. Thus, the internal friction 
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is not uniformly distributed. The reduction of the amount of fluid in the frontal part of 

the compound drop, where significant shear is expected, may lead to the observed 

reduction in the drag coefficient.  

Figure 5-12. (a) Normalized drag coefficient of the compound drops as a function of the diameter 
ratio. Solid, dashed and dotted lines, evolution of the normalized drag coefficient for Oil 1, 2 and 3, 

respectively. (b) Coefficient 𝑷 from Eq. 5-11 as a function of the viscosity ratio. Solid line, fitted 
correlation (Eq. 5-13). The symbols are shown according to the key given in Table 5-1. 

 

Source: own authorship. 

To quantify this effect, a normalized drag coefficient can be defined as: 

𝐶𝑐𝑑
∗ =

𝐶𝑑
𝑑 − 𝐶𝑑

𝐶𝑑
𝑑  5-10 

where 𝐶𝑑
𝑑 is the experimental drag coefficient of a single-fluid drop of the 

corresponding oil and same Reynolds number. Thus, 𝐶𝑐𝑑
∗  measures the importance of 

the internal bubble in the drag coefficient.  

Figure 5-12a shows the evolution of 𝐶𝑐𝑑
∗  as a function of the diameter ratio 

𝑑𝑏 𝑑𝑐𝑑⁄ .  Clearly, the reduction in 𝐶𝑑 increases with the size of the inner bubble. An 

inspection of the data reveals that  𝐶𝑐𝑑
∗ ∝ (𝑑𝑏 𝑑𝑐𝑑⁄ )3, from which it could be proposed: 

(a) (b)
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𝐶𝑑 = 𝐶𝑑
𝑑 [1 − 𝑃 (

𝑑𝑏
𝑑𝑐𝑑

)
3

] 5-11 

thus yielding: 

𝐶𝑐𝑑
∗ = 𝑃(𝑑𝑏 𝑑𝑐𝑑⁄ )3 5-12 

where 𝑃 was found to be dependent on the viscosity ratio 𝜑 and can be described by 

the simple power law relation: 

𝑃 = 0 43𝜑0 58 5-13 

as shown in Figure 5-12b. Such evolution accounts for the impact of the internal bubble 

on the drag reduction and shows that the reduction in the drag coefficient is more 

pronounced when the viscosity of the oil phase increases. 

5.4.2 Oscillatory path 

As shown above, when the compound drops oscillate, the evolution of the drag 

coefficient with 𝑅𝑒 changes, no longer showing a decrease with 𝑅𝑒, as shown in Figure 

5-11. As discussed before, the oscillatory behavior arguably results from the instability 

of the wake but it is enhanced by the drop deformation and thus by the diameter ratio 

𝑑𝑏 𝑑𝑐𝑑⁄ . Therefore, in Figure 5-13 the drag coefficient of the oscillating compound 

drops is plotted as a function of the diameter ratio 𝑑𝑏 𝑑𝑐𝑑⁄ . As it can be seen, for this 

regime the value of 𝐶𝑑 is directly influenced by 𝑑𝑏 𝑑𝑐𝑑⁄  and the effect of the fluid 

properties does not seem to play a dominant role, as observed for compound drops 

having a rectilinear path. 

The data shown in Figure 5-13 can be described by a simple a power-law 

relation of the form: 
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𝐶𝑑 = 𝑘 (
𝑑𝑏
𝑑𝑐𝑑

)
𝑛

 5-14 

with 𝑘 ≈ 1 and 𝑛 ≈ 1 2. 

Figure 5-13. The drag coefficient of the compound drops in oscillatory motion as a function of the 
diameter ratio. The solid line represents the correlation by Eq. 5-14. The symbols are shown 

according to the key given in Table 5-1. 

 

Source: own authorship. 

5.5 Final remarks 

In this chapter, the general dynamics of compound drops rising in water at high 

Reynolds numbers was investigated experimentally. The primary focus of this analysis 

was the investigation of the effect of inertia in the shape, trajectory, terminal velocity, 

and drag coefficient of the compound drops. 

The motion of the compound drops evolved from rectilinear to oscillatory for 

the three oils tested; the size of the inner bubble determined the transition to oscillatory 

behavior. By comparing the normalized oscillating frequency, i.e., the Strouhal 

number, with measurements of spheres and bubbles, it can be concluded that the path 

oscillations are the result of the wake instability. However, a pendular-like motion of 

the compound drops was identified; such motion could play an important role in 

preserving the oscillations.  
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 Despite the role of inertia, a significant deformation of the compound drops 

was not observed. In fact, the presence of the inner bubble was shown to help retaining 

a less deformed shape than that expected for a single-phase droplet under equivalent 

conditions.  

The drag coefficient for compound drops was found to be in relatively good 

agreement with that for solid spheres, for the case when the trajectory is rectilinear. 

However, the presence of the bubble induced a certain reduction of the drag 

coefficient. A quantification of this effect was proposed, along with a simplified model. 

For the case of compound droplets moving with an oscillatory trajectory, the drag 

coefficient was found to be relatively independent of the value of 𝑅𝑒; in this case, the 

bubble-to-drop diameter ratio appeared to control the drag coefficient, regardless of 

the type of oil used in each case. The drag coefficient of compound drops lies between 

those for rigid spheres and those for gas bubbles at high Reynolds numbers. A similar 

trend has been reported for compound drops in creeping flow. Once the flow became 

oscillatory, the drag became approximately independent of the value of the Reynolds 

number. 

The results presented in this chapter suggested that further experiments are 

required to fully understand the dynamics of compound drops rising at high Reynolds 

numbers. For instance, the pendular-like oscillation of the compound drops 

apparently presented some additional features when compared to the usual 

oscillations found for typical bubbles and drops, which were not investigated in this 

chapter. Moreover, the instability of the wake has been suggested as the onset of the 

path oscillations. To verify this, the behavior of the continuous fluid has to be 

analyzed. The aforementioned phenomena are investigated in chapter 6.
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6 RESULTS – WAKE AND OSCILLATION DYNAMICS 

An analysis of the structure of the wake and oscillation dynamics is henceforth 

discussed. Section 6.1 investigates the dynamics of the oscillatory motion of the 

compound drops. Focus is given to its configuration, orientation, and shape 

fluctuations. Then, the structure of the wake is investigated in section 6.2; an 

underlying mechanism for the onset of instabilities is proposed. Finally, section 6.3 

presents a brief analysis of the structures of the flow in the wake behind a compound 

drop.  

6.1 Oscillatory motion 

6.1.1 Compound drop configuration 

The discussion of the dynamics of the oscillatory motion begins with an analysis 

of how the widths 𝐻 and ℎ (see Figure 3-5) of the external fluid change with the size of 

the internal bubble. Figure 6-1a shows the width at the bottom segment of the 

compound drop 𝐻 as a function of the diameter ratio 𝑑𝑏 𝑑𝑐𝑑⁄ . Note that the width is 

presented as 𝐻 𝑑𝑐𝑑⁄  to accentuate its proportionality to the size of the compound drop. 

𝐻 𝑑𝑐𝑑⁄  ranges between 0.1 and 0.4 regardless of the external fluid and decreases 

monotonically according to the correlation: 

𝐻 𝑑𝑐𝑑⁄ = 1 −
𝑑𝑏
𝑑𝑐𝑑

 6-1 

that assumes a spherical shape for the fluids. Figure 6-1b shows the measurements of 

the normalized width ℎ 𝑑𝑐𝑑⁄  at the top segment of the compound drop. By showing 

both plots in the same scale, a direct comparison can be made: the width in the frontal 

segment of the compound drop is significantly smaller in comparison to the bottom 

segment; ℎ 𝑑𝑐𝑑⁄  ranges from 10−5 to 5 × 10−2. The density difference between the 

internal and external fluids promotes an internal migration of the inner bubble 
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towards the top region. Thus, the external fluid behaves as a thin film with increased 

drainage, showing a decay with 𝑑𝑏 𝑑𝑐𝑑⁄  described by: 

ℎ 𝑑𝑐𝑑⁄ = 6 5 × 10−3 (
𝑑𝑏
𝑑𝑐𝑑

)
−4 5

 6-2 

that agrees well with the experiments when 𝑑𝑏 𝑑𝑐𝑑⁄ < 0 80; otherwise, a swifter 

reduction in ℎ 𝑑𝑐𝑑⁄  is noted.  

Figure 6-1. Normalized width of the external fluid at the bottom (a) and top (b) segments of the 
compound drop as a function of the diameter ratio. The symbols are presented according to the key 

shown in Table 5-1. Solid lines represent Eq. 6-1 (a) and Eq. 6-2 (b). 

  

a) b) 

Source: own authorship. 

The results shown in Figure 6-1 confirm that the compound drops have an 

eccentric configuration. The centroid of the external fluid is shifted towards the rear of 

the compound drop, favoring the pendular oscillation presented in chapter 5. Thus, it 

is expected that this eccentric configuration of the compound drops contributes to this 

unique oscillatory behavior. It is clear from the images shown above that the size of 

the inner bubble governs the eccentricity 𝜖 𝑑𝑐𝑑⁄  (see definition in Figure 3-5), given the 

evolution shown in Figure 6-2 where the eccentricity evolves as: 

𝜖 𝑑𝑐𝑑⁄ = 0 44 (
𝑑𝑏
𝑑𝑐𝑑

)
1 1

 6-3 
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Figure 6-2. Eccentricity of the compound drop as a function of the diameter ratio. Solid line 
represents Eq. 6-3. Filled symbols are shown according to Table 5-1. 

 

Source: own authorship. 

6.1.2 Compound drop orientation 

According to Figure 3-7, the orientation of both the internal and external phases 

are also fluctuating. Thus, it is interesting to understand the behavior of the orientation 

angles 𝜃 and 𝜔 of the compound drop (defined according to Figure 3-5) and to see 

whether these parameters may be employed to describe the pendular oscillation. 

Figure 6-3 shows the time evolution of the instantaneous orientation angles 

(considering Oil 1) for three representative values of diameter ratios, namely, 𝑑𝑏 𝑑𝑐𝑑⁄ ≈

0  0 (a), 0 80 (b), and 0 90 (c).  

Figure 6-3. Time evolution of the orientation angles of the external (left) and internal (right) phases 
of the compound drops (Oil 1) for different values of diameter ratio. 

 

Source: own authorship. 
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In all cases, 𝜃 and 𝜔 experience a transient stage before reaching the terminal 

conditions roughly at 𝑡√2𝑔 𝑑𝑐𝑑⁄ = 10. Then, a sinusoidal behavior that is consistent 

with the pendular motion suggested earlier is noticed. Note that by definition 𝜃 and 𝜔 

are acute angles and therefore restricted to the first quadrant leading to an abrupt 

change in direction at 90º, i.e., where the inflection points are reached. Clearly, the 

external orientation oscillates with higher amplitude than the internal phase. It is 

conjectured that this is caused by some damping effects promoted by the external 

interface. To quantify this, a normalized oscillation amplitude is defined as: 

𝛬∗ =
(𝛬𝜃 − 𝛬𝜔)

𝛬𝜃
 6-4 

where 𝛬𝑖 is the oscillation amplitude. Thus, 𝛬∗ measures the reduction in the oscillation 

amplitude of the internal bubble and is plotted in Figure 6-4 as a function of the 

diameter ratio. An inspection of the measurements reveals that 𝛬∗ increases as: 

𝛬∗ = 0 4(𝑑𝑏 𝑑𝑐𝑑⁄ )3 6-5 

Figure 6-4. Normalized amplitude as a function of the diameter ratio at terminal conditions. The 
solid line represents the fitting by Eq. 6-5. Symbols are displayed according to Table 5-1. 

 

Source: own authorship. 

As a certain period of time is required for the vorticity to diffuse within the 

external layer, a finite time is needed for the internal bubble to readapt to the new 
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conditions. Thus, a different time response is expected for the internal and external 

fluids in face of the shear stresses exerted by the flow. To verify this, Figure 6-5 shows 

the time evolution of 𝜃 and 𝜔 for the same cases shown in Figure 6-3 after the terminal 

stage is reached - the time 𝑡√2𝑔 𝑑𝑐𝑑⁄  has been reset to zero for comprehension 

purposes. Note that the normalized orientation angles 𝜃∗ = 𝜃 𝛬𝜃⁄  and 𝜔∗ = 𝜔 𝛬𝜔⁄  are 

shown. Thus, 𝜃∗ and 𝜔∗ span from 0 to 1 and a comparison between the response times 

of the compound drop can be made.  

Figure 6-5. Normalized orientation angles at terminal conditions for different diameter ratios (𝜽, 
filled marker; 𝝎, empty marker). Solid and dotted lines refer to Eq. 4-20 and Eq. 4-21, respectively. 

Blue and red markers represent 𝒕𝜽 and 𝒕𝝎 used in Eq. 6-6, respectively. 

  

a) 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0  0 b) 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0 80 

 

c) 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0 90 

Source: own authorship. 

Clearly, the measurements of 𝜔∗ are temporally shifted in comparison to 𝜃∗. For 

the case shown in Figure 6-5a (𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0  0) a significant time lag is identified. 
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Furthermore, the delay decreases with 𝑑𝑏 𝑑𝑐𝑑⁄  and is practically non existent for a large 

internal bubble (Figure 6-5c), where the measurements of 𝜃∗ and 𝜔∗ superpose. For 

practical reasons, the delay 𝜑𝜔 is defined as:  

𝜑𝜔 = 𝑡𝜔 − 𝑡𝜃 6-6 

where 𝑡𝜔 and 𝑡𝜃 are shown in Figure 6-5 as the red and blue dots, respectively. They 

represent the threshold of the linear behavior of 𝜔∗ and 𝜃∗ near the inflection point. 𝜑𝜔 

decreases with 𝑑𝑏 𝑑𝑐𝑑⁄  for all fluids analyzed, as shown in Figure 6-6a. 

Figure 6-6. Modeling of oscillatory motion parameters as a function of the diameter ratio. (a) 
Temporal delay; (b) Modified Strouhal number. The symbols are shown according to the key given 

in Table 5-1. The solid lines represent Eq. 6-7 (a) and Eq. 6-8 (b). 

  

a) b) 

Source: own authorship. 

Thus, the temporal lag seems to be proportional to the width of the external 

fluid, where the measurements can be fitted to the expression: 

𝜑𝜔 =   5 (1 −
𝑑𝑏
𝑑𝑐𝑑

)
1 4

 6-7 

allowing one to infer that the rate of shear dissipation within the external layer of the 

compound drops is inversely proportional to 𝐻, as expected. Note that the delay term 

is defined only for the internal bubble. 
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The frequency of the oscillation is now addressed. Figure 6-5 shows that both 

phases oscillate with same frequency of about 6 Hz. The frequency of the pendular 

motion is related to the parameter 𝑆𝑡𝑝𝐹𝑟
∗, given in Figure 6-6b as a function of the 

diameter ratio and is described by the simple expression: 

𝑆𝑡𝑝𝐹𝑟
∗ = 𝑘 (

𝑑𝑏
𝑑𝑐𝑑

)
𝑙

 6-8 

where 𝑘 = 0 6 and 𝑙 = 1 25. Thus, Eq. 4-20 and Eq. 4-21 can be used together with the 

above expression to provide the temporal behavior of 𝜃∗ and 𝜔∗, respectively. Figure 

6-5 shows that these predictions are in good agreement with the experimental 

measurements. 

6.1.3 Shape fluctuations 

The transient behavior of the shape deformation of the compound drop can give 

an insight as to how the pressure difference across the interface is balanced by 

interfacial tension (Becker et al., 1991). It is also interesting to connect the shape 

distortion to the pendular oscillation described earlier. For oscillating fluid particles, 

the shape may experience fluctuations in response to oscillations in the pressure field 

in the surrounding liquid (Lunde & Perkins, 1998). This is particularly interesting for 

the compound drops herein studied because of the internal interface that affects the 

distribution of pressure. 

The instantaneous measurements of the aspect ratio of the compound drop 𝜒𝑐𝑑 

and internal bubble 𝜒𝑏 are shown in Figure 6-7 for Oil 1 at terminal conditions. In all 

cases, the compound drop and internal bubble experience temporal fluctuations in 

shape. Sample images of the compound drops are shown at time intervals that 

correspond to the peaks and valleys of the aspect ratio. Clearly, the shape fluctuations 

evolve with the diameter ratio. However, 𝑑𝑏 𝑑𝑐𝑑⁄  apparently has a different effect with 

regard to the external and internal phases. The amplitude of the temporal oscillations 

of 𝜒𝑏 increases with 𝑑𝑏 𝑑𝑐𝑑⁄ . 𝜒𝑐𝑑, on the other hand, has higher oscillation amplitudes 
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when 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0 80 (Figure 6-7b) that practically disappear when 𝑑𝑏 𝑑𝑐𝑑⁄  reaches 0.90 

and the compound drop is nearly spherical. The external fluid behaves as a thin film, 

damping the deformation of the compound drop. 

Figure 6-7. Aspect ratio of the compound drop and internal bubble for different diameter ratios. 
Sample images are shown for each plot. Filled and empty symbols represent the external and 

internal fluids, respectively. The blue line is the eccentricity of the compound drop. 

  

a) 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0  0 b) 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0 80 

 

c) 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0 90 

Source: own authorship. 

To further illustrate this, Figure 6-7 shows the dimensionless eccentricity 𝜖 𝑑𝑐𝑑⁄  

of the compound drop. A coupling effect between these parameters can be observed. 

As expected, 𝜖 𝑑𝑐𝑑⁄  increases with 𝑑𝑏 𝑑𝑐𝑑⁄ ; however, significant fluctuations are 

noticed for a large internal bubble (Figure 6-7c) that expresses the damping effect in 

the amplitude of shape fluctuations. Thus, an uneven oscillation is observed for the 

compound drops. The shape measurements obtained for the other two fluids (Oil 2 

and Oil 3, according to Table 3-1) show a similar temporal behavior. 
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Figure 6-8 plots the instantaneous measurements of the aspect ratio and 

orientation angle (in degrees) for the external (left) and internal (right) phases. Note 

that the scale is the same in the two plots so it is possible to investigate which, if any, 

of the oscillation mechanisms is prevalent. The governing parameter to address this is 

clearly the diameter ratio. When 𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0  0, the measurements of 𝜒𝑐𝑑 barely 

change with 𝜃, which is also observed for the internal bubble. Once the internal bubble 

grows (𝑑𝑏 𝑑𝑐𝑑⁄ ≈ 0 80) a larger variation is noticed, but the scaterring of the 

measurements remains symmetrical, i.e., shape and orientation fluctuations are 

synchronized; thus, some organization is revealed for these oscillations. 

Figure 6-8. Aspect ratio of the compound drop (a) and internal bubble (b) in regard to 𝜽 and 𝝎 (in 
degrees) for different values of diameter ratio. Symbols are the same shown in Figure 6-3. 

  

a) b) 

Source: own authorship. 

When the internal bubble grows further and 𝑑𝑏 𝑑𝑐𝑑⁄ → 1 the magnitude of one 

oscillation mechanism – shape or orientation - seems to increase significantly 

compared to the other. Furthermore, the governing oscillation mechanism is opposite 

for each fluid phase. The oscillation of the external phase is governed by 𝜃, whereas 

the inner bubble experiences significant shape oscillations only. 

6.2 Wake structure 

From the sample PIV images shown in Figure 3-8 it is possible to characterize 

the wake behind a compound drop. To do so, the velocity fields in the 𝑥 − 𝑧 and 𝑥 − 𝑦 
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planes are obtained by means of the aforementioned cross-correlation technique. 

Accordingly, the normal and streamwise vorticities are calculated using Eq. 3-5.  

6.2.1 Velocity and vorticity fields 

The velocity field in the 𝑥 − 𝑧 plane and the normal vorticity 𝜔𝑦 are shown in 

Figure 6-9 for the cases listed in Table 3-3. The vorticity is presented in its 

dimensionless form as 𝜔𝑦 (𝑉𝑐𝑑 𝑑𝑐𝑑⁄ )⁄ . The structure of the wake clearly evolves with 

the diameter ratio 𝑑𝑏 𝑑𝑐𝑑⁄ . A mild perturbation is observed in the liquid for Case 1 

(shown in Figure 6-9a) where the wake presents an axisymmetric structure. The 

compound drop essentially drags a portion of the liquid as it flows. Typically, this is 

consistent with the wake observed in the steady motion of three-dimensional bodies 

at relatively small Reynolds number, i.e., small rigid spheres (Ghidersa & Dudek, 2000; 

Tomboulides & Orszag, 2000; Magnaudet & Mougin, 2007), spherical air bubbles in 

water (Magnaudet & Mougin, 2007; Ellingsen & Risso, 2001; Zenit & Magnaudet, 

2009), and liquid drops up to a few millimeters (Albert et al., 2015; Charin et al., 2019). 

Thus, when 𝑑𝑏 𝑑𝑐𝑑⁄  is not too large and 𝑅𝑒 is below the range of hundreds, the wake 

of a compound drop is similar to that of a common drop with same Reynolds number, 

in accordance with previous reports (Brunn & Roden, 1985). 

Figure 6-9b shows that unsteadiness appears when vorticity pockets are 

periodically shed from the wake when 𝑅𝑒 > 300. Although the planar symmetry is 

preserved - the wake sheds vorticity pockets along a straight line - and positive and 

negative values of 𝜔𝑦 do not alternate within each vortex thread, clearly suggesting an 

instability of the wake leading to the appearance of the path instabilities discussed 

earlier. The wake structure shown in (c) corroborates this observation, since the 

increase in the path oscillation amplitude develops in conjunction with alternate 

positive and negative values of the normal vorticity 𝜔𝑦 within each vortex thread. 

Together with an increase in the vortex shedding frequency, it is clear that the 

instability of the wake evolves with the Reynolds number 𝑅𝑒 for higher values of 

𝑑𝑏 𝑑𝑐𝑑⁄ . 
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Figure 6-9. Velocity (arrows) and vorticity (contour) fields of compound drops (Oil 1) for cases 1 (a), 
2, (b), and 3 (c) as listed in Table 3-3. Measurements near the compound drop are not considered. 

The black line represents the position of the overall centroid of the compound drop. 

 

              a)            b)                              c) 

Source: own authorship. 

The velocity and vorticity fields shown in Figure 6-9 suggest an uneven 

distribution of pressure in the liquid surrounding the compound drop that led to the 

pendular oscillation. To verify this hypothesis, Figure 6-10 shows the streamlines of 

the flow field around the compound drop for each case. The velocity vectors are also 

shown to improve the visualization. Focus is given to the segment of the wake that 

remains attached to the compound drop, at about 𝑧 𝑑𝑐𝑑⁄ < 3. The wake shown in (a) 

exhibits a symmetry with regard to an 𝑦 − 𝑧 plane - also defined as 𝑥 = 0 - that dictates 

its rectilinear path and straight inclination.  

Figure 6-10b (Case 2) shows that the attached eddy is no longer axisymmetric 

as an uneven liquid perturbation is noted. Apparently, the attached portion of the 

wake is primarily confined in the right segment and the symmetry axis of the 

compound drop is now inclined accordingly. A similar behavior is reported for 

ellipsoidal bubbles in a rocking motion (Lunde & Perkins, 1998; Lindt & de Groot, 

1974), where the minor axis forms an angle with the vertical direction that changes 
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periodically with time (Mougin & Magnaudet, 2001). A parallel can be drawn here, 

with the remark that the eccentric configuration leads to a relative motion between the 

centroids that is defined as the pendular motion. 

Figure 6-10. Streamlines of the flow past compound drops for cases 1 (a), 2 (b), and 3 (c). The 
velocity vectors and orientation angles of the compound drop are also displayed. 

   
   a)      b)      c) 

Source: own authorship. 

A subsequent symmetry breakdown is observed in (c) where the vortex pairs 

are no longer shed simultaneously and the confinement of fluid recirculation is 

intensified - in that instant, to the left segment of wake (𝑥 𝑑𝑐𝑑⁄ < 0) -. The compound 

drop is therefore inclined towards the region with major circulation. Moreover, the 

periodic nature of the vortex shedding - see the forming eddy at the opposite side 

(𝑧 𝑑𝑐𝑑⁄ → 0) - suggests that this inclination evolves periodically with time, as discussed 

earlier. The results described present similarities with the correspondent literature for 

typical drops and bubbles (Yang & Prosperetti, 2007; Albert et al., 2015). The instability 

of the wake triggers the unsteadiness of the flow (Charin et al., 2019; Zenit & 

Magnaudet, 2009).  

From the images shown in Figure 3-8 is possible to obtain the velocity field in 

the 𝑥 − 𝑦 plane and to calculate the streamwise vorticity from Eq. 3-5. Thus, it can be 

investigated whether 𝜔𝑧 evolves with the rising regime of the compound drop. Figure 

6-11 shows the velocity and vorticity fields for a compound drop in straight motion 

(Case 1). From the measurements shown for different times after the compound drop 
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Figure 6-11. Velocity and vorticity fields for Case 1 listed in Table 3-3. The arrows denote the 
velocity vectors in the 𝒙 − 𝒚 plane; the colormap shows different values of streamwise vorticity. 

The lines show contours of isovorticity: red, 𝝎𝒛 (𝑽𝒄𝒅 𝒅𝒄𝒅⁄ )⁄ = +𝟎 𝟒 and blue, 𝝎𝒛 (𝑽𝒄𝒅 𝒅𝒄𝒅⁄ )⁄ = −𝟎 𝟒. 

(a) 𝒕√𝟐𝒈 𝒅𝒄𝒅⁄ = 𝟎, (b) ≈ 𝟒, and (c) ≈ 𝟖. 

 

          a)                       b)                     c) 

Source: own authorship. 

Figure 6-12. Velocity and vorticity fields for Case 2 listed in Table 3-3. Symbols are the same as in 

Figure 6-11. (a) 𝒕√𝟐𝒈 𝒅𝒄𝒅⁄ ≈ 𝟑, (b) ≈ 𝟓, (c) ≈ 𝟖, (d) ≈ 𝟏𝟏, (e) ≈ 𝟏𝟒, and (f) ≈ 𝟏𝟔. 

 

                 a)  b)                       c) 

 

                    d)     e)                       f) 

Source: own authorship. 
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crosses the laser sheet, it is clear that no streamwise component of the vorticity is 

identified; the motion resembles a "sink" flow where a portion of the fluid is dragged 

by the compound drop, as shown earlier. These measurements of the flow field are 

similar to those obtained by Zenit & Magnaudet (2009) for a bubble in rectilinear 

motion. 

Figure 6-13. Velocity and vorticity fields for Case 3 listed in Table 3-3. Top (a - c) and bottom (d - f) 
rows relate to the first and second vortex pair, respectively. Symbols are the same as in Figure 6-11. 

(a) 𝒕√𝟐𝒈 𝒅𝒄𝒅⁄ ≈ 𝟑, (b) ≈ 𝟓, (c) ≈ 𝟖, (d) ≈ 𝟏𝟔, (e) ≈ 𝟐𝟏, and (f) ≈ 𝟐𝟔. 

 

                      a)    b)                      c) 

 

                d)                          e)                     f) 

Source: own authorship. 

However, for the transition regime (Case 2) shown in Figure 6-12, two discrete 

pockets of streamwise vorticity 𝜔𝑧 with opposite signs are clearly identified. The 

structure also evolves with time, where the strength of the swirling regions 

progressively weakens after the compound drop crosses the plane. For visualization 

purposes, a threshold limit of 𝜔𝑧 (𝑉𝑐𝑑 𝑑𝑐𝑑⁄ )⁄ = ±0 4 is shown in Figure 6-12 as the red 

and blue lines. The area within the threshold curve clearly reduces with time. 
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Figure 6-13 shows that further instabilities arise for the oscillatory regime (Case 

3) of the compound drop. Multiple swirling regions are detected in the wake structure. 

Furthermore, at 𝑡√2𝑔 𝑑𝑐𝑑⁄ ≈ 16 an additional vortex structure is identified at a 

different position in the 𝑥 − 𝑦 plane, corresponding to a secondary vortex pair that 

sheds from the wake. The positive and negative values of 𝜔𝑧 also appear to be alternate 

when compared to the first vortex pair, contributing to the instability of the wake. 

6.2.2 3-D rendition of the wake structure 

From the vorticity fields it is possible to reconstruct the 3-D wake structure of 

the compound drops. An instructive visualization of the wake is shown in Figure 6-14 

for the transitory rising regime. The wake was assembled by converting the threshold 

values of 𝜔𝑧 (𝑉𝑐𝑑 𝑑𝑐𝑑⁄ )⁄ = ±0 4  into slices in the 𝑧 plane by simply estimating the 

vertical position of the compound drop as 𝑧 = 𝑉𝑐𝑑𝑡. Note that this approach does not 

take the fluctuations in 𝑉𝑐𝑑 into consideration and is therefore a simplified 

reconstruction. Furthermore, since the measurements of 𝜔𝑧 are obtained after the 

compound drop crosses the plane, a Lagrangian vorticity field can be considered only 

in the vicinity of the compound drop, represented in Figure 6-14 as a sphere. 

The wake consists of two vortex tubes of opposite sign that thin out with time 

as a consequence of viscous dissipation of the streamwise vorticity; the wake of the 

compound drop extends up to approximately 12 times its diameter. Note that this 

wake structure is similar to that observed for a zigzagging bubble (Zenit & Magnaudet, 

2009), with the remark that the compound drops herein considered remain essentially 

spherical. Figure 6-15 confirms the evolution of the wake instability for compound 

drops in the fully-developed oscillatory motion (Case 3). The shedding and lateral 

migration of vortex pairs contributes to the loss of planar symmetry of the wake when 

compared to the transition stage of the oscillation. The direction of the discrete swirling 

regions now alternate in each vortex pair. Therefore, the oscillatory motion of the 

compound drop is intermittent, given the periodic nature of the vortex shedding. A 

similar flow structure was numerically investigated by Albert et al. (2015) for common 

drops rising in water at high Reynolds numbers. 
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Figure 6-14. Reconstructed isovorticity surfaces: the green and yellow colors show surfaces of iso-
streamwise-vorticity with values of 𝝎𝒛 (𝑽𝒄𝒅 𝒅𝒄𝒅⁄ )⁄ = +𝟎 𝟒 and 𝝎𝒛 (𝑽𝒄𝒅 𝒅𝒄𝒅⁄ )⁄ = −𝟎 𝟒, respectively. 

(a), (b), and (c) show different views for the same flow (Case 2, from Table 3-3.) A sphere is 
positioned at (0,0,0) to represent the compound drop. 

   

          a)              b)             c) 

Source: own authorship. 

Figure 6-15. Reconstructed isovorticity surfaces for Case 3, listed in Table 3-3. The symbols are the 
same as in Figure 6-14. 

   

       a)             b)              c) 

Source: own authorship. 
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6.2.3 Liquid-induced velocity 

So far, the wake of a compound drop appears to be similar to typical particles, 

e.g., rigid spheres, gas bubbles, and liquid drops. However, it should be noted that the 

pendular oscillation is absent in such particles because of their single-phase structure. 

Thus, to investigate the structure of the wake further, the velocity induced in the 

surrounding liquid by the compound drop is analyzed; possibly, the pendular 

oscillation affects the way that the compound drop disturbs the continuous liquid. 

The longitudinal velocity profile shown in Figure 6-16a provides further insight 

into how the rising regime of the compound drop affects the liquid perturbation. The 

vertical component of the velocity, 𝑣𝑧, is measured along the rising paths of the 

compound drop - black solid line in Figure 6-9 - and shown as a function of the 

normalized vertical position, 𝑧 𝑑𝑐𝑑⁄ . The rising regime is crucial in the determination 

of the longitudinal velocity decay. As one might expect from the velocity fields shown 

in Figure 6-9, an asymptotic decrease in 𝑣𝑧 𝑉𝑐𝑑⁄  is observed for Case 1 suggesting a long 

wake, surprisingly similar to the one of an ellipsoidal bubble. Aside for the rectilinear 

case, 𝑣𝑧 is actually greater than 𝑉𝑐𝑑 when 0 < 𝑧 𝑑𝑐𝑑⁄ < 1. A similar behavior has been 

reported for rising bubbles (Ellingsen & Risso, 2001; Roig et al., 2012).  

Figure 6-16. (a) Longitudinal velocity along the path of the compound drop (solid lines in 
Figure 6-9) for the same cases shown in previous plots (     Case 1,      Case 2,      Case 3). Dashed, 

dotted, and solid lines (black color) represent spline fits for cases 1, 2, and 3, respectively. Blue and 
red lines show the predictions by Ellingsen & Risso, 2001 for an ellipsoidal bubble in an inviscid 

and viscous flow, respectively. (b) Transverse profiles of 𝒗𝒛 for cases 1 (black), 2 (red), and 3 (blue). 
Solid and dotted lines represent the transverse profiles at 𝒛 𝒅𝒄𝒅⁄ = 𝟏 and 𝒛 𝒅𝒄𝒅⁄ = 𝟏 𝟑, respectively. 

  

a) b) 

Source: own authorship. 
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A rapid decay is observed for Case 2 when 𝑧 𝑑𝑐𝑑⁄ < 4 followed by two peaks in 

𝑣𝑧 at 𝑧 𝑑𝑐𝑑⁄ ≈ 5 and 9 5 that coincide with the locations of the vertical position of the 

vortex pairs. For Case 3, a swift decay in 𝑣𝑧 𝑉𝑐𝑑⁄  is observed; it arises from the lateral 

migration of the vortex pairs, now located farther away from the rising path of the 

compound drop. A direct comparison can also be made with the theory of potential 

flow (extracted from Ellingsen & Risso (2001) for an ellipsoidal bubble) that predicts a 

rapid decrease in 𝑣𝑧 𝑉𝑐𝑑⁄  due to the absence of a wake. This theory is known to describe 

well the wake of spherical bubbles at high Reynolds numbers (Biesheuvel & 

Winjgaarden, 1984). However, this is not valid for the compound drops and the 

pendular oscillation probably plays some role here.   

The transverse profile of the liquid velocity 𝑣𝑧 - normalized by 𝑉𝑎𝑥𝑖𝑠 = 𝑣𝑧𝑥=0 - is 

shown in Figure 6-16b for two positions within the region corresponding to the 

recirculating wake (𝑧 𝑑𝑐𝑑⁄ = 1 and 1 3). The horizontal position 𝑥 𝑑𝑐𝑑⁄  has been 

normalized to converge to zero at the center of the wake for all cases. The rising regime 

affects mainly the longitudinal profile since the measurements shown in Figure 6-16b 

overlap for all cases analyzed. Thus, the dissipation of momentum is restricted to the 

𝑥 direction in which an exponential decay is observed for all cases. From the 

measurements hereby described, the wake of the compound drops with pendular 

oscillation appears to be similar to a typical single-fluid bubble, at least in terms of the 

liquid-induced velocity. 

6.2.4 Lift force inferred from the vorticity in the wake 

Now, the lift force acting on a compound drop is analyzed; the goal here is to 

check whether this is the suitable parameter to relate to the pendular oscillation 

observed for the compound drops. As pointed out by Magnaudet (1997), the 

asymmetry of the flow makes the determination of the lift force extremely difficult and 

only a rough quantitative estimation can be obtained experimentally. However, it is 

possible from the measurements to obtain the lift force 𝑭𝐿 from the simplified model 

proposed by de Vries et al. (2002) that estimates the lift force exerted in an oscillating 

bubble by two inviscid vortices as:  
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𝑭𝑳 = 𝜌𝜏𝑙𝑐𝑽𝒄𝒅 6-9 

where 𝑙𝑐 is the distance between the vortex centers and 𝜏 is the circulation of each 

vortex. Both parameters can be obtained directly form Figure 6-12 and Figure 6-13. The 

streamwise component of the vorticity is diffused throughout the swirling region 

limited by 𝜔𝑧 (𝑉𝑐𝑑 𝑑𝑐𝑑⁄ )⁄ = ±0 4. Therefore, the circulation of each vortex is obtained 

from the surface integral within the aforementioned threshold limiting curve:  

𝜏 = ∫ �⃗⃗� ∙ 𝑑�⃗� = ∫ 𝜔𝑧𝑑𝑆
𝑆

 6-10 

Thus, the fluid circulation changes with time given that the cross-sectional area 

of the vortical structure diminishes due to viscous dissipation. The temporal evolution 

of 𝜏 is shown in Figure 6-17.  

Figure 6-17. Dimensionless circulation of the streamwise vortices calculated according to Eq. 6-10.   
(    ) and (    ) show the measurements for cases 2 and 3, respectively. Filled and empty symbols 

correspond to the positive and negative vortices, respectively. 

 

Source: own authorship. 

Note that the fluid circulation is made dimensionless against (𝑉𝑐𝑑𝑑𝑐𝑑). The 

circulation depends greatly on the rising regime. For the transitory regime (Case 2), 

the absolute value of 𝜏 (𝑉𝑐𝑑𝑑𝑐𝑑)⁄  reaches a maximum of roughly 2 at 𝑡√2𝑔 𝑑𝑐𝑑⁄ ≈ 3, 

followed by a smooth decaying trend. As for the oscillatory regime (Case 3), a peak in 
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the measurements is clearly identified at 𝑡√2𝑔 𝑑𝑐𝑑⁄ ≈ 3 8 for which 𝜏 (𝑉𝑐𝑑𝑑𝑐𝑑)⁄ ≈  . As 

expected, the circulation increases substantially for the oscillatory regime. Zenit & 

Magnaudet (2009) and de Vries et al. (2002) obtained a similar temporal evolution of 

𝜏 (𝑉𝑐𝑑 𝑑𝑐𝑑⁄ )⁄  for zigzagging bubbles. For the compound drops studied here, the 

measurements correspond to a value of 𝜏 of 𝑂(0) - same order of magnitude - for the 

transitory case, and 𝑂(1)  - one order of magnitude higher - compared to the 

measurements by Zenit & Magnaudet (2009) and de Vries et al. (2002), respectively. 

Finally, the lift force can be calculated from Eq. 6-9 using the measurements 

shown above. Note that for the vortical structures presented here, 𝑙𝑐 𝑑𝑐𝑑⁄ ≈ 1 and ≈ 2 

for cases 2 and 3, respectively, that apparently varied randomly with time. However, 

the strength of the fluid circulation varies significantly for different time instants 

during the flow; therefore, the estimated values of 𝑭𝑳 are shown in Figure 6-18 as a 

function of time. Note that the lift force is normalized by the Archimedes force (Eq. 

2-1). The lift force clearly exhibits a maximum at the same time instants of 𝜏, for which 

𝑭𝑳 𝑭𝒈⁄ ≈ 8 and ≈ 28 for cases 2 and 3, respectively. The time averaged lift force, �̅�𝐿, is 

calculated as follows: 

�̅�𝐿 =
1

𝑇
∫ 𝐹𝐿 (𝑡√2𝑔 𝑑𝑐𝑑⁄ ) 𝑑 (𝑡√2𝑔 𝑑𝑐𝑑⁄ )
𝑇

0

 6-11 

that results in 5  9 × 10−5   for Case 2 and 5 25 × 10−4   for Case 3, corresponding to 

a value of �̅�𝐿 of 𝑂(1), about one order of magnitude higher than Case 2. Note that 𝑇 is 

set to 7 in both cases. The measurements of the lift force shown here for a rising 

compound drop - considering Case 2 - is of same order of magnitude to those obtained 

by Zenit & Magnaudet (2009) for a zigzagging bubble (�̅�𝐿 = 2 98 × 10−5  ). Thus, the 

lift force acting on a compound drop is similar to that of a typical bubble at similar 

motion conditions; the compound nature of the drop appears to have little effect on 

this parameter. Therefore, the lift force on its own cannon be directly associated to the 

effect of the wake instability and the pendular oscillation.  
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Figure 6-18. Lift force acting on a compound drop calculated according to Eq. 6-10. The data is 
normalized by the Archimedes force (Eq. 2-1). The symbols are the same shown in Figure 6-17. 

 

Source: own authorship. 

It should once again be stressed that the lift force �̅�𝐿 obtained from this 

methodology is a rough estimation, given that the flow field measurements resemble 

a Lagangrian field only in the vicinity of the compound drop. Moreover, de Vries et al. 

(2002) considered only the lift force acting on a bubble by two infinitely long vortices 

in an inviscid flow. Nevertheless, the estimation of the lift force acting on a compound 

drop contributes to the understanding of the oscillation dynamics. 

6.2.5 Coupling between wake dynamics and pendular oscillation 

Based on the aforementioned observations, a hypothesis to relate the 

unsteadiness of the wake to the pendular oscillation is now suggested. Thus far, the 

structure of the wake resembles that of other typical particles. Therefore, despite the 

fact that the onset of the oscillations appears to be caused by the instability of the wake, 

it remains difficult to associate this behavior to the compound nature of the drop.  

Firstly, the frequency of the path instabilities is addressed. According to Figure 

3-7, the compound drops oscillate with a frequency of roughly 6 Hz, regardless of their 

diameter ratio. Thus, to consider the effect of inertia observed for larger internal 

bubbles, the Roshko number is considered, defined as:  
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𝑅𝑜 = (
𝑓𝑑𝑐𝑑
𝑉𝑐𝑑

)𝑅𝑒 6-12 

that includes the effect of inertia and oscillation frequency in the characterization of 

the wake.   

Figure 6-19. Roshko number as a function of the Reynolds number (symbols according to Table 
5-1). The red line shows the correlation obtained by Ormières & Provansal (1999) for a rigid sphere. 

 

Source: own authorship. 

The Roshko number is shown in Figure 6-19 as a function of the Reynolds 

number. Note that 𝑅𝑜 is calculated in terms of the frequency of path oscillations. To 

check whether the path of a compound drop is similar to a rigid sphere, Figure 6-19 

also shows the correlation obtained by Ormières & Provansal (1999) (shown in Figure 

6-19 as the red line). The authors associated the oscillatory path of the sphere to the 

turbulence in its wake and suggested that the inertia of the oscillation evolves as:  

𝑅𝑜 = −48 2 + 0 391𝑅𝑒 − 3 6 × 10−4𝑅𝑒2 6-13 

that agrees well with the measurements. Thus, from a direct analysis of the oscillating 

path of the compound drops, its behavior appears to be similar to a rigid sphere with 

same Reynolds. 
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Next, the frequency of the shedding of vortices in the wake of the compound 

drop is investigated. The development of unsteadiness is further analyzed by the 

evolution of the Strouhal number: 

𝑆𝑡𝑠 =
𝑓𝑠𝑑𝑐𝑑
𝑉𝑐𝑑

 6-14 

shown in Figure 6-20 as a function of the Reynolds number. Note that the frequency 

of vortex shedding, 𝑓𝑠, is used instead of the pendular frequency defined in section 6.1. 

An increase of roughly 60 % has been observed from 𝑅𝑒 ≈ 320 (Case 2) to 𝑅𝑒 ≈ 415  

(Case 3) and is approximately 0.22 for this value of 𝑅𝑒. Moreover, the Strouhal of the 

compound drops evolves as 𝑆𝑡𝑠 ∝ 𝑅𝑒1 7. 

Now, the influence of the fluid inclusion in the wake dynamics is reported. 

Figure 6-20 also shows the evolutions of Strouhal number for a rigid sphere (black 

dotted line) and an ellipsoidal bubble (solid blue line). Both trends underestimate the 

measurements herein presented - specially for Case 3 - suggesting a different behavior 

of the shedding wake. Moreover, the Strouhal number of the compound drops evolves 

as 𝑆𝑡𝑠 ∝ 𝑅𝑒1 7 instead of 𝑅𝑒0 6 (bubble) and 𝑅𝑒1 (sphere).  This is interesting because it 

contrasts with the previous measurements that suggested a similarity between the 

structure of the wake of the compound drops and other common particles. It is now 

suggested that the pendular oscillation is directly associated to this behavior. 

In an attempt to describe the nature of the oscillations it is suggested, based on 

the pendular behavior described above, to connect the frequency of vortex shedding 

𝑓𝑠 to the frequency of the pendular oscillation using the harmonic solution for an 

inviscid pendulum: 

𝑓𝑠 =
1

2𝜋
√
𝑔

𝐻
 6-15 
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where the bottom width 𝐻 of the external fluid seems to be a suitable parameter to 

model the characteristic length of the pendulum since the internal bubble is distorted. 

Note that Eq. 6-15 is similar to Eq. 5-3 defined earlier to investigate the path 

instabilities. The overestimation indicates viscous damping. 

Figure 6-20. Strouhal number as a function of the Reynolds number. Filled symbols (according to 
Table 5-1) correspond to Case 2 (𝑹𝒆 ≈ 𝟑𝟐𝟎) and Case 3 (𝑹𝒆 ≈ 𝟒𝟏𝟓); The dotted line shows the trend 
for rigid spheres (Clift et al. (1978) and Sakamoto & Haniu (1990)). Solid lines show the trends for 

an ellipsoidal bubble (Magnaudet & Mougin, 2007) (blue), Eq. 6-15 (blak) and Eq. 6-16 (red). 

 

Source: own authorship. 

To verify this assumption, the model proposed by Mathai et al. (2019) for a 

buoyant pendulum can be considered. The authors proposed that viscous drag 

reduces the frequency of the oscillation and a damped frequency can be obtained: 

𝑓𝑑 = 𝑓𝑠𝑓
∗ 6-16 

where 𝑓∗ is a normalized oscillation frequency that measures the extent of viscous 

damping.  From the data by Mathai et al. (2019), as long as the oscillation amplitude is 

not too large, 𝑓∗ depends only on the density ratio of the pendulum, i.e., 𝜌𝑐𝑑 𝜌⁄ : 

𝑓∗ = 1 − 0 92 (𝜌𝑐𝑑 𝜌⁄ ) 6-17 

Figure 6-20 shows that Eq. 6-16 resembles the trend of the data herein presented. 

However, it under predicts the measurements. Note that this comparison is 
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qualitatively only, insomuch as the compound drops herein studied are different from 

the system considered by Mathai et al. (2019). 

6.3 Flow structures 

From the velocity fields shown in Figure 6-12 and in Figure 6-13, it is possible 

to characterize the wake of the compound drops further by means of the flow 

structures present in their wake. Focus is now given to the oscillatory cases, for which 

a significant transient behavior is expected in the dynamics of the wake. 

6.3.1 Velocity fluctuations 

The velocity and vorticity fields shown in Figure 6-12 and in Figure 6-13 suggest 

convoluted flow structures in the wake that dissipate with time. To verify this, Figure 

6-21 shows the instantaneous measurements of the velocity components, considering 

Case 2, as listed in Table 3-3. The values of 𝑣𝑥 and 𝑣𝑦 are shown at the center of each 

vortex (see Figure 6-12), approximately at (𝑥 𝑑𝑐𝑑⁄ = 0, 𝑦 𝑑𝑐𝑑⁄ = −0 5) and (𝑥 𝑑𝑐𝑑⁄ = 0, 

𝑦 𝑑𝑐𝑑⁄ = +0 5). Note that this is an approximation given that the position of the center 

of the vortex changes as the vorticity dissipates. 

The velocity fluctuations in the 𝑥 and 𝑦 directions, denoted respectively by 𝑣′𝑥 

and 𝑣′𝑦, are obtained by using the Reynolds decomposition: 

𝑣′𝑥(𝑥 𝑦 𝑡) = 𝑣𝑥(𝑥 𝑦 𝑡) − �̅�𝑥(𝑥 𝑦) 6-18 

𝑣′𝑦(𝑥 𝑦 𝑡) = 𝑣𝑦(𝑥 𝑦 𝑡) − �̅�𝑦(𝑥 𝑦) 6-19 

where �̅�𝑥(𝑥 𝑦) and �̅�𝑦(𝑥 𝑦) are the time-averaged values, shown in Figure 6-21 as the 

black solid line. The values of the velocity components are fluctuating with time. 

Moreover, |�̅�𝑦 �̅�𝑥⁄ |
𝑦 𝑑𝑐𝑑⁄ =−0 5

≈ 0 3 and |�̅�𝑦 �̅�𝑥⁄ |
𝑦 𝑑𝑐𝑑⁄ =0 5

≈ 0 25 for the vortex with 

negative and positive values of streamwise vorticity, respectively. This difference 

between the magnitudes of each velocity component is presumably a consequence of 

the lateral migration in the 𝑥 direction that increases this velocity component. 
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Figure 6-21. Velocity fluctuations in the 𝒙 − 𝒚 plane for Case 2, as listed in Table 3-3. Top row: 𝒙 
direction in the positive (a) and negative (b) vortices. Bottom row: 𝒚 direction in the positive (c) and 

negative (d) vortices. The temporal measurements are obtained from Figure 6-12 at the point of 
highest vorticity, near the center of each vortex. The black solid line shows the temporal average. 

  

a) b) 

  

c) d) 

Source: own authorship. 

A similar behavior is depicted for the wake behind the compound drop 

considering Case 3, whose velocity fluctuations are shown in Figure 6-22. For this 

increased complex structure of the wake, both 𝑣𝑥 and 𝑣𝑦 apparently present alternate 

positive and negative magnitudes. Thus, despite �̅�𝑥(𝑥 𝑦) and �̅�𝑦(𝑥 𝑦) being closer to 

zero for Case 3, the amplitude of the velocity fluctuations is higher, revealing a more 

complex flow within each vortex. Note that only the portion of the wake that remains 

attached to the compound drop is analyzed, roughly at 𝑧 𝑑𝑐𝑑⁄ < 5. 

The transverse profile of the velocity fluctuations may contribute to the analysis 

of the flow structures in the wake and to investigate the effects of viscous dissipation. 

Figure 6-23 shows the transverse profile in the 𝑦 direction of the instantaneous 
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measurements of the velocity components at 𝑥 𝑑𝑐𝑑⁄ = 0. The measurements are 

obtained from the velocity field shown in Figure 6-12, considering Case 2, as listed in 

Table 3-3. The time-averaged values �̅�𝑥 and �̅�𝑦 are also shown (empty markers); the 

errorbars represent the amplitude of the velocity fluctuations. 

Figure 6-22. Velocity fluctuations in the 𝒙 − 𝒚 plane for Case 3, as listed in Table 3-3. Top row: 𝒙 
direction in the positive (a) and negative (b) vortices. Bottom row: 𝒚 direction in the positive (c) and 

negative (d) vortices. The temporal measurements are obtained from Figure 6-12 at the point of 
highest vorticity, near the center of each vortex. The black solid line shows the temporal average. 

  
a) b) 

  
c) d) 

Source: own authorship. 

From Figure 6-23a it can be seen that 𝑣𝑥 has a peak at 𝑦 𝑑𝑐𝑑⁄ ≈ 0 corresponding 

to the gap between the positive and negative vortices (see Figure 6-12) where 𝜔𝑧 → 0 

and the velocity vectors are aligned in the 𝑥 direction. On the other hand, 𝑣𝑦 (Figure 

6-23b) has a peak and a valley at the vortex centers at 𝑦 𝑑𝑐𝑑⁄ ≈ −0 5 and 𝑦 𝑑𝑐𝑑⁄ ≈ +0 5, 

respectively. Moreover, from Figure 6-23 the effect of viscous dissipation is clear, 

where the amplitude of the fluctuations of 𝑣𝑥 and 𝑣𝑦 decrease in the 𝑦 direction. 
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Figure 6-23. Transversal profile of the velocity fluctuations in the 𝒙 (a) and 𝒚 (b) directions for Case 
2 (Table 3-3). The position in the 𝒙 direction is fixed at 𝒙 𝒅𝒄𝒅⁄ = 𝟎. The empty markers show the 

time averaged velocity for each position in the 𝒚 direction. The blue error bars indicate the 

amplitude of the velocity fluctuations. The velocities are made dimensionless by 𝑽𝒂𝒙𝒊𝒔 = |𝒗𝒙(𝒚=𝟎)|. 

  

a) b) 

Source: own authorship. 

Figure 6-24. Transversal profile of the velocity fluctuations in the 𝒙 (a) and 𝒚 (b) directions for Case 
3 (Table 3-3). The position in the 𝒚 direction is fixed at 𝒙 𝒅𝒄𝒅⁄ = −𝟐. The symbols are the same from 

Figure 6-23. The velocities are made dimensionless by 𝑽𝒂𝒙𝒊𝒔 = |𝒗𝒙(𝒚=𝟎)|. 

  

a) b) 

Source: own authorship. 

A similar profile is identified for the fully-developed oscillatory regime (Case 3 

from Table 3-3), shown in Figure 6-24. The instantaneous measurements of the velocity 

components are obtained from the velocity and vorticity fields shown in Figure 6-13. 

The position in the 𝑥 direction is now fixed at 𝑥 𝑑𝑐𝑑⁄ = −2, the approximate location of 

the center of the vortex pair. The resemblance to the velocity profile shown in Figure 
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6-23 is striking. The time-averaged velocities �̅�𝑥 and �̅�𝑦 show distinguished inflection 

points between the positive and negative vortices and in the vortex centers, 

respectively. The difference lies in the magnitude of the velocity fluctuations. The 

rapid decay in the 𝑦 direction suggests a higher rate of viscous dissipation for the 

oscillatory regime. 

6.3.2 Turbulence intensity and Reynolds stresses 

The fluctuating velocity profiles shown in Figure 6-23 and Figure 6-24 suggest 

a complex flow structure in the discrete pockets of streamwise vorticity in the wake of 

the compound drop. To quantify this, the turbulence intensity 𝐼 is calculated as: 

𝐼 = [
1

𝑇
∫ [𝑣′(𝑥 𝑦 𝑡)]2𝑑 (𝑡√2𝑔 𝑑𝑐𝑑⁄ )
𝑇

0

]

1 2⁄

 6-20 

where 𝑣′(𝑥 𝑦 𝑡) = [(𝑣′𝑥(𝑥 𝑦 𝑡))
2
+ (𝑣′𝑦(𝑥 𝑦 𝑡))

2

]
1 2⁄

 is the fluctuation in the velocity 

magnitude. Figure 6-25a confirms the peak in the turbulence intensity near the center 

of the vortex pair at 𝑦 𝑑𝑐𝑑⁄ ≈ 0, particularly for Case 3 where 𝐼 is of order 𝑂(1) when 

compared to Case 2. The dissipation of 𝐼 in the 𝑦 direction occurs swiftly and 𝐼 → 0 

when 𝑦 𝑑𝑐𝑑⁄ > 2. 

The turbulence intensity 𝐼 provides the averaged profile of the velocity 

fluctuations and does not necessarily take the swirling within each vortex into account. 

The behavior of the Reynolds stresses calculated as: 

𝑣𝑥′𝑣𝑦′̅̅ ̅̅ ̅̅ = −
1

𝑇
∫ [𝑣𝑥

′(𝑥 𝑦 𝑡) ∙ 𝑣𝑦
′ (𝑥 𝑦 𝑡)]𝑑 (𝑡√2𝑔 𝑑𝑐𝑑⁄ )

𝑇

0

 6-21 

can provide further information of the flow at the vortex centers since this parameter 

considers the fluctuations of each component individually. The profile of the Reynolds 

stresses is shown in Figure 6-25b where two inflections points are identified, roughly 

at 𝑦 𝑑𝑐𝑑⁄ = −0 5 and +0 5, i.e., near the vortex centers. Thus, the fluctuations in the 
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velocity components may be a consequence of the streamwise vorticity with 𝑣𝑥′𝑣𝑦′̅̅ ̅̅ ̅̅ ∝

𝜔𝑧. As aforementioned, from the temporal behavior described earlier, it may be 

inferred that some turbulent effects are identified in the wake of an oscillating 

compound drop. 

Figure 6-25. Transversal profile of the turbulence intensity (a) and Reynolds stresses (b) obtained 
from Eq. 6-20 and Eq. 6-21, respectively.  (    ) and (    ) show the measurements for cases 2 and 3, 

respectively, as listed in Table 3-3. The fixed 𝒙 position is the same from previous plots. 

  

a) b) 

Source: own authorship. 

6.4 Final remarks 

In this chapter, the physical mechanisms governing the motion transition of the 

compound drop from straight to oscillatory motion were experimentally investigated 

by using flow visualization techniques. Measurements of the path, shape, and 

orientation of the compound drop as a function of the diameter ratio 𝑑𝑏 𝑑𝑐𝑑⁄  were 

reported. Furthermore, the behavior of the continuous phase was also investigated. 

The measurements suggest that the rising path of the compound drop evolved 

from rectilinear to oscillatory depending on the diameter ratio. Regardless of the 

motion regime, the compound drops presented an eccentric configuration caused by 

the migration of the internal bubble promoted by buoyancy.  

A relative motion was observed for the external centroid with regard to the 

internal phase that led to a pendular oscillation. The inner bubble oscillated with 
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reduced amplitude and with a temporal delay that was inversely proportional to the 

thickness of the external layer. Shape fluctuations were also observed and they 

appeared to have the same magnitude as the pendular oscillation as long as the 

internal bubble is not too large (𝑑𝑏 𝑑𝑐𝑑⁄ → 1), suggesting a coupled oscillation. 

Otherwise, one oscillation mechanism becomes dominant for each fluid: shape and 

orientation oscillations for the internal and external fluids, respectively. 

The instability of the wake is at the onset of the unsteadiness of the motion. 

Experiments using a PIV system were conducted and they showed that the 

axisymmetric wake became unstable when, for larger Reynolds numbers, the diameter 

ratio exceeded a critical value of 𝑑𝑏 𝑑𝑐𝑑⁄ > 0 6, approximately. This claim was 

supported by the measurements of the liquid-induced velocity as well as the 

distribution of normal and streamwise vorticities. Although a similar behavior has 

been extensively reported in literature for typical bubbles, the main difference is that 

in the case of the compound drops the transition is not governed by the shape 

distortion. Instead, the diameter ratio 𝑑𝑏 𝑑𝑐𝑑⁄  together with the Strouhal number seem 

to be more suitable to predict the onset of unsteadiness.  

The structure and the dynamics of the wake strongly evolved with 𝑑𝑏 𝑑𝑐𝑑⁄ . For 

a compound drop in rectilinear motion, a long wake is reported; essentially two vortex 

filaments of streamwise vorticity that dissipated along the path. Transition occurred 

when discrete pockets of vorticity were shed in the wake, as the symmetry axis of the 

compound drop became inclined with regard to the vertical direction. Further 

instabilities arose once the oscillatory motion developed at which point the vortex 

pairs have alternate vorticity signs. 

A different evolution of the shedding frequency was observed for the 

compound drops and the Strouhal number 𝑆𝑡 evolved as 𝑅𝑒1 7, substantially higher in 

comparison to bubbles and spheres and suggesting a distinguished wake structure. It 

is hinted that the pendular oscillation was responsible for this behavior and a simple 

model of 𝑆𝑡 that presented a good agreement with the measurements was proposed. 

However, further analysis about this matter is encouraged. 
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The wake of an oscillating compound drop developed two vortex tubes of 

streamwise vorticity that promoted a lateral force that contributed to the lateral 

migration of the compound drop. Measurements of the velocity and vorticity fields 

have shown that the wake behind a compound drop is similar to that of an oscillating 

bubble. At the onset of the oscillation, the wake still presented a planar symmetry; the 

cross-sectional area of the vortex tubes then reduced as a consequence of the viscous 

dissipation. Once the path instability of the compound drop evolved, the planar 

symmetry is lost and a fully unstable and intermittent wake was developed. 

Measurements of the fluctuating velocity field in the wake suggested further 

complex flow structures behind the compound drop. Despite the clear evolution of the 

magnitude of the fluctuations with the instability of the wake, details regarding the 

physical origin of the fluctuations still remain unclear. Further analysis to investigate 

whether the fluctuations in velocity arose from turbulence or organized motion is 

under conduction. Moreover, despite the similarities in the triggering of the instability 

of the wake with typical flows involving single-fluid bubbles, the physical 

mechanisms involved in the development of the wake structure are still not completely 

understood. 
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7 CONCLUSIONS AND PERSPECTIVES 

The dynamics of compound drops rising at high Reynolds numbers were 

investigated. To the best of the current knowledge, the effect of inertia in the motion 

of the compound drops had not yet been investigated to this date. By using the high-

speed shadowgraph and particle image velocimetry (PIV) techniques, measurements 

of the path, shape, velocity, drag, and the structure of the wake were reported.  

The size of the internal bubble determined the rising path of the compound 

drop, which evolved from rectilinear to oscillatory for all fluids tested. The compound 

drops showed a distinguished mechanism of oscillation: the external centroid moves 

around the internal one following a pendular behavior. The compound and eccentric 

nature of the drops studied here were crucial in the development of this oscillation 

regime. Measurements of the Strouhal number corroborated this observation, where 

the distinguished evolution from typical particles, e.g., bubbles, drops, and spheres, 

suggested a different oscillation mechanism. The shape of both the internal and 

external phases of the compound drop have shown to be largely dependent on their 

compound structure. Additional dimensionless parameters were defined to account 

for the secondary pressure jump present at the second interface, leading to a better 

characterization of their shape. 

The unsteadiness of the wake is at the onset of path instabilities. When the size 

of the inner bubble reaches a critical value, the rate of vorticity generated at the bottom 

segment of the compound drop increases beyond the stability threshold; the wake is 

no longer symmetrical because of symmetry breakdowns induced by fluid separation. 

The rising regime of the compound drops greatly affected the parameters of the 

motion, in particular the drag coefficient. For the case when the path is straight, the 

drag coefficient behaved similarly as a rigid sphere; the inner bubble induced only a 

slight decrease of this parameter. However, for the oscillatory compound drops, the 

drag coefficient seemed to be governed by the diameter ratio instead of the Reynolds 

number. Clearly, the instability of the wake contributed to this behavior. 
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Despite the observations herein presented, the understanding of the dynamic 

behavior of rising compound drops is far from complete. For instance, the role played 

by surface contamination should be investigated with more detail. A more complete 

modeling for the drag coefficient should consider the internal circulation instead of 

averaged fluid properties. Moreover, details regarding the symmetry breakdown in 

the wake of the compound drop would contribute to the characterization of the motion 

transition. Some of these features are difficult to investigate experimentally and 

require computational methods. Hopefully, other researchers may address some of 

these issues with more detail in the future. 
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