UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL - PPGEC

JÉSSICA KLEMM NUERNBERG

PROPOSTA DE MODELAGEM DE PAVIMENTOS PERMEÁVEIS DO TIPO C COMO SUB-BACIAS REGULARES EQUIVALENTES

DISSERTAÇÃO

PATO BRANCO 2021

JÉSSICA KLEMM NUERNBERG

PROPOSTA DE MODELAGEM DE PAVIMENTOS PERMEÁVEIS DO TIPO C COMO SUB-BACIAS REGULARES EQUIVALENTES

Modeling proposal for Type C permeable pavements as equivalent regular subcatchments

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Tecnológica Federal do Paraná (UTFPR) como requisito para obtenção do título de Mestre em Engenharia Civil - Área de Concentração: Tecnologia Ambiental no Ambiente Construído Orientador: Prof. Dr. Cesar Augusto Medeiros Destro

PATO BRANCO 2021

Esta licença permite remixe, adaptação e criação a partir do trabalho, para fins não comerciais, desde que sejam atribuídos créditos ao(s) autor(es). Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

JESSICA KLEMM NUERNBERG

PROPOSTA DE MODELAGEM DE PAVIMENTOS PERMEÁVEIS DO TIPO C COMO SUB-BACIAS REGULARES EQUIVALENTES

Trabalho de pesquisa de mestrado apresentado como requisito para obtenção do título de Mestra Em Engenharia Civil da Universidade Tecnológica Federal do Paraná (UTFPR). Área de concentração: Meio Ambiente.

Data de aprovação: 23 de Agosto de 2021

Prof Cesar Augusto Medeiros Destro, Doutorado - Universidade Tecnológica Federal do Paraná Prof Daniel Costa Dos Santos, Doutorado - Universidade Federal do Paraná (Ufpr) Prof Murilo Cesar Lucas, Doutorado - Universidade Tecnológica Federal do Paraná

Documento gerado pelo Sistema Acadêmico da UTFPR a partir dos dados da Ata de Defesa em 23/08/2021.

"In theory, there is no difference between theory and practice. But, in practice, there is." (Yogi Berra)

AGRADECIMENTOS

A presente dissertação de mestrado é o resultado de um longo processo, à qual julgo ser da maior importância para meu crescimento profissional e como ser humano. Isso não seria possível senão pela orientação e apoio de diversas pessoas, a quem, justamente, tenho que agradecer.

Agradeço primeiramente à minha família, em especial à minha mãe, Vera, por tudo que fez e ainda faz por mim. Obrigada pela educação que me proporcionou e por sempre estar ao meu lado, tanto nos momentos de alegria como nos de dificuldades. Devo a ti meu caráter, meus valores e minhas conquistas.

Ao Prof. Dr. Cesar Augusto Medeiros Destro, o qual é impossível estimar a importância da orientação dada. Agradeço pela disponibilidade que sempre teve, com reuniões até mesmo nos finais de semana, as quais combinavam direcionamentos da pesquisa com palavras de ânimo - mesmo quando as 24 horas diárias pareciam insuficiente para tanto trabalho. Sua sabedoria e paciência foram fundamentais para que, juntos, fizéssemos um bom trabalho

Aos membros da banca avaliadora, Prof. Dr. Murilo Cesar Lucas e Prof. Dr. Daniel Costa dos Santos, meus sinceros agradecimentos pelas observações feitas no exame de qualificação. Sinto-me honrada com as vossas presenças e contribuições.

Aos colegas mestrandos, que compartilharam a angústia e incerteza do processo da pesquisa científica, agradeço por nosso apoio mútuo e amizade.

Aos meus amigos, que souberam compreender e respeitar esse período e se mantiveram a postos, prontos para comemorar cada conquista. Vocês foram meu ponto de paz em meio ao caos.

Aos chefes e colegas de trabalho, que foram grandes impulsionadores da minha pesquisa, sendo compreensivos e flexíveis com as demandas existentes.

À CNPq, Metalúrgica CBS e a Pavimenti Blocos e Pavers, por fomentarem a elaboração desta pesquisa. Estudo desenvolvido com recursos financeiros do projeto CNPq Universal nº 429750/2018-8, chamada MCTIC/CNPq nº 28/2018.

Por fim, agradeço a todos que fazem parte da minha vida e, de uma forma ou de outra, colaboram para a construção deste trabalho.

RESUMO

NUERNBERG, Jéssica Klemm. **Proposta de modelagem de pavimentos permeáveis do Tipo C como sub-bacias regulares equivalentes**. 2021. 160 f. Dissertação (Mestrado em Engenharia Civil) - Universidade Tecnológica Federal do Paraná. Pato Branco, 2021.

Para integrar os sistemas de drenagem urbana já existentes e contornar os problemas decorrentes do processo de urbanização desordenado, práticas de baixo impacto de desenvolvimento como pavimentos permeáveis vem sendo adotados. Algumas simulações computacionais podem ser usadas para prever seu comportamento, sendo o Storm Water Management Model (SWMM) um dos softwares mais empregados. Porém, o uso do editor LID (adicionado na versão 5.1) tem apresentado alguns resultados fisicamente inexplicáveis, além da necessidade de detalhamento dispendioso, restringindo a sua utilização. Nesse sentido, o objetivo deste estudo é propor uma modelagem de pavimentos permeáveis do Tipo C (sem infiltração) como sub-bacias regulares equivalentes, isto é, sem utilizar o editor de LID. Os dados experimentais para a análise de sensibilidade, calibração e validação dos parâmetros serão obtidos por meio do monitoramento de um módulo experimental de pavimentos permeáveis do Tipo C. Como resultado da análise de sensibilidade, os parâmetros de capacidade de campo do armazenamento, capacidade de campo do revestimento e offset do dreno exercem uma maior perturbação sob a vazão de pico, tempo de pico e volume total escoado. A calibração e validação do modelo computacional produziram resultados satisfatórios, com NSE de 0,945, EA de 4,99, RSR de 0,025 e PBIAS de -0,32 para a calibração e NSE de 0,91, EA de 2,9, RSR de 0,04 e PBIAS de -3,92 para a validação. Dessa forma, a simulação dos pavimentos permeáveis por meio de sub-bacias regulares equivalentes pode fornecer embasamento técnico para o planejamento e a implementação de técnicas de drenagem urbana sustentáveis de maneira confiável e sem a necessidade de um detalhamento excessivo.

Palavras-chave: Pavimento permeável. Modelagem hidrológica. Análise de sensibilidade. SWMM.

ABSTRACT

The Low Impact Development techniques (LID), such as permeable pavements, are being used to integrate the traditional urban drainage systems and manage the effects of disorderly urbanization. Computer simulations are used to predict its behavior and Storm Water Management Model (SWMM) being one of the most used software. However, the new LID editor (added in the 5.1 version) has presented inexplicable results, besides the need for high detail, restricting its use. The aim of this present study is to model Type C permeable pavement (without infiltration), as equivalent to regular sub-basins, without using the LID editor. The experimental data was got by monitoring an experimental module of Type C permeable pavements. This information was applied to perform sensitivity analysis, calibration and validation of the model. Sensitivity analysis shows that the field capacity of the storage, field capacity of the pavement and the drain offset perform the greatest disturbance on peak flow, peak time and total flow volume. Calibration and validation of the computational model produced satisfactory results. For the calibration was obtained NSE of 0.945, EA of 4.99, RSR of 0.025 and PBIAS of 0.32, for the validation NSE of 0.91, EA of 2.9, RSR of 0.04 and PBIAS of -3.92. The results showed that the permeable pavement simulation through equivalent regular sub-basins can provide a technical basis for planning and implementing Low Impact Development techniques without high detailing.

Key words: permeable pavements. Hydrological modeling. Sensitivity analysis. *SWMM*

LISTA DE ILUSTRAÇÕES

Figura 1 – Efeito da urbanização na taxa de pico do escoamento superficial	17
Figura 2 – Exemplos de técnicas LID	19
Figura 3 – Seção transversal do pavimento permeável genérico	21
Figura 4 – Sistemas de infiltração total, parcial e sem infiltração	23
Figura 5 – Modelo conceitual do escoamento superficial de sub-bacias no SWMM	1.28
Figura 6 – Localização do município	41
Figura 7 – Localização da área experimental	42
Figura 8 – Fluxograma de dimensionamento do pavimento permeável	44
Figura 9 – Variáveis de projeto para o dimensionamento hidráulico	47
Figura 10 – Equivalência dos parâmetros do SWMM	54
Figura 11 – Representação 3D do pavimento permeável	66
Figura 12 – Vista superior do pavimento permeável	66
Figura 13 – Materiais constituintes do pavimento permeável	67
Figura 14 – Bloco intertravado poroso utilizados no módulo experimental	68
Figura 15 – Módulos experimentais de pavimento permeável	68
Figura 16 – Interface do modelo computacional	72
Figura 17 – Coeficientes de sensibilidade da vazão para eventos de 10 minutos	74
Figura 18 – Coeficientes de sensibilidade da vazão para eventos de 30 minutos	74
Figura 19 – Coeficientes de sensibilidade do volume para eventos de 10 minutos	76
Figura 20 – Coeficientes de sensibilidade do volume para eventos de 30 minutos	76
Figura 21 – Coeficientes de sensibilidade do tempo para eventos de 10 minutos	78
Figura 22 – Coeficientes de sensibilidade do tempo para eventos de 30 minutos	78
Figura 23 – Resposta do modelo para o Evento 19/01/2021	81
Figura 24 – Resposta do modelo para o Evento 21/01/2021	81
Figura 25 – Validação do Evento 02/03/2021	83

LISTA DE TABELAS

Tabela 1 – Valores atribuídos aos parâmetros em estudos anteriores	31
Tabela 2 – Estudos com análises de sensibilidade de parâmetros	34
Tabela 3 – Métricas estatísticas para avaliar o erro ou a qualidade da modelagem	.38
Tabela 4 – Caracterização dos materiais	43
Tabela 5 – Comparativo entre metodologia de Zhang e Guo (2014) e a proposta p	bara
Тіро С	52
Tabela 6 – Parâmetros de entrada para simulações como sub-bacia regular	50
equivalente	53
Tabela 7 – Parametros adicionais para simulações como sub-bacia regular	53
Tabela 8 — Intensidade das chuvas de projeto	
Tabela 9 – Caracterização dos materiais de revestimento	
Tabela 10 – Caracterização do material de assentamento	
Tabela 11 – Caracterização do material de armazenamento	60
Tabela 12 – Parâmetros de dimensionamento pela Curva Envelope	62
Tabela 13 – Parâmetros de dimensionamento pela NBR 16416.	64
Tabela 14 – Valores dos parâmetros de entrada	69
Tabela 15 – Intervalos de valores para análise de sensibilidade	70
Tabela 16 – Intervalos de valores para análise de sensibilidade	71
Tabela 17 – Coeficientes de sensibilidade da vazão para eventos de 10 minutos	73
Tabela 18 – Coeficientes de sensibilidade da vazão para eventos de 30 minutos	73
Tabela 19 – Coeficientes de sensibilidade do volume para eventos de 10 minutos.	74
Tabela 20 – Coeficientes de sensibilidade da volume para eventos de 30 minutos.	75
Tabela 21 – Coeficientes de sensibilidade do tempo para eventos de 10 minutos .	76
Tabela 22 – Coeficientes de sensibilidade do tempo para eventos de 30 minutos	77
Tabela 23 – Rankeamento da sensibilidade dos parâmetros	78
Tabela 24 – Valores dos parâmetros após calibração do modelo	80
Tabela 25 – Métricas estatisticas para os eventos de calibração	82
Tabela 26 – Métricas estatisticas para o evento de validação	83

LISTA DE SIGLAS

BMPs	Best Management Practices
BR	Brasil
CBR	California Bearing Ratio
CC	Correlação Cruzada
CN	Curva Número
CXd	Cambissolo distrófico
D	Índice de Concordância
EA	Erro Absoluto
EMA	Erro Médio Absoluto
ER	Erro Relativo
EPA	Environmental Protection Agency
HSPF	Hydrologic Simulation Program-Fortran
ICPI	Interlocking Concrete Pavement Association
IDF	Intensidade-Duração-Frequência
LID	Low Impact Development
NBR	Norma Brasileira
NSE	Coeficiente de Nash-Sutcliffe
NVd	Nitossolo Vermelho distrófico
Pbias	Percentual de tendência
R	Coeficiente de Correlação
R²	Coeficiente de Determinação
REMQ	Raiz do Erro Quadrático Médio
RSR	Razão entre REMQ e desvio padrão dos dados
SSE	Soma dos erros quadrados
SUDS	Sustainable Urban Drainage Systems
SWMM	Storm Water Management Model
UK	Reino Unido
UTFPR	Universidade Tecnológica Federal do Paraná
UTM	Universal Transversal de Mercator
VI	Viés
WSUD	Water Sensitive Urban Design

LISTA DE SÍMBOLOS

а	Parâmetro da equação IDF de Talbot
Area	Área da sub-bacia (acres ou hectares)
Ac	Área de contribuição (m²)
Ai	Área impermeável (m²)
Ap	Área de pavimento permeável (m²)
A1	Coeficiente de fluxo das águas subterrâneas
A2	Coeficiente de fluxo das águas superficiais
b	Parâmetro da equação IDF de Talbot
B1	Expoente de fluxo das águas subterrâneas
B2	Expoente de fluxo das águas superficiais
С	Parâmetro da equação IDF de Talbot
Cbf	Clima temperado, com verão ameno
Conduct	Condutividade hidráulica do solo saturado (mm/h)
Ces	Comprimento do escoamento superficial (m)
Cs	Coeficiente de sensibilidade local
d	Parâmetro da equação análoga
da	Lâmina de água na sub-bacia
ds	Capacidade de armazenamento em depressão
Depth	Profundidade de água acima do radier do nó (m)
Elev	Cota do radier (m)
ер	Razão de vazios do da camada de revestimento
es	Razão de vazios da camada de reservatório
f	Taxa de infiltração no solo (m/h)
FC	Fator de carga
FE	Fator de eixos
Н	Altura da camada reservatório (mm)
h _d	Altura de deslocamento do dreno medido do fundo da camada de reservatório até o fundo do dreno (mm)
hp	Espessura da camada de revestimento (mm)
hs	Espessura da camada de reservatório (mm)
i	Intensidade da chuva (mm/h)
InitDef	Déficit de umidade inicial do solo (volume de vazios/volume total)
k	Parâmetro da equação análoga

Length	Comprimento do conduto (m)							
MaxRate	Taxa máxima de infiltração na curva de Horton (mm/h)							
NE	Número equivalente de operações do eixo simples padrão							
N	O valor de n da equação de Manning							
Nimp	n de Manning do escoamento superficial sobre a sub-área impermeável							
Nperv	n de Manning do escoamento superficial sobre a sub-área permeável							
Р	Precipitação de projeto (mm)							
Pa	Período de anos							
qs	Vazão de saída constante do dispositivo (mm/h)							
R	Relação entre a área de contribuição e a área de pavimento permeável (Ac/Ap) ver							
RPD	Diferença percentual relativa							
R _{Cmáx}	Capacidade máxima de retenção do pavimento permeável (mm)							
R _{rbasic-} SWMM	Taxa média de longo prazo de redução do volume de escoamento (adimensional)							
Sd₅	Armazenamento em depressão superficial do sistema de pavimento permeável (mm)							
Simp	Armazenamento em depressões para sub-área impermeável (mm)							
Slope	Declividade da sub-bacia (porcentagem)							
Sperv	Armazenamento em depressões para sub-área permeável (mm)							
Suction	Condutividade hidráulica do solo saturado (mm/h)							
t	Duração da chuva (min)							
Т	Período de retorno (anos)							
Te	Tempo efetivo de enchimento da camada reservatório geralmente 2 h							
t/100	Taxa de crescimento anual, em progressão aritmética							
Vm	Volume médio diário de tráfego (num sentido)							
V _{máx}	Volume de dimensionamento (mm)							
Vr	Índice de vazios da camada							
Vu	Vida útil (anos)							
V1	Volume médio diário de tráfego no ano de abertura (num sentido)							
Х	Parâmetro de entrada							
х	Parâmetro da equação análoga							
X _{máx}	Intervalo máximo do parâmetro de entrada							
X _{mín}	Intervalo mínimo do parâmetro de entrada							
W	Largura característica (m)							
Width	Largura característica da sub-bacia (pés ou metros)							

Y	Valor de saída previsto						
у	Parâmetro da equação análoga						
Y 1	Valor de saída correspondente						
Y ₂	Valor de saída correspondente						
Yc	Valor calculado						
Ym	Valor medido						
$\overline{Y_c}$	Média dos valores calculados						
$\overline{Y_m}$	Média dos valores medidos						
%Imperv	Porcentagem de áreas impermeáveis da sub-bacia (%)						
%Rted	Porcentagem do escoamento encaminhado de uma área para outra						
%Zero	Porcentagem de área impermeável sem armazenamento em depressões						
σ _c	Desvio padrão dos valores calculados						
σm	Desvio padrão dos valores medidos						
β	Produto do coeficiente de escoamento pela razão entre área contribuinte e a área do dispositivo						
η	Porosidade do material de enchimento						
ΔQc	Precipitação excedente da área de contribuição para uma dada chuva de projeto (m)						
θ _{fp}	Capacidade de campo da camada de revestimento						

SUMÁRIO

1 INTRODUÇÃO	13
2 OBJETIVOS	16
2.1 OBJETIVO GERAL	16
2.2 OBJETIVOS ESPECÍFICOS	16
3 REVISÃO DA LITERATURA	17
3.1 DRENAGEM URBANA	17
3.2 LOW IMPACT DEVELOPMENT - LID	18
3.3 PAVIMENTOS PERMEÁVEIS	20
3.4 MODELAGEM COMPUTACIONAL	23
3.4.1 Simulação com o editor LID e com sub-bacias regulares equivaler	ntes25
3.4.2 Simulação de pavimentos permeáveis como sub-bacias regulares equivalentes	27
3.4.3 Parâmetros	30
3.4.4 Análise de sensibilidade	32
3.4.5 Calibração e Validação	36
4 MATERIAIS E MÉTODOS	40
4.1 CARACTERIZAÇÃO DA ÁREA DE ESTUDO	40
4.2 CARACTERIZAÇÃO DOS MATERIAIS	42
4.3 DIMENSIONAMENTO DOS MÓDULOS EXPERIMENTAIS	43
4.3.1 Dimensionamento hidráulico	44
4.3.1.1 Dimensionamento pelo Método da Curva Envelope	45
4.3.1.2 Dimensionamento pela NBR 16416	46
4.3.2 Dimensionamento mecânico	47
4.4 MONITORAMENTO	48
4.5 CONSTRUÇÃO DO MODELO COMPUTACIONAL	49
4.6 ANÁLISE DE SENSIBILIDADE	55
4.6.1 Chuvas de projeto	55

4.7 CA	LIBRAÇÃO E VALIDAÇÃO	56
5 RES	ULTADOS E DISCUSSÕES	58
5.1 CA	RACTERIZAÇÃO DOS MATERIAIS	58
5.1.1	Camada de revestimento	58
5.1.2	Camada de assentamento	59
5.1.3	Camada de armazenamento	59
5.1.4	Solo	60
5.2 DIN	IENSIONAMENTO	60
5.2.1	Dimensionamento pelo Método da Curva Envelope	61
5.2.2	Dimensionamento pela NBR 16416	63
5.2.3	Dimensionamento mecânico	64
5.3 CA	RACTERÍSTICAS CONSTRUTIVAS	65
5.4 PA	RÂMETROS	68
5.5 MC	NITORAMENTO	71
5.6 CO	NSTRUÇÃO DO MODELO COMPUTACIONAL	71
5.7 AN	ÁLISE DE SENSIBILIDADE	72
5.8 CA	LIBRAÇÃO	79
5.9 VA	LIDAÇÃO	83
6 CON	ICLUSÕES	85
REFER	ÊNCIAS	86
APÊNC	DICE A – HIETOGRAMAS A PARTIR DA CURVA IDF	95
APÊNE REVES	DICE B – CARACTERIZAÇÃO DO MATERIAL DA CAMADA DE STIMENTO	97
APÊNE ASSEN	DICE C – CARACTERIZAÇÃO DOS MATERIAIS DA CAMADA DE ITAMENTO	99
APÊNE ARMAZ	DICE D – CARACTERIZAÇÃO DOS MATERIAIS DA CAMADA DE ZENAMENTO	104
APÊND	DICE E – CARACTERIZAÇÃO DO SOLO	107
APÊND	DICE F – MAJORAÇÃO DO COEFICIENTE 'A'	111

APÊNDICE G – HIETOGRAMA DOS EVENTOS DE CALIBRAÇÃO E VALIDAÇÃO	.112
ANEXO A – ÁBACO DE DIMENSIONAMENTO MECÂNICO	.114
ANEXO B – HISTÓRICO DE EVENTOS DE PRECIPITAÇÃO DE JUL/2019 A JUN/2020	.115
ANEXO C – LAUDO DO COEFICIENTE DE PERMEABILIDADE DO BLOCO POROSO	.116
ANEXO D – LAUDO DE RESISTÊNCIA MECÂNICA À COMPRESSÃO DO BLOCO POROSO	.120
ANEXO E – LAUDO DE RESISTÊNCIA MECÂNICA À FLEXÃO DO BLOCO POROSO	.123
ANEXO F – ANÁLISE DE SENSIBILIDADE	.126

1 INTRODUÇÃO

A urbanização acelerada, observada principalmente nos países em desenvolvimento, aliada à ocupação desordenada em áreas de risco (morros e várzeas de rios) e a intensa impermeabilização do solo urbano, respondem por sérias consequências sociais e ambientais. Dentre os efeitos da ação antrópica, estão os problemas relacionados à drenagem urbana, com mudanças nas fases do ciclo hidrológico (MCGRANE, 2016; SUN; LOTZ; CHANG, 2017; TALIB; RANDHIR, 2017).

Como consequência, há uma redução da permeabilidade do solo e acréscimo do volume de escoamento superficial em relação à infiltração (WOODS-BALLARD et al., 2015). Ademais, a velocidade do escoamento superficial em superfícies impermeáveis é maior, o que eleva o risco de inundação (BUTLER et al., 2018). Consequentemente, a infraestrutura existente de águas pluviais - como bocas de lobo, tubulações e galerias - pode não ser suficiente para atender aos padrões de projeto nas próximas décadas (FORSEE; AHMAD, 2011). Ao mesmo tempo, ampliações e reparos podem ser custosos e nem sempre passíveis de serem executados.

Nesse sentido, tem surgido novas práticas de manejo sustentável das águas pluviais urbanas, chamadas de *low impact development* (LID, desenvolvimento de baixo impacto). Tais tecnologias compreendem a utilização de dispositivos que restabelecem as condições de infiltração e armazenamento das águas pluviais próximas ao ponto de origem ou fonte. Os LID atuam de forma integrada com as estruturas de drenagem já existentes. Há diversos tipos de práticas LID, por exemplo, pavimentos permeáveis, trincheiras, telhados verdes, biorretenção, entre outros (WOODS-BALLARD et al., 2015).

Os pavimentos permeáveis são dispositivos de dupla função, atuando como superfície pavimentada para o tráfego de pessoas e veículos, e como um sistema sustentável de manejo de águas pluviais (BEAN et al., 2015; SCHOLZ; GRABOWIECKI, 2007; WOODS-BALLARD et al., 2015). Vários estudos recentes têm mostrado que os pavimentos permeáveis proporcionam um decréscimo do volume e do pico de escoamento superficial (BAI et al., 2019; PALLA; GNECCO, 2015; WANG et al., 2019).

Para o desenvolvimento de estudos de drenagem urbana e a previsão do comportamento dessa infraestrutura, as simulações computacionais surgem como uma ferramenta de suma importância, auxiliando o processo de planejamento de

ocupação do solo. Um dos principais modelos de simulação da drenagem é o *Storm Water Management Model* (SWMM), desenvolvido pela *Environmental Protection Agency* (EPA) (BAEK et al., 2020; ROSSMAN, 2015). O SWMM é um modelo hidrológico-hidráulico que transforma chuva em vazão e pode simular o efeito do uso de LID no comportamento hidráulico da rede de drenagem. As práticas LID foram adicionadas na versão 5.1 do SWMM por meio de um editor LID, que passou a ser utilizado em diversos estudos computacionais (GUAN; SILLANPÄÄ; KOIVUSALO, 2015; KONG et al., 2017; QIN; LI; FU, 2013; ZAHMATKESH et al., 2015).

No entanto, resultados fisicamente inexplicáveis têm sido relatados em simulações de pavimentos permeáveis feitas a partir do editor LID, com métodos de cálculo incompletos observados no código fonte (ZHANG; GUO, 2014). Além disso, Guo et al. (2019) descrevem que tais simulações são restringidas pelo tamanho da área estudada, uma vez que em escala de bacia hidrográfica, por exemplo, as configurações do editor LID do SWMM demandam um tempo considerável para as simulações.

Antes do editor LID ser adicionado ao SWMM, pesquisas já apresentavam metodologias variadas para simular os LID como bacia de detenção (MUHAISEN; OSORIO; GARCÍA, 2009), telhados verdes (ALFREDO; MONTALTO; GOLDSTEIN, 2010) e pavimentos permeáveis (DAMODARAM et al., 2010; SHON et al., 2013). Posteriormente, Zhang e Guo (2014) desenvolveram uma proposta de metodologia alternativa, a qual representa os pavimentos permeáveis como sub-bacias regulares equivalentes no SWMM. Porém, a equivalência só foi relatada para pavimentos permeáveis do Tipo A e B, os quais apresentam parcelas de infiltração de água no solo.

Em outro estudo, Guo et al. (2019) simularam diferentes LID e o aplicaram em uma bacia hidrográfica de aproximadamente 20 km², que corresponde a uma das cidades-esponja piloto, na China. O método utiliza tanto a simulação SWMM com editor LID quanto a simulação como sub-bacia regular equivalente. Os autores concluíram que, em comparação ao SWMM com editor LID, é mais conveniente e viável simular como sub-bacia regular equivalente para uma bacia hidrográfica grande pois menos parâmetros precisam ser definidos. No entanto, pode ser necessário a elaboração de protótipos de LID para a calibração e verificação do modelo.

Nesse sentido, este trabalho foca na modelagem de pavimentos permeáveis sem infiltração (Tipo C) como sub-bacias regulares equivalentes, utilizando o software

SWMM. Para tanto, um protótipo de pavimento permeável foi construído e monitorado, permitindo a comparação dos resultados simulados e observados. Ademais, para uma melhor representação computacional que fosse capaz de reproduzir o comportamento de pavimentos permeáveis, uma análise de sensibilidade foi aplicada ao modelo. Os resultados desse estudo poderão fornecer embasamento técnico para o planejamento e a implementação de técnicas de drenagem urbana sustentáveis.

2 OBJETIVOS

2.1 OBJETIVO GERAL

O objetivo deste estudo é propor uma modelagem de pavimentos permeáveis sem infiltração (Tipo C) como sub-bacias regulares equivalentes, utilizando o software SWMM.

2.2 OBJETIVOS ESPECÍFICOS

Neste estudo pretende-se alcançar os seguintes objetivos específicos:

- Realizar a concepção, o dimensionamento e o monitoramento de um módulo experimental de pavimento permeável do Tipo C;
- Simular um modelo computacional de pavimentos permeáveis do Tipo C como sub-bacias regulares equivalentes;
- Analisar a sensibilidade dos parâmetros na simulação de pavimentos permeáveis do Tipo C como sub-bacias regulares equivalentes;
- Calibrar e validar o modelo computacional de pavimentos permeáveis do Tipo C como sub-bacias regulares equivalentes;
- Avaliar o desempenho do modelo, com a comparação os resultados medidos e simulados.

3 REVISÃO DA LITERATURA

3.1 DRENAGEM URBANA

O ciclo hidrológico mantém seu equilíbrio natural através da evaporação, precipitação, infiltração (recarga das águas subterrâneas) e evapotranspiração. Esse ciclo da água pode ser alterado pela urbanização, a qual reduz a permeabilidade do solo, substituindo áreas de drenagem livre por superfícies impermeáveis, tais como telhados, estradas, estacionamento e outras áreas edificadas (WOODS-BALLARD et al., 2015).

O desenvolvimento de uma área urbana, cobrindo o solo com superfícies impermeáveis, aumenta o volume de escoamento superficial em relação à infiltração. Ademais, a velocidade do escoamento superficial é maior sobre as superfícies impermeáveis e canalizações do que sobre superfícies vegetadas. Isso significa que a vazão chegará aos rios mais rapidamente e, portanto, seu pico será maior (Figura 1), aumentando o risco de inundação (BUTLER et al., 2018).

Figura 1 – Efeito da urbanização na taxa de pico do escoamento superficial

Fonte: Adaptado de Butler et al. (2018)

Neste contexto, o gerenciamento eficaz das águas urbanas deve considerar as mudanças projetadas para o clima, as quais devem levar a um aumento na frequência e intensidade dos eventos extremos de chuva (BENISTON et al., 2007; TRENBERTH, 2011; TRENBERTH et al., 2003). Dessa forma, a probabilidade de um evento exceder uma dada intensidade aumentará com o tempo e, consequentemente, afetará diretamente os sistemas de drenagem urbana (MAILHOT; DUCHESNE, 2010). Consequentemente, a infraestrutura existente de águas pluviais pode não ser suficiente para atender aos padrões de projeto nas próximas décadas (FORSEE; AHMAD, 2011).

Dessa forma, um dos objetivos do projeto de infraestrutura de águas pluviais é mitigar os efeitos resultantes de eventos hidrológicos extremos. A abordagem tradicional de drenagem urbana buscava proteger a saúde pública e impedir inundações locais, retirando a água da fonte o mais rápido possível através de sistemas de tubulações e galerias subterrâneas (WOODS-BALLARD et al., 2015). Dadas as limitações apresentadas pela abordagem tradicional, como inundações a jusante e degradação da qualidade da água, as práticas atuais incentivam o uso de arranjos de drenagens mais naturais, preocupando-se com a conservação ambiental e a qualidade de vida da população.

3.2 LOW IMPACT DEVELOPMENT - LID

As novas soluções para os problemas de drenagem urbana buscam alternativas que aliem princípios hidrológicos e de conservação do meio ambiente. Neste sentido, as técnicas de controle na fonte, diferentemente dos sistemas tradicionais, se baseiam na retenção e na infiltração das águas pluviais, colaborando para a sustentabilidade do sistema de drenagem.

A terminologia para descrever os princípios e práticas de drenagem urbana engloba conceitos como: *best management practices* (BMP - melhores práticas de manejo), *low impact development* (LID - desenvolvimento de baixo impacto), *sustainable urban drainage systems* (SUDS - sistemas de drenagem urbana sustentável) e *water sensitive urban design* (FLETCHER et al., 2015).

O termo LID, mais comumente usado na América do Norte e na Nova Zelândia, tem seu objetivo original em alcançar uma hidrologia natural, com volumes

de escoamento próximos ao de pré-desenvolvimento. Assim, as técnicas LID buscam utilizar as características locais e medidas de controle integradas, que proporcionam a infiltração, evapotranspiração, retenção e detenção (FLETCHER et al., 2015). À vista disso, abrangem dispositivos de tratamento de águas pluviais de menor escala, tais como sistemas de biorretenção, jardins de chuva, cisternas, pavimentos permeáveis, asfaltos porosos e telhados verdes, localizados próximos à fonte do escoamento (Figura 2).

Pavimento permeável

Asfalto poroso

asfalto poroso

asfalto tradicional

Telhado verde

Fonte: Adaptado de Wang (2019)

A eficiência dos LID na diminuição de escoamento superficial é demonstrada em diversos estudos. Guo et al. (2019) concluiram que, sob eventos de chuva simulados e monitorados (com um período de retorno de um, dois e cinco anos) em uma bacia hidrográfica, a aplicação de LID reduziu o escoamento superficial em toda a área, com índices de redução variando de 20,7% a 63,2%. Para eventos de chuva com período de retorno e intensidade menor, o desempenho dos LID se apresentou superior.

Qin, Li e Fu (2013) concluíram, por meio de simulações com o SWMM, que a implantação de técnicas LID foi eficaz para aliviar o impacto das inundações em uma bacia hidrográfica em urbanização na China. Isso é corroborado na revisão feita por Eckart, Mcphee e Bolisetti (2017), os quais também relatam que as práticas LID

possuem resultados mais significativos quando associadas ao gerenciamento tradicional de águas pluviais. Porém, apesar de eficazes, mesmo nos cenários mais benéficos o desempenho hidrológico das áreas urbanizadas com LID não é equivalente ao nível de pré-desenvolvimento (KONG et al., 2017)

Há uma concordância na literatura de que técnicas combinadas de LID apresentam desempenho melhor do que as práticas únicas, em termos de redução do escoamento superficial (HUANG; WANG; ZHANG, 2017; QIN; LI; FU, 2013; ZAHMATKESH et al., 2015). Apesar disso, alguns tópicos merecem atenção durante o projeto de implementação de LID. Por exemplo, Palla e Gnecco (2015) preconizam que é necessária uma área mínima de conversão do uso da terra, correspondente à redução da área impermeável efetiva de 5%, para obter benefícios hidrológicos perceptíveis.

3.3 PAVIMENTOS PERMEÁVEIS

A NBR 16416 (ABNT, 2015a) denomina como sendo pavimento permeável o sistema que atente simultaneamente às solicitações de esforços mecânicos e/ou condições de rolamento e cuja estrutura permite a percolação e/ou o acúmulo temporário de água, diminuindo o escoamento superficial, sem causar dano à sua estrutura. Os locais revestidos com pavimentos permeáveis devem permitir a percolação de 100% da água precipitada sobre esta área, bem como a área de contribuição considerada em projeto (ABNT, 2015a).

Os pavimentos permeáveis têm por objetivo melhorar a qualidade da água, incentivar a infiltração e fornecer armazenamento da água, reduzindo o escoamento superficial das águas pluviais (MULLANEY; LUCKE, 2014). Tal sistema é comumente utilizado em calçadas residenciais e de acesso, acostamentos, estacionamentos, praças e parques.

Para controlar a impermeabilização das superfícies nas grandes cidades é comum as prefeituras exigirem que uma parcela do terreno seja mantida livre de pavimentação, geralmente entre 15% a 30% do terreno. Uma forma de conseguir atender a legislação da cidade e ao mesmo tempo manter a área útil do terreno é através da utilização dos pavimentos permeáveis (MARCHIONI; SILVA, 2011). Isso porque os pavimentos permeáveis não sacrificam terrenos para um único uso, uma

vez que representam áreas funcionais de estacionamento e fornecem, ao mesmo tempo, um controle do escoamento de águas pluviais (DREELIN; FOWLER; CARROLL, 2006).

Um sistema de pavimento permeável é composto, basicamente, pelas camadas de revestimento, assentamento (se necessário), camada estrutural e de armazenamento e sistema de drenagem (opcional), conforme ilustrado na Figura 3. Os elementos que compõem um pavimento permeável podem variar de acordo com sua finalidade ou país de origem, uma vez que existem inúmeras diretrizes de projeto, as quais podem ser ocasionalmente conflitantes (MULLANEY; LUCKE, 2014).

Fonte: Adaptado de (BEAN et al., 2015)

Para a camada de revestimento, existem duas tipologias: os materiais porosos e os permeáveis. Os revestimentos porosos permitem a infiltração da água por entre seus poros, tendo como exemplo as superfícies de cascalho, concreto poroso e asfalto drenante. Já os revestimentos permeáveis são constituídos por um material impermeável, sendo que a infiltração da água da chuva ocorre nos espaços vazios ou juntas alargadas, como é o caso dos blocos intertravados (WOODS-BALLARD et al., 2015).

A camada de assentamento, para peças pre-moldads, consiste na disposição de agregado graúdo, com dimensão que garanta uma superfície nivelada, mas que também proporcione um travamento com a camada de armazenamento (BEAN et al., 2015). Sob a camada de assentamento pode ser empregada uma manta geotêxtil, a

qual permite a passagem do fluxo de água e evita a migração do material de granulometria menor para a camada de armazenamento (ABNT, 2015a).

A camada de armazenamento é destinada a resistir e distribuir os esforços a qual o pavimento estará submetido e permitir a percolação e/ou o acúmulo temporário de água (ABNT, 2015a). O material desta camada é constituído por um agregado de dimensão maior e granulometria aberta, o qual fornece um alto índice de vazios, agindo como reservatório (MULLANEY; LUCKE, 2014). A profundidade da camada de armazenamento é dependente dos requisitos estruturais e hidráulicos, adotando-se o maior valor entre o dimensionamento destes.

Nos sistemas de pavimentos permeáveis, os drenos correspondem ao conduto de sessão aberta (canal) ou fechada (tubo perfurado ou permeável), usado para coletar e conduzir a água a ser drenada (ABNT, 2015a). Para tal fim, é recomendado o uso de drenos entre a camada de armazenamento e o subleito para situações em que os solos têm baixa permeabilidade ou resistência, quando o lençol freático está a 1 m da base ou quando o local está contaminado e os riscos de mobilização de contaminantes devem ser minimizados (WOODS-BALLARD et al., 2015)

A escolha do sistema de infiltração depende das características do solo ou de condicionantes do projeto (profundidade do lençol freático e utilização do espaço, por exemplo). Dessa forma, o sistema pode ser classificado como Tipo A (infiltração total - onde toda a água alcança o subleito e se infiltra), Tipo B (infiltração parcial - quando parte da precipitação se infiltra no subleito e o excedente fica temporariamente armazenado até ser removido pelo dreno) e Tipo C (sem infiltração - a água precipitada fica temporariamente armazenada, sendo removida pelo dreno), conforme ilustrado na Figura 4 (DRAKE et al., 2013; WOODS-BALLARD et al., 2015).

Fonte: Adaptado de Interpave (2013)

Os projetos de pavimentos do Tipo A geralmente possuem como subleito solos arenosos de alta permeabilidade. Já os do Tipo B, são indicados para subleito em solos de menor permeabilidade, com a restante água filtrada sendo direcionada ao dreno perfurado. Por fim, pavimentos do Tipo C podem ser executados com qualquer subleito, com a liberação da água através de um sistema de drenos (BEAN et al., 2015).

3.4 MODELAGEM COMPUTACIONAL

Compreender o comportamento hidrológico dos pavimentos permeáveis é de suma importância para projetá-los de forma eficiente e disseminar seu uso. Desde 1960, programas de computador estão cada vez mais acessíveis para projetistas e planejadores urbanos simularem os vários cenários de sistemas urbanos de água (KIPKIE; JAMES, 2000).

Os modelos e softwares atuais permitem a simulação do desempenho dos pavimentos permeáveis, proporcionando ao usuário uma maior compreensão das respostas hidrológicas, hidráulicas e de qualidade da água, oferecendo aprimoramentos ao seu design, operação e manutenção (KURUPPU; RAHMAN; RAHMAN, 2019). Além disso, permitem a avalição de cenários hipotéticos sem o alto custo de testes físicos (KIPKIE; JAMES, 2000).

O SWMM, um dos softwares utilizados na modelagem computacional, é utilizado internacionalmente desde 1971. Trata-se de um modelo dinâmico de

simulação de chuva-vazão, usado para evento único ou simulação contínua da quantidade e qualidade do escoamento superficial de áreas urbanizadas (ROSSMAN, 2015). Desta forma, o software permite ao usuário o planejamento e a avaliação dos efeitos de gerenciamento de águas pluviais, tanto para sistemas convencionais de drenagem quanto para técnicas sustentáveis.

Niazi et al. (2017) realizaram uma revisão de literatura a qual avaliou mais de 150 artigos que fizeram uso do software SWMM para diversas finalidades, a fim de ajudar a resolver problemas de gerenciamento de água em ambientes urbanos. Os autores concluíram que o programa possibilita ao usuário uma fácil operação, que o tornou um dos modelos mais utilizados para o gerenciamento de águas urbanas no mundo.

Na sua versão 5.1, um editor LID foi adicionado ao programa, fornecendo uma plataforma de modelagem para as práticas de controle de desenvolvimento de baixo impacto, fornecendo respostas hidrológicas do armazenamento, infiltração e evaporação. O editor LID do SWMM possibilita a modelagem de oito tipos de controles LID: células de biorretenção, jardins de chuva, telhados verde, trincheiras de infiltração, pavimentos permeáveis, microrreservatórios de detenção, valas de infiltração e telhados desconectados (ROSSMAN, 2015).

Diversas pesquisas utilizaram simulações no SWMM para estudar o comportamento dos LID (KONG et al., 2017; QIN; LI; FU, 2013; TUOMELA et al., 2019). As simulações abrangem áreas com diferentes características, como áreas residenciais (JIA et al., 2012), áreas industriais (KIM et al., 2018), comerciais (BARSZCZ, 2015) e parques (LI; QIN; DU, 2018).

Alguns estudos focaram na simulação de pavimentos permeáveis utilizando o SWMM. Jung, Han e Jo (2016) utilizaram simulações para determinar o projeto ideal de pavimento permeável para cada local de uma área de estudo, considerando tipos diferentes de revestimento e materiais para a camada de armazenamento, tamanho e custo. Além de obterem os modelos de pavimentos mais convenientes, a análise também mostrou que várias unidades de pavimentos permeáveis distribuídas são mais eficazes para reduzir o escoamento superficial do que usar o pavimento permeável em uma grande área localizada. Isso corrobora o conceito básico de LID, segundo o qual o gerenciamento de água distribuído é mais eficiente do que o gerenciamento centralizado. A utilização de pavimentos permeáveis possibilita a redução do volume total escoado, além do aumento de tempo e diminuição do pico da vazão. O estudo de Xie et al. (2017) constatou uma taxa de redução do escoamento total de 27,5 a 100% e uma taxa de redução do pico da vazão de 15,9 a 100%, de acordo com o período de retorno de chuvas adotado. Já o estudo de Kim et al. (2015), demonstrou que as mudanças climáticas previstas para 2050 podem aumentar a vazão de pico em até 26,9% em relação à condição atual, sendo que o pavimento permeável pode ser eficaz na redução do volume de escoamento e vazão de pico abaixo das condições atuais, compensando o impacto negativo das mudanças climáticas.

As simulações também procuraram avaliar efeitos relativos à manutenção dos pavimentos permeáveis. Kipkie e James (2000), por meio da inserção de um código-fonte no SWMM, simularam e avaliaram o processo de colmatação devido à falta de manutenção dos pavimentos permeáveis em longo prazo, onde ocorre o entupimento dos poros ou juntas. Os resultados demonstram que a diferença entre as vazões do pavimento permeável sem manutenção e com manutenção, após 5 anos de construção, variam de 2,5 a 321%, enquanto que após 10 anos da sua construção a diferença sobe para 17 a 600%, ambos com percentuais maiores observados nas primeiras duas horas do evento de precipitação. Em outro estudo (ABERA; SURBECK; O'REILLY, 2018), concluiu-se que uma manutenção adequada do pavimento permeável reduziu um volume de escoamento semelhante a uma área pavimentada 30% maior sem ações de manutenção.

3.4.1 Simulação com o editor LID e com sub-bacias regulares equivalentes

Existem duas maneiras de simular a aplicação de LIDs no SWMM. Uma delas, aqui denominada "SWMM com editor LID", baseia-se na definição de inúmeros parâmetros de cada técnica compensatória (pavimentos permeáveis, telhados verdes, biorretenção, trincheiras, etc.) pelo módulo adicionado na versão 5.1 do software, em 2010. Outro método, aqui nominado "sub-bacia regular equivalente", consiste no ajuste dos parâmetros das sub-bacias, principalmente a área impermeável percentual e a profundidade do armazenamento em depressão de uma área permeável (ZHANG; GUO, 2014). Antes mesmo do editor LID ser adicionado ao SWMM, pesquisas já simulavam técnicas compensatórias no software. Muhaisen, Osorio e García (2009) simularam uma bacia de detenção a fim de solucionar os problemas de inundações gerados por um sistema de esgoto combinado. Já Alfredo, Montalto e Goldstein (2010) realizaram simulações no SWMM para prever o comportamento de protótipos de telhados verdes. Jawdy, Reese e Parker (2010) utilizaram uma ampla gama de dados de 103 protótipos e 36 anos de chuvas para simular células de biorretenção, pavimentos permeáveis, telhados verdes e jardim de chuva com o SWMM.

Alfredo, Montalto e Goldstein (2010) avaliaram o desempenho de duas abordagens no SWMM sem utilizar o editor LID. Em uma das simulações, chamada de abordagem da curva-número, os autores equipararam o telhado verde com uma sub-bacia 100% permeável e ligada a um nó de saída. A calibração deste modelo foi realizada alterando dados da Curva Número (CN) e da largura característica da subbacia. Já a abordagem denominada nó de armazenamento, consistiu na modelagem de um nó de armazenamento de mesma dimensão do telhado verde, com dois canais de saída, sendo um na parte inferior e outro na parte superior do modelo e calibrações feitas a partir do ajuste da largura destes canais. Diante os dados observados, os autores obtiveram melhores previsões na abordagem do nó de armazenamento, com valores de erro considerados satisfatórios para prever o comportamento do telhado verde.

Um estudo feito por Zhang e Guo (2014), avaliou a confiabilidade do editor LID do SWMM em simular o desempenho da redução de escoamento superficial de pavimentos permeáveis, o que demonstrou um comportamento instável. Os pesquisadores analisaram dois dos principais parâmetros de projeto no desempenho hidrológico de sistemas de pavimentos permeáveis, sendo eles a espessura da camada de revestimento (h_p) e a altura de deslocamento do dreno (h_d).

Em simulações do editor LID para um sistema de pavimento permeável com drenos, Zhang e Guo (2014) encontraram resultados fisicamente inexplicáveis. A análise do código-fonte do software revelou que o método de cálculo da infiltração pelo editor LID poderia ser incompleto, isso porque não leva em conta a capacidade de armazenamento da camada de reservatório, nem a capacidade de drenagem do extravasor na determinação da taxa de infiltração, o que não permite a visualização da saturação do sistema e a geração de escoamento superficial. Os autores também simularam casos com infiltração total, observando novamente resultados incoerentes

com o editor LID, porém as causas não foram claramente identificadas, por isso não realizaram a discussão dos resultados. Em contrapartida, o modelo do SWMM como sub-bacia regular equivalente pareceu fornecer uma representação mais precisa de pavimentos permeáveis.

Em outro estudo, Guo et al. (2019) simularam diferentes LID e o aplicaram em uma grande bacia hidrográfica (de aproximadamente 20 km²), que corresponde a uma das cidades-esponja piloto, na China. O método utiliza tanto a simulação SWMM com editor LID quanto a simulação como sub-bacia regular equivalente. Para a definição dos parâmetros necessários, experimentos e simulações com o editor LID foram realizados. Os autores concluíram que, em comparação ao SWMM com editor LID, é mais conveniente e viável simular como sub-bacia regular equivalente para uma bacia hidrográfica grande pois menos parâmetros precisam ser definidos. No entanto, pode ser necessário a elaboração de protótipos de LID, pois, com dados de monitoramento para o projeto, um projeto com uma área menor pode ser simulado em detalhe e, consequentemente, o modelo poderá ser melhor calibrado e verificado.

Assim, o método proposto por Zhang e Guo (2014), o qual utiliza uma subbacia regular equivalente para representar sistemas de pavimentos permeáveis, pode ser aplicado como um método alternativo para os usuários do SWMM, até que o módulo LID seja aprimorado. Porém, a análise de pavimentos permeáveis do Tipo C não foi contemplada no estudo, limitando a utilização da equivalência de sub-bacias, mesmo com o relato de limitações com o editor LID. Outra situação observada, é que os autores não consideram a retenção de água na camada de assentamento do pavimento permeável, o que também gera questionamentos sobre sua real aplicação.

Neste contexto, mais estudos devem ser realizados a fim de corroborar os resultados dos autores supracitados, bem como aprimorar o método de modelagem proposto. Ademais, a análise de sensibilidade aplicada à metodologia de sub-bacia regular equivalente pode fornecer informações úteis acerca da resposta do modelo com a perturbação dos parâmetros do modelo.

3.4.2 Simulação de pavimentos permeáveis como sub-bacias regulares equivalentes

Observando os resultados fisicamente inexplicáveis do módulo LID do SWMM, Zhang e Guo (2014) propuseram um método alternativo, baseado nos

algoritmos básicos do SWMM, para avaliar as taxas médias de redução de escoamento superficial de sistemas de pavimentos permeáveis. Tal método representa um LID como uma sub-bacia permeável regular, a partir da equivalência adequada de seus parâmetros.

O SWMM dispõe de três opções de modelagem para estimar o processo de infiltração da água no solo: *Horton, Green-Ampt* e *Curve Number*. O método de *Green-Ampt*, utilizado por Zhang e Guo (2014) na simulação de pavimento permeável como sub-bacia regular equivalente, foi proposto por Green & Ampt (1911) e modificada por Mein e Larson (1973), apresentando grande potencial de utilização devido a sua simplicidade.

Cada sub-bacia corresponde, no SWMM, a uma superfície retangular, com declividade e largura característica constante, que encaminham o escoamento superficial para um canal de saída (ROSSMAN, 2015). No balanço hídrico das sub-bacias regulares equivalentes, a precipitação é um parâmetro de entrada nas sub-bacias (tratadas como um reservatório não-linear), enquanto que as saídas incluem infiltração, evaporação e escoamento (Figura 5).

Figura 5 – Modelo conceitual do escoamento superficial de sub-bacias no SWMM

Fonte: Adaptado de Rossman (2015)

Além disso, a sub-bacia possui uma camada de armazenamento em depressão (d_s), que é o valor armazenável na superfície em alagamentos, encharcamento e interceptação da água pluvial. Assim, o escoamento superficial só ocorre quando a lâmina de água na sub-bacia (d_a) excede a capacidade de armazenamento em depressão (d_s).

Esse modelo conceitual nas sub-bacias se assemelha ao modelo de escoamento em pavimento permeável, que também recebe água da chuva como

entrada e a libera por infiltração (ou drenagem), evapotranspiração e escoamento superficial. Na metodologia proposta por Zhang e Guo (2014), o escoamento superficial é controlado pela precipitação, área, largura característica, declividade e rugosidade da subárea permeável.

Porém, para garantir que um sistema de pavimento permeável seja equivalente à subárea permeável da sub-bacia, algumas adaptações devem ser feitas. A profundidade do armazenamento em depressão nas subáreas permeáveis (denominada d_s , em milímetros) deve ser equivalente à capacidade máxima de retenção de águas pluviais do sistema de pavimento permeável. A capacidade máxima de retenção de águas pluviais de um sistema de pavimento permeável, sem drenos de fundo, pode ser calculada pela Equação 1 (ZHANG; GUO, 2014).

$$Rc_{m\acute{a}x} = Sd_s + \frac{h_p \cdot e_p}{1 + e_p} + \frac{h_s \cdot e_s}{1 + e_s}$$
(1)

Onde Rc_{max} = capacidade máxima de retenção do pavimento permeável (mm), Sd_s = armazenamento em depressão superficial do sistema de pavimento permeável (mm), h_p = espessura da camada de revestimento (mm), e_p = razão de vazios da camada de revestimento (adimensional), h_s = espessura da camada de armazenamento (mm) e e_s = razão de vazios da camada de armazenamento (adimensional).

Cabe observar que a fórmula sugerida por Zhang e Guo (2014) não leva em consideração o armazenamento de água na camada de assentamento.

Quando há a utilização de um dreno acima da camada do reservatório, o escoamento superficial passa a englobar tanto o escoamento da superfície quanto o volume escoado pelo dreno, sendo que este último compreende a água que já se infiltrou na superfície do pavimento (ZHANG; GUO, 2014). Dessa forma, ao representar um pavimento permeável como uma sub-bacia permeável regular, a distinção entre vazão superficial e vazão do dreno não pode ser feita. Assim, o excesso de água da camada de reservatório é adicionado à água retida no armazenamento em depressão e a vazão do dreno é tratada como parte do escoamento superficial.

Em um sistema de pavimento permeável que utilize de dreno na camada de reservatório, a água da camada de revestimento e de parte do reservatório que está

acima do dreno pode ser drenada por gravidade. Desta forma, a capacidade máxima de retenção de águas pluviais do sistema de pavimento permeável com dreno é fornecida pelas três partes a seguir: (1) o armazenamento em depressão superficial (*Sd*_s, em milímetros), (2) os pequenos poros na camada de revestimento que podem reter a água da chuva contra a gravidade (representada pela capacidade de campo da camada de revestimento - θ_{fp} - sem dimensão) e (3) a parte da camada de reservatório abaixo do dreno. Portanto, a capacidade máxima de retenção de águas pluviais do sistema de pavimentos permeáveis com dreno passa a ser calculada pela Equação 2 (ZHANG; GUO, 2014).

$$Rc_{max} = Sd_s + h_p \cdot \theta_{fp} + \frac{h_d \cdot e_s}{1 + e_s}$$
⁽²⁾

Onde θ_{fp} = capacidade de campo da camada de revestimento (adimensional) e h_d = altura de deslocamento (offset) do dreno medido do fundo da camada de reservatório até o fundo do dreno (mm).

O módulo LID do SWMM não considera o armazenamento pela capacidade de campo da camada de revestimento por ser um valor geralmente insignificante, não requerendo, portanto, a entrada de θ_{fp} . O estudo de Zhang e Guo (2014) também não considerou a capacidade de campo como um parâmetro relevante.

3.4.3 Parâmetros

Em se tratando de valores atribuídos aos parâmetros necessários para a simulação, estes são dependentes do projeto de pavimento permeável adotado, materiais, aplicação e características regionais. A Tabela 1 apresenta os valores ou intervalos de valores utilizados em alguns estudos anteriores que simularam pavimentos permeáveis por meio do editor LID do software SWMM.

Parâmetro	Abera, Surbeck e O'Reilly (2018)	Bai et al., (2019)	Kim et al., (2015)	Peng et al., (2019)	Rosa, Clausen e Dietz (2015)	Song, Chung e Kim (2018)	Xie et al., (2017)	Weaver e Nachabe (2019)	Zhang e Guo (2014)
Área (ha)	NR	NR	NR	NR	0,0008-2,04	NR	NR	NR	01
Largura característica (m)	NR	NR	3910	NR	0,9-1247	NR	NR	NR	30
Declividade (%)	02	01	2,29	NR	0,5-30	NR	0,3	0,1-2	01
% impermeável (%)	05	NR	0	0	NR	NR	NR	NR	0
Rugosidade de Manning – impermeável (s/m ^{1/3})	0,012	NR	0,02	NR	0,01	0,013	NR	0,01-0,015	0,015
Rugosidade de Manning – permeável (s/m ^{1/3})	0,013	0,12	0,04	0,01	NR	0,38	0,011	0,13-0,4	NR
Armazenamento em depressão impermeável (mm)	1,27	NR	NR	NR	0,07	2,338	NR	0,1-0,5	NR
Armazenamento em depressão permeável (mm)	2,54	NR	2,54	NR	1,52	2,338	NR	0,1-0,5	1,5
% impermeável sem armazenamento (%)	NR	NR	NR	NR	NR	NR	NR	NR	NR
Porcentagem propaganda (%)	NR	NR	NR	NR	NR	NR	NR	NR	NR
Potencial mátrico do solo (mm)	110	45	NR	NR	110,1	NR	NR	4,9-22,86	88,9
Condutividade hidráulica do solo (mm/h)	10,9	NR	6,25	NR	25,1	NR	NR	0,5-12	3,3
Déficit inicial de umidade	0,453	NR	NR	NR	0,246	NR	NR	0,2-0,375	0
Espessura do pavimento (mm)	203	60	150	100	79,37	NR	150	NR	1-200
Proporção de vazios do pavimento	0,15	0,13	0,21	0,15	0,75	NR	0,25	NR	0,16
Altura da camada de armazenamento (mm)	203	250	450	450	0-304,8	150-450	300	NR	450
Proporção de vazios da camada de armazenamento	0,75	0,43	0,5	0,75	0,75	0,5-0,75	0,5	NR	0,63

Tabela 1 – Valores atribuídos aos parâmetros em estudos anteriores

NR = Valor não reportado

Fonte: Autoria própria

3.4.4 Análise de sensibilidade

A análise de sensibilidade, quando realizada, facilita a etapa de calibração e direciona as pesquisas de campo para a obtenção dos parâmetros necessários. Tem por objetivo identificar os parâmetros aos quais os resultados de um modelo são mais sensíveis, avaliando a variação da resposta hidrológica gerada pela perturbação dos seus valores de entrada (NIAZI et al., 2017).

Os métodos de análise de sensibilidade podem ser divididos em globais e locais. A análise global avalia a sensibilidade dos parâmetros considerando a interação entre os mesmos, fornecendo limites superiores e inferiores para o resultado da simulação. Esse método pode ser interpretado como uma avaliação de incertezas do modelo, principalmente para fins de comparação de diferentes modelos matemáticos. Por exemplo, os modelos de Tsai et al. (2017) e Yazdi et al. (2019) utilizaram a análise de sensibilidade global para avaliar a incerteza nos modelos hidrológicos dos programas SWMM e HSPF (*Hydrologic Simulation Program-Fortran*). Já as análises de sensibilidade locais avaliam a sensibilidade de cada parâmetro isolado.

Apesar da calibração de um modelo chuva-vazão poder ser executada por meio de simulações repetidas do SWMM, analisar todas as variações de parâmetros se tornaria um processo exaustivo, uma vez que o software simula uma única alteração de valor por vez, enquanto os outros parâmetros permanecem fixos. Dessa forma, a análise de sensibilidade vem sendo utilizada para identificar os parâmetros que produzem maior variação na resposta hidrológica de um modelo, simplificando o processo calibração.

Por exemplo, Krebs et al. (2013) identificaram dois parâmetros como sendo os mais sensíveis de seu modelo (armazenamento em depressão e rugosidade de Manning para tubulação), os quais resultaram em uma calibração com boas estatísticas de desempenho, com valores de 0,88 e 0,94 para o coeficiente de Eficiência de Nash-Sutcliffe (*NSE*) (NASH; SUTCLIFFE, 1970) e o coeficiente de correlação de Pearson, respectivamente.

Dependendo da quantidade de parâmetros a ser considerado, a análise de sensibilidade também pode se tornar um processo trabalhoso. A análise de sensibilidade de Akdogan e Güven (2016), por exemplo, envolveu 80 simulações de
modelo no SWMM. Com o objetivo de determinar os efeitos dos principais parâmetros na produção de escoamento superficial numa bacia hidrográfica, os autores alteraram manualmente o valor de oito parâmetros pré-selecionados em incrementos de 10%, dentro de um intervalo de -50 a +50%, observando os valores de saída. De acordo com os resultados da análise, os parâmetros mais sensíveis incluíam a precipitação, área e o diâmetro da tubulação (Tabela 2).

O modelo de Akdogan e Güven (2016) também apresentava sensibilidade às mudanças na rugosidade da tubulação, enquanto que o comprimento da tubulação e a cota de fundo da singularidade detinham uma influência média. Por outro lado, a porcentagem impermeável e a declividade da sub-bacia geravam uma menor influência sobre as saídas do modelo.

Na revisão de literatura de Niazi et al. (2017), dos 34 estudos que apresentaram uma análise de sensibilidade do SWMM, 13 identificaram as características permeáveis da superfície (coeficiente de Manning ou armazenamento da depressão) ou parâmetros de infiltração como sendo os mais sensíveis às simulações.

A Tabela 2 fornece um resumo das análises de sensibilidades de parâmetros realizadas em estudos de modelagem pelo SWMM. Observa-se que, dentre os estudos citados, dois analisaram a sensibilidade para LIDs utilizando o editor do SWMM, enquanto que os parâmetros da simulação de pavimentos permeáveis como sub-bacias regulares equivalente não foram explorados por nenhuma pesquisa.

Referência	Objetivo do estudo	Parâmetros escolhidos	Simbologia	Intervalos	Parâmetros mais sensíveis
Akdogan e Güven (2016)	Determinar os efeitos dos principais parâmetros na produção de escoamento superficial numa bacia hidrográfica	Precipitação Área Recobrimento do radier do nó Rugosidade de Manning - tubulação Comprimento do conduto Cota de fundo da singularidade % impermeável Declividade	P Area Depth N Length Elev %Imperv Slope	NR	Precipitação, área, diâmetro e rugosidade da tubulação
Krebs et al. (2013)	Realizar uma simulação de alta resolução para uma pequena bacia hidrográfica altamente urbanizada	Declividade Largura característica % impermeável Rugosidade de Manning - impermeável Rugosidade de Manning - permeável Rugosidade de Manning – tubulação Armazenamento em depressão impermeável Armazenamento em depressão permeável	Slope Width %Imperv Nimp Nperv N Simp Sperv	1 - 20 0,46 - 114 0 - 100 0,02 - 0,4 0,011 - 0,4 0,011 - 0,013 1,27 - 2 2 - 5,08	Armazenamento em depressão e rugosidade de Manning para tubulação
Rosa, Clausen e Dietz (2015)	Analisar o escoamento superficial em uma bacia com controles de escoamento tradicionais e outra com LID	Condutividade Rugosidade de Manning – vala de infiltração Déficit inicial de umidade Potencial mátrico Armazenamento em depressão permeável Armazenamento em depressão impermeável	Conduct N InitDef Suction Sperv Simp	NR	Condutividade, Rugosidade de Manning – vala de infiltração e déficit inicial de umidade
Tsai et al. (2017)	Comparar simulações do SWMM e do HSPF para uma bacia altamente permeável	Largura característica Rugosidade de Manning permeável Taxa de infiltração Condutividade Déficit inicial de umidade Potencial mátrico	Width Nperv Maxrate Conduct InitDef Suction	0 - 100% 0,01 - 0,8 1,5 - 4,5 0,1 - 1,5 5 - 15 1,5 - 4,5	Largura característica e rugosidade de Manning para áreas permeáveis.

Tabela 2 – Estudos com análises de sensibilidade de parâmetros

Referência	Objetivo do estudo	Parâmetros escolhidos	Simbologia	Intervalos	Parâmetros mais sensíveis
Yazdi et al. (2019)	Comparar simulações do SWMM e do HSPF para uma bacia urbana	Largura característica Rugosidade de Manning - impermeável Rugosidade de Manning - permeável Armazenamento em depressão impermeável Armazenamento em depressão permeável Coeficiente de fluxo das águas subterrâneas Expoente de fluxo das águas subterrâneas Coeficiente de fluxo das águas superficiais Expoente de fluxo das águas de superficiais Condutividade	Width Nimp Nperv Simp Sperv A1 B1 A2 B2 Conduct	$\begin{array}{c} \pm 10\% \\ 0,01 - 0,03 \\ 0,02 - 0,45 \\ 0,3 - 2,3 \\ 2,5 - 5,1 \\ 0,0001 - 0,01 \\ 0,0001 - 1 \\ 0,0001 - 0,01 \\ 0,0001 - 1 \\ \pm 20\% \end{array}$	Armazenamento em depressão e largura característica da bacia
Weaver e Nachabe (2019)	Análise de sensibilidade dos parâmetros para as técnicas LID	Rugosidade de Manning - impermeável Rugosidade de Manning - permeável Armazenamento em depressão impermeável Armazenamento em depressão permeável Potencial mátrico Condutividade Déficit inicial de umidade	Nimp Nperv Simp Sperv Suction Conduct InitDef	0,01 - 0,015 0,13 - 0,4 0,1 - 0,5 0,1 - 0,5 4,9 - 22,86 0,5 - 12 0,2 - 0,375	Potencial mátrico, rugosidade de Mannin para áreas impermeáveis e défici inicial de umidade.

Tabela 2 – Estudos com análises de sensibilidade de pa	arâmetros (continuação)
$\mathbf{L} = \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L}$	arametros (commuaçãoj

NR = Valor não reportado

Fonte: Autoria própria

3.4.5 Calibração e Validação

Calibração é o processo de estimar os parâmetros do modelo comparando, para um determinado conjunto de condições assumidas, as previsões do modelo (saída) e os dados observados (MORIASI et al., 2007). Simulações não calibradas podem gerar resultados questionáveis de volumes de escoamento superficial e vazões de pico. A título de exemplo, Rosa, Clausen e Dietz (2015) encontraram valores subestimados na ordem de 80% em bacias com técnicas LID.

Já a validação do modelo envolve o processo pelo qual um modelo calibrado, exposto a novos dados, é capaz de reproduzir um conjunto de observações de campo ou prever condições futuras com precisão satisfatória. Esse processo preconiza que o modelo é aceitável para uso, não que incorpore qualquer verdade absoluta, nem mesmo que seja o melhor modelo disponível (RYKIEL, 1996).

Tradicionalmente, a calibração do SWMM é realizada manualmente, processo chamado de método de tentativa e erro. Os parâmetros sensíveis recebem inicialmente um valor dentro da faixa relatada no manual do SWMM ou na literatura e, em seguida, são sujeitos a perturbações (ou ajustes). Apesar de essa abordagem ser demorada e não garantir valores ideais para os parâmetros, os 84 artigos revisados por Niazi et al. (2017) que relatavam estatísticas de calibração, 44 o fizeram manualmente. Zanandrea e Silveira (2019), por exemplo, utilizaram o método de tentativa e erro calibrando os parâmetros que consideraram mais incertos, como largura característica das sub-bacias, coeficiente de Manning e parâmetros de infiltração.

Porém, existem algoritmos de calibração automática para superar essa limitação, sendo essencialmente algoritmos de otimização. As versões comerciais do SWMM fornecem recursos de calibração automática de modelo, com base em um ou mais dos algoritmos de otimização. Platz, Simon e Tryby (2020) utilizaram o software PEST, uma ferramenta não-linear de estimativa de parâmetros, para calibrar e otimizar parâmetros não medidos. Krebs et al. (2013) calibraram seu modelo usando um algoritmo de otimização multiobjectivo, vinculando o SWMM ao algoritmo NSGAII.

O período durante o qual o modelo é calibrado é uma consideração importante para o desempenho do modelo. A abordagem de calibração baseada em eventos é mais popular na literatura (61 estudos), em comparação com a calibração contínua (20 estudos) (NIAZI et al., 2017). Platz, Simon e Tryby (2020) selecionaram o primeiro evento monitorado, enquanto que o modelo de Wang et al. (2019) foi calibrado por dois grandes eventos pluviométricos. Já o estudo de Krebs et al. (2013), que buscava uma simulação de alta resolução, utilizou seis eventos para calibração e onze para validação. À exemplo de calibração contínua, Rosa, Clausen e Dietz (2015) utilizaram simulações por um período de 47 e 46 semanas para as etapas de calibração e validação, respectivamente.

Para auxiliar a avaliação do desempenho do modelo, algumas métricas estatísticas são utilizadas. As medidas de desempenho para modelos hidrológicos mais utilizadas são: Coeficiente de Eficiência de Nash-Sutcliffe (NSE), Raiz do Quadrado Médio do Erro (REMQ) e Coeficiente de Determinação (R²) (MORIASI et al., 2015). Em se tratando de estudos hidrológicos envolvendo o SWMM, diferentes métricas estatísticas são utilizadas e, muitas vezes, uma combinação dos mesmos. Niazi et al. (2017) constataram que o Erro Relativo (ER) é a medida estatística mais comum (utilizado em 38,8% dos artigos analisados) e o Coeficiente de Nash-Sutcliffe a segunda mais frequente (empregado em 18,2% dos artigos). A Tabela 3 apresenta algumas das métricas estatísticas utilizadas en estudos para a calibração de modelos hidrológicos, bem como os intervalos e os respectivos valores ótimos.

Nome	Simbologia	Equação	Intervalo	Valor ótimo	Referências
Coeficiente de Eficiência de Nash- Sutcliffe (Nash-Sutcliffe Efficiency/Coefficient)	NSE	$1 - \frac{\sum_{i=1}^{n} (Y_{m,i} - Y_{c,i})^{2}}{\sum_{i=1}^{n} (Y_{m,i} - \overline{Y_{m}})^{2}}$	-∞ a 1	1	Kim et al. (2018); Krebs et al. (2013) e (2014); Palla e Gnecco (2015); Peterein et al. (2019); Platz, Simon e Tryby (2020); Rosa, Clausen e Dietz (2015); Sun, Lotz e Chang (2017); Talib e Randhir (2017); Yazdi et al. (2019); Zanandrea e Silveira (2019)
Erro Relativo (%) (Relative Error)	ER	$\left \frac{Y_{c,i}-Y_{m,i}}{Y_{c,i}}\right \cdot 100\%$	0 A ∞	0	Barco, Wong e Stenstrom (2008); Choi e Ball (2002); Kim et al. (2018); Krebs et al. (2013) e (2014); Liong, Chan e Lum (1992); Talib e Randhir (2017); Wang et al. (2019)
Coeficiente de Determinação (Coefficient of Determination)	R²	$\left(\frac{\sum_{i=1}^{n}(Y_{m,i}-\overline{Y_{m}})(Y_{c,i}-\overline{Y_{c}})}{\sqrt{\sum_{i=1}^{n}(Y_{m,i}-\overline{Y_{m}})^{2}\cdot\sum_{i=1}^{n}(Y_{c,i}-\overline{Y_{c}})^{2}}}\right)$	0 A 1	1	Gülbaz e Kazezyilmaz-Alhan (2017); Kim et al. (2018); Rosa, Clausen e Dietz (2015); Talib e Randhir (2017); Tsai et al. (2017); Yazdi et al. (2019)
Coeficiente de correlação <i>(Correlation</i> <i>Coefficient)</i>	R	$\frac{\sum_{i=1}^{n} (Y_{m,i} - \overline{Y_m}) (Y_{c,i} - \overline{Y_c})}{\sqrt{\sum_{i=1}^{n} (Y_{m,i} - \overline{Y_m})^2 \cdot \sum_{i=1}^{n} (Y_{c,i} - \overline{Y_c})^2}}$	-1 a 1	-1 ou 1	Krebs et al. (2013) e (2014); Tsai et al. (2017)
Percentual de viés (Percent bias/deviation)	Pbias	$\frac{\sum_{i=1}^{n}(Y_{m,i}-Y_{c,i})}{\sum_{i=1}^{n}Y_{m,i}}\cdot 100\%$	-∞ a ∞	1	Kim et al. (2018); Platz, Simon e Tryby (2020); Yazdi et al. (2019)
Raiz do Quadrado Médio do Erro <i>(Root mean square error/)</i>	REMQ	$\sqrt{\frac{\sum_{i=1}^{n} (Y_{m,i} - Y_{c,i})^2}{n}}$	0 a ∞	0	Choi e Ball (2002); Kim et al. (2018); Zanandrea e Silveira (2019)
Soma dos erros quadrados (sum of squared errors)	SSE	$\sum_{i=1}^{n} (Y_{m,i} - Y_{c,i})^2$	0 a ∞	0	Krebs et al. (2013) e (2014); Liong, Chan e Lum (1992)

Tabela 3 – Métricas estatísticas para avaliar o erro ou a qualidade da modelagem

Nome	Simbologia	Equação	Interval o	Valor ótimo	Referências
Índice de concordância de Willmott <i>(index of agreement)</i>	D	$1 - \frac{\sum_{i=1}^{n} (Y_{c,i} - Y_{m,i})^{2}}{\sum_{i=1}^{n} (Y_{c,i} - \overline{Y_{m}} + Y_{m,i} - \overline{Y_{m}})^{2}}$	0 a 1	1	Platz, Simon e Tryby (2020); Wang et al. (2019)
Razão entre REMQ e desvio padrão dos dados <i>(ratio of</i> <i>REMQ and standard</i> <i>deviation of data)</i>	RSR	$\frac{\sqrt{\sum_{i=1}^{n} (Y_{m,i} - Y_{c,i})^2}}{\sqrt{\sum_{i=1}^{n} (Y_{m,i} - \overline{Y_m})^2}}$	0 a ∞	0	Kim et al. (2018); Platz, Simon e Tryby (2020)
Correlação cruzada (Cross-correlation)	сс	$\frac{\frac{1}{n}\sum_{i=1}^{n}\left[\left(Y_{c,i}-\overline{Y_{c}}\right)\cdot\left(Y_{m,i}-\overline{Y_{m}}\right)\right]}{\sigma_{m}\cdot\sigma_{c}}$	-1 a 1	1	Kim et al. (2018)
Erro Absoluto (<i>Absolute Error</i>)	EA	$\sum_{i=1}^{n} Y_{m,i} - Y_{c,i} $	0 A ∞	0	Wang et al. (2019)
Erro Médio Absoluto (Mean Absolute Error)	EMA	$\frac{1}{n}\sum_{i=1}^{n} Y_{m,i}-Y_{c,i} $	0 A ∞	0	Gülbaz e Kazezyilmaz-Alhan (2017)
Viés (<i>Bias</i>)	VI	$\frac{1}{n}\sum_{i=1}^{n}(Y_{m,i}-Y_{c,i})$	-∞ A 0	0	Kim et al. (2018)
Diferença percentual relativa (<i>Relative</i> <i>Percentage</i> <i>Difference</i>)	RPD	$\left \frac{Y_{c,i}-Y_{m,i}}{Y_{m,i}}\right \cdot 100\%$	0 A ∞	0	Palla e Gnecco (2015)

Tabela 3 – Ferramentas estatísticas para calibração de modelos hidrológicos (continuação)

 Y_m = valor medido; Y_c = valor calculado; $\overline{Y_m}$ = média dos valores medidos; $\overline{Y_c}$ = média dos valores calculados; n = número de pares de valores medidos e calculados; σ_m = desvio padrão dos valores medidos; σ_c = desvio padrão dos valores calculados.

Fonte: Autoria própria

4 MATERIAIS E MÉTODOS

A metodologia aplicada envolve a observação e coleta de dados de campo fornecidos por um módulo experimental de pavimento permeável do Tipo C construído na Universidade Tecnológica Federal do Paraná (*UTFPR*) – Campus Pato Branco e posterior simulação como sub-bacia regular equivalente. Para uma modelagem hidrológica de qualidade, foi realizada uma análise de sensibilidade nos principais parâmetros, com a posterior calibração e validação do modelo.

4.1 CARACTERIZAÇÃO DA ÁREA DE ESTUDO

O município de Pato Branco está situado na região sudoeste do estado do Paraná, a 433,53 *km* da capital Curitiba (Figura 6). Com uma área total de 539,029 *km*², possui uma população estimada para 2020 de 83.843 habitantes (IBGE, 2020).

Quanto ao tipo de solo, o município de Pato Branco registra maior ocorrência de Nitossolo Vermelho distrófico (NVd - 32,24%) e o Cambissolo distrófico (CXd - 22,19%) (BALENA; BORTOLINI; TOMAZONI, 2009). No que se refere à hidrografia, Pato Branco está situado na bacia do Iguaçu e este na sub-bacia do Paraná. Os principais rios que passam pelo município são o Pato Branco, Ligeiro, Vitorino, todos afluentes do Rio Chopim.

De acordo com Nitsche et al., (2019), obedecendo à classificação de Koppen, o município está sob o clima temperado do tipo Cfb, tipicamente subtropical úmido (temperado), com chuvas bem distribuídas ao longo de todo ano. Em um estudo de Tabalipa e Fiori (2008) sobre o clima do município, considerando dados de 1979 a 2005, foi verificado uma variação média da temperatura entre 22°C e 14°C e umidade relativa do ar em torno de 74%. De acordo com o Instituto Águas Paraná (2019), a maior diária precipitação nos últimos dez anos em Pato Branco foi de 138 *mm* em 2014.

Figura 6 – Localização do município

Fonte: Autoria própria

O experimento foi conduzido em uma área dentro Universidade Tecnológica Federal do Paraná (UTFPR), Campus Pato Branco, localizada ao norte do Bloco M (Figura 7). A área se situa entre as coordenadas geográficas UTM (Universal Transversal de Mercator) 331.089,23 Leste e 7.101.579,21 Sul.

Fonte: Banco de Imagens UTFPR - 2011

4.2 CARACTERIZAÇÃO DOS MATERIAIS

Os materiais utilizados para a construção do módulo experimental de pavimento permeável foram caracterizados segundo as normas brasileiras (Tabela 4). Os ensaios de caracterização foram realizados nos laboratórios da UTFPR, com exceção dos ensaios de condutividade hidráulica, resistência à compressão e flexão do material de revestimento, os quais foram executados pela empresa fabricante dos blocos intertravados porosos.

Camada	Ensaio	Metodologia
	Avaliação dimensional	NBR 16416 (ABNT, 2015a)
	Absorção de água	Anexo B da NBR 9781 (ABNT, 2013)
Revestimento	Condutividade hidráulica	Anexo A NBR 16416 (ABNT, 2015a)
	Resistência à compressão	NBR 9781 (ABNT, 2013)
	Resistência à flexão	NBR 15805 (ABNT, 2015)
	Composição granulométrica	NBR NM 248 (ABNT, 2003)
Assentamento	Massa específica	NBR NM 53 (ABNT, 2009)
	Massa unitária	NBR NM 45 (ABNT, 2006)
	Índice de volume de vazios	NBR NM 45 (ABNT, 2006)
	Composição granulométrica	NBR NM 248 (ABNT, 2003)
A	Massa específica	NBR NM 53 (ABNT, 2009)
Armazenamento	Massa unitária	NBR NM 45 (ABNT, 2006)
	Índice de volume de vazios	NBR NM 45 (ABNT, 2006)
Solo (ou sub-leito)	Índice de suporte Califórnia (CBR)	NBR 9895 (ABNT, 2017)
	Fonte: Autoria pro	ópria

Tabela 4 – Caracterização dos materiais

4.3 DIMENSIONAMENTO DOS MÓDULOS EXPERIMENTAIS

O pavimento permeável foi dimensionado com a finalidade de permitir a infiltração e armazenamento temporário de água e, ao mesmo tempo, atender às solicitações hipotéticas de mecânicas de carga de veículos automotivos e pedestres, de forma eficiente e sem causar danos à sua estrutura. Desta forma, foram necessários dois dimensionamentos (mecânico e hidráulico), sendo que a definição dos materiais e espessuras das camadas deveria atender ambos.

As etapas do dimensionamento do pavimento permeável seguiram o fluxograma da Figura 8, sendo que os métodos estão detalhados nas sessões subsequentes.

Figura 8 – Fluxograma de dimensionamento do pavimento permeável

Fonte: Autoria própria

4.3.1 Dimensionamento hidráulico

O dimensionamento hidráulico, etapa que associa uma chuva de projeto a um balanço hídrico simplificado, consiste no cálculo de volumes de armazenamento de água e das dimensões mínimas das camadas (SILVEIRA; GOLDENFUM, 2007). Para tal, devem ser conhecidos os parâmetros e coeficientes de precipitação da região, bem como ser avaliado o risco de contaminação da água (MARCHIONI; SILVA, 2011).

Para o dimensionamento hidráulico do pavimento permeável foram utilizados dois métodos, sendo adotado como altura da camada de armazenamento o maior valor encontrado. Tais métodos corresponderam ao proposto pela NBR 16416 (ABNT,

2015a) e ao método desenvolvido por Silveira e Goldenfum (2007), denominado Método da Curva Envelope. Tendo em vista que os pavimentos permeáveis possuem dreno de fundo, foi considerada nula a componente infiltração no dimensionamento hidráulico.

4.3.1.1Dimensionamento pelo Método da Curva Envelope

Pelo método da Curva Envelope (*Rain-envelope method*), a curva de massa no tempo dos volumes afluentes ao dispositivo é comparada com a curva de massa dos volumes dele efluentes, e a máxima diferença entre as duas curvas é o volume de dimensionamento (SILVEIRA; GOLDENFUM, 2007). A Equação 3 foi utilizada para o cálculo do volume de dimensionamento (ou volume máximo).

$$V_{m\acute{a}x} = \left(\sqrt{\frac{a}{60}}\sqrt{\beta}T^{b/2} - \sqrt{\frac{c}{60}}q_s\right)^2 \tag{3}$$

Onde V_{max} = volume de dimensionamento (mm), β = produto do coeficiente de escoamento pela razão entre área contribuinte e a área do dispositivo (adimensional), T = período de retorno (anos), *a*, *b*, *c* = parâmetros da equação *IDF* de Talbot (adimensional) e q_s = vazão de saída constante do pavimento permeável através do dreno de fundo (mm/h).

Para aplicar a (3, foi necessário conhecer a equação IDF característica do local de estudo. A equação Intensidade-Duração-Frequência (IDF) relaciona a intensidade, duração e frequência de ocorrência de um evento de precipitação para um determinado período de retorno e tempo de duração (BERNARD, 1932).

Ressalta-se que os parâmetros da equação IDF utilizados pelo método da curva envelope são retirados da expressão geral correspondente à de Talbot, como expresso na Equação 4 (SILVEIRA; GOLDENFUM, 2007).

$$i = \frac{a \cdot T^b}{t + c} \tag{4}$$

Onde i = intensidade da precipitação (mm/h) e t = duração da precipitação (min).

4.3.1.2Dimensionamento pela NBR 16416

A NBR 16416 (ABNT, 2015a) propõe um método de dimensionamento hidráulico que determina a profundidade mínima da camada de armazenamento necessária para conter a diferença entre o volume de água precipitada e infiltrada pelo solo (MARCHIONI; SILVA, 2011). O dimensionamento de acordo com a NBR 16416 (ABNT, 2015a) foi realizado pela aplicação da Equação 5.

$$H_t = \frac{\Delta Q_c \cdot R + P - f \cdot T_e}{V_r}$$
(5)

Onde *H* = altura da camada reservatório (mm), ΔQ_c = precipitação excedente da área de contribuição para uma dada chuva de projeto (m), *R* = relação entre a área de contribuição e a área de pavimento permeável (A_c/A_p), A_c = área de contribuição (m²), A_p = área de pavimento permeável (m^2), *P* = precipitação de projeto (mm), *f* = taxa de infiltração no solo (m/h), T_e = tempo efetivo de enchimento da camada reservatório - geralmente 2h e V_r = índice de vazios da camada (adimensional).

Uma seção transversal esquemática e os parâmetros de projeto para o dimensionamento pelo método da NBR 16416 (ABNT, 2015a) são mostrados na Figura 9.

Figura 9 – Variáveis de projeto para o dimensionamento hidráulico

Fonte: Adaptado de Smith (2006)

4.3.2 Dimensionamento mecânico

O dimensionamento mecânico do pavimento permeável deve considerar métodos apropriados para cada tipo de revestimento (ABNT, 2015a). Neste estudo, o dimensionamento mecânico foi baseado no Método de Projeto de Pavimentos Flexíveis (SOUZA, 1981).

Para o dimensionamento mecânico da camada de armazenamento do pavimento permeável, primeiramente, foram levantados os dados de tráfego no local de implantação. Esse dado é expresso em solicitações equivalentes ao eixo padrão (*NE*) de 18000 kip (80 kN) e, normalmente, se adota a vida útil do pavimento de 20 anos (MARCHIONI; SILVA, 2011).

De acordo com DNER (1981), em alguns projetos de pavimentação o aumento do tráfego deve ser considerado. Assim, com base no volume médio diário de tráfego no ano de abertura num sentido (V_1), a Equação 6 fornece o volume médio diário de tráfego, V_m , durante o período de P_a anos, admitindo-se uma taxa de 1% de crescimento anual (em progressão aritmética).

$$V_m = \frac{V_1 [2 + (V_u - 1) \cdot t_1 / 100]}{2}$$
(6)

Onde V_m = volume médio diário de tráfego num sentido (adimensional), V_1 = volume médio diário de tráfego no ano de abertura num sentido (adimensional), V_u = vida útil (anos) e $t_1/100$ = taxa de crescimento anual, em progressão aritmética (adimensional).

Consequentemente, o volume total de tráfego (V_t) a qual o pavimento permeável estará exposto, em um único sentido durante o período P_a , é descrito pela Equação 7.

$$V_t = 365 \cdot P_a \cdot V_m \tag{7}$$

Conhecido V_t , calculou-se NE, que é o número equivalente de operações do eixo simples padrão durante o período de projeto e o parâmetro de tráfego usado no dimensionamento, conforme expresso na Equação 8.

$$NE = V_t \cdot (FE) \cdot (FC) \tag{8}$$

Onde NE = número equivalente de operações do eixo simples padrão (adimensional), FE = fator de eixos (adimensional) e FC = fator de carga (adimensional).

De acordo com o DNER (1981), para se considerar as variações de umidade dos materiais do pavimento durante as diversas estações do ano, o número equivalente de operações do eixo simples padrão (NE) deve ser multiplicado por um coeficiente de fator climático (FR). Outra correção a ser avaliada refere-se ao material utilizado, corrigido por um coeficiente de equivalência estrutural (K) (DNER, 1981).

Por fim, a espessura do pavimento (em centímetros) foi determinada por meio de um ábaco, que relaciona os dados acima. Tal elemento gráfico pode ser observado na Figura A.1 do Anexo A.

4.4 MONITORAMENTO

Os eventos de precipitação foram considerados independentes quando separados por um intervalo mínimo de 6 horas sem registros de chuva, além de apresentarem uma altura de lamina d'água mínima igual a 2,5 mm (BROWN E

BORST, 2015). Uma instrumentação composta por um pluviômetro automático, transdutores de pressão e *datalogger* foi empregada para o monitoramento dos módulos experimentais de pavimento permeável.

Para o monitoramento dos eventos pluviométricos, um pluviômetro (marca Davis e modelo 6463) foi instalado na área experimental. O instrumento utilizado possui um coletor com dimensão de 16,5 *cm* de diâmetro e 24 *cm* de altura, com uma área de coleta de 214 *cm*². Com sensor do tipo báscula com chave magnética, o pluviômetro possui uma resolução de 0,2 *mm* e precisão de ±4% para chuvas de até 100 *mm/h*. O pluviômetro foi programado para realizar registros a cada minuto.

Os volumes de água foram destinados a 2 reservatórios, sendo um para a armazenamento do escoamento superficial e o outro para o volume escoado pelo dreno inferior do módulo experimental. Como reservatório, foram utilizados tubos de PVC de 300 mm de diâmetro e 1,0 m de altura, com capacidade de armazenamento de 70 l aproximadamente.

Estes volumes foram monitorados através da variação de pressão, com transdutores de pressão (marca Hobo, modelo U20L-01). Tais instrumentos medem variações de nível de até 9 metros, com uma resolução de 0,21 *cm* e precisão de medição de 0,1%.

Todos os sensores foram conectados a uma central de aquisição de dados (*datalogger*), que tem a função de coletar e armazenar as informações. O instrumento, da marca Ag Solve e modelo H21-USB, possui intervalo de coleta de dados que varia de 1 s até 18 h.

4.5 CONSTRUÇÃO DO MODELO COMPUTACIONAL

Para a construção de um modelo computacional de sub-bacia regular que fosse representativo de um sistema de pavimento permeável do Tipo C, algumas alterações na metodologia proposta por Zhang e Guo (2014) precisaram ser feitas.

A primeira delas refere-se às características de infiltração do sistema. A metodologia de Zhang e Guo (2014) utiliza as Equações 1 ou 2 em substituição ao parâmetro de profundidade de armazenamento em depressão nas subáreas permeáveis (denominada d_s), para que o mesmo seja equivalente ao armazenamento de água no pavimento permeável. Para adaptar a metodologia de Zhang e Guo (2014)

aos pavimentos do Tipo C, a modelagem computacional foi realizada pela substituição ao parâmetro armazenamento em depressão nas subáreas impermeáveis (denominada *d_i*) - e não permeáveis como os autores utilizaram para os demais sistemas. Ademais, também se considerou a sub-bacia como sendo 100% impermeável, ao invés de 100% permeável como fizeram os autores supracitados.

Foi observado que Zhang e Guo (2014) simularam pavimentos do "Tipo A" e "Tipo B", onde ocorre a infiltração de água no solo, de forma total ou parcial, respectivamente. Por meio da adoção de parâmetros do modelo de Green & Ampt (1911), o processo de infiltração da água no solo era estimado no SWMM. Tal processo não ocorre no sistema aqui estudado, uma vez que toda a água incidente sobre o pavimento permeável é esgotada através de um dreno. Dessa forma, por se tratar de um pavimento permeável do Tipo C, os parâmetros relacionados a infiltração no subleito não são relevantes.

Por fim, algumas alterações na equivalência do armazenamento de água do pavimento permeável por meio das equações foram necessárias. Segundo Zhang e Guo (2014), os pavimentos permeáveis podem ser simulados sem o módulo LID com a adaptação de parâmetros por meio das Equações 1 ou 2. A Equação 1 é empregada para um sistema de pavimento permeável onde há infiltração total ("Tipo A"), enquanto na Equação 2, considera a existência de um dreno no sistema, correspondendo assim a um pavimento do "Tipo B".

Quanto à equivalência de parâmetros, coube observar que as equações sugeridas pelos autores supracitados, não levam em consideração a retenção de água devido a capacidade de campo da camada de assentamento (θ_{fp}) e de armazenamento (θ_s), por considerarem estes valores desprezíveis. Em pavimentos permeáveis com dimensões maiores, a desconsideração da capacidade de campo na camada de assentamento pode negligenciar volumes relevantes. Ademais, para futuras comparações com modelagens pelo módulo LID, a capacidade de campo foi considerada na equação proposta.

Dessa forma, a adaptação das Equações 1 e 2, com incremento da porção de armazenamento de água na camada de assentamento e armazenamento, resultou na Equação 9.

$$Rc_{max} = Sd_i + h_p \cdot \theta_{fp} + h_a \cdot \theta_a + h_s \cdot \theta_s + \frac{h_d \cdot e_s}{1 + e_s}$$
(9)

Onde Rc_{max} = capacidade máxima de retenção do pavimento permeável (mm), Sd_i = armazenamento em depressão superficial impermeável do sistema de pavimento permeável (mm), h_p = altura da camada de revestimento (mm), θ_{fp} = capacidade de campo da camada de revestimento (adimensional), h_a = altura da camada de assentamento (mm), θ_{fp} = capacidade de campo da camada de assentamento (adimensional), h_s = altura da camada de armazenamento (mm), θ_s = capacidade de campo da camada de armazenamento (adimensional), h_d = altura de deslocamento (offset) do dreno medido do fundo da camada de armazenamento (um) e e_s = razão de vazios da camada de armazenamento (adimensional).

A Tabela 5 sintetiza as alterações entre a metodologia base, de Zhang e Guo (2014), e a proposta neste trabalho.

	Metodologia proposta	por Zhang e Guo (2014)	Metodologia proposta para pavimentos permeáveis do Tipo C
Aplicação	Тіро А	Тіро В	Tipo C
Equação	$Sd_s + \frac{h_p \cdot e_p}{1 + e_p} + \frac{h_s \cdot e_s}{1 + e_s}$	$Sd_s + h_p \cdot \theta_{fp} + \frac{h_d \cdot e_s}{1 + e_s}$	$Sd_i + h_p \cdot \theta_{fp} + h_a \cdot \theta_a + h_s \cdot \theta_s + \frac{h_d \cdot e_s}{1 + e_s}$
Parâmetros abrangidos pela equação	 Armazenamento em depressão permeável (Sd_s); Altura da camada de revestimento (h_p); Razão de vazios da camada de revestimento (e_p); Altura da camada de armazenamento (h_s); Proporção de vazios da camada de armazenamento (e_s). 	 Armazenamento em depressão permeável (Sd_s); Altura da camada de revestimento (h_p); Capacidade de campo - revestimento (θ_{fp}); Offset do dreno (h_d); Proporção de vazios da camada de armazenamento (e_s). 	 Armazenamento em depressão impermeável (Sdi) Altura da camada de revestimento (h_p); Capacidade de campo - revestimento (θf_p); Altura da camada de assentamento (h_a); Capacidade de campo - assentamento (θ_a); Altura da camada de armazenamento (h_s); Capacidade de campo - armazenamento (θ_s); Capacidade de campo - armazenamento (θ_s); Offset do dreno (h_d); Proporção de vazios da camada de armazenamento (e_s).
Parâmetro substituído pela equação	Dstore-Perv	Dstore-Perv	Dstore-Imperv
Características da sub-bacia equivalente	100% permeável	100% permeável	100% impermeável

Tabola 5 - Comparativ	vo ontro motodologia	a da Zhana a Gua ((2014) = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	nosta nara Tino C
Tabela 5 – Comparativ	o entre metodologia	a ue Zhany e Guo ((2014) e a pro	μ usia para ripu c

Os parâmetros de entrada indispensáveis para as simulações do pavimento permeável como sub-bacia regular equivalente, pela metodologia proposta, estão descritos na Tabela 6.

Parâmetros	Simbologia	Unidade
Área	Area	ha
Largura característica	Width	m
Declividade	Slope	%
% impermeável	%Imperv	%
Rugosidade de Manning - impermeável	Nimp	s/m ^{1/3}
% Impermeável sem armazenamento em depressão	%Zero	%
% Propagada	%Rted	%
Fonte: Autoria própria		

Tabe<u>la 6 – Parâmetros de entrada para simulações como sub-bacia regular equiva</u>lente Parâmetros Simbologia Unidade

Além dos parâmetros acima, outros são necessários para a caracterização do pavimento permeável (Tabela 7). Apesar de não serem inseridos automaticamente no SWMM, tais parâmetros são utilizados para a equivalência do armazenamento em depressão impermeável pela Equação 9, conforme descrito anteriormente.

Parâmetros	Simbologia	Unidade
Armazenamento em depressão impermeável	S _{di}	mm
Altura da camada de revestimento	h _p	mm
Altura da camada de assentamento	ha	mm
Altura da camada de armazenamento	hs	mm
Proporção de vazios do revestimento	ep	-
Proporção de vazios da camada de armazenamento	es	-
Capacidade de campo - revestimento	θfp	-
Capacidade de campo - assentamento	θa	-
Capacidade de campo - armazenamento	θ_s	-
Offset do dreno	hd	mm

Tabela 7 – Parâmetros adicionais para simulações como sub-bacia regular equivalente

Fonte: Autoria própria

Zhang e Guo (2014) relatam que os parâmetros para simulações como subbacias regulares equivalentes são análogos aos solicitados nas simulações com o editor LID, com exceção do armazenamento em depressão permeável, determinado por meio das Equações 1 e 2. Nesta proposta de metodologia, a exceção é para o armazenamento em depressão impermeável, o qual está inserido na Equação 9, junto com outros volumes de retenção de água. A Figura 10 demonstra essa equivalência de parâmetros com e editor LID.

Figura 10 – Equivalência dos parâmetros do SWMM

4.6 ANÁLISE DE SENSIBILIDADE

Para um melhor entendimento dos parâmetros utilizados pelo modelo, realizou-se uma análise de sensibilidade, a fim de verificar a influência exercida por eles sobre a resposta do modelo.

Para o estudo da sensibilidade de um parâmetro isolado, a análise será realizada com a utilização da Equação 9, proposta por Nearing, Deer-Ascough e Laflen (1990). Quanto maior (em módulo) o valor do coeficiente de sensibilidade (Cs) atribuído a um parâmetro, maior é o impacto causado no modelo pela sua perturbação. Para interpretar a influência de cada parâmetro, foram considerados os seguintes critérios: vazão de pico, tempo de pico e volume total escoado.

$$C_s = \left(\frac{X}{Y}\right) \left(\frac{Y_1 - Y_2}{X_{máx} - X_{min}}\right) \tag{10}$$

Onde C_S = coeficiente de sensibilidade, X = média dos valores de entrada, Y = média dos resultados com o menor e o maior valor de entrada, $X_{máx}$ = maior valor do parâmetro de entrada, X_{min} = menor valor do parâmetro de entrada, Y_1 = resultado obtido com o modelo para o maior valor de entrada e Y_2 = resultado obtido com o modelo para o menor valor de entrada.

4.6.1 Chuvas de projeto

Para a análise de sensibilidade, foram consideradas doze chuvas de projeto, com tempo de retorno de 1, 2, 5, 10, 25 e 50 anos. As durações adotadas dos eventos foram de 10 e 30 min.

As precipitações foram calculadas de acordo com a curva IDF para o município de Pato Branco – Paraná determinada por Reis (2017) e expressa na Equação 10. O autor analisou um período de 1977 a 2015, totalizando 39 anos de série de dados observados.

$$i = \frac{986,7 \cdot T^{0,1457}}{(t+9,791)^{0,7244}} \tag{11}$$

	Inte	nsidade
TR	10 min	30 min
1	113,51 mm/h	68,44 mm/h
2	125,57 mm/h	75,71 mm/h
5	143,50 mm/h	86,52 mm/h
10	158,75 mm/h	95,72 mm/h
25	181,43 mm/h	109,39 mm/h
50	200,71 mm/h	121,02 mm/h

A Tabela 8 ilustra as intensidades das 12 chuvas de projeto, de acordo com a duração (10 e 30 min) e o tempo de retorno (1, 2, 5, 10, 25 e 50 anos).

A distribuição temporal da chuva foi determinada por meio do método dos blocos alternados. Dessa forma, foram construídos os hietogramas das precipitações, com detalhamento da precipitação em cada intervalo de tempo de 1 minuto. Os hietogramas para as 12 chuvas de projetos consideradas na análise de sensibilidade estão ilustrados no Apêndice A.

4.7 CALIBRAÇÃO E VALIDAÇÃO

Para a avaliação da aproximação do modelo computacional dos valores medidos em campo, foram utilizadas quatro ferramentas estatísticas. Dessa forma, foram empregadas: Coeficiente de Eficiência de Nash-Sutcliffe, Erro Absoluto, Razão entre REMQ e Desvio Padrão dos Dados e o Percentual de Viés (Equações 11 a 14, respectivamente).

$$NSE = 1 - \frac{\sum_{i=1}^{n} (Y_{m,i} - Y_{c,i})^{2}}{\sum_{i=1}^{n} (Y_{m,i} - \overline{Y_{m}})^{2}}$$
(12)

$$EA = \sum_{i=1}^{n} |Y_{m,i} - Y_{c,i}|$$
(13)

$$RSR = \frac{\sqrt{\sum_{i=1}^{n} (Y_{m,i} - Y_{c,i})^{2}}}{\sqrt{\sum_{i=1}^{n} (Y_{m,i} - \overline{Y_{m}})^{2}}}$$
(14)

$$Pbias = \frac{\sum_{i=1}^{n} (Y_{m,i} - Y_{c,i})}{\sum_{i=1}^{n} Y_{m,i}} \cdot 100\%$$
(15)

Onde Y_m = valor medido, Y_c = valor calculado, $\overline{Y_m}$ = média dos valores medidos, $\overline{Y_c}$ = média dos valores calculados e n = número de pares de valores medidos e calculados.

5 RESULTADOS E DISCUSSÕES

5.1 CARACTERIZAÇÃO DOS MATERIAIS

5.1.1 Camada de revestimento

Os ensaios realizados para a caracterização do material da camada de revestimento (blocos intertravados de concreto poroso) consistiram na avaliação dimensional, absorção de água, condutividade hidráulica, resistência à compressão e resistência a flexão. Os resultados estão resumidos na Tabela 9 e os memoriais dos ensaios estão presentes no Apêndice B.

Tabela 9 – Caracterização dos materiais de revestimento					
Ensaio	Metodologia	Resultado			
Avaliação dimensional	NBR 16416 (ABNT, 2015a)	01 bloco rejeitado			
Absorção do água	Anovo B do NBB 0781 (ABNT 2013)	5,51% (bloco de concreto)			
Absolção de água	Allexo B da INDR 9701 (ABINT, 2013)	8,21% (bloco poroso)			
Condutividade hidráulica	Anexo A NBR 16416 (ABNT, 2015a)	2,4 x 10 ⁻² <i>mm/h</i>			
Resistência à compressão	NBR 9781 (ABNT, 2013)	33,5 <i>MPa</i>			
Resistência à flexão	NBR 15805 (ABNT, 2015)	2,4 <i>MPa</i>			
Fonto: Autorio próprio					

Fonte: Autoria própria

Na avaliação dimensional, um dos blocos da camada de revestimento foi rejeitado. Das 12 amostras analisadas, um dos blocos de concreto poroso excedeu a tolerância máxima de ±3 mm em seu comprimento.

Quanto ao ensaio de absorção de água, a NBR 9781 (ABNT, 2013) especifica que o material deve apresentar absorção de água com valor médio menor ou igual a 6%, não sendo admitido nenhum valor individual maior do que 7%. Desta forma, verificou-se que o bloco de concreto poroso apresentou uma absorção média de água maior que o recomendado (média de 8,21%), porém condizente com a finalidade e material constituinte (menor teor de finos e maior porosidade).

Os resultados dos ensaios de condutividade hidráulica e de resistência mecânica (compressão e flexão) dos blocos intertravados porosos foram fornecidos pela empresa fabricante. Os laudos completos destes ensaios se encontram nos Anexos C, D e F.

5.1.2 Camada de assentamento

Para a caracterização do material da camada de assentamento (pedrisco) foram realizados ensaios de composição granulométrica, massa específica, massa unitária e índice de volume de vazios (Tabela 10). Os memoriais dos ensaios são apresentados no Apêndice C.

Tabela 10 – Caracterização do material de assentamento				
Ensaio	Metodologia	Resultado		
Composição granulométrica	NBR NM 248 (ABNT, 2003)	Módulo de finura de 2,169		
		Dimensão máxima de 12,5 <i>mm</i>		
Massa específica	NBR NM 53 (ABNT, 2009)	2,88 g/cm³		
Massa unitária	NBR NM 45 (ABNT, 2006)	1,597 g/cm³		
Índice de volume de vazios	NBR NM 45 (ABNT, 2006)	48,95%		
Fonte: Autoria própria				

A composição granulométrica demonstrou que o pedrisco possui módulo de finura de 2,169 e dimensão máxima de 12,5 mm. Quanto à curva granulométrica, observou-se que o material não cumpria os limítrofes indicados pela norma, com uma granulometria característica maior que a recomendada. Porém, consistiu no material que mais se aproximou do recomendado dentre os disponíveis na região do estudo.

O pedrisco apresentou uma massa específica aparente média de 2,88 g/cm³ e uma massa unitária de 1,597 g/cm³. O índice de volume de vazios do material ensaiado foi de 48,95%, que se encontra de acordo com o recomendado pela NBR 16416 (ABNT, 2015a) e Smith (2006), com valor mínimo de 32%.

5.1.3 Camada de armazenamento

O material constituinte da camada de armazenamento é uma brita 3, a qual foi caracterizada pelos ensaios de composição granulométrica, massa específica, massa unitária e índice de volume de vazios (Tabela 11). Os memoriais dos ensaios são apresentados no Apêndice D.

Ensaio	Metodologia	Resultado
Composição granulométrica	NBR NM 248 (ABNT 2003)	Módulo de finura de 0,98
composição grandiometrica	NDIX NW 240 (ADN1, 2003)	Dimensão máxima de 37,5 <i>mm</i>
Massa específica	NBR NM 53 (ABNT, 2009)	3,38 g/cm³
Massa unitária	NBR NM 45 (ABNT, 2006)	1,52 g/cm³
Índice de volume de vazios	NBR NM 45 (ABNT, 2006)	55,8%
	Fonte: Autoria própria	

Tabela 11 – Caracterização do material de armazenamento

O ensaio de composição granulométrica indicou um material com módulo de finura de 2,169 e dimensão máxima de 12,5 mm. A brita analisada apresentou uma granulometria maior que os limítrofes recomendados pela norma, porém a favor do armazenamento de água. Aos demais ensaios, a brita 3 apresentou massa específica aparente média de 3,38 g/cm³ e uma massa unitária de 1,52 g/cm³.

O índice de volume de vazios do material ensaiado foi de 55,8%, o qual está de acordo com o recomendado pela NBR 16416 (ABNT, 2015a), com porcentagem mínima de 32%, indicando que o material possui boa capacidade em atuar como reservatório de água. O manual de SUDS do Reino Unido (WOODS-BALLARD et al., 2015) é menos restritivo, recomendando uma porcentagem mínima de 30%.

5.1.4 Solo

O solo característico da área de estudo foi ensaiado para fins de dimensionamento mecânico, considerando-se que seria aplicado a uma área hipotética de estacionamento. O ensaio realizado foi o de determinação do *CBR*, onde é possível conhecer a expansão do solo sob um pavimento em condição saturada, bem como indicações de perda de resistência. O *CBR* para o solo analisado foi de 7,1%. O memorial do ensaio é apresentado no Apêndice E.

5.2 DIMENSIONAMENTO

A espessura das camadas de revestimento e assentamento foram definidas seguindo os valores mínimos dispostos na NBR 16416 (ABNT, 2015a). A altura do revestimento utilizado foi de 6,0 cm, correspondente à altura do bloco intertravado

comercializado na região do estudo. Quanto à camada de assentamento, sua altura foi definida como sendo de 5,0 cm.

Quanto à camada de armazenamento, sua espessura deve ser dimensionada de modo a permitir o armazenamento temporário da precipitação e, ao mesmo tempo, atender às solicitações mecânicas de carga proveniente do tráfego de veículos e pedestres. Desta forma, sua espessura deverá atender à ambos dimensionamentos.

5.2.1 Dimensionamento pelo Método da Curva Envelope

O dimensionamento da camada de armazenamento pelo método da curva envelope é dado pela (3. A vazão de saída constante do dispositivo foi considerada nula e um valor de β igual a 1,0 foi utilizado, devido à inexistência de área contribuinte adjacente aos PP. O período de retorno adotado foi de 10 anos, seguindo as recomendações da NBR 16416 (ABNT, 2015a).

Quanto aos parâmetros da IDF na forma da equação de Talbot, foi necessária uma conversão predecessora. A expressão de Talbot não é comum no Brasil, onde predomina uma equação análoga, na forma de Lei de Potências, expressa na Equação 15 (SILVEIRA; GOLDENFUM, 2007).

$$i = \frac{k \cdot T^x}{(t+d)^y} \tag{15}$$

Onde *d*, *k*, *x*, *y* = parâmetros da equação análoga.

Silveira e Goldenfum (2007) estabeleceram expressões de conversão da Equação 3 para uma expressão de Talbot (Equações 16, 17 e 18).

$$a = 0.68k \cdot exp(0.06y^{-0.26}d^{1.13}) \tag{16}$$

$$b = x \tag{17}$$

$$c = 1,32y^{-2,28}d^{0,89} \tag{18}$$

Assim, para o cálculo dos parâmetros da equação IDF de Talbot foi utilizada a equação IDF para a cidade de Pato Branco – Paraná expressa na Equação 10. Aplicando as Equações de conversão 16, 17 e 18, a equação de Talbot para a IDF de Pato Branco pode ser escrita por:

$$i = \frac{1584,61 \cdot T^{0,1457}}{(t+20,973)} \tag{19}$$

Para avaliar se as Equações 10 e 19 eram equivalentes, as mesmas foram testadas para um período de retorno de 10 anos e durações de 5 a 120 minutos. Como se observou uma diferença entre os valores, se fez necessário encontrar uma razão para majorar o coeficiente 'a', conforme é orientado por Silveira e Goldenfum (2007). Assim, calculou-se a média das razões, chegando ao valor de majoração, que foi de 2,36. Com essa adequação do parâmetro 'a', se obteve uma nova equação Talbot para a IDF de Pato Branco, expressa na Equação 20.

$$i = \frac{3739,68 \cdot T^{0,1457}}{t + 20,973} \tag{20}$$

No Apêndice B, constam a Tabela B.1, a qual expressa os valores de precipitação das equações IDF e de Talbot, bem como a Tabela B.2, que apresenta os valores com a majoração do coeficiente '*a*'. Observa-se que após a adequação, a razão entre os valores foi de 1,00, demonstrando boa equivalência entre as equações.

Com as considerações feitas e as conversões dos parâmetros da equação *IDF* foi possivel calcular os parâmetros da Equação 1, apresentados na Tabela 12.

Parâmetro	Valor	Unidade
qs	0	mm/h
β	1	adimensional
Т	10	anos
а	3739,68	adimensional
b	0,1457	adimensional
с	20,973	adimensional
Vmáx	87,17	mm

Tabela 12 – Parâmetros de dimensionamento pela Curva Envelope

Fonte: Autoria própria

A partir de V_{máx}, o cálculo da espessura da camada de armazenamento do pavimento foi obtido pela Equação 21:

$$H = \frac{V_{máx}}{\eta}$$
(21)

Onde *H* = altura da camada de armazenamento (mm) e η = porosidade do material de armazenamento (adimensional).

A porosidade do material de armazenamento utilizada foi ensaiada em laboratório conforme orientado pela NBR NM 45 (ABNT, 2006), resultando num valor de 0,5365. Assim, aplicando a Equação 24, se estimou a altura da camada armazenamento como sendo 16,25 cm. Tal valor expressa a altura da camada de armazenamento para o dimensionamento hidráulico pelo Método da Curva Envelope devendo, ainda, ser comparado aos valores obtidos pelos demais métodos de dimensionamento.

5.2.2 Dimensionamento pela NBR 16416

Para o dimensionamento da camada de armazenamento pelo método proposto pela NBR 16416, utilizou-se a Equação 5. Para o modelo de estudo, a precipitação excedente (ΔQ_c) da área de contribuição foi considerada nula, devido a inexistência de área contribuinte adjacente. Pelo mesmo motivo, a relação entre a área de contribuição e a área de pavimento teve valor 1,0. A taxa de infiltração no solo foi desconsiderada, uma vez que o sistema opera sem infiltração (somente com sistema de drenos). O índice de vazios da camada, ensaiado em laboratório, foi de 0,5365.

Recomenda-se utilizar como chuva de projeto a máxima altura de precipitação em 24 *h* para o período de retorno definido em projeto (MARCHIONI; SILVA, 2011). Para a equação IDF de Pato Branco (Equação 21), se observou uma chuva de projeto com intensidade de 158,7 mm/h (foi considerado um período de retorno de 10 anos e duração de 10 minutos). Multiplicando a intensidade pela duração (em horas), se obteve a precipitação de projeto, com valor de aproximadamente 27 mm. Os valores utilizados para o dimensionamento estão especificados na Tabela 13.

Parâmetro	Valor	Unidade
ΔQc	0	т
R	1	adimensional
Р	26,988	mm
F	0	m/h
T _e	2	h
Vr	0,5365	adimensional

Tabela 13 – Parâmetros de dimensionamento pela NBR 16416

Fonte: Autoria própria

Assim, aplicou-se os valores acima na Equação 3, resultando numa altura da camada de armazenamento de 5,0 cm. Este valor correspondeu à altura da camada de armazenamento calculada pelo método proposto pela NBR 16146 (ABNT, 2015a). Comparando com a altura obtida pelo Método da Curva Envelope, com valor correspondente a 16,48 cm, se observou que este último satisfaz ambos os métodos, por exigir uma altura maior da camada de armazenamento. Desta maneira, adotou-se como a altura da camada de armazenamento pelo dimensionamento hidráulico o valor de 16,48 cm, a qual será comparada ao dimensionamento mecânico.

5.2.3 Dimensionamento mecânico

Para o dimensionamento mecânico do pavimento permeável em estudo, admitiu-se como finalidade a de uma área de estacionamento, sem crescimento de tráfego ao longo do tempo. Desta forma, foi assumiu que, para a (6, $V_m = V_1 = 65$, com base no número de vagas para a área hipotética. Em seguida, foi calculado o volume total de tráfego (V_t) considerado para o pavimento desenvolvido ((7), considerando um período P_a de 20 anos e um V_m diário de 65 veículos, sendo este igual a 477.500.

Para o cálculo do número equivalente de operações do eixo simples padrão da Equação 6, foi considerada a circulação característica de veículos com 2 eixos e um fator de carga igual a 1. Assim, o número equivalente de operações do eixo simples padrão para o pavimento em estudo foi NE = 949.000, ou 9,5 x 10⁵.

Quanto às correções, não foi realizada a correção pelo coeficiente de fator climático, pois, no Brasil, há uma falta de elementos experimentais para se fixar tal parâmetro. Sendo assim, como regra geral e orientado pelo manual, foi adotado FR = 1,0. Para a correção de equivalência estrutural (*K*), foi considerado que os

componentes construtivos utilizados ns camada de armazenamento são granulares, com K = 1,0.

Dispondo dos valores acima discutidos, foi possível determinar a espessura do pavimento permeável (em centímetros) por meio do ábaco do manual, ilustrado no Anexo A. Com o valor de $NE = 9,5 \times 10^5$ nas abcissas, seguiu-se verticalmente até encontrar a reta com capacidade de suporte CBR = 7,0, valor este ensaiado em laboratório conforme orientado pela NBR 9895 (ABNT, 2017). Assim, o valor informado horizontalmente correspondeu à espessura total do pavimento, de 47 *cm*.

Desta maneira, se observou que o dimensionamento mecânico resultou em uma espessura total do pavimento com valor de 47 cm. Considerando que o material de revestimento utilizado possui uma altura de 6 cm e a camada de assentamento 5 cm, a camada de armazenamento, composta por material granular, deveria ser executada com uma altura de 36 cm.

Ao comparar a espessura da camada de armazenamento exigida pelo dimensionamento mecânico (36 cm) com o obtido no dimensionamento hidráulico (16,48 cm), foi observado que a primeira é capaz de satisfazer ambos os cálculos, sendo esta adotada para a execução do pavimento em estudo.

5.3 CARACTERÍSTICAS CONSTRUTIVAS

A partir da caracterização dos materiais e do dimensionamento do pavimento permeável, foi possível definir a representação geométrica dos módulos experimentais. As Figuras 11 e 12 ilustram uma representação 3D do pavimento permeável, gerado por meio do SketchUp e renderizado em Vray.

Figura 11 – Representação 3D do pavimento permeável.

Fonte: Autoria própria

Figura 12 – Vista superior do pavimento permeável.

Fonte: Autoria própria

Uma melhor visualização da composição construtiva dos módulos experimentais pode ser observada na Figura 13. Foram utilizados dois pallets de madeira sobrepostos (1), que serviram de base para o fundo metálico (2) e a estrutura em caixa metálica. Unidos, proporcionaram estanqueidade e declividade ao sistema.

Na parte inferior, foi disposto um Cano de PVC de 100 mm (4), com perfurações em toda sua extensão, com a finalidade de coletar e destinar a água do pavimento para fora do sistema. Acima deste, foi disposto uma camada de armazenamento composta por brita 3 (5) e, logo acima, a camada de assentamento composta por pedrisco (6). Entre a camada de armazenamento e de assentamento foi disposta uma manta geotêxtil, com a função de proporcionar o fluxo de água, mas evitar o carreamento de materiais finos da camada superior à imediatamente abaixo.

Por fim, foi disposta uma calha metálica (7), que recolhe e direciona a água do escoamento superficial oriunda do revestimento com bloco intertravado de concreto ou concreto poroso (8). O escoamento superficial é encaminhado até o tubo de coleta, onde seu volume é medido.

Figura 13 – Materiais constituintes do pavimento permeável.

Fonte: Autoria própria

Os blocos intertravados foram doados pela empresa Pavimenti (*site: http://www.pavimentiblocos.com.br*), da cidade de Francisco Beltrão – PR. Para o revestimento de uma área de 1 m² (aproximadamente), foi prevista a utilização de 50 unidades. O bloco intertravado de concreto poroso (Figura 14) possui dimensão comercial de 20 x 10 x 6 cm (comprimento, largura e altura, respectivamente).

Figura 14 – Bloco intertravado poroso utilizados no módulo experimental

Fonte: Autoria própria

O bloco intertravado de concreto poroso cinza - nome comercial - de acordo com o fabricante, atende à norma de pavimentos permeáveis de concreto (NBR 16416, 2015), sendo antiderrapante, com resistência à compressão de 20 MPa e condutividade hidráulica de 100%.

A camada de assentamento foi executada com pedrisco, sendo necessários 0,1 m³ de material. Já a camada de armazenamento era composta por brita 3, com um quantitativo de 0,72 m³. Ambos foram adquiridos na cidade de Pato Branco – PR. A Figura 15 ilustra o módulo experimental de pavimento permeável construído e utilizado para o presente estudo.

Figura 15 – Módulos experimentais de pavimento permeável

Fonte: Autoria própria

5.4 PARÂMETROS DA SIMULAÇÃO HIDROLÓGICA

Alguns dos parâmetros necessários na simulação hidrológica dos pavimentos permeáveis (apresentados nas Tabelas 6 e 7) possuem valores passíveis de serem
medidos *in loco* ou obtidos facilmente através da literatura. Tais parâmetros, assim como seus respectivos valores, estão elencados na Tabela 14.

Tabela 14 – Valores dos parâmetros de entrada					
Parâmetro	Pavimento de concreto poroso				
Área (ha)	0,0009506				
Largura característica (m)	0,89				
Declividade	1				
% impermeável	100				
Rugosidade de Manning – impermeável (s/m ^{1/3})	0,025				
% Impermeável sem armazenamento em depressão	0				
% Propagada	100				
Altura do pavimento (mm)	60				
Altura da camada de assentamento (mm)	50				
Altura da camada de armazenamento (mm)	360				
Proporção de vazios do revestimento	0,3				
Eanta: Autoria prén	rio				

Fonte: Autoria própria

A área do módulo experimental de pavimento permeável refere-se a um retângulo com 0,98 m de comprimento por 0,97 m de largura, totalizando 0,9506 m².

De acordo com Rossman (2015), a largura característica pode ser calculada dividindo a área da sub-bacia pelo comprimento máximo do escoamento superficial (Equação 22). Para um dos módulos experimentais, de geometria quadrada com lados de 1 m aproximadamente, a largura característica seria de 0,89 m, com o C_{es} é obtido a partir da hipotenusa de um triângulo com catetos de 0,98 m e 0,49 m.

$$W = \frac{A_i}{C_{es}} \tag{22}$$

Onde *W* = Largura característica (*m*), A_i = Área impermeável (*ha*) e C_{es} = Comprimento do escoamento superficial.

A declividade foi associada a declividade do módulo experimental, com valor igual a 1%. A porcentagem impermeável é de 100%, uma vez que não há infiltração.

O coeficiente de Manning foi retirado do manual do SWMM (ROSSMAN, 2015), sendo adotado o valor correspondente a "superfície de concreto" para a área impermeável.

Os valores para a altura do pavimento, da camada de assentamento e da camada de armazenamento foram medidas *in loco* e de igual teor do

dimensionamento realizado. Já o índice de vazios do revestimento consiste no valor ensaiado, repassado pela empresa que produz os blocos intertravados.

Ao contrário dos parâmetros citados na Tabela 14, outros possuem maior incerteza no valor, que nem sempre são obtidos de forma simples. Para esses casos, será realizada uma análise de sensibilidade, a fim de possibilitar a aproximação de seu valor, bem como observar como o modelo responde a sua perturbação. Desse modo, a Tabela 15 ilustra os parâmetros perturbados durante a análise de sensibilidade, bem como seus respectivos intervalos de análise.

l abela 15 – Intervalos de valores par	a analise de sel	nsidilidade				
Parâmetro	A priori	Intervalo de análise				
Armazenamento em depressão superficial (mm)	1	0 – 2				
Capacidade de campo - revestimento	0,05	0 - 0,1				
Capacidade de campo - assentamento	0,025	0-0,05				
Capacidade de campo - armazenamento	0,025	0 -0,05				
Offset do dreno	5	0 – 10				
Proporção de vazios da camada de armazenamento 0,559 0,35 – 0,768						
Eonto: Autoria n	rónria					

Fonte: Autoria própria

Para o valor de armazenamento em depressão superficial, o manual do SWMM traz valores entre 1,27 a 7,62 mm para quatro superfícies: impermeável, gramados, pastagem e serrapilheira. Para a análise, adotou-se o valor de 1 mm, menor que o listado por entender que o armazenamento em depressão em um bloco de concreto poroso é mínimo. Foi considerado um intervalo de análise de sensibilidade variando de 0 a 2 mm.

Para a capacidade de campo, o manual do SWMM nos traz 11 valores, de acordo com a classe do solo, que variam de 0,062 a 0,378. Considerou-se um valor de 0,05 para a camada de revestimento e 0,025 para o assentamento e armazenamento. Os intervalos para a análise de sensibilidade serão de 0 a 0,1 e 0 a 0,05, respectivamente.

Para o offset do dreno, adotou-se o valor de 5 mm, considerando altura do fundo da caixa metálica até as saídas do tubo perfurado, com intervalo de sensibilidade de 0 a 10 mm.

A proporção de vazios da camada de armazenamento apresentou valor 0,559 em ensaios, sendo considerado para a análise de sensibilidade o intervalo de 0,35 a 0,768.

5.5 MONITORAMENTO

Em quatro meses de monitoramento pluviométrico, doze eventos foram registrados. Destes, foram selecionados três eventos, com precipitações significativas e elencados como passíveis de serem utilizados na calibração e validação do modelo. Isso porque a modelagem de sub-bacias equivalentes considera um volume retido no pavimento permeável, sendo que eventos com pequenas precipitações não apresentam lâmina de água acumulada no reservatório de saída simulado. Os eventos utilizados na calibração e validação e validação estão pormenorizados na Tabela 16.

	Tabela 16 – Intervalos de valores para análise de sensibilidade										
Evento	Data	Precipitação	Dura	ação	Duração	Intensidade média	Tempo de				
	Data	(mm)	Início	nício Fim	Duruşuv	(mm/h)	retorno (TR)				
04	19/01/21	18,2	11:33	00:12	12h39min	1,44	0,00001				
06	23/01/21	37,6	17:12	22:05	4h53min	5,99	0,00514				
08 02/03/21 28,6 17:02 17:47 45min 37,6 (
	Fonte: Autoria própria										

Os eventos 04 e 06 foram utilizados na calibração, enquanto o evento 08 foi aplicado na etapa de validação do modelo.

5.6 CONSTRUÇÃO DO MODELO COMPUTACIONAL

O modelo computacional representativo do pavimento permeável do Tipo C foi construído com a inserção dos parâmetros da Tabela 14. A interface do modelo, ilustrada na Figura 16, compreende uma sub-bacia ligada a um reservatório de área idêntica ao construído no modelo experimental em campo (área circular de 0,0491 m²).

Figura 16 – Interface do modelo computacional

5.7 ANÁLISE DE SENSIBILIDADE

Para que fosse possível visualizar a influência dos parâmetros considerados incertos, a análise de sensibilidade avaliou as respostas dos modelos em razão de três dados: de vazão de pico, volume total escoado e tempo de pico. Os parâmetros analisados foram: armazenamento em depressão superficial, capacidade de campo do revestimento, capacidade de campo do assentamento, capacidade de campo do armazenamento, offset do dreno e proporção de vazios da camada de armazenamento.

Para tanto, admitiu-se um valor inicial para cada parâmetro, sendo realizada a variação dos mesmos em intervalos de 10%. A análise utilizou 12 eventos de chuva, sendo assim realizados um total de 1512 simulações.

Nas Tabelas 17 e 18 estão apresentados os valores de coeficiente de sensibilidade em termos de vazão para os eventos de 10 e 30 minutos, respectivamente.

	Armazenam	Capacidade	Capacidade	Capacidade		Razão de
TR	ento em depressão superficial	de campo do revesti- mento	de campo do assenta- mento	de campo do armazena- mento	Offset do dreno	vazios do revesti- mento
1 ano	0,14	0,39	0,15	1,31	0,20	0,24
2 anos	0,05	0,22	0,07	0,83	0,13	0,05
5 anos	0,14	0,26	0,16	0,70	0,19	0,23
10 anos	0,02	0,15	0,04	0,48	0,06	0,02
25 anos	0,12	0,25	0,14	0,46	0,18	0,13
50 anos	0,02	0,07	0,02	0,23	0,03	0,02
Média	0,08	0,22	0,10	0,67	0,13	0,12
Rank	6°	2°	5°	1°	3°	4 °
		F	nto: Autoria n	rónria		

ibilidada da y - - **f**! - ! - ... **f** -

Fonte: Autoria propria

Tabela 18 – Coeficientes de sensibilidade da vazão para eventos de 30 minutos

TR	Armazenam ento em depressão superficial	Capacidade de campo do revesti- mento	pacidade Capacidade Capacidade campo do de campo do de campo do evesti- assenta- armazena- mento mento mento		Offset do dreno	Razão de vazios do revesti- mento	
1 ano	0,03	0,14	0,04	0,36	0,07	0,04	
2 anos	0,00	0,02	0,00	0,17	0,01	0,00	
5 anos	0,00	0,00	0,00	0,05	0,00	0,01	
10 anos	0,00	0,00	0,00	0,01	0,00	0,00	
25 anos	0,00	0,00	0,00	0,00	0,00	0,00	
50 anos	0,00	0,00	0,00	0,00	0,00	0,00	
Média	0,01	0,03	0,01	0,10	0,01	0,01	
Rank	6°	2°	5°	1°	3°	4 [°]	
		E .					

Fonte: Autoria própria

Observa-se que os parâmetros mais sensíveis em termos de vazão são: capacidade de campo da camada de armazenamento, capacidade de campo do revestimento e offset do dreno. Não houve variação na ordem de classificação em relação ao tempo de duração dos eventos. Também é verificado que, para eventos de duração de 30 minutos, muitos parâmetros não apresentaram sensibilidade, principalmente para tempos de recorrência maiores.

Os dados de sensibilidade para a vazão foram ilustrados em gráficos para uma melhor análise visual (Figuras 17 e 18). Nota-se que a sensibilidade dos parâmetros decai conforme aumenta o tempo de recorrência do evento de precipitação.

Figura 17 – Coeficientes de sensibilidade da vazão para eventos de 10 minutos

Figura 18 - Coeficientes de sensibilidade da vazão para eventos de 30 minutos

Quanto aos resultados da análise de sensibilidade em termos de volume total escoado, os mesmos estão apresentados nas Tabelas 19 (para eventos de 10 minutos) e 20 (para eventos de 30 minutos).

Та	Tabela 19 – Coeficientes de sensibilidade do volume para eventos de 10 minutos								
TR	Armazenam ento em depressão superficial	Capacidade Capacidade de campo do de campo do revesti- assenta- mento mento		Capacidade de campo do armazena- mento	Offset do dreno	Razão de vazios do revesti- mento			
1 ano	0,28	0,93	0,36	2,47	0,54	0,26			
2 anos	0,23	0,52	0,27	1,37	0,35	0,30			
5 anos	0,07	0,31	0,10	1,00	0,15	0,08			
10 anos	0,16	0,35	0,19	0,84	0,24	0,21			

Tabela 19	abeia 19 (continuação) – Coeficientes de sensibilidade do volume para eventos de 10 minutos								
TR	Armazenam ento em depressão superficial	Capacidade de campo do revesti- mento	Capacidade de campo do assenta- mento	Capacidade de campo do armazena- mento	Offset do dreno	Razão de vazios do revesti- mento			
25 anos	0,03	0,14	0,04	0,49	0,06	0,04			
50 anos	0,02	0,12	0,03	0,45	0,06	0,01			
Média	0,13	0,39	0,16	1,10	0,23	0,15			
Rank	6°	2°	4 °	1 [°]	3°	5°			
		E	onto: Autoria n	rópria					

. . . ibilidada da . too do 10

-onte: Autoria propria

Та	Tabela 20 – Coeficientes de sensibilidade da volume para eventos de 30 minutos								
TR	Armazenam ento em depressão superficial	Capacidade de campo do revesti- mento	Capacidade de campo do assenta- mento	Capacidade de campo do armazena- mento	Offset do dreno	Razão de vazios do revesti- mento			
1 ano	0,07	0,16	0,08	0,46	0,11	0,10			
2 anos	0,02	0,11	0,03	0,36	0,05	0,02			
5 anos	0,03	0,10	0,04	0,29	0,06	0,03			
10 anos	0,04	0,09	0,05	0,25	0,06	0,06			
25 anos	0,03	0,07	0,03	0,16	0,04	0,03			
50 anos	0,00	0,00	0,00	0,02	0,00	0,00			
Média	0,03	0,09	0,04	0,26	0,05	0,04			
Rank	6°	2°	5°	1 [°]	3°	4°			
		E	onto: Autoria n	rópria					

Fonte: Autoria própria

Novamente, os parâmetros mais sensíveis foram a capacidade de campo do armazenamento, a capacidade de campo do revestimento e o offset do dreno. Para o volume total escoado, houve uma variação de classificação do quarto e quinto colocado com a mudança do tempo de duração do evento. Tal posição foi alternada pelos parâmetros de capacidade de campo do assentamento e razão de vazios do revestimento.

Os gráficos das análises de sensibilidade no que se refere ao volume total escoado estão apresentados nas Figuras 19 e 20.

Figura 19 – Coeficientes de sensibilidade do volume para eventos de 10 minutos

Figura 20 - Coeficientes de sensibilidade do volume para eventos de 30 minutos

Por fim, a análise de sensibilidade em termos de tempo de pico resultou nos dados apresentados nas Tabelas 21 e 22, para eventos de 10 e 30 minutos, respectivamente.

Ta	Tabela 21 – Coeficientes de sensibilidade do tempo para eventos de 10 minutos								
TR	Armazenam ento em depressão superficial	Capacidade de campo do revesti- mento	Capacidade de campo do assenta- mento	Capacidade de campo do armazena- mento	Offset do dreno	Razão de vazios do revesti- mento			
1 ano	0,10	0,19	0,10	0,79	0,10	0,10			
2 anos	0,00	0,12	0,01	0,47	0,05	0,00			
5 anos	0,19	0,19	0,19	0,43	0,19	0,13			

l abela 21	Tabela 21 (continuação) – Coeficientes de sensibilidade do tempo para eventos de 10 minutos								
	Armazenam	Capacidade	Capacidade	Capacidade		Razão de			
TR	ento em	de campo do	de campo do	de campo do	Offset do	vazios do			
	depressão	revesti-	assenta-	armazena-	dreno	revesti-			
	superficial	mento	mento	mento		mento			
10 anos	0,00	0,07	0,00	0,26	0,02	0,02			
25 anos	0,02	0,10	0,03	0,24	0,06	0,00			
50 anos	0,00	0,01	0,00	0,12	0,00	0,00			
Média	0,05	0,11	0,05	0,39	0,07	0,04			
Rank	5°	2°	4 °	1 [°]	3°	6°			
		E	onto: Autoria n	rópria					

f: - : -1- 40

Fonte: Autoria própria

Tabela 22 – Coeficientes de sensibilidade do tempo para eventos de 30 minutos

TR	Armazenam ento em depressão superficial	Capacidade de campo do revesti- mento	Capacidade de campo do assenta- mento	Capacidade de campo do armazena- mento	Offset do dreno	Razão de vazios do revesti- mento
1 ano	0,00	0,02	0,00	0,09	0,00	0,00
2 anos	0,00	0,00	0,00	0,03	0,00	0,00
5 anos	0,00	0,00	0,00	0,00	0,00	0,00
10 anos	0,00	0,00	0,00	0,00	0,00	0,00
25 anos	0,00	0,00	0,00	0,00	0,00	0,00
50 anos	0,00	0,00	0,00	0,00	0,00	0,00
Média	0,00	0,00	0,00	0,02	0,00	0,00
Rank		2°		1º		

Fonte: Autoria própria

A análise de sensibilidade para o tempo de pico resultou nos mesmos parâmetros que as análises anteriores. Dessa forma, os parâmetros mais sensíveis em termos de tempo de pico são: capacidade de campo do armazenamento, capacidade de campo do revestimento e offset do dreno.

Nota-se que, para eventos de duração de 30 minutos, somente dois parâmetros apresentaram sensibilidade para tempos de recorrência de 1 ano, e um parâmetros para um tempo de recorrência de 2 anos. Para os demais tempos de recorrência, não ocorre sensibilidade no que diz respeito ao tempo de pico. As Figuras 21 e 22 ilustram os dados comentados acima.

Figura 21 – Coeficientes de sensibilidade do tempo para eventos de 10 minutos

A Tabela 23 apresenta um resumo do rankeamento dos coeficientes de sensibilidade de acordo com o tempo de duração dos eventos e por resposta analisada.

Tabela 23 – Rankeamento da sensibilidade dos parâmetros								
Parâmatraa	Vazão		Volume		Tempo		Rank	
Farametros	10 min	30 min	10 min	30 min	10 min	30 min		
Armazenamento em depressão superficial	6°	6°	6°	6°	5°		6°	
Capacidade de campo revestimento	2°	2°	2°	2°	2°	2°	2°	

Parâmetros	Vaz	ão	Volu	ıme	Ter	npo	Rank
Capacidade de campo da camada de assentamento	5°	5°	4°	5°	4°		5°
Capacidade de campo da camada de armazenamento	1°	1°	1°	1°	1°	1°	1°
Offset do dreno	3°	3°	3°	3°	3°		3°
Razão de vazios da camada de armazenamento	4°	4°	5°	4°	6°		4°

Tabela 23 (continuação) – Rankeamento da sensibilidade dos parâmetros

Fonte: Autoria própria

Observa-se que a capacidade de campo da camada de armazenamento foi dada como o parâmetro mais sensível para todos os eventos, seguida da capacidade de campo do revestimento e o offset do dreno.

No estudo de Zhang e Guo (2014) para a modelagem de pavimentos do Tipo A e B, a capacidade de campo da camada de armazenamento não é inclusa nas equações de equivalência, sendo comentado que tal parâmetro possui valor irrelevante, sendo desconsiderado mesmo em modelagens pelo editor LID. Porém, na análise de sensibilidade para o modelo proposto neste trabalho, este parâmetro é indicado como o mais sensível, ocasionando maior perturbação nos resultados. Tal fato pode ser explicado pela composição do pavimento permeável utilizado nesse estudo, uma vez que por ser dimensionado para resistir a um fluxo de veículos compatível com um estacionamento, a camada de armazenamento apresentou-se superdimensionada quando comparada com pavimentos permeáveis utilizados em locais sem previsão de grandes cargas.

Os parâmetros menos sensíveis (razão de vazios da camada de armazenamento, capacidade de campo da camada de assentamento e armazenamento em depressão superficial) não possuem mesma posição para todos os eventos. Nota-se, também, que quatro parâmetros não possuem sensibilidade para eventos de 30 minutos no que se refere ao tempo de pico.

5.8 CALIBRAÇÃO

A metodologia de calibração baseou-se no ajuste manual dos valores dos parâmetros de entrada do modelo identificados como mais sensíveis na análise de sensibilidade. Com a variação de +10% nos dois parâmetros mais sensíveis (capacidade de campo – revestimento e capacidade de campo – armazenamento),

chegou-se na modelagem mais representativa da realidade, com uma capacidade máxima de retenção de 17,4 *mm*. Os valores dos parâmetros ajustados estão descritos na Tabela 24.

Tabela 24 – Valores dos parâmetros após calibração do modelo				
Parâmetro	Valor presumido	Valor após calibração	Perturbação do parâmetro	
Armazenamento em depressão superficial (mm)	1	1	0	
Capacidade de campo - revestimento	0,05	0,055	+10%	
Capacidade de campo - assentamento	0,025	0,025	0	
Capacidade de campo - armazenamento	0,025	0,028	+10%	
Offset do dreno	5	5	0	
Proporção de vazios da camada de armazenamento	0,559	0,559	0	
Fonte: Autoria	a própria			

Para o processo de calibração, foram utilizados dois eventos (19/01/21 e 21/01/21), cujo hietogramas estão apresentados no Apêndice G. Como a modelagem de sub-bacias equivalentes considera um volume retido no pavimento permeável, eventos com pequenas precipitações não apresentam lâmina de água acumulada no reservatório de saída simulado. Para o modelo calibrado, esse valor retido é de 17,4 *mm*, podendo ser aplicado somente para eventos com lâmina de precipitação maior que esse valor.

O ajuste da calibração foi realizado baseado em duas análises: a sobreposição dos hidrogramas de volume simulados e observados para cada evento, e o cálculo das métricas estatísticas de Coeficiente de Eficiência de Nash-Sutcliffe, Erro Absoluto, Razão entre REMQ e Desvio Padrão dos Dados e o Percentual de Viés. As Figuras 23 e 24 ilustram a comparação dos hidrogramas simulados e observados para os Eventos 19/01/2021 e 21/01/2021.

Figura 24 – Resposta do modelo para o Evento 21/01/2021

Fonte: Autoria própria

Para avaliar a calibração, métricas estatísticas foram aplicadas, com valores registrados na Tabela 25. De forma geral, as métricas estatísticas indicam um bom ajuste do modelo.

Evento	NSE	EA	RSR	PBIAS
19/01/2021	0,93	0,87	0,03	9,07
21/01/2021	0,96	9,11	0,02	-9,71
	Fonte: A	Autoria pró	ópria	

Tabela 25 – Métricas estatisticas para os eventos de calibração

O Coeficiente de Eficiência de Nash e Sutcliffe (NSE) apresenta intervalos de -∞ a 1, tendo como valor ótimo aqueles próximos a 1. Moriasi et al. (2007) classifica os resultados da seguinte forma: NSE ≥ 0,75, desempenho do modelo muito bom; 0,75 > NSE ≥ 0,65, modelo bom; 0,65 > NSE ≥ 0,50, modelo satisfatório; e 0,50 > NSE, modelo insatisfatório. Por essa métrica, o modelo classifica-se com desempenho muito bom, com um média para NSE de 0,945. O pavimento permeável modelado por Platz, Simon e Tryby (2020) obteve NSE médio de 0,74 enquanto que a calibração de Yazdi et al. (2019) teve um NSE de 0,69.

O Erro Absoluto (EA) possui intervalos de resposta de zero a infinito, sendo que valores próximos a zero são mais assertivos. A simulação apresentou resposta satisfatórioa, com um EA médio de 4,99. Wang et al. (2019) obtiveram excelentes resultados, com um erro absoluto de 0,87.

Quanto a Razão entre REMQ e Desvio Padrão dos Dados (RSR), a métrica possui como valor ótimo o zero, tendo respostas de zero até ∞ , sendo que valores menores que 0,7 são satisfatórios de acordo com Moriasi et al. (2015). Para o modelo em estudo, o RSR teve ótima resposta, com média de 0,025. O pavimento permeável modelado por Platz, Simon e Tryby (2020) teve RSR médio de 0,63. Enquanto que as modelagens de Kim et al. (2018) tiveram um RSR médio de 0,90, com valores entre 0,60 e 2,23.

Por fim, o Percentual de Viés (PBIAS) apresentou uma média satisfatória, de valor igual a -0,32. Para essa métrica, os valores variam entre $-\infty e \infty$, sendo que o valor ideal é próximo a um. O pavimento permeável modelado por Platz, Simon e Tryby (2020) obteve PBIAS médio de -1,54Kim et al. (2018) chegaram a um PBIAS médio de 28,07, com valores das 12 modelagens variando de -3,8 a -115,8. Já Yazdi et al. (2019), que utilizaram a métrica para a calibração e validação, relataram um PBIAS de -0,26 para o modelo calibrado, sendo este considerado bom/satisfatório.

A validação do modelo foi realizada com o evento do dia 02/03/2021, distinto dos utilizados na calibração. A Figura 25 compara as lâminas de água acumuladas no reservatório de saída do modelo simulado e o observado em campo.

Figura 25 – Validação do Evento 02/03/2021

Fonte: Autoria própria

Além da análise visual, as métricas estatísticas foram aplicadas na comparação das respostas. Seus valores estão descritos na Tabela 26.

Та	Γa <u>bela 26 – Métricas estatisticas para o evento de validaç</u> ão						
	Evento	NSE	EA	RSR	PBIAS		
	02/03/2021	0,91	2,9	0,04	-3,92		
	Fonte: Autoria própria						

A classificação de Moriasi et al. (2007) considera valores de NSE acima de 0,75 como de desempenho muito bom, e Moriasi et al. (2015) relata que valores menores que 0,7 são satisfatórios para o RSR. Yazdi et al. (2019) utilizaram as métricas de NSE e PBIAS para avaliar a validação de modelos hidrológicos, resultando em valores de 0,59 e 18,20, respectivamente, considerando o resultado

como bom/satisfatório. Dessa forma, todas as métricas aplicadas tiveram resultados satisfatórios, indicando um desempenho adequado.

Por fim, destaca-se as limitações que o modelo proposto apresenta. Ao equivaler o pavimento permeável do Tipo C como uma sub-bacia, não é possível distinguir os volumes de escoamento superficial e o do dreno. Esta limitação não foi um problema para o pavimento estudado, uma vez que ao calcular as alturas das camadas, a camada de armazenamento acaba sendo superdimensionada, não gerando escoamento superficial para os eventos analisados. Para realizar essa distinção entra os volumes escoados, mais estudos são necessários, observando a capacidade máxima de retenção do pavimento, bem como o fluxo máximo do dreno de saída.

6 CONCLUSÕES

Conclui-se que a simulação de pavimentos permeáveis sem infiltração (Tipo C) como sub-bacias regulares equivalentes, associado ao estudo de sensibilidade dos parâmetros utilizados, foi capaz de desenvolver uma proposta de modelagem para SWMM com desempenho satisfatório.

O processo de modelagem de pavimentos permeáveis em uma bacia urbana pelo editor LID do SWMM requer um extenso trabalho: tanto no detalhamento necessário durante a construção do modelo computacional, quanto na determinação dos parâmetros com maior exatidão. Além do modelo proposto possuir um menor detalhamento computacional, também é uma alternativa às limitações e incompatibilidades que é relatado acerca do editor LID.

A análise de sensibilidade dos parâmetros da sub-bacia equivalente possibilitou verificar a influência dos parâmetros sobre a resposta do modelo. Os parâmetros que exerceram maior perturbação sobre a vazão de pico, tempo de pico e volume total escoado foram: capacidade de campo do armazenamento, capacidade de campo do revestimento e offset do dreno. A variação da sensibilidade também ocorreu de acordo com o tempo de recorrência dos eventos de precipitação, tendo coeficientes de sensibilidades maiores para tempos de recorrência menores.

A calibração do modelo foi facilitada pelo conhecimento dos parâmetros mais sensíveis, produzindo resultados satisfatórios nas métricas estatísticas analisadas: NSE de 0,945, EA de 4,99, RSR de 0,025 e PBIAS de -0,32 (valores médios). A validação corroborou o bom desempenho do modelo proposto (NSE de 0,91, EA de 2,9, RSR de 0,04 e PBIAS de -3,92).

Devido ao tempo de monitoramento reduzido, somente três eventos puderam ser utilizados, sendo dois para a etapa de calibração e um para a validação. Embora os resultados obtidos tenham sido bons, ficou constatado que há a necessidade de calibração e validação com um maior número de eventos de chuva, principalmente com tempos de recorrência distintos.

Como sugestões para os próximos trabalhos, pode-se citar a implementação de um programa computacional que permita uma calibração automática do modelo. Também é sugerido o estudo mais aprofundado do modelo de sub-bacia equivalente, com análises de eventos contínuos e com tempo de recorrência maiores.

REFERÊNCIAS

ABERA, L. E.; SURBECK, C. Q.; O'REILLY, A. M. Simulated performance of in-place pervious concrete under varying storms, surface areas, and infiltration rates. **Journal of Sustainable Water in the Built Environment,** v. 4, n. 2, p. 1–8, 2018.

AKDOĞAN, Z.; GÜVEN, B. Assessing the sensitivity of SWMM to variations in hydrological and hydraulic parameters: A case study for the city of Istanbul. **Global Nest Journal**, v. 18, n. 4, p. 831–841, 2016.

ALFREDO, K.; MONTALTO, F.; GOLDSTEIN, A. Observed and modeled performances of prototype green roof test plots subjected to simulated low- and highintensity precipitations in a laboratory experiment. **Journal of Hydrologic Engineering**, v. 15, n. 6, p. 444–457, 2010.

ABNT. NBR NM 248 - Agregados - Determinação da composição granulométrica. Rio de Janeiro, 2003.

ABNT. **NBR NM 45 - Agregados - Determinação da massa unitária e do volume de vazios**. Rio de Janeiro, 2006.

ABNT. NBR 9781 - Peças de concreto para pavimentação - Especificação e métodos de ensaio. Rio de Janeiro, 2013.

ABNT. NBR 16416 - Pavimentos permeáveis de concreto - requisitos e procedimentos. Rio de Janeiro, 2015a.

ABNT. NBR 15805 - Pisos elevados de placas de concreto - Requisitos e procedimentos. Rio de Janeiro, 2015b.

ABNT. NBR 9895 - Solo - Índice de suporte Califórnia (ISC) - Método de ensaio. Rio de Janeiro, 2017.

BAEK, S. S. et al. A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. **Journal of Hydrology**, v. 586, n. 3,

p. 124886, 2020.

BAI, Y. et al. Comprehensive performance evaluation system based on environmental and economic benefits for optimal allocation of LID facilities. **Water**, v. 11, n. 2, p. 1–14, 2019.

BALENA, R.; BORTOLINI, E.; TOMAZONI, J. C. Caracterização Dos Tipos De Solos
Do Município De Pato Branco Através Técnicas De Geoprocessamento.
Synergismus scyentifica UTFPR, v. 04, n. 1, p. 3, 2009.

BARCO, J.; WONG, K.; STENSTROM, M. Automatic calibration of the U.S. EPA SWMM Model for a large urban catchment. **Journal of hydraulic engineering**, v. 134, n. 4, p. 466–474, 2008.

BARSZCZ, M. Influence of applying infiltration and retention objects to the rainwater runoff on a plot and catchment scale – case study of służewiecki stream subcatchment in Warsaw. **Polish Journal of Environmental Studies**, v. 24, n. 1, p. 57–65, 2015.

BEAN, E. Z. et al. Permeable pavements. 1st editio ed. Reston, Virginia, 2015.

BENISTON, M. et al. Future extreme events in European climate: An exploration of regional climate model projections. **Climatic Change**, v. 81, p. 71–95, 2007.

BERNARD, M. M. Formulas for rainfall intensities of long durations. **Trans**, v. 96, p. 592-624, 1932.

BROWN, R. A.; BORST, M. Quantifying evaporation in a permeable pavement system. **Hydrological Processes,** v. 29, n. 9, p. 2100–2111, 2015.

CHOI, K. S.; BALL, J. E. Parameter estimation for urban runoff modelling. **Urban Water**, v. 4, n. 1, p. 31–41, 2002.

DAMODARAM, C. et al. Simulation of combined best management practices and low impact development for sustainable stormwater management. **Journal of the American Water Resources Association**, v. 46, n. 5, p. 907–918, 2010.

DRAKE, J. et al. Review of environmental performance of permeable pavement systems: state of the knowledge. **Water Quality Research Journal of Canada**, v. 48, p. 203-222, 2013.

DREELIN, E. A.; FOWLER, L.; CARROLL, C. R. A test of porous pavement effectiveness on clay soils during natural storm events. **Water Research**, v. 40, n. 4, p. 799–805, 2006.

ECKART, K.; MCPHEE, Z.; BOLISETTI, T. Performance and implementation of low impact development – A review. **Science of the Total Environment**, v. 607–608, p. 413–432, 2017.

FLETCHER, T. D. et al. SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. **Urban Water Journal**, v. 12, n. 7, p. 525–542, 2014.

FORSEE, W. J.; AHMAD, S. Evaluating urban storm-water infrastructure design in response to projected climate change. **Journal of Hydrologic Engineering**, v. 16, n. 11, p. 865–873, 2011.

GREEN, W. H. The flow of air and water through soils. **Journal of Agricultural Science**, Cambridge, v.4, n.1, p.1-24, 1911.

GUAN, M.; SILLANPÄÄ, N.; KOIVUSALO, H. Assessment of LID practices for restoring pre-development runoff regime in an urbanized catchment in southern Finland. **Water Science and Technology**, v. 71, n. 10, p. 1485–1491, 2015.

GÜLBAZ, S.; KAZEZYILMAZ-ALHAN, C. M. An evaluation of hydrologic modeling performance of EPA SWMM for bioretention. **Water science and technology**, v. 76, n. 11, p. 3035–3043, 2017.

GUO, X. et al. Modelling Low Impact Development in watersheds using the storm water management model. **Urban Water Journal**, v. 16, n. 2, p. 146–155, 2019.

HUANG, T.; WANG, Y.; ZHANG, J. Simulation and evaluation of Low Impact Development of urban residential district based on SWMM and GIS. **Earth and Environmental Science**, v. 74, n. 1, 2017.

IBGE. Disponível em: https://cidades.ibge.gov.br/brasil/pr/pato-branco/panorama. Acesso em: 3 dez. 2019.

INTERPAVE. Understanding permeable paving. v. 5, 2013.

JAWDY, C.; REESE, A.; PARKER, J. The potential for green infrastructure practices to reduce combined sewer overflows as examined in Nashville, Tennessee. **World Environmental and Water Resources Congress**, p. 3452–3461, 2010.

JIA, H. et al. Planning of LID-BMPs for urban runoff control: The case of Beijing Olympic Village. **Separation and Purification Technology**, v. 84, p. 112–119, 2012.

JUNG, Y.; HAN, S.; JO, D. Optimal design of permeable pavement using harmony search algorithm with SWMM. **Advances in Intelligent Systems and Computing**, v. 382, p. 385–394, 2016.

KIM, H. et al. Assessment of porous pavement effectiveness on runoff reduction under climate change scenarios. **Desalination and Water Treatment**, v. 53, n. 11, p. 3142–3147, 2015.

KIM, J. et al. Modeling the runoffreduction effect of Low Impact Development installations in an industrial area, South Korea. **Water**, v. 10, n. 8, p. 15, 2018.

KIPKIE, C.; JAMES, W. Feasibility of a permeable pavement option in SWMM for longterm continuous modeling. **Journal of Water Management Modeling**, v. 6062, p. 303–324, 2000.

KONG, F. et al. Modeling stormwater management at the city district level in response to changes in land use and low impact development. **Environmental Modelling and Software**, v. 95, p. 132–142, 2017. KREBS, G. et al. A high resolution application of a stormwater management model (SWMM) using genetic parameter optimization. **Urban Water Journal**, v. 10, n. 6, p. 394–410, 2013.

KREBS, G. et al. Spatial resolution considerations for urban hydrological modelling. **Journal of Hydrology,** v. 512, p. 482–497, 2014.

KURUPPU, U.; RAHMAN, A.; RAHMAN, M. A. Permeable pavement as a stormwater best management practice: A review and discussion. **Environmental Earth Sciences**, v. 78, n. 10, p. 1–20, 2019.

LI, N.; QIN, C.; DU, P. Optimization of China sponge city design: The case of Lincang Technology Innovation Park. **Water**, v. 10, n. 9, 2018.

LIONG, S.; CHAN, W.; LUM, L. Knowledge-based system for SWMM runoff component calibration. **Journal of Water Resources Planning and Management**, v. 117, n. 5, p. 507–524, 1992.

MAILHOT, A.; DUCHESNE, S. Design criteria of urban drainage infrastructures under climate change. **Journal of Water Resources Planning and Management,** v. 136, n. 2, p. 201–208, 2010.

MARCHIONI, M.; SILVA, C. O. **Pavimento intertravado permeável - Melhores práticas.** Associação Brasileira de Cimento Portland, p. 24, 2011.

MCGRANE, S. J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. **Hydrological Sciences Journal**, v. 61, n. 13, p. 2295–2311, 2016.

MORIASI, D. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. **American Society of Agricultural and Biological Engineers,** v. 50, n. 3, p. 885–900, 2007.

MORIASI, D. N. et al. Hydrologic and water quality models: Performance measures and evaluation criteria. **American Society of Agricultural and Biological Engineers**, v. 58, n. 6, p. 1763–1785, 2015.

MUHAISEN, O. S.; OSORIO, F.; GARCÍA, P. A. Two-copula based simulation for detention basin design. **Civil Engineering and Environmental Systems**, v. 26, n. 4, p. 355–366, 2009.

MULLANEY, J.; LUCKE, T. Practical review of pervious pavement designs. **Clean - Soil, Air, Water,** v. 42, n. 2, p. 111–124, 2014.

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting trough conceptual models. Part I - a discussion of principles. **Journal of Hydrology**, v. 10, p. 282–290, 1970.

NEARING, M. A.; DEER-ASCOUGH, L.; LAFLEN, J. M. Sensitivity analysis of the WEPP hillslope profile erosion model. **Transactions of the American Society of Agricultural Engineers**, v. 33, n. 3, p. 839–849, 1990.

NIAZI, M. et al. Storm Water Management Model: Performance review and gap analysis. v. 3, 2017.

NITSCHE, P. R. et al. Atlas do Estado do Paraná. p. 2010, 2019.

PALLA, A.; GNECCO, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. **Journal of Hydrology**, v. 528, p. 361–368, 2015.

PENG, Z. et al. Effects of Low-Impact Development on urban rainfall runoff under different rainfall characteristics. **Polish Journal of Environmental Studies,** v. 28, n. 2, p. 771–783, 2019.

PETEREIN, M. et al. Improvements to SIU's engineering Campus Parking and walkways along Campus Lake. **World Environmental and Water Resources Congress**, p. 262–271, 2019.

PLATZ, M.; SIMON, M.; TRYBY, M. Testing of the Storm Water Management Model

Low Impact Development modules. Journal of the American Water Resources Association, p. 1–14, 2020.

QIN, H. PENG; LI, Z. XI; FU, G. The effects of low impact development on urban flooding under different rainfall characteristics. **Journal of Environmental Management,** v. 129, p. 577–585, 2013.

REIS, D. L. DOS. Avaliação do desempenho de equações IDF a partir de dados de precipitação de sensoriamento remoto (TMPA-V7). 2017.

ROSA, D. J.; CLAUSEN, J. C.; DIETZ, M. E. Calibration and verification of SWMM for Low Impact Development. **Journal of the American Water Resources Association**, v. 51, n. 3, p. 746–757, 2015.

ROSSMAN, L. A. **Storm Water Management Model User's manual version 5.1**. United States Environmental Protection Agency, p. 1–352, 2015.

RYKIEL, E. J. Testing ecological models: the meaning of validation. **Ecological Modelling**, v. 90, p. 229–244, 1996.

SCHOLZ, M.; GRABOWIECKI, P. Review of permeable pavement systems. **Building** and Environment, v. 42, n. 11, p. 3830–3836, 2007.

SHON, T. S. et al. Analysis of the characteristics of non-point pollutant runoff applied LID techniques in industrial area. **Desalination and Water Treatment**, v. 51, n. 19–21, p. 4107–4117, 2013.

SILVEIRA, A. L. L. DA; GOLDENFUM, J. A. Metodologia generalizada para prédimensionamento de dispositivos de controle pluvial na fonte. **Revista Brasileira de Recursos Hidricos,** v. 12, p. 157–168, 2007.

SMITH, D. R. Permeable interlocking concrete pavements. p. 47, 2006.

SONG, J. Y.; CHUNG, E. S.; KIM, S. H. Decision support system for the design and planning of Low-Impact Development practices: The case of Seoul. **Water,** v. 10, n. 2, 2018.

SOUZA, M. L. Método de projeto de pavimentos flexiveis, 1981.

SUN, Z.; LOTZ, T.; CHANG, N. BIN. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. **Journal of Environmental Management**, v. 204, p. 92–101, 2017.

TABALIPA, N. L.; FIORI, A. P. Estudo Do Clima Do Município De Pato Branco, Paraná. **Synergismus scyentifica UTFPR,** v. 3, n. 4, p. 3–5, 2008.

TALIB, A.; RANDHIR, T. O. Climate change and land use impacts on hydrologic processes of watershed systems. **Journal of Water and Climate Change,** v. 8, n. 3, p. 363–374, 2017.

TRENBERTH, K. E. et al. The changing character of precipitation. **American Meteorological Society,** v. 84, n. 9, p. 1205–1217, 2003.

TRENBERTH, K. E. Changes in precipitation with climate change. **Climate Research**, v. 47, n. 1–2, p. 123–138, 2011.

TSAI, L. Y. et al. Using the HSPF and SWMM models in a high pervious watershed and estimating their parameter sensitivity. **Water**, v. 9, n. 10, 2017.

TUOMELA, C. et al. Modelling stormwater pollutant reduction with LID scenarios in SWMM. **Springer Nature Switzerland,** v. 2, p. 96–101, 2019.

WANG, H. W. et al. Evaluation of the effects of low-impact development practices under different rainy types: case of Fuxing Island Park, Shanghai, China. **Environmental Science and Pollution Research,** v. 26, n. 7, p. 6706–6716, 2019.

WEAVER, E. R. R.; NACHABE, M. H. Parameters sensitivities for sustainable urban infrastructure. **Municipal Engineer,** v. 172, n. 2, p. 73–82, 2019.

WOODS-BALLARD, B. et al. The SuDS Manual. CIRIA, v. 1, p. 386-435, 2015.

XIE, J. et al. Study on storm-water management of grassed swales and permeable pavement based on SWMM. **Water,** v. 9, n. 11, 2017.

YAZDI, M. et al. An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. **Environmental Modelling and Software,** v. 118, p. 211–225, 2019.

ZAHMATKESH, Z. et al. Low-impact development practices to mitigate climate change effects on urban stormwater runoff: Case study of New York City. **Journal of Irrigation and Drainage Engineering,** v. 141, n. 1, p. 1–13, 2015.

ZANANDREA, F.; SILVEIRA, A. L. L. Use of Low Impact Development techniques to control hydrological impacts. **Engenharia Sanitaria e Ambiental**, v. 24, n. 6, p. 1195–1208, 2019.

ZHANG, S.; GUO, Y. SWMM simulation of the storm water volume control performance of permeable pavement systems. **Journal of Hydrologic Engineering,** 2014.

APÊNDICE A – HIETOGRAMAS A PARTIR DA CURVA IDF

Figura A.1 – Hietogramas de 10 minutos de duração calculados a partir da curva IDF

Fonte: Autoria própria

Figura A.2 – Hietogramas de 30 minutos de duração calculados a partir da curva IDF

Fonte: Autoria própria

APÊNDICE B – CARACTERIZAÇÃO DO MATERIAL DA CAMADA DE REVESTIMENTO

B.1 – Avaliação dimensional

Para a avaliação dimensional dos blocos da camada de revestimento, foi medido, com auxílio de um paquímetro, o comprimento, largura e espessura de seis amostras de blocos intertravados de concreto poroso (Tabela B.1). A dimensão comercial dos blocos é 60 x 100 x 200 (altura, largura e comprimento, em mm).

Bloco intertravado	Altura (<i>mm</i>)	Largura (<i>mm</i>)	Comprimento (<i>mm</i>)	Aprovado (A) Rejeitado (R)
1	57,0	98,0	200,0	(A)
2	59,0	99,0	198,0	(A)
3	56,0	98,0	196,0	(R)
4	59,0	99,0	200,0	(A)
5	58,0	99,0	200,0	(A)
6	60,0	98,0	200,0	(A)
	_		/ .	

Tabela B.1 – Avaliação dimensional dos blocos intertravados porosos

Fonte: Autoria própria

B.2 Ensaio de absorção de água

A absorção de água, expressa em porcentagem, representa o incremento de massa de um corpo sólido poroso devido à penetração de água em seus poros permeáveis, em relação à sua massa em estado seco (NBR 9781, 2013). A Tabela B.2 ilustra os resultados do ensaio de absorção de água para os blocos intertravado de concreto poroso.

Tabela B.2 – Absorção de água dos blocos intertravados					
Amostra	Massa seca (<i>Kg</i>)	Massa saturada (<i>Kg</i>)	Absorção de água (%)	Absorção de água média (%)	
01	2,2630	2,4530	8,40		
02	2,2970	2,4715	7,60	8,21	
03	2,3110	2,5105	8,63		
		Fonte: Autori	a nrónria		

Fonte: Autoria propria

B.3 Coeficiente de permeabilidade e resistência mecânica

A Tabela B.3 apresenta os valores dos ensaios de condutividade hidráulica e de resistência mecânica (compressão e flexão) dos blocos de concreto poroso intertravado fornecidos pelo fabricante, sendo que os laudos completos se encontram nos Anexos C, D e F.

Ensaio	Resultado		
Condutividade hidráulica	2,4 x 10 ⁻² mm/h		
Resistência à compressão	33,5 <i>MPa</i>		
Resistência à flexão	2,4 <i>MPa</i>		
Fonte: Autoria própria			

Tabela B.3 – Ensaios de permeabilidade e resistência mecânica do bloco poroso

APÊNDICE C – CARACTERIZAÇÃO DOS MATERIAIS DA CAMADA DE ASSENTAMENTO

C.1 Composição granulométrica

O ensaio de composição granulométrica do material de assentamento foi realizado de acordo com a NBR NM 248 (ABNT, 2003). Os dados obtidos mostraram que o material analisado (pedrisco) possui um módulo de finura de 2,169 e dimensão máxima de 12,5 *mm* (Tabela C.1).

Tabela C.1 – Composição granulométrica do material de assentamento					
Abortura da	M1	M2		Médias	
peneira (<i>mm</i>)	Massa	Massa	Massa	Fração	Fração retida
	retida (g)	Retida (g)	retida (g)	redita (%)	acumulada (%)
19,0	0,00	0,00	0,00	0,00	0,00
12,5	4,01	0,00	2,01	0,20	0,20
9,5	262,93	263,91	263,42	26,02	26,22
6,3	686,28	656,28	671,28	66,30	92,52
4,75	53,46	73,67	63,57	6,28	98,80
0,0	8,06	16,29	12,18	1,20	100,00
Somatório	1014,74	1010,15	1012,45	100,00	100,00
Massa inicial	1015,00	1015,00			
Módulo de Finu	ra: 2,169				
Dimensão máxi	ma caracterís	tica: 12,5			
		Fonte: Aut	oria própria		

O gráfico em escala logarítmica da distribuição granulométrica, apresentado na Figura C.1, ilustra os valores ensaiados para o pedrisco utilizado como material de assentamento, bem como os limites recomendados para a distribuição granulométrica do material de assentamento dos pavimentos permeáveis especificados pela NBR 16416 (ABNT, 2015a).

No processo de escolha do material de assentamento, outras matérias-primas foram ensaiadas. A composição granulométrica e a curva granulométrica dos demais materiais ensaiados estão apresentadas na Tabela C.1a e na Figura C.1a, respectivamente.

Abertura da	Fração retida acumulada (%)				
peneira (mm)	Pedrisco	Amostra 1	Amostra 2	Amostra 3	Amostra 4
19	0,00	0,00	0,00	0,00	0,00
12,50	0,20	0,00	0,00	0,00	0,00
9,5	26,22	0,00	0,00	0,00	0,00
6,3	92,52	0,06	0,00	0,46	0,00
4,75	98,80	0,16	0,22	2,59	1,03
2,36	100,00	0,58	2,22	15,94	34,77
1,18	100,00	2,31	12,19	31,32	63,56
0,6	100,00	6,75	41,84	48,27	78,37
0,3	100,00	47,88	80,10	74,64	84,43
0,15	100,00	91,88	98,03	96,95	88,72
0,1	100,00	100,00	100,00	100,00	100,00
	Fo	onte: Autoria	própria		

Tabela C.1a – Composição granulométrica de diferentes materiais de assentamento

Figura C.1a- Distribuição granulométrica de diferentes materiais de assentamento

Os limites de granulometria do material de assentamento recomendados pela NBR 16416 (ABNT, 2015a) apresentam divergências com outros manuais internacionais. Para efeitos de comparação, a Figura C.1b ilustra a curva granulométrica do material de assentamento utilizado neste estudo, bem como os limites de granulometria recomendados pelo manual de SUDS do Reino Unido (WOODS-BALLARD et al., 2015) e a norma brasileira (NBR 16416, 2015a). No gráfico, o limite inferior e superior *UK* refere-se à faixa recomendada pelo manual do Reino Unido enquanto que o limite inferior e superior *BR* à norma do Brasil.

Além de mais distante da faixa recomendada pelo Reino Unido, a granulometria do material de estudo foi ensaiada em peneiras com abertura de malha descritas na norma brasileira, devendo ter sua distribuição granulométrica comparada à faixa recomendada por esta.

C.2 Massa específica aparente

A determinação da massa específica aparente para as amostras de pedrisco, utilizado na camada de assentamento, foi determinada pela NBR NM 53 (ABNT, 2009). A Tabela C.2 apresenta os resultados do ensaio, onde se observa que a massa específica aparente média do pedrisco é de 2,88 *g/cm*³.

Tabela C.2 – Massa específica aparente do material de assentamento						
Amostra	Saturada (g)	Massa em água (<i>g</i>)	Massa seca (g)	Massa específica do agregado seco (<i>g/cm³</i>)	Massa específica do agregado na condição saturado superfície seca (<i>g/cm³</i>)	Massa específica aparente (g/cm³)
01	2022,5	1341,09	1970,0	3,13	2,97	2,89
02	2015,5	1330,14	1954,5	3,13	2,94	2,85
03	2016,0	1338,26	1964,5	3,14	2,97	2,90
Média:				3,13	2,96	2,88

Figura C.1b – Faixas de distribuição granulométrica

Fonte: Autoria própria

C.3 Massa unitária

O ensaio da massa unitária foi realizado conforme orientado pela NBR NM 45 (ABNT, 2006). O material de assentamento, ensaiado em um recipiente de massa de 515 *g*, possui uma massa unitária de 1,597 *g/cm*³ (Tabela C.3).

Tabela C.	3 – Massa unitária d	o material de assenta	imento
Recipiente + agregado compactado (g)	Recipiente + água (g)	Agregado Compactado (<i>g</i>)	Massa Unitária (g/c <i>m³</i>)
14888	9328	14373	1,597
	Fonte: Auto	ria própria	

C.4 Índice de volume de vazios

Os resultados do ensaio de índice de volume de vazios para o pedrisco são ilustrados na Tabela C.4. O ensaio foi realizado com água em temperatura de 18,8 °C, com massa específica interpolada correspondente de 998,44 *Kg/m*³.

Amostra	Massa específica do agregado seco (<i>g/cm³</i>)	Índice de vazios (%)
01	3,13	48,94
02	3,13	48,90
03	3,14	49,01
Média	3,13	48,95

Fonte: Autoria própria

APÊNDICE D – CARACTERIZAÇÃO DOS MATERIAIS DA CAMADA DE ARMAZENAMENTO

D.1 Composição granulométrica

A Tabela D.1 apresenta as características de granulometria ensaiadas para a brita utilizada na camada de armazenamento. Os dados obtidos pelo ensaio ilustram que o material analisado (brita 3) possui um módulo de finura de 0,98 e dimensão máxima de 37,5 mm.

Tabela D.1 – Composição granulométrica do material de armazenamento					
Abertura da peneira (<i>mm</i>)	M1	M2		Médias	
	Massa retida (<i>g</i>)	Massa Retida (<i>g</i>)	Massa retida (<i>g</i>)	Fração retida (%)	Fração retida acumulada (%)
63	0,00	0,00	0,00	0,00	0,00
50	0,00	0,00	0,00	0,00	0,00
37,5	153,30	140,10	146,70	2,03	2,03
31,5	993,20	563,90	778,55	10,78	12,81
25	3229,30	2944,50	3086,90	42,72	55,53
19	2787,60	2993,20	2890,40	40,00	95,53
12,5	306,00	339,40	322,70	4,47	100,00
Somatório	7469,40	6981,10	7225,25	100,00	100,00
Massa inicial	7500,00	6980,00			
Módulo de Finura: 0,98					
Dimensão máxima característica: 37,5					

Fonte: Autoria própria

A faixa de granulometria ideal, compreendida entre o limite inferior e superior do recomendado pela NBR 16416 (ABNT, 2015a), assim como os dados ensaiados da brita estão ilustrados na Figura D.1. Como é possível observar pelo gráfico, a granulometria do material de armazenamento possui uma granulometria maior que os limítrofes recomendados pela norma, porém a favor do armazenamento de água.

Fonte: Autoria própria

D.2 Massa específica aparente

A Tabela D.2 ilustra o resultado do ensaio de massa específica aparente para a brita 3, utilizada na camada de armazenamento, com um valor de 3,38 *g/cm*³.

Tabela D.2 – Massa específica aparente do material de armazenamento						
Massa (<i>g</i>)	Agregado saturado com superfície seca (<i>g</i>)	Massa em água (<i>g</i>)	Agrega do seco (g)	Massa específica do agregado seco (<i>g/cm³</i>)	Massa específica do agregado saturado superfície seca (<i>g/cm³</i>)	Massa específica aparente (g/cm³)
5555,00	5590,5	3944,16	5562,00	3,44	3,4	3,38
Fonte: Autoria própria						

Fonte: Autoria propria

D.3 Massa unitária

A Tabela D.3 mostra o valor da massa unitária da brita 3, utilizada na camada de armazenamento. O ensaio foi realizado com um recipiente com volume de 13419,6 cm^3 e massa de 450 g.

Amostra	Recipiente + agregado compactado (<i>g</i>)	Agregado Compactado (<i>g</i>)	Massa Unitária (<i>g/cm³</i>)		
01	20800	20350	1,52		
Fonte: Autoria própria					

Tabela D.3 – Massa unitária de	o material de armazenamento
--------------------------------	-----------------------------

D.4 Índice de volume de vazios

O ensaio para índice de volume de vazios da brita 3 resultou em 55,8%, conforme ilustrado na Tabela D.4.

Tabela D.4 – Índice de volume de vazios do material de armazenamento						
Massa específica do agregado seco (<i>g/cm³</i>)	Massa específica da água (<i>kg/m³</i>)	Massa unitária (<i>kg/m³</i>)	Índice de volume de vazios (%)			
3,437	997,97	1516,4	55,8			
Fonto, Autorio próprio						

Fonte: Autoria própria

APÊNDICE E – CARACTERIZAÇÃO DO SOLO

E.1 Índice de Suporte Califórnia (CBR)

Para a determinação do *CBR* do solo de subleito, primeiramente realizou-se o ensaio de compactação. Os resultados de massa específica aparente seca e de teor de umidade do solo estão descritos na Tabela E.1. O cilindro utilizado nos experimentos tem um volume de 2010 cm^3 e massa de 4850 g.

Tabela E.1 – Dados do ensaio de compactação					
Corpo de prova	Teor de umidade (%)				
1	1,30	22,06			
2	1,26	20,71			
3	1,31	29,20			
4	1,43	37,59			
5	1,30	41,84			
6	1,25	44,82			
Fonte: Autoria própria					

Com os dados de teor de umidade e massa especifica aparente seca, elaborou-se o gráfico da Figura E.1, onde consta a curva de compactação do solo. O ponto mais alto da curva fornece a massa especifica aparente máxima e o teor de umidade ótimo do solo, sendo seus valores de 1,43 *g/cm*³ e 37,59%, respectivamente.

A leitura da expansão dos corpos de prova foi realizada após 96 horas e estão apresentados na Tabela E.1a.

Tabela E.1a – Dados de expansão					
Corpo de prova	Expansão (%)				
1	0,00				
2	0,00				
3	0,10				
4	0,08				
5	0,01				
6	0,01				
7	0,01				
Fonte: Autoria própria					

Uma vez que o corpo de prova de número 4 obteve a umidade ótima, os ensaios de penetração e pressão foram realizados para esta amostra. Tais dados estão detalhados na Tabela E.1b.

Tempo (<i>min</i>)	Penetração (<i>mm</i>)	Leitura (<i>mm</i>)	Carga (<i>N</i>)	Pressão (<i>MPa</i>)
0,5	0,63	0,006	10,505	1,367
1,0	1,27	0,011	2,005	0,261
1,5	1,90	0,016	2,960	0,385
2,0	2,54	0,020	3,724	0,485

108

Tempo (<i>min</i>)	Penetração (<i>mm</i>)	Leitura (<i>mm</i>)	Carga (<i>N</i>)	Pressão (<i>MPa</i>)	
2,5	3,17	0,025	4,775	0,621	
3,0	3,81	0,026	4,966	0,646	
3,5	4,44	0,028	5,252	0,683	
4,0	5,08	0,030	5,730	0,746	
5,0	6,35	0,038	7,162	0,932	
6,0	7,62	0,039	7,353	0,957	
7,0	8,89	0,041	7,735	1,006	
8,0	10,16	0,042	8,022	1,044	
9,0	11,43	0,044	8,309	1,081	
10,0	12,70	0,046	8,786	1,143	
Eonto: Autoria própria					

Tabela E.1b – Dados de penetração e pressão do corpo de prova 4 (continuação)

Fonte: Autoria própria

Com os valores da tabela anterior, é possível traçar o gráfico correlacionando penetração e pressão (Figura E.1a). Como os módulos experimentais de pavimento permeável são projetados para tráfego leve, não foi necessário proceder com o ajuste do gráfico.

0,00 4 4 5 6 7 8 9 10 11 12 13 Penetração (*mm*) Fonte: Autoria própria

Por fim, foi calculado o Índice de Suporte Califórnia (*CBR*), o qual corresponde ao maior valor para as penetrações 2,54 *mm* e 5,08 *mm*. Conforme consta na Tabela E.1c, o *CBR* para o solo analisado foi de 7,1%.

l'abela E.1c – Valores de CBR para o solo analisado					
Penetração	Pres				
(<i>mm</i>)	Calculada	Padrão	- CBR (%)		
2,54	0,485	6,9	7,02		
5,08	0,746	10,5	7,10		
Fonte: Autoria própria					

Tabela E.1c – Valores de CBR para o solo analisado

Tabela F.1 – Valores de precipitação para IDF e Equação de Talbot de Pato Branco					
t (min)	IDF de Pato Branco	Equação de Talbot de Pato Branco	Razão entre as equações		
5	196,04	85,33	2,30		
10	158,75	71,55	2,22		
20	118,05	54,09	2,18		
30	95,72	43,48	2,20		
40	81,37	36,35	2,24		
50	71,27	31,23	2,28		
60	63,71	27,37	2,33		
70	57,82	24,36	2,37		
80	53,08	21,95	2,42		
90	49,17	19,97	2,46		
100	45,89	18,32	2,50		
110	43,08	16,92	2,55		
120	40,65	15,72	2,59		
		Média:	2,36		

APÊNDICE F – MAJORAÇÃO DO COEFICIENTE 'a'

Fonte: Autoria própria

t (min)	IDF de Pato Branco	Equação de Talbot após majoração do 'a'	Razão entre as equações
5	196,04	201,38	0,97
10	158,75	168,87	0,94
20	118,05	127,65	0,92
30	95,72	102,61	0,93
40	81,37	85,78	0,95
50	71,27	73,70	0,97
60	63,71	64,59	0,99
70	57,82	57,49	1,01
80	53,08	51,80	1,02
90	49,17	47,13	1,04
100	45,89	43,24	1,06
110	43,08	39,93	1,08
120	40,65	37,10	1,10
		Média:	1,00

Tabela F-2 – Valores de precipitação após maioração da Equação de Talbot

Fonte: Autoria própria

APÊNDICE G – HIETOGRAMA DOS EVENTOS DE CALIBRAÇÃO E VALIDAÇÃO

Figura G.1 – Hietograma do Evento 19/01/2021

ronte. Autoria propria

Fonte: Autoria própria

Figura G.3 – Hietograma do Evento 02/03/2021

Fonte: Autoria própria

Figura AN.1 – Ábaco de Dimensionamento – Método do DNER 0 10 20 П 1.S. OU CBR = 20 # Ш Espessura do Pavimento em centímetro - H -----30 I.S. OU CBR = 15 40 18 OU CRR -I.S. OU CBR = ЦŢ 10 50 1.5. OU CBR = 08 60 Ш 70 П ls OU CBR=5 80 1.8 OU CBR = 4 ΠI I.S. OU CBR = 3 90 Т 100 110 S OU CBR 120 th, 130 140 10³ 10⁴ 10⁸ 105 10° 107 10° Operações de eixo de 18.000 lb (8,2 ton.) Fonte: DNER (1981)

ANEXO A – ÁBACO DE DIMENSIONAMENTO MECÂNICO

ANEXO B – HISTÓRICO DE EVENTOS DE PRECIPITAÇÃO DE JUL/2019 A JUN/2020

2019						
	Julho Agosto Setembro					
Dia	Precipitação (<i>mm</i>)	Dia	Precipitação (<i>mm</i>)	Dia	Precipitação (<i>mm</i>)	
1	15,95	18	3,36	6	4,33	
14	4,2	31	16,11	12	8,87	
30	8,26	-	-	19	45,56	
	Outubro		Novembro		Dezembro	
Dia	Precipitação (<i>mm</i>)	Dia	Precipitação (<i>mm</i>)	Dia	Precipitação (<i>mm</i>)	
2	34,27	13	43,65	4	25,41	
5	21,13	14	15,76	8	16,01	
20	13,24	26	64,96	15	25,22	
27	22,94	27	9,85	16	10,85	
28	11,82	-	-	17	4,56	
31	17,92	-	-	20	4,92	
-	-	-	-	21	3,16	
			2020			
	Janeiro	Fevereiro		Março		
Dia	Precipitação (<i>mm</i>)	Dia	Precipitação (<i>mm</i>)	Dia	Precipitação (<i>mm</i>)	
1	14,76	2	29,33	7	57,33	
9	17,57	4	2,75	18	22,62	
10	39,28	25	11,63	19	11,8	
11	2,96	25	12,98	29	3,61	
16	11,22	26	41,41	-	-	
22	3,79	-	-	-	-	
29	15,37	-	-	-	-	
30	36,28	-	-	-	-	
	Abril		Maio		Junho	
Dia	Precipitação (mm)	Dia	Precipitação (mm)	Dia	Precipitação (mm)	
2	2,58	5	27,22	4	48,11	
6	24,03	12	26,53	5	16,74	
13	19,29	22	62,6	9	87,95	
-	-	-	-	10	14,18	
-	-	-	-	11	10,83	
-	-	-	-	13	15,94	
-	-	-	-	25	18,9	
-	-	-	-	29	7,88	
-	-	-	-	30	24,21	

Quadro B-1 – Eventos de precipitação de Jul/2019 a Jun/2020

Fonte: CEMADEN (2020)

ANEXO C – LAUDO DO COEFICIENTE DE PERMEABILIDADE DO BLOCO POROSO

Intere	ssado: Pisos Pa	avimenti EIRELI - EPP
Ender	eço: Rod. PR 4	483 KM 01 S/N - Francisco Beltrão / PR
Referé	encia: Orçamen	to 84025
Amos	t ra nº: 221614	Data de entrada: 07/06/2019
Materi	al declarado: F	Peças de concreto permeável para pavimentação
Obieti	vo: Determinaç	ão do coeficiente de permeabilidade

permeabilidade referentes a uma amostra de peças de concreto permeável para pavimentação. Os ensaios foram realizados por constituir parte dos ensaios do Selo de Qualidade ABCP. A amostra recebeu as seguintes identificações:

ABCP	Intere	ssado
	Data da coleta:	29/05/2019
	Data de fabricação:	26/04/2019
	Classe de resistência:	20 MPa
221614	Modelo:	Retangular
	Dimensões nominais (cm):	20x10x6
	Identificação do lote:	26/04/2019

Este documento tem significação restrita e diz respeito tão somente à(s) amostra(s) ensaiada(s). Sua reprodução só poderá ser total e depende da aprovação formal deste Laboratório.

Av. Torres de Oliveira, 76 - CEP 05347-902 - São Paulo/SP - Fone (11) 3760-5300 - Fax (11) 3760-5340 - e-mail: laboratorio@abcp.org.br

2. MÉTODOS DE ENSAIO E DOCUMENTOS REFERENCIADOS

ABNT NBR 16416:2015 – Pavimentos Permeáveis de Concreto – Requisitos e Procedimentos

3. METODOLOGIA

O coeficiente de permeabilidade mede a velocidade de percolação de água e tem relação com a tendência da água infiltrar ou escoar superficialmente. Para medir o coeficiente de permeabilidade de um pavimento intertravado permeável constituído de peças de concreto, utilizou-se o método descrito pela Norma ABNT/NBR 16416/2015.

Para a aplicação do método em laboratório, as condições de execução de um pavimento permeável em campo foram reproduzidas por meio da montagem de uma seção do pavimento com área de 0,6 m2 de superfície. As peças foram instaladas sobre uma estrutura confinada de pavimento contendo base granular e camada de assentamento, ambas com granulometria aberta sem finos.

4. METODO DE ENSAIO

O procedimento consistiu em posicionar um cilindro com diâmetro de (300 mm) \pm 10 mm sobre o pavimento. Atentou-se para que não ocorressem vazamentos de água para fora da área interna do cilindro. Antes da realização do ensaio, efetuou-se a pré-molhagem para determinação do volume de água a ser utilizado no ensaio, com saturação da área de ensaio. Na pré-molhagem utilizou-se 3,6kg de água e mediu-se o tempo de infiltração. A metodologia especifica que caso a infiltração da pré-molhagem ocorra em um tempo inferior a 30s, deve se utilizar (18 \pm 0,05)kg de água; caso o tempo seja igual ou superior a 30s utilizam-se (3,6 \pm 0,05)kg de água para determinar o coeficiente de permeabilidade.

O ensaio deve ser iniciado em até dois minutos após a pré-molhagem. O volume de água determinado pelo tempo da pré-molhagem deve ser vertido no interior do cilindro mantendo-se uma coluna d'água com altura variando entre 10 mm a 15 mm em relação à superfície do pavimento (verificados no lado interno do cilindro).

Deve-se anotar o tempo decorrido entre o inicio de aplicação da água e a infiltração total, considerada quando não há mais a presença de água na superfície das peças de concreto, ou seja, até que 100% da água seja infiltrada.

Este documento tem significação restrita e diz respeito tão somente à(s) amostra(s) ensaiada(s). Sua reprodução só poderá ser total e depende da aprovação formal deste Laboratório.

Av. Torres de Oliveira, 76 - CEP 05347-902 - São Paulo/SP - Fone (11) 3760-5300 - Fax (11) 3760-5340 - e-mail: laboratorio@abcp.org.br

3/4

Relatório de ensaio nº 123230

O coeficiente de permeabilidade é calculado através da equação 1:

$$k = rac{C.V}{(D^2 t)}$$
 Equação 1

- k: Coeficiente de permeabilidade, mm/h
- V: Volume de água infiltrada, L
- D: Diâmetro interno do anel de infiltração, mm
- t: tempo requerido para a infiltração do volume de água, s
- C: 4.583.666.000 fator de conversão de unidades

5. RESULTADOS

O ensaio para determinação do coeficiente de permeabilidade utilizando-se o cilindro de infiltração, executado conforme metodologia descrita anteriormente, tendo-se obtido os resultados apresentados na *Tabela 1*.

Ponto	Diâmetro	Tempo da	Massa de	Aassa de Intervalo –		eficiente de pe	rmeabilidade (k	()
de Frenio*	do anel (D)	pre- molhagem com 3.6 kg	agua utilizada no ensaio	de tempo - (t)	(m	/s)	(mm	/h)
LIISalu	(mm)	(s)	(kg)	(s)	Individual	Média	Individual	Média
				11,50	2,3x10 ⁻²		82.441	
1	295	3,2	18,0	10,78	2,4x10 ⁻²	2,4x10 ⁻²	87.947	87.154
				10,41	2,5x10 ⁻²		91.073	
DataIdade	de fabricaçã • no ensaio:	o:	26/04/2019 45 dias					
 Idade 	no ensaio:	0.	45 dias					

Tabela 1 - Resultados

6. CONSIDERAÇÕES FINAIS

O pavimento permeável deve apresentar grau de permeabilidade alta, que corresponde a um coeficiente de permeabilidade acima de 10⁻³ m/s, conforme classificação apresentada na *Tabela 7 - ABNT NBR 16416:2015*.

A amostra ensaiada apresentou coeficiente de permeabilidade de 2,4x10⁻² m/s sendo classificada com grau de permeabilidade alta, podendo-se considerar 100% permeável.

Engl. Bubens Curti Supervisor Técnico

São Paulo, 01 de julho de 2019.

Geol. Amaido Forti Battagin Chefe do Laboratório CREA nº 0600586647

Este documento tem significação restrita e diz respeito tão somente à(s) amostra(s) ensaiada(s). Sua reprodução só poderá ser total e depende da aprovação formal deste Laboratório. Av. Torres de Oliveira, 76 - CEP 05347-902 - São Paulo/SP - Fone (11) 3760-5300 - Fax (11) 3760-5340 - e-mail: laboratorio@abcp.org.br

ANEXO D – LAUDO DE RESISTÊNCIA MECÂNICA À COMPRESSÃO DO BLOCO POROSO

ABCP	Interessado							
	Data da coleta:	29/05/2019						
	Data de fabricação:	26/04/2019						
	Classe de resistência:	20 MPa						
221614	Modelo:	Retangular						
	Dimensões nominais (cm):	20x10x6						
	Identificação do lote:	26/04/2019						

2. MÉTODOS DE ENSAIO E DOCUMENTOS REFERENCIADOS

ABNT NBR 9781:2013 – Peças de Concreto para Pavimentação – Especificação e Método de Ensaio.

ABNT NBR 16416:2015 – Pavimentos Permeáveis de Concreto – Requisitos e Procedimento.

Este documento tem significação restrita e diz respeito tão somente à(s) amostra(s) ensaiada(s). Sua reprodução só poderá ser total e depende da aprovação formal deste Laboratório.

Av. Torres de Oliveira, 76 - CEP 05347-902 - São Paulo/SP - Fone (11) 3760-5300 - Fax (11) 3760-5340 - e-mail: <u>laboratorio@abcp.org.br</u> Laboratório de Ensaios Acreditado pela Cgcre de acordo com a NBR ISO/IEC 17025 sob nº CLF 0024

3. RESULTADOS

A determinação dimensional, a inspeção visual e os resultados da determinação de resistência à compressão da amostra de oito peças de concreto permeável para pavimentação estão apresentados na Tabela 1.

Corpo-de- prova	Massa quando recebido	Dimensões m (nédias das mm)	peças	Fator	Área	Carga de ruptura	Resistência à compressão
nº	(g)	Comprimento	Largura	Altura	þ	(1111-)	(N)	(MPa)
1	2386	200	98	58			267000	44,7
2	2388	200	99	58			215000	36,0
3	2421	200	99	58			203000	34,0
4	2394	200	99	59	0.05	5074	204000	34,2
5	2425	200	99	58	0,95	5674	286000	47,9
6	2413	200	98	58			225000	37,7
7	2401	200	99	58			216000	36,2
8	2446	200	98	59			209000	35,0
Resistência	média à comp	ressão - f _p - (MF	Pa)					38,2
Desvio padra	ão - s - (MPa)	100 m 117						5,2
Resistência	característica	à compressão -	f _{pk} - (MPa)					33,5
Visual Data de r Data de f Idade na k = resistência	a estetica do par ealização dos e abricação: data do ensaio: a característica	nsaios: 14 26 49 à compressão, en	/06/2019 /04/2019 dias n MPa e é ol	otido pela	expressã	0: f _{pk} = f _p –	t.s onde:	
 coenciente ,896. a desvio pad números d _{ii} = resistência '' = fator mult 	rão da amostra e peças da amo i individual das iplicativo relativ	em MPa, dado pe istra peças, em MPa ol o à altura nominal	la expressão otida pela e: da peça	xpressão:	$\sqrt{\frac{\Sigma(fp-n)}{n-1}}$	<u>- fpi)²</u> - 1 ga/área) .	"p"	to o valor e
Este documen poderá ser tota Av. Torres de (to tem significa I e depende da Diveira, 76 - CEP (Laboratório de	ção restrita e diz aprovação formal 05347-902 - São Paul Ensaios Acreditado p	respeito tão deste Labo o/SP - Fone (ela Cgcre de a	o somente ratório. 11) 3760-53 icordo com a	e à(s) am 00 - Fax (1 a NBR ISO	ostra(s) er 1) 3760-534(/IEC 17025 s	nsaiada(s). Su) - e-mail: labora ob nº CLF 0024	ua reprodução s ttorio@abcp.org.br

TABELA 1 – Resultados

4. CONSIDERAÇÕES FINAIS

Estabelece na *tabela 8* - ABNT NBR 16416:2015 – Resistência mecânica e espessura mínima do revestimento permeável, para peças de concreto permeável valores de \geq 20,0 MPa, espessura de 60mm para tráfego de pedestres *item 3.2* e 80,0 mm para trafego leve *item 3.3*. A amostra apresentou f_{pk} igual a 33,5 MPa, determinado de acordo com a ABNT NBR 9781:2013.

A amostra atende às especificações de resistência à compressão para peças de concreto para pavimentação da classe 20 MPa, conforme declarado pelo interessado.

Quanto à análise dimensional, a ABNT NBR 9781:2013 especifica que as peças devem ter formato geométrico regular, com comprimento nominal de no máximo 250mm, largura real mínima de 97mm e espessura nominal mínima de 60mm. A norma permite variações máximas de 3mm nas dimensões do comprimento, espessura e largura, sem comprometimento do desempenho mecânico e de durabilidade das peças de concreto.

Os ensaios realizados permitiram verificar que a amostra analisada está em conformidade com as especificações dimensionais.

Quanto à inspeção visual, a ABNT NBR 9781:2013 especifica, que as peças de concreto não devem apresentar defeitos que possam prejudicar o assentamento, o desempenho estrutural ou a estética do pavimento.

A inspeção visual permitiu verificar que a amostra analisada está em conformidade com as especificações.

Eng. Ruberts Curti Supervisor Técnico

São Paulo, 01 de julho de 2019.

Geor Amaldo Forti Battagil Chefe do Laboratório CREA nº 0600586647

Este documento tem significação restrita e diz respeito tão somente à(s) amostra(s) ensaiada(s). Sua reprodução só poderá ser total e depende da aprovação formal deste Laboratório.

Av. Torres de Oliveira, 76 - CEP 05347-902 - São Paulo/SP - Fone (11) 3760-5300 - Fax (11) 3760-5340 - e-mail: laboratorio@abcp.org.br Laboratório de Ensaios Acreditado pela Cgcre de acordo com a NBR ISO/IEC 17025 sob nº CLF 0024

ANEXO E – LAUDO DE RESISTÊNCIA MECÂNICA À FLEXÃO DO BLOCO POROSO

Interessau	lo: Pisos Pa	avimenti EIRELI - EPP		
Endereço:	Rod. PR	483 KM 01 S/N - Francisco	Beltrão / PR	
Referência	a: Orçamen	to 84025		
Amostra n	º: 221615	Data d	e entrada: 07/06/2019	
Material de	eclarado: F	Placas de concreto permeáv	rel para pavimentação	
Objetivo: [Determinaç	ão da resistência à flexão		
1. INTROE	OUÇAO			
	·	a os resultados do ensaio	de resistência à flexão referente a	um
Este relatór	io apresent			
Este relatór amostra	o apresent contendo :	seis placas de concreto per	meável para pavimentação. Os en	saic
Este relatór amostra foram re	io apresent contendo : ealizados p	seis placas de concreto per por constituir parte dos en	meável para pavimentação. Os en saios do Selo de Qualidade ABC	saic ;P.
Este relatór amostra foram re amostra	io apresent contendo s ealizados p recebeu as	seis placas de concreto per por constituir parte dos en s seguintes identificações:	meável para pavimentação. Os en saios do Selo de Qualidade ABC	saic ;P.
Este relatór amostra foram re amostra	io apresent contendo : ealizados p recebeu as	seis placas de concreto per por constituir parte dos en s seguintes identificações:	meável para pavimentação. Os en saios do Selo de Qualidade ABC	saic ;P.
Este relatór amostra foram re amostra	io apresent contendo s ealizados p recebeu as ABCP	seis placas de concreto per por constituir parte dos en s seguintes identificações:	meável para pavimentação. Os en saios do Selo de Qualidade ABC essado	saic P.
Este relatór amostra foram re amostra	io apresent contendo s ealizados p recebeu as ABCP	seis placas de concreto per por constituir parte dos en s seguintes identificações: Intere Data da coleta:	meável para pavimentação. Os en saios do Selo de Qualidade ABC essado 29/05/2019	saic P.
Este relatór amostra foram re amostra	io apresent contendo s ealizados p recebeu as ABCP	seis placas de concreto per por constituir parte dos en s seguintes identificações: Intere Data da coleta: Data de fabricação:	meável para pavimentação. Os en saios do Selo de Qualidade ABC essado 29/05/2019 06/05/2019	saio P.
Este relatór amostra foram re amostra	io apresent contendo : ealizados p recebeu a: ABCP	seis placas de concreto per por constituir parte dos en s seguintes identificações: Intere Data da coleta: Data de fabricação: Classe de resistência:	meável para pavimentação. Os en saios do Selo de Qualidade ABC essado 29/05/2019 06/05/2019 2 MPa	said P.
Este relatór amostra foram re amostra	io apresent contendo s ealizados p recebeu as ABCP 221615	seis placas de concreto per por constituir parte dos en s seguintes identificações: Intere Data da coleta: Data de fabricação: Classe de resistência: Modelo:	meável para pavimentação. Os en saios do Selo de Qualidade ABC 29/05/2019 06/05/2019 2 MPa Placa	said P.
Este relatór amostra foram re amostra	apresent contendo : ealizados p recebeu a: ABCP 221615	seis placas de concreto per por constituir parte dos en s seguintes identificações: Data da coleta: Data de fabricação: Classe de resistência: Modelo: Dimensões nominais (cm):	essado 29/05/2019 06/05/2019 2 MPa Placa 40x40x6	said ;P.
Este relatór amostra foram re amostra	io apresent contendo s ealizados p recebeu as ABCP 221615	seis placas de concreto per por constituir parte dos en s seguintes identificações: Intere Data da coleta: Data de fabricação: Classe de resistência: Modelo: Dimensões nominais (cm): Identificação do lote:	meável para pavimentação. Os en saios do Selo de Qualidade ABC 29/05/2019 06/05/2019 2 MPa Placa 40x40x6 06/05/2019	said P.

Este documento tem significação restrita e diz respeito tão somente à(s) amostra(s) ensaiada(s). Sua reprodução só poderá ser total e depende da aprovação formal deste Laboratório.

Av. Torres de Oliveira, 76 - CEP 05347-902 - São Paulo/SP - Fone (11) 3760-5300 - Fax (11) 3760-5340 - e-mail: laboratorio@abcp.org.br

3. RESULTADOS

3.1. DETERMINAÇÃO DA RESISTÊNCIA À FLEXÃO

As peças de concreto com dimensões nominais de (400 x 400 x 60) mm foram submetidas ao ensaio de resistência a flexão apoiada nas extremidades e aplicada carga centrada. O resultado obtido no ensaio está apresentado na *Tabela a seguir*.

Nº da	Entre	Dimensõ	es médias (mm)	da placa	Carga de	Resistência à flexão (MPa)			
placa	(mm)	Comp.	Larg.	Alt.	ruptura (N)	f _{tf}	f _{tf,est}	f _{tf,est} Adotado	
1		400,0	400,0	60,0	6980	2,4			
2		400,0	400,0	60,0	8320	2,9			
3		400,0	400,0	60,0	7570	2,6			
4	333	400,0	400,0	60,0	7490	2,6	2,4	2,4	
5		400,0	400,0	60,0	7880	2,7			
6		400,0	400,0	60,0	7790	2,7			
ensaio:		-	14/06/2019						

Data de ensaio:Data de fabricação:

06/05/2019

Idade no ensaio:

39 dias

$$ft = \frac{1.5xPxL}{bxt^2}$$

 $f_t = \dot{E}$ a resistência à compressão expressa em megapalcals (MPa) ;

 $\mathsf{P}=\acute{\mathsf{E}} \text{ carga aplicada ao centro da placa, expressa em Newtons (N);}$

L = É a distância entre os apoios, expressa em milímetros (mm);

b = É a largura da placa ao longo da linha da fratura, expressa em milímetros (mm);

t = É a espessura da placa, expressa em milímetros (mm).

$$f_{\rm tf,est} = 2 \left[\frac{f_{\rm tf(1)} + f_{\rm tf(2)} + \dots f_{\rm tf(i-1)}}{i - 1} \right] f_{\rm tfi}$$

n = quantidade de placas da amostra;

i = n/2 ou i = (n-1)/2, se n for impar;

 $f_{tf(1)}, f_{tf(2)}, f_{tf(0)},$ valores de resistência à flexão individuais, ordenados crescentemente;

 $f_{\text{tf,est}}$ - resistência à flexão característica estimada da amostra expressa em MPa;

 $f_{tf,est}$ Adotado - Não se deve tomar como $f_{tf,est}$ valor menor que Ψ , $f_{tf(1)}$, adotando-se para Ψ os valores da tabela 3 ANBT NBR 15805:2015, em função da quantidade de placas da amostra.

Este documento tem significação restrita e diz respeito tão somente à(s) amostra(s) ensaiada(s). Sua reprodução só poderá ser total e depende da aprovação formal deste Laboratório.

Av. Torres de Oliveira, 76 - CEP 05347-902 - São Paulo/SP - Fone (11) 3760-5300 - Fax (11) 3760-5340 - e-mail: laboratorio@abcp.org.br

3/3

88

Relatório de ensaio nº 123231

4. CONSIDERAÇÕES FINAIS

Os ensaios realizados permitiu verificar que a amostra analisada apresentou uma resistência à flexão de 2,4 MPa.

Engr Rubens Curti Supervisor Técnico

São Paulo, 01 de julho de 2019.

Geol. Amaldo Forti Battagin

Chefe do Laboratório CREA nº 0600586647

Este documento tem significação restrita e diz respeito tão somente à(s) amostra(s) ensaiada(s). Sua reprodução só poderá ser total e depende da aprovação formal deste Laboratório.

Av. Torres de Oliveira, 76 - CEP 05347-902 - São Paulo/SP - Fone (11) 3760-5300 - Fax (11) 3760-5340 - e-mail: laboratorio@abcp.org.br

	ANÁLISE DE SENSIBILIDADE - EVENTO 1									
Duração do Evento:	10 minuto	S								
Tempo de recorrência:	1 ano									
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (m ³)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0214	76,9284	0,0022	11,0000	-0.03	-0.25	0.10
	90	1,9	16,94	0,0205	73,8828	0.0024	11,0000	-0,08	-0,18	0,11
	80	1,8	16,84	0,0207	74,3508	0,0024	11,0000	-0,08	-0,23	0,13
	70	1,7	16,74	0,0208	74,7252	0,0025	11,0000	-0,09	-0,21	0,14
	60	1,6	16,64	0,0208	75,0420	0,0026	11,0000	-0,09	-0,19	0,17
	50	1,5	16,54	0,0209	75,2904	0,0026	11,0000	-0,11	-0,18	0,20
	40	1,4	16,44	0,0210	75,4848	0,0027	11,0000	-0,13	-0,17	0,25
	30	1,3	16,34	0,0210	75,6396	0,0028	11,0000	-0,16	-0,15	0,33
	20	1,2	16,24	0,0210	75,6828	0,0028	11,0000	-0,24	-0,13	0,50
Armazenamento	10	1,1	16,14	0,0216	77,6016	0,0029	10,0000	-0,25	-0,12	0,00
em depressão	0	1,0	16,04	0,0221	79,5636	0,0029	10,0000	0,00	0,00	0,00
superficial	-10	0,9	15,94	0,0226	81,1908	0,0030	10,0000	-0,20	-0,25	0,00
	-20	0,8	15,84	0,0229	82,5264	0,0031	10,0000	-0,19	-0,34	0,00
	-30	0,7	15,74	0,0232	83,6280	0,0032	10,0000	-0,17	-0,39	0,00
	-40	0,6	15,64	0,0235	84,5460	0,0034	10,0000	-0,16	-0,42	0,00
	-50	0,5	15,54	0,0237	85,3056	0,0035	10,0000	-0,14	-0,44	0,00
	-60	0,4	15,44	0,0239	85,9356	0,0037	10,0000	-0,13	-0,45	0,00
	-70	0,3	15,34	0,0240	86,4648	0,0038	10,0000	-0,12	-0,46	0,00
	-80	0,2	15,24	0,0256	92,1132	0,0041	10,0000	-0,20	-0,50	0,00
	-90	0,1	15,14	0,0242	87,2604	0,0041	10,0000	-0,11	-0,45	0,00
	-100	0,0	15,04	0,0243	87,5520	0,0042	10,0000	-0,10	-0,44	0,00
	100	0,1	19,04	0,0000	0,0000	0,0000	0,0000	-1,00	-1,00	-1,00
	90	0,1	18,74	0,0019	6,9480	0,0002	11,0000	-1,01	-1,02	0,11
	80	0,1	18,44	0,0079	28,4580	0,0007	11,0000	-0,80	-0,95	0,13
	70	0,1	18,14	0,0132	47,6532	0,0011	11,0000	-0,57	-0,91	0,14
	60	0,1	17,84	0,0167	59,9976	0,0013	11,0000	-0,41	-0,93	0,17
	50	0,1	17,54	0,0188	67,7016	0,0014	11,0000	-0,30	-1,00	0,20
	40	0,1	17,24	0,0208	75,0456	0,0019	11,0000	-0,14	-0,88	0,25
	30	0,1	16,94	0,0205	73,8828	0,0024	11,0000	-0,24	-0,53	0,33
Capacidade de	20	0,1	16,64	0,0208	75,0420	0,0026	11,0000	-0,28	-0,57	0,50
campo	10	0,1	16,34	0,0210	75,6396	0,0028	10,0000	-0,49	-0,45	1,00
revestimento	0	0,1	16,04	0,0221	79,5030	0,0029	10,0000	0,00	0,00	0,00
	-10	0,0	15,74	0,0232	83,6280	0,0032	10,0000	-0,51	-1,16	0,00
	-20	0,0	15,44	0,0239	85,9356	0,0037	10,0000	-0,40	-1,36	0,00
	-30	0,0	15,14	0,0242	87,2604	0,0041	10,0000	-0,32	-1,36	0,00
	-40	0,0	14,84	0,0244	88,0056	0,0044	10,0000	-0,27	-1,26	0,00
	-50	0,0	14,54	0,0249	89,7948	0,0046	9,0000	-0,26	-1,14	0,20
	-00	0,0	14,24	0,0268	90,3288	0,0047	9,0000	-0,35	-1,01	0,17
	-70	0,0	13,94	0,0278	100,1808	0,0049	9,0000	-0,37	-1,00	0,14
	-00	0,0	13,04	0,0205	102,5040	0,0054	9,0000	-0,36	-1,07	0,13
1	-90	0,0	15,54	0,0209	105,9024	0,0059	9,0000	-0,34	-1,14	0,11

	-100	0,0	13,04	0,0291	104,8428	0,0063	9,0000	-0,32	-1,15	0,10
	100	0,1	17,29	0,0205	73,7532	0,0018	11,0000	-0,07	-0,38	0,10
	90	0,0	17,17	0,0212	76,2624	0,0020	11,0000	-0,05	-0,35	0,11
	80	0,0	17,04	0,0214	76,9284	0,0022	11,0000	-0,04	-0,31	0,13
	70	0,0	16,92	0,0206	73,9872	0,0023	11,0000	-0,10	-0,31	0,14
	60	0,0	16,79	0,0207	74,5344	0,0024	11,0000	-0,11	-0,28	0,17
	50	0,0	16,67	0,0208	74,9520	0,0025	11,0000	-0,12	-0,25	0,20
	40	0,0	16,54	0,0209	75,2904	0,0026	11,0000	-0,13	-0,22	0,25
	30	0,0	16,42	0,0210	75,5172	0,0027	11,0000	-0,17	-0,21	0,33
	20	0,0	16,29	0,0210	75,6684	0,0028	11,0000	-0,24	-0,17	0,50
Capacidade de	10	0,0	16,17	0,0214	76,9320	0,0029	10,0000	-0,33	-0,13	0,00
campo da camada de	0	0,0	16,04	0,0221	79,5636	0,0029	10,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0226	81,4752	0,0030	10,0000	-0,24	-0,31	0,00
	-20	0,0	15,79	0,0231	83,1024	0,0032	10,0000	-0,22	-0,45	0,00
	-30	0,0	15,67	0,0234	84,2832	0,0033	10,0000	-0,20	-0,50	0,00
	-40	0,0	15,54	0,0237	85,3056	0,0035	10,0000	-0,18	-0,55	0,00
	-50	0,0	15,42	0,0239	86,0472	0,0037	10,0000	-0,16	-0,56	0,00
	-60	0,0	15,29	0,0241	86,6916	0,0039	10,0000	-0,15	-0,57	0,00
	-70	0,0	15,17	0,0242	87,1596	0.0041	10,0000	-0.14	-0.57	0.00
	-80	0,0	15,04	0,0243	87,5520	0.0042	10,0000	-0.13	-0.55	0.00
	-90	0,0	14,92	0,0244	87,8472	0.0043	10,0000	-0.12	-0.53	0.00
	-100	0,0	14,79	0.0245	88,0884	0.0044	10,0000	-0.11	-0.51	0.00
	100	0,1	25,04	0,0000	0,0000	0,0000	0.0000	-1.00	-1.00	-1.00
	90	0.0	24.14	0.0000	0.0000	0,000	0.0000	-1 11	-1 11	-1 11
	80	0.0	23.24	0.0000	0.0000	0,0000	0.0000	-1 25	-1 25	-1 25
	70	0.0	22.34	0.0000	0.0000	0.0000	0.0000	-1.43	-1,43	-1.43
	60	0.0	21.44	0.0000	0.0000	0,0000	0.0000	-1 67	-1 67	-1 67
	50	0.0	20.54	0.0000	0.0000	0,0000	0.0000	-2 00	-2 00	-2 00
	40	0.0	19.64	0.0000	0.0000	0,0000	0.0000	-2 50	-2 50	-2 50
	30	0.0	18.74	0.0019	6.9480	0,0002	11.0000	-3.04	-3 07	0.33
	20	0.0	17.84	0.0167	59.9976	0.0013	11.0000	-1.23	-2.78	0.50
Capacidade de	10	0.0	16.94	0.0205	73.8828	0.0024	11.0000	-0.71	-1.59	1.00
campo da	0	0.0	16.04	0.0221	79.5636	0.0029	10.0000	0.00	0.00	0.00
camada de	-10	0.0	15.14	0.0242	87.2604	0.0041	10.0000	-0.97	-4.07	0.00
annazenamento	-20	0.0	14.24	0.0268	96.3288	0.0047	9.0000	-1.05	-3.04	0.50
	-30	0.0	13.34	0.0289	103.9824	0.0059	9.0000	-1 02	-3 43	0.33
	-40	0.0	12.44	0.0312	112,1652	0.0067	8.0000	-1.02	-3.26	0.50
	-50	0.0	11.54	0.0350	125,8632	0.0073	8.0000	-1 16	-3.03	0.40
	-60	0.0	10.64	0.0360	129,4416	0.0088	8.0000	-1 04	-3.36	0.33
	-70	0.0	9.74	0.0412	148,4100	0.0095	7,0000	-1.24	-3.24	0.43
	-80	0.0	8.84	0.0450	162,1296	0.0098	7,0000	-1.30	-2.96	0.38
	-90	0.0	7.94	0.0461	165,9924	0.0112	7,0000	-1.21	-3.16	0.33
	-100	0.0	7.04	0,0464	167.0040	0.0119	7,0000	-1.10	-3 11	0.30
	100	10.0	17.84	0.0167	59.9976	0,0013	11.0000	-0.25	-0.56	0.10
	90	9.5	17.66	0.0181	65.1852	0.0014	11.0000	-0.20	-0.58	0.11
	80	9.0	17.48	0.0191	68.7168	0.0015	11.0000	-0.17	-0.61	0.13
	70	8.5	17.30	0.0197	71.0964	0.0017	11.0000	-0.15	-0.58	0.14
	60	8.0	17.12	0.0213	76.7448	0.0021	11.0000	-0.06	-0.48	0.17
Offset do dreno	50	7.5	16.94	0.0205	73.8828	0.0024	11.0000	-0.14	-0.32	0.20
	40	7.0	16.76	0.0207	74 6496	0.0025	11,0000	-0.15	-0.38	0.25
	30	6.5	16.58	0.0209	75,1968	0.0026	11.0000	-0.18	-0.33	0.33
	20	6.0	16.40	0.0210	75,5460	0.0027	11,0000	-0.25	-0.29	0,50
	10	5.5	16.22	0.0211	75.8232	0.0027	10.0000	-0.47	-0.22	0,00
	0	5.0	16.04	0.0221	79.5636	0 0020	10.0000	0,00	0,22	0,00
		0,0			,	0,0020	,	0,00	0,00	0,00

										128
	-10	4,5	15,86	0,0229	82,2780	0.0031	10,0000	-0.34	-0.53	0.00
	-20	4,0	15,68	0,0234	84,1932	0.0033	10,0000	-0.29	-0.71	0.00
	-30	3,5	15,50	0,0238	85,5720	0.0036	10,0000	-0.25	-0.80	0.00
	-40	3,0	15,33	0,0240	86,5116	0,0038	10,0000	-0,22	-0,81	0,00
	-50	2,5	15,15	0,0242	87,2280	0.0041	10,0000	-0.19	-0.81	0.00
	-60	2,0	14,97	0,0244	87,7320	0.0043	10,0000	-0.17	-0.77	0.00
	-70	1,5	14,79	0,0245	88,0884	0.0044	10,0000	-0.15	-0.73	0.00
	-80	1.0	14,61	0,0245	88,1460	0.0045	10,0000	-0.13	-0.69	0.00
	-90	0.5	14,43	0,0257	92,5992	0.0046	9,0000	-0.18	-0.65	0.11
	-100	0,0	14,25	0,0267	96,1632	0.0047	9,0000	-0.21	-0.61	0.10
	100	0,8	16,42	0,0210	75,5172	0,0027	11,0000	-0.14	-0.16	0.27
	90	0,7	16,39	0,0210	75,5604	0.0027	11,0000	-0.15	-0.17	0.30
	80	0.7	16.35	0.0210	75.6288	0.0028	11.0000	-0.17	-0.15	0.33
	70	0.7	16.32	0.0210	75.6576	0.0028	11.0000	-0.19	-0.15	0.38
	60	0,7	16,28	0,0210	75,6612	0.0028	11,0000	-0.22	-0.14	0.45
	50	0,7	16,24	0,0210	75,6828	0.0028	11,0000	-0.26	-0.14	0.53
	40	0,6	16,21	0,0211	75,9816	0.0028	10,0000	-0.30	-0.13	0.00
	30	0,6	16,17	0,0214	76,9320	0.0029	10,0000	-0.29	-0.11	0.00
	20	0.6	16.13	0.0216	77.8140	0.0029	10.0000	-0.29	-0.12	0,00
Razão de vazios	10	0.6	16.09	0.0218	78.6312	0.0029	10.0000	-0.31	-0.10	0.00
da camada de	0	0,6	16,04	0,0221	79,5636	0.0029	10,0000	0.00	0.00	0.00
armazenamento	-10	0,5	16,00	0,0223	80.2656	0.0029	10,0000	-0.24	-0.25	0.00
	-20	0,5	15,95	0,0225	81,0468	0.0030	10,0000	-0.25	-0.29	0.00
	-30	0,5	15,91	0,0227	81,6120	0.0030	10,0000	-0.23	-0.31	0.00
	-40	0,5	15,86	0,0229	82,2780	0.0031	10,0000	-0.23	-0.36	0.00
	-50	0,5	15,81	0,0243	87,3828	0.0032	10,0000	-0.53	-0.56	0.00
	-60	0,4	15,76	0,0232	83,4264	0.0032	10,0000	-0.22	-0.46	0.00
	-70	0,4	15,71	0,0233	83,9088	0.0033	10,0000	-0.21	-0.50	0.00
	-80	0,4	15,66	0,0234	84,3732	0.0034	10,0000	-0.20	-0.53	0.00
	-90	0,4	15,60	0,0236	84,8664	0,0034	10,0000	-0,20	-0,55	0,00
	-100	0,4	15,55	0,0237	85,2372	0,0035	10,0000	-0,19	-0,57	0,00
		ANÁ	LISE DE	SENSIE	BILIDADE -	EVENTO 2				1
Duração do	10 minuto	s								
Tempo de										
recorrência:	2 anos									
				Vazão		Volume				
Dorâmotro	Variação	Valorea	Detero	de	Vazão do pigo	total	Tempo de nice	CS	CS	CS
Farametro	(%)	valutes	DStore	pico	(mm/h)	escoado	(min)	vazão	Volume	tempo
				(I/s)	(,	(mm)	()			
	100	2,0	17,04	0,0284	102,2904	0,0051	9,0000	-0,11	-0,17	0,00
	90	1,9	16,94	0,0290	104,5692	0,0051	9,0000	-0,10	-0,18	0,00
	80	1,8	16,84	0,0296	106,4916	0,0051	9,0000	-0,09	-0,19	0,00
	70	1,7	16,74	0,0300	108,0972	0,0052	9,0000	-0,08	-0,22	0,00
	60	1,6	16,64	0,0304	109,4652	0,0052	9,0000	-0,07	-0,24	0,00
Armazanamanta	50	1,5	16,54	0,0307	110,6280	0,0053	9,0000	-0,07	-0,26	0,00
em depressão	40	1,4	16,44	0,0310	111,6324	0,0054	9,0000	-0,06	-0,27	0,00
superficial	30	1,3	16,34	0,0313	112,5180	0,0056	9,0000	-0,06	-0,27	0,00
	20	1,2	16,24	0,0315	113,2596	0,0057	9,0000	-0,05	-0,27	0,00
	10	1,1	16,14	0,0316	113,8896	0,0059	9,0000	-0,05	-0,27	0,00
	0	1,0	16,04	0,0318	114,4224	0,0061	9,0000	0,00	0,00	0,00
	-10	0,9	15,94	0,0319	114,8796	0,0062	9,0000	-0,04	-0,29	0,00
	-20	0,8	15,84	0,0320	115,2648	0,0064	9,0000	-0,04	-0,28	0,00
1	_30	07	15 74	0.0321	115 5060	0.0065	9 0000	0.02	0.25	0.00

										129
	-40	0,6	15,64	0,0322	115,8660	0,0067	9,0000	-0,03	-0.25	0,00
	-50	0,5	15,54	0,0323	116,1144	0,0068	9,0000	-0,03	-0,24	0,00
	-60	0,4	15,44	0,0323	116,3232	0,0069	9,0000	-0,03	-0,23	0,00
	-70	0,3	15,34	0,0324	116,5032	0,0070	9,0000	-0,03	-0,22	0,00
	-80	0,2	15,24	0,0324	116,6580	0,0071	9,0000	-0,02	-0,21	0,00
	-90	0,1	15,14	0,0324	116,7948	0,0072	9,0000	-0,02	-0,20	0,00
	-100	0,0	15,04	0,0325	116,9100	0,0073	9,0000	-0,02	-0,19	0,00
	100	0,1	19,04	0,0232	83,3580	0,0031	11,0000	-0,27	-0,49	0,22
	90	0,1	18,74	0,0247	88,9128	0,0032	10,0000	-0,25	-0,52	0,12
	80	0,1	18,44	0,0258	92,7072	0,0035	10,0000	-0,24	-0,52	0,14
	70	0,1	18,14	0,0264	94,9212	0,0040	10,0000	-0,24	-0,49	0,16
	60	0,1	17,84	0,0267	96,2460	0,0044	10,0000	-0,26	-0,45	0,19
	50	0,1	17,54	0,0269	97,0164	0,0047	10,0000	-0,30	-0,44	0,22
	40	0,1	17,24	0,0270	97,0308	0,0050	10,0000	-0,38	-0,46	0,28
	30	0,1	16,94	0,0290	104,5692	0,0051	9,0000	-0,29	-0,54	0,00
	20	0,1	16,64	0,0304	109,4652	0,0052	9,0000	-0,22	-0,73	0,00
Capacidade de	10	0,1	16,34	0,0313	112,5180	0,0056	9,0000	-0,17	-0,82	0,00
campo	0	0,1	16,04	0,0318	114,4224	0,0061	9,0000	0,00	0,00	0,00
revestimento	-10	0,0	15,74	0,0321	115,5960	0,0065	9,0000	-0,10	-0,76	0,00
	-20	0,0	15,44	0,0323	116,3232	0,0069	9,0000	-0,08	-0,69	0,00
	-30	0,0	15,14	0,0324	116,7948	0,0072	9,0000	-0,07	-0,60	0,00
	-40	0,0	14,84	0,0344	123,7104	0,0074	8,0000	-0,20	-0,54	0,28
	-50	0,0	14,54	0,0364	130,9032	0,0075	8,0000	-0,29	-0,47	0,22
	-60	0,0	14,24	0,0377	135,5724	0,0076	8,0000	-0,31	-0,41	0,19
	-70	0,0	13,94	0,0385	138,5676	0,0078	8,0000	-0,30	-0,41	0,16
	-80	0,0	13,64	0,0390	140,5620	0,0083	8,0000	-0,29	-0,46	0,14
	-90	0,0	13,34	0,0394	141,8616	0,0089	8,0000	-0,27	-0,51	0,12
	-100	0,0	13,04	0,0396	142,7220	0,0094	8,0000	-0,25	-0,54	0,11
	100	0,1	17,29	0,0271	97,3872	0,0049	10,0000	-0,15	-0,19	0,11
	90	0,0	17,17	0,0274	98,7264	0,0050	9,0000	-0,15	-0,20	0,00
	80	0,0	17,04	0,0284	102,2904	0,0051	10,0000	-0,13	-0,21	0,14
	70	0,0	16,92	0,0292	104,9796	0,0051	9,0000	-0,12	-0,23	0,00
	60	0,0	16,79	0,0298	107,3304	0,0051	9,0000	-0,10	-0,26	0,00
	50	0,0	16,67	0,0303	109,0620	0,0052	9,0000	-0,09	-0,30	0,00
	40	0,0	16,54	0,0307	110,6280	0,0053	9,0000	-0,08	-0,32	0,00
	30	0,0	16,42	0,0311	111,8232	0,0054	9,0000	-0,08	-0,35	0,00
Canacidade de	20	0,0	16,29	0,0314	112,9032	0,0057	9,0000	-0,07	-0,35	0,00
campo da	10	0,0	16,17	0,0316	113,7096	0,0059	9,0000	-0,06	-0,35	0,00
camada de	0	0,0	16,04	0,0318	114,4224	0,0061	9,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0319	114,9624	0,0063	9,0000	-0,05	-0,34	0,00
	-20	0,0	15,79	0,0321	115,4370	0,0065	9,0000	-0,04	-0,33	0,00
	-30	0,0	15,07	0,0322	115,7904	0,0066	9,0000	-0,04	-0,31	0,00
	-40	0,0	15,04	0,0323	110,1144	0,0068	9,0000	-0,04	-0,30	0,00
	-00	0,0	15,42	0,0323	116 5960	0,0069	9,0000	-0,03	-0,20	0,00
	-00	0,0	15,29	0,0324	116,3600	0,0070	9,0000	-0,03	-0,27	0,00
	-70	0,0	15.04	0,0324	116 0100	0,0071	9,0000	-0,03	-0,23	0,00
	_00	0,0	14.02	0,0325	121 2084	0,0073	8,0000	-0,03	-0,24	0,00
	-100	0,0	14,32	0,0348	125 1306	0,0073	8,0000	-0,07	-0,23	0,12
	100	0,0	25.04	0,0040	0.0000	0,0074	0,0000	-0,09	-0,22	1.00
Capacidade de	90	0,1	24 14	0,0000	0,0000	0,0000	0,0000	-1,00	-1,00	-1,00
campo da	80	0,0	23.24	0,0000	0,0000	0,0000	0,0000	_1.25	-1,11	-1,11
camada de	70	0,0	22.34	0,0000	0,0000	0,0000	0,0000	-1,20	-1,23	-1,20
armazenamento	60	0,0	21 44	0.0081	29 1744	0,0007	11,0000	-1,43	-1,43	0.37
1		0,0	,	0,000.	,	0,0007	,0000	1,47	1,71	0,01

										130
	50	0,0	20,54	0,0203	73,0044	0,0015	11,0000	-0,72	-1,50	0,44
	40	0,0	19,64	0,0229	82,4184	0,0026	11,0000	-0,70	-1,42	0,56
	30	0,0	18,74	0,0247	88,9128	0,0032	10,0000	-0,74	-1,57	0,37
	20	0,0	17,84	0,0267	96,2460	0,0044	10,0000	-0,79	-1,35	0,56
	10	0,0	16,94	0,0290	104,5692	0,0051	9,0000	-0,86	-1,62	0,00
	0	0,0	16,04	0,0318	114,4224	0,0061	9,0000	0,00	0,00	0,00
	-10	0,0	15,14	0,0324	116,7948	0,0072	9,0000	-0,21	-1,81	0,00
	-20	0,0	14,24	0,0377	135,5724	0,0076	8,0000	-0,92	-1,24	0,56
	-30	0,0	13,34	0,0394	141,8616	0,0089	8,0000	-0,80	-1,53	0,37
	-40	0,0	12,44	0,0399	143,6760	0,0101	8,0000	-0,64	-1,65	0,28
	-50	0,0	11,54	0,0476	171,3420	0,0106	7,0000	-0,99	-1,48	0,44
	-60	0,0	10,64	0,0503	181,0512	0,0110	7,0000	-0,97	-1,35	0,37
	-70	0,0	9,74	0,0511	183,9276	0,0124	7,0000	-0,87	-1,49	0,32
	-80	0,0	8,84	0,0513	184,7412	0,0132	7,0000	-0,77	-1,46	0,28
	-90	0,0	7,94	0,0514	184,9608	0,0135	7,0000	-0,68	-1,36	0,25
	-100	0,0	7,04	0,0514	185,0184	0,0148	7,0000	-0,62	-1,44	0,22
	100	10,0	17,84	0,0267	96,2460	0,0044	10,0000	-0,16	-0,27	0,11
	90	9,5	17,66	0,0269	96,7392	0,0046	10,0000	-0,17	-0,26	0,12
	80	9,0	17,48	0,0270	97,1244	0,0048	10,0000	-0,19	-0,26	0,14
	/0	8,5	17,30	0,0271	97,3800	0,0049	10,0000	-0,21	-0,27	0,16
	60	8,0	17,12	0,0278	100,1844	0,0050	9,0000	-0,21	-0,29	0,00
	50	7,5	16,94	0,0290	104,5692	0,0051	9,0000	-0,17	-0,32	0,00
	40	7,0	16,76	0,0299	107,7984	0,0051	9,0000	-0,14	-0,38	0,00
	30	6,5	16,58	0,0325	110,9784	0,0054	9,0000	0,07	-0,39	0,00
	20	6,0 5,5	16,40	0,0311	112,0008	0,0055	9,0000	-0,11	-0,49	0,00
Offect de drope	10	5,5	10,22	0,0315	113,3928	0,0058	9,0000	-0,09	-0,51	0,00
Onset do dreno	10	5,0	16,04	0,0310	114,4224	0,0061	9,0000	0,00	0,00	0,00
	-10	4,5	15,00	0,0320	115,1920	0,0064	9,0000	-0,07	-0,49	0,00
	-20	4,0	15,00	0,0322	123 1740	0,0000	9,0000	-0,00	-0,40	0,00
	-30	3,0	15,50	0,0342	125,1740	0,0070	9,0000	-0,25	-0,50	0,00
	-50	2.5	15,55	0,0324	116 78/0	0,0070	9,0000	-0,05	-0,30	0,00
	-60	2,5	14 97	0,0324	110,7040	0,0072	8,0000	-0,04	-0,30	0,00
	-70	1.5	14 79	0.0348	125 1396	0,0073	8,0000	-0,07	-0,34	0,19
	-80	1,0	14,73	0.0360	129,5028	0,0074	9,0000	-0,15	-0,31	0,10
	-90	0.5	14.43	0.0369	132.8004	0.0075	8.0000	-0.18	-0.27	0.12
	-100	0,0	14,25	0,0376	135,4464	0.0076	8,0000	-0.18	-0.25	0.11
	100	0,8	16,42	0,0311	111,8232	0,0054	9,0000	-0,06	-0,28	0,00
	90	0,7	16,39	0,0311	112,0932	0,0055	9,0000	-0,06	-0,28	0,00
	80	0,7	16,35	0,0312	112,4352	0,0056	9,0000	-0,06	-0,29	0,00
	70	0,7	16,32	0,0313	112,6764	0,0056	9,0000	-0,06	-0,29	0,00
	60	0,7	16,28	0,0314	112,9788	0,0057	9,0000	-0,06	-0,29	0,00
	50	0,7	16,24	0,0315	113,2596	0,0057	9,0000	-0,05	-0,29	0,00
	40	0,6	16,21	0,0315	113,4576	0,0058	9,0000	-0,06	-0,34	0,00
Razão de vazios	30	0,6	16,17	0,0316	113,7096	0,0059	9,0000	-0,06	-0,32	0,00
da camada de	20	0,6	16,13	0,0317	113,9472	0,0059	9,0000	-0,06	-0,33	0,00
armazenamento	10	0,6	16,09	0,0317	114,1668	0,0060	9,0000	-0,06	-0,33	0,00
	0	0,6	16,04	0,0318	114,4224	0,0061	9,0000	0,00	0,00	0,00
	-10	0,5	16,00	0,0318	114,6132	0,0061	9,0000	-0,04	-0,34	0,00
	-20	0,5	15,95	0,0319	114,8364	0,0062	9,0000	-0,05	-0,34	0,00
	-30	0,5	15,91	0,0319	115,0020	0,0063	9,0000	-0,05	-0,29	0,00
	-40	0,5	15,86	0,0320	115,1928	0,0064	9,0000	-0,05	-0,33	0,00
	-50	0,5	15,81	0,0320	115,3692	0,0065	9,0000	-0,04	-0,33	0,00
	-00	0,4	15,70	0,0321	110,0348	0,0065	9,0000	-0,04	-0,33	0,00

	-70	0,4	15,71	0,0321	115,6824	0,0066	9,0000	-0,04	-0,33	0,00
	-80	0,4	15,66	0,0322	115,8156	0,0067	9,0000	-0,04	-0,32	0,00
	-90	0,4	15,60	0,0322	115,9704	0,0067	9,0000	-0,04	-0,32	0,00
	-100	0,4	15,55	0,0322	116,0928	0.0068	9,0000	-0.04	-0.32	0.00
						,				,
		ANÁ	ÁLISE DE	SENSIB	ILIDADE -	EVENTO 3		•		
Duração do Evento:	10 minuto	S								
Tempo de recorrência:	5 anos						-		-	
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (mm)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0366	131,8140	0,0072	9,0000	-0,04	-0,13	0,13
	90	1,9	16,94	0,0367	132,1164	0,0074	9,0000	-0,04	-0,12	0,14
	80	1,8	16,84	0,0368	132,3756	0,0075	9,0000	-0,05	-0,12	0,16
	70	1,7	16,74	0,0368	132,5952	0,0077	9,0000	-0,05	-0,11	0,18
	60	1,6	16,64	0,0369	132,7860	0,0078	9,0000	-0,06	-0,11	0,21
	50	1,5	16,54	0,0369	132,9516	0,0079	9,0000	-0,07	-0,10	0,25
	40	1,4	16,44	0,0370	133,0992	0,0080	9,0000	-0,08	-0,09	0,31
	30	1,3	16,34	0,0370	133,2360	0,0081	9,0000	-0,10	-0,09	0,42
	20	1,2	16,24	0,0370	133,3584	0,0082	9,0000	-0,15	-0,08	0,62
Armazenamento	10	1,1	16,14	0,0372	133,7472	0,0083	9,0000	-0,28	-0,07	1,25
em depressão	0	1,0	16,04	0,0382	137,5452	0,0083	8,0000	0,00	0,00	0,00
superficial	-10	0,9	15,94	0,0391	140,9328	0,0084	8,0000	-0,25	-0,08	0,00
	-20	0,8	15,84	0,0400	143,9136	0,0084	8,0000	-0,23	-0,07	0,00
	-30	0,7	15,74	0,0407	146,5236	0,0085	8,0000	-0,22	-0,06	0,00
	-40	0,6	15,64	0,0413	148,7952	0,0085	8,0000	-0,20	-0,06	0,00
	-50	0,5	15,54	0,0419	150,7572	0,0086	8,0000	-0,19	-0,06	0,00
	-60	0,4	15,44	0,0423	152,4312	0,0086	8,0000	-0,18	-0,05	0,00
	-70	0,3	15,34	0,0428	154,0584	0,0086	8,0000	-0,17	-0,05	0,00
	-80	0,2	15,24	0,0432	155,3940	0,0086	8,0000	-0,16	-0,05	0,00
	-90	0,1	15,14	0,0435	156,5136	0,0087	8,0000	-0,15	-0,05	0,00
	-100	0,0	15,04	0,0478	172,0224	0,0089	8,0000	-0,25	-0,07	0,00
	100	0,1	19,04	0,0309	111,1248	0,0053	10,0000	-0,19	-0,36	0,25
	90	0,1	18,74	0,0310	111,6144	0,0056	10,0000	-0,21	-0,37	0,28
	80	0,1	18,44	0,0324	116,4888	0,0057	9,0000	-0,19	-0,39	0,16
	70	0,1	18,14	0,0341	122,8284	0,0059	9,0000	-0,15	-0,42	0,18
	60	0,1	17,84	0,0352	126,7128	0,0060	9,0000	-0,13	-0,47	0,21
	50	0,1	17,54	0,0359	129,4020	0,0064	9,0000	-0,12	-0,47	0,25
	40	0,1	17,24	0,0364	131,0580	0,0069	9,0000	-0,12	-0,43	0,31
	30	0,1	16,94	0,0367	132,1164	0,0074	9,0000	-0,13	-0,37	0,42
	20	0,1	16,64	0,0369	132,7860	0,0078	9,0000	-0,17	-0,32	0,63
Capacidade de	10	0,1	16,34	0,0370	133,2360	0,0081	9,0000	-0,31	-0,26	1,25
revestimento	0	0,1	16,04	0,0382	137,5452	0,0083	8,0000	0,00	0,00	0,00
	-10	0,0	15,74	0,0407	146,5236	0,0085	8,0000	-0,65	-0,19	0,00
	-20	0,0	15,44	0,0423	152,4312	0,0086	8,0000	-0,54	-0,16	0,00
	-30	0,0	15,14	0,0435	156,5136	0,0087	8,0000	-0,46	-0,14	0,00
	-40	0,0	14,84	0,0442	159,2532	0,0089	8,0000	-0,39	-0,16	0,00
	-50	0,0	14,54	0,0447	161,0316	0,0094	8,0000	-0,34	-0,25	0,00
	-60	0,0	14,24	0,0451	162,2556	0,0099	8,0000	-0,30	-0,32	0,00
	-70	0,0	13,94	0,0453	163,0908	0,0105	8,0000	-0,27	-0,37	0,00
	-80	0,0	13,64	0,0455	163,6596	0,0109	8,0000	-0,24	-0,39	0,00
	-90	0.0	13.34	0.0456	164.0376	0.0113	8.0000	-0.21	-0.40	0.00

										102
	-100	0,0	13,04	0,0469	168,9408	0,0116	7,0000	-0,23	-0,39	0,13
	100	0,1	17,29	0,0363	130,8312	0,0068	9,0000	-0,05	-0,18	0,13
	90	0,0	17,17	0,0365	131,3496	0,0070	9,0000	-0,05	-0,17	0,14
	80	0,0	17,04	0,0366	131,8140	0,0072	9,0000	-0,05	-0,16	0,16
	70	0,0	16,92	0,0367	132,1704	0,0074	9,0000	-0,06	-0,15	0,18
	60	0,0	16,79	0,0368	132,4908	0,0076	9,0000	-0,06	-0,14	0,21
	50	0,0	16,67	0,0369	132,7104	0,0078	9,0000	-0,07	-0,13	0,25
	40	0,0	16,54	0,0369	132,9516	0,0079	9,0000	-0,08	-0,12	0,31
	30	0,0	16,42	0,0370	133,1280	0,0080	9,0000	-0,11	-0,11	0,42
	20	0,0	16,29	0,0370	133,3044	0,0082	9,0000	-0,15	-0,10	0,63
Capacidade de	10	0,0	16,17	0,0370	133,3620	0,0083	9,0000	-0,30	-0,08	1,25
campo da camada de	0	0,0	16,04	0,0382	137,5452	0,0083	8,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0393	141,5628	0,0084	8,0000	-0,29	-0,10	0,00
	-20	0,0	15,79	0,0404	145,2636	0,0085	8,0000	-0,28	-0,09	0,00
	-30	0,0	15,67	0,0412	148,1472	0,0085	8,0000	-0,26	-0,08	0,00
	-40	0,0	15,54	0,0419	150,7572	0,0086	8,0000	-0,24	-0,07	0,00
	-50	0,0	15,42	0,0425	152,8416	0,0086	8,0000	-0,22	-0,06	0,00
	-60	0,0	15,29	0,0430	154,7496	0,0086	8,0000	-0,21	-0,06	0,00
	-70	0,0	15,17	0,0434	156,2076	0.0086	8,0000	-0.19	-0.06	0.00
	-80	0,0	15,04	0,0478	172,0224	0.0089	8,0000	-0.31	-0.09	0.00
	-90	0,0	14,92	0,0441	158,6412	0.0088	8,0000	-0.17	-0.06	0.00
	-100	0,0	14,79	0,0443	159,5736	0.0089	8,0000	-0.16	-0.07	0.00
	100	0,1	25,04	0,0000	0,0000	0,0000	0,0000	-1.00	-1.00	-1.00
	90	0,0	24,14	0,0000	0,0000	0.0000	0,0000	-1.11	-1.11	-1.11
	80	0,0	23,24	0,0125	45,0828	0.0010	11,0000	-0.84	-1.10	0.47
	70	0,0	22,34	0.0236	85,0896	0.0017	11,0000	-0.54	-1.13	0.54
	60	0.0	21.44	0.0261	94.1040	0.0029	11.0000	-0.53	-1.10	0.63
	50	0.0	20.54	0.0274	98.5896	0.0036	10.0000	-0.57	-1.14	0.50
	40	0.0	19.64	0.0303	109,1952	0.0045	10.0000	-0.52	-1.14	0.63
	30	0,0	18,74	0.0310	111,6144	0.0056	10,0000	-0.63	-1.10	0.83
	20	0.0	17.84	0.0352	126,7128	0.0060	9.0000	-0.39	-1.41	0.63
Capacidade de	10	0.0	16.94	0.0367	132,1164	0.0074	9.0000	-0.39	-1.10	1.25
campo da	0	0.0	16.04	0.0382	137.5452	0.0083	8.0000	0.00	0.00	0.00
camada de	-10	0.0	15.14	0.0435	156,5136	0.0087	8.0000	-1.38	-0.41	0.00
annazenamento	-20	0,0	14,24	0.0451	162,2556	0.0099	8,0000	-0.90	-0.97	0.00
	-30	0,0	13,34	0.0456	164,0376	0.0113	7,0000	-0.64	-1.20	0.42
	-40	0,0	12,44	0,0529	190,3356	0.0120	7,0000	-0.96	-1.09	0.31
	-50	0,0	11,54	0.0568	204,3828	0.0122	7,0000	-0.97	-0.93	0.25
	-60	0,0	10,64	0,0581	209,1672	0.0132	7,0000	-0.87	-0.98	0.21
	-70	0,0	9,74	0.0585	210,6540	0.0146	7,0000	-0.76	-1.07	0.18
	-80	0,0	8,84	0,0586	211,1148	0.0151	7,0000	-0.67	-1.02	0.16
	-90	0,0	7,94	0,0587	211,2552	0.0154	7,0000	-0.60	-0.95	0.14
	-100	0,0	7,04	0,0587	211,2984	0.0168	7,0000	-0.54	-1.02	0.13
	100	10,0	17,84	0,0352	126,7128	0,0060	9,0000	-0.08	-0.28	0.13
	90	9,5	17,66	0,0357	128,4876	0,0062	9,0000	-0.07	-0.29	0.14
	80	9,0	17,48	0,0361	129,7944	0,0065	9,0000	-0.07	-0.28	0,16
	70	8,5	17,30	0,0363	130,7844	0,0068	9,0000	-0.07	-0.26	0.18
	60	8,0	17,12	0,0365	131,5368	0,0071	9,0000	-0.07	-0.24	0,21
Offset do dreno	50	7.5	16.94	0,0367	132,1164	0.0074	9,0000	-0.08	-0.22	0.25
	40	7.0	16.76	0,0368	132.5556	0.0077	9,0000	-0.09	-0.20	0.31
	30	6.5	16.58	0,0399	143,4924	0.0080	9,0000	0.14	-0.11	0.42
	20	6.0	16.40	0,0370	133,1568	0.0081	9,0000	-0.16	-0.16	0.63
	10	5.5	16.22	0.0370	133.3728	0.0082	9,0000	-0.30	-0.13	1 25
	0	5.0	16.04	0,0382	137.5452	0.0083	8,0000	0.00	0,00	0.00
	1	· · · · · · · · · · · · · · · · · · ·			,	-,		,00		2,00

										133
	-10	4,5	15,86	0,0398	143,3484	0,0084	8,0000	-0,42	-0,13	0,00
	-20	4,0	15,68	0,0411	147,9240	0,0085	8,0000	-0,38	-0,12	0,00
	-30	3,5	15,50	0,0421	151,4592	0,0086	8,0000	-0,34	-0,09	0,00
	-40	3,0	15,33	0,0428	154,2024	0,0086	8,0000	-0,30	-0,09	0,00
	-50	2,5	15,15	0,0434	156,4164	0,0087	8,0000	-0,27	-0,08	0,00
	-60	2,0	14,97	0,0439	158,2164	0,0087	8,0000	-0,25	-0,08	0,00
	-70	1,5	14,79	0,0443	159,5736	0,0089	8,0000	-0,23	-0,10	0,00
	-80	1,0	14,61	0,0446	160,6716	0,0092	8,0000	-0,21	-0,13	0,00
	-90	0,5	14,43	0,0449	161,5356	0,0096	8,0000	-0,19	-0,17	0,00
	-100	0,0	14,25	0,0451	162,2232	0,0099	8,0000	-0,18	-0,19	0,00
	100	0,8	16,42	0,0370	133,1280	0,0080	9,0000	-0,09	-0,09	0,33
	90	0,7	16,39	0,0370	133,1712	0,0081	9,0000	-0,09	-0,09	0,37
	80	0,7	16,35	0,0370	133,2216	0,0081	9,0000	-0,11	-0,09	0,42
	70	0,7	16,32	0,0370	133,2576	0,0081	9,0000	-0,12	-0,09	0,48
	60	0,7	16,28	0,0370	133,3152	0,0082	9,0000	-0,14	-0,09	0,56
	50	0,7	16,24	0,0370	133,3584	0,0082	9,0000	-0,16	-0,08	0,67
	40	0,6	16,21	0,0363	130,7304	0,0082	8,0000	-0,33	-0,08	0,00
	30	0,6	16,17	0,0368	132,4620	0,0083	8,0000	-0,33	-0,07	0,00
	20	0,6	16,13	0,0373	134,1108	0,0083	8,0000	-0,33	-0,06	0,00
Razão de vazios	10	0,6	16,09	0,0377	135,6840	0,0083	8,0000	-0,36	-0,04	0,00
da camada de	0	0,6	16,04	0,0382	137,5452	0,0083	8,0000	0,00	0,00	0,00
armazenamento	-10	0,5	16,00	0,0386	138,9528	0,0083	8,0000	-0,27	-0,10	0,00
	-20	0,5	15,95	0,0391	140,6124	0,0084	8,0000	-0,30	-0,11	0,00
	-30	0,5	15,91	0,0394	141,8688	0,0084	8,0000	-0,28	-0,09	0,00
	-40	0,5	15,86	0,0398	143,3484	0,0084	8,0000	-0,28	-0,09	0,00
	-50	0,5	15,81	0,0402	144,7344	0,0084	8,0000	-0,28	-0,08	0,00
	-60	0,4	15,76	0,0406	146,0304	0,0085	8,0000	-0,27	-0,08	0,00
	-70	0,4	15,71	0,0409	147,2400	0,0085	8,0000	-0,27	-0,08	0,00
	-80	0,4	15,66	0,0412	148,3668	0,0085	8,0000	-0,26	-0,08	0,00
	-90	0,4	15,60	0,0416	149,6160	0,0085	8,0000	-0,26	-0,08	0,00
	-100	0,4	15,55	0,0418	150,5736	0,0085	8,0000	-0,25	-0,07	0,00
Dama a ña ala	1	ANA	LISE DE	SENSIE	SILIDADE -	EVENTO 4	•			
Duração do	10 minuto)S								
Tempo de										
recorrência:	10 anos									
				Vazão	Vazão	Volume	Tompo			
Parâmetro	Variação	Valores	Dstore	de	de pico	total	de pico	CS	CS	CS
	(%)			pico	(mm/h)	escoado	(min)	vazão	Volume	tempo
	400	0.0	47.04	(1/5)	474 4000		0.0000			
	100	2,0	17,04	0,0476	171,4392	0,0095	8,0000	-0,04	-0,09	0,00
	90	1,9	16,94	0,0480	172,7244	0,0095	8,0000	-0,04	-0,10	0,00
	00	1,0	10,04	0,0402	173,0740	0,0096	0,0000	-0,04	-0,11	0,00
	70	1,7	10,74	0,0480	174,8988	0,0096	8,0000	-0,03	-0,12	0,00
	50	1,0	10,04	0,0400	175,7592	0,0096	0,0000	-0,03	-0,14	0,00
Armazenamento	40	1,5	16,04	0,0490	170,5020	0,0097	8,0000	-0,03	-0,16	0,00
em depressão	40	1,4	16.24	0,0492	177 9194	0,0098	8,0000	-0,03	-0,17	0,00
superficial	20	1,3	16.04	0,0494	179 2540	0,0099	8,0000	-0,03	-0,17	0,00
	20	1,2	16.14	0,0495	178 9964	0,0101	8,0000	-0,02	-0,18	0,00
	0	1,1	16.04	0,0497	170,0204	0,0103	8,0000	-0,02	-0,19	0,00
	10	1,0	15.04	0,0490	170 6149	0,0105	8,0000	0,00	0,00	0,00
	-10	0,9	15.94	0,0499	170 0424	0,0107	8,0000	-0,02	-0,20	0,00

Capacidade de campo no 0.6 15.64 0.0501 180.4932 0.0114 8.0000 0.02 -0.18 0.00 -60 0.4 15.44 0.0503 180.7286 0.0114 8.0000 -0.02 -0.19 0.00 -70 0.3 15.34 0.0503 181.0282 0.0112 8.0000 -0.01 +0.18 0.000 -80 0.2 15.24 0.0504 181.4076 0.011 8.0000 -0.01 +0.17 0.00 -100 0.0 15.04 0.0504 181.4076 0.0012 9.0000 -0.19 -0.26 0.13 80 0.1 18.74 0.0401 147.5208 0.0002 9.0000 -0.22 -0.21 0.16 60 0.1 17.84 0.0401 147.5208 0.0002 9.000 -0.15 -0.21 0.00 60 0.1 17.84 0.0491 161.4128 0.000 -0.16 -0.21 0.00 -0.21 0.00 <											134
Capacidade de campa da assentamento 0.50 0.55.4 0.0502 180.7280 0.0114 8.0000 -0.02 -0.18 0.00 -60 0.4 15.44 0.0503 180.9288 0.0117 8.0000 -0.02 -0.18 0.00 -90 0.2 15.24 0.0504 181.1028 0.0118 8.0000 -0.01 -0.18 0.00 -90 0.01 15.94 0.0504 181.5020 0.012 8.0000 -0.01 -0.17 0.00 100 0.01 18.74 0.0407 146.5848 0.0082 9.0000 -0.22 -0.24 0.14 80 0.11 17.84 0.0417 17.87280 0.0090 9.000 -0.25 -0.21 0.01 10 0.11 17.84 0.0449 17.724 0.045 8.0000 -0.15 -0.25 0.01 20 0.11 16.34 0.04491 177.717 0.02 5.00 0.01 16.75782 0.0098 8.0000		-40	0,6	15,64	0,0501	180,4932	0,0113	8,0000	-0,02	-0,19	0,00
Capacidade de campo da de la de		-50	0,5	15,54	0,0502	180,7236	0,0114	8,0000	-0,02	-0,18	0,00
Capacidade de compo -70 0.3 15.34 0.0503 181 1088 0.0118 6.0000 -0.01 -0.18 0.00 -900 0.11 15.14 0.0504 181.2872 0.0121 8.0000 -0.01 -0.17 0.00 -900 0.11 15.74 0.0604 181.5200 0.0123 8.0000 -0.01 -0.17 0.00 100 0.01 19.04 0.0407 145.7280 0.0030 9.0000 -0.22 0.22 0.13 8.000 -0.21 0.18 0.021 0.18 0.022 0.13 1.75 0.0407 1.86240 0.0050 9.0000 -0.22 -0.21 0.00 0.00 0.01 1.75 0.0407 1.81280 0.0090 8.0000 -0.12 0.00 0.00 1.00 0.01 1.644 0.4049 177.7592 0.0066 8.0000 -0.12 -0.26 0.00 1.00 0.01 1.644 0.0501 180.2340 0.011 8.000 -0.15 0.00 <th></th> <th>-60</th> <th>0,4</th> <th>15,44</th> <th>0,0503</th> <th>180,9288</th> <th>0,0117</th> <th>8,0000</th> <th>-0,02</th> <th>-0,19</th> <th>0,00</th>		-60	0,4	15,44	0,0503	180,9288	0,0117	8,0000	-0,02	-0,19	0,00
e-B0 0.2 15.24 0.0504 181 2672 0.0120 8.0000 -0.01 -0.18 0.00 -100 0.0 15.04 0.0504 181.6300 0.0123 8.0000 -0.01 -0.17 0.00 90 0.1 18.74 0.0405 145.7280 0.0078 9.0000 -0.28 -0.28 0.13 90 0.1 18.14 0.0409 147.1320 0.0087 9.0000 -0.22 -0.22 0.12 0.026 60 0.1 17.84 0.0409 147.1320 0.0087 9.0000 -0.25 -0.21 0.16 60 0.1 17.54 0.0449 161.82244 0.0095 8.0000 -0.15 -0.22 0.00 60 0.1 17.54 0.0449 177.78184 0.0095 8.0000 -0.16 -0.42 0.00 20 0.1 15.44 0.0531 180.2340 0.011 8.000 -0.06 -0.58 0.00 -10<		-70	0,3	15,34	0,0503	181,1088	0,0118	8,0000	-0,01	-0,18	0,00
9-0 0.1 15.14 0.0504 181.407 0.0121 8.0000 -0.01 -0.17 0.00 100 0.0 15.04 0.0504 185.300 0.0123 8.0000 -0.01 -0.26 0.13 90 0.11 18,74 0.0407 145.584 0.0023 9.0000 -0.22 -0.22 0.16 70 0.11 18,14 0.0401 147.1392 0.0037 9.0000 -0.25 -0.21 0.00 60 0.11 17.64 0.0443 182.3520 0.0092 8.0000 -0.15 -0.21 0.00 50 0.11 17.64 0.0449 177.7920 0.0095 8.0000 -0.15 -0.21 0.00 30 0.11 16.64 0.0481 177.79240 0.0095 8.0000 -0.12 -0.22 0.00 20 0.1 16.64 0.0491 177.844 0.009 8.0000 -0.08 -0.25 0.00 20 0.0		-80	0,2	15,24	0,0504	181,2672	0,0120	8,0000	-0,01	-0,18	0,00
-100 0.0 15.04 0.0504 181.5300 0.0128 8.0000 -0.11 0.026 0.13 90 0.1 18.74 0.0407 145.5280 0.0028 0.0000 -0.26 0.24 0.14 90 0.1 18.74 0.0407 145.5840 0.0082 9.0000 -0.25 -0.21 0.16 60 0.1 17.84 0.0407 145.5280 0.0099 9.0000 -0.25 -0.21 0.00 60 0.1 17.84 0.0447 168.2244 0.0095 8.0000 -0.15 0.25 0.00 20 0.1 16.64 0.0481 177.7820 0.0096 8.0000 -0.01 -0.42 0.00 20 0.1 16.64 0.0481 175.7820 0.0096 8.0000 -0.06 -0.58 0.00 -20 0.0 15.44 0.0504 180.2340 0.0118 8.000 -0.06 -0.58 0.00 -20 0.0		-90	0,1	15,14	0,0504	181,4076	0,0121	8,0000	-0,01	-0,17	0,00
Capacidade de campo da companya		-100	0,0	15,04	0,0504	181,5300	0,0123	8,0000	-0,01	-0,17	0,00
90 0.1 18.74 0.0407 146.5848 0.002 0.000 -0.22 -0.22 0.16 80 0.1 18.44 0.0409 147.528 0.0099 9.0000 -0.22 -0.22 0.16 60 0.1 17.84 0.0401 147.528 0.0099 9.0000 -0.25 -0.21 0.00 60 0.1 17.84 0.0407 168.2244 0.0098 8.0000 -0.15 -0.25 0.00 40 0.1 17.74 0.0407 168.2244 0.0098 8.0000 -0.16 -0.25 0.00 20 0.1 16.64 0.0481 177.8184 0.0098 8.0000 -0.06 -0.58 0.00 -10 0.0 15.74 0.501 180.234 0.0111 8.0000 -0.05 -0.56 0.00 -20 0.0 14.54 0.551 180.234 0.0113 8.0000 -0.01 -0.23 0.028 -0.028 0.00		100	0,1	19,04	0,0405	145,7280	0,0078	9,0000	-0,19	-0,26	0,13
Capacidade de campo da sentanes 80 0.1 18.44 0.0409 147.1392 0.0092 9.0000 -0.25 -0.21 0.16 60 0.1 17.84 0.0431 152.352 0.0092 8.0000 -0.25 -0.21 0.00 50 0.1 17.744 0.0449 161.8128 0.0094 8.0000 -0.15 -0.25 0.01 30 0.1 17.54 0.0467 168.2244 0.0095 8.0000 -0.15 -0.25 0.00 30 0.1 16.64 0.0488 175.7592 0.0098 8.0000 -0.08 -0.51 0.00 20 0.1 16.64 0.0498 177.8784 0.0098 8.0000 -0.06 -0.56 0.00 -0.0 0.1 16.044 0.0501 180.2284 0.0117 8.0000 -0.06 -0.52 0.00 -0.0 14.54 0.0501 181.7280 0.0125 8.000 -0.43 0.52 0.00		90	0,1	18,74	0,0407	146,5848	0,0082	9,0000	-0,20	-0,24	0,14
Capacidade de campo da sentante 70 0.1 18.14 0.0410 147.5208 0.0009 9.0000 -0.25 -0.21 0.00 50 0.1 17.84 0.0423 152,3520 0.0992 8.0000 -0.15 -0.25 -0.21 0.00 40 0.11 17.24 0.0491 161,8124 0.0995 8.0000 -0.15 -0.25 0.00 30 0.1 16.94 0.0481 172,7244 0.0095 8.0000 -0.12 -0.30 0.00 20 0.1 16.94 0.0481 172,7244 0.0095 8.0000 -0.01 -0.42 0.00 10 0.1 16.94 0.0481 172,7244 0.0005 8.0000 -0.06 -0.56 0.00 -10 0.0 15.44 0.0501 180,2280 0.0111 8.0000 -0.04 -0.25 0.00 -20 0.0 14.54 0.0514 180,426 0.0125 8.0000 -0.06 -0.44 <t< th=""><th></th><th>80</th><th>0,1</th><th>18,44</th><th>0,0409</th><th>147,1392</th><th>0,0087</th><th>9,0000</th><th>-0,22</th><th>-0,22</th><th>0,16</th></t<>		80	0,1	18,44	0,0409	147,1392	0,0087	9,0000	-0,22	-0,22	0,16
G0 0.1 17.84 0.0423 15.320 0.0092 8.0000 -0.25 0.021 50 0.1 17.54 0.0449 161.8128 0.0094 8.0000 -0.19 -0.21 0.00 40 0.1 17.24 0.0467 188.2244 0.0095 8.0000 -0.15 -0.25 0.00 30 0.1 16.84 0.0480 177.5792 0.0096 8.0000 -0.10 -0.42 0.00 20 0.1 16.84 0.0494 177.814 0.0095 8.0000 -0.06 -0.55 0.00 10 0.0 15.74 0.0501 180.2340 0.0111 8.0000 -0.06 -0.56 0.00 -20 0.0 15.44 0.0501 181.7280 0.0125 8.0000 -0.06 -0.56 0.00 -30 0.0 15.44 0.0501 181.7280 0.0125 8.0000 -0.03 -0.44 0.25 -50 0.0 14.24		70	0,1	18,14	0,0410	147,5208	0,0090	9,0000	-0,25	-0,21	0,18
So 0.1 17,54 0.0449 161,8128 0.0004 8.0000 -0,19 0.021 0.00 30 0.1 17,24 0.0467 168,2244 0.0995 8.0000 -0,15 -0.25 0.00 20 0.1 16.64 0.0488 177,7244 0.0095 8.0000 -0,15 -0.25 0.00 20 0.1 16.64 0.0498 177,7244 0.0099 8.0000 -0,06 -0.62 0.00 10.00 10.00 15.74 0.0501 180,2340 0.0111 8.0000 -0,06 -0,58 0.00 -20 0.0 15.74 0.0501 181,4076 0.0121 8.0000 -0,06 -0,58 0.00 -30 0.0 14.84 0.0554 199,5876 0.0130 7.0000 -0,44 0,25 -60 0.0 13.84 0.0616 221,6700 0.0134 7.0000 -0,26 -0,31 0,14 -70 0.0 13.84		60	0,1	17,84	0,0423	152,3520	0,0092	8,0000	-0,25	-0,21	0,00
40 0.1 17.24 0.0467 168.224 0.0095 8.0000 -0.15 -0.25 0.00 30 0.1 16.94 0.0480 172.7244 0.0095 8.0000 -0.12 -0.30 0.00 20 0.1 16.64 0.0488 175.7592 0.0095 8.0000 -0.01 -0.42 0.00 1.0.0 -0.02 0.00 1.64 0.0501 180.2240 0.0111 8.0000 -0.05 -0.56 0.00 -30 0.0 15.44 0.0501 181.2780 0.0121 8.0000 -0.05 -0.56 0.00 -0.44 0.25 -0.00 -0.37 0.18 -0.36 0.0132 7.0000 -0.08 -0.44 0.25 -0.00 1.1349 0.0858<		50	0,1	17,54	0,0449	161,8128	0,0094	8,0000	-0,19	-0,21	0,00
Gamma 30 0,1 16,94 0,0480 172,7244 0,0095 8,0000 -0,12 -0,30 0,00 20 0,1 16,64 0,0480 175,7592 0,0096 8,0000 -0,10 -0,42 0,00 revestimento 0 0,1 16,34 0,0494 177,8184 0,0099 8,0000 -0,00 -0,01 -0,02 -0,01 15,44 0,0503 180,2240 0,0111 8,0000 -0,06 -0,52 0,00 -30 0,0 15,44 0,0503 181,7280 0,0128 8,0000 -0,04 -0,52 0,00 -40 0,0 14,84 0,0551 181,7280 0,0128 8,0000 -0,04 -0,25 -0,00 -50 0,0 14,54 0,0551 195,5876 0,0133 7,0000 -0,26 -0,21 -0,37 0,18 -70 0,0 13,44 0,0616 225,636 0,0133 7,0000 -0,26 -0,28 0,13		40	0,1	17,24	0,0467	168,2244	0,0095	8,0000	-0,15	-0,25	0,00
Capacidade de campo 20 0,1 16.64 0.0488 175.752 0.0096 8.0000 -0,10 -0,42 0.00 10 0.1 16.34 0.0494 177.8184 0.0099 8.0000 -0,08 -0,51 0.00 revestimento 0.1 16.04 0.0498 179.2404 0.0111 8.0000 -0,06 -0.58 0.00 -20 0.0 15.44 0.0501 180.9288 0.0117 8.0000 -0.06 -0.58 0.00 -30 0.0 15.44 0.0501 181.7280 0.0125 8.0000 -0.03 -0.44 0.02 -40 0.0 14.24 0.0551 185.858 0.0132 7.0000 -0.24 -0.37 0.18 -50 0.0 13.44 0.0562 293.376 0.0132 7.0000 -0.24 -0.37 0.18 -70 0.0 13.34 0.0562 253.636 0.0132 7.0000 -0.26 -0.28 0.13 10		30	0,1	16,94	0,0480	172,7244	0,0095	8,0000	-0,12	-0,30	0,00
Capacidade de campo 10 0.1 16,34 0.0494 177,8184 0,0099 8.0000 -0.08 -0.51 0.00 revestimento 0 0,1 16,04 0.0498 179,2440 0,0105 8.0000 -0.06 -0.58 0.00 -20 0,0 15,74 0.0501 180,2340 0,0111 8.0000 -0.06 -0.58 0.00 -20 0,0 15,54 0.0501 181,7280 0,0125 8.0000 -0.04 -0.52 0.00 -40 0,0 14,84 0.0551 181,7280 0,0125 8.0000 -0.04 0.25 -0.00 -60 0,0 14,24 0.0551 181,7280 0,0132 7.0000 -0.26 -0.34 0.18 -70 0,0 13,84 0.0612 165,184 0,0133 7.0000 -0.26 -0.31 0.14 -100 0,0 13,64 0.662 25,536 0.0134 7.0000 -0.26 -0.28 0.1		20	0,1	16,64	0,0488	175,7592	0,0096	8,0000	-0,10	-0,42	0,00
Campo revestimento 0 0.1 16,04 0.0498 179,2440 0,0105 8.0000 0,00 0,00 0,00 revestimento -10 0,0 15,74 0,0501 180,2340 0,0111 8,0000 -0,05 -0,58 0,00 -20 0,0 15,44 0,0503 180,2248 0,0112 8,0000 -0,05 -0,52 0,00 -40 0,0 14,84 0,0551 181,7280 0,0128 7,0000 -0,48 0,02 -60 0,0 14,24 0,0554 195,5876 0,0132 7,0000 -0,26 -0,34 0,18 -70 0,0 13,34 0,0616 221,670 0,0134 7,0000 -0,26 -0,28 0,13 -90 0,0 17,17 0,0476 171,4392 0,095 8,0000 -0,06 -0,11 0,00 90 0,0 17,17 0,476 171,4392 0,095 8,0000 -0,05 -0,11 0,00	Capacidade de	10	0,1	16,34	0,0494	177,8184	0,0099	8,0000	-0,08	-0,51	0,00
revestimento -10 0.0 15.74 0.051 180.2340 0.0111 8.0000 -0.06 -0.58 0.00 -20 0.0 15.14 0.0504 181.0288 0.0117 8.0000 -0.04 -0.56 0.00 -40 0.0 15.14 0.0504 181.7280 0.0125 8.0000 -0.04 -0.52 0.00 -50 0.0 14.54 0.0554 181.7280 0.0125 8.0000 -0.04 -0.25 -60 0.0 14.24 0.0554 199.5876 0.0133 7.0000 -0.26 -0.31 0.18 -70 0.0 13.34 0.0612 221.670 0.013 7.0000 -0.26 -0.28 -0.31 0.14 -100 0.0 13.04 0.0626 225.8368 0.0135 7.0000 -0.26 -0.28 0.31 100 0.1 17.29 0.0465 167.3388 0.0095 8.0000 -0.05 -0.11 0.00	campo	0	0,1	16,04	0,0498	179,2440	0,0105	8,0000	0,00	0,00	0,00
-20 0,0 15,44 0,0503 180,9288 0,0117 8,0000 -0,05 -0,56 0,00 -30 0,0 15,14 0,0505 181,7280 0,0121 8,0000 -0,04 -0,52 0,00 -40 0,0 14,84 0,0505 181,7280 0,0128 7,000 -0,03 -0,44 0,21 -60 0,0 14,24 0,0517 186,2568 0,0132 7,000 -0,24 -0,37 0,18 -80 0,0 13,34 0,0616 221,6700 0,0133 7,0000 -0,26 -0,34 0,16 -90 0,0 13,34 0,0616 221,6700 0,0133 7,0000 -0,26 -0,31 0,14 -100 0,0 17,17 0,0476 171,432 0,095 8,0000 -0,05 -0,11 0,00 80 0,0 16,52 0,0481 173,384 0,095 8,0000 -0,05 -0,14 0,00 60 0,0	revestimento	-10	0,0	15,74	0,0501	180,2340	0,0111	8,0000	-0,06	-0,58	0,00
-30 0.0 15.14 0.0504 181.4076 0.0121 8.0000 -0.04 -0.52 0.00 -40 0.0 14.54 0.0557 186.2568 0.0128 7.0000 -0.03 -0.44 0.25 -60 0.0 14.54 0.0557 186.2568 0.0132 7.0000 -0.24 -0.37 0.18 -70 0.0 13.94 0.0582 209.3796 0.0132 7.0000 -0.26 -0.34 0.16 -90 0.0 13.84 0.0616 221.6700 0.0134 7.0000 -0.26 -0.28 0.13 -100 0.0 13.44 0.0626 225.3656 0.00135 7.0000 -0.26 -0.28 0.13 100 0.1 17.79 0.0452 167.3388 0.0095 8.0000 -0.05 -0.11 0.00 90 0.0 17.71 0.0476 174.392 0.0096 8.0000 -0.05 -0.13 0.00 10.00 16.57		-20	0,0	15,44	0,0503	180,9288	0,0117	8,0000	-0,05	-0,56	0,00
-40 0.0 14.84 0.0505 181.7280 0.0125 8.000 -0.03 -0.48 0.00 -50 0.0 14.54 0.0517 180.2568 0.0128 7.0000 -0.08 -0.44 0.251 -60 0.0 14.54 0.0552 209.3786 0.0132 7.0000 -0.24 -0.37 0.18 -70 0.0 13.34 0.0612 221.6700 0.0133 7.0000 -0.26 -0.34 0.16 -90 0.0 13.34 0.0616 221.6700 0.0133 7.0000 -0.26 -0.31 0.14 -100 0.0 13.34 0.0616 127.6700 0.0133 7.0000 -0.26 -0.28 0.13 100 0.1 17.29 0.0466 167.3388 0.0095 8.0000 -0.05 -0.11 0.00 70 0.0 16.27 0.448 174.3732 0.0095 8.0000 -0.04 -0.17 0.00 16.20 0.0097		-30	0,0	15,14	0,0504	181,4076	0,0121	8,0000	-0,04	-0,52	0,00
-50 0.0 14,54 0,0517 186,2568 0,0128 7,000 -0,08 -0,44 0,25 -60 0,0 14,24 0,0554 199,876 0,0130 7,000 -0,24 -0,37 0,18 -70 0,0 13,34 0,0661 229,3796 0,0132 7,000 -0,26 -0,34 0,16 -90 0,0 13,34 0,0616 221,6700 0,0134 7,0000 -0,26 -0,34 0,16 -90 0,0 13,34 0,0616 221,6700 0,0134 7,0000 -0,26 -0,38 0,13 100 0,1 17,72 0,045 167,3388 0,0095 8,0000 -0,06 -0,11 0,00 80 0,0 17,74 0,047 174,392 0,0095 8,0000 -0,05 -0,11 0,00 60 0,0 16,79 0,448 174,372 0,0096 8,0000 -0,04 -0,17 0,00 10,00 10,00 10,00 </th <th></th> <th>-40</th> <th>0,0</th> <th>14,84</th> <th>0,0505</th> <th>181,7280</th> <th>0,0125</th> <th>8,0000</th> <th>-0,03</th> <th>-0,48</th> <th>0,00</th>		-40	0,0	14,84	0,0505	181,7280	0,0125	8,0000	-0,03	-0,48	0,00
-60 0.0 14.24 0.0554 199.5876 0.0130 7.0000 -0.19 -0.40 0.21 -70 0.0 13.94 0.0582 209.3766 0.0132 7.0000 -0.24 -0.37 0.18 -80 0.0 13.34 0.0616 221.6700 0.0134 7.0000 -0.26 -0.34 0.14 -100 0.0 13.04 0.0626 225.3636 0.0135 7.0000 -0.26 -0.34 0.14 -100 0.0 17.17 0.0465 167.3388 0.0094 8.0000 -0.07 -0.11 0.00 90 0.0 17.17 0.0470 169.3584 0.0095 8.0000 -0.05 -0.11 0.00 60 0.0 16.97 0.0481 174.3322 0.0095 8.0000 -0.05 -0.14 0.00 50 0.0 16.67 0.0491 175.824 0.0097 8.0000 -0.02 -0.22 0.00 10.00 10.52 <t< th=""><th></th><th>-50</th><th>0,0</th><th>14,54</th><th>0,0517</th><th>186,2568</th><th>0,0128</th><th>7,0000</th><th>-0,08</th><th>-0,44</th><th>0,25</th></t<>		-50	0,0	14,54	0,0517	186,2568	0,0128	7,0000	-0,08	-0,44	0,25
-70 0.0 13.94 0.0582 209,3796 0.0132 7.000 -0.24 -0.37 0.18 -80 0.0 13.64 0.0601 216,5184 0.0133 7.0000 -0.26 -0.34 0.14 -100 0.0 13.34 0.0616 221,6700 0.0134 7.0000 -0.26 -0.28 0.13 100 0.1 17.29 0.0465 167,3388 0.0095 8.0000 -0.05 -0.11 0.00 90 0.0 17.17 0.0470 169,3584 0.0095 8.0000 -0.05 -0.11 0.00 70 0.0 16.629 0.0480 172,9584 0.0095 8.0000 -0.05 -0.11 0.00 60 0.0 16.67 0.0487 175,3848 0.0096 8.0000 -0.05 -0.14 0.00 20 0.0 16.67 0.4481 174,372 0.0098 8.0000 -0.04 -0.19 0.00 20 0.0 <th></th> <td>-60</td> <td>0,0</td> <td>14,24</td> <td>0,0554</td> <td>199,5876</td> <td>0,0130</td> <td>7,0000</td> <td>-0,19</td> <td>-0,40</td> <td>0,21</td>		-60	0,0	14,24	0,0554	199,5876	0,0130	7,0000	-0,19	-0,40	0,21
-80 0,0 13,64 0,0601 216,5184 0,0133 7,0000 -0,26 -0,34 0,16 -90 0,0 13,34 0,0616 221,6700 0,0134 7,0000 -0,26 -0,28 0,13 -100 0,0 13,04 0,0626 225,3636 0,0134 7,0000 -0,26 -0,28 0,13 100 0,1 17,79 0,0465 167,3384 0,0094 8,0000 -0,06 -0,11 0,00 80 0,0 17,04 0,0476 171,4392 0,0095 8,0000 -0,05 -0,13 0,00 60 0,0 16,67 0,0484 174,3732 0,0096 8,0000 -0,04 -0,17 0,00 50 0,0 16,67 0,484 174,3732 0,0096 8,0000 -0,04 -0,19 0,00 40 0,0 16,54 0,499 176,5620 0,0097 8,0000 -0,03 -0,22 0,00 20 0,0		-70	0,0	13,94	0,0582	209,3796	0,0132	7,0000	-0,24	-0,37	0,18
-90 0,0 13,34 0,0616 221,6700 0,0134 7,0000 -0,26 -0,31 0,14 -100 0,0 13,04 0,0626 225,3636 0,0135 7,0000 -0,26 -0,28 0,13 100 0,1 17,29 0,0465 167,3388 0,0095 8,0000 -0,06 -0,11 0,00 80 0,0 17,17 0,0470 169,3584 0,0095 8,0000 -0,05 -0,11 0,00 70 0,0 16,92 0,0480 172,9584 0,0096 8,0000 -0,05 -0,11 0,00 60 0,0 16,79 0,0484 174,3732 0,0096 8,0000 -0,04 -0,17 0,00 40 0,0 16,42 0,0493 177,3612 0,0097 8,0000 -0,04 -0,21 0,00 20 0,0 16,42 0,493 177,3612 0,000 8,0000 -0,03 -0,22 0,00 20 0,0		-80	0,0	13,64	0,0601	216,5184	0,0133	7,0000	-0,26	-0,34	0,16
-100 0,0 13,04 0,0626 225,3636 0,0135 7,000 -0,26 -0,28 0,13 100 0,1 17,29 0,0465 167,3388 0,0094 8,0000 -0,07 -0,10 0,00 90 0,0 17,17 0,0470 169,3584 0,0095 8,0000 -0,05 -0,11 0,00 80 0,0 16,92 0,0480 172,9584 0,0095 8,0000 -0,05 -0,13 0,00 60 0,0 16,79 0,0481 174,3732 0,0096 8,0000 -0,04 -0,17 0,00 50 0,0 16,67 0,0487 175,3848 0,0096 8,0000 -0,04 -0,12 0,00 30 0,0 16,42 0,0495 178,0920 0,0100 8,0000 -0,03 -0,22 0,00 20 0,0 16,17 0,496 178,6920 0,0102 8,0000 -0,02 -0,23 0,00 20 0,0		-90	0,0	13,34	0,0616	221,6700	0,0134	7,0000	-0,26	-0,31	0,14
Capacidade de campo da camada de assentamento 100 0,1 17,29 0,0465 167,3388 0,0094 8,0000 -0,07 -0,10 0,00 90 0,0 17,17 0,0470 169,3584 0,0095 8,0000 -0,05 -0,11 0,00 80 0,0 17,04 0,0476 171,4392 0,0095 8,0000 -0,05 -0,11 0,00 70 0,0 16,22 0,0480 172,9584 0,0095 8,0000 -0,05 -0,14 0,00 60 0,0 16,67 0,0487 175,3848 0,0096 8,0000 -0,04 -0,17 0,00 40 0,0 16,67 0,0487 175,3848 0,0098 8,0000 -0,04 -0,21 0,00 30 0,0 16,42 0,0493 177,3612 0,0098 8,0000 -0,03 -0,22 0,00 20 0,0 16,17 0,496 178,6896 0,0102 8,0000 -0,02 -0,23 0,00		-100	0,0	13,04	0,0626	225,3636	0,0135	7,0000	-0,26	-0,28	0,13
90 0,0 17,17 0,0470 169,3584 0,0095 8,0000 -0,06 -0,11 0,00 80 0,0 17,04 0,0476 171,4392 0,0095 8,0000 -0,05 -0,11 0,00 70 0,0 16,92 0,0480 172,9584 0,0095 8,0000 -0,05 -0,13 0,00 60 0,0 16,79 0,0480 174,3732 0,0096 8,0000 -0,04 -0,17 0,00 50 0,0 16,67 0,0487 175,3848 0,0096 8,0000 -0,04 -0,19 0,00 40 0,0 16,67 0,0493 177,3612 0,0098 8,0000 -0,04 -0,21 0,00 30 0,0 16,17 0,0496 178,6920 0,0100 8,0000 -0,03 -0,22 0,00 camada de 0 0,0 15,97 0,0500 180,0936 0,0112 8,0000 -0,02 -0,23 0,00 -20 </th <th></th> <th>100</th> <th>0,1</th> <th>17,29</th> <th>0,0465</th> <th>167,3388</th> <th>0,0094</th> <th>8,0000</th> <th>-0,07</th> <th>-0,10</th> <th>0,00</th>		100	0,1	17,29	0,0465	167,3388	0,0094	8,0000	-0,07	-0,10	0,00
80 0,0 17,04 0,0476 171,4392 0,0095 8,0000 -0,05 -0,11 0,00 70 0,0 16,92 0,0480 172,9584 0,0095 8,0000 -0,05 -0,13 0,00 60 0,0 16,79 0,0484 174,3732 0,0096 8,0000 -0,05 -0,14 0,00 50 0,0 16,57 0,0487 175,3848 0,0096 8,0000 -0,04 -0,17 0,00 40 0,0 16,42 0,0493 177,3612 0,0097 8,0000 -0,04 -0,21 0,00 20 0,0 16,29 0,0493 177,8612 0,000 8,0000 -0,03 -0,22 0,00 20 0,0 16,17 0,0498 179,2440 0,0105 8,0000 -0,02 -0,23 0,00 assentamento -10 0,0 15,67 0,0501 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -		90	0,0	17,17	0,0470	169,3584	0,0095	8,0000	-0,06	-0,11	0,00
Capacidade de campo da camada de assentamento 70 0,0 16,92 0,0480 172,9584 0,0095 8,0000 -0,05 -0,13 0,00 60 0,0 16,79 0,0484 174,3732 0,0096 8,0000 -0,05 -0,14 0,00 50 0,0 16,67 0,0487 175,3848 0,0096 8,0000 -0,04 -0,17 0,00 40 0,0 16,42 0,0493 177,3612 0,0097 8,0000 -0,04 -0,21 0,00 20 0,0 16,29 0,0495 178,0920 0,0100 8,0000 -0,03 -0,22 0,00 20 0,0 16,04 0,0495 178,0920 0,0105 8,0000 -0,03 -0,23 0,00 -10 0,0 15,92 0,0499 179,6832 0,0107 8,0000 -0,02 -0,23 0,00 -20 0,0 15,67 0,0501 180,948 0,111 8,0000 -0,02 -0,22 0,00		80	0,0	17,04	0,0476	171,4392	0,0095	8,0000	-0,05	-0,11	0,00
Capacidade de campo da camada de assentamento 60 0,0 16,79 0,0484 174,3732 0,0096 8,0000 -0,05 -0,14 0,00 40 0,0 16,67 0,0487 175,3848 0,0096 8,0000 -0,04 -0,17 0,00 30 0,0 16,54 0,0490 176,5620 0,0097 8,0000 -0,04 -0,21 0,00 20 0,0 16,29 0,0495 178,0920 0,0100 8,0000 -0,03 -0,222 0,00 10 0,0 16,17 0,0496 178,69920 0,0100 8,0000 -0,03 -0,22 0,00 -10 0,0 16,17 0,0498 179,2440 0,0105 8,0000 -0,02 -0,23 0,00 -20 0,0 15,79 0,0500 180,0936 0,0110 8,0000 -0,02 -0,23 0,00 -40 0,0 15,42 0,0503 180,9648 0,0112 8,0000 -0,02 -0,22 0,00		70	0,0	16,92	0,0480	172,9584	0,0095	8,0000	-0,05	-0,13	0,00
Capacidade de campo da camada de assentamento 50 0,0 16,67 0,0487 175,3848 0,0096 8,0000 -0,04 -0,17 0,00 30 0,0 16,54 0,0490 176,5620 0,0097 8,0000 -0,04 -0,19 0,00 30 0,0 16,42 0,0493 177,3612 0,0098 8,0000 -0,04 -0,21 0,00 20 0,0 16,17 0,0495 178,0920 0,0100 8,0000 -0,03 -0,22 0,00 10 0,0 16,17 0,0496 178,6896 0,0102 8,0000 -0,00 -0,23 0,00 -10 0,0 15,92 0,0499 179,6832 0,0107 8,0000 -0,02 -0,23 0,00 -20 0,0 15,79 0,0500 180,936 0,0110 8,0000 -0,02 -0,22 0,00 -30 0,0 15,42 0,0503 180,948 0,0117 8,0000 -0,02 -0,22 0,00 <th></th> <td>60</td> <td>0,0</td> <td>16,79</td> <td>0,0484</td> <td>174,3732</td> <td>0,0096</td> <td>8,0000</td> <td>-0,05</td> <td>-0,14</td> <td>0,00</td>		60	0,0	16,79	0,0484	174,3732	0,0096	8,0000	-0,05	-0,14	0,00
Capacidade de campo da camada de assentamento 40 0,0 16,54 0,0490 176,5620 0,0097 8,0000 -0,04 -0,19 0,00 20 0,0 16,42 0,0493 177,3612 0,0098 8,0000 -0,04 -0,21 0,00 20 0,0 16,29 0,0495 178,0920 0,0100 8,0000 -0,03 -0,22 0,00 10 0,0 16,17 0,0496 178,6896 0,0102 8,0000 -0,03 -0,23 0,00 -10 0,0 15,92 0,0499 179,2440 0,0105 8,0000 -0,02 -0,24 0,00 -20 0,0 15,79 0,0500 180,936 0,0110 8,0000 -0,02 -0,23 0,00 -30 0,0 15,67 0,0501 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -40 0,0 15,42 0,0503 181,1916 0,0114 8,0000 -0,02 -0,22 0,00 </th <th></th> <td>50</td> <td>0,0</td> <td>16,67</td> <td>0,0487</td> <td>175,3848</td> <td>0,0096</td> <td>8,0000</td> <td>-0,04</td> <td>-0,17</td> <td>0,00</td>		50	0,0	16,67	0,0487	175,3848	0,0096	8,0000	-0,04	-0,17	0,00
Capacidade de campo da camada de assentamento 30 0,0 16,42 0,0493 177,3612 0,0098 8,0000 -0,04 -0,21 0,00 Capacidade de campo da camada de assentamento 20 0,0 16,29 0,0495 178,0920 0,0100 8,0000 -0,03 -0,22 0,00 10 0,0 16,17 0,0496 178,6896 0,0102 8,0000 -0,03 -0,23 0,00 camada de assentamento 0 0,0 16,04 0,0498 179,2440 0,0105 8,0000 -0,02 -0,24 0,00 -20 0,0 15,79 0,0500 180,0936 0,0110 8,0000 -0,02 -0,23 0,00 -30 0,0 15,67 0,0501 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -40 0,0 15,54 0,0502 180,7236 0,0114 8,0000 -0,02 -0,22 0,00 -60 0,0 15,42 0,0503 181,916 <t< th=""><th></th><th>40</th><th>0,0</th><th>16,54</th><th>0,0490</th><th>176,5620</th><th>0,0097</th><th>8,0000</th><th>-0,04</th><th>-0,19</th><th>0,00</th></t<>		40	0,0	16,54	0,0490	176,5620	0,0097	8,0000	-0,04	-0,19	0,00
Capacidade de campo da camada de assentamento 20 0,0 16,29 0,0495 178,0920 0,0100 8,0000 -0,03 -0,22 0,00 10 0,0 16,17 0,0496 178,6896 0,0102 8,0000 -0,03 -0,23 0,00 camada de assentamento 0 0,0 16,04 0,0498 179,2440 0,0105 8,0000 -0,02 -0,23 0,00 -10 0,0 15,92 0,0499 179,6832 0,0107 8,0000 -0,02 -0,24 0,00 -20 0,0 15,67 0,0501 180,0936 0,0112 8,0000 -0,02 -0,23 0,00 -30 0,0 15,67 0,0501 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -40 0,0 15,42 0,0503 180,9648 0,0117 8,0000 -0,02 -0,22 0,00 -50 0,0 15,42 0,0504 181,3680 0,0121 8,0000 -0,02		30	0,0	16,42	0,0493	177,3612	0,0098	8,0000	-0,04	-0,21	0,00
Campo da camada de assentamento 10 0,0 16,17 0,0496 178,6896 0,0102 8,0000 -0,03 -0,23 0,00 Camada de assentamento 0 0,0 16,04 0,0498 179,2440 0,0105 8,0000 0,00 0,00 0,00 -10 0,0 15,92 0,0499 179,6832 0,0107 8,0000 -0,02 -0,24 0,00 -20 0,0 15,79 0,0500 180,0936 0,0112 8,0000 -0,02 -0,23 0,00 -30 0,0 15,67 0,0501 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -40 0,0 15,54 0,0502 180,7236 0,0114 8,0000 -0,02 -0,22 0,00 -50 0,0 15,42 0,0503 181,916 0,0119 8,0000 -0,02 -0,22 0,00 -70 0,0 15,17 0,0504 181,3680 0,0123 8,0000 -0,12 0,00	Canacidade de	20	0,0	16,29	0,0495	1/8,0920	0,0100	8,0000	-0,03	-0,22	0,00
camada de assentamento 0 0,0 16,04 0,0498 179,2440 0,0105 8,0000 0,00 0,00 0,00 0,00 -10 0,0 15,92 0,0499 179,6832 0,0107 8,0000 -0,02 -0,24 0,00 -20 0,0 15,79 0,0500 180,0936 0,0110 8,0000 -0,02 -0,23 0,00 -30 0,0 15,67 0,0501 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -40 0,0 15,54 0,0502 180,7236 0,0114 8,0000 -0,02 -0,22 0,00 -50 0,0 15,42 0,0503 180,9648 0,0117 8,0000 -0,02 -0,22 0,00 -60 0,0 15,29 0,0503 181,1916 0,0119 8,0000 -0,02 -0,22 0,00 -70 0,0 15,17 0,0504 181,3680 0,0123 8,0000 -0,13 -0,24 0,00 </th <th>campo da</th> <th>10</th> <th>0,0</th> <th>16,17</th> <th>0,0496</th> <th>1/8,6896</th> <th>0,0102</th> <th>8,0000</th> <th>-0,03</th> <th>-0,23</th> <th>0,00</th>	campo da	10	0,0	16,17	0,0496	1/8,6896	0,0102	8,0000	-0,03	-0,23	0,00
assentamento -10 0,0 15,92 0,0499 179,6832 0,0107 8,0000 -0,02 -0,24 0,00 -20 0,0 15,79 0,0500 180,0936 0,0110 8,0000 -0,02 -0,23 0,00 -30 0,0 15,67 0,0501 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -40 0,0 15,54 0,0502 180,7236 0,0114 8,0000 -0,02 -0,23 0,00 -50 0,0 15,42 0,0503 180,9648 0,0117 8,0000 -0,02 -0,22 0,00 -60 0,0 15,29 0,0503 181,1916 0,0119 8,0000 -0,02 -0,22 0,00 -70 0,0 15,17 0,0504 181,3680 0,0121 8,0000 -0,02 -0,22 0,00 -80 0,0 15,04 0,0504 181,3680 0,0123 8,0000 -0,13 -0,24 0,00	camada de	0	0,0	16,04	0,0498	179,2440	0,0105	8,0000	0,00	0,00	0,00
-20 0,0 15,79 0,0500 180,0936 0,0110 8,0000 -0,02 -0,23 0,00 -30 0,0 15,67 0,0501 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -40 0,0 15,54 0,0502 180,7236 0,0114 8,0000 -0,02 -0,23 0,00 -50 0,0 15,42 0,0503 180,9648 0,0117 8,0000 -0,02 -0,22 0,00 -60 0,0 15,29 0,0503 181,1916 0,0119 8,0000 -0,02 -0,22 0,00 -60 0,0 15,17 0,0504 181,3680 0,0121 8,0000 -0,02 -0,22 0,00 -70 0,0 15,04 0,0504 181,5300 0,0123 8,0000 -0,02 -0,21 0,00 -80 0,0 14,92 0,0554 199,4328 0,0125 8,0000 -0,13 -0,24 0,00 -100 0	assentamento	-10	0,0	15,92	0,0499	179,6832	0,0107	8,0000	-0,02	-0,24	0,00
-30 0,0 15,67 0,0301 180,4176 0,0112 8,0000 -0,02 -0,23 0,00 -40 0,0 15,54 0,0502 180,7236 0,0114 8,0000 -0,02 -0,23 0,00 -50 0,0 15,42 0,0503 180,9648 0,0117 8,0000 -0,02 -0,22 0,00 -60 0,0 15,29 0,0503 181,916 0,0119 8,0000 -0,02 -0,22 0,00 -70 0,0 15,17 0,0504 181,3680 0,0121 8,0000 -0,02 -0,22 0,00 -70 0,0 15,17 0,0504 181,3680 0,0123 8,0000 -0,02 -0,22 0,00 -80 0,0 15,04 0,0504 181,5300 0,0123 8,0000 -0,02 -0,21 0,00 -90 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 -100 0,		-20	0,0	15,79	0,0500	180,0930	0,0110	8,0000	-0,02	-0,23	0,00
-40 0,0 13,34 0,0502 180,7236 0,0114 8,0000 -0,02 -0,23 0,00 -50 0,0 15,42 0,0503 180,9648 0,0117 8,0000 -0,02 -0,22 0,00 -60 0,0 15,29 0,0503 181,1916 0,0119 8,0000 -0,02 -0,22 0,00 -60 0,0 15,17 0,0504 181,3680 0,0121 8,0000 -0,02 -0,22 0,00 -70 0,0 15,17 0,0504 181,3680 0,0123 8,0000 -0,02 -0,22 0,00 -80 0,0 15,04 0,0504 181,3680 0,0123 8,0000 -0,02 -0,21 0,00 -90 0,0 14,92 0,0554 199,4328 0,0125 8,0000 -0,01 -0,20 0,00 -100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 capacidade de campo da		-30	0,0	15,07	0,0501	180,4170	0,0112	8,0000	-0,02	-0,23	0,00
-50 0,0 13,42 0,0303 180,9048 0,0117 8,0000 -0,02 -0,22 0,00 -60 0,0 15,29 0,0503 181,1916 0,0119 8,0000 -0,02 -0,22 0,00 -70 0,0 15,17 0,0504 181,3680 0,0121 8,0000 -0,02 -0,22 0,00 -80 0,0 15,04 0,0504 181,5300 0,0123 8,0000 -0,02 -0,22 0,00 -80 0,0 14,92 0,0554 199,4328 0,0123 8,0000 -0,13 -0,24 0,00 -90 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 -100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 capacidade de campo da camada de armazenamento 90 0,0 24,14 0,0285 102,5316 0,0037 11,0000 -0,48 -0,84 <td< th=""><th></th><th>-40</th><th>0,0</th><th>15,04</th><th>0,0502</th><th>100,7230</th><th>0,0114</th><th>8,0000</th><th>-0,02</th><th>-0,23</th><th>0,00</th></td<>		-40	0,0	15,04	0,0502	100,7230	0,0114	8,0000	-0,02	-0,23	0,00
Capacidade de campo da camada de armazenamento 100 0,0 15,17 0,0504 181,1910 0,0119 8,0000 -0,02 -0,22 0,00 -70 0,0 15,17 0,0504 181,3680 0,0121 8,0000 -0,02 -0,22 0,00 -80 0,0 15,04 0,0504 181,5300 0,0123 8,0000 -0,02 -0,21 0,00 -90 0,0 14,92 0,0554 199,4328 0,0123 8,0000 -0,01 -0,24 0,00 -100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 -100 0,1 25,04 0,0244 87,8220 0,0018 11,0000 -0,51 -0,83 0,38 0 0,0 24,14 0,0285 102,5316 0,0026 11,0000 -0,51 -0,81 0,47 0 0,0 22,34 0,0350 126,0648 0,0043 10,0000 -0,42 -0,85		-50	0,0	15,42	0,0503	191 1016	0,0117	8,0000	-0,02	-0,22	0,00
-70 0,0 13,17 0,0304 181,3060 0,0121 8,0000 -0,02 -0,22 0,00 -80 0,0 15,04 0,0504 181,3000 0,0123 8,0000 -0,02 -0,21 0,00 -90 0,0 14,92 0,0554 199,4328 0,0127 8,0000 -0,01 -0,20 0,00 -100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 -100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 -100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 -100 0,0 24,14 0,0285 102,5316 0,0026 11,0000 -0,51 -0,83 0,38 campo da 80 0,0 23,24 0,0294 105,6960 0,0037 11,0000 -0,51 -0,81 0,47		-00	0,0	15,29	0,0503	101,1910	0,0119	8,0000	-0,02	-0,22	0,00
Corr 0,0 13,04 0,0304 101,3300 0,0123 0,000 -0,02 -0,21 0,00 -90 0,0 14,92 0,0554 199,4328 0,0127 8,0000 -0,13 -0,24 0,00 -100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 -100 0,1 25,04 0,0244 87,8220 0,0018 11,0000 -0,51 -0,83 0,38 Capacidade de campo da camada de armazenamento 90 0,0 24,14 0,0285 102,5316 0,0026 11,0000 -0,48 -0,84 0,42 80 0,0 23,24 0,0294 105,6960 0,0037 11,0000 -0,51 -0,81 0,47 70 0,0 22,34 0,0350 126,0648 0,0043 10,0000 -0,42 -0,85 0,36		_80	0,0	15.04	0.0504	181 5300	0,0121	8,0000	-0,02	-0,22	0,00
Capacidade de campo da camada de armazenamento 100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,15 -0,24 0,00 100 0,0 14,79 0,0505 181,7748 0,0125 8,0000 -0,01 -0,20 0,00 100 0,1 25,04 0,0244 87,8220 0,0018 11,0000 -0,51 -0,83 0,38 90 0,0 24,14 0,0285 102,5316 0,0026 11,0000 -0,48 -0,84 0,42 80 0,0 23,24 0,0294 105,6960 0,0037 11,0000 -0,51 -0,81 0,47 70 0,0 22,34 0,0350 126,0648 0,0043 10,0000 -0,42 -0,85 0,36		-00	0,0	14.02	0,0504	101,5500	0,0123	8,0000	-0,02	-0,21	0,00
Capacidade de campo da camada de armazenamento 100 0,1 25,04 0,0244 87,8220 0,0018 11,0000 -0,51 -0,83 0,38 0,00 24,14 0,0285 102,5316 0,0026 11,0000 -0,48 -0,84 0,42 0,00 24,14 0,0285 102,5316 0,0026 11,0000 -0,48 -0,84 0,42 0,00 23,24 0,0294 105,6960 0,0037 11,0000 -0,51 -0,81 0,47 0,00 22,34 0,0350 126,0648 0,0043 10,0000 -0,42 -0,85 0,36		-100	0,0	14 79	0.0505	181 7748	0.0127	8,0000	-0,13	-0,24	0,00
Capacidade de campo da camada de armazenamento 90 0,0 24,14 0,0285 102,5316 0,0026 11,0000 -0,83 0,83 0,38 0,00 24,14 0,0285 102,5316 0,0026 11,0000 -0,48 -0,84 0,42 0,00 23,24 0,0294 105,6960 0,0037 11,0000 -0,51 -0,81 0,47 0,00 22,34 0,0350 126,0648 0,0043 10,0000 -0,42 -0,85 0,36		100	0.1	25.04	0.0244	87.8220	0,0125	11,0000	-0,01	-0,20	0,00
campo da camada de armazenamento colored 0,00 24,14 0,0200 102,0010 0,0020 11,0000 -0,40 -0,84 0,42 0,00 23,24 0,0294 105,6960 0,0037 11,0000 -0,51 -0,81 0,47 0,00 22,34 0,0350 126,0648 0,0043 10,0000 -0,42 -0,85 0,36	Capacidade de	90	0.0	24 14	0.0285	102 5316	0.0026	11,0000	-0,31	-0,83	0,30
camada de armazenamento 70 0,0 22,34 0,0350 126,0648 0,0043 10,0000 -0,81 0,47 0,0 22,34 0,0350 126,0648 0,0043 10,0000 -0,42 -0,85 0,36	campo da	80	0,0	23.24	0.0294	105 6960	0,0020	11,0000	-0,40	-0,04	0,42
armazenamento 0,0 22,01 0,0000 120,0170 0,0000 -0,42 -0,00 0,00	camada de	70	0,0	22.34	0.0350	126 0648	0.0043	10,0000	-0,31	-0,81	0,47
	armazenamento	60	0.0	21.44	0.0340	122.4720	0.0055	10,0000	-0.53	-0.79	0,30

										135
	50	0,0	20,54	0,0355	127,6452	0,0063	9,0000	-0,58	-0,79	0,25
	40	0,0	19,64	0,0396	142,3944	0,0067	9,0000	-0,51	-0,90	0,31
	30	0,0	18,74	0,0407	146,5848	0,0082	9,0000	-0,61	-0,71	0,42
	20	0,0	17,84	0,0423	152,3520	0,0092	8,0000	-0,75	-0,62	0,00
	10	0,0	16,94	0,0480	172,7244	0,0095	8,0000	-0,36	-0,91	0,00
	0	0,0	16,04	0,0498	179,2440	0,0105	8,0000	0,00	0,00	0,00
	-10	0,0	15,14	0,0504	181,4076	0,0121	8,0000	-0,12	-1,56	0,00
	-20	0,0	14,24	0,0554	199,5876	0,0130	7,0000	-0,57	-1,21	0,63
	-30	0,0	13,34	0,0616	221,6700	0,0134	7,0000	-0,79	-0,93	0,42
	-40	0,0	12,44	0,0639	229,8672	0,0136	7,0000	-0,71	-0,74	0,31
	-50	0,0	11,54	0,0647	232,7400	0,0151	7,0000	-0,60	-0,88	0,25
	-60	0,0	10,64	0,0649	233,6796	0,0163	7,0000	-0,51	-0,92	0,21
	-70	0,0	9,74	0,0650	233,9892	0,0168	7,0000	-0,44	-0,85	0,18
	-80	0,0	8,84	0,0650	234,1008	0,0170	7,0000	-0,38	-0,78	0,16
	-90	0,0	7,94	0,0650	234,1332	0,0184	7,0000	-0,34	-0,84	0,14
	-100	0,0	7,04	0,0650	234,1440	0,0193	7,0000	-0,31	-0,84	0,13
	100	10,0	17,84	0,0423	152,3520	0,0092	8,0000	-0,15	-0,12	0,00
	90	9,5	17,66	0,0440	158,4396	0,0093	8,0000	-0,13	-0,13	0,00
	80	9,0	17,48	0,0454	163,3176	0,0094	8,0000	-0,11	-0,13	0,00
	70	8,5	17,30	0,0464	167,1516	0,0095	8,0000	-0,10	-0,14	0,00
	60	8,0	17,12	0,0473	170,2692	0,0095	8,0000	-0,08	-0,16	0,00
	50	7,5	16,94	0,0480	172,7244	0,0095	8,0000	-0,07	-0,18	0,00
	40	7,0	16,76	0,0525	189,0072	0,0098	8,0000	0,14	-0,16	0,00
	30	6,5	16,58	0,0490	176,2668	0,0096	8,0000	-0,06	-0,27	0,00
	20	6,0	16,40	0,0493	177,4584	0,0098	8,0000	-0,05	-0,31	0,00
	10	5,5	16,22	0,0496	178,4520	0,0101	8,0000	-0,04	-0,34	0,00
Offset do dreno	0	5,0	16,04	0,0498	179,2440	0,0105	8,0000	0,00	0,00	0,00
	-10	4,5	15,86	0,0500	179,8812	0,0109	8,0000	-0,04	-0,35	0,00
	-20	4,0	15,68	0,0501	180,3924	0,0112	8,0000	-0,03	-0,35	0,00
	-30	3,5	15,50	0,0502	180,8100	0,0115	8,0000	-0,03	-0,34	0,00
	-40	3,0	15,33	0,0503	181,1268	0,0118	8,0000	-0,03	-0,32	0,00
	-50	2,5	15,15	0,0504	181,3968	0,0121	8,0000	-0,02	-0,31	0,00
	-60	2,0	14,97	0,0504	181,6056	0,0123	8,0000	-0,02	-0,30	0,00
	-70	1,5	14,79	0,0505	181,7748	0,0125	8,0000	-0,02	-0,28	0,00
	-80	1,0	14,61	0,0507	182,5452	0,0127	7,0000	-0,02	-0,27	0,16
	-90	0,5	14,43	0,0532	191,6064	0,0129	7,0000	-0,08	-0,25	0,14
	-100	0,0	14,25	0,0553	199,2060	0,0130	7,0000	-0,11	-0,24	0,13
	100	0,8	16,42	0,0493	177,3612	0,0098	8,0000	-0,03	-0,17	0,00
	90	0,7	16,39	0,0493	1//,5196	0,0098	8,0000	-0,03	-0,18	0,00
	80	0,7	16,35	0,0494	177,7608	0,0099	7,0000	-0,03	-0,18	-0,42
	70	0,7	16,32	0,0494	177,9300	0,0100	8,0000	-0,03	-0,18	0,00
	60	0,7	16,28	0,0495	178,1460	0,0100	8,0000	-0,03	-0,19	0,00
	50	0,7	16,24	0,0495	178,3548	0,0101	8,0000	-0,03	-0,19	0,00
	40	0,6	16,21	0,0496	178,5024	0,0102	8,0000	-0,03	-0,21	0,00
Razão de vazios	30	0,6	16,17	0,0496	178,6896	0,0102	8,0000	-0,03	-0,21	0,00
ua camada de armazenamento	20	0,6	16,13	0,0497	170,0090	0,0103	8,0000	-0,03	-0,23	0,00
	0	0,0	16.04	0,0497	179,0424	0,0104	8,0000	-0,03	-0,26	0,00
	10	0,0	16,04	0,0498	170,2052	0,0105	8,0000	0,00	0,00	0,00
	-10	0,5	16,00	0,0498	179,3952	0,0106	8,0000	-0,02	-0,22	0,00
	-20	0,5	15,95	0,0499	179,5979	0,0107	8,0000	-0,03	-0,23	0,00
	-30	0,5	15.81	0,0499	170 8812	0,0107	8,0000	-0,02	-0,23	0,00
	-40	0,5	15,00	0,0500	180.0324	0,0109	8,0000	-0,02	-0,24	0,00
	-60	0,5	15,81	0,0500	180 1800	0,0109	8,0000	-0,02	-0,24	0,00
1	-00	0.7	10,70	0,0001	100,10001	0.0110	0.0000	-0.07	-0.24	0.00

	-70	04	15 71	0.0501	180 3168	0.0111	8 0000	0.02	0.24	0.00
	80	0,1	15.66	0.0501	180 4428	0,0112	8,0000	-0,02	0.24	0,00
	00	0,4	15,00	0,0507	190 5004	0,0112	8,0000	-0,02	-0,24	0,00
	-90	0,4	15,00	0,0502	100,0904	0,0115	8,0000	-0,02	-0,24	0,00
	-100	0,4	10,00	0,0502	160,7020	0,0115	0,0000	-0,02	-0,25	0,00
Duração do		AINA		SENSIE	ILIDADE -	EVENTOS				
Evento:	10 minuto)S								
Tempo de	25 0000									
recorrência:	25 anos	1	1	1	1	1			r	•
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (mm)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0576	207,4284	0,0143	8,0000	-0,14	-0,05	0,14
	90	1,9	16,94	0,0576	207,5004	0,0144	8,0000	-0,15	-0,05	0,16
	80	1,8	16,84	0,0576	207,5004	0,0145	8,0000	-0,17	-0,05	0,18
	70	1,7	16,74	0,0591	212,7960	0,0146	7,0000	-0,16	-0,04	0,00
	60	1,6	16,64	0,0605	217,9476	0,0147	7,0000	-0,16	-0,04	0,00
	50	1,5	16,54	0,0618	222,6564	0,0147	7,0000	-0,15	-0,04	0,00
	40	1,4	16,44	0,0630	226,9476	0,0148	7,0000	-0,14	-0,04	0,00
	30	1,3	16,34	0,0641	230,8536	0,0149	7,0000	-0,13	-0,04	0,00
	20	1,2	16,24	0,0651	234,3996	0,0149	7,0000	-0,13	-0,04	0,00
Armazenamento	10	1,1	16,14	0,0660	237,6072	0,0150	7,0000	-0,12	-0,06	0,00
em depressão superficial	0	1,0	16,04	0,0668	240,5016	0,0151	7,0000	0,00	0,00	0,00
	-10	0,9	15,94	0,0675	243,0936	0,0151	7,0000	-0,11	-0,01	0,00
	-20	0,8	15,84	0,0682	245,5272	0,0151	7,0000	-0,10	-0,02	0,00
	-30	0,7	15,74	0,0688	247,7124	0,0152	7,0000	-0,10	-0,02	0,00
	-40	0,6	15,64	0,0694	249,6780	0,0152	7,0000	-0,10	-0,02	0,00
	-50	0,5	15,54	0,0698	251,4456	0,0152	7,0000	-0,09	-0,02	0,00
	-60	0,4	15,44	0,0703	253,0368	0,0152	7,0000	-0,09	-0,02	0,00
	-70	0,3	15,34	0,0707	254,4588	0,0153	7,0000	-0,08	-0,02	0,00
	-80	0,2	15,24	0,0710	255,6468	0,0153	7,0000	-0,08	-0,02	0,00
	-90	0,1	15,14	0,0775	278,9496	0,0157	7,0000	-0,18	-0,05	0,00
	-100	0,0	15,04	0,0716	257,8932	0,0153	7,0000	-0,07	-0,02	0,00
	100	0,1	19,04	0,0561	201,8736	0,0109	8,0000	-0,16	-0,27	0,14
	90	0,1	18,74	0,0566	203,6340	0.0112	8,0000	-0,17	-0,28	0,16
	80	0,1	18,44	0,0569	204,9048	0,0118	8,0000	-0,19	-0,27	0,18
	70	0,1	18,14	0,0572	205,8156	0.0124	8,0000	-0.21	-0.25	0.20
	60	0,1	17,84	0,0574	206,4744	0,0130	8,0000	-0,24	-0,22	0,24
	50	0,1	17,54	0,0575	206,9496	0.0135	8,0000	-0.28	-0.20	0.29
	40	0,1	17,24	0,0576	207,2772	0.0140	8,0000	-0.35	-0.17	0.36
	30	0,1	16,94	0,0576	207,5004	0.0144	8,0000	-0.46	-0.15	0.48
	20	0,1	16,64	0,0605	217,9476	0.0147	7,0000	-0.47	-0.13	0.00
Capacidade de	10	0,1	16,34	0,0641	230,8536	0.0149	7,0000	-0.40	-0.12	0.00
campo	0	0,1	16,04	0,0668	240,5016	0.0151	7,0000	0.00	0.00	0.00
revestimento	-10	0.0	15.74	0,0688	247,7124	0.0152	7,0000	-0.30	-0.07	0.00
	-20	0.0	15.44	0,0703	253.0368	0.0152	7,0000	-0.26	-0.06	0.00
	-30	0.0	15.14	0,0775	278,9496	0.0157	7,0000	-0.53	-0.14	0.00
	-40	0.0	14.84	0,0722	259.8192	0.0154	7,0000	-0.20	-0.05	0.00
	-50	0.0	14.54	0.0728	261,9108	0.0154	7,0000	-0.18	-0.05	0,00
	-60	0.0	14.24	0.0732	263,4444	0.0155	7,0000	-0.16	-0.05	0.00
	-70	0.0	13.94	0,0735	264.5460	0.0159	7,0000	-0.14	-0.08	0.00
	-80	0.0	13.64	0.0737	265,3308	0.0164	7.0000	-0.13	-0.12	0,00
_	-90	0,0	13.34	0.0739	265,8924	0.0171	7 0000	_0.12	_0.15	0,00

	-100	0,0	13,04	0,0740	266,2884	0,0176	7,0000	-0,11	-0,17	0,00
	100	0,1	17,29	0,0576	207,2340	0,0140	8,0000	-0,14	-0,07	0,14
	90	0,0	17,17	0,0576	207,3204	0,0141	8,0000	-0,15	-0,07	0,16
	80	0,0	17,04	0,0576	207,4284	0,0143	8,0000	-0,17	-0,07	0,18
	70	0,0	16,92	0,0576	207,5076	0,0144	8,0000	-0,20	-0,06	0,20
	60	0,0	16,79	0,0583	210,0420	0,0145	7,0000	-0,21	-0,06	0,00
	50	0,0	16,67	0,0601	216,4500	0,0146	7,0000	-0,20	-0,05	0,00
	40	0,0	16,54	0,0618	222,6564	0,0147	7,0000	-0,19	-0,05	0,00
	30	0,0	16,42	0,0633	227,7612	0,0148	7,0000	-0,18	-0,05	0,00
	20	0,0	16,29	0,0646	232,6716	0,0149	7,0000	-0,16	-0,05	0,00
Capacidade de	10	0,0	16,17	0,0657	236,6820	0,0150	7,0000	-0,16	-0,05	0,00
campo da	0	0,0	16,04	0,0668	240,5016	0,0151	7,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0677	243,5796	0,0151	7,0000	-0,13	-0,01	0,00
accontanionto	-20	0,0	15,79	0,0685	246,6468	0,0151	7,0000	-0,13	-0,03	0,00
	-30	0,0	15,67	0,0692	249,1092	0,0152	7,0000	-0,12	-0,03	0,00
	-40	0,0	15,54	0,0698	251,4456	0,0152	7,0000	-0,11	-0,03	0,00
	-50	0,0	15,42	0,0704	253,3356	0,0153	7,0000	-0,11	-0,03	0,00
	-60	0,0	15,29	0,0709	255,0960	0.0153	7,0000	-0.10	-0.03	0.00
	-70	0,0	15,17	0,0713	256,5936	0.0153	7,0000	-0,10	-0.02	0.00
	-80	0,0	15,04	0.0716	257,8932	0.0153	7,0000	-0.09	-0.02	0.00
	-90	0,0	14,92	0,0720	259,1352	0.0154	7,0000	-0.09	-0.02	0.00
	-100	0,0	14,79	0.0723	260,2044	0.0154	7,0000	-0.08	-0.02	0.00
	100	0,1	25,04	0.0385	138,5676	0,0054	10,0000	-0.42	-0.64	0.43
	90	0.0	24.14	0.0392	140.9724	0.0068	10.0000	-0.46	-0.61	0.48
	80	0.0	23.24	0.0429	154.3824	0.0073	9.0000	-0.45	-0.64	0.36
	70	0.0	22.34	0.0457	164.6568	0.0078	9.0000	-0.45	-0.69	0,00
	60	0.0	21.44	0.0466	167.8500	0.0094	9.0000	-0.50	-0.62	0.48
	50	0.0	20.54	0.0479	172.3788	0.0104	8.0000	-0.57	-0.61	0.29
	40	0.0	19.64	0.0605	217,9476	0.0147	7.0000	-0.23	-0.07	0,00
	30	0.0	18.74	0.0566	203.6340	0.0112	8.0000	-0.51	-0.85	0.48
	20	0.0	17.84	0.0574	206,4744	0.0130	8.0000	-0.71	-0.67	0.71
Capacidade de	10	0.0	16.94	0.0576	207.5004	0.0144	8.0000	-1.37	-0.46	1.43
campo da	0	0.0	16.04	0.0668	240.5016	0.0151	7.0000	0.00	0.00	0.00
camada de	-10	0.0	15.14	0.0775	278,9496	0.0157	7.0000	-1.60	-0.42	0.00
annazenamento	-20	0.0	14.24	0.0732	263,4444	0.0155	7.0000	-0.48	-0.14	0.00
	-30	0.0	13.34	0.0739	265.8924	0.0171	7.0000	-0.35	-0.45	0,00
	-40	0.0	12.44	0.0741	266.7672	0.0184	7.0000	-0.27	-0.55	0,00
	-50	0.0	11.54	0.0742	267.0732	0.0190	7.0000	-0.22	-0.53	0,00
	-60	0.0	10.64	0.0742	267.1812	0.0193	7.0000	-0.18	-0.47	0,00
	-70	0.0	9.74	0.0742	267.2280	0.0199	7.0000	-0.16	-0.46	0.00
	-80	0.0	8.84	0.0742	267.2388	0.0214	7.0000	-0.14	-0.53	0,00
	-90	0.0	7.94	0.0742	267.2424	0.0221	7.0000	-0.12	-0.52	0.00
	-100	0.0	7.04	0,0742	267,2496	0.0224	7,0000	-0.11	-0.49	0.00
	100	10.0	17.84	0,0574	206,4744	0,0130	8,0000	-0.14	-0.13	0.14
	90	9.5	17.66	0.0574	206,7804	0.0134	8,0000	-0.16	-0.12	0.16
	80	9.0	17.48	0.0575	207.0252	0.0137	8,0000	-0.17	-0.11	0.18
	70	8.5	17.30	0.0576	207.2232	0.0139	8,0000	-0.20	-0.11	0.20
	60	8.0	17.12	0.0576	207.3816	0.0141	8,0000	-0.23	-0.10	0.24
Offset do dreno	50	7.5	16.94	0.0576	207.5004	0.0144	8,0000	-0.27	-0.09	0.29
	40	7.0	16.76	0.0588	211,7088	0.0145	7,0000	-0.30	-0.09	0.00
	30	6.5	16.58	0.0613	220.8240	0 0147	7,0000	-0.27	-0.08	0,00
	20	6.0	16.40	0.0635	228,5568	0.0148	7,0000	-0.25	-0.08	0.00
	10	5.5	16.22	0.0653	235,0692	0.0149	7.0000	-0.23	-0.09	0.00
	0	5.0	16.04	0.0668	240.5016	0.0151	7.0000	0,20	0,03	0,00
	<u> </u>	5,5	,	3,0000	,	0,0101	.,0000	0,00	0,00	0,00

										138
	-10	4,5	15,86	0,0680	244,9656	0,0151	7,0000	-0,19	-0,04	0.00
	-20	4,0	15,68	0,0691	248,9184	0,0152	7,0000	-0,17	-0,04	0,00
	-30	3,5	15,50	0,0703	253,0440	0,0152	7,0000	-0,17	-0,04	0,00
	-40	3,0	15,33	0,0707	254,5920	0,0153	7,0000	-0,15	-0,04	0,00
	-50	2,5	15,15	0,0713	256,8528	0,0153	7,0000	-0,14	-0,04	0,00
	-60	2,0	14,97	0,0719	258,6636	0,0153	7,0000	-0,13	-0,03	0,00
	-70	1,5	14,79	0,0723	260,2044	0,0154	7,0000	-0,12	-0,03	0,00
	-80	1,0	14,61	0,0726	261,4752	0,0154	7,0000	-0,11	-0,03	0,00
	-90	0,5	14,43	0,0729	262,5300	0,0154	7,0000	-0,10	-0,03	0,00
	-100	0,0	14,25	0,0732	263,4012	0,0155	7,0000	-0,10	-0,03	0,00
	100	0,8	16,42	0,0633	227,7612	0,0148	7,0000	-0,14	-0,04	0,00
	90	0,7	16,39	0,0636	228,9492	0,0148	7,0000	-0,14	-0,04	0,00
	80	0,7	16,35	0,0640	230,4792	0,0149	7,0000	-0,14	-0,04	0,00
	70	0,7	16,32	0,0643	231,5916	0,0149	7,0000	-0,14	-0,04	0,00
	60	0,7	16,28	0,0647	233,0244	0,0149	7,0000	-0,14	-0,04	0,00
	50	0,7	16,24	0,0651	234,3996	0,0149	7,0000	-0,14	-0,04	0,00
	40	0,6	16,21	0,0654	235,3968	0,0150	7,0000	-0,14	-0,04	0,00
	30	0,6	16,17	0,0657	236,6820	0,0150	7,0000	-0,14	-0,04	0,00
	20	0,6	16,13	0,0661	237,9132	0,0150	7,0000	-0,14	-0,04	0,00
Razão de vazios	10	0,6	16,09	0,0664	239,0940	0,0150	7,0000	-0,16	-0,11	0,00
da camada de	0	0,6	16,04	0,0668	240,5016	0,0151	7,0000	0,00	0,00	0,00
armazenamento	-10	0,5	16,00	0,0671	241,5744	0,0150	7,0000	-0,12	0,03	0,00
	-20	0,5	15,95	0,0675	242,8488	0,0151	7,0000	-0,13	-0,01	0,00
	-30	0,5	15,91	0,0677	243,8172	0,0151	7,0000	-0,12	-0,02	0,00
	-40	0,5	15,86	0,0680	244,9656	0,0151	7,0000	-0,12	-0,02	0,00
	-50	0,5	15,81	0,0684	246,2076	0,0151	7,0000	-0,13	-0,02	0,00
	-60	0,4	15,76	0,0687	247,2912	0,0152	7,0000	-0,13	-0,03	0,00
	-70	0,4	15,71	0,0690	248,3244	0,0152	7,0000	-0,12	-0,03	0,00
	-80	0,4	15,66	0,0693	249,3036	0,0152	7,0000	-0,12	-0,03	0,00
	-90	0,4	15,60	0,0696	250,4088	0,0152	7,0000	-0,12	-0,03	0,00
	-100	0,4	15,55	0,0698	251,2764	0,0152	7,0000	-0,12	-0,03	0,00
Duração do		ANA	ALISE DE	SENSIE	SILIDADE -	EVENTO 6	i			
Evento:	10 minuto	s								
Tempo de	50 anos									
recorrência:	50 anos	I	I	I	I	I		1		
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (mm)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0785	282,5820	0,0169	7,0000	-0,03	-0,01	0,00
	90	1,9	16,94	0,0789	283,9104	0,0169	7,0000	-0,03	-0,01	0,00
	80	1,8	16,84	0,0792	285,0336	0,0169	7,0000	-0,03	-0,01	0,00
	70	1,7	16,74	0,0795	286,0704	0,0170	7,0000	-0,02	-0,01	0,00
	60	1,6	16,64	0,0797	287,0532	0,0170	7,0000	-0,02	-0,01	0,00
	50	1,5	16,54	0,0800	287,8992	0,0170	7,0000	-0,02	-0,01	0,00
Armazenamento	40	1,4	16,44	0,0802	288,6552	0,0170	7,0000	-0,02	0,00	0,00
superficial	30	1,3	16,34	0,0804	289,3644	0,0170	7,0000	-0,02	0,00	0,00
	20	1,2	16,24	0,0806	290,0016	0,0170	7,0000	-0,02	0,00	0,00
	10	1,1	16,14	0,0807	290,5776	0,0170	7,0000	-0,02	0,01	0,00
	0	1,0	16,04	0,0809	291,0960	0,0170	7,0000	0,00	0,00	0,00
	-10	0,9	15,94	0,0810	291,5676	0,0171	7,0000	-0,02	-0,02	0,00
	-20	0,8	15,84	0,0811	291,9924	0,0171	7,0000	-0,02	-0,01	0,00

										139
	-40	0,6	15,64	0,0813	292,7232	0,0172	7,0000	-0,01	-0,03	0,00
	-50	0,5	15,54	0,0814	293,0364	0,0174	7,0000	-0,01	-0,04	0,00
	-60	0,4	15,44	0,0815	293,3172	0,0175	7,0000	-0,01	-0,05	0,00
	-70	0,3	15,34	0,0815	293,5620	0,0177	7,0000	-0,01	-0,06	0,00
	-80	0,2	15,24	0,0816	293,7924	0,0179	7,0000	-0,01	-0,07	0,00
	-90	0,1	15,14	0,0817	293,9976	0,0181	7,0000	-0,01	-0,07	0,00
	-100	0,0	15,04	0,0817	294,1848	0,0183	7,0000	-0,01	-0,08	0,00
	100	0,1	19,04	0,0638	229,6116	0,0156	8,0000	-0,21	-0,08	0,14
	90	0,1	18,74	0,0638	229,8132	0,0160	8,0000	-0,23	-0,07	0,16
	80	0,1	18,44	0,0678	244,1448	0,0162	7,0000	-0,20	-0,06	0,00
	70	0,1	18,14	0,0714	257,0076	0,0165	7,0000	-0,17	-0,05	0,00
	60	0,1	17,84	0,0741	266,7636	0,0166	7,0000	-0,14	-0,04	0,00
	50	0,1	17,54	0,0762	274,1760	0,0168	7,0000	-0,12	-0,03	0,00
	40	0,1	17,24	0,0777	279,7596	0,0168	7,0000	-0,10	-0,03	0,00
	30	0,1	16,94	0,0789	283,9104	0,0169	7,0000	-0,08	-0,02	0,00
	20	0,1	16,64	0,0797	287,0532	0,0170	7,0000	-0,07	-0,02	0,00
Capacidade de	10	0,1	16,34	0,0804	289,3644	0,0170	7,0000	-0,06	-0,01	0,00
campo	0	0,1	16,04	0,0809	291,0960	0,0170	7,0000	0,00	0,00	0,00
revestimento	-10	0,0	15,74	0,0812	292,3776	0,0171	7,0000	-0,04	-0,05	0,00
	-20	0,0	15,44	0,0815	293,3172	0,0175	7,0000	-0,04	-0,15	0,00
	-30	0,0	15,14	0,0817	293,9976	0,0181	7,0000	-0,03	-0,22	0,00
	-40	0,0	14,84	0,0818	294,4980	0,0187	7,0000	-0,03	-0,25	0,00
	-50	0,0	14,54	0,0819	294,8580	0,0193	7,0000	-0,03	-0,27	0,00
	-60	0,0	14,24	0,0820	295,1172	0,0198	7,0000	-0,02	-0,27	0,00
	-70	0,0	13,94	0,0820	295,3008	0,0202	7,0000	-0,02	-0,27	0,00
	-80	0,0	13,64	0,0821	295,4376	0,0205	7,0000	-0,02	-0,26	0,00
	-90	0,0	13,34	0,0821	295,5348	0,0208	7,0000	-0,02	-0,24	0,00
	-100	0,0	13,04	0,0821	295,6032	0,0209	7,0000	-0,02	-0,23	0,00
	100	0,1	17,29	0,0775	278,9424	0,0168	7,0000	-0,04	-0,01	0,00
	90	0,0	17,17	0,0780	280,8360	0,0169	7,0000	-0,04	-0,01	0,00
	80	0,0	17,04	0,0785	282,5820	0,0169	7,0000	-0,04	-0,01	0,00
	70	0,0	16,92	0,0789	284,1840	0,0169	7,0000	-0,03	-0,01	0,00
	60	0,0	16,79	0,0793	285,4944	0,0169	7,0000	-0,03	-0,01	0,00
	50	0,0	16,67	0,0797	286,7760	0,0170	7,0000	-0,03	-0,01	0,00
	40	0,0	16,54	0,0800	287,8992	0,0170	7,0000	-0,03	-0,01	0,00
	30	0,0	16,42	0,0802	288,8028	0,0170	7,0000	-0,03	-0,01	0,00
Canacidade de	20	0,0	16,29	0,0805	289,6884	0,0170	7,0000	-0,02	0,00	0,00
campo da	10	0,0	16,17	0,0807	290,4084	0,0170	7,0000	-0,02	0,01	0,00
camada de	0	0,0	16,04	0,0809	291,0960	0,0170	7,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0810	291,6576	0,0170	7,0000	-0,02	-0,01	0,00
	-20	0,0	15,79	0,0812	292,1904	0,0171	7,0000	-0,02	-0,01	0,00
	-30	0,0	15,07	0,0813	292,0200	0,0172	7,0000	-0,02	-0,03	0,00
	-40	0,0	15,54	0,0014	293,0304	0,0174	7,0000	-0,02	-0,05	0,00
	-50	0,0	15,42	0,0015	293,3712	0,0176	7,0000	-0,02	-0,06	0,00
	-00	0,0	15,29	0,0010	293,0000	0,0178	7,0000	-0,01	-0,08	0,00
	-70	0,0	15,17	0.0817	293,9400	0,0180	7,0000	-0,01	-0,09	0,00
	-00	0,0	14.02	0,0017	294,1040	0,0183	7,0000	-0,01	-0,10	0,00
	-90	0,0	14,92	0.0819	294,5792	0,0185	7,0000	-0,01	-0,10	0,00
	100	0,0	25.04	0,0010	180 5616	0,0188	9,0000	-0,01	-0,11	0,00
Capacidade de	90	0,1	20,04	0.0512	184 8132	0,0003	9,0000	-0,38	-0,52	0,29
campo da	80	0,0	23.24	0.0570	205.0812	0,0098	9,0000	-0,41	-0,47	0,32
camada de	70	0,0	22.34	0.0574	206,6544	0,0114	8,0000	-0,37	-0,41	0,30
armazenamento	60	0,0	21 44	0.0615	200,0044	0,0110	8,0000	-0,41	-0,44	0,20
	00	0,0		0,0010	221,4040	0,0120	0,0000	-0,40	-0,49	0,24

										140
	50	0,0	20,54	0,0630	226,9332	0,0128	8,0000	-0,44	-0,50	0,29
	40	0,0	19,64	0,0636	229,0032	0,0147	8,0000	-0,53	-0,35	0,36
	30	0,0	18,74	0,0638	229,8132	0,0160	8,0000	-0,70	-0,21	0,48
	20	0,0	17,84	0,0741	266,7636	0,0166	7,0000	-0,42	-0,11	0,00
	10	0,0	16,94	0,0789	283,9104	0,0169	7,0000	-0,25	-0,07	0,00
	0	0,0	16,04	0,0809	291,0960	0,0170	7,0000	0,00	0,00	0,00
	-10	0,0	15,14	0,0817	293,9976	0,0181	7,0000	-0,10	-0,65	0,00
	-20	0,0	14,24	0,0820	295,1172	0,0198	7,0000	-0,07	-0,81	0,00
	-30	0,0	13,34	0,0821	295,5348	0,0208	7,0000	-0,05	-0,73	0,00
	-40	0,0	12,44	0,0821	295,6896	0,0212	7,0000	-0,04	-0,61	0,00
	-50	0,0	11,54	0,0822	295,7472	0,0213	7,0000	-0,03	-0,51	0,00
	-60	0,0	10,64	0,0822	295,7688	0,0223	7,0000	-0,03	-0,52	0,00
	-70	0,0	9,74	0,0822	295,7796	0,0238	7,0000	-0,02	-0,57	0,00
	-80	0,0	8,84	0,0822	295,7868	0,0244	7,0000	-0,02	-0,55	0,00
	-90	0,0	7,94	0,0822	295,7940	0,0247	7,0000	-0,02	-0,50	0,00
	-100	0,0	7,04	0,0822	295,7976	0,0257	7,0000	-0,02	-0,51	0,00
	100	10,0	17,84	0,0741	266,7636	0,0166	7,0000	-0,08	-0,02	0,00
	90	9,5	17,66	0,0754	271,3392	0,0167	7,0000	-0,08	-0,02	0,00
	80	9,0	17,48	0,0765	275,4324	0,0168	7,0000	-0,07	-0,02	0,00
	70	8,5	17,30	0,0774	278,7732	0,0168	7,0000	-0,06	-0,02	0,00
	60	8,0	17,12	0,0782	281,5524	0,0169	7,0000	-0,05	-0,01	0,00
	50	7,5	16,94	0,0789	283,9104	0,0169	7,0000	-0,05	-0,01	0,00
	40	7,0	16,76	0,0794	285,8508	0,0169	7,0000	-0,05	-0,01	0,00
	30	6,5	16,58	0,0799	287,5752	0,0170	7,0000	-0,04	-0,01	0,00
	20	6,0	16,40	0,0803	288,9468	0,0170	7,0000	-0,04	-0,01	0,00
	10	5,5	16,22	0,0806	290,1204	0,0170	7,0000	-0,03	-0,01	0,00
Offset do dreno	0	5,0	16,04	0,0809	291,0960	0,0170	7,0000	0,00	0,00	0,00
	-10	4,5	15,86	0,0811	291,9132	0,0170	7,0000	-0,03	-0,01	0,00
	-20	4,0	15,68	0,0813	292,5900	0,0172	7,0000	-0,03	-0,04	0,00
	-30	3,5	15,50	0,0814	293,1516	0,0174	7,0000	-0,02	-0,08	0,00
	-40	3,0	15,33	0,0816	293,5872	0,0178	7,0000	-0,02	-0,11	0,00
	-50	2,5	15,15	0,0817	293,9796	0,0181	7,0000	-0,02	-0,13	0,00
	-60	2,0	14,97	0,0818	294,3036	0,0185	7,0000	-0,02	-0,14	0,00
	-70	1,5	14,79	0,0818	294,5664	0,0188	7,0000	-0,02	-0,15	0,00
	-80	1,0	14,61	0,0819	294,7860	0,0192	7,0000	-0,02	-0,16	0,00
	-90	0,5	14,43	0,0819	294,9624	0,0195	7,0000	-0,01	-0,16	0,00
	-100	0,0	14,25	0,0820	295,1100	0,0198	7,0000	-0,01	-0,16	0,00
	100	0,8	16,42	0,0802	288,8028	0,0170	7,0000	-0,02	-0,01	0,00
	90	0,7	16,39	0,0803	289,0188	0,0170	7,0000	-0,02	0,00	0,00
	80	0,7	16,35	0,0804	289,2960	0,0170	7,0000	-0,02	0,00	0,00
	70	0,7	16,32	0,0804	289,4940	0,0170	7,0000	-0,02	0,00	0,00
	60	0,7	16,28	0,0805	289,7532	0,0170	7,0000	-0,02	0,00	0,00
	50	0,7	16,24	0,0806	290,0016	0,0170	7,0000	-0,02	0,00	0,00
	40	0,6	16,21	0,0806	290,1780	0,0170	7,0000	-0,02	0,00	0,00
Razão de vazios	30	0,6	16,17	0,0807	290,4084	0,0170	7,0000	-0,02	0,00	0,00
da camada de	20	0,6	16,13	0,0807	290,6316	0,0170	7,0000	-0,02	0,00	0,00
armazenamento	10	0,6	16,09	0,0808	290,8440	0,0170	7,0000	-0,02	0,01	0,00
	0	0,6	16,04	0,0809	291,0960	0,0170	7,0000	0,00	0,00	0,00
	-10	0,5	16,00	0,0809	291,2904	0,0170	7,0000	-0,02	-0,02	0,00
	-20	0,5	15,95	0,0810	291,5208	0,0170	7,0000	-0,02	-0,02	0,00
	-30	0,5	15,91	0,0810	291,7008	0,0171	7,0000	-0,02	-0,02	0,00
	-40	0,5	15,86	0,0811	291,9132	0,0170	7,0000	-0,02	-0,01	0,00
	-50	0,5	15,81	0,0811	292,1148	0,0171	7,0000	-0,02	-0,01	0,00
	-60	0,4	15,76	0,0812	292,3056	0.0171	7,0000	-0.02	-0.02	0.00
	-70	04	15 71	0.0812	292 4856	0.0172	7 0000	_0.02	_0.03	0.00
---------------	-----------------	---------	--------	------------------------------	----------------------------	------------------------------------	---------------------------	-------------	--------------	-------------
	-80	0.4	15,66	0.0813	202,1000	0,0172	7,0000	0.02	-0,03	0,00
	00	0,4	15,00	0.0813	202,0004	0.0172	7,0000	-0,02	-0,05	0,00
	-90	0,4	15,00	0,0013	292,0520	0,0173	7,0000	-0,02	-0,05	0,00
	-100	0,4	15,55	0,0014	293,0070	0,0173	7,0000	-0,02	-0,05	0,00
							,			
Duração do		ANA		SENSIE	ILIDADE -	EVENTO /				
Evento:	30 minuto)S								
Tempo de	4									
recorrência:	1 ano	-	_		-					-
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (m³)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0424	152,5500	0,0169	17,0000	-0,07	-0,04	0,00
	90	1,9	16,94	0,0429	154,4436	0,0170	17,0000	-0,06	-0,04	0,00
	80	1,8	16,84	0,0434	156,0636	0,0170	17,0000	-0,06	-0,04	0,00
	70	1,7	16,74	0,0438	157,6440	0,0170	17,0000	-0,05	-0,04	0,00
	60	1,6	16,64	0,0441	158,9364	0,0171	17,0000	-0,05	-0,05	0,00
	50	1,5	16,54	0,0444	159,8796	0,0171	17,0000	-0,05	-0,06	0,00
	40	1,4	16,44	0,0447	161,0604	0,0171	17,0000	-0,04	-0,07	0,00
	30	1,3	16,34	0,0450	161,9568	0,0172	17,0000	-0,04	-0,08	0,00
	20	1,2	16,24	0,0452	162,7056	0,0173	17,0000	-0,04	-0,09	0,00
Armazenamento	10	1,1	16,14	0,0454	163,3248	0,0174	17,0000	-0,03	-0,10	0,00
em depressão	0	1,0	16,04	0,0455	163,8900	0,0176	17,0000	0,00	0,00	0,00
superiiciai	-10	0,9	15,94	0,0457	164,3760	0,0177	17,0000	-0,03	-0,08	0,00
	-20	0,8	15,84	0,0458	164,7936	0,0179	17,0000	-0,03	-0,09	0,00
	-30	0,7	15,74	0,0459	165,1536	0,0181	17,0000	-0,03	-0,10	0,00
	-40	0,6	15,64	0,0460	165,4596	0,0182	17,0000	-0,02	-0,09	0,00
	-50	0,5	15,54	0,0460	165,7260	0,0184	17,0000	-0,02	-0,09	0,00
	-60	0,4	15,44	0,0461	165,9528	0,0185	17,0000	-0,02	-0,09	0,00
	-70	0,3	15,34	0,0462	166,1472	0,0187	17,0000	-0,02	-0,09	0,00
	-80	0,2	15,24	0,0462	166,3128	0,0188	17,0000	-0,02	-0,09	0,00
	-90	0,1	15,14	0,0462	166,4568	0,0189	17,0000	-0,02	-0,08	0,00
	-100	0,0	15,04	0,0463	166,5756	0,0190	17,0000	-0,02	-0,08	0,00
	100	0,1	19,04	0,0349	125,6724	0,0147	18,0000	-0,23	-0,16	0,06
	90	0,1	10,74	0,0354	127,4000	0,0152	10,0000	-0,25	-0,15	0,07
	80	0,1	10,44	0,0357	128,0424	0,0157	18,0000	-0,27	-0,13	0,07
	70	0,1	18,14	0,0359	129,3768	0,0161	10,0000	-0,30	-0,12	0,08
	50	0,1	17,84	0,0301	129,8772	0,0165	18,0000	-0,35	-0,11	0,10
	50	0,1	17,54	0,0383	137,9808	0,0167	17,0000	-0,32	-0,10	0,00
	40	0,1	17,24	0,0411	147,8370	0,0169	17,0000	-0,24	-0,10	0,00
	30	0,1	16,94	0,0429	154,4430	0,0170	17,0000	-0,19	-0,11	0,00
Capacidade de	20	0,1	16.24	0,0441	100,9304	0,0171	17,0000	-0,15	-0,15	0,00
campo	10	0,1	16,04	0,0450	162 9000	0,0172	17,0000	-0,12	-0,23	0,00
revestimento	10	0,1	15,04	0,0455	165 1536	0,0170	17,0000	0,00	0,00	0,00
	-10	0,0	15,74	0,0459	165 0529	0,0101	17,0000	-0,08	-0,29	0,00
	-20	0,0	15,44	0,0461	166 4569	0,0185	17,0000	-0,06	-0,27	0,00
	-30	0,0	14 94	0,0462	166 7770	0,0189	17,0000	-0,05	-0,25	0,00
	-40	0,0	14,04	0,0403	166 0924	0,0192	17,0000	-0,04	-0,23	0,00
	-50	0,0	14,54	0,0464	167 1094	0,0193	17,0000	-0,04	-0,20	0,00
	-70	0,0	13.04	0.0464	167,1004	0,0194	17,0000	-0,03	-0,17	0,00
	-80	0,0	13.64	0.0465	167,1878	0,0195	17,0000	-0,03	-0,10	0,00
	-90	0,0	13.34	0.0465	167,2668	0,0197	17,0000	0.03	-0,13	0,00

-100 0.0 13.04 0.0465 157.284 0.0206 17.000 -0.01 -0.17 0.00 50 0.0 17.17 0.0416 148,0376 0.0169 17.000 -0.01 -0.04 0.00 60 0.0 17.17 0.0416 148,0376 0.0169 17.000 -0.06 -0.00 0.00 -0.00 0.0169 17.000 0.01 0.01											142
Capacidade de campo da sesentamente 0.00 0.11 0.02 0.02 1.71 0.0416 1.84 9825 0.0168 17.0000 -0.01 -0.04 0.00 80 0.00 17.0 0.0416 152.5500 0.0169 17.0000 -0.05 0.005 0.005 0.006 0.00 0.00 16.97 0.0430 158.5728 0.0171 17.0000 -0.05 0.006 0.00 60 0.00 16.67 0.0440 158.5728 0.0171 17.0000 -0.06 -0.00 30 0.00 16.42 0.0448 161.990 0.0171 17.0000 -0.06 -0.00 30 0.00 16.42 0.0448 161.390 0.0171 17.0000 -0.06 -0.00 -0.01 10.00 -0.15 -0.10 -0.01 -0.01 -0.10 -0.10 -0.01 -0.10 -0.01 -0.11 0.00 -0.11 0.00 -0.11 0.00 -0.11 0.00 -0.11 0.00 -0.11 <t< th=""><th></th><th>-100</th><th>0,0</th><th>13,04</th><th>0,0465</th><th>167,2884</th><th>0,0206</th><th>17,0000</th><th>-0,02</th><th>-0,17</th><th>0,00</th></t<>		-100	0,0	13,04	0,0465	167,2884	0,0206	17,0000	-0,02	-0,17	0,00
Capacidade de campo da assentamente 0.00 1.7.1 0.014 1.94.8278 0.0169 1.7000 0.02 0.05 0.00 60 0.00 16.72 0.030 165.22500 0.0170 17.000 -0.05 0.005 0.00 60 0.00 16.67 0.0401 156.2240 0.0170 17.0000 -0.06 0.06 0.00 60 0.00 16.67 0.0441 158.5728 0.0171 17.0000 -0.06 -0.06 0.00 30 0.01 16.42 0.0451 162.3422 0.0171 17.0000 -0.05 -0.00 0.00 200 0.00 16.27 0.0451 162.34900 0.0176 17.0000 -0.01 0.00 1.57 0.0451 164.9800 0.0180 17.0000 -0.01 1.000 -0.02 0.001 1.000 -0.01 -0.12 0.000 -0.15 0.0451 164.9800 0.0180 17.0000 -0.01 1.010 0.00 1.010 0.001		100	0,1	17,29	0,0407	146,4444	0,0169	17,0000	-0,11	-0,04	0,00
B0 0.0 17.04 0.02424 152.550 0.0168 17.0000 -0.05 0.005 0.005 70 0.0 16.62 0.0436 154.7820 0.0170 17.0000 -0.05 0.006 60 0.0 16.77 0.0440 158.5728 0.0171 17.0000 -0.06 -0.07 0.008 60 0.0 16.64 0.0444 158.5728 0.0171 17.0000 -0.06 -0.07 0.009 20 0.0 16.42 0.0448 163.1376 0.0174 17.0000 -0.05 -0.01 0.00 20 0.0 15.77 0.0453 163.376 0.0174 17.0000 -0.02 -0.01 1.00 -300 0.0 15.57 0.0451 165.372 0.0184 17.0000 -0.03 -0.12 0.00 -400 0.0 15.54 0.0462 166.7350 0.0184 17.0000 -0.02 -0.11 0.00 -500 0.00		90	0,0	17,17	0,0416	149,6376	0,0169	17,0000	-0,10	-0,04	0,00
Capacidade de campo da essentamento -00 16,02 0.0430 154,7822 0,0170 17,0000 -0,08 -0,06 0.00 50 0.0 16,67 0.0441 158,5728 0,0171 17,0000 -0,06 -0,06 0.00 30 0.0 16,42 0.0444 158,5728 0,0171 17,0000 -0,05 -0,00 0,00 20 0.0 16,24 0.0451 162,3422 0,0172 17,0000 -0,05 -0,00 0,00 10 0.0 16,14 0.0451 163,1376 0,0174 17,0000 -0,03 -0,12 0,00 -200 0.0 15,57 0.0453 164,9805 0,0162 17,0000 -0,03 -0,12 0,00 -30 0.0 15,52 0,0451 164,9805 0,0163 17,0000 -0,03 -0,11 0,00 -50 0.0 15,42 0,0463 166,726 0,0181 17,0000 -0,02 -0,10 0,00		80	0,0	17,04	0,0424	152,5500	0,0169	17,0000	-0,09	-0,05	0,00
Gen 0.0 16.79 0.036 156.9240 0.0170 17.0000 -0.07 -0.06 0.06 0.06 Capacidad e campod a camad e assentamente 0.0 16.64 0.0441 159.8780 0.0171 17.0000 -0.06 -0.06 0.00 20 0.0 16.64 0.0443 161.1900 0.0171 17.0000 -0.05 -0.01 0.00 20 0.0 16.64 0.0453 163.3760 0.0174 17.0000 -0.05 -0.01 0.00 20 0.0 16.52 0.0451 164.9600 0.0176 17.0000 -0.02 -0.01 1.00 -20 0.0 15.52 0.0451 164.9600 0.0180 17.0000 -0.03 -0.12 0.00 -300 0.0 15.54 0.0461 165.7260 0.0181 17.0000 -0.02 -0.11 0.00 -400 0.0 15.92 0.0462 166.236 0.0189 17.0000 -0.02 -0.10 <td< td=""><th></th><td>70</td><td>0,0</td><td>16,92</td><td>0,0430</td><td>154,7892</td><td>0,0170</td><td>17,0000</td><td>-0,08</td><td>-0,05</td><td>0,00</td></td<>		70	0,0	16,92	0,0430	154,7892	0,0170	17,0000	-0,08	-0,05	0,00
S0 0.0 16.67 0.0440 158.5728 0.0171 17.000 -0.06 -0.07 0.00 30 0.0 16.42 0.0448 158.758 0.0171 17.000 -0.05 -0.09 0.00 20 0.0 16.29 0.0451 158.3176 0.0172 17.000 -0.05 -0.11 0.00 20 0.0 15.02 10.415 163.3176 0.0178 17.000 -0.05 -0.11 0.00 20 0.0 15.79 0.0451 164.4660 0.0178 17.000 -0.02 -0.12 0.00 -20 0.0 15.79 0.0451 165.7320 0.0184 17.000 -0.03 -0.12 0.00 -40 0.0 15.42 0.4451 165.7320 0.0184 17.000 -0.02 -0.10 0.00 -70 0.0 15.42 0.4431 165.7350 0.0191 17.000 -0.02 -0.01 0.00 -70 0.0		60	0,0	16,79	0,0436	156,9240	0,0170	17,0000	-0,07	-0,05	0,00
Capacidade campo da campo da campo da cama de da		50	0,0	16,67	0,0440	158,5728	0,0171	17,0000	-0,06	-0,06	0,00
30 0.0 16.42 0.0448 181.1900 0.0171 17.0000 -0.05 -0.01 0.00 Campo da camada de assentamento 10 0.0 16.17 0.0453 183.1376 0.0174 17.000 -0.05 -0.11 0.00 -10 0.0 16.17 0.0453 183.1376 0.0178 17.000 -0.05 -0.11 0.00 -20 0.0 15.79 0.0458 164.4800 0.0178 17.000 -0.03 -0.12 0.00 -40 0.0 15.52 0.0451 155.732 0.0184 17.0000 -0.03 -0.11 0.00 -60 0.0 15.42 0.0461 165.732 0.0184 17.0000 -0.02 -0.01 0.00 -70 0.0 15.42 0.0461 166.233 0.0181 17.0000 -0.02 -0.10 0.00 -70 0.0 14.92 0.0481 166.755 0.1981 17.0000 -0.05 0.22 0.010		40	0,0	16,54	0,0444	159,8796	0,0171	17,0000	-0,06	-0,07	0,00
Capacidade campo da campo da campo da exemo da o 20 0.0 16.29 0.0451 162.392 0.0172 17.000 -0.05 -0.11 0.00 camada do assentamento 0 0.0 16.04 0.0455 163.3970 0.0178 17.000 -0.0 -0.01 0.00 -20 0.0 15.97 0.0458 164.3980 0.0178 17.000 -0.03 -0.12 0.00 -30 0.0 15.67 0.0458 164.9808 0.0188 17.000 -0.03 -0.11 0.00 -50 0.0 15.67 0.0462 165.726 0.0188 17.0000 -0.02 -0.11 0.00 -60 0.0 15.29 0.0421 165.576 0.0181 17.0000 -0.02 -0.10 0.00 -80 0.0 15.04 0.0463 166.752 0.0191 17.000 -0.02 -0.10 0.00 -100 0.01 15.04 0.028 74.7232 0.038 17.000 -0.02		30	0,0	16,42	0,0448	161,1900	0,0171	17,0000	-0,05	-0,09	0,00
Capaciado de campo da camada de campo da camada de ca	O a manifela da ala	20	0,0	16,29	0,0451	162,3492	0,0172	17,0000	-0,05	-0,10	0,00
Camada de assentamento 0 0.0 16.04 0.0455 163.8900 0.0176 17.0000 0.00 0.00 0.00 assentamento -10 0.0 15.72 0.0457 164.4660 0.0178 17.0000 -0.03 -0.12 0.00 -20 0.0 15.77 0.0458 165.732 0.0184 17.0000 -0.03 -0.12 0.00 -40 0.0 15.54 0.0461 165.732 0.0184 17.0000 -0.03 -0.11 0.00 -50 0.0 15.29 0.0462 166.2336 0.0185 17.0000 -0.02 -0.11 0.00 -60 0.0 15.29 0.0462 166.2336 0.0189 17.0000 -0.02 -0.10 0.00 -70 0.0 14.79 0.0463 166.575 0.0190 17.0000 -0.02 -0.10 0.00 -100 0.1<470	Capacidade de	10	0,0	16,17	0,0453	163,1376	0,0174	17,0000	-0,05	-0,11	0,00
assentamento -10 0.0 15.92 0.0457 164.4660 0.0178 17.0000 -0.04 -0.12 0.00 -20 0.0 15.67 0.0458 164.9308 0.0180 17.0000 -0.03 -0.12 0.00 -30 0.0 15.54 0.0458 165.7320 0.0182 17.0000 -0.03 -0.11 0.00 -40 0.0 15.54 0.0461 155.7260 0.0183 17.0000 -0.02 -0.10 0.00 -60 0.0 15.29 0.0462 166.2336 0.0187 17.0000 -0.02 -0.10 0.00 -70 0.0 15.42 0.0463 166.7052 0.0191 17.0000 -0.02 -0.10 0.00 -90 0.0 14.92 0.0463 166.7052 0.0191 17.0000 -0.02 -0.09 0.00 -100 0.1 25.04 0.018 76.7023 0.028 10.00 1.66 0.02 1.000 1.66	camada de	0	0,0	16,04	0,0455	163,8900	0,0176	17,0000	0,00	0,00	0,00
-20 0.0 15,79 0.0458 164,9808 0.0180 17,0000 -0.03 -0.12 0.00 -30 0.00 15,67 0.0461 165,7320 0.0182 17,0000 -0.03 -0.11 0.00 -50 0.00 15,29 0.0461 165,9324 0.0185 17,0000 -0.02 -0.11 0.00 -50 0.00 15,29 0.0462 166,2336 0.0187 17,0000 -0.02 -0.10 0.00 -70 0.0 15,49 0.0463 166,756 0.0191 17,0000 -0.02 -0.10 0.00 -90 0.0 14,79 0.0463 166,756 0.0191 17,0000 -0.02 -0.10 0.00 -100 0.0 14,79 0.0483 166,756 0.0191 17,0000 -0.02 -0.10 0.00 -100 0.0 12,414 0.023 83,4192 0.0163 160,000 -0,65 -0,50 0.22 70	assentamento	-10	0,0	15,92	0,0457	164,4660	0,0178	17,0000	-0,04	-0,12	0,00
-30 0.0 15.67 0.0459 165.3732 0.0182 17,0000 -0.03 -0.11 0.00 -40 0.0 15.42 0.0461 165.7260 0.0184 17,0000 -0.03 -0.11 0.00 -50 0.0 15.42 0.0462 166.2336 0.0187 17,0000 -0.02 -0.11 0.00 -80 0.0 15.94 0.0463 166.756 0.0191 17,0000 -0.02 -0.10 0.00 -80 0.0 14.92 0.0463 166.7562 0.0191 17,0000 -0.02 -0.10 0.00 -100 0.0 14.92 0.0463 166.7526 0.0192 17,0000 -0.02 -0.09 0.00 -100 0.0 25.04 0.0187 67.7272 0.008 21,0000 -0.66 -0.42 90 0.0 23.44 0.208 43,4122 0.0106 20,000 -0.64 0.25 70 0.0 22.34 0		-20	0,0	15,79	0,0458	164,9808	0,0180	17,0000	-0,03	-0,12	0,00
-40 0.0 15,54 0.0460 165,7260 0.0184 17,0000 -0.03 -0.11 0.00 -50 0.0 15,24 0.0462 166,9924 0.0185 17,0000 -0.03 -0.11 0.00 -70 0.0 15,17 0.0462 166,2336 0.0189 17,0000 -0.02 -0.10 0.00 -80 0.0 15,04 0.0463 166,752 0.0191 17,0000 -0.02 -0.10 0.00 -90 0.0 14,79 0.0463 166,8204 0.0192 17,0000 -0.02 -0.09 0.00 100 0.1 25,04 0.0187 67,2732 0.0088 21,0000 -0.66 -0.42 0.22 70 0.0 22,34 0.024 87,9480 0.0118 20,000 -0.66 -0.47 0.25 60 0.0 21,44 0.0278 18,9289 0.0113 19,0000 -0.61 -0.50 0.22 70 0.0		-30	0,0	15,67	0,0459	165,3732	0,0182	17,0000	-0,03	-0,12	0,00
-50 0.0 15.42 0.0461 165.9924 0.0185 17.0000 -0.03 -0.11 0.00 -60 0.0 15.72 0.0462 166.2336 0.0187 17.0000 -0.02 -0.10 0.00 -80 0.0 15.17 0.0462 166.755 0.0191 17.0000 -0.02 -0.10 0.00 -90 0.0 14.92 0.0463 166.5756 0.0191 17.0000 -0.02 -0.00 0.00 -100 0.0 14.79 0.0463 166.5756 0.0192 17.0000 -0.02 -0.90 0.00 -100 0.0 24.14 0.028 7.7322 0.0088 21.0000 -0.66 -0.42 0.22 70 0.0 22.34 0.0218 87.9480 0.0118 20.000 -0.66 -0.47 0.25 60 0.0 21.44 0.022 154.7928 0.1142 18.0000 -0.71 -0.45 0.24 40 0.		-40	0,0	15,54	0,0460	165,7260	0,0184	17,0000	-0,03	-0,11	0,00
-60 0.0 15.29 0.0462 166.2336 0.0187 17.0000 -0.02 -0.11 0.00 -70 0.0 15.14 0.0463 166.4136 0.0189 17.0000 -0.02 -0.10 0.00 -80 0.0 15.04 0.0463 166.7556 0.0190 17.0000 -0.02 -0.10 0.00 -90 0.0 14.92 0.0463 166.7556 0.0190 17.0000 -0.02 -0.09 0.00 -100 0.01 125.04 0.0187 67.722 0.008 21.0000 -0.61 -0.50 0.24 90 0.01 22.34 0.024 87.956 0.009 21.000 -0.61 -0.47 0.25 60 0.0 21.44 0.0278 99.9930 0.0118 20.000 -0.66 -0.47 0.26 50 0.00 21.44 0.0271 18.528 0.0142 18.0000 -0.66 -0.48 0.22 70 0.00<		-50	0,0	15,42	0,0461	165,9924	0,0185	17,0000	-0,03	-0,11	0,00
-70 0.0 15.71 0.0462 166.4136 0.0189 17.0000 -0.02 -0.10 0.00 -80 0.0 15.04 0.0463 166.7052 0.0190 17.0000 -0.02 -0.10 0.00 -100 0.0 14.92 0.0463 166.7052 0.0191 17.0000 -0.02 -0.09 0.00 -100 0.0 24.74 0.028 74.9556 0.0009 21.000 -0.60 -0.48 0.22 80 0.0 23.24 0.0287 49.956 0.0009 21.000 -0.66 -0.47 0.22 70 0.0 23.24 0.0248 87.9480 0.0118 20.0000 -0.66 -0.47 0.22 70 0.0 21.44 0.0248 87.9480 0.0118 20.000 -0.66 -0.42 0.22 70 0.0 21.54 0.022 17.04 0.02 -0.24 0.013 19.000 -0.66 -0.42 0.22		-60	0,0	15,29	0,0462	166,2336	0,0187	17,0000	-0,02	-0,11	0,00
-80 0.0 15,04 0.0483 166,5756 0.0190 17,0000 -0.02 -0.01 0.00 -90 0.0 14,92 0.0463 166,5756 0.0192 17,0000 -0.02 -0.00 0.00 -100 0.0 14,79 0.0463 166,5256 0.0092 17,0000 -0.02 -0.09 0.00 -100 0.0 24,14 0.0203 7,2732 0.0088 21,000 -0.66 -0.47 0.22 800 0.0 22,34 0.0224 87,9480 0.0118 20,000 -0,66 -0,47 0.22 600 0.0 22,44 0.0224 87,9480 0.0118 20,000 -0,65 -0,50 0.20 600 0.0 21,44 0.0324 18,528 0.0123 19,000 -0,72 -0,45 0.23 600 16,44 0.0329 15,228 0.0152 18,000 -1,04 -0,32 0.29 610 0.0 15,44		-70	0,0	15,17	0,0462	166,4136	0,0189	17,0000	-0,02	-0,10	0,00
-90 0.0 14.92 0.0463 166.7052 0.0191 17.0000 -0.02 -0.00 0.00 -100 0.0 14.79 0.0463 166.8204 0.0192 17.0000 -0.02 -0.09 0.00 -100 0.01 25.04 0.0187 67.7322 0.0088 21.0000 -0.61 -0.50 0.22 80 0.0 23.24 0.0232 83.4192 0.0106 20.0000 -0.66 -0.47 0.25 60 0.0 21.44 0.0281 19.9936 0.0123 19.0000 -0.65 -0.50 0.22 70 0.0 20.54 0.0291 104.7924 0.0136 19.000 -0.65 -0.50 0.20 50 0.0 18.64 0.029 114.7986 0.0152 18.000 -0.74 -0.45 0.22 60 0.0 17.84 0.0361 129.872 0.0152 18.0000 -0.74 -0.45 0.23 0.29 ca		-80	0,0	15,04	0,0463	166,5756	0,0190	17,0000	-0,02	-0,10	0,00
-100 0.0 14.79 0.0463 168.8204 0.0182 17.000 -0.02 -0.00 0.00 100 0.1 25.04 0.0187 67.2732 0.0088 21.0000 -0.50 0.25 0.25 0.22 80 0.0 23.24 0.0224 87.9450 0.0016 20.000 -0.66 -0.47 0.25 60 0.0 21.44 0.0278 39.9936 0.0123 19.0000 -0.66 -0.47 0.25 60 0.0 21.44 0.0278 99.936 0.0123 19.0000 -0.66 -0.47 0.25 60 0.0 18.64 0.0291 118.5228 0.0142 18.000 -0.45 0.24 40 0.0 18.64 0.0321 129.8772 0.0168 18.000 -0.48 0.00 camada de 0.0 16.44 0.0422 168.4380 0.0170 17.0000 -0.16 -0.74 0.00 -0.0 15.14 0.		-90	0,0	14,92	0,0463	166,7052	0,0191	17,0000	-0,02	-0,10	0,00
100 0,1 25,04 0,0187 67,2732 0,0088 21,0000 -0,59 -0,50 0,24 90 0,0 24,14 0,0208 74,9556 0,0099 21,0000 -0,66 -0,48 0,22 80 0,0 22,34 0,024 83,4192 0,0106 20,0000 -0,66 -0,47 0,22 60 0,0 22,34 0,024 83,4192 0,0118 20,000 -0,66 -0,47 0,22 60 0,0 21,44 0,0274 99,936 0,0112 19,0000 -0,65 -0,50 0,20 50 0,0 12,44 0,0274 144,728 0,0162 18,0000 -0,74 -0,45 0,20 20 0,0 17,84 0,0361 129,8772 0,0165 18,000 -1,04 -0,32 0,29 20 0,0 17,84 0,0465 163,890 0,0176 17,0000 -0,16 -0,74 0,00 20 0,0		-100	0,0	14,79	0,0463	166,8204	0,0192	17,0000	-0,02	-0,09	0,00
90 0,0 24,14 0,0208 74,9556 0,0099 21,0000 -0,60 -0,48 0,22 80 0,0 23,24 0,0232 83,4192 0,0118 20,000 -0,61 -0,50 0,22 60 0,0 22,34 0,0244 47,9480 0,0118 20,000 -0,65 -0,50 0,22 60 0,0 21,44 0,0278 99,936 0,0123 19,000 -0,65 -0,45 0,22 50 0,0 18,74 0,0329 118,5228 0,0142 18,0000 -0,74 -0,45 0,22 20 0,0 17,84 0,0354 127,8486 0,0170 17,0000 -0,74 -0,45 0,22 20 0,0 16,04 0,0429 154,4436 0,0170 17,0000 -0,16 -0,74 0,00 -20 0,0 16,44 0,445 167,3064 0,212 17,0000 -0,16 -0,74 0,00 -20 0,0		100	0,1	25,04	0,0187	67,2732	0,0088	21,0000	-0,59	-0,50	0,24
80 0,0 23,24 0,0232 83,4192 0,016 20,000 -0,61 -0,50 0,22 70 0,0 22,34 0,0244 87,9480 0,0118 20,000 -0,66 -0,47 0,25 60 0,0 21,44 0,0278 99,9936 0,0123 19,000 -0,65 -0,50 0,24 40 0,0 19,64 0,029 118,5228 0,0142 18,000 -0,72 -0,45 0,24 40 0,0 18,74 0,0354 127,4868 0,0152 18,0000 -0,74 -0,45 0,29 20 0,0 17,84 0,0361 129,8772 0,016 18,0000 -0,04 -0,43 0,00 20 0,0 16,44 0,462 166,4568 0,0176 17,0000 -0,05 -0,00 40 0,0 15,14 0,462 167,3668 0,022 17,000 -0,07 -0,05 -0,00 -10 0,0 14,24		90	0,0	24,14	0,0208	74,9556	0,0099	21,0000	-0,60	-0,48	0,26
70 0.0 22.34 0.0244 87.9480 0.0118 20.000 -0.66 -0.47 0.25 60 0.0 21.44 0.0278 99.936 0.0136 19.0000 -0.65 -0.50 0.20 50 0.0 20.54 0.0291 104.7924 0.0136 19.0000 -0.65 -0.65 0.20 40 0.0 18,64 0.329 118,5228 0.0142 18.0000 -0.74 -0.45 0.20 20 0.0 17.84 0.0321 129.8772 0.0165 18.0000 -1.04 -0.32 0.29 20 0.0 16.94 0.0423 154.4436 0.0170 17.0000 -0.68 -0.34 0.00 -10 0.0 15.14 0.0462 166.4568 0.0189 17.0000 -0.07 -0.52 0.00 -20 0.0 14.24 0.0465 167.3064 0.021 17.0000 -0.07 -0.52 0.00 -50 0.0 <th></th> <td>80</td> <td>0,0</td> <td>23,24</td> <td>0,0232</td> <td>83,4192</td> <td>0,0106</td> <td>20,0000</td> <td>-0,61</td> <td>-0,50</td> <td>0,22</td>		80	0,0	23,24	0,0232	83,4192	0,0106	20,0000	-0,61	-0,50	0,22
60 0.0 21.44 0.0278 99.936 0.0123 19,0000 -0,65 -0,50 0.20 50 0.0 20,54 0.0291 104,7924 0.0133 19,0000 -0,72 -0,45 0.24 40 0.0 19,64 0.0329 118,5228 0.0142 18,0000 -0,74 -0,45 0.20 20 0.0 17,84 0.0354 127,4868 0.0152 18,0000 -0,74 -0,45 0.20 20 0.0 16,94 0.0429 154,4436 0.0170 17,000 -0,58 -0,34 0,00 20 0.0 15,14 0.0462 166,4568 0.0189 17,0000 -0,06 -0,74 0,00 -20 0.0 13,34 0.0462 167,368 0,202 17,000 -0,05 -0,51 0,00 -40 0.0 12,44 0,465 167,326 0,0228 17,000 -0,03 -0,49 0,00 -0,55 -0,51 0,0		70	0,0	22,34	0,0244	87,9480	0,0118	20,0000	-0,66	-0,47	0,25
Capacidade de campo da camada de armazenamento 50 0,0 20,54 0,0291 104,7924 0,0136 19,0000 -0,72 -0,45 0,244 40 0,0 19,64 0,0329 118,5228 0,0142 18,0000 -0,66 -0,48 0,15 30 0,0 18,74 0,0361 129,8772 0,0165 18,0000 -0,74 -0,45 0,20 20 0,0 17,84 0,0361 129,8772 0,0165 18,0000 -0,74 -0,45 0,20 10 0,0 16,94 0,0429 154,4436 0,0176 17,0000 -0,16 -0,74 0,00 -10 0,0 15,14 0,0462 166,4568 0,0194 17,0000 -0,16 -0,74 0,00 -20 0,0 11,24 0,0465 167,3172 0,021 17,0000 -0,07 -0,50 0,00 -50 0,0 11,64 0,0465 167,3244 0,0228 17,0000 -0,03 -0,48 <		60	0,0	21,44	0,0278	99,9936	0,0123	19,0000	-0,65	-0,50	0,20
40 0,0 19,64 0,0329 118,5228 0,0142 18,0000 -0,68 -0,48 0,15 30 0,0 18,74 0,0354 127,4868 0,0152 18,0000 -0,74 -0,45 0,209 20 0,0 17,84 0,0429 154,4436 0,0170 17,0000 -0,58 -0,34 0,00 armazenamento 0 0,0 16,94 0,0429 154,4436 0,0170 17,0000 -0,16 -0,74 0,00 0,00 -10 0,0 15,14 0,0429 154,4436 0,0176 17,0000 -0,16 -0,74 0,00 -20 0,0 14,24 0,0461 167,1084 0,0194 17,0000 -0,05 -0,51 0,00 -30 0,0 11,54 0,0465 167,3026 0,0212 17,0000 -0,05 -0,51 0,00 -50 0,0 11,54 0,0465 167,3224 0,0228 17,0000 -0,03 -0,48 0,00 <th></th> <td>50</td> <td>0,0</td> <td>20,54</td> <td>0,0291</td> <td>104,7924</td> <td>0,0136</td> <td>19,0000</td> <td>-0,72</td> <td>-0,45</td> <td>0,24</td>		50	0,0	20,54	0,0291	104,7924	0,0136	19,0000	-0,72	-0,45	0,24
30 0,0 18,74 0,0354 127,4868 0,0152 18,000 -0,74 -0,45 0,20 20 0,0 17,84 0,0361 129,8772 0,0165 18,000 -1,04 -0,32 0,29 10 0,0 16,94 0,0429 154,4436 0,0176 17,000 -0,68 -0,34 0,00 -10 0,0 15,14 0,0429 154,4436 0,0176 17,000 -0,16 -0,74 0,00 -10 0,0 15,14 0,0429 166,4568 0,0176 17,000 -0,16 -0,74 0,00 -20 0,0 14,24 0,0465 167,3064 0,0212 17,000 -0,052 0,00 -40 0,0 12,44 0,0465 167,3204 0,0224 17,000 -0,04 -0,47 0,00 -60 0,0 11,54 0,0465 167,3224 0,0261 17,000 -0,03 -0,48 0,00 -70 0,0 7,74 </td <th></th> <td>40</td> <td>0,0</td> <td>19,64</td> <td>0,0329</td> <td>118,5228</td> <td>0,0142</td> <td>18,0000</td> <td>-0,69</td> <td>-0,48</td> <td>0,15</td>		40	0,0	19,64	0,0329	118,5228	0,0142	18,0000	-0,69	-0,48	0,15
Capacidade de campo da camada de armazenamento 20 0,0 17,84 0,0361 129,8772 0,0165 18,0000 -1,04 -0,32 0,292 10 0,0 16,94 0,0429 154,4436 0,0170 17,000 -0,58 -0,34 0,00 -0 0,0 16,04 0,0455 163,8900 0,0176 17,000 -0,06 -0,04 0,00 -10 0,0 15,14 0,0462 166,4568 0,0199 17,0000 -0,16 -0,74 0,00 -20 0,0 14,24 0,0465 167,3064 0,0212 17,0000 -0,05 -0,01 10,00 -30 0,0 13,34 0,0465 167,3064 0,0212 17,0000 -0,05 -0,51 0,00 -400 0,0 11,54 0,0465 167,3208 0,0228 17,000 -0,04 -0,47 0,00 -700 0,0 7,94 0,0465 167,3244 0,0235 17,000 -0,08 0,00		30	0,0	18,74	0,0354	127,4868	0,0152	18,0000	-0,74	-0,45	0,20
Offset do dremo 10 0,0 16,94 0,0429 154,4436 0,0170 17,0000 -0,58 -0,34 0,00 camada de armazenamento 0 0,0 16,04 0,0455 163,8900 0,0176 17,0000 0,00 1,14 0,0465 167,3064 0,0212 17,0000 -0,05 0,00 0,00 -0,00 1,154 0,0465 167,3208 0,0228 17,0000 -0,04 -0,47 0,00 -0,00 -0,00 -0,01 -0,01 0,00 -7,04 0,0465 167,3244 0,0233 17,0000 -0,02 -0,48 0,000 -000 0,0 <td< td=""><th>Capacidado do</th><td>20</td><td>0,0</td><td>17,84</td><td>0,0361</td><td>129,8772</td><td>0,0165</td><td>18,0000</td><td>-1,04</td><td>-0,32</td><td>0,29</td></td<>	Capacidado do	20	0,0	17,84	0,0361	129,8772	0,0165	18,0000	-1,04	-0,32	0,29
Camada de armazenamento 0 0,0 16,04 0,0455 163,8900 0,0176 17,0000 0,00 0,00 0,00 -10 0,0 15,14 0,0462 166,4568 0,0194 17,0000 -0,16 -0,74 0,00 -20 0,0 14,24 0,0465 167,2668 0,0202 17,000 -0,07 -0,55 0,00 -30 0,0 12,44 0,0465 167,3668 0,0202 17,000 -0,05 -0,51 0,00 -40 0,0 12,44 0,0465 167,3084 0,0212 17,000 -0,04 -0,47 0,00 -50 0,0 11,54 0,0465 167,3248 0,0228 17,000 -0,03 -0,49 0,00 -70 0,0 9,74 0,0465 167,3244 0,0226 17,000 -0,03 -0,48 0,00 -80 0,0 8,84 0,0465 167,3244 0,0252 17,000 -0,02 -0,48 0,00 <tr< td=""><th>capacidade de campo da</th><td>10</td><td>0,0</td><td>16,94</td><td>0,0429</td><td>154,4436</td><td>0,0170</td><td>17,0000</td><td>-0,58</td><td>-0,34</td><td>0,00</td></tr<>	capacidade de campo da	10	0,0	16,94	0,0429	154,4436	0,0170	17,0000	-0,58	-0,34	0,00
armazenamento -10 0,0 15,14 0,0462 166,4568 0,0189 17,0000 -0,16 -0,74 0,00 -20 0,0 14,24 0,0464 167,1084 0,0194 17,0000 -0,10 -0,52 0,00 -30 0,0 13,34 0,0465 167,2668 0,0202 17,000 -0,07 -0,50 0,00 -40 0,0 12,44 0,0465 167,3064 0,0212 17,000 -0,05 -0,51 0,00 -50 0,0 11,54 0,0465 167,3208 0,0228 17,000 -0,04 -0,47 0,00 -60 0,0 10,64 0,0465 167,3208 0,0228 17,000 -0,03 -0,49 0,00 -70 0,0 9,74 0,0465 167,3244 0,0261 17,000 -0,02 -0,48 0,00 -90 0,0 7,94 0,0465 167,3244 0,0260 17,000 -0,02 -0,48 0,00 -0,06	camada de	0	0,0	16,04	0,0455	163,8900	0,0176	17,0000	0,00	0,00	0,00
-20 0,0 14,24 0,0464 167,1084 0,0194 17,0000 -0,10 -0,52 0,00 -30 0,0 13,34 0,0465 167,2668 0,0222 17,0000 -0,07 -0,55 0,00 -40 0,0 12,44 0,0465 167,3064 0,0212 17,0000 -0,05 -0,51 0,00 -50 0,0 11,54 0,0465 167,3172 0,0217 17,0000 -0,04 -0,47 0,00 -60 0,0 10,64 0,0465 167,3208 0,0228 17,0000 -0,03 -0,49 0,00 -70 0,0 9,74 0,0465 167,3244 0,0233 17,000 -0,03 -0,48 0,00 -80 0,0 7,94 0,0465 167,3244 0,0252 17,000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,000 -0,21 -0,06 0,00 0,00 0,00	armazenamento	-10	0,0	15,14	0,0462	166,4568	0,0189	17,0000	-0,16	-0,74	0,00
Offset do dremo 1-30 0,00 13,34 0,0465 167,2668 0,0202 17,0000 -0,07 -0,50 0,00 -40 0,0 12,44 0,0465 167,3064 0,0212 17,0000 -0,05 -0,51 0,00 -50 0,0 11,54 0,0465 167,3172 0,0217 17,0000 -0,04 -0,47 0,00 -60 0,0 10,64 0,0465 167,3208 0,0228 17,0000 -0,03 -0,49 0,00 -70 0,0 9,74 0,0465 167,3244 0,0236 17,0000 -0,03 -0,48 0,00 -80 0,0 8,84 0,0465 167,3244 0,0252 17,0000 -0,02 -0,48 0,00 -90 0,0 7,94 0,0465 167,3244 0,0252 17,0000 -0,02 -0,48 0,00 -100 0,0 7,94 0,0465 167,3280 0,0260 17,0000 -0,21 -0,06 0,00		-20	0,0	14,24	0,0464	167,1084	0,0194	17,0000	-0,10	-0,52	0,00
-40 0,0 12,44 0,0465 167,3064 0,0212 17,0000 -0,05 -0,51 0,00 -50 0,0 11,54 0,0465 167,3172 0,0217 17,0000 -0,04 -0,47 0,00 -60 0,0 10,64 0,0465 167,3208 0,0228 17,0000 -0,03 -0,49 0,00 -70 0,0 9,74 0,0465 167,3244 0,0236 17,0000 -0,03 -0,49 0,00 -80 0,0 8,84 0,0465 167,3244 0,0223 17,0000 -0,03 -0,48 0,00 -90 0,0 7,94 0,0465 167,3244 0,0252 17,000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,000 -0,02 -0,48 0,00 -100 10,0 17,84 0,0361 129,8772 0,0165 18,0000 -0,21 -0,06 0,00 0,00 0,00		-30	0,0	13,34	0,0465	167,2668	0,0202	17,0000	-0,07	-0,50	0,00
-50 0,0 11,54 0,0465 167,3172 0,0217 17,0000 -0,04 -0,47 0,00 -60 0,0 10,64 0,0465 167,3208 0,0228 17,0000 -0,03 -0,49 0,00 -70 0,0 9,74 0,0465 167,3204 0,0236 17,0000 -0,03 -0,49 0,00 -80 0,0 8,84 0,0465 167,3244 0,0236 17,0000 -0,03 -0,48 0,00 -90 0,0 7,94 0,0465 167,3244 0,0252 17,000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3244 0,0260 17,000 -0,21 -0,06 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,000 -0,21 -0,06 0,00 -100 10,0 17,84 0,0369 132,9048 0,0166 17,0000 -0,18 -0,06 0,00 0,00 0,0166		-40	0,0	12,44	0,0465	167,3064	0,0212	17,0000	-0,05	-0,51	0,00
-b0 0,0 10,04 0,0465 167,3208 0,0228 17,0000 -0,03 -0,49 0,00 -70 0,0 9,74 0,0465 167,3244 0,0236 17,0000 -0,03 -0,49 0,00 -80 0,0 8,84 0,0465 167,3244 0,0233 17,0000 -0,03 -0,48 0,00 -90 0,0 7,94 0,0465 167,3244 0,0252 17,0000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,0000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,000 -0,02 -0,48 0,00 -100 10,0 17,84 0,0361 129,8772 0,0165 18,0000 -0,21 -0,06 0,00 80 9,0 17,48 0,0390 140,2596 0,0167 17,0000 -0,15 -0,06 0,00 70 <t< td=""><th></th><td>-50</td><td>0,0</td><td>11,54</td><td>0,0465</td><td>167,3172</td><td>0,0217</td><td>17,0000</td><td>-0,04</td><td>-0,47</td><td>0,00</td></t<>		-50	0,0	11,54	0,0465	167,3172	0,0217	17,0000	-0,04	-0,47	0,00
Offset do dreno 0,0 9,74 0,0465 167,3244 0,0236 17,0000 -0,03 -0,49 0,00 -80 0,0 8,84 0,0465 167,3244 0,0236 17,0000 -0,03 -0,48 0,00 -90 0,0 7,94 0,0465 167,3244 0,0252 17,0000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,0000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,0000 -0,02 -0,48 0,00 -100 10,0 17,84 0,0361 129,8772 0,0165 18,0000 -0,21 -0,06 0,00 90 9,5 17,66 0,0390 140,2596 0,0167 17,0000 -0,18 -0,06 0,00 70 8,5 17,30 0,0449 146,1528 0,0169 17,0000 -0,13 -0,06 0,00 60 <th></th> <td>-00</td> <td>0,0</td> <td>0.74</td> <td>0,0465</td> <td>167,3208</td> <td>0,0228</td> <td>17,0000</td> <td>-0,03</td> <td>-0,49</td> <td>0,00</td>		-00	0,0	0.74	0,0465	167,3208	0,0228	17,0000	-0,03	-0,49	0,00
Offset do dreno 0,0 8,04 0,0465 167,3244 0,0243 17,0000 -0,03 -0,48 0,00 -90 0,0 7,94 0,0465 167,3244 0,0252 17,0000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,0000 -0,02 -0,48 0,00 -100 10,0 17,84 0,0361 129,8772 0,0165 18,0000 -0,21 -0,06 0,06 90 9,5 17,66 0,0369 132,9048 0,0166 17,0000 -0,21 -0,06 0,00 80 9,0 17,48 0,0390 140,2596 0,0167 17,0000 -0,18 -0,06 0,00 70 8,5 17,30 0,0406 146,1528 0,0168 17,0000 -0,13 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,13 -0,06 0,00 400 <th></th> <td>-70</td> <td>0,0</td> <td>9,74</td> <td>0,0465</td> <td>167,3244</td> <td>0,0236</td> <td>17,0000</td> <td>-0,03</td> <td>-0,49</td> <td>0,00</td>		-70	0,0	9,74	0,0465	167,3244	0,0236	17,0000	-0,03	-0,49	0,00
Offset do dreno 7,94 0,0465 167,3244 0,0252 17,0000 -0,02 -0,48 0,00 -100 0,0 7,04 0,0465 167,3280 0,0260 17,0000 -0,02 -0,48 0,00 100 10,0 17,84 0,0361 129,8772 0,0165 18,0000 -0,21 -0,06 0,06 90 9,5 17,66 0,0369 132,9048 0,0166 17,0000 -0,21 -0,06 0,00 80 9,0 17,48 0,0390 140,2596 0,0167 17,0000 -0,18 -0,06 0,00 70 8,5 17,30 0,0406 146,1528 0,0168 17,0000 -0,15 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,13 -0,06 0,00 40 7,0 16,76 0,0437 157,3632 0,0170 17,0000 -0,12 -0,07 0,00 30 6,5		-00	0,0	0,04	0,0405	107,3244	0,0243	17,0000	-0,03	-0,48	0,00
Offset do dreno 100 17,04 0,0485 107,3280 0,0260 17,0000 -0,02 -0,48 0,00 90 100 10,0 17,84 0,0361 129,8772 0,0165 18,0000 -0,21 -0,06 0,06 90 9,5 17,66 0,0369 132,9048 0,0166 17,0000 -0,21 -0,06 0,00 80 9,0 17,48 0,0390 140,2596 0,0167 17,0000 -0,18 -0,06 0,00 70 8,5 17,30 0,0406 146,1528 0,0168 17,0000 -0,15 -0,06 0,00 600 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,13 -0,06 0,00 600 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,12 -0,07 0,00 400 7,0 16,76 0,0437 157,3632 0,0170 17,0000 -0,10 -0,08 0,00 <t< td=""><th></th><td>-90</td><td>0,0</td><td>7,94</td><td>0,0405</td><td>167,3244</td><td>0,0252</td><td>17,0000</td><td>-0,02</td><td>-0,48</td><td>0,00</td></t<>		-90	0,0	7,94	0,0405	167,3244	0,0252	17,0000	-0,02	-0,48	0,00
Offset do dreno 100 17,84 0,0361 129,8772 0,0163 18,0000 -0,21 -0,06 0,00 90 9,5 17,66 0,0369 132,9048 0,0166 17,0000 -0,21 -0,06 0,00 80 9,0 17,48 0,0300 140,2596 0,0167 17,0000 -0,18 -0,06 0,00 70 8,5 17,30 0,0406 146,1528 0,0168 17,0000 -0,15 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,12 -0,07 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,12 -0,07 0,00 40 7,0 16,76 0,0437 157,3632 0,0170 17,0000 -0,12 -0,07 0,00 30 6,5 16,58 0,0443 159,6060 0,0171 17,0000 -0,08 -0,13 0,00 20		-100	10.0	17.04	0,0405	107,3200	0,0260	18,0000	-0,02	-0,48	0,00
Offset do dreno 50 5,3 17,60 0,0369 132,3046 0,0166 17,0000 -0,21 -0,06 0,00 80 9,0 17,48 0,0390 140,2596 0,0167 17,0000 -0,18 -0,06 0,00 70 8,5 17,30 0,0406 146,1528 0,0168 17,0000 -0,15 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,13 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,13 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,12 -0,07 0,00 40 7,0 16,76 0,0437 157,3632 0,0170 17,0000 -0,10 -0,08 0,00 30 6,5 16,58 0,0443 159,6060 0,0171 17,0000 -0,08 -0,13 0,00		00	0.5	17,04	0,0301	123,0772	0,0105	17,0000	-0,21	-0,06	0,00
Offset do dreno 50 17,40 0,0350 140,2350 0,0167 17,0000 -0,18 -0,06 0,00 70 8,5 17,30 0,0406 146,1528 0,0168 17,0000 -0,15 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,13 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,13 -0,06 0,00 40 7,0 16,76 0,0429 154,4436 0,0170 17,0000 -0,12 -0,07 0,00 40 7,0 16,76 0,0437 157,3632 0,0170 17,0000 -0,10 -0,08 0,00 30 6,5 16,58 0,0443 159,6060 0,0171 17,0000 -0,08 -0,13 0,00 20 6,0 16,40 0,0448 161,4276 0,0171 17,0000 -0,08 -0,13 0,00 10		80	9,5	17,00	0,0309	132,9040	0,0167	17,0000	-0,21	-0,00	0,00
Offset do dreno 17.0 0,0400 140,1320 0,0168 17,0000 -0,15 -0,06 0,00 60 8,0 17,12 0,0419 150,8220 0,0169 17,0000 -0,13 -0,06 0,00 50 7,5 16,94 0,0429 154,4436 0,0170 17,0000 -0,12 -0,07 0,00 40 7,0 16,76 0,0437 157,3632 0,0170 17,0000 -0,12 -0,07 0,00 30 6,5 16,58 0,0443 159,6060 0,0171 17,0000 -0,09 -0,09 0,00 20 6,0 16,40 0,0448 161,4276 0,0171 17,0000 -0,08 -0,13 0,00 10 5,5 16,22 0,0452 162,8424 0,0173 17,0000 -0,06 -0,16 0,00		70	8.5	17.30	0,0000	146 1528	0,0107	17,0000	-0,10	-0,00	0,00
Offset do dreno 50 7,5 16,94 0,0429 154,4436 0,0170 17,0000 -0,13 -0,06 0,00 40 7,0 16,76 0,0429 154,4436 0,0170 17,0000 -0,12 -0,07 0,00 30 6,5 16,58 0,0443 157,3632 0,0170 17,0000 -0,10 -0,08 0,00 20 6,0 16,40 0,0448 161,4276 0,0171 17,0000 -0,08 -0,13 0,00 10 5,5 16,22 0,0452 162,8424 0,0173 17,0000 -0,06 -0,16 0,00		60	8.0	17.12	0.0410	150 8220	0,0160	17,0000	-0,15	-0,06	0,00
40 7,0 16,76 0,0423 154,4430 0,0170 17,0000 -0,12 -0,07 0,00 40 7,0 16,76 0,0437 157,3632 0,0170 17,0000 -0,12 -0,07 0,00 30 6,5 16,58 0,0443 159,6060 0,0171 17,0000 -0,09 -0,09 0,00 20 6,0 16,40 0,0448 161,4276 0,0171 17,0000 -0,08 -0,13 0,00 10 5,5 16,22 0,0452 162,8424 0,0173 17,0000 -0,06 -0,16 0,00	Offset do dreno	50	7.5	16.94	0.0420	154 4436	0,0109	17,0000	-0,13	-0,00	0,00
10 10,10 0,0437 101,0032 0,0170 17,0000 -0,10 -0,08 0,00 30 6,5 16,58 0,0443 159,6060 0,0171 17,0000 -0,09 -0,09 0,00 20 6,0 16,40 0,0448 161,4276 0,0171 17,0000 -0,08 -0,13 0,00 10 5,5 16,22 0,0452 162,8424 0,0173 17,0000 -0,06 -0,16 0,00		40	7,5	16.76	0.0437	157 3632	0,0170	17,0000	-0,12	-0,07	0,00
20 6,0 16,40 0,0448 161,4276 0,0171 17,0000 -0,03 -0,09 0,00 10 5,5 16,22 0,0452 162,8424 0,0173 17,0000 -0,08 -0,13 0,00		30	6.5	16.58	0.0443	159 6060	0,0170	17,0000	-0,10	-0,08	0,00
10 5,5 16,22 0,0452 162,8424 0,0173 17,0000 -0,06 -0,16 0,00		20	6.0	16.40	0.0448	161 4276	0,0171	17,0000	-0,09	-0,09	0,00
		10	5.5	16.22	0.0452	162 8424	0,0171	17,0000	-0,08	-0,13	0,00
		0	5.0	16.04	0.0455	163 8900	0.0176	17,0000	0,00	0,10	0,00

										143
	-10	4,5	15,86	0,0458	164,7144	0,0179	17,0000	-0,05	-0,18	0,00
	-20	4,0	15,68	0,0459	165,3444	0,0182	17,0000	-0,04	-0,17	0,00
	-30	3,5	15,50	0,0461	165,8196	0,0185	17,0000	-0,04	-0,16	0,00
	-40	3,0	15,33	0,0462	166,1652	0,0187	17,0000	-0,03	-0,16	0,00
	-50	2,5	15,15	0,0462	166,4424	0,0189	17,0000	-0,03	-0,14	0,00
	-60	2,0	14,97	0,0463	166,6512	0,0190	17,0000	-0,03	-0,14	0,00
	-70	1,5	14,79	0,0463	166,8204	0,0192	17,0000	-0,03	-0,13	0,00
	-80	1,0	14,61	0,0464	166,9428	0,0193	17,0000	-0,02	-0,12	0,00
	-90	0,5	14,43	0,0464	167,0364	0,0194	17,0000	-0,02	-0,11	0,00
	-100	0,0	14,25	0,0464	167,1048	0,0194	17,0000	-0,02	-0,10	0,00
	100	0,8	16,42	0,0448	161,1900	0,0171	17,0000	-0,04	-0,07	0,00
	90	0,7	16,39	0,0449	161,5248	0,0171	17,0000	-0,04	-0,08	0,00
	80	0,7	16,35	0,0450	161,8776	0,0171	17,0000	-0,04	-0,08	0,00
	70	0,7	16,32	0,0450	162,1188	0,0172	17,0000	-0,04	-0,09	0,00
	60	0,7	16,28	0,0451	162,4212	0,0172	17,0000	-0,04	-0,09	0,00
	50	0,7	16,24	0,0452	162,7056	0,0173	17,0000	-0,04	-0,09	0,00
	40	0,6	16,21	0,0452	162,8748	0,0173	17,0000	-0,04	-0,11	0,00
	30	0,6	16,17	0,0453	163,1376	0,0174	17,0000	-0,04	-0,10	0,00
	20	0,6	16,13	0,0454	163,3860	0,0174	17,0000	-0,04	-0,12	0,00
Razão de vazios	10	0,6	16,09	0,0455	163,6200	0,0175	17,0000	-0,04	-0,13	0,00
da camada de	0	0,6	16,04	0,0455	163,8900	0,0176	17,0000	0,00	0,00	0,00
armazenamento	-10	0,5	16,00	0,0456	164,0952	0,0176	17,0000	-0,03	-0,10	0,00
	-20	0,5	15,95	0,0456	164,3328	0,0177	17,0000	-0,04	-0,11	0,00
	-30	0,5	15,91	0,0457	164,5092	0,0178	17,0000	-0,03	-0,11	0,00
	-40	0,5	15,86	0,0458	164,7144	0,0179	17,0000	-0,03	-0,12	0,00
	-50	0,5	15,81	0,0458	164,9088	0,0180	17,0000	-0,03	-0,12	0,00
	-60	0,4	15,76	0,0459	165,0852	0,0180	17,0000	-0,03	-0,12	0,00
	-70	0,4	15,71	0,0459	165,2508	0,0181	17,0000	-0,03	-0,12	0,00
	-80	0,4	15,66	0,0459	165,4020	0,0182	17,0000	-0,03	-0,12	0,00
	-90	0,4	15,60	0,0460	165,5712	0,0183	17,0000	-0,03	-0,12	0,00
	-100	0,4	15,55	0,0460	165,7008	0,0184	17,0000	-0,03	-0,12	0,00
Duração do		ANA		SENSIE						
Evento:	30 minuto)S								
Tempo de	2 anos									
recorrência:	- 41100	1	1	1	1	1	1	1	1	1
				Vazão	Vazão	Volume	Tempo			
Parâmetro	variaçao	Valores	Dstore	ae	de pico	ISTOJ	de pico	CS Vazão	Volume	CS tempo
	(70)			(l/s)	(mm/h)	(mm)	(min)	Vazau	Volume	tempo
	100	2.0	17.04	0.0511	183,8988	0.0206	17.0000	0.00	-0.04	0.00
	90	1.9	16.94	0.0511	184.0500	0.0207	17.0000	0.00	-0.04	0.00
	80	1,8	16,84	0,0512	184,1796	0.0208	17,0000	0.00	-0.03	0.00
	70	1,7	16,74	0,0512	184,2912	0.0209	17,0000	0.00	-0.03	0.00
	60	1,6	16,64	0,0512	184,3884	0.0210	17,0000	0.00	-0.03	0.00
	50	1,5	16,54	0,0512	184,4784	0,0211	17,0000	0.00	-0.03	0.00
Armazenamento	40	1,4	16,44	0,0513	184,5540	0,0212	17,0000	0,00	-0.02	0,00
em depressao	30	1,3	16,34	0,0513	184,6188	0,0213	17,0000	0,00	-0,02	0,00
Superincial	20	1,2	16,24	0,0513	184,6764	0,0213	17,0000	0,00	-0.02	0,00
	10	1,1	16,14	0,0513	184,7232	0,0214	17,0000	0,00	-0,02	0,00
	0	1,0	16,04	0,0513	184,7664	0,0214	17,0000	0,00	0,00	0,00
	-10	0,9	15,94	0,0513	184,8024	0,0214	17,0000	0,00	-0,01	0,00
	-20	0,8	15,84	0,0513	184,8312	0,0215	17,0000	0,00	-0,02	0,00
	-30	07	15 74	0.0514	184 8600	0.0215	17 0000	0.00	0.01	0.00

										144
	-40	0,6	15,64	0,0514	184,8816	0,0215	17,0000	0,00	-0,01	0,00
	-50	0,5	15,54	0,0514	184,9032	0,0215	17,0000	0,00	-0,01	0,00
	-60	0,4	15,44	0,0514	184,9176	0.0216	17,0000	0.00	-0.01	0.00
	-70	0,3	15,34	0,0514	184,9356	0,0216	17,0000	0,00	-0,01	0,00
	-80	0,2	15,24	0,0514	184,9464	0,0216	17,0000	0,00	-0,01	0,00
	-90	0,1	15,14	0,0514	184,9572	0,0218	17,0000	0,00	-0,02	0,00
	-100	0,0	15,04	0,0514	184,9644	0,0219	17,0000	0,00	-0,02	0,00
	100	0,1	19,04	0,0463	166,7016	0,0187	17,0000	-0,10	-0,13	0,00
	90	0,1	18,74	0,0479	172,5588	0,0188	17,0000	-0,07	-0,14	0,00
	80	0,1	18,44	0,0490	176,5368	0,0189	17,0000	-0,06	-0,15	0,00
	70	0,1	18,14	0,0499	179,5968	0,0189	17,0000	-0,04	-0,16	0,00
	60	0,1	17,84	0,0504	181,4544	0,0193	17,0000	-0,03	-0,16	0,00
	50	0,1	17,54	0,0508	182,7036	0,0198	17,0000	-0,02	-0,15	0,00
	40	0,1	17,24	0,0510	183,5208	0,0203	17,0000	-0,02	-0,13	0,00
	30	0,1	16,94	0,0511	184,0500	0,0207	17,0000	-0,01	-0,11	0,00
	20	0,1	16,64	0,0512	184,3884	0,0210	17,0000	-0,01	-0,09	0,00
Capacidade de	10	0,1	16,34	0,0513	184,6188	0,0213	17,0000	-0,01	-0,07	0,00
campo	0	0,1	16,04	0,0513	184,7664	0,0214	17,0000	0,00	0,00	0,00
revestimento	-10	0,0	15,74	0,0514	184,8600	0,0215	17,0000	-0,01	-0,04	0,00
	-20	0,0	15,44	0,0514	184,9176	0,0216	17,0000	0,00	-0,04	0,00
	-30	0,0	15,14	0,0514	184,9572	0,0218	17,0000	0,00	-0,06	0,00
	-40	0,0	14,84	0,0514	184,9788	0,0222	17,0000	0,00	-0,10	0,00
	-50	0,0	14,54	0,0514	184,9932	0,0227	17,0000	0,00	-0,12	0,00
	-60	0,0	14,24	0,0514	185,0004	0,0231	17,0000	0,00	-0,13	0,00
	-70	0,0	13,94	0,0514	185,0076	0,0234	17,0000	0,00	-0,13	0,00
	-80	0,0	13,64	0,0514	185,0112	0,0235	17,0000	0,00	-0,12	0,00
	-90	0,0	13,34	0,0514	185,0112	0,0236	17,0000	0,00	-0,12	0,00
	-100	0,0	13,04	0,0514	185,0148	0,0237	17,0000	0,00	-0,11	0,00
	100	0,1	17,29	0,0509	183,4056	0,0202	17,0000	-0,01	-0,05	0,00
	90	0,0	17,17	0,0510	183,6648	0,0204	17,0000	-0,01	-0,05	0,00
	80	0,0	17,04	0,0511	183,8988	0,0206	17,0000	-0,01	-0,05	0,00
	70	0,0	16,92	0,0511	184,0752	0,0208	17,0000	-0,01	-0,04	0,00
	60	0,0	16,79	0,0512	184,2372	0,0209	17,0000	0,00	-0,04	0,00
	50	0,0	16,67	0,0512	184,3596	0,0210	17,0000	0,00	-0,04	0,00
	40	0,0	16,54	0,0512	184,4784	0,0211	17,0000	0,00	-0,03	0,00
	30	0,0	16,42	0,0513	184,5684	0,0212	17,0000	0,00	-0,03	0,00
	20	0,0	16,29	0,0513	184,6476	0,0213	17,0000	0,00	-0,03	0,00
Capacidade de	10	0,0	16,17	0,0513	184,7124	0,0213	17,0000	0,00	-0,03	0,00
camada de	0	0,0	16,04	0,0513	184,7664	0,0214	17,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0513	184,8096	0,0214	17,0000	0,00	-0,01	0,00
	-20	0,0	15,79	0,0513	184,8456	0,0215	17,0000	0,00	-0,02	0,00
	-30	0,0	15,67	0,0514	184,8744	0,0215	17,0000	0,00	-0,02	0,00
	-40	0,0	15,54	0,0514	184,9032	0,0215	17,0000	0,00	-0,01	0,00
	-50	0,0	15,42	0,0514	184,9212	0,0216	17,0000	0,00	-0,02	0,00
	-60	0,0	15,29	0,0514	184,9392	0,0216	17,0000	0,00	-0,02	0,00
	-70	0,0	15,17	0,0514	184,9536	0,0218	17,0000	0,00	-0,02	0,00
	-80	0,0	15,04	0,0514	184,9644	0,0219	17,0000	0,00	-0,03	0,00
	-90	0,0	14,92	0,0514	184,9752	0,0221	17,0000	0,00	-0,04	0,00
	-100	0,0	14,79	0,0514	184,9824	0,0223	17,0000	0,00	-0,04	0,00
Capacidada da	100	0,1	25,04	0,0280	100,8756	0,0128	20,0000	-0,45	-0,40	0,18
campo da	90	0,0	24,14	0,0295	106,0956	0,0133	19,0000	-0,47	-0,42	0,13
camada de	80	0,0	23,24	0,0319	114,7644	0,0144	19,0000	-0,47	-0,41	0,15
armazenamento	70	0,0	22,34	0,0324	116,6688	0,0154	19,0000	-0,53	-0,40	0,17
	60	0,0	21,44	0,0379	136,3752	0,0158	18,0000	-0,44	-0,44	0,10

										145
	50	0,0	20,54	0,0395	142,1136	0,0172	18,0000	-0,46	-0,39	0,12
	40	0,0	19,64	0,0404	145,5840	0,0183	17,0000	-0,53	-0,36	0,00
	30	0,0	18,74	0,0479	172,5588	0,0188	17,0000	-0,22	-0,41	0,00
	20	0,0	17,84	0,0504	181,4544	0,0193	17,0000	-0,09	-0,49	0,00
	10	0,0	16,94	0,0511	184,0500	0,0207	17,0000	-0,04	-0,33	0,00
	0	0,0	16,04	0,0513	184,7664	0,0214	17,0000	0,00	0,00	0,00
	-10	0,0	15,14	0,0514	184,9572	0,0218	17,0000	-0,01	-0,18	0,00
	-20	0,0	14,24	0,0514	185,0004	0,0231	17,0000	-0,01	-0,39	0,00
	-30	0,0	13,34	0,0514	185,0112	0,0236	17,0000	0,00	-0,35	0,00
	-40	0,0	12,44	0,0514	185,0148	0,0245	17,0000	0,00	-0,36	0,00
	-50	0,0	11,54	0,0514	185,0184	0,0254	17,0000	0,00	-0,37	0,00
	-60	0,0	10,64	0,0514	185,0220	0,0262	17,0000	0,00	-0,37	0,00
	-70	0,0	9,74	0,0514	185,0256	0,0271	17,0000	0,00	-0,38	0,00
	-80	0,0	8,84	0,0514	185,0292	0,0281	17,0000	0,00	-0,39	0,00
	-90	0,0	7,94	0,0514	185,0328	0,0288	17,0000	0,00	-0,38	0,00
	-100	0,0	7,04	0,0514	185,0328	0,0295	17,0000	0,00	-0,38	0,00
	100	10,0	17,84	0,0504	181,4544	0,0193	17,0000	-0,02	-0,10	0,00
	90	9,5	17,66	0,0506	182,2680	0,0196	17,0000	-0,02	-0,09	0,00
	80	9,0	17,48	0,0508	182,8944	0,0199	17,0000	-0,01	-0,09	0,00
	/0	8,5	17,30	0,0509	183,3840	0,0202	17,0000	-0,01	-0,08	0,00
	60	8,0	17,12	0,0510	183,7584	0,0205	17,0000	-0,01	-0,07	0,00
	50	7,5	16,94	0,0511	184,0500	0,0207	17,0000	-0,01	-0,07	0,00
	40	7,0	16,76	0,0512	184,2696	0,0209	17,0000	-0,01	-0,06	0,00
	30	6,5	16,58	0,0512	184,4460	0,0211	17,0000	-0,01	-0,05	0,00
	20	6,0	16,40	0,0513	184,5828	0,0212	17,0000	0,00	-0,04	0,00
Offect de drope	10	5,5	10,22	0,0513	184,0872	0,0213	17,0000	0,00	-0,04	0,00
Onset do dreno	10	5,0	16,04	0,0513	104,7004	0,0214	17,0000	0,00	0,00	0,00
	-10	4,5	15,00	0,0513	104,0270	0,0214	17,0000	0,00	-0,02	0,00
	-20	3.5	15,00	0,0514	18/ 010/	0,0215	17,0000	0,00	-0,02	0,00
	-30	3.0	15,30	0.0514	184 9356	0,0215	17,0000	0,00	-0,02	0,00
	-50	2.5	15,55	0.0514	184 9572	0,0210	17,0000	0,00	-0,02	0,00
	-60	2,0	14.97	0.0514	184 9716	0,0210	17,0000	0,00	-0,04	0,00
	-70	1.5	14 79	0.0514	184,9824	0.0223	17,0000	0,00	-0,05	0,00
	-80	1,0	14.61	0.0514	184,9896	0.0226	17,0000	0,00	-0.07	0,00
	-90	0.5	14.43	0.0514	184.9968	0.0228	17.0000	0.00	-0.07	0.00
	-100	0,0	14,25	0,0514	185,0004	0.0231	17,0000	0.00	-0.08	0.00
	100	0,8	16,42	0,0513	184,5684	0,0212	17,0000	0,00	-0,03	0,00
	90	0,7	16,39	0,0513	184,5900	0,0212	17,0000	0,00	-0,02	0,00
	80	0,7	16,35	0,0513	184,6152	0,0213	17,0000	0,00	-0,02	0,00
	70	0,7	16,32	0,0513	184,6332	0,0213	17,0000	0,00	-0,02	0,00
	60	0,7	16,28	0,0513	184,6548	0,0213	17,0000	0,00	-0,03	0,00
	50	0,7	16,24	0,0513	184,6764	0,0213	17,0000	0,00	-0,02	0,00
	40	0,6	16,21	0,0513	184,6908	0,0213	17,0000	0,00	-0,03	0,00
Razão de vazios	30	0,6	16,17	0,0513	184,7124	0,0213	17,0000	0,00	-0,03	0,00
da camada de	20	0,6	16,13	0,0513	184,7304	0,0214	17,0000	0,00	-0,03	0,00
armazenamento	10	0,6	16,09	0,0513	184,7484	0,0214	17,0000	0,00	-0,05	0,00
	0	0,6	16,04	0,0513	184,7664	0,0214	17,0000	0,00	0,00	0,00
	-10	0,5	16,00	0,0513	184,7808	0,0214	17,0000	0,00	0,00	0,00
	-20	0,5	15,95	0,0513	184,7988	0,0214	17,0000	0,00	-0,02	0,00
	-30	0,5	15,91	0,0513	184,8132	0,0215	17,0000	0,00	-0,03	0,00
	-40	0,5	15,86	0,0513	184,8276	0,0214	17,0000	0,00	-0,01	0,00
	-50	0,5	15,81	0,0513	184,8420	0,0215	17,0000	0,00	-0,02	0,00
	-60	0,4	15,76	0,0513	184,8528	0,0215	17,0000	0,00	-0,02	0,00

1										
	-70	0,4	15,71	0,0514	184,8636	0,0215	17,0000	0,00	-0,02	0,00
	-80	0,4	15,66	0,0514	184,8780	0,0215	17,0000	0,00	-0,02	0,00
	-90	0,4	15,60	0,0514	184,8924	0,0215	17,0000	0,00	-0,02	0,00
	-100	0,4	15,55	0,0514	184,8996	0,0216	17,0000	0,00	-0,02	0,00
		ANÁ	ALISE DE	SENSIE	BILIDADE -	EVENTO 9				
Duração do Evento:	30 minuto	S								
Tempo de recorrência:	5 anos									
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (mm)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0587	211,2660	0,0252	17,0000	0,00	-0,05	0,00
	90	1,9	16,94	0,0587	211,2696	0,0254	17,0000	0,00	-0,05	0,00
	80	1,8	16,84	0,0587	211,2768	0,0256	17,0000	0,00	-0,05	0,00
	70	1,7	16,74	0,0587	211,2768	0,0258	17,0000	0,00	-0,05	0,00
	60	1,6	16,64	0,0587	211,2804	0,0259	17,0000	0,00	-0,04	0,00
	50	1,5	16,54	0,0587	211,2840	0,0260	17,0000	0,00	-0,04	0,00
	40	1,4	16,44	0,0587	211,2840	0,0262	17,0000	0,00	-0,04	0,00
	30	1,3	16,34	0,0587	211,2876	0,0263	17,0000	0,00	-0,04	0,00
	20	1,2	16,24	0,0587	211,2876	0,0264	17,0000	0,00	-0,04	0,00
Armazenamento	10	1,1	16,14	0,0587	211,2912	0,0265	17,0000	0,00	-0,04	0,00
em depressão	0	1,0	16,04	0,0587	211,2912	0,0266	17,0000	0,00	0,00	0,00
superficial	-10	0,9	15,94	0,0587	211,2912	0,0267	17,0000	0,00	-0,03	0,00
	-20	0,8	15,84	0,0587	211,2948	0,0267	17,0000	0,00	-0,03	0,00
	-30	0,7	15,74	0,0587	211,2948	0,0268	17,0000	0,00	-0,03	0,00
	-40	0,6	15,64	0,0587	211,2948	0,0269	17,0000	0,00	-0,03	0,00
	-50	0,5	15,54	0,0587	211,2948	0,0269	17,0000	0,00	-0,02	0,00
	-60	0,4	15,44	0,0587	211,2984	0,0269	17,0000	0,00	-0,02	0,00
	-70	0,3	15,34	0,0587	211,2984	0,0270	17,0000	0,00	-0,02	0,00
	-80	0,2	15,24	0,0587	211,2984	0,0270	17,0000	0,00	-0,02	0,00
	-90	0,1	15,14	0,0587	211,2984	0,0270	17,0000	0,00	-0,02	0,00
	-100	0,0	15,04	0,0587	211,2984	0,0271	17,0000	0,00	-0,02	0,00
	100	0,1	19,04	0,0585	210,7476	0,0240	17,0000	0,00	-0,10	0,00
	90	0,1	18,74	0,0586	210,9384	0,0242	17,0000	0,00	-0,10	0,00
	80	0,1	18,44	0,0586	211,0608	0,0244	17,0000	0,00	-0,10	0,00
	70	0,1	18,14	0,0587	211,1400	0,0245	17,0000	0,00	-0,11	0,00
	60	0,1	17,84	0,0587	211,1976	0,0246	17,0000	0,00	-0,12	0,00
	50	0,1	17,54	0,0587	211,2300	0,0247	17,0000	0,00	-0,14	0,00
	40	0,1	17,24	0,0587	211,2552	0,0249	17,0000	0,00	-0,16	0,00
	30	0,1	16,94	0,0587	211,2696	0,0254	17,0000	0,00	-0,15	0,00
	20	0,1	16,64	0,0587	211,2804	0,0259	17,0000	0,00	-0,13	0,00
Capacidade de	10	0,1	16,34	0,0587	211,2876	0,0263	17,0000	0,00	-0,11	0,00
revestimento	0	0,1	16,04	0,0587	211,2912	0,0266	17,0000	0,00	0,00	0,00
	-10	0,0	15,74	0,0587	211,2948	0,0268	17,0000	0,00	-0,09	0,00
	-20	0,0	15,44	0,0587	211,2984	0,0269	17,0000	0,00	-0,06	0,00
	-30	0,0	15,14	0,0587	211,2984	0,0270	17,0000	0,00	-0,06	0,00
	-40	0,0	14,84	0,0587	211,2984	0,0271	17,0000	0,00	-0,05	0,00
	-50	0,0	14,54	0,0587	211,3020	0,0275	17,0000	0,00	-0,07	0,00
	-60	0,0	14,24	0,0587	211,3020	0,0280	17,0000	0,00	-0,09	0,00
	-70	0,0	13,94	0,0587	211,3020	0,0284	17,0000	0,00	-0,10	0,00
	-80	0,0	13,64	0,0587	211,3020	0,0287	17,0000	0,00	-0,10	0,00
	-90	0.0	13.34	0.0587	211.3020	0.0289	17.0000	0.00	-0.10	0.00

	-100	0,0	13,04	0,0587	211,3020	0,0290	17,0000	0,00	-0,09	0,00
	100	0,1	17,29	0,0587	211,2516	0,0249	17,0000	0,00	-0,06	0,00
	90	0,0	17,17	0,0587	211,2588	0,0250	17,0000	0,00	-0,07	0,00
	80	0,0	17,04	0,0587	211,2660	0,0252	17,0000	0,00	-0,06	0,00
	70	0,0	16,92	0,0587	211,2732	0,0255	17,0000	0,00	-0,06	0,00
	60	0,0	16,79	0,0587	211,2768	0,0257	17,0000	0,00	-0,06	0,00
	50	0,0	16,67	0,0587	211,2804	0,0258	17,0000	0,00	-0,06	0,00
	40	0,0	16,54	0,0587	211,2840	0,0260	17,0000	0,00	-0,05	0,00
	30	0,0	16,42	0,0587	211,2876	0,0262	17,0000	0,00	-0,05	0,00
	20	0,0	16,29	0,0587	211,2876	0.0264	17,0000	0.00	-0.05	0.00
Capacidade de	10	0,0	16,17	0,0587	211,2912	0,0265	17,0000	0,00	-0,05	0,00
campo da	0	0,0	16,04	0,0587	211,2912	0.0266	17,0000	0.00	0.00	0.00
camada de	-10	0,0	15,92	0,0587	211,2948	0.0267	17,0000	0.00	-0.03	0.00
assentamento	-20	0.0	15.79	0.0587	211.2948	0.0268	17.0000	0.00	-0.03	0.00
	-30	0,0	15,67	0.0587	211,2948	0.0269	17,0000	0.00	-0.03	0.00
	-40	0.0	15.54	0.0587	211,2948	0.0269	17.0000	0,00	-0.03	0,00
	-50	0.0	15.42	0.0587	211.2984	0.0270	17.0000	0.00	-0.03	0.00
	-60	0.0	15.29	0.0587	211,2984	0.0270	17.0000	0,00	-0.02	0,00
	-70	0.0	15,17	0.0587	211,2984	0.0270	17.0000	0,00	-0.02	0,00
	-80	0.0	15.04	0.0587	211 2984	0.0271	17 0000	0,00	-0.02	0,00
	-90	0.0	14 92	0.0587	211,2001	0.0271	17,0000	0,00	-0.02	0,00
	-100	0.0	14 79	0.0587	211 2984	0.0272	17,0000	0,00	-0.02	0,00
	100	0.1	25.04	0.0415	149 3856	0.0179	17,0000	-0.29	-0.33	0,00
	90	0.0	24 14	0.0445	160.0452	0.0184	17,0000	-0,20	-0,34	0,00
	80	0.0	23.24	0.0454	163 3464	0,0104	17,0000	-0,27	_0.31	0,00
	70	0,0	22.34	0.0485	174 6216	0,0200	17,0000	-0,20	-0,31	0,00
	60	0,0	21 44	0.0552	198 7884	0,0211	17,0000	-0,23	-0,30	0,00
	50	0,0	20.54	0.0576	207 3132	0,0213	17,0000	-0,10	-0,32	0,00
	40	0,0	19.64	0.0584	210 0780	0,0210	17,0000	-0,04	-0,30	0,00
	30	0.0	18 74	0.0586	210,0700	0,0200	17,0000	-0,01	_0.20	0,00
	20	0,0	17 84	0.0587	211 1976	0,0242	17,0000	0,01	-0,23	0,00
Capacidade de	10	0,0	16.94	0.0587	211,1070	0,0240	17,0000	0,00	-0,07	0,00
campo da	0	0,0	16.04	0.0587	211,2000	0,0204	17,0000	0,00	0,00	0,00
camada de	-10	0,0	15 14	0.0587	211,2012	0,0200	17,0000	0,00	-0.17	0,00
armazenamento	-20	0,0	14 24	0.0587	211,2004	0,0270	17,0000	0,00	-0.26	0,00
	-30	0,0	13.34	0.0587	211,3020	0,0200	17,0000	0,00	_0.20	0,00
	-40	0,0	12 44	0.0587	211,0020	0,0205	17,0000	0,00	0.23	0,00
	-50	0,0	11 54	0.0587	211,0000	0,0235	17,0000	0,00	-0,27	0,00
	-60	0,0	10.64	0.0587	211,0000	0,0000	17,0000	0,00	_0.20	0,00
	-70	0.0	9 74	0.0587	211,0000	0.0321	17,0000	0,00	-0.30	0,00
	-80	0,0	8.84	0.0587	211,0002	0,0021	17,0000	0,00	-0,30	0,00
	-90	0,0	7.94	0.0587	211,0002	0.0336	17,0000	0,00	-0.20	0,00
	-100	0,0	7 04	0.0587	211,0002	0.0346	17,0000	0,00	-0.30	0,00
	100	10.0	17.84	0.0587	211 1976	0.0246	17,0000	0,00	-0.07	0,00
	90	9.5	17.66	0.0587	211 2192	0.0246	17,0000	0,00	-0.08	0,00
	80	9.0	17.48	0.0587	211 2372	0.0247	17,0000	0,00	-0.00	0,00
	70	8.5	17.30	0.0587	211 2516	0.0249	17,0000	0,00	-0.09	0,00
	60	8.0	17 12	0.0587	211,2010	0.0251	17,0000	0,00	-0.09	0,00
Offset do dreno	50	7.5	16.94	0.0587	211,2696	0.0254	17,0000	0,00	_0.09	0,00
	40	7,0	16.76	0.0587	211,2000	0.0257	17,0000	0,00	-0.09	0,00
	30	6.5	16,70	0.0587	211,2700	0.0257	17,0000	0,00	-0.07	0,00
	20	6.0	16.40	0.0587	211,2070	0,0200	17,0000	0,00	-0.07	0,00
	10	5.5	16.22	0.0587	211 2012	0,0202	17,0000	0,00	-0,07	0,00
	0	5.0	16.04	0.0587	211 2012	0,0204	17,0000	0,00	-0,07	0,00
		5,5	10,04	0,0007	211,2012	0,0200	11,0000	0,00	0,00	0,00

										148
	-10	4,5	15,86	0.0587	211,2948	0.0267	17,0000	0.00	-0.06	0.00
	-20	4,0	15,68	0,0587	211,2948	0.0268	17,0000	0.00	-0.04	0.00
	-30	3.5	15.50	0.0587	211.2948	0.0269	17.0000	0.00	-0.04	0.00
	-40	3,0	15,33	0,0587	211,2984	0.0270	17,0000	0.00	-0.04	0.00
	-50	2,5	15,15	0,0587	211,2984	0.0270	17,0000	0.00	-0.03	0.00
	-60	2,0	14,97	0,0587	211,2984	0,0271	17,0000	0,00	-0,03	0,00
	-70	1,5	14,79	0,0587	211,2984	0.0272	17,0000	0.00	-0.03	0.00
	-80	1,0	14,61	0,0587	211,2984	0.0274	17,0000	0.00	-0.04	0.00
	-90	0,5	14,43	0,0587	211,3020	0.0277	17,0000	0.00	-0.05	0.00
	-100	0,0	14,25	0,0587	211,3020	0.0280	17,0000	0.00	-0.05	0.00
	100	0,8	16,42	0,0587	211,2876	0,0262	17,0000	0,00	-0,04	0,00
	90	0,7	16,39	0,0587	211,2876	0,0262	17,0000	0,00	-0,04	0,00
	80	0,7	16,35	0,0587	211,2876	0,0263	17,0000	0,00	-0,04	0,00
	70	0,7	16,32	0,0587	211,2876	0,0263	17,0000	0,00	-0,04	0,00
	60	0,7	16,28	0,0587	211,2876	0,0264	17,0000	0,00	-0,04	0,00
	50	0,7	16,24	0,0587	211,2876	0,0264	17,0000	0,00	-0.04	0,00
	40	0,6	16,21	0,0587	211,2912	0,0264	17,0000	0,00	-0,04	0,00
	30	0,6	16,17	0,0587	211,2912	0,0265	17,0000	0,00	-0,04	0,00
	20	0,6	16,13	0,0587	211,2912	0,0265	17,0000	0,00	-0,04	0,00
Razão de vazios	10	0,6	16,09	0,0587	211,2912	0,0266	17,0000	0,00	-0,03	0,00
da camada de	0	0,6	16,04	0,0587	211,2912	0,0266	17,0000	0,00	0,00	0,00
armazenamento	-10	0,5	16,00	0,0587	211,2912	0,0266	17,0000	0,00	-0,01	0,00
	-20	0,5	15,95	0,0587	211,2912	0,0267	17,0000	0,00	-0,04	0,00
	-30	0,5	15,91	0,0587	211,2948	0,0267	17,0000	0,00	-0,03	0,00
	-40	0,5	15,86	0,0590	212,2668	0,0267	17,0000	-0,03	-0,04	0,00
	-50	0,5	15,81	0,0590	212,2668	0,0268	17,0000	-0,02	-0,04	0,00
	-60	0,4	15,76	0,0590	212,2668	0,0268	17,0000	-0,02	-0,03	0,00
	-70	0,4	15,71	0,0590	212,2668	0,0268	17,0000	-0,02	-0,03	0,00
	-80	0,4	15,66	0,0590	212,2668	0,0269	17,0000	-0,02	-0,04	0,00
	-90	0,4	15,60	0,0590	212,2668	0,0269	17,0000	-0,01	-0,03	0,00
	-100	0,4	15,55	0,0590	212,2668	0,0269	17,0000	-0,01	-0,03	0,00
	-	ANÁ	LISE DE	SENSIB	ILIDADE - I	EVENTO 1	0			
Duração do Evento:	30 minuto	S								
Tempo de	10 anos									
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (mm)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0650	234,1404	0,0298	17,0000	0.00	-0.02	0.00
	90	1,9	16,94	0,0650	234,1404	0,0299	17,0000	0.00	-0.03	0.00
	80	1,8	16,84	0,0650	234,1404	0,0299	17,0000	0.00	-0.03	0.00
	70	1,7	16,74	0,0650	234,1404	0,0299	17,0000	0.00	-0.03	0.00
	60	1,6	16,64	0,0650	234,1404	0,0299	17,0000	0,00	-0.04	0,00
	50	1,5	16,54	0,0650	234,1404	0,0300	17,0000	0,00	-0,04	0,00
Armazenamento	40	1,4	16,44	0,0650	234,1404	0,0300	17,0000	0,00	-0,05	0,00
eni uepressao	30	1,3	16,34	0,0650	234,1404	0,0302	17,0000	0,00	-0,04	0,00
	20	1,2	16,24	0,0650	234,1404	0,0303	17,0000	0,00	-0,05	0,00
	10	1,1	16,14	0,0650	234,1404	0,0304	17,0000	0,00	-0,05	0,00
	0	1,0	16,04	0,0650	234,1440	0,0306	17,0000	0,00	0.00	0,00
1					001.1110		17,0000	0.00	0,00	0.00
	-10	0,9	15,94	0,0650	234,1440	0,0308	17,0000	0.00	-0.06	0.00
	-10 -20	0,9 0,8	15,94 15,84	0,0650	234,1440	0,0308	17,0000	0,00	-0,06	0,00

										149
	-40	0,6	15,64	0,0650	234,1440	0.0312	17,0000	0,00	-0,05	0,00
	-50	0,5	15,54	0,0650	234,1440	0,0313	17,0000	0,00	-0,05	0,00
	-60	0,4	15,44	0,0650	234,1440	0,0315	17,0000	0,00	-0,05	0,00
	-70	0,3	15,34	0,0650	234,1440	0,0316	17,0000	0,00	-0,05	0,00
	-80	0,2	15,24	0,0650	234,1440	0,0317	17,0000	0,00	-0,05	0,00
	-90	0,1	15,14	0,0650	234,1440	0,0317	17,0000	0,00	-0,04	0,00
	-100	0,0	15,04	0,0650	234,1440	0,0318	17,0000	0,00	-0,04	0,00
	100	0,1	19,04	0,0650	234,1080	0,0277	17,0000	0,00	-0,10	0,00
	90	0,1	18,74	0,0650	234,1188	0,0282	17,0000	0,00	-0,09	0,00
	80	0,1	18,44	0,0650	234,1260	0,0287	17,0000	0,00	-0,08	0,00
	70	0,1	18,14	0,0650	234,1332	0,0291	17,0000	0,00	-0,07	0,00
	60	0,1	17,84	0,0650	234,1332	0,0294	17,0000	0,00	-0,06	0,00
	50	0,1	17,54	0,0650	234,1368	0,0296	17,0000	0,00	-0,06	0,00
	40	0,1	17,24	0,0650	234,1404	0,0298	17,0000	0,00	-0,07	0,00
	30	0,1	16,94	0,0650	234,1404	0,0299	17,0000	0,00	-0,08	0,00
	20	0,1	16,64	0,0650	234,1404	0,0299	17,0000	0,00	-0,11	0,00
Capacidade de	10	0,1	16,34	0,0650	234,1404	0,0302	17,0000	0,00	-0,13	0,00
campo	0	0,1	16,04	0,0650	234,1440	0,0306	17,0000	0,00	0,00	0,00
revestimento	-10	0,0	15,74	0,0650	234,1440	0,0311	17,0000	0,00	-0,17	0,00
	-20	0,0	15,44	0,0650	234,1440	0,0315	17,0000	0,00	-0,15	0,00
	-30	0,0	15,14	0,0650	234,1440	0,0317	17,0000	0,00	-0,13	0,00
	-40	0,0	14,84	0,0650	234,1440	0,0320	17,0000	0,00	-0,11	0,00
	-50	0,0	14,54	0,0650	234,1440	0,0321	17,0000	0,00	-0,10	0,00
	-60	0,0	14,24	0,0650	234,1440	0,0321	17,0000	0,00	-0,09	0,00
	-70	0,0	13,94	0,0650	234,1440	0,0324	17,0000	0,00	-0,09	0,00
	-80	0,0	13,64	0,0650	234,1440	0,0328	17,0000	0,00	-0,09	0,00
	-90	0,0	13,34	0,0650	234,1440	0,0333	17,0000	0,00	-0,10	0,00
	-100	0,0	13,04	0,0650	234,1476	0,0336	17,0000	0,00	-0,10	0,00
	100	0,1	17,29	0,0650	234,1404	0,0297	17,0000	0,00	-0,03	0,00
	90	0,0	17,17	0,0650	234,1404	0,0298	17,0000	0,00	-0,03	0,00
	80	0,0	17,04	0,0650	234,1404	0,0298	17,0000	0,00	-0,03	0,00
	70	0,0	16,92	0,0650	234,1404	0,0299	17,0000	0,00	-0,03	0,00
	60	0,0	16,79	0,0650	234,1404	0,0299	17,0000	0,00	-0,04	0,00
	50	0,0	16,67	0,0650	234,1404	0,0299	17,0000	0,00	-0,04	0,00
	40	0,0	16,54	0,0650	234,1404	0,0300	17,0000	0,00	-0,05	0,00
	30	0,0	16,42	0,0650	234,1404	0,0300	17,0000	0,00	-0,06	0,00
	20	0,0	16,29	0,0650	234,1404	0,0302	17,0000	0,00	-0,06	0,00
Capacidade de	10	0,0	16,17	0,0650	234,1404	0,0304	17,0000	0,00	-0,06	0,00
camada de	0	0,0	16,04	0,0650	234,1440	0,0306	17,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0650	234,1440	0,0308	17,0000	0,00	-0,07	0,00
	-20	0,0	15,79	0,0650	234,1440	0,0310	17,0000	0,00	-0,07	0,00
	-30	0,0	15,67	0,0650	234,1440	0,0311	17,0000	0,00	-0,06	0,00
	-40	0,0	15,54	0,0650	234,1440	0,0313	17,0000	0,00	-0,06	0,00
	-50	0,0	15,42	0,0650	234,1440	0,0315	17,0000	0,00	-0,06	0,00
	-60	0,0	15,29	0,0650	234,1440	0,0316	17,0000	0,00	-0,06	0,00
	-70	0,0	15,17	0,0650	234,1440	0,0317	17,0000	0,00	-0,05	0,00
	-80	0,0	15,04	0,0650	234,1440	0,0318	17,0000	0,00	-0,05	0,00
	-90	0,0	14,92	0,0650	234,1440	0,0319	17,0000	0,00	-0,05	0,00
	-100	0,0	14,79	0,0650	234,1440	0,0320	17,0000	0,00	-0,05	0,00
Capacidada da	100	0,1	25,04	0,0508	182,7036	0,0231	17,0000	-0,22	-0,25	0,00
capacidade de	90	0,0	24,14	0,0598	215,3952	0,0236	17,0000	-0,09	-0,25	0,00
camada de	80	0,0	23,24	0,0632	227,5704	0,0239	17,0000	-0,04	-0,27	0,00
armazenamento	70	0,0	22,34	0,0644	231,9228	0,0248	17,0000	-0,01	-0,27	0,00
	60	0,0	21,44	0,0648	233,4132	0,0263	17,0000	-0,01	-0,23	0,00

										150
	50	0,0	20,54	0,0650	233,9136	0,0270	17,0000	0,00	-0,24	0,00
	40	0,0	19,64	0,0650	234,0684	0,0272	17,0000	0,00	-0,27	0,00
	30	0,0	18,74	0,0650	234,1188	0,0282	17,0000	0,00	-0,26	0,00
	20	0,0	17,84	0,0650	234,1332	0,0294	17,0000	0,00	-0,19	0,00
	10	0,0	16,94	0,0650	234,1404	0,0299	17,0000	0,00	-0,23	0,00
	0	0,0	16,04	0,0650	234,1440	0,0306	17,0000	0,00	0,00	0,00
	-10	0,0	15,14	0,0650	234,1440	0,0317	17,0000	0,00	-0,38	0,00
	-20	0,0	14,24	0,0650	234,1440	0,0321	17,0000	0,00	-0,26	0,00
	-30	0,0	13,34	0,0650	234,1440	0,0333	17,0000	0,00	-0,29	0,00
	-40	0,0	12,44	0,0650	234,1476	0,0340	17,0000	0,00	-0,28	0,00
	-50	0,0	11,54	0,0650	234,1476	0,0349	17,0000	0,00	-0,28	0,00
	-60	0,0	10,64	0,0650	234,1476	0,0356	17,0000	0,00	-0,28	0,00
	-70	0,0	9,74	0,0650	234,1476	0,0366	17,0000	0,00	-0,28	0,00
	-80	0,0	8,84 7.04	0,0650	234,1470	0,0372	17,0000	0,00	-0,27	0,00
	-90	0,0	7,94	0,0050	234,1470	0,0382	17,0000	0,00	-0,28	0,00
	100	10.0	17.84	0,0050	234,1470	0,0390	17,0000	0,00	-0,27	0,00
	90	9.5	17,64	0,0050	234 1368	0,0204	17,0000	0,00	-0,04	0,00
	80	9,0	17.48	0,0050	234 1368	0,0295	17,0000	0,00	-0,04	0,00
	70	8.5	17,30	0.0650	234 1368	0,0290	17,0000	0,00	-0,04	0,00
	60	8.0	17,00	0.0650	234 1404	0,0230	17,0000	0,00	-0,0-	0,00
	50	7.5	16.94	0.0650	234,1404	0.0299	17,0000	0,00	-0.05	0,00
	40	7.0	16.76	0.0650	234.1404	0.0299	17.0000	0,00	-0.05	0.00
	30	6,5	16,58	0,0650	234,1404	0.0300	17,0000	0.00	-0.07	0.00
	20	6,0	16,40	0,0650	234,1404	0,0300	17,0000	0,00	-0,09	0,00
	10	5,5	16,22	0,0650	234,1404	0,0303	17,0000	0,00	-0,10	0,00
Offset do dreno	0	5,0	16,04	0,0650	234,1440	0,0306	17,0000	0,00	0,00	0,00
	-10	4,5	15,86	0,0650	234,1440	0,0309	17,0000	0,00	-0,09	0,00
	-20	4,0	15,68	0,0650	234,1440	0,0312	17,0000	0,00	-0,10	0,00
	-30	3,5	15,50	0,0650	234,1440	0,0314	17,0000	0,00	-0,09	0,00
	-40	3,0	15,33	0,0650	234,1440	0,0316	17,0000	0,00	-0,08	0,00
	-50	2,5	15,15	0,0650	234,1440	0,0317	17,0000	0,00	-0,08	0,00
	-60	2,0	14,97	0,0650	234,1440	0,0319	17,0000	0,00	-0,07	0,00
	-70	1,5	14,79	0,0650	234,1440	0,0320	17,0000	0,00	-0,06	0,00
	-80	1,0	14,61	0,0650	234,1440	0,0320	17,0000	0,00	-0,06	0,00
	-90	0,5	14,43	0,0650	234,1440	0,0321	17,0000	0,00	-0,06	0,00
	-100	0,0	14,25	0,0650	234,1440	0,0322	17,0000	0,00	-0,05	0,00
	100	0,8	16,42	0,0650	234,1404	0,0300	17,0000	0,00	-0,05	0,00
	90	0,7	16.35	0,0050	234,1404	0,0301	17,0000	0,00	-0,05	0,00
	70	0,7	16.32	0,0050	234,1404	0,0301	17,0000	0,00	-0,05	0,00
	60	0.7	16.28	0.0650	234 1404	0,0301	17,0000	0,00	-0,05	0,00
	50	0.7	16,20	0.0650	234 1404	0,0302	17,0000	0,00	-0,05	0,00
	40	0.6	16.21	0.0650	234,1404	0.0303	17,0000	0,00	-0,05	0,00
Razão de vazios	30	0.6	16.17	0.0650	234.1404	0.0304	17.0000	0.00	-0.06	0.00
da camada de	20	0,6	16,13	0,0650	234,1404	0.0304	17,0000	0.00	-0.06	0.00
armazenamento	10	0,6	16,09	0,0650	234,1404	0,0305	17,0000	0,00	-0,09	0,00
	0	0,6	16,04	0,0650	234,1440	0,0306	17,0000	0,00	0,00	0,00
	-10	0,5	16,00	0,0650	234,1440	0,0307	17,0000	0,00	-0,07	0,00
	-20	0,5	15,95	0,0650	234,1440	0,0307	17,0000	0,00	-0,07	0,00
	-30	0,5	15,91	0,0650	234,1440	0,0308	17,0000	0,00	-0,06	0,00
	-40	0,5	15,86	0,0650	234,1440	0,0309	17,0000	0,00	-0,06	0,00
	-50	0,5	15,81	0,0650	234,1440	0,0309	17,0000	0,00	-0,07	0,00
	-60	0.4	15.76	0.0650	234,1440	0.0310	17.0000	0.00	-0.07	0.00

	70	0.4	15 71	0.0650	224 1440	0.0044	17 0000	0.00	0.00	0.00
	-70	0,4	15,71	0,0050	234,1440	0,0311	17,0000	0,00	-0,06	0,00
	-80	0,4	15,00	0,0650	234,1440	0,0312	17,0000	0,00	-0,07	0,00
	-90	0,4	15,60	0,0650	234,1440	0,0313	17,0000	0,00	-0,07	0,00
	-100	0,4	15,55	0,0650	234,1440	0,0313	17,0000	0,00	-0,07	0,00
				0511015						
Duração do		ANA	LISE DE	SENSIB	ILIDADE - I	EVENTO 1	1			
Evento:	30 minuto	os								
Tempo de recorrência:	25 anos									
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (mm)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0742	267,2568	0,0365	17,0000	0,00	-0,01	0,00
	90	1,9	16,94	0,0742	267,2568	0,0365	17,0000	0,00	-0,01	0,00
	80	1,8	16,84	0,0742	267,2568	0,0366	17,0000	0,00	-0,01	0,00
	70	1,7	16,74	0,0742	267,2568	0,0366	17,0000	0,00	-0,01	0,00
	60	1,6	16,64	0,0742	267,2568	0,0367	17,0000	0,00	-0,01	0,00
	50	1,5	16,54	0,0742	267,2568	0,0367	17,0000	0,00	-0,01	0,00
	40	1,4	16,44	0,0742	267,2568	0,0367	17,0000	0,00	-0,01	0,00
	30	1,3	16,34	0,0742	267,2568	0,0367	17,0000	0,00	-0,02	0,00
	20	1,2	16,24	0,0742	267,2568	0,0368	17,0000	0,00	-0,02	0,00
Armazenamento	10	1,1	16,14	0,0742	267,2568	0,0368	17,0000	0,00	-0,02	0,00
em depressão	0	1,0	16,04	0,0742	267,2568	0,0369	17,0000	0,00	0,00	0,00
superficial	-10	0,9	15,94	0,0742	267,2568	0,0370	17,0000	0,00	-0,03	0,00
	-20	0,8	15,84	0,0742	267,2568	0,0372	17,0000	0,00	-0,04	0,00
	-30	0,7	15,74	0,0742	267,2568	0,0374	17,0000	0,00	-0,04	0,00
	-40	0,6	15,64	0,0742	267,2568	0,0375	17,0000	0,00	-0,04	0,00
	-50	0,5	15,54	0,0742	267,2568	0,0377	17,0000	0,00	-0,04	0,00
	-60	0,4	15,44	0,0742	267,2568	0,0378	17,0000	0,00	-0,04	0,00
	-70	0,3	15,34	0,0742	267,2568	0,0380	17,0000	0,00	-0,04	0,00
	-80	0,2	15,24	0,0742	267,2568	0,0381	17,0000	0,00	-0,04	0,00
	-90	0,1	15,14	0,0742	267,2568	0,0383	17,0000	0,00	-0,04	0,00
	-100	0,0	15,04	0,0742	267,2568	0,0383	17,0000	0,00	-0,04	0,00
	100	0,1	19,04	0,0742	267,2532	0,0342	17,0000	0,00	-0,07	0,00
	90	0,1	18,74	0,0742	267,2568	0,0344	17,0000	0,00	-0,08	0,00
	80	0,1	18,44	0,0742	267,2568	0,0348	17,0000	0,00	-0,07	0,00
	70	0,1	18,14	0,0742	267,2568	0,0353	17,0000	0,00	-0,06	0,00
	60	0,1	17,84	0,0742	267,2568	0,0358	17,0000	0,00	-0,05	0,00
	50	0,1	17,54	0,0742	267,2568	0,0361	17,0000	0,00	-0,04	0,00
	40	0,1	17,24	0,0742	267,2568	0,0364	17,0000	0,00	-0,04	0,00
	30	0,1	16,94	0,0742	267,2568	0,0365	17,0000	0,00	-0,03	0,00
Conceidede de	20	0,1	16,64	0,0742	267,2568	0,0367	17,0000	0,00	-0,03	0,00
Capacidade de	10	0,1	16,34	0,0742	267,2568	0,0367	17,0000	0,00	-0,05	0,00
revestimento	0	0,1	16,04	0,0742	267,2568	0,0369	17,0000	0,00	0,00	0,00
	-10	0,0	15,74	0,0742	267,2568	0,0374	17,0000	0,00	-0,13	0,00
	-20	0,0	15,44	0,0742	267,2568	0,0378	17,0000	0,00	-0,12	0,00
	-30	0,0	15,14	0,0742	267,2568	0,0383	17,0000	0,00	-0,12	0,00
	-40	0,0	14,84	0,0742	267,2568	0,0385	17,0000	0,00	-0,11	0,00
	-50	0,0	14,54	0,0742	267,2568	0,0387	17,0000	0,00	-0,10	0,00
	-60	0,0	14,24	0,0742	267,2568	0,0388	17,0000	0,00	-0,09	0,00
	-70	0,0	13,94	0,0742	267,2568	0,0389	17,0000	0,00	-0,08	0,00
	-80	0,0	13,64	0,0742	267,2568	0,0392	17,0000	0,00	-0,08	0,00
	-90	0.0	13.34	0.0742	267.2568	0.0393	17.0000	0.00	-0.07	0.00

										152
	-100	0,0	13,04	0,0742	267,2568	0,0393	17,0000	0,00	-0,06	0,00
	100	0,1	17,29	0,0742	267,2568	0,0363	17,0000	0,00	-0,02	0,00
	90	0,0	17,17	0,0742	267,2568	0,0364	17,0000	0,00	-0,01	0,00
	80	0,0	17,04	0,0742	267,2568	0,0365	17,0000	0,00	-0,01	0,00
	70	0,0	16,92	0,0742	267,2568	0,0365	17,0000	0,00	-0,01	0,00
	60	0,0	16,79	0,0742	267,2568	0,0366	17,0000	0,00	-0,01	0,00
	50	0,0	16,67	0,0742	267,2568	0,0366	17,0000	0,00	-0,01	0,00
	40	0,0	16,54	0,0742	267,2568	0,0367	17,0000	0,00	-0,02	0,00
	30	0,0	16,42	0,0742	267,2568	0,0367	17,0000	0,00	-0,02	0,00
	20	0,0	16,29	0,0742	267,2568	0,0367	17,0000	0,00	-0,02	0,00
Capacidade de	10	0,0	16,17	0,0742	267,2568	0,0368	17,0000	0,00	-0,03	0,00
campo da camada de	0	0,0	16,04	0,0742	267,2568	0,0369	17,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0742	267,2568	0,0371	17,0000	0,00	-0,05	0,00
	-20	0,0	15,79	0,0742	267,2568	0,0373	17,0000	0,00	-0,05	0,00
	-30	0,0	15,67	0,0742	267,2568	0,0375	17,0000	0,00	-0,05	0,00
	-40	0,0	15,54	0,0742	267,2568	0,0377	17,0000	0,00	-0,05	0,00
	-50	0,0	15,42	0,0742	267,2568	0,0377	17,0000	0,00	-0,04	0,00
	-60	0,0	15,29	0,0742	267,2568	0,0380	17,0000	0,00	-0,05	0,00
	-70	0,0	15,17	0,0742	267,2568	0,0382	17,0000	0,00	-0,05	0,00
	-80	0,0	15,04	0,0742	267,2568	0,0383	17,0000	0,00	-0,05	0,00
	-90	0,0	14,92	0,0742	267,2568	0,0384	17,0000	0,00	-0,05	0,00
	-100	0,0	14,79	0,0742	267,2568	0,0385	17,0000	0,00	-0,04	0,00
	100	0,1	25,04	0,0739	266,1984	0,0294	17,0000	0,00	-0,20	0,00
	90	0,0	24,14	0,0741	266,8716	0,0305	17,0000	0,00	-0,19	0,00
	80	0,0	23,24	0,0742	267,1236	0,0309	17,0000	0,00	-0,20	0,00
	70	0,0	22,34	0,0742	267,2100	0,0311	17,0000	0,00	-0,22	0,00
	60	0,0	21,44	0,0742	267,2388	0,0323	17,0000	0,00	-0,21	0,00
	50	0,0	20,54	0,0742	267,2496	0,0355	17,0000	0,00	-0,08	0,00
	40	0,0	19,64	0,0742	267,2532	0,0341	17,0000	0,00	-0,19	0,00
	30	0,0	18,74	0,0742	267,2568	0,0344	17,0000	0,00	-0,23	0,00
Conceidado do	20	0,0	17,84	0,0742	267,2568	0,0358	17,0000	0,00	-0,16	0,00
capacidade de	10	0,0	16,94	0,0742	267,2568	0,0365	17,0000	0,00	-0,10	0,00
camada de	0	0,0	16,04	0,0742	267,2568	0,0369	17,0000	0,00	0,00	0,00
armazenamento	-10	0,0	15,14	0,0742	267,2568	0,0383	17,0000	0,00	-0,37	0,00
	-20	0,0	14,24	0,0742	267,2568	0,0388	17,0000	0,00	-0,26	0,00
	-30	0,0	13,34	0,0742	267,2568	0,0393	17,0000	0,00	-0,21	0,00
	-40	0,0	12,44	0,0742	267,2568	0,0393	17,0000	0,00	-0,16	0,00
	-50	0,0	11,54	0,0742	267,2568	0,0393	17,0000	0,00	-0,13	0,00
	-60	0,0	10,64	0,0742	267,2532	0,0393	17,0000	0,00	-0,11	0,00
	-70	0,0	9,74	0,0742	267,2496	0,0393	17,0000	0,00	-0,09	0,00
	-80	0,0	8,84	0,0742	267,2460	0,0393	17,0000	0,00	-0,08	0,00
	-90	0,0	7,94	0,0742	267,2424	0,0393	17,0000	0,00	-0,07	0,00
	-100	0,0	7,04	0,0742	267,2496	0,0393	17,0000	0,00	-0,06	0,00
	100	10,0	17,84	0,0742	267,2568	0,0358	17,0000	0,00	-0,03	0,00
	90	9,5	17,00	0,0742	207,2508	0,0360	17,0000	0,00	-0,03	0,00
	80	9,0	17,48	0,0742	207,2008	0,0362	17,0000	0,00	-0,02	0,00
	60	0,0	17,30	0,0742	207,2008	0,0363	17,0000	0,00	-0,02	0,00
Offect do dropo	50	0,0	16.04	0,0742	207,200	0,0364	17,0000	0,00	-0,02	0,00
Unset do dreno	30	7,5	16,94	0,0742	207,2008	0,0365	17,0000	0,00	-0,02	0,00
	40	7,0	16.59	0,0742	267,2569	0,0300	17,0000	0,00	-0,02	0,00
	20	6,0	16.40	0,0742	267,2569	0,0367	17,0000	0,00	-0,02	0,00
	10	5.5	16.22	0,0742	267,2500	0,0367	17,0000	0,00	-0,02	0,00
	0	5,0	16.04	0,0742	267 2569	0,0300	17,0000	0,00	-0,04	0,00
		0,0	10,07	0,0172	201,2000	0,0009	11,0000	0,00	0,00	0,00

										153
	-10	4,5	15,86	0,0742	267,2568	0,0372	17,0000	0,00	-0,08	0.00
	-20	4,0	15,68	0,0742	267,2568	0,0374	17,0000	0,00	-0,07	0,00
	-30	3,5	15,50	0,0742	267,2568	0,0378	17,0000	0,00	-0,08	0,00
	-40	3,0	15,33	0,0742	267,2568	0,0380	17,0000	0,00	-0,07	0,00
	-50	2,5	15,15	0,0742	267,2568	0,0382	17,0000	0,00	-0,07	0,00
	-60	2,0	14,97	0,0742	267,2568	0,0384	17,0000	0,00	-0,07	0,00
	-70	1,5	14,79	0,0742	267,2568	0,0385	17,0000	0,00	-0,06	0,00
	-80	1,0	14,61	0,0742	267,2568	0,0387	17,0000	0,00	-0,06	0,00
	-90	0,5	14,43	0,0742	267,2568	0,0388	17,0000	0,00	-0,06	0,00
	-100	0,0	14,25	0,0742	267,2568	0,0388	17,0000	0,00	-0,05	0,00
	100	0,8	16,42	0,0742	267,2568	0,0367	17,0000	0,00	-0,01	0,00
	90	0,7	16,39	0,0742	267,2568	0,0367	17,0000	0,00	-0,02	0,00
	80	0,7	16,35	0,0742	267,2568	0,0367	17,0000	0,00	-0,02	0,00
	70	0,7	16,32	0,0742	267,2568	0,0367	17,0000	0,00	-0,02	0,00
	60	0,7	16,28	0,0742	267,2568	0,0367	17,0000	0,00	-0,02	0,00
	50	0,7	16,24	0,0742	267,2568	0,0368	17,0000	0,00	-0,02	0,00
	40	0,6	16,21	0,0742	267,2568	0,0368	17,0000	0,00	-0,02	0,00
	30	0,6	16,17	0,0742	267,2568	0,0368	17,0000	0,00	-0,03	0,00
	20	0,6	16,13	0,0742	267,2568	0,0368	17,0000	0,00	-0,03	0,00
Razão de vazios	10	0,6	16,09	0,0742	267,2568	0,0369	17,0000	0,00	-0,03	0,00
da camada de	0	0,6	16,04	0,0742	267,2568	0,0369	17,0000	0,00	0,00	0,00
armazenamento	-10	0,5	16,00	0,0742	267,2568	0,0370	17,0000	0,00	-0,03	0,00
	-20	0,5	15,95	0,0742	267,2568	0,0370	17,0000	0,00	-0,04	0,00
	-30	0,5	15,91	0,0742	267,2568	0,0371	17,0000	0,00	-0,05	0,00
	-40	0,5	15,86	0,0742	267,2568	0,0372	17,0000	0,00	-0,05	0,00
	-50	0,5	15,81	0,0742	267,2568	0,0373	17,0000	0,00	-0,05	0,00
	-60	0,4	15,76	0,0742	267,2568	0,0373	17,0000	0,00	-0,05	0,00
	-70	0,4	15,71	0,0742	267,2568	0,0374	17,0000	0,00	-0,05	0,00
	-80	0,4	15,66	0,0742	267,2568	0,0375	17,0000	0,00	-0,05	0,00
	-90	0,4	15,60	0,0742	267,2568	0,0376	17,0000	0,00	-0,05	0,00
	-100	0,4	15,55	0,0742	267,2568	0,0370	17,0000	0,00	0,00	0,00
.	T	ANA	LISE DE	SENSIB	ILIDADE - I	EVENTO 1	2			
Duração do Evento:	30 minuto	S								
Tempo de recorrência:	50 anos									
Parâmetro	Variação (%)	Valores	Dstore	Vazão de pico (I/s)	Vazão de pico (mm/h)	Volume total escoado (mm)	Tempo de pico (min)	CS vazão	CS Volume	CS tempo
	100	2,0	17,04	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	90	1,9	16,94	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	80	1,8	16,84	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	70	1,7	16,74	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	60	1,6	16,64	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
A	50	1,5	16,54	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
Armazenamento	40	1,4	16,44	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
superficial	30	1,3	16,34	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
• • • •	20	1,2	16,24	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	10	1,1	16,14	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	0	1,0	16,04	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	10	0.0	15.04	0 0000	205 7004	0 0000	17 0000	0.00	0.00	0.00
	-10	0,9	15,94	0,0622	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-10	0,9	15,84	0,0822	295,7904 295,7904	0,0393	17,0000	0,00	0,00	0,00

										154
	-40	0,6	15,64	0,0822	295,7904	0.0393	17,0000	0.00	0.00	0.00
	-50	0,5	15,54	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-60	0,4	15,44	0,0822	295,7904	0.0393	17,0000	0.00	0.00	0.00
	-70	0,3	15,34	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-80	0,2	15,24	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-90	0,1	15,14	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-100	0,0	15,04	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	100	0,1	19,04	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	90	0,1	18,74	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	80	0,1	18,44	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	70	0,1	18,14	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	60	0,1	17,84	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	50	0,1	17,54	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	40	0,1	17,24	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	30	0,1	16,94	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	20	0,1	16,64	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
Capacidade de	10	0,1	16,34	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
campo	0	0,1	16,04	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
revestimento	-10	0,0	15,74	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-20	0,0	15,44	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-30	0,0	15,14	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-40	0,0	14,84	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-50	0,0	14,54	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-60	0,0	14,24	0,0822	295,7868	0,0393	17,0000	0,00	0,00	0,00
	-70	0,0	13,94	0,0822	295,7868	0,0393	17,0000	0,00	0,00	0,00
	-80	0,0	13,64	0,0822	295,7868	0,0393	17,0000	0,00	0,00	0,00
	-90	0,0	13,34	0,0822	295,7868	0,0393	17,0000	0,00	0,00	0,00
	-100	0,0	13,04	0,0822	295,7832	0,0393	17,0000	0,00	0,00	0,00
	100	0,1	17,29	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	90	0,0	17,17	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	80	0,0	17,04	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	70	0,0	16,92	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	60	0,0	16,79	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	50	0,0	16,67	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	40	0,0	16,54	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	30	0,0	16,42	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	20	0,0	16,29	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
Capacidade de	10	0,0	16,17	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
camada de	0	0,0	16,04	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
assentamento	-10	0,0	15,92	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-20	0,0	15,79	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-30	0,0	15,67	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-40	0,0	15,54	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-50	0,0	15,42	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-60	0,0	15,29	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-70	0,0	15,17	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-80	0,0	15,04	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-90	0,0	14,92	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-100	0,0	14,79	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
Canacidade de	100	0,1	25,04	0,0822	295,7436	0,0344	17,0000	0,00	-0,12	0,00
campo da	90	0,0	24,14	0,0821	295,7364	0,0344	17,0000	0,00	-0,14	0,00
camada de	80	0,0	23,24	0,0822	295,7904	0,0365	17,0000	0,00	-0,09	0,00
armazenamento	70	0,0	22,34	0,0822	295,7940	0,0374	17,0000	0,00	-0,07	0,00
	60	0,0	21,44	0,0822	295,7940	0,0377	17,0000	0,00	-0,07	0,00

										155
	50	0,0	20,54	0,0822	295,7940	0,0383	17,0000	0,00	-0,05	0,00
	40	0,0	19,64	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	30	0,0	18,74	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	20	0,0	17,84	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	10	0,0	16,94	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	0	0,0	16,04	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-10	0,0	15,14	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-20	0,0	14,24	0,0822	295,7868	0,0393	17,0000	0,00	0,00	0,00
	-30	0,0	13,34	0,0822	295,7868	0,0393	17,0000	0,00	0,00	0,00
	-40	0,0	12,44	0,0822	295,7832	0,0393	17,0000	0,00	0,00	0,00
	-50	0,0	11,54	0,0822	295,7760	0,0393	17,0000	0,00	0,00	0,00
	-60	0,0	10,64	0,0822	295,7760	0,0393	17,0000	0,00	0,00	0,00
	-70	0,0	9,74	0,0822	295,7832	0,0393	17,0000	0,00	0,00	0,00
	-80	0,0	8,84	0,0822	295,7868	0,0393	17,0000	0,00	0,00	0,00
	-90	0,0	7,94	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	-100	0,0	7,04	0,0822	295,7976	0,0393	17,0000	0,00	0,00	0,00
	100	10,0	17,84	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	90	9,5	17,66	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	80	9,0	17,48	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	70	8,5	17,30	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	60	8,0	17,12	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	50	7,5	16,94	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	40	7,0	16,76	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	30	6,5	16,58	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	20	6,0	16,40	0,0822	295,7940	0,0393	17,0000	0,00	0,00	0,00
	10	5,5	16,22	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
Offset do dreno	0	5,0	16,04	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-10	4,5	15,86	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-20	4,0	15,68	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-30	3,5	15,50	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-40	3,0	15,33	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-50	2,5	15,15	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-60	2,0	14,97	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-70	1,5	14,79	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-80	1,0	14,61	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-90	0,5	14,43	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-100	0,0	14,25	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	100	0,8	16,42	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	90	0,7	16,39	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	80	0,7	16,35	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	70	0,7	16,32	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	60	0,7	16,28	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	50	0,7	16,24	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	40	0,6	16,21	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
Razão de vazios	30	0,6	16,17	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
ua camada de	20	0,6	16,13	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
annazenamento	10	0,6	16,09	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	10	0,6	10,04	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-10	0,5	16,00	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-20	0,5	15,95	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-30	0,5	15,91	0,0622	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-40	0,5	15,00	0,0022	295,7904	0,0393	17,0000	0,00	0,00	0,00
	-50	0,5	15,61	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
1	-00	0,4	13,70	0,0022	233,1304	0.0393		0.00	0.00	0.00

									156
-70	0,4	15,71	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
-80	0,4	15,66	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
-90	0,4	15,60	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00
-100	0,4	15,55	0,0822	295,7904	0,0393	17,0000	0,00	0,00	0,00