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RESUMO

LOPES, T. C.. Programação Cíclica e Balanceameto de Linhas de Montagem. 2021. 220 f.
Tese – Doutorado em Ciências pelo Programa de Pós-Graduação em Engenharia Elétrica e
Informática Industrial (CPGEI) – Universidade Tecnológica Federal do Paraná. Curitiba, 2021.

Esta tese considera extensões do problema de balanceamento de linha de montagem ligados
a scheduling cíclico, propondo modelos matemáticos e métodos de solução para resolver tais
problemas. Cada um dos capítulos principais da presente é baseado em uma publicação específica
pelo autor durante seu doutorado. As principais contribuições desta tese incluem: formulações
matemáticas que descrevem o regime permanente de linhas de montagem de modelo misto
operando sob sequências cíclicas; uma decomposição para resolver o problema de balanceamento
quando sequenciamento e alocações de buffer são incorporados como variáveis de decisão; uma
simheurística para balancear linhas de modelo misto quando a sequência de produtos é estocástica;
correções para um artigo anterior (de outro autor) de balanceamento com estações multi-operadas;
uma quebra de paradigma para linhas de estações multi-operadas, bem como uma decomposição
eficiente e limites inferiores para o problema resultante; uma descrição dos custos de estoque
interno associados a alocações fracionárias de tarefas no contexto de balanceamento dinâmico ou
compartilhamento de tarefas; um método para resolver problemas multi-objetivos com fronteiras
Pareto lineares por partes, juntamente a um estudo de caso que permite comparar diferentes
sistemas de passo da linha no contexto de sequências cíclicas de produtos. Em vários capítulos,
comparações a benchmarks da literatura demonstram a superioridade dos métodos e formulações
propostas. Em outras, suas contribuições e descrições analíticas respondem perguntas ligadas a
considerações gerenciais importantes tal qual o bowl phenomenon, custos de estoque interno, e a
influência dos tipos de passo de linha para sua performance.

Palavras-chave: Balanceamento de linhas de montagem. Programação cíclica. Pesquisa Opera-
cional. Programação linear inteira-mista.



ABSTRACT

LOPES, T. C.. Cyclical Scheduling and Assembly Line Balancing. 2021. 220 p. Thesis –
Doctorate in Science by the Graduate Program in Electrical and Computer Engineering (CPGEI)
– Universidade Tecnológica Federal do Paraná. Curitiba, 2021.

This thesis addresses extensions of the assembly line balancing problem tied to cyclical schedul-
ing and proposes mathematical models solution methods tackle such problems. Each of the
thesis main chapter is based on a specific publication by the author throughout his doctorate.
The main contributions include: mathematical formulations that can describe the steady state
of mixed-model assembly lines when the product sequence is cyclical; a decomposition to
solve the balancing problem when product sequencing and buffer allocations are also decision
variables; a simheuristic to balance mixed-model lines when the product sequence is stochastic;
corrections to a previous multi-manned balancing article (by another author); a paradigm shift
for multi-manned lines that allow shorter line lengths, along with an efficient decomposition and
lower bounds for the resulting problem; a description of internal storage costs tied to fractional
task allocations in the context of dynamic line balancing or work-sharing; a method to solve
multi-objective problems with part-wise linear Pareto fronts, and a case that allows comparing
different line control systems in the context of cyclical product sequences. In several chapters,
comparisons to literature benchmarks demonstrate the superiority of the proposed methods and
formulations. In others, analytical descriptions and contributions answer research questions
related to important managerial considerations such as the bowl phenomenon, internal storage
costs, and the influence of line control types to line performance.

Keywords: Assembly line balancing. Cyclical scheduling. Operations research. Mixed-integer
linear programming.
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LIST OF SYMBOLS

The following list presents the parameters that interact with variables in the mathemati-

cal models contained in this document. For some expressions the number of elements in a set

is used. For instance, |𝑇 | states the number of tasks in the set 𝑇 . Some letters have different

meanings across chapters, this list indicates when that occurs for similarly named symbols.

PARAMETERS

𝐴 Parameter matrix tied to integer variables, used in Chapter 10
𝐴𝑠 Available space at stage 𝑠, used in Chapter 4
𝐴𝑡 Worker assignment of task 𝑡, used in Chapter 7
𝐵 Parameter matrix tied to continuous variables, used in Chapter 10
𝐵𝑖 Boundaries between stages, used in Chapter 4
𝐵𝑚𝑎𝑥 Number of available buffers, used in Chapter 5
𝐵𝑠 Base processing time of station 𝑠 in a task-sharing block, used in Chapter 9
C Right-hand-side vector tied to constraints, used in Chapter 10
𝐶𝑚 Theoretical minimum cycle time for product model 𝑚
𝐶𝑇 Cycle time - is a parameter in Chapters 7 and 8
𝐶𝑇 Cycle time of an incumbent solution
𝐷𝑡 Duration of task 𝑡 in single model problems, used in Chapters 7-9
𝐷𝑡,𝑚 Duration of task 𝑡 for product model 𝑚
𝐷𝑡 Duration of task 𝑡 summed across all products in the minimal part set
𝛿
+/−
𝑠 Positive/Negative difference between processing time and cycle time of station 𝑠
𝐸[*] Expected value of stochastic variable *, used in Chapter 6
𝐸𝑆𝑡 Earliest station to which task 𝑡 can be assigned
𝐹 Set of feasible task-station allocations (𝑡, 𝑠) tuples, used in Chapter 2
𝐹 (𝑧) Line length cost factor tied to fractional allocation 𝑧
𝐺𝑡,𝑠 Buffer cost tied to fractionally allocating task 𝑡 to station 𝑠
𝐻 A large number, used for Big-M conditional constraint relaxation
𝑖 Positional index in Algorithms
𝐽 Buffer capacity, used in Chapter 9
𝑗𝑠 Correction factor for stage 𝑠, used to generalize Chapter 4’s formulation
𝑘𝑠 Parallelism degree at stage 𝑠, used in Chapter 4
𝐾 Maximum denominator for fractional task allocations, used in Chapter 9
𝐿𝑆𝑡 Latest station to which task 𝑡 can be assigned
𝑀 Set of product models 𝑚



𝑚𝑝 Product model of piece 𝑝
𝑁𝑚 Number of products of model 𝑚 in the minimal part set
𝑂𝑚 Occupation or demand rate of model 𝑚
𝑃 Set of product pieces 𝑝 to be scheduled
𝜋 Value of dual-variable 𝜋
𝑄𝑡,𝑠 Space requirement for task 𝑡 in station 𝑠
𝑅 Set of precedence relations (𝑡1, 𝑡2): task 𝑡1 precedes task 𝑡2
𝑅𝑚 Set of precedence relations (𝑡1, 𝑡2) for product model 𝑚
𝑆 Set of stations 𝑠, in Chapter 4 it states the set of stages instead
𝑆𝑠𝑦𝑛𝑐 Set of stations with synchronous product transfers
𝑆𝑎𝑠𝑦𝑛𝑐 Set of stations with asynchronous product transfers
←−𝑠 station or buffer immediately preceding 𝑠, used in Chapter 5
𝑆𝑏 Set of buffers, a subset of 𝑆
𝑇 Set of tasks 𝑡
𝑇𝐴𝑥𝑚 Theoretical minimum average processing time for product model 𝑚
𝑉 Conveyor belt’s velocity in paced lines
𝑊 Set of workers 𝑤
𝑤𝑚𝑎𝑥 Maximum number of workers per multi-manned station
𝜔𝑝 Time spent in a buffer by product 𝑝
Ω(x) Feasible region given integer solution x
Ω𝑠𝑒𝑔 Feasible region under a given segment in the criterion-space

Variables in the mathematical models are separated between integer and continuous

ones. The key decision variable set in each chapter is usually represented by the letter x, followed

by the appropriate subscripts. When the same starting letter has different meanings across

chapters, this list present each in the order they appear.

BINARY AND INTEGER VARIABLES

𝑐𝑓𝑚1,𝑚2,𝑠 Set to 1 if model 𝑚2 cyclically follows model 𝑚1 at station 𝑠
𝑓𝑚1,𝑚2,𝑠 Set to 1 if model 𝑚2 follows model 𝑚1 at station 𝑠
𝑓𝑡1,𝑡2 Set to 1 if task 𝑡2 is performed after task 𝑡2, used in Chapters 4 and 8
𝑥𝑡,𝑠 Set to 1 if task 𝑡 is assigned to station 𝑠
𝑥𝑡,𝑠,𝑚 Set to 1 it task 𝑡 is assigned to station 𝑠 for product model 𝑚, used in Chapter 4
𝑥𝑤,𝑠 Set to 1 if worker 𝑤 is assigned to station 𝑠, used in Chapter 7
𝑥𝑡,𝑤 Set to 1 if task 𝑡 is assigned to worker 𝑤, used in Chapter 8
x Set of all integer variables, used in Chapter 10
𝑦𝑝,𝑚 Set to 1 if piece 𝑝 is set to product model 𝑚
𝑦𝑚,𝑛,𝑠 Set to 1 model 𝑚 is the 𝑛th one to enter the station 𝑠, used in Chapter 4
𝑦𝑠 Set to 1 if station 𝑠 is open, used in Chapter 7
𝑦𝑡,𝑠 Set to 1 if task 𝑡 is fractionally assigned to station 𝑠, used in Chapter 9
𝑧𝑠 Set to 1 if a buffer is assigned at candidate position 𝑠
𝑧𝑡,𝑠 Set to 1 if task 𝑡 is assigned to station 𝑠, used in Chapter 9



Similarly, continuous variables are listed bellow. These are mostly those tied to the

scheduling aspect of the studied problems. These variables’ meaning change less often between

chapters. Nonetheless, these different purposes are also listed in the order they appear.

CONTINUOS VARIABLES

𝐶𝑇 Cycle time
𝑝𝑥𝑚,𝑠 Processing time of model 𝑚 at station 𝑠
𝑃𝑥𝑠 Average processing time at station 𝑠
𝜋 Dual-variable tied to a constraint
𝐿 Line length
𝐿𝑚𝑎𝑥𝑠 Ending position of station 𝑠
𝐿𝑚𝑖𝑛𝑠 Starting position of station 𝑠
𝐿𝑒𝑛𝑑𝑝,𝑠 Position processing of product piece 𝑝 at station 𝑠 is completed
𝐿𝑖𝑛𝑝,𝑠 Entry position of product piece 𝑝 at station 𝑠
𝑇𝑒𝑛𝑑𝑝,𝑠 Time processing of product piece 𝑝 at station 𝑠 is completed
𝑇𝑖𝑛𝑝,𝑠 Entry time of product piece/model 𝑝 at station 𝑠
𝑇𝑜𝑢𝑡𝑝,𝑠 Departure time of product piece/model 𝑝 at station 𝑠
𝑇𝑠𝑡𝑎𝑟𝑡𝑡 Starting position of task t
𝑇𝑠𝑡𝑎𝑟𝑡𝑝,𝑠 Starting time of processing of product 𝑝 at station 𝑠, used in Chapter 10
𝑇𝑥𝑝,𝑠 Processing time of product piece/model 𝑝 at station 𝑠
𝑊𝑒𝑛𝑑𝑤 Finishing position for worker 𝑤
𝑊𝑠𝑡𝑎𝑟𝑡𝑤 Starting position for worker 𝑤
y Set of all continuous variables, used in Chapter 10
𝑍𝑖 Mixed-integer linear objective 𝑖



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1 THEMES AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 RESEARCH OUTLINE AND SCOPE . . . . . . . . . . . . . . . . . . . 17
1.4 PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 THESIS STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 BALANCING GIVEN PRODUCT SEQUENCE AND BUFFERS . . . . 22
2.1 CONTEXT AND RELATED WORKS . . . . . . . . . . . . . . . . . . . 22
2.2 MATHEMATICAL MODELS . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Proposed Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Benchmark Formulations and Performance Measures . . . . . . . . . . . . 29
2.3 EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Practical Data Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Generality Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 INCORPORATING SEQUENCING AND LINE CONTROL . . . . . . 50
3.1 CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 MATHEMATICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Overview of literature benchmark models . . . . . . . . . . . . . . . . . . . 60
3.5.2 Synchronous Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Asynchronous Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.4 Hybrid Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 INCORPORATING PARALLEL STATIONS . . . . . . . . . . . . . . . 68
4.1 CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Cyclical Scheduling with Parallelism . . . . . . . . . . . . . . . . . . . . . 72
4.3 MATHEMATICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Parallelism influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Comparison to Completion-Based Priority Rules . . . . . . . . . . . . . . . 82
4.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 FORMULATION EXTENSION . . . . . . . . . . . . . . . . . . . . . . 85

5 INCORPORATING BUFFER ALLOCATION . . . . . . . . . . . . . . 87
5.1 CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 91



5.4 MONOLITHIC MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 ITERATIVE DECOMPOSITION PROCEDURE . . . . . . . . . . . . . 96
5.5.1 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.1 Sequential Procedure, Lower Bounds, and Integer Gaps . . . . . . . . . . . 104
5.6.2 Influence of Optimality Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 BALANCING UNDER STOCHASTIC SEQUENCING . . . . . . . . . 109
6.1 CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 CYCLE TIME SIMULATOR (CTS) . . . . . . . . . . . . . . . . . . . . 114
6.4.1 Comparison to Literature Benchmark . . . . . . . . . . . . . . . . . . . . . 116
6.5 PROPOSED SIMHEURISTIC . . . . . . . . . . . . . . . . . . . . . . . 117
6.6 COMPUTATIONAL EXPERIMENTS . . . . . . . . . . . . . . . . . . . 120
6.6.1 Small Instances: Influence of Buffer Layout . . . . . . . . . . . . . . . . . 120
6.6.2 Small Instances: Comparison to Alternative Goal Functions . . . . . . . . . 123
6.6.3 Convergence Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.6.4 Medium and Large Instances . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.6.5 A Case-Study on the Impact of Demand Rates . . . . . . . . . . . . . . . . 130
6.7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 A CONTRIBUTION TO MULTI-MANNED BALANCING . . . . . . . 133
7.1 CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 MATHEMATICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 A PARADIGM SHIFT FOR MULTI-MANNED BALANCING . . . . . 141
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3 MATHEMATICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . 147
8.4 MILP-BASED HEURISTIC PROCEDURE . . . . . . . . . . . . . . . . 149
8.4.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4.2 Master and Slave Mathematical Models . . . . . . . . . . . . . . . . . . . . 150
8.5 LOWER BOUNDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.6.1 Line Length versus Cycle Time . . . . . . . . . . . . . . . . . . . . . . . . 157
8.7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9 A CONTRIBUTION ON FRACTIONAL TASK ALLOCATIONS . . . . 160
9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 PROBLEM DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 163
9.4 CYCLE TIME MINIMIZATION . . . . . . . . . . . . . . . . . . . . . . 165
9.4.1 Problem’s Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.5 INTERNAL STORAGE COST MINIMIZATION . . . . . . . . . . . . 168



9.5.1 Line Length Cost on Paced Lines . . . . . . . . . . . . . . . . . . . . . . . 168
9.5.2 Buffer Cost on Asynchronous Lines . . . . . . . . . . . . . . . . . . . . . . 173
9.6 EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . 177
9.6.1 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.6.2 Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.6.3 Application to Practical Data . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.7 DISCUSSIONS AND CONCLUSIONS . . . . . . . . . . . . . . . . . . 185

10 THE MULTI-OBJECTIVE PACED LINE CASE . . . . . . . . . . . . . 188
10.1 CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.2 PROBLEM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.3 PROPOSED METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.3.1 Extracting the Pareto front of each Integer Solution . . . . . . . . . . . . . . 191
10.3.2 Defining and refining the global Pareto front . . . . . . . . . . . . . . . . . 193
10.4 A MODEL FOR PACED LINES . . . . . . . . . . . . . . . . . . . . . . 194
10.5 AN ILLUSTRATIVE EXAMPLE . . . . . . . . . . . . . . . . . . . . . 196
10.6 REVISITING A CASE STUDY . . . . . . . . . . . . . . . . . . . . . . 198
10.7 CONCLUSIONS AND PERSPECTIVES . . . . . . . . . . . . . . . . . 199

11 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . 200
11.1 SUMMARY OF CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . 200
11.2 FINAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . 201
11.3 FURTHER WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



16

1 INTRODUCTION

1.1 THEMES AND METHODS

Assembly line balancing is a widely studied class of optimization problems tied to that

manufacturing system. Boysen et al. (2008) present a particularly useful classification of such

problems. At its most basic form, line balancing has a rather simple definition: to distribute tasks

of deterministic durations to stations of equal capacity in a manner that respects precedence

relations and optimizes a given goal function. Even that simpler problem is already NP-Hard

(ÁLVAREZ-MIRANDA; PEREIRA, 2019). Many of the variants described by Boysen et al.

(2008) focus on specific complications that arise by considering practical factors that force

deviations from the most basic definition. These can include product diversity, task particularities,

line features, station features, worker limitations, among others (BATTAÏA; DOLGUI, 2013).

Cyclical scheduling is any type of scheduling that repeats after a specific cycle time.

Levner et al. (2010) present a classification of cyclical scheduling optimization problems. These

are often tied to sequencing decisions regarding jobs of given processing time durations. In

a general sense, assembly lines operate under cyclical schedules as each station is typically

bound by the cycle time. This means that tasks being performed repeat throughout the line every

cycle time. The simplest line balancing problems adopts a rather straightforward simplification:

if the sum of processing times of all tasks assigned to a station is less or equal to the cycle

time, then the cycle time is respected. While this consideration is valid for multiple classes

of problems, this thesis considers opportunities tied to cases in which it is not and in which

more adequate considerations are possible when explicitly considering cyclical scheduling when

balancing the line. A natural example is mixed-model lines, i.e. lines shared between multiple

products (BOYSEN et al., 2008). In them, differences between products can help compensate

for model-specific processing times that are higher than the cycle time, as shown in Chapter 2.

This thesis employs several Operational Research techniques: mixed-integer linear

programming mathematical models, decompositions, simulations, heuristics, and lower bound

algorithms. Readers can refer to references such as Hillier and Lieberman (2015) for an overview

or introduction to these techniques, as the following chapters presuppose certain familiarity with

them. Chapter 9 also includes a complexity proof by reduction. Readers can refer to Garey and

Johnson (1979) for that field.
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1.2 OBJECTIVES

This thesis aim is to study assembly line balancing problems in which cyclical schedul-

ing plays a key role. Regarding these problem variants, this thesis aims specifically to:

1. Develop mathematical models to describe cyclical schedules in assembly lines;

2. Adapt these models to incorporate features such as parallel stations, and buffer allocation;

3. Describe the line control’s role (i.e. conveyor belt system) and its practical implications;

4. Develop methods that allow efficient solution for problem variants.

1.3 RESEARCH OUTLINE AND SCOPE

This thesis compiles and presents the main contributions published by the author during

his doctorate. Chapters 2-10 are adapted versions of the author’s publication. These all consider

assembly line balancing variants to which cyclical scheduling is applied in some capacity. The

present chapter introduces both of these themes, and presents an overview of the contributions and

how each chapter relates to the others. Chapters 2-10 are each based on a publication, meaning

they are somewhat self-contained and present a “related works” section that contextualizes

the chapter’s contribution. Because these chapters address closely-related problem variants, a

significant portion of their literature reviews is common. The author opted to maintain these

context and related works sections rather than to combine them in a broader introduction for

two reasons: first, to maintain the self-contained nature of each chapter; and second, to avoid an

overly large literature review chapter that would probably fail to simultaneously contextualize

all chapters. Each article that based this thesis had its own mathematical notation. These were

adapted to present a more uniform tie between concepts and symbols throughout this document.

However, some letters have chapter-specific meanings in mathematical models. The List of

Symbols, present in this thesis preamble, detail these meanings to clarify this point. There are

also some differences between chapters in terms of style, language, and structure. These reflect

journal requirements and policies, but they also flow from the author’s personal development

throughout the doctorate. The publications that base this thesis are hereafter listed.
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1.4 PUBLICATIONS

This thesis is mainly based on articles published in scientific journals and written by

the author during his doctorate. These are hereafter listed in the order they appear in this thesis

chapters:

1. Lopes, T.C., Sikora, C.G.S., Michels, A.S., Magatão, L.. Mixed-Model Assembly Line

Balancing with Given Buffers and Product Sequence: Model, Formulation Comparisons

and Case Study. Annals of Operations Research, v. 286, p. 475–500, 2020 - Base for

Chapter 2;

2. Lopes, T.C., Sikora, C.G.S., Michels, A.S., Molina, R.G., Magatão, L.. Balancing and

cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines.

International Journal of Production Economics, v. 203, p. 216–224, 2018 - Base for

Chapter 3;

3. Lopes, T.C., Sikora, C.G.S., Michels, A.S., Magatão, L.. Balancing and cyclical scheduling

of asynchronous mixed-model assembly lines with parallel stations. Journal of Manufac-

turing Systems, v. 50, p. 193–200, 2019 - Base for Chapter 4;

4. Lopes, T.C., Sikora, C.G.S., Michels, A.S., Magatão, L.. An iterative decomposition for

asynchronous mixed-model assembly lines: combining balancing, sequencing, and buffer

allocation. International Journal of Production Research, v. 58, n. 2, p. 615–630, 2020

- Base for Chapter 5;

5. Lopes, T.C., Michels, A.S., Lüders, R., Magatão, L.. A simheuristic approach for throughput

maximization of asynchronous buffered stochastic mixed-model assembly lines. Comput-

ers and Operations Research, v. 115, p. 104863, 2020 - Base for Chapter 6;

6. Lopes, T.C., Michels, A.S., Magatão, L.. A note to: A hybrid algorithm for allocating tasks,

operators, and workstations in multi-manned assembly lines. Journal of Manufacturing

Systems, v. 52, p. 205–208, 2019 - Base for Chapter 7;

7. Lopes, T.C., Pastre, G.V., Michels, A.S., Magatão, L.. Flexible multi-manned assembly

line balancing problem: Model, heuristic procedure,and lower bounds for line length

minimization. Omega, v. 95, p. 102063, 2020 - Base for Chapter 8;
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8. Lopes, T.C., Brauner, N., Magatão, L.. Assembly Line Balancing with Fractional Task

Allocations. International Journal of Production Research, 2021 in press - Base for

Chapter 9.

Some papers presented by the author in scientific conferences also play a role in this

thesis, both laying building blocks for some of the journal publications and as a base for one of

the chapters:

1. Lopes, T.C.1, Sikora, C.G.S., Magatão, L.. Buffer and Cyclical Product Sequence Aware

Assembly Line Balancing Problem: Model and Steady-State Balancing Case Study. An-

nals of the XLVIII Brazilian Symposium of Operations Research. Vitória-ES, Brazil,

p. 3458–3469, 2016 - Base for Lopes et al. (2020b);

2. Lopes, T.C.2, Sikora, C.G.S., Michels, A.S., Magatão, L.. New Model for Simultaneous

Balancing and Cyclical Sequencing of Asynchronous Mixed-Model Assembly Lines with

Parallel Stations. Annals of the XLIX Brazilian Symposium of Operations Research.

Blumenau-SC, Brazil, p. 3570–3581, 2017 - Base for Lopes et al. (2019);

3. Lopes, T.C., Sikora, C.G.S., Michels, A.S., Magatão, L.. A Matheuristic for Makespan

Minimization of Asynchronous Stochastic Mixed-Model Assembly Lines. Annals of the

L Brazilian Symposium of Operations Research. Rio de Janeiro-RJ, Brasil, p. 833771,

2018 - Base for Lopes et al. (2020b);

4. Lopes, T.C., Sikora, C.G.S., Michels, A.S., Silva, A.C.L., Magatão, L.. Modeling the

Stochastic Steady-State of Mixed-Model Asynchronous Assembly Lines with Markov

Chains Proceeding of the XIX Latin-Iberoamerican Conference on Operations Re-

search, CLAIO. Lima-Peru, p. 183–189, 2019 - Related to the problem studied in Chap-

ter 6.

5. Lopes, T.C.3, Brauner, N., Magatão, L.. Optimally solving multi-objective MILP problems

with part-wise continuous Pareto fronts. Proceedings of the XXI ROADEF. Montpellier-

France, 2020 - Base for Chapter 10.
1 This paper was selected amongst the five best articles presented in the XLVIII SBPO conference (2016).
2 This paper was selected amongst the five best articles presented in the XLIX SBPO conference (2017).
3 This paper shared the first prize of best student article presented in the XXI ROADEF conference (2020).

http://www.din.uem.br/sbpo/sbpo2016/premio-roberto-dieguez-galvao.html
http://www.din.uem.br/sbpo/sbpo2017/premio-roberto-dieguez-galvao.html
https://www.roadef.org/article-news-roadef.php?id=101&title=Prix-article-etudiant--ROADEF2020
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Finally, during the years the research compiled in this thesis was developed, the author

participated in several publications. Some of those are more related to his work during his

Master’s degree (LOPES et al., 2017)4, but others are more directly related to chapters in this

thesis:

1. Sikora, C.G.S., Lopes, T.C., Magatão, L.. Traveling worker assembly line (re)balancing

problem: Model, reduction techniques, and real case studies. European Journal of Oper-

ational Research. v. 259, p. 949-971, 2017;

2. Sikora, C.G.S., Lopes, T.C., Schibelbain, D., Magatão, L.. Integer based formulation for

the simple assembly line balancing problem with multiple identical tasks. Computers

and Industrial Engineering. v. 104, p. 134-144, 2017;

3. Michels, A.S., Lopes, T.C., Sikora, C.G.S., Magatão, L.. The Robotic Assembly Line

Design (RALD) problem: Model and case studies with practical extensions. Computers

and Industrial Engineering. v. 120, p. 320-333, 2018;

4. Michels, A.S., Lopes, T.C., Sikora, C.G.S., Magatão, L.. A Benders’ decomposition al-

gorithm with combinatorial cuts for the multi-manned assembly line balancing problem.

European Journal of Operational Research. v. 278, p. 796-808, 2019 - Related to

Chapters 7 and 8;

5. Michels, A.S., Lopes, T.C., Magatão, L.. An exact method with decomposition techniques

and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing

problem. Operations Research Perspectives. v. 7, p. 100163, 2020 - Related to Chapters 7

and 8.

1.5 THESIS STRUCTURE

Chapter 2 considers a balancing problem aimed at optimizing steady-state cycle time of

an asynchronous line with given buffers and cyclical product sequence. Its main contribution is

defining and validating a cyclical scheduling mathematical formulation that adequately represents

such steady state. Chapter 3 incorporates sequencing decision variables to Chapter 2’s formulation

and demonstrates the importance of explicitly considering line pace for steady-state optimization.

Chapter 4 expands Chapter 3’s balancing-sequencing model to describe the cyclical scheduling
4 This work also lead to the development of an international patent (Number: FR3062492A1)

https://patents.google.com/patent/FR3062492A1
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of parallel stations. By doing so, it produces better solutions than a recent literature benchmark

that studied the same problem. Chapter 5 presents a further extension of Chapter 3’s formulation

by also considering buffer allocation decision variables. It also marks a departure from previous

chapters, as it is the first to produce a solution method (decomposition) other than simply solving

the problem’s mathematical programming model.

Chapter 6 furthers that departure by presenting a solution method that is entirely

independent of mathematical models. Furthermore, it considers a stochastic problem variant

in which the line must be balanced for a given buffer layout but under randomized product

sequences. Naturally, this stochastic component limits the role cyclical scheduling plays for this

specific chapter.

Chapters 7 and 8 present contributions for another class of assembly line balancing

problems, tied to multi-manned stations. These chapters consider single-product lines, therefore,

cyclical scheduling plays a role within stations rather than between them as in Chapters 2-5.

Chapter 7 presents a shorter contribution that questions some results of a recent article. Chapter 8

presents a more flexible multi-manned line concept that allows shorter line lengths. It resonates

Chapter 3’s discussion on the importance of explicitly considering line pace and it demonstrates

that a multi-objective dispute between cycle time and line length is possible for continuous paced

lines.

Chapter 9 addresses a line balancing problem that allows fractional task allocations.

The chapter analyses the relationship between internal storage costs and cycle time. By doing so,

it corroborates Chapter 8’s observation that multi-objective disputes can happen between line

length and cycle time in paced lines and reinforces the interpretation that the former can act as

continuously distributable buffers. Chapter 10 returns to the mixed-model context of Chapters 2-5

by addressing this multi-objective relationship with a case study with Chapter 2’s data.

Lastly, Chapter 11 summarizes the contributions of this thesis and discusses directions

for further works for each of the studied problem variants. Some of these reflect ongoing works,

while others are suggestions.
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2 BALANCING GIVEN PRODUCT SEQUENCE AND BUFFERS

This chapter consists of an adapted version of an article published in the journal Annals

of Operations Research (LOPES et al., 2020b), which in turn is an extended version of a

conference paper (LOPES et al., 2016) that was selected amongst the five best papers presented

at the XLVIII Brazilian Symposium of Operations Research held in Vitória-ES in 2016. While

the article was published in print in 2020, it was actually accepted for publication in 2017.

Nonetheless it serves as a base formulation for the following chapters. It addresses a mixed-

model line balancing problem variant in which the line pace is asynchronous and cyclical product

sequence and buffer layouts are given.

2.1 CONTEXT AND RELATED WORKS

Assembly lines are product oriented layouts, in which products (or pieces) move

through the workstations on the line in a sequential manner. In each workstation, a set of tasks

is performed before the next workstation’s tasks are allowed to begin. An important decision

problem related to managing such lines is to balance the distribution of tasks amongst stations

(SCHOLL; BECKER, 2006). Common goals for this problem include minimizing the number of

workstations required for a given production rate (Type-1) and maximizing the production rate

for a given number of workstations (Type-2). This chapter focuses on a Type-2 variant of such

problems in which a cyclical product sequence and a set of finite buffers are given as parameters.

Assembly lines are often not dedicated exclusively to a single product, but rather shared

by a set of products (SCHOLL, 1999). A common example is found in assembly lines of

automotive factories with different vehicle models. Lines with more than one product model can

be further classified as in two different types (BOYSEN et al., 2008): if set-up times between

models are significant and must be taken into account, significant size batches of each product

go through the line in an alternated fashion, and the problem is called a multi-model assembly

line; If those set-up times are small and negligible, models flow through the line in a more mixed

fashion, such line is called a mixed-model assembly line. This chapter focuses on the later type.

Authors approach mixed-model balancing differently (BECKER; SCHOLL, 2006):

some (THOMOPOULOS, 1970; MERENGO et al., 1999) state that it is important to minimize

differences between model processing times across stations (station smoothing, horizontal bal-
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ancing), others (MERENGO et al., 1999; MATANACHAI; YANO, 2001; PASTOR et al., 2002)

state that it is best to equalize average workloads between stations allowing more differences

between models (vertical balancing). Bukchin (1998) presents comparisons between several

performance measures for mixed-model balancing. These formulations are indirect goals, and

were developed because measuring the line throughput directly is a challenge.

Assembly lines can be further classified in terms of the line flow control (BOYSEN

et al., 2008): paced lines (continuous) have a conveyor belt that moves all pieces constantly

and together; In unpaced synchronous lines, all products move together, but discretely one

station forward when all pieces have completed processing at their current stations; In unpaced

asynchronous lines, pieces move discretely and almost independently: each piece can move

when processing is completed at its current station and the next station is available. This chapter

focuses on the later type of line control, which offers interesting possibilities and challenges

linked to the unpaced flow of pieces in and out of stations and buffers: On the one hand, products

might be blocked (when they are done processing, but the next station is occupied) and stations

starved (when a piece leaves the station and the previous station has not completed processing).

On the other hand, the independent flow of pieces can help compensate the differences between

models processing times.

Blockages and starvations produce disturbances on the assembly line that must be taken

into account. If the product sequence is cyclical, the system converges towards a steady-state.

However, such state is not trivially determinable due to the aforementioned disturbances. Further-

more, if the line starts empty, transient-stage disturbances further complicate such determination.

Figures 1(a) and 1(b) compare the steady-state cyclical behavior to the transient behavior on a

two-model (flowing through the line on a 5-1 pattern) assembly line with seven stations and single

unitary buffers between them1 Notice that the replications of the piece set behave (six pieces,

five of model 1 and one of model 2) identically in Figure 1(a), and differently in Figure 1(b):

The behavior is stable on the cyclical schedule and unstable on the transient one, in particular

on the first station and buffer: idle times occur at the first station due to downstream blockages,

which are mainly originated at the second and third workstations.

The optimization of a cyclical mixed-model flow-shop consists in combining traditional

simpler problems, namely line balancing (first studied by Salveson (1955)), model sequencing
1 The schedules illustrated by Figures 1(a) and 1(b) are generated by the optimization procedures discussed at

Section 2.3.1. In these figures, darker colors represent processing times and lighter colors represent waiting
times.
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(first modeled by Bard et al. (1992)), and buffers allocation (first studied by Koenigsberg (1959)).

It has been repeatedly stated that, if possible, it is best to attempt to deal with these aspects

simultaneously (SAWIK, 2000; BOYSEN et al., 2008; BOYSEN et al., 2009c) in order to

achieve better final results. Nevertheless, these problems are often dealt with independently as

some reviews for mainly balancing (BATTAÏA; DOLGUI, 2013), sequencing (BOYSEN et al.,

2009c), buffer allocation (DEMIR et al., 2014), and cyclical scheduling (LEVNER et al., 2010)

suggest. Most authors focus separately on variations of each of this problem’s aspects. Some

examples: Scholl et al. (2009), Gurevsky et al. (2012), Kellegöz (2017) present variations of

balancing problems, Leu et al. (1997), Heath et al. (2013), Golle et al. (2015) present variations

of sequencing problems, and Karabati and Kouvelis (1994), Spinellis and Papadopoulos (2000),

Gurgur (2013) present variations of buffer allocation problems. Karabati and Kouvelis (1994),

in particular, reinforced the previously mentioned interconnection between these problems by

showing that buffer allocation based exclusively on sequence-independent information often

leads to suboptimal results.

Figure 1 – Cyclical and transient schedule comparisons
(a) Cyclical schedule representing steady-state
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(b) Transient schedule representing initial state
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Source: Lopes et al. (2016)

Nonetheless, some authors combine these problems, mostly two at a time, either using

decomposition strategies or (meta)heuristic procedures (BATTINI et al., 2009; ÖZCAN et al.,

2010; TIACCI, 2015b). In general, however, most balancing models leave buffers and product

sequences out of the picture, whereas in most sequencing models as well as in most cyclical flow-

shop models, processing times are considered parameters. There are, however, some noteworthy

exceptions: Sawik (2004) presents a formulation for balancing and scheduling pieces in an

assembly system in which stations are not necessarily serial. Öztürk (2013) presented a model
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for mixed-model assembly lines that linked balancing and sequencing, on (possibly buffered)

asynchronous lines with a makespan minimization goal, but did not take the cyclical aspect

into account. Sawik (2012) presents formulations that compare makespan results of different

scheduling strategies. Öztürk et al. (2015) seek to optimize steady-state results, but also use

a makespan minimization goal for a series of replications of the minimal part set (MPS). The

minimal part set is defined as the smallest set of pieces that can be repeated indefinitely to reach

a production target: if one needs to produce 5000 units of product A and 1000 units of product B,

the MPS is five units of product A and one unit of product B. These makespan minimization

approaches (SAWIK, 2012; ÖZTÜRK et al., 2015) only represent the transient-state for the

first 𝑛 cycles and are not guaranteed to properly predict the steady-state behavior due to the

aforementioned disturbances (blockages, starvations, and empty line start). The other previously

mentioned approaches (station smoothing, horizontal balancing, and vertical balancing) are

indirect performance measures, and are not guaranteed to optimize cyclical steady-state either.

Thus far, mixed-model balancing models still fail to properly represent steady-state.

There are many different approaches which argue their specific (and different) goal functions

also lead to efficiency maximization. This might not always be the case in a flow shop cyclical

schedule, either due to aforementioned transient effects (as the line starting “empty”), or due to

inherent disturbances associated with asynchronous lines (blockages and starvations). Moreover,

a deeper investigation of single unitary buffer might offer interesting insights on steady-state

behavior and convergence, as suggested by Figure 1(b).

In this chapter, goal function formulations used on mixed-model assembly line models

and previously described in the literature are discussed and compared to the authors’ proposed

cyclical steady-state formulation (LOPES et al., 2016). Buffer allocation and a cyclical product

sequence are given as parameters, and the goal is to optimize the cyclical steady-state taking

such aspects into account. Tests reported herein provide evidences that these features should

be considered simultaneously. The problem at hand is a buffer-and-cyclical-product-sequence-

aware mixed-model assembly line balancing problem. The presented model can be iteratively

used to compare different options of layouts and cyclical sequences (some variations are tested

in the case study). The model developed by the authors is presented and a case study tests such

model with data from a real-world assembly line located on the outskirts of Curitiba-PR (Brazil).

Section 2.2 presents the base formulation from Lopes et al. (2016), along with the extensions

required to compare it to previous performance measures. Section 2.3 presents the results of
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applying both the proposed formulation and different goal functions to the case study’s data,

insights drawn from such tests are discussed. Furthermore, a new dataset is presented and tested

to verify the generality of such insights. Section 2.4 summarizes the main conclusions drawn

from this chapter.

2.2 MATHEMATICAL MODELS

In order to describe the buffer-and-cyclical-product-sequence-aware balancing problem,

a mathematical model developed with mixed-integer programming is employed. The proposed

model is based on the following assumptions:

1. Tasks are indivisible and performed on the same stations for all product models.

2. There are precedence relations between some tasks, reflecting technological constraints.

3. Some of them might be restricted to a subset of stations, reflecting practical constraints

(i.e. the problem is assignment bounded).

4. The product sequence and buffer layout are given, and the product sequence cycles

indefinitely.

5. Transportation times between stations are small and can be ignored.

6. Products flow asynchronously and sequentially in the line between stations.

7. The goal is to balance the line in a way that maximizes its efficiency, minimizing the

average steady-state cycle time.

The developed mathematical model is a variation of mixed-model assembly line balanc-

ing models (SCHOLL, 1999). Therefore, it contains a set of basic elements, such as tasks (𝑇 ),

precedence relations (𝑅), stations (𝑆), and models (𝑀 ), i.e. product’s type. The mathematical

model uses as parameter the product sequence of the |𝑃 | (product) pieces in the global set (batch).

In other words, there is a fixed sequence of products that repeats cyclically. Some practical con-

straints mean that not every task 𝑡 can be assigned at every station 𝑠. In order to describe these

constraints, the set 𝐹 is employed: 𝐹 lists all tuples (𝑡,𝑠) that represent feasible task-station

allocations. Each such tuple indicates that the task 𝑡 can be assigned to the station 𝑠. The set

𝐹 serves two purposes: First, it allows buffers to be represented as stations to which no task
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can be assigned to. Second, it allows practical features to be incorporated into the model (e.g.,

some tasks were fixed to stations due to heavy equipment that could not be moved). Scheduling

variables state the moment products enter (𝑇𝑖𝑛) and depart each station (𝑇𝑜𝑢𝑡) as well as the

processing time (𝑇𝑥) of each product at each station. The proposed metric for cycle time is

denoted by 𝐶𝑇𝑃𝑋 .

2.2.1 Proposed Formulation

The developed mathematical is presented by Expressions (1) to (9). It is based on a

mixed-model balancing set up with assignment restrictions imposed to the 𝑥 variable set.

Minimize 𝐶𝑇𝑃𝑋 (1)∑︁
(𝑡,𝑠) ∈ 𝐹

𝑥𝑡,𝑠 = 1 ∀ 𝑡 ∈ 𝑇 (2)

∑︁
(𝑡1,𝑠) ∈ 𝐹

𝑠 · 𝑥𝑡1,𝑠 ≤
∑︁

(𝑡2,𝑠) ∈ 𝐹

𝑠 · 𝑥𝑡2,𝑠 ∀ (𝑡1, 𝑡2) ∈ 𝑅 (3)

𝑇𝑥𝑝,𝑠 =
∑︁

(𝑡,𝑠) ∈ 𝐹

𝐷𝑡,𝑚𝑝 · 𝑥𝑡,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4)

𝑇𝑜𝑢𝑡𝑝,𝑠 ≥ 𝑇𝑖𝑛𝑝,𝑠 + 𝑇𝑥𝑝,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (5)

𝑇𝑖𝑛𝑝,𝑠 = 𝑇𝑜𝑢𝑡𝑝,𝑠−1 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 : 𝑠 > 1 (6)

𝑇𝑖𝑛𝑝,𝑠 ≥ 𝑇𝑜𝑢𝑡𝑝−1,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 : 𝑝 > 1 (7)

|𝑃 | · 𝐶𝑇𝑃𝑋 + 𝑇𝑖𝑛1,𝑠 ≥ 𝑇𝑜𝑢𝑡|𝑃 |,𝑠 ∀ 𝑠 ∈ 𝑆 (8)

|𝑃 | · 𝐶𝑇𝑃𝑋 ≥
∑︁

(𝑡,𝑠) ∈ 𝐹, 𝑝 ∈ 𝑃

𝐷𝑡,𝑚𝑝 · 𝑥𝑡,𝑠 ∀ 𝑠 ∈ 𝑆 (9)

Equation (2) establishes the assignment bounded occurrence constraint, while Inequal-

ity (3) models the precedence relations. Notice that 𝐹 must be defined in a way that if a particular

station 𝑠𝑏 is a buffer, then no task can be assigned to it. In other words, the set 𝐹 contains no

tuple (𝑡, 𝑠𝑏) with buffer stations 𝑠𝑏 ∈ 𝑆𝑏. Equation (4) determines the processing time 𝑇𝑥𝑝,𝑠 of

each piece 𝑝 in each station 𝑠, by combining the information of the piece 𝑝’s model 𝑚𝑝 with that

of the duration parameters 𝐷𝑡,𝑚 in time units of each task 𝑡 for each model 𝑚. These processing

times (𝑇𝑥𝑝,𝑠) bind together the model’s last two variable sets, namely 𝑇𝑖𝑛𝑝,𝑠 and 𝑇𝑜𝑢𝑡𝑝,𝑠. These

variables inform the time at which each piece 𝑝 enters (𝑇𝑖𝑛) and leaves (𝑇𝑜𝑢𝑡) each station 𝑠.

There are three logical constraints required to properly tie these variable sets. First, a piece can
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only leave a station after it’s been processed (stated by Inequality (5)). Second, when a piece

leaves one station it enters the next one, as stated by Inequality (6). Notice that this constraint

can be easily adapted to include movement times between stations, if such times are deemed

relevant. Third, a piece may only enter one station after the previous piece has left said station as

stated by Inequality (7). This constraint prevents two pieces from simultaneously occupying the

same station. Notice that, while Constraints (5) and (6) tie each 𝑝th piece’s variables to its other

variables, Constraint (7) tie each 𝑝th piece’s variables to its predecessor, the (𝑝− 1)th piece. In

order to represent a steady-state operation, it is necessary to also tie the last piece (|𝑃 |) to the first

one (1). This is done by the variable 𝐶𝑇𝑃𝑋 , which states the proposed measure of steady-state

mean cycle time. This measure is bounded by throughput time for each station 𝑠, as stated by

Inequality (8). This bound is the adapted version of Inequality (7): it ties the end of one set of

products to the beginning of the following set: just as the piece 𝑝 is tied to the previous piece 𝑝−1,

the piece 1 ties to the last piece (of a “previous” set) |𝑃 |, taking into account the shop’s average

steady-state cycle time: 𝐶𝑇𝑃𝑋 . This metric takes scheduling variables explicitly into account.

However, ignoring such variables, it is possible to imagine stations operating at a theoretical

maximum efficiency (never waiting for a piece to enter or leave it) as a bound to steady-state

behavior. Under this optimistic consideration, each station can be seen as a potential bottleneck

that bounds the maximum average steady-state cycle time. In other words, even though the

average processing time does not define the steady-state cycle time, it does inferiorly bound it, as

stated by Inequality (9). Given that this bound for cycle time does not take scheduling variables

into account, it can be referred to as “LB-CT”. Being unaware of product sequences and buffers,

this lower bound merely defines an inferior limit to steady-state, rather than being the key to

steady-state behavior.

As stated by Tiacci (2015b), realistic line features (such as mixed-models) make through-

put difficult to estimate directly. This leads to multiple authors employing an indirect performance

measure (THOMOPOULOS, 1970; BUKCHIN, 1998). However, the problem’s true goal is

to maximize productivity (throughput), or equivalently, to minimize the average steady-state

cycle time. Previously described indirect performance measures proposed by other authors are

presented in Section 2.2.2, their results are discussed in Section 2.3.1.

In these following sections, the proposed formulation is referred to as 𝑃𝑋 , the realized

value of steady-state cycle time as 𝐶𝑇 , and the proposed measure 𝐶𝑇𝑃𝑋 . These notation differ-

ences are needed, as an actual comparison between 𝐶𝑇 and 𝐶𝑇𝑃𝑋 is discussed in Section 2.3.1.
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2.2.2 Benchmark Formulations and Performance Measures

As discussed in Section 2.1, different authors have employed different goal functions

when approaching mixed-model balancing. Two variables are defined in terms of the balanc-

ing decision variable: The processing time (𝑝𝑥𝑚,𝑠) of each model 𝑚 at each station 𝑠 can be

determined by adding the task times of the tasks performed on it, as stated by Equation 10.

𝑝𝑥𝑚,𝑠 =
∑︁

(𝑡,𝑠) ∈ 𝐹

𝐷𝑡,𝑚 · 𝑥𝑡,𝑠 ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆 (10)

Second, weighted average processing time (𝑃𝑥𝑠) can be determined for each station 𝑠

by taking into account the demand ratio of each model, as stated by Equation 11.

𝑃𝑥𝑠 =
∑︁

𝑚 ∈ 𝑀

𝑛𝑚

|𝑃 |
· 𝑝𝑥𝑚,𝑠 ∀ 𝑠 ∈ 𝑆 (11)

Last, a parameter 𝑇𝐴𝑥𝑚 is defined for each model 𝑚. It states the theoretical minimum

average processing of each model. Such value is calculated in accordance to Equation 12.

𝑇𝐴𝑥𝑚 =
∑︁
𝑡 ∈ 𝑇

𝐷𝑡,𝑚

|𝑆|
∀𝑚 ∈ 𝑀 (12)

The first objective to be compared to the proposed formulation is the “Station Smoothing”

measure. This objective was proposed by Thomopoulos (1970) and stated by Equation 13. The

goal is to minimize the fluctuation of processing times at stations. This goal function is referred

to as 𝑆𝑋 .

Minimize 𝑆𝑋 =
∑︁

𝑚 ∈ 𝑀

𝑛𝑚 ·
∑︁

𝑠 ∈ 𝑆∖𝑆𝑏

|𝑇𝐴𝑥𝑚 − 𝑝𝑥𝑚,𝑠| (13)

Subject to: (2)-(4) and (10)-(12)

The second objective is often called “Vertical Balancing” (hereafter referred to as 𝑉 𝑋)

as proposed by Merengo et al. (1999) and stated by Equation 14. The idea behind this goal is

to establish more balanced total workloads across stations, allowing more differences between

models. This goal function minimizes the differences between the weighted average processing

times.

Minimize 𝑉 𝑋 =
∑︁

𝑠 ∈ 𝑆∖𝑆𝑏

(︂
max

𝑘 ∈ 𝑆∖𝑆𝑏

𝑃𝑥𝑘 − 𝑃𝑥𝑠

)︂
(14)

Subject to: (2)-(4) and (10)-(12)
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Vertical Balancing (Equation 14) argues that the main relevant aspect of mixed-model

balancing is the weighted average processing times at stations. Its rationale is: “If the average

processing times are similar across stations, no workstation will behave as an important bottle-

neck”. Vertical balancing does not take the differences between models within a station directly

into account.

The third objective is commonly called “Horizontal Balancing” (hereafter referred

to as 𝐻𝑋). The idea behind this goal is to establish more balanced workloads across models,

allowing more differences between stations. This goal function minimizes the differences between

processing times of each model and the largest processing time in each station. The formulation

presented by Equation 15 was proposed by Merengo et al. (1999).

Minimize 𝐻𝑋 =
∑︁

𝑠 ∈ 𝑆∖𝑆𝑏

∑︀
𝑚∈𝑀(max𝑘∈𝑀 𝑝𝑥𝑘,𝑠 − 𝑝𝑥𝑚,𝑠) · 𝑛𝑚

|𝑃 | ·max𝑚∈𝑀 𝑝𝑥𝑚,𝑠

(15)

Subject to: (2)-(4) and (10)-(12)

Horizontal Balancing (Equation 15) argues that the main relevant aspect is how model’s

processing times differ in each workstation. Its rationale is: “If models all have similar processing

times at each station, product sequence matters less and productivity is less dependent on it”.

Horizontal balancing does not take weighted average processing times directly into account.

One should note that there are other many variants of horizontal balancing and vertical

balancing proposed by other authors (MATANACHAI; YANO, 2001; PASTOR et al., 2002).

They are, however, similar in nature to the presented ones.

The fourth alternative goal function considered is the makespan minimization variant

discussed in Section 2.3, proposed by Sawik (2012), Öztürk et al. (2015). This approach consists

on taking two replications of the MPS into account and minimizing the completion of the last

piece, as stated by Equation 16. To the best of the authors’ knowledge, prior to this work, this

was the most sophisticated balancing goal that uses scheduling information.

Minimize 𝑀𝑋 = 𝑇𝑜𝑢𝑡|𝑃 |,|𝑆| (16)

Subject to: (2)-(7)

A last performance measure is hereafter indicated, a probabilistic estimate first presented

by Dar-El et al. (1999). It consists on computing the probability of each model being the

bottleneck at each station and multiplying this probability by the processing time of said model at
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said station. First, the variable 𝛽 compares each model at each station, as stated by Equation 17.

𝛽𝑚1,𝑠1,𝑚2,𝑠2 =

⎧⎨⎩ 1 if 𝑝𝑥𝑚1,𝑠1 > 𝑝𝑥𝑚2,𝑠2

0 otherwise
(17)

Next, the probability of each model 𝑚1 at station 𝑠1 having a higher load than station 𝑠2

is computed. Let that probability be stated by 𝑝𝑟𝑜𝑏1𝑚1,𝑠1,𝑠2 , as presented by Equation 18.

𝑝𝑟𝑜𝑏1𝑚1,𝑠1,𝑠2 =
∑︁

𝑚2 ∈ 𝑀

𝑛𝑚2 · 𝛽𝑚1,𝑠1,𝑚2,𝑠2

|𝑃 |
(18)

The product of these probabilities in every station represents the probability of model

𝑚 being the line’s bottleneck at station 𝑠. That probability (𝑝𝑟𝑜𝑏2𝑚,𝑠) is stated by Equation 19.

𝑝𝑟𝑜𝑏2𝑚,𝑠 =
∏︁

𝑠𝑘∈𝑆,𝑠𝑘 ̸=𝑠

𝑝𝑟𝑜𝑏1𝑚,𝑠,𝑠𝑘 (19)

At any given time, the probability of a model being in a station can be estimated by its

occupation rate. This allows one to finally define the probabilistically expected cycle time (𝑃.𝐸.)

as stated by Equation 20. Notice that this formulation assumes that processing times at stations

are the root source of bottlenecks. This is further discussed in Section 2.3.

𝑃.𝐸. =
∑︁
𝑠∈𝑆

∑︁
𝑚∈𝑀

𝑛𝑚

|𝑃 |
· 𝑝𝑟𝑜𝑏2𝑚,𝑠 · 𝑝𝑥𝑚,𝑠 (20)

This probabilistic estimate assumes a random sequence of products (DAR-EL et al.,

1999), in the problem at hand, the product sequence is known a priori. Furthermore, the non-

linearity present at Equation 19 makes it difficult to incorporate this formulation to the main MILP

model presented in Section 2.2. Therefore, the 𝑃.𝐸. measure is compared to the experienced

steady-state results of each formulation.

2.3 EXPERIMENTS AND RESULTS

This chapter’s experiments are divided in two parts: The first presents a case study in

which the models are applied to a data from an automobile seat assembly line on the outskirts

of Curitiba-PR (Brazil). The second consists of a generality study to verify whether the results

observed with practical data can be replicated in other instances. That is done with a dataset

constructed out of randomly generated SALBP-1 instances. Problem data (task processing times,

precedence relations, and task-assignment possibilities), along with solution tuples generated by

the proposed formulation, is available at the Lopes et al. (2020b)’s Supplementary Material for

reproducibility purposes.
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2.3.1 Practical Data Case Study

Instance Description

The case study is centered on a car seat assembly line with seven workstations that

produced two product models: a simpler one and a more complex one with higher processing

times in average. Demand rates are stable in a rate of 5 units of the simpler product model to 1

unit of the more complex one. Some tasks are fixed, reducing the problem’s degrees of freedom

(such fixed tasks are controlled by the 𝐹 set). Due to internal reasons of the factory, such as

a relatively constant internal demand for both products, the cyclical product sequences could

be set in one of two configurations: Either the more complex product type is produced every

six pieces (on a 5-1 pattern), or a batch of five units is produced every thirty pieces (on a 25-5

pattern). Intermediary configurations are regarded as confusing due to the loss of regularity and

larger batches are deemed unpractical due to internal demands of the factory. The company also

wanted to evaluate the impact of buffers: initially, the line did not have any internal storage.

Company specialists suspected that a buffer between the second and third workstations would be

very useful, but wanted to compare that it to installing buffers between every two stations.

The case study aimed at establishing the best steady-state results as for given prod-

uct sequences and buffer layouts. By comparing multiple scenarios, one can verify the influ-

ence of sequencing and buffer allocation on solution quality. Two different product sequences

with the same demand rate are considered: The first one (S1) is a “Mixed-Model” sequence, in

that products alternate more frequently and, therefore, product interfaces are more relevant. The

second one (S2) is a “Multi-Model” sequence, in that products alternate less often and interfaces

are less relevant. Notice that despite the label “Multi-Model”, set-up times between models are

assumed to be negligible in both cases. Figure 2 illustrates the two cyclical sequences that are

tested.

Three different buffer layouts are considered to test the influence of internal storage: The

first one (L1) is a layout with no buffers between stations; The second one (L2), an intermediary

layout with only one single buffer between the second and third stations; The last one (L3), a

fully buffered line with one buffer between each station pair. The buffer layouts are illustrated by

Figure 3. Notice that all buffers are single unitary buffers: each can only hold one piece at a time.
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Figure 2 – “Mixed-Model” (S1) and “Multi-Model” (S2) sequences.
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Source: Lopes et al. (2020b).

Figure 3 – Buffer layouts: L1, L2, and L3.
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Source: Lopes et al. (2020b).

Proposed Formulation Results

The combination of the two sequences (S1, S2) with the three layouts (L1, L2, L3)

generate six scenarios, one for each layout under each product sequence (e.g. S1L1, S2L1,

S1L2, ...). For each of the generated scenarios, the proposed formulation (described in Section 2.2)

is employed to generate a balancing solution that optimizes the steady-state. The optimal

balancing solution generated for each scenario is applied to all other scenarios in order to verify

how well solutions perform in configurations different than those they are designed to optimize.

This gave rise to for a total of thirty-six cases. These are converted to model instances and solved

to optimality using a universal solver (IBM ILOG CPLEX, available at www.ibm.com). Table 1

presents the realized values of steady-state cycle time for each one of the 36 combinations.

Boldfaced values refer to steady-state behavior of each scenario with the optimal balancing

obtained for that scenario. Numbers discussed in the text are highlighted in italic fonts.

Notice that for every scenario (line 𝑖) in Table 1, the best answer is the one obtained by

the balancing designed to optimize it (column 𝑖). However, balancing solutions (column 𝑗) can

behave both better and worse in scenarios other than the ones they are designed to optimize (line

𝑗): For instance, when the S1-L2 solution is applied to S1-L3, the realized cycle time (142.68) is
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better than the one obtained by applying it to S1-L2 (143.87), but not as good as the one designed

to S1-L3 applied to S1-L3 (133.48). Also, while the solutions with lowest steady-state cycle

time also have low values of LB-CT (Inequality (9)), some cases with low LB-CT have high

steady-state cycle times (for instance: S2-L3, with LB-CT of 135.48, applied to S1-L1 realized a

stable CT of 168.45). This confirms an expected behavior: low values of LB-CT are required

for low values of steady-state cycle time, but they are not sufficient.

Table 1 – Realized cycle time of each balancing solution applied to each scenario.

Balancing from Sequence and Layout
Mixed-Model Seq (5-1): S1 Multi-Model Seq (25-5): S2

L1 L2 L3 L1 L2 L3

A
pp

lie
d

to S1
L1 156.15 166.33 172.20 165.20 163.55 168.45
L2 155.28 143.87 152.52 155.78 155.78 152.35
L3 153.20 142.68 133.48 140.53 140.53 135.48

S2
L1 158.65 159.85 157.48 149.02 149.02 154.62
L2 155.36 155.28 152.87 144.75 144.75 150.09
L3 153.20 151.96 146.14 140.53 140.53 135.48

LB-CT 153.20 142.68 133.48 140.53 140.53 135.48

Solutions designed for buffered layouts tend to behave poorly when applied to un-

buffered layouts: S1-L3 has the best steady-state behavior (133.48), however, when its balancing

is applied to S1-L1, it displays the worst steady-state behavior (172.20). Furthermore, Table 1

shows that buffer layouts can influence the optimal sequencing decisions: For L1, the sequence

that offers the best steady-state behavior is S2 (149.02), but for L2 and L3, the sequence S1

outperforms S2 (143.87 and 133.48).

Cases S2-L1 and S2-L2, in particular, generated very similar answers: When applied

to all scenarios other than S1-L1 (in which S2-L2 (163.55) outperformed S2-L1 (165.2)), both

generated equal answers. This demonstrates, that for some scenarios, there might exist multiple

optimal balancing answers: two different balancing solutions provided the same steady-state

cycle time for five out of six scenarios.

Table 2 presents the (model-station) processing times of all six solutions. Notice that

the best solutions for the fully buffered cases (S1-L3 and S2-L3) display steady-state cycle times

lower than the highest station-wise processing times of individual models. These cases also have

very similar cycle times despite the different cyclical sequences: it may also be unintuitive how

five pieces of model M2 (with much higher processing times in some stations than M1) can

go through the line (Sequence S2) with only a minor impact on steady-state cycle time: How

can single buffers compensate those differences? In order to further clarify how this occurs,
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steady-state schedules are presented for thirty pieces of both the S1-L3 case (Figure 4(a)) and

the S2-L3 case (Figure 4(b)).

Table 2 – Processing times for each model, at each station, for each layout and each cyclical sequence.

Mixed-Model Sequence - S1
Layout 1 Layout 2 Layout 3

Station 𝑀1 𝑀2 LB-CT 𝑀1 𝑀2 LB-CT 𝑀1 𝑀2 LB-CT
1 121.0 231.7 139.45 105.1 187.3 118.80 116.3 218.1 133.27
2 110.5 216.0 128.08 104.6 255.5 129.75 113.6 231.8 133.30
3 121.9 108.0 119.58 136.6 139.5 137.08 134.7 127.0 133.42
4 126.7 120.9 125.73 130.9 141.1 132.60 138.2 109.6 133.43
5 129.2 127.7 128.95 136.9 137.7 137.03 128.6 155.8 133.13
6 139.8 130.6 138.27 135.0 136.9 135.32 122.0 190.9 133.48
7 137.1 233.7 153.20 137.1 170.6 142.68 132.8 135.4 133.23

Multi-Model Sequence - S2
Layout 1 Layout 2 Layout 3

Station 𝑀1 𝑀2 LB-CT 𝑀1 𝑀2 LB-CT 𝑀1 𝑀2 LB-CT
1 123.5 217.5 139.17 123.5 217.5 139.17 117.7 222.9 135.23
2 125.3 216.0 140.42 125.3 216.0 140.42 118.8 216.0 135.00
3 126.3 175.7 134.53 126.3 165.8 132.88 123.7 127.6 124.35
4 127.7 77.3 119.30 127.7 87.2 120.95 126.4 169.6 133.60
5 128.0 144.0 130.67 128.0 144.0 130.67 132.9 141.7 134.37
6 127.8 132.9 128.65 127.8 132.9 128.65 135.7 132.9 135.23
7 127.6 205.2 140.53 127.6 205.2 140.53 131.0 157.9 135.48

Notice that in Figure 4(a) the buffer utilization changes as the minimal part set goes

through the line. Buffer 1 fills after the first piece is processed at Station 1 and stays full until the

model two piece arrives. The second buffer is used initially for a small time, but this duration

increases as the MPS passes through the line. Naturally, every time a full MPS passes through

the system, the occupation returns to the initial configuration. This is required for the schedule to

be representative of the steady-state behavior.

Figure 4(b) further clarifies how buffers reduce blockages and starvations caused by

model differences (as shown by Table 2): buffers also display an evolving pattern of relative

utilization. The main difference to the S1-L3 scenario is how incremental these changes are:

the first five buffers in the S2-L3 case slowly build up the relative utilization as M1 pieces pass

through the line. Buffer 6, however, displays the opposite behavior: the buffer decreases relative

utilization as M1 pieces are produced and increases it as M2 pieces are produced.

Notice that the third station on the S2-L3 case has significantly longer idle times than

any station in the S1-L3 case. This is expected as its average processing time (124.35, indicated

in Table 2) is much lower than the cycle time (135.48, indicated in Table 1), one could try to see
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this as result of bad balancing. However, the fact that this is an optimal steady-state schedule for

this scenario means that no other balancing can produce less unproductive times. For example,

applying S1-L3 (that has a LB-CT of 133.48, indicated in Table 1) to S2-L3 leads to a steady-state

cycle time of 146.14.

Figure 4 – Comparison between cyclical schedules 30 products
(a) Steady-state schedule under the “Multi-Model” cyclical sequence.
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(b) Steady-state schedule under the “Mixed-Model” cyclical sequence.
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Source: Lopes et al. (2020b)

Lastly, by running the presented model, with Inequality (9), but without Inequality (8),

a global value of LB-CT is achieved. This bound is 133.48 time units, which matched the value

of the S1-L3 (Table 2) case. This means that a finite number of buffers allowed the system to

reach the maximum theoretical productivity.
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Result Validation via Simulation

The optimal steady-state cycle times predicted by the proposed model are validated

using a simulation software (Simio, available at www.simio.com). The product sequence and

processing times are deterministic and, therefore, the results are deterministic. As a result, a

detailed statistical analysis of the data is not required, contrary to stochastic cases (ALEXANDER

et al., 2010). The predicted values for average steady-state cycle time matched perfectly with

the steady-state conditions observed in the simulation (i.e. 𝐶𝑇 = 𝐶𝑇𝑃𝑋). Figure 5 shows the

convergence behavior of the simulation for the S1-L3 case, reproducible with the input data

shown in Table 2. Notice that model 2 takes three cycles to achieve steady-state, while model 1

takes only two. Model 1’s initial cycle (138.2) time is not only higher than its final one (132.8)

but also slightly higher than model 2’s final one (136.9). Figure 5 demonstrates that the time

between pieces at the last station (and, therefore, the cycle time) gradually converges towards

steady-state (and, therefore, towards the steady-state cycle time). The simulation allows the

verification of an interesting behavior: the initial cycle times of both models (138.2, and 311.1)

are higher than the one verified at the steady-state for both models (132.8, and 136.9).

Figure 5 – Simulated convergence behavior for scenario S1-L3.
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These simulations confirmed that the difference between the realized cycle time and the

value of LB-CT can be explained by the blockages and starvation disturbances, which happen

cyclically due to the cyclical product sequence. Naturally, the simulation model required a

warm-up period as the initial emptiness of the line meant that the first pieces took longer to go
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through the system, as shown by Figure 5. Furthermore, as the first pieces passed, buffers are

not yet able to compensate differences between models as well as they do in steady-state. This

meant that the first couple of replications of the MPS are not necessarily representative of the

steady-state, and that one cannot always measure model-wise steady-state cycle time based on

the behavior of such early replications. Steady-state behavior (in this case time between pieces

output) can be “better” than transient-state behavior, despite the naturally expected (and verified)

higher time in system of later pieces. This “empty line effect” is a disturbance associated with

the initial transient-state and is the key to explain the convergence behavior.

Comparisons to Other Formulations

In order to verify how well the different formulations behave, each goal function is

implemented and their answers tested for steady-state behavior. Tests are performed for each

buffer layout and each cyclical product sequence presented in the main case study described

herein-above. These tests are subdivided in three groups: The first one refer to scheduling

unaware literature formulations. The second, refer to the makespan minimization (scheduling

aware) formulation described in the literature. The last group evaluates how well the literature

described probabilistic estimate of cycle time behaves in regard to the experienced cycle time

of the tested cases.

Scheduling Unaware Formulations

Out of the alternative goal functions presented in Section 2.2.2, three do not employ

scheduling variables (e.g., 𝑇𝑖𝑛𝑝,𝑠 or 𝑇𝑜𝑢𝑡𝑝,𝑠), namely Station Smoothing (𝑆𝑋), Horizontal

Balancing (𝐻𝑋) and Vertical Balancing (𝑉 𝑋).

Three composed variants are also tested: First, 𝑉 𝑋 + 𝑆𝑋 is the goal function that

originates from adding 𝑉 𝑋 to 𝑆𝑋 . Second, 𝐻𝑋 + 𝐶𝐸 employs the same goal function as 𝐻𝑋

and the additional constraint stated by Inequality 21, binding the processing time value of each

model at each station to an upper bound value2. Last, 𝐻𝑋 + 𝐶𝐴 is similar to 𝐻𝑋 + 𝐶𝐸 but

employs the additional constraint stated by Inequality 22, binding only the weighted average
2 The value 250 time units is employed based on the optimal processing time from answers obtained by other

formulations
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processing time by an upper bound value3.

𝑝𝑥𝑚,𝑠 ≤ 𝑀𝑎𝑥𝑃𝑟𝑜𝑐𝑇 𝑖𝑚𝑒 ∀ 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀 (21)

𝑃𝑥𝑠 ≤ 𝑀𝑎𝑥𝑊𝑃𝑟𝑜𝑐𝑇 𝑖𝑚𝑒 ∀ 𝑠 ∈ 𝑆 (22)

The main difficulty presented by Equation 15 is the non-linearity associated with the

division by the variable 𝑝𝑥𝑚,𝑠. In the case studies, an iterative process is employed: A trial

solution is used, and the values of max𝑚∈𝑀 𝑝𝑥𝑚,𝑠 are set as parameters for the next execution.

Each variable 𝑝𝑥𝑚,𝑠 is then limited by the value of (max𝑚∈𝑀 𝑝𝑥𝑚,𝑠) multiplied by (1+𝑘). Where

𝑘 is a parameter whose starting value is 0.2 and decreased (by 0.01) over the iterations. This led

to solutions with progressively lower values of 𝐻𝑋 . Once 𝑘 = 0 is reached, 𝐻𝑋 reached a local

minimum value. This procedure is not guaranteed to generate optimal solutions in regard to 𝐻𝑋 ,

but did generate better results (lower values of 𝐻𝑋) than the initial trial solution, justifying its

use.

Table 3 – Realized cycle times obtained for each goal function.

Seq. Layout 𝑆𝑋 𝑉𝑋 𝐻𝑋 𝑆𝑋+𝑉 𝑋 𝐻𝑋+𝐶𝐸 𝐻𝑋+𝐶𝐴 𝑀𝑋 𝑃𝑋

S1
L1 167.28 172.20 364.47 170.23 171.68 177.62 156.73 156.15
L2 154.70 154.55 364.47 154.70 171.68 158.37 143.87 143.87
L3 145.00 134.57 364.47 141.33 170.27 158.37 138.93 133.48

S2
L1 154.35 159.55 364.47 151.42 179.83 187.48 149.02 149.02
L2 149.95 154.94 364.47 147.01 174.15 182.38 144.75 144.75
L3 146.31 148.41 364.47 142.64 170.27 170.79 136.38 135.48

Table 3 compares the observed steady-state cycle time of each formulation to those

obtained by the proposed formulation and those obtained by the makespan minimization for-

mulation, for a total of 48 cases. By comparing the base formulations (𝑆𝑋 , 𝑉 𝑋 and 𝐻𝑋) it

is rather clear that horizontal balancing is out-performed by both the station smoothing and

the vertical balancing approaches. In the buffered cases (Layout 3 in particular), 𝑉 𝑋 reached

solutions comparable to the much more sophisticated scheduling aware formulations (𝑀𝑋 and

𝑃𝑋): 𝑉 𝑋 applied to S1-L3 obtained a result (134.57) between 𝑃𝑋’s one (133.48) and MX’s

one (138.93).

Table 4 presents the processing times obtained on optimal solutions (or local minimum

in 𝐻𝑋’s case). Notice how 𝐻𝑋 presents an interesting problem: Some stations have average
3 The value 160 time units is employed based on observed cycle time values of other formulations
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Table 4 – Model-station processing times of solutions obtained according to each formulation.

Station Smoothing - SX Vertical Balancing - VX Horizontal Balancing - HX
Station 𝑀1 𝑀2 LB-CT 𝑀1 𝑀2 LB-CT 𝑀1 𝑀2 LB-CT

1 126.0 184.6 135.77 119.9 200.4 133.32 95.2 95.2 95.2
2 126.4 238.0 145.00 110.5 247.3 133.3 317.4 599.8 364.47
3 132.1 160.9 136.90 134.2 129.2 133.37 41.9 42.1 41.93
4 123.7 129.2 124.62 138.2 109.6 133.43 29.4 29.3 29.38
5 126.6 146.3 129.88 128.6 155.8 133.13 94.9 94.7 94.87
6 123.8 144.7 127.28 122 190.9 133.48 150.1 149.6 150.02
7 127.6 164.9 133.82 132.8 135.4 133.23 157.3 157.9 157.4

Composed - SX+VX Composed - HX+CE Composed - HX+CA
Station 𝑀1 𝑀2 LB-CT 𝑀1 𝑀2 LB-CT 𝑀1 𝑀2 LB-CT

1 126.0 206.6 139.43 122.1 229 139.92 105.7 102.9 105.23
2 126.4 216.0 141.33 98.8 248.1 123.68 115.2 374.2 158.37
3 132.1 160.9 136.90 83.5 83.6 83.52 83.5 83.6 83.52
4 123.5 128.6 124.35 89.3 89.3 89.3 134.3 136 134.58
5 126.2 153.9 130.82 169.2 169.3 169.22 151.6 152.6 151.77
6 124.4 155.4 129.57 153.1 178.7 157.37 142.8 142.7 142.78
7 127.6 147.2 130.87 170.2 170.6 170.27 153.1 176.6 157.02

processing times substantially higher (over five times) than others. This is due to the fact that

the goal function only measures the difference between models. 𝐻𝑋 concentrates processing

times differences in a single station, which is the most loaded one. This is not a coincidence:

Analyzing Equation 15 one can notice that differences between processing times count less if

they occur in loaded stations. This means 𝐻𝑋 tends to intentionally load a station with very

high processing time in one model and concentrate the differences between models as much as

possible in there: Indeed, aside from that station, processing times are very similar across models.

Vertical balancing (𝑉 𝑋) presents solutions with better potential as the average processing times

are lower, but the realization of said potential depends heavily on scheduling, product sequence,

and buffer layout. In scenarios without buffers, 𝑉 𝑋 produced steady-state behaviors very distant

from optimal behavior. Station smoothing (𝑆𝑋) presents model-wise processing times that are

roughly stable across stations, but worse values of LB-CT than 𝑉 𝑋 . The 𝑆𝑋 solution realizes

better values of cycle times than 𝑉 𝑋 in four out of six cases. However, in the S1-L3 case, the

better processing time distribution of 𝑉 𝑋 outperforms 𝑆𝑋 substantially (134.57 versus 145).

In most cases the presented composed variants (𝑆𝑋 +𝑉 𝑋 , 𝐻𝑋 +𝐶𝐸 and 𝐻𝑋 +𝐶𝐴)

did outperform the base variants. However, the reason for the improvement in each case ought to

be further discussed. The main problem with 𝐻𝑋 is its tendency to accumulate high processing

time in one station. This means that 𝐻𝑋 is less capable of accumulating processing time in one
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station when combined to either 𝐶𝐸 or 𝐶𝐴. The 𝑉 𝑋+𝑆𝑋 combination, on the other hand, only

outperforms both 𝑆𝑋 and 𝑉 𝑋 in the S2 cases. In four cases 𝑉 𝑋 + 𝑆𝑋 outperforms 𝑆𝑋 and

in other four it outperforms 𝑉 𝑋 . In that sense, 𝑉 𝑋 + 𝑆𝑋 seems to combine the formulations

strengths. One should note, however, that this is not enough to optimize steady-state as both 𝑀𝑋

and 𝑃𝑋 produce better steady-state results (than 𝑉 𝑋 + 𝑆𝑋) in all scenarios: this indicates that,

in some cases neither low average processing times nor smoothed processing times across

stations are guaranteed to lead, on their own, to steady-state efficiency.

In all scenarios, the scheduling unaware formulations are dominated by PX, indicat-

ing a weakness of these formulations: Not being able to explicitly take into account the product

sequence and buffers.

Goal Function Comparison and MPS Replications

As discussed in Sections 2.1 and 2.2, makespan minimization (SAWIK, 2012; ÖZTÜRK

et al., 2015) for some MPSs is not necessarily the same as steady-state optimization. This

is confirmed by Table 3, which shows that for three cases (S1-L1, S1-L3, and S2-L3) the

realized cyclical behavior is worse when applying the makespan minimization goal (for two

MPS replications) than when applying the proposed formulation. It is expected, however, that as

more replications are taken into account these two goals are likely to converge towards the same

results. In order to test that hypothesis, the scenario with most significant differences between

the results of each formulation (S1-L3) is tested for up to forty MPS replications. The results are

summarized by Table 5.

Table 5 shows the realized values of both steady-state cycle time (𝐶𝑇 ) and makespan

(𝑀𝑋), when minimizing both 𝑃𝑋 and 𝑀𝑋 . For one replication, 1611.7 is the minimal

makespan. 𝑃𝑋 obtains 1752.6, meaning the initial behavior is better when minimizing 𝑀𝑋 .

However, the realized values of 𝐶𝑇 when minimizing makespan are higher than those obtained

by the proposed formulation (144.28 versus 133.48), meaning the stable behavior is worse when

minimizing 𝑀𝑋 .

These tests show that the proposed formulation produces better steady-state results,

but longer makespan for the 𝑛 first replications. However, as the number 𝑛 of considered

replications is increased, the difference in both makespan and steady-state behavior between

formulations decrease. Notice, however, that the proposed formulation achieves the best

steady-state behavior without the need to consider multiple replications of the piece set.
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This confirms the previously mentioned hypothesis, but does not explain the results on its own:

Why do makespan minimization formulations produce different results for different numbers of

replications?

Table 5 – Comparison between proposed formulation and makespan minimization for S1-L3 scenario

Goal: Makespan Minimization (𝑀𝑋) Proposed Formulation (𝑃𝑋)
Values: 𝑀𝑋 𝐶𝑇 CPU Time 𝑀𝑋 𝐶𝑇 CPU Time

No. Rep.
1 1611.7 144.28 5” 1752.6 133.48 6”
2 2445.3 138.93 6” 2596.8 133.48 8”
3 3277.7 137.37 7” 3397.7 133.48 9”
4 4101.1 137.07 9” 4198.6 133.48 9”
5 4923.0 136.62 12” 4999.5 133.48 11”
10 8954.1 133.62 30” 9002.0 133.48 18”
20 16971 133.62 2’54” 17011 133.48 48”
40 33005 133.62 7’23” 33029 133.48 1’20”

Figure 1(a) and Figure 1(b) in Section 2.1 offer further insights as they present the

cyclical schedules for optimal answers of the proposed formulation and the makespan minimiza-

tion formulation, respectively. As expected, the makespan is smaller on Figure 1(b), but the

steady-state result is worse (about 3% higher average cycle time, as presented by Table 5). Notice

how the replications of the MPS do not display the same behavior if the makespan minimization

formulation is employed.

The probable explanation for this behavior difference lies in the transient-state distur-

bances, or “empty line effect” (also verified in the simulation model as the key to the convergence

behavior): just as in simulation models, the line is started “empty”, and this can be exploited by

the makespan minimization goal. This gain might, however, come at a cost for the steady-state

behavior: makespan minimization generates a dispute between exploiting the “empty line effect”

and optimizing how well the pieces flow through the line when such effect does not exist. This is

also concluded by Öztürk et al. (2015), who discussed the advantages of considering multiple

product replications. The proposed formulation (𝑃𝑋), however, is insensitive to the empty

line effect, and achieves steady-state optimization without having to subject itself to multiple

replications of the piece set.

In industrial practical cases, the number of pieces to be produced might be on the order

of thousands (5000 pieces of model 1, 1000 pieces of model 2). If that is the case, not only the

behavior of the initial pieces is negligible, but it might also be unpractical to optimize makespan

for so many pieces simply due the large size of the problem, measured in number of variables
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and constraints: As the number of replications increased, so did the required CPU time to solve

both models (see Table 5). In that case the best goal is clearly to optimize cyclical behavior,

which can be performed by the proposed model with one MPS replication, regardless of the

total number of pieces to be produced. Notice that, as shown by Table 5, even with forty MPS

replications the makespan minimization formulation does not reach the optimal steady-state

behavior. This reinforces the contribution of the proposed formulation.

If the number of produced pieces is smaller, one could argue that it’s interesting to take

advantage over the “empty line effect” to reduce the makespan. However, this effect can often be

unreliable: Factories usually continue in one day the work with pieces from the previous day

and, therefore, pieces that are already in the line make the “empty line effect” (observed in both

the simulation model and in the makespan minimization model) inexistent as the previous day’s

pieces tend to slow down the first replications of the current workpieces. If that is the case, even

for smaller total number of produced pieces it might be best to optimize steady-state behavior

instead of the makespan, even if one could take the total number of replications into account.

Probabilistic Estimate

This section discusses the probabilistic estimate of cycle time 𝑃.𝐸. introduced by Dar-

El et al. (1999). The values of 𝑃.𝐸. are calculated for each solution of the proposed method and

also of those obtained by the scheduling unaware formulations. Then, P.E. values are compared

to the realized cycle time those solutions offered. Table 1 and Table 3 present the values of six

steady-state results for each of the 12 solutions. Such minimum and maximum values of realized

cycle time are compared to the probabilistic estimate of that each solution in Table 6, which

summarizes results from 72 cases.

Table 6 – Comparison between highest and lowest realized 𝐶𝑇 and corresponding probabilistic estimate.

Solution Min Max P.E. Solution (PX) Min Max P.E.
SX 145.00 167.28 165.60 S1-L1 153.20 158.65 177.44
VX 134.57 172.20 172.50 S1-L2 142.68 166.33 170.20
HX 364.47 364.47 364.47 S1-L3 133.48 172.20 172.07

SX+VX 141.33 170.23 164.77 S2-L1 140.53 165.20 167.00
HX+CE 170.27 179.83 192.37 S2-L2 140.53 163.55 168.67
HX+CA 158.37 187.48 193.21 S2-L3 135.48 168.45 158.20

Notice how, for almost every case, the estimate is conservative: higher than the realized

cycle time. This could lead one to suppose that it can be used as an upper bound for steady-state
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solution quality. However, there are problems with that line argument: First, this estimate is based

on random product sequence; Second, the measure is insensitive to buffers capacity of assisting

scheduling and, therefore, the correspondence between realized cycle time and the probabilistic

estimate is not high. Lastly, in some cases (𝑆𝑋 + 𝑉 𝑋 , S1-L1, for instance) the estimate is

better than the realized result. All these “pathological results” occurred for the same scenario:

S1-L1. In order to clarify why this happened, one of these “pathological” cases (𝑆𝑋 + 𝑉 𝑋) is

compared to a “healthy” one (S1-L1) in, respectively, Figure 6(a) and Figure 6(b). Some insights

on the reasons why this occurred: In Figure 6(a), the bottleneck station is the sixth one, even

though the processing times on both models are not large. The station is a bottleneck due to

starvations that are propagated and generate idle times between pieces, this can be seen as a

scheduling bottleneck: Almost ironically, the sixth station blocks the previous stations because it

is starved by them. In Figure 6(b), the differences between processing times absorb the blockages

and prevent them from propagating idle times. Notice that the replications of the piece set are

closer to each other in Figure 6(b) than in Figure 6(a): Blockages propagate through stations in

Figure 6(a) and generate worse steady-state behavior.

This implies on a rather unintuitive conclusion: In some specific cases, differences

between models is a desirable feature. Naturally, the benefit is not the difference itself, but

rather what it allows when scheduling comes into play. This is naturally easier when buffers are

added. Furthermore, Figure 6(a) offers a clear example on how and why a station without high

processing times can be the system’s bottleneck.

2.3.2 Generality Case Study

The results described in Section 2.3.1 refer to variations of a single instance: One set

of data vectors describing tasks, models, and demand rates is tested with two different product

sequences and three buffer layouts. It is necessary to verify whether or not these results hold

in general. Furthermore, task-balancing often occurs before model sequencing (BOYSEN et

al., 2009b) contrary to the case study, in which the product sequence is known as a parameter.

Therefore, if the procedure described by Boysen et al. (2009b) is adopted, product sequences are

optimized for a certain balancing solution. This poses the question: Can the proposed formulation

lead to production rate improvements for a product sequence that is itself optimized for a previous

balancing solution? Given the relative proximity between the results obtained by the proposed

formulation (PX) and the makespan minimization ones (MX), one can also ask: How do these
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Figure 6 – Comparison between cyclical schedules generated by different formulations
(a) 𝑉 𝑋 + 𝑆𝑋 formulation: full schedule repeats every 1021.4 time units.
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(b) 𝑃𝑋 formulation: full schedule repeats every 940.2 time units.
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Source: Lopes et al. (2020b)

sequence-aware formulations behave in other instances?

Data Generation

In order to answer the questions herein above mentioned and to verify the generality

of the results presented in the previous sections, new tests are performed on a larger dataset.

The SALBP instances from the dataset presented by Otto et al. (2013) are used to generate

mixed-model ones, as described hereafter: The SALBP instances are designed for the type-1

variation of the problem, with a cycle time of 1000 time units. The instances vary in size, task

time distributions, precedence graph structure, and ordering strength. Otto et al. (2013) present

three types of task time distributions: peak in the bottom, peak in the middle, and bimodal. The

first two generate instances with a normal distribution of task times centered on either a low or

medium value (relative to 1000 time units). The later generates task times that are most likely
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to be small, but have a small probability of being much larger. This type of task distribution

is chosen to generate mixed-model instances due to the following reason: If the task times of

multiple SALBP instances are converted into task times of different product models, most tasks

will have similar small processing times, and the tasks that have higher processing times will

differ between models. This emulates a rather interesting mixed-model characteristic.

In order to restrict the comparisons to optimal solutions of each formulation, only the

small (all of which had 20 tasks) cases from Otto et al. (2013) are used. No filter is applied to the

structure of the precedence diagrams or to its ordering strength. A total 175 bimodal and small

SALBP instances are used. These are grouped five-by-five sequentially, generating 35 groups of

task processing times. For each group, five task-properties data vectors are generated: one for

the precedence diagram of each of the SALBP instances. For all instances, the demand rates are

presumed to be equal, 20% for each product, with an MPS of (1,1,1,1,1). This leads to a total of

175 mixed-model data vectors.

In order to optimize the production rate, the number of stations must be given. A specific

value is chosen (seven workstations), based on the main case study. Three buffer layouts are

considered: Empty, with no buffers; Half, with single unitary buffers before every even station (3

buffers in total); and Full, with single unitary buffers between every station (six buffers in total).

This leads to a total of 525 individual buffered mixed-model instances.

The cyclical product sequence could be arbitrarily chosen. But one goal of this dataset

is to verify if the proposed formulation can lead to production rate improvements for a product

sequence that is itself optimized for a previous balancing solution. Therefore, for each buffered

mixed-model instance two specific cyclical sequences are produced: the ones that lead to the best

production rates for the 𝑆𝑋 and 𝑉 𝑋 formulations. This generates a total of 1050 sequence-aware

instances for the formulations 𝑀𝑋 and 𝑃𝑋 . Lopes et al. (2020b)’s Supplementary Material

provides additional details about the data generation.

Generality Study Results

Each of the 525 buffered mixed-model instances is solved for two sequence unaware

goal functions (𝑆𝑋 , 𝑉 𝑋)4, generating an optimal balancing solution according to said goal. The

best possible cyclical sequence is then defined for the balancing solution, this can be done rather
4 Horizontal balancing 𝐻𝑋 is not tested due to its poor performance on the practical case study and to its

non-linearities that prevent optimal solutions from being found.
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quickly by comparing the 24 possible alternatives5. This sequence solution (the best possible one

for either 𝑆𝑋 or 𝑉 𝑋) is then used to generate a sequence-aware instance that is solved by both

proposed model (𝑃𝑋) and the makespan minimization model (𝑀𝑋). The cycle time obtained

by each formulation (𝑃𝑋 , 𝑀𝑋 , 𝑆𝑋 , 𝑉 𝑋) can then be compared to every other formulation.

These results are summarized by Table 7.

Table 7 – Generality study results: comparison to benchmarks.

Buffers 𝑆𝑋 𝑉𝑋 𝑀𝑋 𝑃𝑋

Avg. Ratio to 𝑃𝑋

Empty 1.047 1.095 1.032 1
Half 1.06 1.069 1.048 1
Full 1.098 1.002 1.066 1

Max. Ratio to 𝑃𝑋 All Layouts 1.22 1.25 1.18 1
Min. Ratio to 𝑃𝑋 All Layouts 1 1 1 1

Average CT
Empty 830.16 866.13 817.15 791.97
Half 779.98 785.49 770.85 735.55
Full 759.8 691.86 736.85 691.08

No. CT=LB-CT All Layouts 1 151 11 263

Table 7 presents the average values of cycle time for each formulation (𝑆𝑋 , 𝑉 𝑋 , 𝑀𝑋 ,

𝑃𝑋) and the (minimum, average, and maximum) ratios between those values and the CT value

achieved by the proposed formulation (𝑃𝑋). Notice that the global minimum value for all

cases is 1, meaning that the proposed formulation is not outperformed in any instance. These

results showed that the other methods behave differently depending on the buffer layouts: the

𝑆𝑋 goal leads to better results than the 𝑉 𝑋 goal in the Empty and Half buffer layouts, but is

outperformed by 𝑉 𝑋 in the Full Buffer layout. In this layout, 𝑉 𝑋 is very close to 𝑃𝑋 , with a

0.2% average difference in realized cycle times, meaning that this is a good alternative when

assembly lines have many buffers (e.g. in the Electronic Industry). However, it generated in

average the worst results for the other layouts. The makespan minimization alternative (𝑀𝑋)

generated good results (second only to 𝑃𝑋) for the buffer layouts Empty and Half, but showed a

large difference to the proposed formulation in the Full buffered scenario. This mimics the results

obtained on Section 2.3.1, suggesting that when more buffers are present there is a stronger

dispute between the optimization of steady-state behavior and transient-state behavior. These

results also corroborate the observed interconnections between balancing and buffer allocation.

Furthermore, a comparison between the realized values of cycle time and the minimal theoretical
5 In an MPS of five units (1,1,1,1,1), by fixating the first model in the first position, one can generate 4! combina-

tions of cyclical sequences. Each sequence requires a quick simulation of a few replications of the MPS going
through the line. Alternatively, linear relaxations of the proposed model can be used.
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one (LB-CT) shows that, in 263 cases, a finite number of buffers allows the system to reach the

maximum theoretical productivity.

The Probabilistic Estimate (P.E.) discussed in Section 2.2.2 is also compared to the

realized cycle time of each formulation (𝑆𝑋 , 𝑉 𝑋 , 𝑀𝑋 , 𝑃𝑋). The minimum, average and

maximum ratios are presented by Table 8. Notice that the estimate repeats the conservative overall

behavior that had been previously verified: In average for all methods the estimate is higher than

the realized cycle time, and remains insensitive to buffers capacity of assisting scheduling. For

some instances, however, the P.E. is up to 6% optimistic, repeating the inconsistencies that had

been previously observed in Section 2.3.1.

Table 8 – Generality study results: ratios to probabilistic estimate

Buffer Empty Half Full All Layouts
Method Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min.
𝑆𝑋 1.16 1.07 0.94 1.23 1.14 1.03 1.38 1.17 1.03 1.38 1.12 0.94
𝑉 𝑋 1.24 1.14 0.98 1.39 1.25 1.14 1.63 1.42 1.24 1.63 1.27 0.98
𝑀𝑋 1.31 1.17 1.06 1.42 1.24 1.1 1.52 1.31 1.13 1.52 1.24 1.06
𝑃𝑋 1.4 1.2 1.07 1.48 1.3 1.14 1.65 1.41 1.26 1.65 1.3 1.07

A detailed table with all output information of each of the 1050 individual executions

(525 for 𝑆𝑋 , 525 for 𝑉 𝑋 , each followed by 𝑀𝑋 and 𝑃𝑋) is available at the Lopes et al.

(2020b)’s Supplementary Material, along with the data vectors. The results reported above sum-

marize that information, answering the aforementioned generality questions: What is observed

in the practical case study is verified anew in the combinatorial instances. In the majority of

cases (82%), it is possible to improve the productivity of the line by using a sequence aware

formulation (by in average 5%), even when that sequence is optimal for a previous balancing

solution. This reinforces the main contribution of this chapter: although sequencing is usu-

ally performed after balancing, when a cyclical sequence is known, the presented balancing

formulation (𝑃𝑋) can offer better steady-state production rates.

2.4 CONCLUSIONS

This chapter presents a model for balancing an asynchronous assembly line with given

buffers and cyclical product sequence is presented. The model is applied to data from a car seat

assembly line on the outskirts of Curitiba-PR (Brazil) in a practical case study. The proposed

formulation accurately predicts steady-state configurations with only one replication of the

product set, and is validated by a simulation model. The optimized result is aware of the buffer
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layout and product sequence (problem’s scenario). Answers obtained with each tested scenario

are applied to all other scenarios, allowing one to state that a triple inter-dependency of optimal

solutions exists connecting balancing, sequencing and buffer allocation (Table 1).

Furthermore, comparisons between scenarios (Figure 4(a) and Figure 4(b)) allowed

to verify that buffers can aid scheduling mixed-model assembly lines whether product models

change often or not: The relative utilization of buffers can slowly increase or decrease as rather

large minimal part sets (up to 30 pieces tested) go through the line.

The steady-state results achieved by the proposed formulation are compared to those

reached by previous literature described goal functions: station smoothing, vertical balancing,

horizontal balancing, and makespan minimization. Variants of previous formulations are also

tested. The case study has shown that optimizing a flow-shop with makespan minimization goal

for a finite number of replications is not equivalent to optimizing for steady-state efficiency

(Table 5 and Figure 1(b)). Moreover, the makespan minimization formulation’s answer converges

towards the proposed formulation’s answer as the number of considered replications increases.

A probabilistic estimate of cycle time (DAR-EL et al., 1999) is tested, showing conser-

vative values for most scenarios. In some scenarios, however, the estimate is optimistic. A closer

investigation on the solution provided in such scenarios suggested (counter-intuitively) that

differences between models can be a desirable feature, by helping to compensate via scheduling

other differences between models on other stations. This case showed that the probabilistic

estimate is unable to take into account scheduling-generated bottlenecks: Stations can propagate

the differences between models and lead to steady-state bottlenecks in stations without high

processing times on the individual models (Figure 6(a)).

A combinatorial study with 1050 individual instances is conducted. The optimal answers

of each instance in accordance to each formulation is analyzed, and compared to the probabilistic

estimate. With these additional tests, the results verified on the practical case study are reinforced:

First, balancing, sequencing and buffer allocation problems are interconnected. Second, makespan

minimization of a finite number of replications does not necessarily optimize steady-state. Third,

a finite number of buffers might allow an assembly line to reach maximum theoretical efficiency.

Last, the proposed formulation generated solutions with steady-state cycle times in average

5% better than alternative formulations (station smoothing, vertical balancing and makespan

minimization), and it is not outperformed in a single any instance.
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3 INCORPORATING SEQUENCING AND LINE CONTROL

This chapter consists of an adapted version of an article published in the International

Journal of Production Economics (LOPES et al., 2018). In it, the formulation presented in

Chapter 2 is extended to incorporate mixed-model sequencing decisions, as well as the distinction

between synchronous and asynchronous product transfers.

3.1 CONTEXT

Assembly lines are product oriented layouts commonly used in industry for large-scale

production of similar product models (SCHOLL, 1999). These lines are associated to many

optimization problems. Some have been studied for a long time such as workload balancing

(SALVESON, 1955), model sequencing and scheduling (THOMOPOULOS, 1967). Others were

more recently introduced such as material supply scheduling (STERNATZ, 2014).

There are various types of assembly lines, which can be classified according to multiple

criteria (BATTAÏA; DOLGUI, 2013), such as product diversity. This chapter focuses on mixed-

model assembly lines, in which products flow through the line without set-up times required

between models. These lines can be further classified in terms of line pace (BOYSEN et al.,

2007; BOYSEN et al., 2009b): in paced lines, the conveyor moves all pieces continuously, while

in unpaced lines movement is discrete. This chapter focuses on unpaced lines, which are usually

classified as synchronous or asynchronous. Because synchronous lines move forward all pieces

together, they are cheaper and simpler, yet more restrictive. On the other hand, asynchronous ones

allow independent movements for pieces and, consequently, they are more flexible and expensive.

Hybrid lines (partly synchronous and partly asynchronous) can be reasonable intermediaries

between the two (KOUVELIS; KARABATI, 1999). To the best of the author’s knowledge,

however, hybrid lines have not been deeply studied in the literature.

Line pace is particularly relevant when mixed-model sequencing (and therefore schedul-

ing) is considered (BOYSEN et al., 2009c). Some relevant scheduling problems in mixed-model

unpaced assembly lines are starvations and blockages (BOYSEN et al., 2008). When producing

at large scale with relatively stable demands, it is common to seek a cyclical schedule for the line

(LEVNER et al., 2010). Such schedules are often based on the Minimal Part Set (MPS) concept

(BARD et al., 1992), which is the smallest set of products that will reach the target demand if
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produced multiple times.

General and cyclic synchronous scheduling has been studied for quite some time

(KARABATI et al., 1992; KARABATI; KOUVELIS, 1996; KOUVELIS; KARABATI, 1999),

including variants such as: lines with stochastic processing times (DOERR et al., 2000; CHIANG

et al., 2012; URBAN; CHIANG, 2016), order release in synchronous manufacturing (RIEZE-

BOS, 2010; RIEZEBOS, 2011), and flowshops problems with resources and set-up constraints

(WALDHERR; KNUST, 2017). Asynchronous lines have also been studied for long: initially

as a “formulation irregularity” (JOHNSON, 1983), but later as a research subject on its own

with both stochastic (NAKADE et al., 1997) and deterministic variants (SAWIK, 2000; SAWIK,

2002; SAWIK, 2004; SAWIK, 2012; ÖZTÜRK et al., 2013).

When combining degrees of freedom, such as balancing, sequencing, and scheduling,

authors often employ decompositions (KARABATI; SAYIN, 2003; BATTINI et al., 2009) or

meta-heuristic procedures (ÖZCAN et al., 2010). Such is the case because, while the combined

problem can allow better solutions, complexity and difficulty also tend to increase substantially.

Furthermore, works that do combine these degrees of freedom (e.g. Karabati and Sayin (2003))

often operate some simplifications or use indirect performance measures for the throughput

(TIACCI, 2015a).

A review of recent works (Section 3.2) shows that, while balancing and scheduling

problems are sometimes addressed simultaneously, cyclical steady-state optimization of unpaced

lines is still little explored. Most works on mixed-model balancing impose a common cycle time

for all product models rather than explicitly considering how balancing and model sequencing

interact in terms of blockages and starvations in the steady-state. This chapter extends Chapter 2’s

formulation to allow simultaneous balancing, sequencing, and cyclical scheduling of unpaced

(synchronous, asynchronous, and hybrid) lines.

The remaining of this chapter is organized as follows: Section 3.2 presents a review of

recent related works. Section 3.3 presents the context, concepts, and hypotheses of the studied

problem. Section 3.4 presents the new MILP model. Section 3.5 presents the results of the

comparison between the new formulation and previously described ones. Section 3.6 discusses

the obtained results, drawing insights from differences of solutions and computational times

found in the tested formulations, as well as its implications. Lastly, the main conclusions drawn

from this chapter are summarized in Section 3.7.
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3.2 RELATED WORKS

There are many research topics tied to mixed-model assembly lines. This review presents

recent works and compares them in regard to how they measure steady-state performance (cycle

time), whether they incorporate balancing, sequencing or both, and what are the goal functions.

Alghazi and Kurz (2018) introduced mathematical models that incorporate practical

ergonomic and zoning constraints. In this formulation, the goal is to minimize the cycle time,

measured as the weighted average of processing times across product models. Such measure

can be optimistic depending on the line pace, buffer layout and product sequence, as shown in

Chapter 2. A much more common approach is to impose the cycle time as a limit for all models.

For instance, Akpinar and Baykasoglu (2014a), Akpinar et al. (2017) present formulations

and Benders cuts for mixed-model balancing with set-up times between tasks. In sequence

dependent formulations, tasks are sequenced rather than product models and the task-wise

scheduling of each model must respect a given cycle time. Delice et al. (2017), Roshani and

Nezami (2017) presented formulations and meta-heuristics for another class of problems in

which this task-scheduling is necessary, the multi-manned mixed-model assembly lines. In these

lines, workstations have multiple workers or machines in order to reduce line length and, as a

consequence, it is necessary to sequence tasks for each model. Cycle time is respected by the

task-scheduling of every product model and the goal is to minimize the number of workers and

stations (line length). Kucukkoc and Zhang (2014), Kucukkoc and Zhang (2015), Kucukkoc and

Zhang (2016) present further variants and meta-heuristics for balancing-sequencing problems

with parallel assembly lines. Due to possible differences in cycle times in each line, the minimal

common multiple (MCM) of the cycle times is used to define a production cycle. Task times are

weighted by the MCM divisors of the assembly line they are processed at and the total weighted

processing time of each operator is bounded by the MCM of cycle times. These works have goal

functions tied to the minimization of the number of workstations, line length and smoothness

indexes of workload distribution.

The cycle time limit for all models is often used as a restriction by authors whose formu-

lations use multiple secondary objectives: Zhong (2017)’s balancing formulation optimizes the

number of stations, horizontal and vertical balancing; Saif et al. (2014)’s balancing-sequencing

one also optimizes vertical and horizontal balancing, and the total flow time of the product

models (without considering blockages or starvations).
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Stochastic variants, in which task times are random variables were also discussed

with two main strategies being recently employed: Dong et al. (2018)’s balancing formulation

presents a chance-constraint for cycle time that requires the cycle time for each model to be

respected with a given probability; Tiacci (2015a), Tiacci (2015b), Tiacci (2017) employs di-

rect simulation-based performance measure for balancing and balancing with buffer allocation

problems. Furthermore, he argues that some common performance measures (workload smooth-

ing (THOMOPOULOS, 1970), vertical and horizontal balancing (BECKER; SCHOLL, 2006),

weighted average processing times (ALGHAZI; KURZ, 2018), and demanding a cycle time for

all models Karabati and Sayin (2003)) are not goals in themselves, but rather supposed means to

achieve a high and stable throughput.

Some authors, however, do employ direct performance measures that take product

sequence into account: Sawik (2002), Sawik (2004) presents balancing-sequencing models with

a makespan minimization goal. A similar approach was employed by Li et al. (2017), who

present a balancing-sequencing and robot selection formulation to minimize makespan. These

models, however, do not produce cyclical schedules, meaning that extending such formulations

for large numbers of products tend to be difficult. Sawik (2012), Öztürk et al. (2015) present

balancing-sequencing formulations with makespan minimization goals and cyclical constraints

(between minimal part sets) in order to better approximate steady-state optimization.

Chapter 2 presents a balancing formulation for asynchronous lines with a steady-state

performance measure (realized cycle time) that explicitly takes into account a given product

sequence. Such performance measure is shown to be accurate and lead to better results than

common surrogates, such as vertical balancing, horizontal balancing, and workload smoothing.

However, it does not incorporate sequencing decisions and is restricted to asynchronous lines.

This chapter extends such formulation to incorporate cyclical sequencing and to be applicable to

synchronous and hybrid lines as well.

3.3 PROBLEM STATEMENT

The efficiency of unpaced mixed-model assembly lines is heavily influenced by the

planning of such lines, including the task allocation, product sequence, and also how pieces are

transported between each station. In respect to the transport of workpieces, these lines can either

be synchronous, asynchronous or a combination of both (hybrid lines).

A station 𝑠 has a synchronous pace (𝑠 ∈ 𝑆sync) when the departure of the current
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product model must coincide with the arrival of the next one. A station 𝑠 has an asynchronous

pace (𝑠 ∈ 𝑆async) when the arrival of the next product model can happen after the departure of

the current one.

Figure 7 – Hybrid unpaced line layout (𝑆async = {1,2,3,4}, 𝑆sync = {5,6,7})
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Source: Lopes et al. (2018)

A hybrid line example is illustrated by Figure 7, in which product flow is asynchronous

in stations 1 to 4 and synchronous1 in stations 5 to 7 due to a circular rotating platform. In this

case, approximating the line to an asynchronous one might lead to unfeasible schedules due

to the synchronous part. Similarly, approximating the line to a purely synchronous one might

eliminate good feasible schedules that take advantage of asynchronous possibilities from the first

part of the line.

Synchronous transfer constraints are more restrictive than asynchronous ones and hybrid

lines are expected to be intermediaries. An illustrative numerical example is hereby presented

to demonstrate these differences: Consider an assembly line with four workstations and three

product models with equal demand rates (MPS=[1,1,1]). The instance contains four tasks with

no precedence relations between them and processing times given by Table 9.

Table 9 – Numerical Example Data - Processing Times (in Time Units, TU)
Model M1 M2 M3
Task 1 6 7 15
Task 2 6 10 7
Task 3 8 10 7
Task 4 9 9 9

The optimal answers for synchronous and asynchronous lines are illustrated by Gantt

schedules in Figure 8(a) and Figure 8(b), respectively. In these figures, two replications of

the MPS are represented to ease the cyclical behavior visualization. Lighter colors represent
1 Notice that station 4 is the interface between the synchronous and the asynchronous part of the line. This means

that entry times are not bound by synchronism constraints, but departure times are.
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Figure 8 – Comparison between line controls
(a) Cyclical Schedule for a Synchronous Line (𝑆sync = {1,2,3,4}).
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(b) Cyclical Schedule for an Asynchronous (𝑆async = {1,2,3,4}) Line.
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(c) Cyclical Schedule for a Hybrid Line (𝑆async = {1,2}, 𝑆sync = {3,4}).
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blockages and blank spaces are starvations; both can be considered idle times. On the cyclical

schedule, red dashed lines mark the synchronous transfers of products in Figure 8(a).

If the synchronism constraints are applied to stations three and four, and the asynchro-

nism possibilities are kept at stations one and two, a hybrid line is defined. Figure 8(c) presents

the optimal answer for that line. Notice that synchronous transfers are forced on a subset of
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stations. Once again, two replications of the MPS are represented in Figure 8(c) and red dashed

lines represent the synchronous transfers of products.

Comparing the optimal solutions of each formulation, one can see that the synchronous

line has the highest value of cycle time (𝐶𝑇𝑆=33), the asynchronous one has the lowest one

(𝐶𝑇𝐴=29), and the hybrid line has an intermediary value (𝐶𝑇𝐻=31). This occurs because, on

hybrid lines, the synchronism constraints occur for only a subset of stations. This illustrates

a class of problems that cannot be described (and therefore optimized) by previous literature

mathematical models.

Furthermore, there are three degrees of freedom that ought to be simultaneously solved

in order to achieve optimal solutions: balancing, cyclical sequencing and scheduling. The problem

presented herein is based on the following assumptions:

1. Tasks are indivisible and must be performed in the same stations for all product models;

2. There are precedence relationships between some tasks, characterizing technological

constraints;

3. The MPS is known, i.e. product demand is known;

4. Transfer times between stations are neglected;

5. Line Control is a station-wise parameter: pieces move to the next station either on a

synchronous or an asynchronous pace.

Consequently, a new approach is required to optimally combine the balancing and

(cyclical) sequencing degrees of freedom and maximize the line’s efficiency by minimizing the

average steady-state cycle time as the goal. Section 3.4 seeks to present a mixed-integer linear

programming (MILP) formulation that allows to describe and optimize unpaced (synchronous,

asynchronous, or hybrid) lines.

3.4 MATHEMATICAL MODEL

In this section, the notation is introduced and the problems presented. The goal is to

maximize throughput of an assembly line with |𝑆| stations: 𝑆 =
{︀
𝑠1,𝑠2,...,𝑠|𝑆|

}︀
. Each task 𝑡𝑖

from the set 𝑇 =
{︀
𝑡1,𝑡2,...,𝑡|𝑇 |

}︀
must be assigned to one station. A partial ordering is imposed on

task allocation, with the set of precedence relations 𝑅 with vectors (𝑡𝑝,𝑡𝑠). Each of such vector
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states that the preceding task 𝑡𝑝 must be performed before the succeeding task 𝑡𝑠. The minimal

part set contains |𝑃 | pieces (jobs), each of them represents a different product model2. The

processing time of each task 𝑡 for each model 𝑚 is given by the matrix 𝐷𝑡,𝑚 and is not dependent

on the station that the task is assigned to. The proposed mixed-integer linear programming

formulation for synchronous and asynchronous lines is hereafter presented. The Synchronous

Balancing and Cyclical Sequencing Problem (SBCS-P) is defined with Expressions (23) to (33).

Its Asynchronous counterpart (ABCS-P) is defined with Expressions (23) to (31) and (34) to (35).

Minimize 𝐶𝑇 (23)

Subject to:∑︁
𝑠 ∈ 𝑆

𝑥𝑡,𝑠 = 1 ∀ 𝑡 ∈ 𝑇 (24)

∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝑡1,𝑠 ≤
∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝑡2,𝑠 ∀ (𝑡1,𝑡2) ∈ 𝑅 (25)

∑︁
𝑝 ∈ 𝑃

𝑦𝑝,𝑚 = 𝑁𝑚 ∀𝑚 ∈ 𝑃 (26)

∑︁
𝑚 ∈ 𝑃

𝑦𝑝,𝑚 = 1 ∀ 𝑝 ∈ 𝑃 (27)

𝑦1,1 = 1 (28)

𝑇𝑥𝑝,𝑠 ≥
∑︁
𝑡 ∈ 𝑇

𝐷𝑡,𝑚 · 𝑥𝑡,𝑠 − 𝐻 · (1− 𝑦𝑝,𝑚) ∀𝑚, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (29)

𝑇𝑜𝑢𝑡𝑝,𝑠 ≥ 𝑇𝑖𝑛𝑝,𝑠 + 𝑇𝑥𝑝,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (30)

𝑇𝑖𝑛𝑝,𝑠 = 𝑇𝑜𝑢𝑡𝑝,𝑠−1 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 : 𝑠 > 1 (31)

𝑇𝑖𝑛𝑝,𝑠 = 𝑇𝑜𝑢𝑡𝑝−1,𝑠 ∀ 𝑝 ∈ 𝑃 : 𝑝 > 1, 𝑠 ∈ 𝑆sync (32)

𝑇𝑖𝑛1,𝑠 + 𝐶𝑇 = 𝑇𝑜𝑢𝑡|𝑃 |,𝑠 ∀ 𝑠 ∈ 𝑆sync (33)

𝑇𝑖𝑛𝑝,𝑠 ≥ 𝑇𝑜𝑢𝑡𝑝−1,𝑠 ∀ 𝑝 ∈ 𝑃 : 𝑝 > 1, 𝑠 ∈ 𝑆async (34)

𝑇𝑖𝑛1,𝑠 + 𝐶𝑇 ≥ 𝑇𝑜𝑢𝑡|𝑃 |,𝑠 ∀ 𝑠 ∈ 𝑆async (35)

The key binary decisions in these problems are: the allocation of tasks to stations,

controlled by the binary variable set 𝑥 (balancing); and the definition of a cyclical model

sequence for the pieces, controlled by the binary variable set 𝑦 (sequencing). The binaries 𝑥𝑡,𝑠 are

set to one when the task 𝑡 is assigned at the station 𝑠. The binaries 𝑦𝑝,𝑚 when the model 𝑚 is the
2 If the MPS contains multiple instances of the same product model, these can be treated as different products

with equal processing times.
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𝑝𝑡ℎ piece in the sequence. Given these key operational decisions are made, scheduling auxiliary

variables are employed to measure solution quality. The key idea behind them is to represent

steady-state by analyzing a single MPS. The variables sets 𝑇𝑖𝑛, 𝑇𝑥, and 𝑇𝑜𝑢𝑡 represent entry,

processing, and departure times, respectively, of each piece at (or from) each station.

In a hybrid line, scheduling rules of stations are affected by the transfer system. Some

have synchronous transfers (𝑆sync), meaning a piece must enter when the previous piece departs.

Other stations have asynchronous transfers (𝑆async), meaning a piece can enter after the previous

piece departs. Naturally, these sets combined make into the full set of stations: 𝑆 = 𝑆sync ∪𝑆async.

The time between the entry of the first product and the departure of the last one limits the cycle

time for the whole MPS. Such cycle time is represented by the performance measure variable

𝐶𝑇 3, whose minimization is the problem’s goal.

Constraints (24) to (27) establish that all tasks must be performed, all precedence

relations must be respected, all models (jobs) must be produced according to their demand 𝑁𝑚

and each piece must be assigned to a unique product model. Constraint (28) provides a symmetry

break - valid due to the cyclical nature of the product sequences. Constraint (29) determines the

processing time at each piece at each station. Constraints (30) to (31) establish that pieces can

only leave a station when processing is complete, and require that pieces enter the next station

when they depart from the current one. Finally, the unpaced blockage feature is introduced with

Equations (32) and (33) describing the synchronous flow of pieces: all pieces must move one

station forward simultaneously. Furthermore, the time between the entry of the first piece and

the departure of the last piece is the same at all stations: the cycle time of an MPS is directly

tied to the line’s productivity. Lastly, Inequalities (34) and (35) describe the asynchronous flow

of pieces. The main difference to the synchronous one is that products do not need to change

stations simultaneously: a piece can only enter a station after the previous one departs from it,

but does not have to do it immediately. Therefore, the last two constraints for the asynchronous

problem are inequalities (≥) while those of synchronous lines are equations (=), meaning that

asynchronous lines are indeed less restrictive.

A particular strength of this formulation is its capacity to represent hybrid unpaced

lines: Suppose that some stations of an unpaced line are asynchronous, but the latter ones are

synchronous, as illustrated by Figure 7. By using the appropriate constraints for each set of
3 Also referred to as 𝐶𝑇𝑆 , 𝐶𝑇𝐴, and 𝐶𝑇𝐻 to differentiate synchronous, asynchronous, and hybrid lines, respec-

tively.
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stations4, it is possible to represent such hybrid lines.

3.5 RESULTS

In this section, the model presented in Section 3.4 is tested on a dataset with 140

instances. The dataset is made available in the Lopes et al. (2018)’s supporting information. The

balancing data vectors are based on Otto et al. (2013)’s SALBP dataset. This dataset contained

instances of various sizes, probabilistic distributions for the task times, and precedence diagram

structures. In this chapter, tests were conducted in small and medium instances (20 and 50 tasks).

In Otto’s dataset, task times followed one of three distributions: peak in the bottom, peak in the

middle, and bimodal distributions; the latter was chosen to emulate differences between product

models. Instances were generated using all precedence relation structures described by Otto et

al. (2013). In order to better represent the results, instances are gathered based on their Order

Strength (OS). The OS is a measure of how restricted is the task allocation due to precedence

relations. The range of the OS goes from 0 to 1, where 0 represents an instance without any

precedence relation, and 1 results in an instance with a fixed sequence for the task assignments.

In order to better represent differences between models, instance generation was exclu-

sively based on the bimodal data vectors presented by Otto et al. (2013). There were grouped five

by five in order to generate mixed-model instances. Each instance of Otto’s dataset is considered

a model in the proposed dataset. The processing times of tasks of different data vectors were

converted in processing times of different models. The precedence relations are defined as the

ones of the first data vector in each group of five data vectors. This leads to two sets of 35

mixed-model task property instances. The instances were grouped in accordance to their order

strength (OS). Each resulting set of instances contains 15 instances with OS = 0.2, 15 instances

with OS = 0.6, and 5 instances with OS = 0.9.

Two sequencing problem sizes were considered, first a small minimal part set with one

piece of each model (1A, 1B, 1C, 1D, 1E), named S1, and, second, a larger one with relative

demands (1A, 3B, 2C, 2D, 1E), named S2. A fixed number of stations (seven) was chosen to

conduct experiments with the objective of cycle time minimization.

With two problem sizes for balancing (B1 and B2), two problem sizes for sequencing

(S1 and S2) and 35 instances for each combination, a total of 140 mixed-model instances are
4 In Figure 7’s case, synchronous constraints (Equations (32) and (33) should be applied to stations 5-7, repre-

senting synchronous departures from stations 4-7. Asynchronous constraints should be applied to the other
stations.
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defined, grouped in four sets (S1B1, S2B1, S1B2, S2B2). The proposed dataset is tested with the

two mathematical models described by Karabati and Sayin (2003) and the proposed formulation

for synchronous lines. For asynchronous lines, the proposed formulation was compared with

Öztürk et al. (2015) CLP formulation.

These references were chosen as they were the ones that most closely matched the cyclic

synchronous/asynchronous problems’ definitions. However, most works reviewed on Section 3.2

follow (adaptations of) the performance definitions proposed by Karabati and Sayin (2003) (i.e.

cycle time as either a bound on weigthed average processing times or on model-wise processing

times for all stations), furthermore, the makespan minimization goal employed by Öztürk et al.

(2015) is also used by other authors (SAWIK, 2012; LI et al., 2017).

Hybrid unpaced lines were assumed to have a synchronous rotating platform containing

four stations (𝑆async = {1,2,3,4}, 𝑆sync = {5,6,7} - This layout is illustrated by Figure 7). Such

hybrid line was optimized by the proposed formulation and its answers are compared to those of

synchronous and asynchronous counterparts.

All experiments were conducted with the same hardware and software configurations:

A 64-bit Intel TM i7 CPU (2.9 GHz) with 8 GB of RAM was employed using eight threads

and the IBM ILOG CPLEX Optimization Studio 12.6.3. Time limit was set as 1800 seconds.

The two models described by Karabati and Sayin (2003) were implemented according to the

paper, Öztürk et al. (2015)’s model was adapted from the one made available by the authors at

the paper’s supporting information.

3.5.1 Overview of literature benchmark models

The proposed formulation is compared in the next sections to three alternative formu-

lations. For synchronous lines, the two models described by Karabati and Sayin (2003) are

employed. They are the Total Processing Time Problem (TPTP) model, whose goal function is

equivalent to Expression (36), and the Maximum Sub-cycle Time (MST) problem, whose goal

function is equivalent to Expression (37). Karabati and Sayin (2003) show that TPTP defines a

lower bound for steady-state cycle time (CT), while the second (MST) defines an upper bound.

Notice that these expressions do not require any sequencing (𝑦𝑝,𝑚) or scheduling variable (𝑇𝑖𝑛,

𝑇𝑥, 𝑇𝑜𝑢𝑡).
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Minimize TPTP = max
𝑠 ∈ 𝑆

(︃ ∑︁
𝑚 ∈ 𝑃

∑︁
𝑡 ∈ 𝑇

𝐷𝑡,𝑚 · 𝑥𝑡,𝑠

)︃
(36)

Subject to: (24)-(29)

Minimize MST = |𝑃 | ·max
𝑠 ∈ 𝑆

(︃
max
𝑚 ∈ 𝑃

(︃∑︁
𝑡 ∈ 𝑇

𝐷𝑡,𝑚 · 𝑥𝑡,𝑠

)︃)︃
(37)

Subject to: (24)-(29)

For asynchronous lines, the Constraint Logical Programming (CLP) model described

by Öztürk et al. (2015), hereafter referred to as OZT, is used for comparisons. In the employed

notation, the makespan minimization function would be equivalent to Expression (38). Their

formulation employs two MPS replications (the 𝑃 set is doubled) as well as symmetry constraints

between each of these replications, which are equivalent to Equation (39). Notice that OZT’s

equivalent MILP formulation requires sequencing and scheduling variables.

Minimize 𝑇𝑜𝑢𝑡|𝑃 |,|𝑆| (38)

Subject to: (24)-(35)

and 𝑦𝑝,𝑚 = 𝑦𝑝−|𝑃 |/2, 𝑚−|𝑃 |/2 ∀𝑚 ∈ 𝑃, 𝑝 ∈ 𝑃 : 𝑚, 𝑝 > |𝑃 |/2 (39)

Both the TPTP and MST models were re-implemented according to Karabati and

Sayin (2003)’s paper. It was not necessary however, to fully translate Öztürk et al. (2015)’s

model to mixed-integer programming: their paper’s supporting information includes the full

implementation files in Constraint Logical Programming and can be solved by the CP solver

of the IBM ILOG interface used to develop and test the proposed formulation. Only minor

adaptations on input files (.dat) were necessary, in order to adapt the OZT model to the proposed

dataset.

3.5.2 Synchronous Lines

The synchronous version of the proposed model (P𝑆) was tested and compared to two

literature benchmarks designed to address this problem in particular: the Maximum Sub-cycle

Time (MST) formulation, and the Total Processing Times Problem (TPTP), both presented by

Karabati and Sayin (2003). MST seeks to minimize the worst sub-cycle time by minimizing the
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largest model-wise processing time at stations. TPTP seeks to optimize the best case scenario

by minimizing the largest station-wise sum of model-wise processing times weighted by their

demands. The optimal value of the MST model offers a valid upper bound, while the optimal

value of the TPTP model offers a lower bound.

Neither TPTP nor MST explicitly considers sequencing. Therefore, in order to make a

valid comparison, their answers were post-processed to report the value of steady-state efficiency

generated by the best cyclical sequence. Such post-processing was not applied to the proposed

formulation. Due to the combined degrees of freedom, P𝑆 is expected to generate better answers

than MST and TPTP. A comparison ratio is defined for each of the benchmark models by comput-

ing 1− 𝑈𝐵𝑀𝑆𝑇/𝑈𝐵𝑃𝑆
5 and 1− 𝑈𝐵𝑇𝑃𝑇𝑃/𝑈𝐵𝑃𝑆

. These measures offer percentage differences

obtained by the proposed model P𝑆 . Negative values indicate that P𝑆 was outperformed in the

specific instance.

Nopt indicates the number of instances solved to optimality for the proposed formulation.

For example: 13/15 indicates that 13 out of the 15 instances in that set were solved to optimality.

Table 10 presents the results obtained for synchronous lines. The number of instances P𝑆 solved

to optimality (Nopt (P𝑆)) in each sub-dataset (e.g. S1-B1 OS=0.2) is reported at the rightmost

column of Table 10.

Table 10 – Results for synchronous lines
Data Info Avg. Exec. Time (s) Avg. Ratios to P𝑆 Min. Ratios to P𝑆

Data Set OS MST TPTP P(𝑆) MST TPTP MST TPTP Nopt (P𝑆)

S1-B1
0.2 2 1.2 469 5.21% 13.07% 1.78% 3.42% 15/15
0.6 0.7 0.7 55.5 5.36% 12.58% 1% 8.32% 15/15
0.9 0.6 0.4 1.8 2.87% 8.3% 1.18% 3.53% 5/5

S2-B1
0.2 2.2 1.1 1800 2.83% 11.53% 0.95% 8.57% 3/15
0.6 0.7 0.6 922.5 4.11% 10.59% 0.61% 6.03% 15/15
0.9 0.6 0.6 26.9 4.19% 8.29% 2.82% 5.31% 5/5

S1-B2
0.2 1683.3 1359 1800 4.82% 14.67% 1.25% 12.09% 3/15
0.6 93.4 20.9 1031.9 3.24% 12.62% 1.43% 7.65% 13/15
0.9 0.6 0.7 11.2 4.1% 6.15% 2.41% 4.36% 5/5

S2-B2
0.2 1491.6 1246.4 1800 1.84% 11.51% -0.68% 7.61% 0/15
0.6 63.4 18.4 1545.9 1.57% 9.61% -0.47% 3.36% 8/15
0.9 0.7 0.7 94 3.25% 6.89% 0.64% 4.78% 5/5

All - 357.7 283.8 796.6 3.62% 10.48% -0.68% 3.36% 92/140

3.5.3 Asynchronous Lines

The asynchronous version of the proposed model (P𝐴) was tested and compared to

literature benchmarks designed to address this problem in particular: the CLP formulation
5 Notation: 𝑈𝐵𝑚𝑒𝑡ℎ𝑜𝑑 denotes the steady-state cycle time obtained by specific method/model during experiments.
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presented by Öztürk et al. (2015). OZT seeks to generate better cyclical schedules by minimizing

the makespan of two replications of the minimal part set. This is an indirect performance measure

and is not the model’s goal in itself, but rather a method to achieve a low cycle time. OZT reported

values of cycle time were defined according to the original implementation files provided by the

authors’ supporting information.

Table 11 – Results for asynchronous lines
Data Info Avg. Exec. Time (s) Ratios to P𝐴

Data Set OS OZT P𝐴 Avg. Min. Nopt (P𝐴)

S1-B1
0.2 1800 58.5 17.24% 7.6% 15/15
0.6 1800 15.9 24.66% 6.36% 15/15
0.9 1800 2.7 21.7% 13.41% 5/5

S2-B1
0.2 1800 1267.9 24.88% 17.56% 9/15
0.6 1800 454 29.54% 16.58% 14/15
0.9 1800 41.1 30.34% 22.27% 5/5

S1-B2
0.2 1800 1272.5 25.9% 12.14% 6/15
0.6 1800 475 34.36% 14.34% 15/15
0.9 1800 25.2 53.32% 29.75% 5/5

S2-B2
0.2 1800 1800 31.57% 25.9% 0/15
0.6 1800 1627.7 42.72% 25.95% 4/15
0.9 1800 171.9 63.79% 43.26% 5/5

All - 1800 601 33.34% 6.36% 98/140

Just as the proposed formulation (P𝐴), OZT explicitly considers sequencing. Therefore,

in order to make a valid comparison, no post-processing was applied to either model. The

proposed formulation P𝐴 incorporates a direct performance measure of cycle time and is,

therefore, expected to generate better answers than OZT. A comparison ratio is defined for each

of the benchmark models by computing 1 − 𝑈𝐵𝑂𝑍𝑇/𝑈𝐵𝑃𝐴
. This measure offers percentage

difference obtained by the proposed model P𝐴. Table 11 presents the results obtained for

asynchronous lines. The number of instances P𝐴 solved to optimality (Nopt (P𝐴)) in each

sub-dataset (e.g. S1-B1 OS=0.2) is reported at the rightmost column of Table 11.

3.5.4 Hybrid Lines

Unpaced lines that combine synchronous and asynchronous parts are described as

hybrid ones. To the best of the author’s knowledge, no previous paper presents a model that can

be used as a comparative benchmark. Therefore, the proposed formulation for the hybrid lines

P𝐻 is hereby compared to the proposed formulations for synchronous and asynchronous lines

(P𝑆 and P𝐴).

Given that for hybrid lines (P𝐻), the synchronism constraints are only applied to a
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subset of stations, it is expected that these lines performance will be an intermediary between the

synchronous lines (P𝑆) and the asynchronous ones (P𝐴). A comparison ratio is defined for each

of the line control variants by computing 1− 𝑈𝐵𝑃𝑆
/𝑈𝐵𝑃𝐴

and 1− 𝑈𝐵𝑃𝐻
/𝑈𝐵𝑃𝐴

, this measure

offers percentage difference in cycle time between synchronous/hybrid lines with respect to

asynchronous ones. Negative values indicate that P𝐴 was outperformed by P𝑆 or P𝐻 in the

specific instance, this is only possible for instances in which P𝐴 was not solved to optimality.

Table 12 presents the results obtained for hybrid lines. The number of instances P𝐻 solved to

optimality (Nopt (P𝐻)) in each sub-dataset (e.g. S1-B1 OS=0.2) is reported at the rightmost

column of Table 12.

Table 12 – Results for hybrid lines
Data Info Avg. Exec. Time (s) Avg. Ratios to P𝐴 Min. Ratios to P𝐴

Data Set OS P𝑆 P𝐻 P𝐴 P𝑆 /P𝐴 P𝐻 /P𝐴 P𝑆 /P𝐴 P𝐻 /P𝐴 Nopt(P𝐻 )

S1-B1
0.2 106.3 70.3 58.5 3.71% 0.73% 1.4% 0.18% 15/15
0.6 21.9 17.7 15.9 4.44% 1.05% 2.81% 0% 15/15
0.9 3.6 2.7 2.7 6.76% 1.75% 3.97% 0.16% 5/5

S2-B1
0.2 1579.3 1293.9 1267.9 3.86% 0.85% 2.6% -0.1% 8/15
0.6 559.6 532 454 4.3% 1.16% 2.04% 0.07% 15/15
0.9 40.9 37.7 41.1 5.69% 1.45% 5.11% 0.96% 5/5

S1-B2
0.2 1690.4 1567.6 1272.5 1% 0.1% 0.31% -0.52% 3/15
0.6 705.6 457.6 475 1.31% 0.38% 0% 0% 14/15
0.9 35.7 32.6 25.2 2.28% 0.69% 1.8% 0.3% 5/5

S2-B2
0.2 1800 1800 1800 1.66% 0.62% 0.69% 0.05% 1/15
0.6 1716.5 1591.4 1627.7 1.38% 0.23% 0.48% -0.7% 12/15
0.9 264 226.3 171.9 2.6% 0.71% 2.08% 0% 5/5

All - 710.3 635.8 601 3.25% 0.81% 0% -0.7% 103/140

3.6 DISCUSSIONS

Karabati and Sayin (2003)’s TPTP model performed significantly worse than their MST

model (Table 10). In average, to simply minimize the sum of processing times at stations does

not optimize the line. In a single instance (Dataset S1-B1, case 6), however, the TPTP model did

produce a better solution than the MST. This indicates that minimizing the maximum model-wise

processing time does not necessarily optimize the line either. That said, the MST did perform

significantly better than the TPTP, but the proposed formulation 𝑃𝑆 outperformed the MST

one by 3.62% percent in average. This difference in performance is due to taking into account

sequencing and scheduling problems explicitly. Note that this comes at a cost for the proposed

formulation: in average, it took significantly longer processing times in all datasets.

Öztürk et al. (2015)’s CLP model was considerably outperformed by the proposed
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MILP model (Table 11). This might be due to the fact that the search field is rather large and

not very restricted, leading to weaker performance on the constraint propagation and domain

reduction mechanisms CLP relies rather heavily on. Furthermore, the lack of a systematic lower

bounds for the OZT formulation meant it could not solve a single instance to optimality. In

average, the proposed formulation produced asynchronous cyclical schedules with 33% lower

cycle times than the ones generated by Ozturk’s model. Notice that the proposed model also

produced solutions faster, reaching optimal solutions in 98 out of 140 instances, meaning that,

for asynchronous lines, the proposed formulation also displayed a better time performance.

For both synchronous and asynchronous lines, the proposed model generated better

solutions in average than the tested benchmarks. The proposed formulation was outperformed in

only 2 out of the 140 synchronous instances (Dataset S2-B2, cases 14 and 25 in the supporting

information). Notice that cases with higher ordering strength (OS) were solved faster for all

models: Even the larger instances (S2-B2) with high OS (0.9) could be optimally solved in a

relatively low computation time (172s in average for P𝐴), while smaller ones (S2-B1) with lower

OS (0.6) took much longer (454s in average for P𝐴). The higher solution difficulty of problems

with lower OS is also reflected by the number of solutions solved to optimality: for the harder

dataset (S2-B2), only one instance with low OS (0.2) was solved to optimality (by P𝐻). Out of

the instances with medium OS (0.6), 24 were solved to optimality (8 by P𝑆 , 4 by P𝐴, and 12 by

P𝐻).

Notice that the number of instances solved to optimality is higher for hybrid lines (103)

than for synchronous (94) or asynchronous ones (98) (Table 12). This reflects the fact that hybrid

lines are, on the one hand more flexible than synchronous ones (and, hence, reach lower upper

bounds), and on the other hand more restrictive than asynchronous ones (and, hence, allow higher

lower bounds). This can explain why significantly more instances of the large dataset (e.g. S2-B2

OS=0.6) could be solved to optimality for hybrid lines (12/15) than for synchronous (8/15) or

asynchronous ones (4/15).

The hybrid line case study demonstrated that such lines behave as intermediaries

between the synchronous and asynchronous ones. In average, synchronism demanded a 3.25%

higher cycle time when applied to the whole line and a 0.81% higher cycle time when applied

to half the line. In three cases6, the hybrid line reached the same value of cycle time as the

asynchronous one (both the hybrid and asynchronous instances were solved optimality). If the
6 S1-B1 instance 28, S1-B2 instance 26, S2-B2 instance 34
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cost of hybrid lines is also (as expected) an intermediary between the costs of synchronous and

asynchronous ones, then hybrid lines can be seen as cheaper alternatives to asynchronous lines:

In the computational case study, hybrid lines offer most of the productivity difference with a

smaller cost.

This highlights a particular value of the proposed formulation as it allows performance

evaluations of different line control systems. This, in turn, offers to managers a possibility to

quantitatively measure the trade-offs allowed by the both full and partial (hybrid) asynchronism.

While such evaluation was previously possible via simulation (TIACCI, 2015a), simulations

would require both balancing and sequencing solutions as inputs. The presented model allows

balancing and sequencing to become degrees of freedom to be optimized, leading to smaller

cycle times and better economical results.

3.7 CONCLUSIONS

This chapter presented an MILP formulation that successfully optimizes small and

medium sizes of mixed-model unpaced assembly lines. The proposed model simultaneously

solves the balancing of mixed-model lines along with the cyclical sequencing and scheduling

of products in the line. The formulation is flexible enough to consider both synchronous and

asynchronous assembly lines, with the possibility of treating hybrid (partly synchronous, partly

asynchronous) lines as well.

A dataset for the simultaneously balancing and cyclical sequencing of unpaced As-

sembly Lines containing 140 instances is proposed. Instances are based on Otto et al. (2013)’s

SALBP instances. The dataset can be solved for both synchronous and asynchronous lines, and

is used as a benchmark to compare the proposed formulation to the former best methods for both

synchronous and asynchronous lines. With a time limit of 1800 seconds, the proposed model

outperformed previously described alternatives in 138 out of the 140 instances of synchronous

lines and all 140 instances for the asynchronous lines. In average, the proposed formulation

found answers with 3.62% smaller cycle time for the synchronous cases and 33.3% for the

asynchronous lines.

The structure of the proposed model allows efficiency comparisons of line control in

assembly lines. To the best of the author’s knowledge, no other previous work on assembly line

balancing considers the optimization of hybrid synchronous/asynchronous lines. As expected,

the independent movement between the stations of asynchronous lines results in lower cycle
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times when compared to the synchronous counterpart. In average, for the proposed dataset, the

asynchronous lines can produce 3.25% faster and in only one instance the optimal answers of

both synchronous and asynchronous were the same. A hybrid line consisting of half asynchronous

and half synchronous stations achieved an intermediary result with cycle times slightly higher

than the fully asynchronous line (0.81%).

Although the efficiency of asynchronous lines are greater or equal to the synchronous

lines, the latter have smaller implementing costs. With the flexibility of the proposed formulation,

the output of lines can be determined and used in an economic evaluation of the transport systems.

Hybrid lines are especially advantageous when asynchronous stations can be installed to take

advantage of the more flexible piece transportation, while simpler synchronous stations are kept

where these benefits are not present.
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4 INCORPORATING PARALLEL STATIONS

This chapter is based on an article published in the Journal of Manufacturing Systems

(LOPES et al., 2019). The article is an extended version of a conference paper presented at

the XLIX SBPO in Blumenau (LOPES et al., 2017) - which was selected amongst the five

best papers presented in the conference. This chapter extends Chapter 3’s balancing-sequencing

formulation to describe cyclical scheduling with parallel stations. In Lopes et al. (2019), a

more direct comparison to Öztürk et al. (2015)’s formulation is given. Therefore, several basic

considerations in this chapter differ from the Chapters 2 and 3. For instance, each product model

has its own set of tasks and precedence relations.

4.1 CONTEXT

Assembly lines are product oriented manufacturing layouts commonly employed for

large scale production of similar products (SCHOLL, 1999). The optimization of such lines has

been subject of a substantial body of literature, including balancing task distributions (BOYSEN

et al., 2007) and scheduling product models (BOYSEN et al., 2009c). While these inter-related

optimization problems are usually treated in a sequential (hierarchical) manner, multiple recent

works have combined them (ÖZCAN et al., 2010; HAMZADAYI; YILDIZ, 2012; ÖZTÜRK et

al., 2013; KUCUKKOC; ZHANG, 2016).

Balancing (and balancing-sequencing) works range from studies on simple single

product deterministic lines (SCHOLL; BECKER, 2006) to ones that incorporate diverse realistic

features (BATTAÏA; DOLGUI, 2013). Some of the commonly considered aspects are: set-up

times between tasks (AKPINAR; BAYKASOGLU, 2014a; AKPINAR; BAYKASOGLU, 2014b),

ergonomic constraints (TIACCI; MIMMI, 2018; ALGHAZI; KURZ, 2018), space constraints

(SAWIK, 2002; CHICA et al., 2010; ÖZTÜRK et al., 2012; CHICA et al., 2016), worker

movement between stations (SIKORA et al., 2017), among others. Extensive classifications of

these problems are provided by Battaïa and Dolgui (2013) and Boysen et al. (2008). In this

chapter, parallel stations and product diversity (mixed-model) under stable demands are the main

considered features.

There are multiple manners assembly lines employ parallelism (BOYSEN et al., 2007):

Some authors consider parallel lines with crossover workers (ÖZCAN et al., 2010; KUCUKKOC;
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ZHANG, 2014), others consider parallel work within a (multi-manned) station (KELLEGÖZ,

2017; ROSHANI; NEZAMI, 2017). This chapter considers parallel stations (ÖZTÜRK et al.,

2015) under an unpaced asynchronous line control (BOYSEN et al., 2008). Parallel stations

allow higher station-wise processing times, more balancing flexibility, and also offer better

recovery from failure capacity as the line is not necessarily stopped when one of the stations

needs maintenance (REKIEK et al., 2002; BUKCHIN; RUBINOVITZ, 2003; LUSA, 2008).

Asynchronous line control means that products can move downstream when processing at the

current station is completed and the next stage has an empty station. Blockages occur when a

product’s processing is completed and all stations of the next stage are busy, and starvations occur

when a station is empty and no product from the previous stage has been yet fully processed

(BOYSEN et al., 2008).

Product diversity can also affect assembly lines in multiple manners (BATTAÏA; DOL-

GUI, 2013): in multi-model lines set-up times exist between models, hence, lot-sizing becomes

an important part of the optimization process (BOYSEN et al., 2008). This chapter focuses on

less restrictive mixed-model lines, in which there is no such model-wise set-up times. Further-

more, demand rates are considered stable enough, so that cyclically scheduling (LEVNER et al.,

2010) the line is viable. The mixed-model aspect of the problem has also been treated differently

by multiple authors: some consider that total processing times (or averages weighted by the

demand rates) should be equalized (ALGHAZI; KURZ, 2018; SAWIK, 2002; SAWIK, 2000).

Chapter 2 shows that this consideration can be too optimistic without a sufficient number of

buffers. A more common approach is to impose a cycle time constraint on the processing times

of all product models (AKPINAR; BAYKASOGLU, 2014a; ROSHANI; NEZAMI, 2017). The

minimization of such cycle time has also been proposed as a goal function (KARABATI; SAYIN,

2003). However, this approach can be pessimistic as the differences between product models

can often compensate higher processing times for one model, especially if its demand rate is

low, as shown in Chapter 2. Other goal functions such as workload smoothing (KUCUKKOC;

ZHANG, 2014), vertical balancing (SAIF et al., 2014; ZHONG, 2017) and total deviations from

average (KIM et al., 2000; KIM et al., 2006) have also been employed, but, as Tiacci (2015b)

point out, these are not goals in themselves, but rather supposed means to achieve a high and

stable throughput. Tiacci (2015a) proposes a simulation-based evaluation process to assess the

quality of solutions. These simulation-based works employ an assembly line simulator (TIACCI,

2012) that uses common and intuitive priority and scheduling rules, such as: moving products
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forward as soon as possible and giving priority to pieces based on when they were completed.

These rules have been shown to converge towards accurate steady-state assessments for straight

lines without parallelism, as shown in Chapter 2. However, it is not clear if simulations based on

such rules necessarily converge towards the optimal cyclical schedule (LEVNER et al., 2010)

given a launch order in lines with parallel stations.

Cyclical scheduling (HANEN; MUNIER, 1994) is a research field closely related to

the studied problem. It consists on providing schedules that can be infinitely repeated after a

certain cycle time. A review on cyclical scheduling is presented by Levner et al. (2010). A usual

assumption on this area is that machine-wise processing times of products are known, which in

the assembly line context means line balancing (task allocation) is a parameter. Cyclical schedul-

ing is applied to project scheduling (DINECHIN; KORDON, 2014), robotic cell scheduling

(BRAUNER, 2008; ELMI; TOPALOGLU, 2017), to job-shops (BRUCKER; KAMPMEYER,

2008; QUINTON et al., 2018), and flow-shops (SAWIK, 2012; BOZEJKO et al., 2016). The

latter category is the problem class which most closely resembles the studied assembly lines.

A recent work (ÖZTÜRK et al., 2015) has presented a constraint logic programming

model to optimize asynchronous mixed-model lines with parallel stations. Its core rationale is to

combine balancing and cyclical scheduling to minimize the makespan of multiple replications

of the Minimal Part Set (LEVNER et al., 2010) (MPS) and, indirectly, minimize the cycle

time. Chapter 2’s case study has shown that this approach does converge towards steady-state

optimization as more MPS replications are considered, and presented a formulation to assess

the performance of (single station) asynchronous lines with a single MPS replication. Chap-

ter 3 presents an extension of this formulation that incorporates sequencing variables for lines

without parallelism. However, generalizing that formulation to lines with parallel workstations

is challenging due to the fact that the order products enter a stage can differ from the order

products depart from it. Lopes et al. (2017) describes a simplifying ordering hypothesis (entry

order equals departure order) and present the mathematical model to approximately describe

the line. This chapter removes such simplification and exactly extend the mixed-integer linear

programming formulation presented in Chapters 2 and 3 to incorporate sequencing and cyclical

scheduling for asynchronous mixed-model lines with parallel stations. Illustrative examples are

given to demonstrate some of the developed features.

The dataset presented by Öztürk et al. (2015) is employed as a benchmark, consequently,

all benchmark features are incorporated: Mixed-model balancing, parallel stations, and cyclical
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scheduling are the main features and this chapter’s focus. However, Öztürk et al. (2015) employs

space constraints, different precedence relations per product model, and model-wise flexible task

assignments. These are added to the proposed model so that direct comparisons are possible.

This chapter is structured as follows: Section 4.2 describes the optimization problem.

Section 4.2.1 discusses the proposed cyclical scheduling concept (Extension of the formulation

presented in Chapters 2 and 3) and how it compares to previous ones. Section 4.3 presents the

developed mathematical model. Section 4.4 reports the results of computational tests performed

on the dataset provided by Öztürk et al. (2015). Last, Section 4.5 summarizes the findings and

contributions of the chapter.

4.2 PROBLEM STATEMENT

Each product Model 𝑚 (job) in the set 𝑀 has a specific set 𝑇𝑚 of Tasks 𝑡 which must

be assigned to one of the Stages 𝑠 in the set 𝑆. Tasks can be assigned to different stations for

each model, and the union set of all tasks for all models is denoted as 𝑇 . Each product model 𝑚

has a set of Precedence relations 𝑃𝑚 for task pairs (𝑡1,𝑡2), which require task 𝑡1 to be performed

before task 𝑡2 for the model 𝑚. Each stage 𝑠 has a given amount of Available space 𝐴𝑠, which

is consumed by the assignment of tasks to them: When task 𝑡 is assigned to the stage 𝑠 for any

model 𝑚, it Requires a given amount of space 𝑄(𝑡,𝑠). The Duration of each task 𝑡 at each stage 𝑠

for each model 𝑚 is given by the parameter 𝐷(𝑡,𝑚,𝑠). Each stage 𝑠 has a parallelism degree 𝑘𝑠,

meaning it has 𝑘𝑠 stations (workers, machines) and can process up to 𝑘𝑠 products simultaneously.

Each of the 𝑘𝑠 products processed simultaneously in stage 𝑠 are independent: they can depart the

stage 𝑠 at any time provided that they have completed processing at stage 𝑠 and stage 𝑠 + 1 is

not full (i.e. has less than 𝑘(𝑠+1) products currently at it). The problem’s major physical layout

concepts are illustrated by Figure 9.

The problem consists of providing a line balancing (distributions of tasks to stages for

each product model) and cyclical schedule for the Minimal Part Set (MPS) that minimize cycle

time (maximize throughput) such that: precedence relations and space constraints are respected;

No buffer exists between stages; Infinite buffers exist before the first stage and after the last one.



72

Figure 9 – Line layout example with four stages, 𝑘1 = 𝑘4 = 1, and 𝑘2 = 𝑘3 = 2
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4.2.1 Cyclical Scheduling with Parallelism

The standard definition of a cyclical schedule is one that repeats every 𝐶𝑇 units of time.

This period is called the cycle time (LEVNER et al., 2010) and it can be interpreted as: if an

event happens at a given time 𝑡, it happens again for the next MPS at 𝑡 + 𝐶𝑇 . When there are

no parallel machines or workstations, this definition leaves little margin for interpretation, as

discussed in Section 4.1. With parallelism, the most common interpretation (PINEDO, 2008) for

this definition is: if at time 𝑡 the model 𝑚 is processed at the 𝑘th position (station, machine) of the

stage 𝑠 then at time 𝑡 + 𝐶𝑇 the equivalent model of the next MPS is processed at the 𝑘th position

of the stage 𝑠. These positions are often referred to as stations, workers or machines. This cyclical

scheduling concept is hereafter referred to as machine-wise cyclical concept. This interpretation

implies on a designation of pieces within an MPS to machines (workers, or stations) in each

stage.

However, in the context of parallel identical machines, it is not necessary to assign

models to specific machines. It is sufficient to ensure that at most 𝑘𝑠 models are within stage 𝑠 at

the same time. By defining entry and departure boundaries for each stage, the cyclical schedule

can be redefined in terms of when these boundaries are crossed, i.e. when pieces enter and depart

each stage. These boundaries are illustrated by Figure 9, and the cyclical nature of their schedules

can be defined as follows: if at time 𝑡 the model 𝑚 enters (departs from) the stage 𝑠, then at time

𝑡 + 𝐶𝑇 the equivalent model of the next MPS enters (departs from) the stage 𝑠. Notice that no

mention of the specific machine is necessary. This subtle difference in interpretation means that

model-machine assignments can differ in each replication of the MPS. This cyclical concept is

referred to as boundary-wise cyclical concept.
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At first glance, this boundary-wise interpretation might seem to violate the purpose

of cyclical scheduling: provide a stable and predictable pattern. However, the boundary-based

concept does provide both these results: one full MPS is still guaranteed to be produced every 𝐶𝑇

Time Units (T.U.), and the schedule is completely defined by one MPS, although this might not

be as apparent. The major difference lies in the additional flexibility, which is hereafter illustrated:

consider a flowshop with a single stage equipped with two parallel identical machines and an

MPS with one unit of products M1 and M2, with processing times 7 and 3 T.U., respectively. If

each piece is assigned to a machine, then the minimal cycle time of a cyclical schedule is 7 T.U..

However, if the boundary concept of cyclical schedule is employed, then the minimal cycle time

becomes 5 T.U.: one unit of product M1 can enter the stage whenever a unit of product M2

departs it and vice-versa. By doing this, one unit of each product type crosses entry and departure

boundaries every 5 T.U.. These schedules are illustrated by Figure 10. From the perspective

of the machines, a cyclical pattern is achieved with two replications of the MPS, but from the

perspective of the boundaries, the schedule is cyclically defined within a single MPS.

Figure 10 – Comparison between machine-wise and boundary-wise optimal cyclical schedules
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If the flowshop has a single station at each stage, then the second model can only enter

it after the first one has departed it. This generalizes to the (𝑛 + 1)th model and the 𝑛th one.

The cycle time is bounded by the time difference between the entry of the first model and the

departure of the last one, similarly to Chapter 2. In the case without parallelism, the boundary
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and the machine perspectives of cyclical scheduling are essentially the same. However, if the

flowshop has multiple parallel stations, these concepts differ: Consider the case with a parallelism

degree of 𝑘 = 2 and an MPS with more than two models. The first two (𝑘) models to enter a

stage can do so independently. The third (𝑘 + 1) model, however, can only enter the stage after

the first model to depart from the stage departs from it1. This generalizes to the (𝑛 + 𝑘)th model

and the 𝑛th one. Now consider the next MPS entering the line. The first model of the next MPS is

able to enter the stage after the second last (𝑘th last) model of the first MPS departs it, and the

second model of the next MPS is able to enter the stage after the last model of the first MPS

departs it. In this case, there are two ways that cycle time is bounded per stage. Contrary to single

lines, however, the 𝑛th model to enter a stage is not necessarily the 𝑛th one to depart it. This can

happen due to processing times differences of the models in each stage. Consequently, the order

products cross the entrance boundary of a stage is not necessarily the same order they cross the

departure one, and hence the cyclical nature of the schedule (while fully described by one MPS)

might only become fully apparent in a machine-wise sense when multiple MPSs are considered.

Table 13 – Illustrative case data: model-stage processing times (Time Units - T.U.)
Stage S1 S2 S3 S4

Model 1 2 4 9 3
Model 2 2 8 2 2
Model 3 3 3 2 2
Model 4 3 4 5 3

Consider an illustrative case with the processing time data from Table 13 and an MPS

with one unit of each product model. The case’s line layout is presented in Figure 9 (with

𝑘1 = 𝑘4 = 1 and 𝑘2 = 𝑘3 = 2). Given the processing times at the second stage, it is clear

that a machine-wise cyclical schedule cannot arrange models in two groups with a cycle time

smaller than 11 T.U.. Indeed, Figure 11(a) presents one such optimal schedule. However, the

boundary-wise optimal shown by Figure 11(b) cyclic schedule allows a cycle time of 10 T.U..

The boundaries are indicated by the dashed lines labeled 𝐵1,...,𝐵5. Cycle time measurements

are presented bellow the last stage in each schedule.

Figure 11(b) further exemplifies two different blockage concepts that is employed

in Section 4.3, namely regular and cyclical blockage. These concepts are based on the MPS

concept: regular blockages occur between pieces of the same MPS, while cyclical blockages

occur between pieces of different MPS. While both are tied to scheduling variables, the latter is
1 The first model to depart the stage is not necessarily the first one to enter it. This is illustrated by Figure 11(b),

where model M1 is the first to enter Stage 3, but the third to depart from it.
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Figure 11 – Machine-wise and Boundary-wise cyclical Schedules
(a) Optimal machine-wise solution for the illustrative case
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(b) Optimal boundary-wise solution for the illustrative case
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tied to the steady-state cycle time, hence the label cyclical blockage. Notice that in Figure 11,

even MPSs are highlighted with thicker borders. Some examples of these blockage types are

hereby provided: In Figure 11(b), model M2 “follows” model M1 at the first stage, i.e. it is

blocked by it. Between minimal part sets, model M1 “cyclically follows” model M4, i.e. it is

cyclically blocked by it. Due to the difference of entry orders and departure orders at each stage,

different sets of blockages and cyclical blockages occur per stage.
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Notice that the boundary-wise cyclical concept allows more flexible scheduling patterns.

The mathematical model presented in Section 4.3 is defined based on the boundary-wise cyclical

schedule concept.

4.3 MATHEMATICAL MODEL

The following mixed-integer linear programming model is proposed to describe the

problem at hand. In order to do so, the following decision variables are introduced: the continuous

variable 𝐶𝑇 measures the line’s cycle time; the binary variable 𝑥(𝑡,𝑚,𝑠) is set to 1 if task 𝑡 is

assigned to stage 𝑠 for product model 𝑚; the continuous variables 𝑇𝑖𝑛𝑚,𝑠, 𝑇𝑥𝑚,𝑠, 𝑇𝑜𝑢𝑡𝑚,𝑠

measure entry, processing, and departure times of each model 𝑚 at, in, and from each stage 𝑠.

The binary ordering variables 𝑦𝑚,𝑛,𝑠 are set to 1 if the model 𝑚 is the 𝑛th one to pass through

the 𝑠th boundary, meaning that it is the 𝑛th piece to leave stage 𝑠 − 1 and enter stage 𝑠. For

instance, in Figure 11(b), model 1 (𝑚 = 1) is the first (𝑛 = 1) model to enter stage 1 (𝑠 = 1),

therefore, 𝑦1,1,1 = 1. Similarly, model 3 is the first model to enter stage 4, hence 𝑦3,1,4 = 1. The

binary 𝑓𝑚2,𝑚1,𝑠 is set to 1 when model 𝑚2 is blocked by model 𝑚1 at stage 𝑠. For instance, in

Figure 11(b), model 4 (𝑚2 = 4) is blocked by model 3 (𝑚1 = 3) at stage 2 (𝑠 = 2), meaning that

model 3 must depart stage 2 so that model 4 can enter it, therefore, 𝑓4,3,2 = 1. Similarly, model 4

is blocked by model 2 at stage 3, hence, 𝑓4,2,3 = 1. Lastly, the binary 𝑐𝑓𝑚2,𝑚1,𝑠 is set to 1 when

model 𝑚2 is cyclically blocked by model 𝑚1 at stage 𝑠, meaning that 𝑚2 can only enter stage 𝑠

when model 𝑚1 from the previous MPS departs from it. For instance, in Figure 11(b), model 1

(𝑚2 = 1) is cyclically blocked by model 4 (𝑚1 = 4) at stage 1 (𝑠 = 1), therefore, 𝑐𝑓1,4,1 = 1.

Similarly, model 1 is cyclically blocked by itself in stage 3, hence, 𝑐𝑓1,1,3 = 1, meaning it can

only enter stage 3 when the model 1 piece of the previous MPS departs from it. The Minimal Part

Set is assumed to contain one model of each type (|𝑀 | pieces, in total), and different demand

rates can be represented by having multiple models with the same processing times. For the sake

of simplicity, the model presented in this section assumes that 𝑘𝑠 is lower or equal to |𝑀 | for all

stages 𝑠, and a generalization of this model is presented in 4.6 removing such hypothesis.
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Minimize 𝐶𝑇 (40)

Subject to:∑︁
𝑠 ∈ 𝑆

𝑥𝑡,𝑚,𝑠 = 1 ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇𝑚 (41)

∑︁
𝑡 ∈ 𝑇

𝑄𝑡,𝑠 · max
𝑚 ∈ 𝑀

𝑥𝑡,𝑚,𝑠 ≤ 𝐴𝑠 ∀ 𝑠 ∈ 𝑆 (42)

∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝑡1,𝑚,𝑠 ≤
∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝑡2,𝑚,𝑠 ∀𝑚 ∈ 𝑀, (𝑡1,𝑡2) ∈ 𝑅𝑚 (43)

𝑇𝑥𝑚,𝑠 =
∑︁

𝑡 ∈ 𝑇𝑚

𝐷𝑡,𝑚,𝑠 · 𝑥𝑡,𝑚,𝑠 ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆 (44)

𝐶𝑇 ≥
∑︁

𝑚 ∈ 𝑀

𝑇𝑥𝑚,𝑠/𝑘𝑠 ∀ 𝑠 ∈ 𝑆 (45)

∑︁
𝑚 ∈ 𝑀

𝑦𝑚,𝑛,𝑠 = 1 ∀ 𝑛 ∈ 𝑀, 𝑠 ∈ 𝑆 (46)

∑︁
𝑛 ∈ 𝑀

𝑦𝑚,𝑛,𝑠 = 1 ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆 (47)

𝑦𝑚,𝑛,𝑠+1 ≤
∑︁

𝑛′ ∈ 𝑀 :𝑛′≤𝑛+𝑘𝑠−1

𝑦𝑚,𝑛′,𝑠

∀𝑚 ∈ 𝑀, 𝑛 ∈ 𝑀, 𝑠,𝑠 + 1 ∈ 𝑆 (48)

𝑓𝑚2,𝑚1,𝑠 ≥ 𝑦𝑚2,𝑛+𝑘𝑠,𝑠 + 𝑦𝑚1,𝑛,𝑠+1 − 1

∀ 𝑠,𝑠 + 1 ∈ 𝑆, 𝑚1, 𝑚2, 𝑛 ∈ 𝑀 : 𝑛 + 𝑘𝑠 ≤ |𝑀 | (49)

𝑐𝑓𝑚2,𝑚1,𝑠 ≥ 𝑦𝑚2,𝑛−|𝑀 |+𝑘𝑠,𝑠 + 𝑦𝑚1,𝑛,𝑠+1) − 1

∀ 𝑠,𝑠 + 1 ∈ 𝑆, 𝑚1, 𝑚2, 𝑛 ∈ 𝑀 : 𝑛 + 𝑘𝑠 > |𝑀 | (50)

𝑇𝑜𝑢𝑡𝑚,𝑠 ≥ 𝑇𝑖𝑛𝑚,𝑠 + 𝑇𝑥𝑚,𝑠 ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆 (51)

𝑇𝑜𝑢𝑡𝑚,𝑠−1 = 𝑇𝑖𝑛𝑚,𝑠 ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆 : 𝑠 > 1 (52)

𝑇𝑖𝑛𝑚2,𝑠 ≥ 𝑇𝑜𝑢𝑡𝑚1,𝑠 −𝐻 · (1− 𝑓𝑚2,𝑚1,𝑠) ∀𝑚1, 𝑚2 ∈ 𝑀, 𝑠 ∈ 𝑆 (53)

𝐶𝑇 + 𝑇𝑖𝑛𝑚2,𝑠 ≥ 𝑇𝑜𝑢𝑡𝑚1,𝑠 −𝐻 · (1− 𝑐𝑓𝑚2,𝑚1,𝑠) ∀𝑚1,𝑚2 ∈ 𝑀, 𝑠 ∈ 𝑆 (54)

Expression (40) states the problem’s goal function, i.e. cycle time minimization. Equa-

tion (41) states the balancing occurrence constraint: each task must be assigned for a stage

for each product model. Inequality (42) states that the space required for the tasks assigned

to a stage2 is limited by the space available in it (parameter 𝐴𝑠). Notice that models will not
2 The max function in Constraint (42) is non-linear, but also easily linearized. Furthermore, the function is

available and automatically linearized by OPL ILOG CPLEX.
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necessarily contribute equally to the space constraints for all tasks: each model 𝑚 has its own

set of tasks (𝑇𝑚) and, therefore, the occurrence constraint (Equation (41)) will not affect some

balancing binary variables (𝑥𝑡,𝑚,𝑠). Expression (43) states the precedence constraints between

tasks. With the balancing variables, processing times for each model at each stage are determined

by Constraint (44), and a lower bound is defined for cycle time by Expression (45): the total

processing time at a stage divided by the parallelism factor. Constraints (46) and (47) control

the ordering variables, demanding that each model be in a single position and each position

contain a single model. Constraint (48) imposes a consistency constraint in ordering variables

of neighboring stages: e.g. With a parallelism degree 𝑘𝑠 = 2, if model 𝑚 is the 𝑛th to leave

the stage 𝑠 (and enter stage 𝑠 + 1) it must have been at most the (𝑛 + 1)th to enter the stage 𝑠.

Notice that if 𝑘𝑠 = 1 then the order in which each model 𝑚 enters in a stage is the same order

it departs from the stage. Constraint (49) and (50) control the blockage and cyclical blockage

binary variables sets 𝑓 and 𝑐𝑓 in accordance to the boundary-wise cyclical concept described at

Section 4.2.1. Constraint (51) requires each model’s processing to be completed at each stage

before departing it. Constraint (52) states that when a model leaves a stage it immediately enters

the next one. Constraint (53) states that if model 𝑚2 is blocked by model 𝑚1 at stage 𝑠, 𝑚2 can

only enter stage 𝑠 after model 𝑚1 has departed from it, these blockages occur within an MPS.

Constraint (54) controls the cycle time by tying the analogous scheduling blockages between

MPS. In Constraints (53) and (54), the relaxation factor 𝐻 can take any valid value of CT multi-

plied by the highest parallelism factor 𝑘𝑠. The fact that sequencing and blockage variables are

allowed to be different for each stage 𝑠 and the constraints that relate to them (Constraints (46)

to (50), (53), and (54)) are the key factors that extend the formulation proposed in Chapters 2

and 3 by removing the ordering hypothesis (requiring the entry orders and departure orders be

the same) from, and hence generalizing, the model presented by Lopes et al. (2017).

The additional formulation (three sequencing variable sets: 𝑦, 𝑓 and 𝑐𝑓 ) complexity

required to adequately represent the additional liberties of parallel stations poses a question:

is it possible to simply define sequencing variables for the first boundary (line entrance) and

to simulate the line’s behavior based on common and intuitive scheduling rules? While this

approach is feasible (TIACCI, 2015a), it is not guaranteed to lead to optimal cyclical schedules

even when an optimal entry order is employed. This fact is demonstrated by an example provided

in 4.4.2.
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4.4 RESULTS

The model described in Section 4.3 was applied to the 36-instance data set presented by

Öztürk et al. (2015). The summary of most relevant instance information and results are reported

by Table 14. The proposed model results are reported under the “Full” column, its previous

particularized Lopes et al. (2017) form is reported under the “Part.” column, and the best solution

found by Öztürk et al. (2015)’s model is reported under the benchmark (BMK) column. Table 14

compares the cycle time values of the best incumbent found by each method within the time

limit. The proposed model was only solved to optimality for instances marked with 0% Gap

(except 22 and 28). The particularized model was solved to optimality for all instances, except

the largest three (33-36). Öztürk et al. (2015)’s benchmark, however, did not report optimality

in any instance. This may be due to the model’s nature: Öztürk et al. (2015)’s machine-wise

formulation is a Constraint Logic Programming model; That approach lacks a systematic lower

bound and might have difficulties in fully exploring large search fields.

In order to set aside software and hardware considerations, all models were executed

in the same hardware and software conditions: Tests were performed on a Core i7-3770 CPU

(3.4GHz) with 16 GB RAM with a time limit of one hour; The universal solver CPLEX v12.8

was used and the original implementation files provided by Öztürk et al. (2015) were employed.

Cycle time comparisons are made between the upper bound of the proposed model and the

average of model-wise cycle times reported by Öztürk et al. (2015) implementation files. Models,

data, and solution files are provided by Lopes et al. (2019)’s Supplementary Material.

For instances with parallelism that were not solved to optimality, a relaxation of the

proposed model was also used to strengthen the lower bounds: By removing the sequencing

and scheduling variables and constraints, the reduced model (Expressions (40) to (45)) states a

balancing lower bound for stable cycle time. The lower bound values reported by Table 14 are

the maximum of the best bound found by the proposed model and the optimal answer of the

relaxed model. For instances without parallelism, the lower bounds reported by the particularized

version of the model Lopes et al. (2017) are valid and, hence, were also used to define the best

lower bounds (column LB of Table 14).

For most instances (all except 1, 4, 10, and 25, in which all formulations tied), the

proposed model (and its particularized version) outperformed the benchmark (ÖZTÜRK et al.,

2015). Out of the 36 instances, 18 were solved to optimality. However, most of them (11) are
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Table 14 – Results summary for the 36-instance dataset
Instance info (Parameters) Solution info (Cycle Time) - T.U.

i
∑︀

𝑚 |𝑇𝑚| |𝑀 | |𝑆| 𝑘𝑠 Full Part. BMK LB Gap
1 38 5 3 1 47 47 47 47 0%
2 38 5 3 2 23.5 23.5 23.8 23.5 0%
3 38 5 3 3 15.7 15.7 18 15.7 0%
4 38 5 5 1 26 26 26 26 0%
5 38 5 5 2 12 13 14.8 12 0%
6 38 5 5 3 8 8.7 9.8 8 0%
7 52 7 3 1 57 57 58 57 0%
8 52 7 3 2 28 28.5 31.1 26.5 5.4%
9 52 7 3 3 18 19 24.7 17.7 1.7%
10 52 7 5 1 34 34 34 34 0%
11 52 7 5 2 17 17 20.4 16 5.9%
12 52 7 5 3 12 11.3 13.1 10.7 5.3%
13 114 5 3 1 107 107 121 107 0%
14 114 5 3 2 52 53.5 62.8 52 0%
15 114 5 3 3 34.7 35.7 40.4 33 4.9%
16 114 5 5 1 68 68 73.4 68 0%
17 114 5 5 2 32 34 36 30.5 4.7%
18 114 5 5 3 22.3 22.7 24.6 20.3 9%
19 156 7 3 1 142 142 149 142 0%
20 156 7 3 2 70 71 73.9 67.5 3.6%
21 156 7 3 3 48 47.3 61.4 45 4.9%
22 156 7 5 1 89 88 102 88 0%
23 156 7 5 2 46 44 61 41 6.8%
24 156 7 5 3 30 29.3 32.7 27.3 6.8%
25 190 5 3 1 197 197 197 197 0%
26 190 5 3 2 98.5 98.5 103.6 98.5 0%
27 190 5 3 3 64.3 65.7 80.4 64.3 0%
28 190 5 5 1 114 113 116 113 0%
29 190 5 5 2 56 56.5 63.2 50 10.7%
30 190 5 5 3 36 37.7 46.4 33.3 7.5%
31 260 7 3 1 263 263 267 263 0%
32 260 7 3 2 131 131.5 139 126 3.8%
33 260 7 3 3 86 87.7 104.1 84 2.3%
34 260 7 5 1 156 155 165 135 12.9%
35 260 7 5 2 76 77.5 87.3 67.5 11.2%
36 260 7 5 3 53 51.7 57.1 45 13%

instances without parallelism (𝑘𝑠 = 1). This highlights the additional complexity tied to parallel

stations: sequencing variables have more flexibility as the order models enter and depart stages

is not necessarily the same.

Comparing the proposed model (Full) to its particularized version (Part.) Lopes et al.

(2017), it is clear that the additional flexibility (removal of the ordering hypothesis) comes with

a trade-off convergence difficulty: In 15 instances (boldfaced in column Full), removing the

ordering hypothesis leads to better answers than the particularized version. All these answers are

unfeasible for the particularized model due to the ordering hypothesis. However, in 8 instances

(boldfaced in column Part.), the particularized version of the model found better solutions, all of

which are feasible for the generalized version - these were not found due to time limit. Overall,

the additional flexibility of the generalized model did produce improvements: fifteen new best

answers (boldfaced in column Full), four of which are optimal ones (instances 5, 6, 14, and 27),

and three new optimality proofs (instances 2, 3, and 26).
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4.4.1 Parallelism influence

A close analysis of the input data provided by Öztürk et al. (2015) revealed that instances

are equal in groups of three, differing only by the parallelism degree: Instances 1-3 are identical

except for 𝑘𝑠, this is also the case for instances 4-6, 7-9, etc. Furthermore, the 𝑘𝑠 parameter

is constant and equal for all stages of the same instance. This means that the performance of

instances in the same group can be normalized if their cycle time values are multiplied by 𝑘𝑠.

This comparison then allows the verification of whether or not station parallelism (cross-overs

between parallel lines) allows better performance than to simply have parallel identical and

independent lines. The results of the comparisons are summarized by Table 15, in which the

best answers for each instance is used to generate the normalized cycle time values, and optimal

answers are underlined.

Table 15 – Normalized Cycle Time Comparisons
Instance Normalized Cycle Times - T.U. Improvements
Group 𝑘𝑠 = 1 𝑘𝑠 = 2 𝑘𝑠 = 3 2 vs 1 3 vs 1

1-3 47 47 47 0% 0%
4-6 26 24 24 7.7% 7.7%
7-9 57 56 54 1.8% 5.3%

10-12 34 34 34 0% 0%
13-15 107 104 104 2.8% 2.8%
16-18 68 64 67 5.9% 1.5%
19-21 142 140 142 1.4% 0%
22-24 88 88 88 0% 0%
25-27 197 197 193 0% 2%
28-30 113 112 108 0.9% 4.4%
31-33 263 262 258 0.4% 1.9%
34-36 155 152 155 1.9% 0%

Average 1.9% 2.1%
Maximum 7.7% 7.7%

Notice that in 15 out of 24 cases with parallelism the solution found by the model is

better than 𝑘𝑠 times the solution without parallelism (𝑘𝑠 = 1). In average, this improvement rate

is close to 2%, and in the best case it is 7.7%. This demonstrates that parallel workstations can

offer an increasing marginal value in the following specific sense: the use of twice (three times)

as many resources lead to results better than double (triple) that of those obtained by the base

quantity. This is due to the fact that parallelism allows more scheduling flexibility: entry and

departure orders at each stage are allowed to differ. Notice that an analogous increasing marginal

value of workstations is not possible for a serial line in a Simple Assembly Line Balancing

(SALB) context: doubling (tripling) the number of serial single stations can at most half (reduce

to a third) the line’s cycle time. This fact is hereby proved by contradiction: suppose a solution

with 𝑛 · 𝑘 stations exists with cycle time 𝐶𝑇𝑛·𝑘 lower than 1/𝑘 the optimal cycle time 𝐶𝑇𝑛 for

the line with 𝑛 stations (𝐶𝑇𝑛 > 𝑘 · 𝐶𝑇𝑛·𝑘). By merging task-stations assignments of the solution
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in groups of 𝑘 stations (1 ... 𝑘,𝑘 + 1 ... 2𝑘, etc.), a feasible (precedence relations are respected)

balancing solution for 𝑛 stations is produced with 𝐶𝑇𝑛 ≤ 𝑘 · 𝐶𝑇𝑛·𝑘.

In 14 out of these 15 cases (all except instance 35), the proposed formulation outper-

formed the lower bound obtained by its particularized version (LOPES et al., 2017) tied to the

ordering hypothesis (imposing entry order equal to departure order at every stage). These results

show that the proposed model is capable of taking advantage of parallelism increased flexibilities,

and that the imposition of the ordering hypothesis can prune part of the valid search field.

4.4.2 Comparison to Completion-Based Priority Rules

Multiple recent works have employed simulation techniques (TIACCI; MIMMI, 2018;

TIACCI, 2015b; TIACCI, 2015a; TIACCI, 2017) to measure performance. These are based on a

simulator (TIACCI, 2012) that employs common priority rules for sequencing and scheduling

decisions: pieces move to the next station as soon as they can, and priority is given to the first

piece to be completed in case more than one can move. These common scheduling rules are

hereafter referred to as Completion-Based Priority Rules (CBPR). It might seem at first that a

simulation approach based on CBPR (such as the simulator proposed by Tiacci (2012)) would

necessarily lead to the optimal steady-state given a cyclic entry order in the flowshop. This does

work for lines without parallelism as simulations gradually converge towards the steady-state, as

shown in Chapter 2. However, that is not necessarily true when parallelism is present. In order to

demonstrate the necessity of multiple sets of sequencing variables (one for each boundary), an

illustrative example is hereby given.

Consider the cyclical scheduling problem associated to the processing time data pre-

sented by Table 16. Consider an MPS with one unit of each of the three product models and

consider that both stages have a parallelism degree of two.

Table 16 – CBPR vs. Model example processing time data (Time Units - T.U.)
Stage S1 S2

Model 1 3 7
Model 2 7 6
Model 3 5 3

Assuming the cyclic entry order (M1,M2,M3) at least two different cyclical schedules

are possible: one by simulating the piece flow based on the CBPR rules, i.e. by having pieces

move to the next stage as soon as they can with priority to pieces that are completed first; the other

by using the proposed model and allowing sequencing variables at each remaining boundary,
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i.e. by fixing only those tied to the first entrance boundary. These solutions are presented by

Figure 12. In it, even MPSs are highlighted with thicker borders and B1, B2, and B3 stand for

Boundary 1, 2, and 3, respectively.

Figure 12 – Comparison between proposed formulation and CBPR with given cyclical entry order
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Source: Lopes et al. (2019)

Notice that the modeled solution has a cycle time of 8 T.U., while the CBPR one has

a cycle time of 10 T.U.. The 2 T.U. waiting time before the entrance of M2 at the first MPS

replication leads to a higher makespan value for the first MPS for the modeled solution (16

vs 13). However, due to the lower value of cycle time, this difference decreases steadily after

each replication of the minimal part set. After the third replication, the better cyclical behavior

dominates the worse transient one, meaning that the modeled solution has a better makespan as

well (32 vs 33). The dashed colored lines in Figure 12 highlight these makespan differences.

This example demonstrates that a CBPR approach that only takes into account the

entry order at the first stage is insufficient as a cyclical performance measurement: while CBPR

simulations can generate cyclical schedules, they are not guaranteed to be able to lead to the best

possible one. By induction, this argument demonstrates the importance of sequencing variables

at every boundary.
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4.5 CONCLUSIONS

Mixed-model assembly lines are often employed in industrial contexts as they balance

product diversity and production efficiency. Balancing workloads (task distribution) and cyclically

scheduling these lines are key to obtain a high and stable throughput. In the context of unpaced

asynchronous lines in particular, blockages and starvations must be taken into account to optimize

the flowshop. Parallel workstations offer further flexibility to the line by allowing stations to act

as partial buffers and by enabling more sequencing and scheduling possibilities.

Authors thus far have defined cyclical schedules of flowshops in general (and assembly

lines in particular) by a machine-wise cyclical concept. In that concept, the cycle time is defined

as the time between equivalent events of different minimal parts sets at each machine. However,

by defining boundaries between stages, as indicated by Figure 9, better and more general cyclical

schedules are possible when a boundary-wise cyclical concept is employed. This formulation is

introduced in this chapter, both conceptually (Section 4.2.1) and formally (Section 4.3). This

formulation extends Chapters 2 and 3’s simple station (no parallelism) ones, and generalizes

another that incorporated parallel stations (LOPES et al., 2017) by removing a simplifying

hypothesis. An illustrative example (Figure 11) is provided to demonstrate the higher flexibility

obtained by the boundary-wise cyclical concept. While for assembly lines without parallelism

the machine-wise and boundary-wise formulations are the same, this is shown not to always be

the case for assembly lines with parallelism. The proposed formulation is also shown to allow

better schedules than those obtained by scheduling with common priority rules (often employed

by simulation-based approaches) the assembly line with a given entry order (Section 4.4.2).

A mixed-integer linear programming model is presented to solve the asynchronous

mixed-model assembly line simultaneous balancing and cyclical scheduling problem. The

proposed formulation is capable of representing cyclical schedules for any number of stages

and different numbers of parallel workstations in each stage. Tests on a 36-instance literature

benchmark provided new best-known solutions for 15 instances, with 4 new optimal ones, and 3

new optimality proofs, as summarized by Table 14. Furthermore, by analyzing instances that

only differed by the parallelism degree it was possible to show that unpaced lines with parallel

stations can outperform parallel unpaced lines with single stations (Table 15): Cycle times found

for instances with parallelism are, in average, 2% better than cycle times found for the equivalent

instances without parallelism divided by the parallelism degree. This difference is as high as
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7.7% for one instance in particular. The results summarized in Table 15 demonstrate that, aside

from allowing higher recovery from failure capacity, parallel workstations can allow a crescent

marginal value: it might be possible to more than double (triple) the production rate by doubling

(tripling) the amount of resources.

4.6 FORMULATION EXTENSION

The MILP model presented in Section 4.3 is built under the hypothesis that the paral-

lelism degree 𝑘𝑠 is smaller or equal than the number of pieces in the minimal part set |𝑀 | at

every stage 𝑠. This might, however, not be the case: in some very specific environments, very

long tasks might require degrees of parallelism 𝑘𝑠 to be higher than |𝑀 | for a specific stage.

The generalization of the proposed model for such cases is based on the stage-wise

correction factor 𝑗𝑠, whose value is defined by the Equation (55) for each stage 𝑠. This factor

states the smallest integer degree to which 𝑘𝑠 is greater than |𝑀 |. For instance, with 5 pieces in

the MPS, 𝑗𝑠 is defined as 0, 1, 2, respectively, when 𝑘𝑠 belongs to the ranges {1,... ,5}, {6,... ,10},

{11,... ,15}.

𝑗𝑠 =

⌊︂
𝑘𝑠 − 1

|𝑀 |

⌋︂
∀ 𝑠 ∈ 𝑆 (55)

With the correcting factor 𝑗𝑠, four expressions must be revised: Constraints (56) and (57)

replace Constraints (49) and (50); and Constraints (58) and (59) replace Constraints (53) and (54).

Notice that when 𝑗𝑠 is zero (i.e. the hypothesis 𝑘𝑠 ≤ |𝑀 | holds) the reviewed constraints are the

same as the ones presented in Section 4.3.

𝑓𝑚2,𝑚1,𝑠 ≥ 𝑦𝑚2,𝑛+𝑘𝑠−𝑗𝑠·|𝑀 |,𝑠 + 𝑦𝑚1,𝑛,𝑠+1 − 1

∀ 𝑠,𝑠 + 1 ∈ 𝑆, 𝑚1, 𝑚2, 𝑛 ∈ 𝑀 : 𝑛 + 𝑘𝑠 − 𝑗𝑠 · |𝑀 | ≤ |𝑀 | (56)

𝑐𝑓𝑚2,𝑚1,𝑠 ≥ 𝑦𝑚2,𝑛−(𝑗𝑠+1)·|𝑀 |+𝑘𝑠,𝑠 + 𝑦𝑚1,𝑛,𝑠+1 − 1

∀ 𝑠,𝑠 + 1 ∈ 𝑆, 𝑚1, 𝑚2, 𝑛 ∈ 𝑀 : 𝑛 + 𝑘𝑠 − 𝑗𝑠 · |𝑀 | > |𝑀 | (57)

𝐶𝑇 · 𝑗𝑠 + 𝑇𝑖𝑛𝑚2,𝑠 ≥ 𝑇𝑜𝑢𝑡𝑚1,𝑠 −𝐻 · (1− 𝑓𝑚2,𝑚1,𝑠)

∀𝑚1,𝑚2 ∈ 𝑀, 𝑠 ∈ 𝑆 (58)
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𝐶𝑇 · (𝑗𝑠 + 1) + 𝑇𝑖𝑛𝑚2,𝑠 ≥ 𝑇𝑜𝑢𝑡𝑚1,𝑠 −𝐻 · (1− 𝑐𝑓𝑚2,𝑚1,𝑠)

∀𝑚1,𝑚2 ∈ 𝑀, 𝑠 ∈ 𝑆 (59)

With the correcting factor 𝑗𝑠, four expressions must be revised: Constraints (56) and (57)

replace Constraints (49) and (50); and Constraints (58) and (59) replace Constraints (53) and (54).

Notice that when 𝑗𝑠 is zero (i.e. the hypothesis 𝑘𝑠 ≤ |𝑀 | holds) the reviewed constraints are the

same as the ones presented in Section 4.3.
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5 INCORPORATING BUFFER ALLOCATION

This chapter is based on an article published in the International Journal of Production

Research (LOPES et al., 2020a). In it, the balancing-sequencing formulation described in

Chapter 3 is further extended to also incorporate buffer allocation, resulting in a model that is the

first in the literature to combine three degrees of liberty. An iterative decomposition is proposed

to solve this problem.

5.1 CONTEXT

Assembly lines are product oriented production layouts commonly employed for large-

scale manufacturing of similar products (SCHOLL, 1999). While early versions of such lines

were dedicated to a single product model, the increase in product diversity led to mixed-model

assembly lines, which are shared between a set of similar products (BOYSEN et al., 2009b).

Substantial research has been conducted on the optimization of assembly lines, ranging from the

simpler more theoretical cases (SCHOLL; BECKER, 2006) to more general ones (BECKER;

SCHOLL, 2006) that remove some typical simplifying hypothesis. The focus of this chapter is

asynchronous mixed-model assembly lines, an unpaced variant in which each product moves to

the next station when two conditions are met: processing at the current station is complete, and

the next station is available (BOYSEN et al., 2007). In these lines, three degrees of freedom are

relevant: balancing, sequencing, and buffer allocation (BOYSEN et al., 2008).

The first problem, assembly line balancing, consists of distributing a set of tasks amongst

stations in a way that maximizes the lines’ efficiency. Stations are sequential in nature and, usually,

equally manned. Tasks have specific durations and precedence relations, meaning that some

must be performed before others. Thus, precedence relations restrict task assignment. The sum

of task processing times in each station is tied to the line’s production rate. If only one product

model is produced, the highest station-wise sum dictates the line’s cycle time. When more than

one product is produced in the same line, other factors such as line pace and product sequence

become important. The line balancing problem was first introduced by Salveson (1955) and

was recently object of a review by Battaïa and Dolgui (2013). The most common goals are the

minimization of the number of stations given a minimal production rate or the minimization of

the cycle time given the number of stations. In the particular case of asynchronous mixed-model
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assembly lines, the production rate may be difficult to determine (TIACCI, 2015b), and may be a

function of line balancing, product sequence, and buffer allocation.

The second problem, mixed-model sequencing, consists of defining the order in which

product models are to be produced.

Product models usually have known processing times in each station and given demand

rates. While virtually any product sequence is technically feasible (BOYSEN et al., 2009c), the

order in which products are produced affects performance measures with relevant economic

impacts. Cycle time is usually considered a parameter for sequencing problems. However, in

throughput maximization variants, mixed-model sequencing can be an important optimization

aspect, especially when combined to line balancing.

Thomopoulos (1967) was one of the earliest authors to study mixed-model sequencing

problem, and many variants have been defined since then (BOYSEN et al., 2009c). In the

particular context of relatively stable demands, cyclical scheduling is often employed to obtain a

high and stable throughput (KARABATI; SAYIN, 2003; SAWIK, 2012). Cyclical scheduling is

often based on the Minimal Part Set (MPS) concept (LEVNER et al., 2010), which is defined

as the smallest set of products that can be repeated indefinitely in order to meet the production

target. For example, if the production target is 5000 units of product model 1 and 3000 units of

product model 2, then the MPS is 5 units of product model 1 and 3 units of product model 2,

which can be represented by the vector (5, 3).

The third problem, buffer allocation, consists of assigning internal storage spaces in

order to increase the system’s productivity.

Buffers are units with the capacity of storing incomplete products between stages in

a production system. Their presence can help prevent starvations and blockages, therefore,

increasing throughput. Naturally, they imply costs. Buffer allocation problems usually assume

that factors such as system design and workload distributions have already been solved (DEMIR

et al., 2014). However, in the context of throughput maximization of mixed-model assembly

lines, Chapter 2 shows that buffers can affect the optimal workload distribution.

The buffer allocation problem was first formalized by Koenigsberg (1959) and was

recently reviewed by Demir et al. (2014). Common optimization goals are the minimization of

the number of buffers required to meet a certain production rate, and the maximization of the

production rate given the number of buffers.

Combining these degrees of freedom should lead to better results than optimizing them
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independently or sequentially (BOYSEN et al., 2007; BOYSEN et al., 2008). However, most

works focus separately on each of these degrees of freedom (BOYSEN et al., 2009c; BATTAÏA;

DOLGUI, 2013; DEMIR et al., 2014). To the best of the authors’ knowledge, no work has yet

combined the three degrees of freedom to obtain an optimized solution as the approach herein

presented. However, some papers combined two of these degrees, in particular balancing and

sequencing. The strategies adopted by most authors when combining these degrees of freedom

and optimizing mixed-model assembly lines are presented in Section 5.2.

In this chapter, the number of buffers and workstations are considered as problem

parameters, i.e. finite available resources. The goal is to determine a line balancing, a cyclical

product sequence, and a buffer allocation that maximizes the line’s throughput. The formulation

presented in Chapter 2 is extended to incorporate sequencing and buffer allocation decisions:

a new MILP model is developed for mixed-model assembly lines, in which one is required to

combine the three degrees of freedom to optimize the steady-state throughput. Therefore, the

problem at hand is a mixed-model assembly line Balancing, Cyclical Sequencing and Buffer

Allocation Problem (hereafter abbreviated as BCSB-P). The three sub-problems are shown

to be interconnected, and the presented MILP model presents a mathematical description of

such connections. Due to the computational difficulties that arise from the combination of

these degrees of liberty, an Iterative Decomposition procedure is presented. The decomposition

is tested against the proposed monolithic model, proving to be very competitive. Both the

decomposition and the model are also compared to a sequential procedure based on literature

procedures for similar problems (SAWIK, 2004; BATTINI et al., 2009).

The chapter is structured as follows. Section 5.2 provides a brief overview of recent

related works. In Section 5.3 a context is yielded and the definition of a BCSB-P is explained.

Section 5.4 presents the model that describes a cyclical steady-state optimization problem.

Section 5.5 presents the proposed iterative decomposition. Section 5.6 presents the results of the

comparisons between the monolithic model and the proposed decomposition. Lastly, the main

conclusions drawn from this chapter are summarized in Section 5.7.

5.2 RELATED WORKS

Works on optimization of assembly line balancing, sequencing, related and combined

problems employ a large range of methods (mathematical models, decompositions, meta-

heuristics, etc.) to solve multiple variations of problems. The main focus of this section is
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not on the solution method applied, but rather on the problem’s decision variables (balancing,

sequencing, buffer allocation), and on the throughput performance measure used, i.e. the role

cycle time plays in the problem’s definition.

Most works that combine some of the three aforementioned degrees of freedom (balanc-

ing, sequencing, and buffer allocation) focus on variants of the balancing-sequencing combination.

However, the role of cycle time as a performance definition and goal function varies substantially:

Sawik (2002), Alghazi and Kurz (2018) employ the weighted average (or sum) of model-wise

processing times in each station as a performance requirement.

Multiple authors consider as goal functions a measure of processing time deviations

from an ideal average value: Kim et al. (2000), Kim et al. (2006) apply such deviations as goal

functions of a combined balancing-sequencing problem and Battini et al. (2009) use them as a

goal function in a decomposition step in a problem that seeks to maximize production rates and

minimize buffer requirements.

Workload smoothing is a performance measure that is also often employed along with

other goal functions such as minimizing the number of workstations: Özcan et al. (2010) apply

it for a problem definition with parallel assembly lines, and Hamzadayi and Yildiz (2012),

Hamzadayi and Yildiz (2013) use it for U-lines with and without parallel workstations.

Some balancing-sequencing works on continuous lines with utility work minimization

goal also consider cycle time to be a parameter that affects the goal function: Kim et al. (2000)

present a base formulation for straight mixed-model lines, Mosadegh et al. (2012) present a

problem variant with station-dependent assembly times and Nilakantan et al. (2017) present a

formulation for two-sided lines. Defersha and Mohebalizadehgashti (2018) present a balancing-

sequencing formulation for mixed-model paced lines with the combined goal of minimizing line

length, task duplications, and number of stations. In their formulation, time between products

(cycle time) is also considered a parameter. Another common goal function for balancing-

sequencing problems is makespan minimization for unpaced asynchronous lines (ÖZTÜRK et

al., 2013; ÖZTÜRK et al., 2015). Biele and Mönch (2018) presented a cost-oriented balancing

problem for when (non-cyclical) product sequence is given.

Many authors also consider cycle time as a parameter that must be respected by all

product models in the line, regardless of product sequence: Zhong (2017) applies this definition

for hull assembly line balancing (shipbuilding); Akpinar and Baykasoglu (2014a), Akpinar et

al. (2017) employ this definition for mixed-model problems with set-ups; Delice et al. (2017)
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uses it for two-sided assembly lines; Roshani and Nezami (2017) apply it for multi-manned

lines; Kucukkoc and Zhang (2016) uses it for complex parallel lines variants; Dong et al.

(2018) employs a chance-constraint version of this consideration for stochastic lines. The

conversion of this parameter into a problem variable and its minimization is also a studied

strategy (KARABATI; SAYIN, 2003).

Tiacci (2015a), Tiacci (2015b), Tiacci (2017) has presented a simulation-based perfor-

mance evaluation to have a direct performance measure for balancing and buffer allocation on

asynchronous stochastic assembly lines. Tiacci (2015a) argues that the above mentioned indirect

performance measures (weighted average processing times, workload smoothing, workload

deviations minimization, etc.) are not goals in themselves, but rather supposed means to achieve

a high and stable throughput. This is corroborated by Chapter 2, which presented a formulation

for direct steady-state performance measure in deterministic asynchronous lines with given

cyclical product sequence and given buffer allocation. Chapter 2 also compares its formulation to

indirect performance measures and confirmed that they do not necessarily optimize steady-state.

Chapters 3 and 4 extend that formulation and incorporate sequencing decisions and parallel

workstations, but do not take buffer allocation into account.

While Tiacci (2015b) presented a balancing and buffer allocation optimization proce-

dure, its simulation-based procedure considers a random product sequence and does not include

a mathematical model with decision variables and constraints. Chapter 3’s model, on the other

hand, does not incorporate buffer allocation decisions. To the best of the authors’ knowledge, no

work has addressed the combined BCSB-P: Both the direct performance measure and the combi-

nation of balancing, sequencing, and buffer allocation degrees of freedom remain a challenge

and a gap in the literature.

5.3 PROBLEM STATEMENT

The optimization of a cyclical asynchronous assembly line requires the combination of

three degrees of freedom: balancing the assignment of tasks to stations; assigning some buffers

to the line; and cyclical sequencing and scheduling of product models in the Minimal Part Set

(MPS). Figure 13 conceptually depicts the studied BCSB-P. In this figure, the models M1, M2,

and M3 (represented by circles, squares and triangles) are cyclically sequenced to enter to and

depart from the line in a repeated pattern. Workstations (S1-S4) perform the required tasks, and

available buffers (B1 and B2) are to be placed in two out of the three candidate spots. In this
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chapter, the number of workstations and buffers is considered a parameter, and the goal is to

maximize the line’s productivity, i.e. a type-2 problem (SCHOLL, 1999). A related problem can

be defined as the minimization of the number of workstations and buffers given a maximum

steady-state cycle time.

Figure 13 – Overview of the optimization problem
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Line balancing must respect a set of precedence relations between tasks. If precedence

relations are different across models, they can be combined into a joint precedence graph during

pre-processing (BOYSEN et al., 2009a). Furthermore, without loss of generality, tasks are

assigned to the same station for all models: If a task can be performed at different stations for

different product models, it can be replaced by a set of tasks with zero processing times for

all but one model each (BOYSEN et al., 2009a). For instance, in a line with 2 product models,

consider a task 𝑡 with durations of 7 and 9 time units for models 1 and 2, respectively. If 𝑡 can

be performed at different stations for each model, then it can be replaced by two tasks: 𝑡𝑎 with

duration of 7 and 0 time units, and 𝑡𝑏 with duration of 0 and 9 time units. These tasks would have

the same precedence relations as 𝑡.

A finite number of buffers must be assigned between stations. They help compensate

model-wise deviations of processing times (BOYSEN et al., 2008) by temporarily storing pieces

between stations. In this chapter, dummy stations called buffer candidates are added between

stations to represent potential buffer allocation positions: a buffer candidate is only able to store

product pieces when a buffer is assigned to that position.
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The product models in the minimal part set must be sequenced in a cyclical manner.

Furthermore, the discrete entry and departure times of each product piece at each workstation

must be cyclically scheduled. This scheduling ties balancing, buffer allocation, and sequencing

as it must reflect the possibilities and restrictions of each of the problem’s degrees of freedom.

Furthermore, the scheduling variables should measure the line’s steady-state performance. Chap-

ter 2 has shown how to measure such performance when product sequences and buffer layout are

parameters. Such formulation must be extended to allow these aspects to become decision vari-

ables. Cyclical scheduling is NP-Hard (MCCORMICK; RAO, 1994) and hence, by assumption,

the size of the minimal part set is assumed to be small enough so that cyclical scheduling given

a balancing solution is quickly solved. This means that the core combinatorial difficulty of the

problem lies on its balancing component, but that the evaluation of each balancing solution still

requires solving a sequencing and buffer allocation subproblem.

In order to illustrate the importance of each degree of freedom (balancing, sequenc-

ing, and buffer allocation) in asynchronous cyclical schedules, Figure 14 is presented. Fig-

ures 14(a) and 14(b), consider the same balancing solution, therefore, the processing times for

each model at each station are constant parameters. In each of these Figures, two examples of

cyclical schedules are presented with different buffer layout (Figure 14(a)) and product sequence

(Figure 14(b)). Uppercase labels indicate processing times, while lowercase ones represent

waiting (blocked) times. Two MPS replications are portrayed for an easier understanding of the

cyclical nature of the schedules. In both Figures, arrows indicate the cycle time: the interval

between entries of the first piece of each MPS at the latest station. It is clear from Figures 14(a)

and 14(b) that buffer allocations and sequencing decisions can have a decisive influence on the

steady-state CT value, even with a fixed set of balancing decisions. Consequently, the combi-

nation of these three degrees of freedom can provide even better solutions. Lastly, Figure 14(c)

illustrates the influence of line balancing in solution quality. In it, two cyclical schedules are

presented with the same sequencing and buffer allocation, but different line balancing solutions.

This means different total processing time durations in each station and, therefore, different cycle

time values.

5.4 MONOLITHIC MODEL

This Section presents the monolithic MILP model that combines balancing, sequencing,

and buffer allocation. The problem’s goal is throughput maximization, hereby considered as
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Figure 14 – Examples of the influence of each degree of freedom
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(b) Examples of Cyclical Schedules with different product sequences.
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(c) Examples of Cyclical Schedules with different task balancing.
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cycle time (𝐶𝑇 ) minimization. This is possible as the throughput is the inverse of the average

steady-state cycle time (SCHOLL, 1999). The proposed formulation’s basic concept is to produce

a cyclical schedule of |𝑃 | product pieces such that: processing times are determined by balancing

(𝑥𝑡,𝑠) and sequencing (𝑦𝑝,𝑚) decision variables, and scheduling constraints are affected by buffer

allocation (𝑧𝑠) ones. Let 𝑃 be a set of positions in a product sequence that repeats indefinitely.
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Each (work)piece 𝑝 represents a position in the cyclical product sequence. The monolithic model

is defined by Expressions 60 to 72:

Minimize 𝐶𝑇 (60)∑︁
𝑠∈𝑆∖𝑆𝑏

𝑥𝑡,𝑠 = 1 ∀ 𝑡 ∈ 𝑇 (61)

𝑠𝑘∑︁
𝑠=1

𝑥𝑡1,𝑠 ≥
𝑠𝑘∑︁
𝑠=1

𝑥𝑡2,𝑠 ∀ (𝑡1,𝑡2) ∈ 𝑅, 𝑠𝑘 ∈ 𝑆 ∖ 𝑆𝑏 (62)

∑︁
𝑚∈𝑀

𝑦𝑝,𝑚 = 1 ∀ 𝑝 ∈ 𝑃 (63)

∑︁
𝑝∈𝑃

𝑦𝑝,𝑚 = 𝑁𝑚 ∀𝑚 ∈ 𝑀 (64)

𝑇𝑥𝑝,𝑠 ≥
∑︁
𝑡∈𝑇

𝐷𝑡,𝑚 · 𝑥𝑡,𝑠 −𝐻 · (1− 𝑦𝑝,𝑚) ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (65)

∑︁
𝑝∈𝑃

𝑇𝑥𝑝,𝑠 =
∑︁

𝑡∈𝑇,𝑚∈𝑀

𝑁𝑚 ·𝐷𝑡,𝑚 · 𝑥𝑡,𝑠 ∀ 𝑠 ∈ 𝑆 (66)

𝑇𝑜𝑢𝑡𝑝,𝑠 ≥ 𝑇𝑖𝑛𝑝,𝑠 + 𝑇𝑥𝑝,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (67)

𝑇𝑜𝑢𝑡𝑝,←−𝑠 = 𝑇𝑖𝑛𝑝,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 : 𝑠 > 1 (68)

𝑇𝑖𝑛𝑝,𝑠 ≥ 𝑇𝑜𝑢𝑡𝑝−1,𝑠 ∀ 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 : 𝑝 > 1 (69)

𝑇𝑜𝑢𝑡𝑝,𝑠 ≤ 𝑇𝑖𝑛𝑝,𝑠 + 𝐻 · 𝑧𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆𝑏 (70)∑︁
𝑠∈𝑆𝑏

𝑧𝑠 ≤ 𝐵𝑚𝑎𝑥 (71)

𝐶𝑇 + 𝑇𝑖𝑛1,𝑠 ≥ 𝑇𝑜𝑢𝑡|𝑃 |,𝑠 ∀ 𝑠 ∈ 𝑆 (72)

The goal function, i.e. cycle time minimization, is stated by the Expression 60. Equa-

tion 61 states task-assignment constraint, requiring every task 𝑡 to be performed at one non-buffer

station 𝑠 (𝑠 ∈ 𝑆 ∖ 𝑆𝑏). Inequality 62 states the precedence relations (𝑅), requiring that tasks 𝑡1

be performed before their successors (𝑡2). Equation 63 states that a model is assigned to every

position in the product sequence, i.e. to every piece. Equation 64 states the demand constraint:

every product model 𝑚 will be present in 𝑁𝑚 positions in the sequence. Inequality 65 binds

processing times of each piece 𝑝 at each station 𝑠 to balancing and sequencing decision variables,

tying them to the sum of durations of tasks 𝑡 assigned to station 𝑠 for the product model 𝑚

associated to piece 𝑝. Equation 66 defines a logical cut for processing times within each station:

The sum of processing times for all pieces equals the sum of processing times for all models,
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weighted by their demands. Inequality 67 states that pieces can only depart a station after entering

it and being processes. Equation 68 states that a piece enters station 𝑠, when it departs from its

immediate predecessor←−𝑠 . Inequality 69 prevents two pieces from occupying the same station at

the same time. Inequality 70 defines buffer allocation: If a candidate is chosen as a buffer, then

pieces can stay on it after they enter it, otherwise they must depart immediately. Inequality 71

defines the buffer allocation limit. Lastly, Inequality 72 binds cycle time in each station to the

elapsed time from the entry of the first piece to the departure of the last one. This proposed

mathematical model, defined by Expressions 60 to 72, combines the balancing (𝑥𝑡,𝑠), sequencing

(𝑦𝑝,𝑚), and buffer allocation (𝑧𝑠) degrees of freedom. Therefore, it is referred to as monolithic

model.

5.5 ITERATIVE DECOMPOSITION PROCEDURE

The monolithic model presented in the previous section tends to be difficult to solve,

especially due to the constraints that employ the Big-M relaxation method. When separated, each

degree of freedom should be faster to solve, however, to measure performance algorithmically is

challenging: it is difficult to determine cycle time value of the incumbent solution (𝐶𝑇 ) directly

from the binary decision variables 𝑥𝑡,𝑠, 𝑦𝑝,𝑚, and 𝑧𝑠𝑏 without solving a linear relaxation. Hence,

in order to quickly obtain good solutions, an iterative decomposition procedure was developed.

This is justified by the exact performance measurement allowed by the MILP formulation, and

the expected faster exploration of search fields when part of the decision variables is fixed.

Multiple authors present decompositions that first solve the (long-term) balancing problem then

the associated (short-term) scheduling one (SAWIK, 2002; BATTINI et al., 2009). This rationale

is combined to that of the model presented in Chapter 2, in which the reverse occurs: balancing is

optimized given sequencing and buffer parameters. This allows an iteration between two models,

which is similar to the Fix-and-Optimize approach proposed by Helber and Sahling (2010): first

the balancing variables are optimized by fixing sequencing and buffer allocation ones, then the

reverse. Additionally, optimality cuts (hereafter presented) are added dynamically. These cuts are

partly based on well-established graph analysis of precedence diagrams (SCHOLL; BECKER,

2006), and they function as (indirect) Combinatorial Benders’ Cuts (CODATO; FISCHETTI,

2006). This type of cut consists of inequalities tied to subsystems of the linear problem and

translate either optimality or feasibility requirements.

In this Section, the iterative decomposition and its notation are presented. The decom-
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position is based on the monolithic model (Section 5.4): in each step of the decomposition,

some variables become parameters. Figure 15 presents a high-level overview of the iterative

decomposition.

Figure 15 – Iterative Decomposition Overview
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There are two main mathematical models in the decomposition. In Model D1, the

sequencing and buffer allocation variables (𝑦𝑝,𝑚 and 𝑧𝑠) become binary parameters. In Model D2,

the balancing variables (𝑥𝑡,𝑠) are set to a fixed configuration. Therefore, Model D1 does not

require Constraints 63, 64, and 71, while Model D2 does not require Constraints 61, and 62.

Nonetheless, the binary parameter values given to both D1 and D2 should be feasible in regard

to these constraints. The proposed method ensures feasibility by having its parameters provided

by incumbent answers of MILP models that contain these constraints.

The procedure starts by defining an initial balancing solution: By assumption, the set of

tasks 𝑇 is topologically ordered according to the precedence relations. For instance, consider

the diagram presented by Figure 13: each precedence constraints ties task pairs (𝑡𝑎,𝑡𝑏) such that

𝑡𝑎 < 𝑡𝑏. This allows the initial balancing solution to be defined as follows: assign each task 𝑡 to

station ⌊1 + (𝑡− 1) · |𝑆/𝑆𝑏|/|𝑇 |⌋, for example, in an instance with 9 tasks and 3 workstations,

tasks 1-3 will be assigned to station 1, tasks 4-6 will be assigned to station 2, and tasks 7-9

will be assigned to station 3. Because tasks are topologically ordered in regard to precedence

relations, this initial balancing solution will automatically respect the precedence relations.

Balancing solutions are used by Model D2 to generate a sequencing and buffer allocation

solution. Model D2’s solution is used by Model D1 to generate new balancing solutions. The
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process iterates as depicted in Figure 15.

In each iteration, the best incumbent solution provided by Model D2 is added to a

Sequencing and Buffer Allocation Tabu list (TabuListD2). Let (TabuSeq,TabuBuff) ∈ TabuListD2

be a Tabu vector that contains the set of non-zero sequencing and buffer allocation variables,

respectively. After the first time the Model D2 is run, further executions will include Constraint 73.

This restriction demands at least one difference from each Tabu vector in the Tabu list, i.e., from

each previously explored solution.

∑︁
(𝑝,𝑚) ∈ TabuSeq

𝑦𝑝,𝑚 +
∑︁

𝑠 ∈ TabuBuff

𝑧𝑠 ≤ |𝑃 |+𝐵𝑚𝑎𝑥− 1 ∀ (TabuSeq,TabuBuff) ∈ TabuListD2 (73)

Similarly, every solution found by Model D1 is added to a Balancing Tabu List

(TabuListD1). However, Model D2 only adds optimal solutions to its Tabu List, and every

feasible solution found by Model D1 is added to TabuListD1. This is done by using a callback

routine every time Model D1 reaches a new integer solution. The callback procedure is illustrated

by Figure 16.

Figure 16 – Callback procedure flowchart

Update Incumbent
CT (𝐶𝑇) Value

New Balancing Solution Found
Callback START

Solve Model D2 given the New Balancing Solution
(Without   𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝐷2 Constraint)

Is the combined solution
a new incumbent?

Yes

Callback END

No

Add New Balancing Solution to 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝐷1

Source: Lopes et al. (2020a)

This callback tests the new balancing solution by applying it to Model D1 without the

Tabu constraints (Inequality 73). This allows optimal sequencing and buffer allocation solutions

to be obtained for that specific balancing solution. The value of cycle time is compared to the
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incumbent solution and replaces the previous value if the newly found solution is better than the

incumbent.

After the first time the Model D1 is executed, Constraints 74, 75, and 76 are added

to Model D1. The first demands at least one difference from each previously explored Tabu

balancing solution TabuBal listed on Model D1’s Tabu list TabuListD1. The second demands the

sum of processing times in each station to be smaller than the incumbent cycle time. The third

one is based on the earliest and latest stations concept (SCHOLL; BECKER, 2006), defined

for each task for the incumbent cycle time: 𝐸𝑆(𝑡,𝐶𝑇−1) and 𝐿𝑆(𝑡,𝐶𝑇−1). Such earliest and latest

stations are computed by reducing the mixed-model problem into a single model one (BECKER;

SCHOLL, 2006): First, the total processing times 𝐷𝑡 for each task 𝑡 are computed as the sum

of processing times across models weighted by their demands 𝑁𝑚. Then, the total processing

times before and after each task are calculated in order to define the minimum number of stations

before and after each task (graph analysis based on precedence relations) given a value of cycle

time (SCHOLL; BECKER, 2006). This allows some binary variables to be set to zero, as stated

by Equation 76, because they necessarily lead to violations of Inequality 75, otherwise.

∑︁
(𝑡,𝑠) ∈ TabuBal

𝑥𝑡,𝑠 ≤ |𝑇 | − 1 ∀ TabuBal ∈ TabuListD1 (74)

∑︁
𝑝 ∈ 𝑃

𝑇𝑥𝑝,𝑠 ≤ 𝐶𝑇 − 1 ∀ 𝑠 ∈ 𝑆 (75)

𝑥𝑡,𝑠 = 0 ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 : 𝑠 /∈
[︁
𝐸𝑆(𝑡,𝐶𝑇−1), 𝐿𝑆(𝑡,𝐶𝑇−1)

]︁
(76)

By ignoring inefficiencies associated to blockages and starvations, the sum of processing

times (Inequality 75) in each station is a lower bound on the cycle time: if that station operates

at 100% efficiency, the MPS will take at least that much to be processed on it. This means that

Inequality 75 and Equation 76 (whose violations imply in violations of Inequality 75) function

as optimality cuts that act indirectly as Combinatorial Benders’ Cuts (CODATO; FISCHETTI,

2006).

By demanding new solutions to respect these lower bound constraints, a large necessarily

sub-optimal part of the search field is being discarded. Furthermore, if it is impossible for D1

to satisfy both the Tabu constraints and these performance constraints, then the incumbent

solution must be optimal: each balancing Tabu solution was tested for optimal sequencing and

buffer allocations, therefore, violating a Tabu constraint means testing a previously fully tested
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balancing solution; violating the lower bound constraint means the trial solution will have a cycle

time value greater or equal to 𝐶𝑇 , meaning the solution is either dominated or equivalent to the

incumbent.

This means that the proposed iterative decomposition can prove the optimality of its

answer, as long as enough computational time is offered. It is likely that such optimality proof

would take longer than the monolithic model’s one. However, the fact that the decomposition

can prove a solution’s optimality is relevant as it means the full search field is guaranteed to be

eventually tested. That said, the focus of the iterative decomposition is finding good solutions

within the time limit, not proving optimality of the best solution found.

If Model D2 is infeasible for a given TabuListD2, then all sequences and buffer allocation

possibilities have been tested. If in all iterations Model D1 was solved to optimality, then the

incumbent is also optimal. However, Model D1 can require substantial time to be solved. Hence,

during tests, Model D1’s time limit was set to a relatively short time (60 seconds, as indicated

in Section 5.6) in order to allow more iterations, and therefore, more product sequences to be

considered. With the tested global time limit, in not a single instance Model D2 was infeasible.

If that occurs for larger global time limits, then TabuListD2 can be simply reset.

5.5.1 Illustrative Example

The proposed method is hereby illustrated with a small example. Table 17 presents

both the instance data and the proposed decomposition iterations: The problem contains nine

tasks (|𝑇 | = 9), five product models (|𝑀 | = 5), three workstations (𝑆 = {1, 1.5, 2, 2.5, 3},

𝑆𝑏 = {1.5, 2.5}, |𝑆 ∖𝑆𝑏| = 3) and one available buffer (𝐵𝑚𝑎𝑥 = 1). Demand rates are considered

equal for all models, leading to an MPS of with one product piece of each. Task durations for

each model (𝐷𝑡,𝑚) are presented by Table 17, as well as precedence relations (‘Pre.’ column).

The example’s precedence diagram is presented in Figure 13.

The initial balancing solution, obtained by assigning each task 𝑡 to station ⌊1 + (𝑡− 1) ·

|𝑆/𝑆𝑏|/|𝑇 |⌋, is presented as ‘Initial Bal.’. In Table 17, the values presented for each incumbent

are the workstations to which each task is assigned (balancing, or ‘Bal.’ line), the product model

at each position of the sequence (sequencing, or ‘Seq.’ line), and the position at which the buffer

is assigned (buffer allocation, or ‘BA.’ line). The cyclical schedules of each of these solutions are

presented by Figure 14(c). Thus, tasks 1-3 are initially assigned to station 1, tasks 4-6 to station

2, and tasks 7-9 to station 3. The first model D2 iteration uses the initial line balancing, leading
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Table 17 – Illustrative example: data and iterations
Instance Data Method Iterations

Models Assignments/Values
1 2 3 4 5 Initial Bal. 1 1 1 2 2 2 3 3 3

MPS 1 1 1 1 1
Task Durations Pre.

M
od

el
D

2
It

er
.1

Bal. 1 1 1 2 2 2 3 3 3
1 1 0 0 0 0 - Seq. 1 3 5 2 4
2 1 2 1 0 0 1 BA. 2.5
3 1 2 1 0 0 1 𝐶𝑇 14 (First Incumbent)
4 0 0 1 2 2 2
5 1 0 1 1 1 3,4

M
od

el
D

1
It

er
.1

Bal. 1 1 2 1 2 3 2 3 3
6 2 0 0 0 3 3,4 Seq. 1 3 5 2 4
7 0 1 0 1 2 5 BA. 2.5
8 1 1 0 0 0 7 𝐶𝑇 12 (Second Incumbent)
9 0 0 2 1 1 8

Model D2 Iter. - 2 does not improve solution
Number of workstations: 3 Model D1 Iter. 2 - infeasible

Available buffers: 1 Therefore: current incumbent is optimal

to an incumbent with 𝐶𝑇 = 14. The first model D1 iteration uses the incumbents’ sequencing

and buffer allocation, leading to a new incumbent with 𝐶𝑇 = 12.

After the second incumbent is found, a second Model D2 iteration fails to improve

the solution. The subsequent Model D1 iteration states that the model is infeasible, proving the

optimality of the second incumbent. Table 18 helps to understand why the second Model D1

iteration was infeasible. It states the total task durations for each task (𝐷𝑡 =
∑︀

𝑚∈𝑀 𝑁𝑚 ·𝐷𝑡,𝑚)

as well as the values of earliest and latest stations (SCHOLL; BECKER, 2006) for each task

after each incumbent is found (ES𝑡,𝑐, LS𝑡,𝑐). These values are computed using the cycle time

value 𝑐 equal to that of each incumbent minus one (𝐶𝑇 − 1).

Table 18 – Illustrative example of earliest and latest stations after each incumbent
Earliest and Latest Station for Each Task

Task: 1 2 3 4 5 6 7 8 9
𝑐 = 𝐶𝑇 − 1 𝐷𝑡 1 4 4 5 4 5 4 2 4

13 ES𝑡,𝑐 1 1 1 1 2 2 2 2 2
LS𝑡,𝑐 1 1 2 2 2 3 3 3 3

11 ES𝑡,𝑐 1 1 1 1 2 2 2 3 3
LS𝑡,𝑐 1 1 1 1 2 3 3 3 3

Table 18 reports that after the second incumbent is found, the first four tasks must

be assigned to the first station (ES𝑡,𝑐=LS𝑡,𝑐=1). However, the sum of their processing times

(Table 17) is 14, which is higher than the current incumbent cycle time (𝐶𝑇 = 12). Hence,

Constraint 75 will be necessarily violated, leading to the aforementioned infeasible status for

Model D1’s second iteration.
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5.6 RESULTS

In order to verify how the proposed iterative decomposition compares to the proposed

monolithic model, tests were performed on a 700-instance dataset. The dataset is based on Otto

et al. (2013)’s SALBP instances. Chapter 2 combined single model instances of the same size

to generate a set of mixed-model instances. This data set was extended by incorporating larger

instances from Otto et al. (2013). In total, there are 350 task properties data vectors (processing

times, and precedence relations) half of which have 20 tasks and the other half 50 tasks. These

data vectors can be further classified in regard to Order Strength (OS), a number between 0 and

1 that reflects how restricted task assignment is by the precedence relations (SCHOLL, 1999).

Each instance was tested with a fixed number of stations (10 for smaller cases, and 15 for the

larger ones) and two numbers of buffers to be allocated (2 and 4 for the smaller cases, and 4

and 6 for the larger ones). All instances have five product models and the minimal part set was

considered as one unit of each product model. Instance data is made available by the Lopes et al.

(2020a)’s Supplementary Material.

Each of the 700 instances was solved with both the monolithic model (Mono) and

the proposed iterative decomposition (Dec) with a time limit of 1800 seconds. All executions

employed the same hardware and software conditions: Gurobi 7.5 was used to solve the models

using a Core i7-3770 CPU (3.4GHz) and 16 GB RAM. The best solutions found by both methods

are made available by Lopes et al. (2020a)’s Supplementary Material. Table 19 summarizes the

upper bound results of the executions by comparing answers of Mono and Dec. In Table 19, 𝑁

indicates the number of instances with the respective parameters (size, number of buffers and

OS). Section 5.6.1 presents information on lower bounds and integer gaps. The solutions found

by Dec and Mono were compared in regard to the goal function (cycle time) for each instance:

When only one of the methods found a best solution for a specific instance, that solution counts

as an exclusive best solution. The column Nbest reports the number of best solutions found by

each method, and the number of exclusive best ones is reported in parenthesis. Similarly, the

number of optimal answers is reported under the Nopt column. Dec often found the optimal

answer (same cycle time as the optimal one by Mono), but could not prove its optimality. The

number of instances in which each method was able to prove on its own the optimality of the

answer it found is reported in parenthesis under the Nopt column.

The combined balancing, cyclical scheduling, and buffer allocation problem is complex
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Table 19 – Results Summary - comparisons between Decomposition and Monolithic model
Dataset Nbest(exclusive) Nopt(proven) CT𝑀𝑜𝑛𝑜 - CT𝐷𝑒𝑐 (T.U.)

Size Buffers OS 𝑁 Dec Mono Dec Mono Min. Avg. Max.

Small
|T|=20
|S|=10

2
0.2 75 68(55) 20(7) 10(5) 13(13) -55 26.8 97
0.6 75 65(34) 41(10) 20(0) 23(23) -27 15.2 92
0.9 25 25(0) 25(0) 25(2) 25(25) 0 0 0

4
0.2 75 62(43) 32(13) 13(4) 15(15) -42 14.0 67
0.6 75 69(28) 47(6) 39(16) 41(41) -11 13.9 93
0.9 25 25(0) 25(0) 25(17) 25(25) 0 0 0

Large
|T|=50
|S|=15

4
0.2 75 75(75) 0(0) 0(0) 0(0) 31 116.0 263
0.6 75 75(75) 0(0) 0(0) 0(0) 9 106.4 256
0.9 25 24(23) 2(1) 0(0) 0(0) -35 55.0 150

6
0.2 75 74(74) 1(1) 0(0) 0(0) -1 109.8 233
0.6 75 71(70) 5(4) 0(0) 0(0) -36 91.2 214
0.9 25 22(19) 6(3) 0(0) 0(0) -29 23.3 128

and hard to define lower bounds for. Hence, it is expected that only small very restrictive instances

(high ordering strength) will be solved to optimality. Indeed, all small-size instances with high OS

(0.9) were solved to optimality, but only a minority of instances with low OS (0.2), and none of

the large instances. By comparing cycle time upper bounds, one can verify that the decomposition

produced better answers in more instances than the monolithic model: In all problem sets, the

decomposition found more or at least as many best answers as the monolithic model. In fact,

the only sets in which they tied were the small ones with high OS. In all other sets (low and

medium OS), the decomposition produced more best answers, both total and exclusive ones,

than the monolithic model. In 70.9% (496/700) of instances, the decomposition outperformed

the monolithic model, and the reverse only happened in 6.5% (45/700) of instances.

Furthermore, Table 19 presents the differences in cycle time of the best solutions

obtained by the decomposition and the model: maximum, average, and minimum. Positive

differences indicate that the decomposition obtained a better answer. It is clear that in larger and

less restrictive instances, the decomposition produced more substantial differences. Notice that in

some cases the monolithic model did outperform the decomposition by a significant margin, but

those were the exception: both the average differences and the number of best solutions found

indicate the superiority of the decomposition.

A drawback of the decomposition is the systematic lack of lower bounds and the

consequent difficulty in proving optimality of its solutions. For instance, in the smaller dataset,

while the number of optimal solutions found was similar, only in a minority of cases did the

decomposition proved on its own the optimality of its solutions and most of these cases had high

OS. Section 5.6.1 further explores these lower bound questions.

Table 19 also presents an interesting behavior regarding buffers: in the small dataset,
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more instances with a higher number of buffers were solved to optimality by both the monolithic

model and the decomposition. This is likely tied to the fact that more buffers enable lower cycle

times, due to the decrease of blockages and starvations they allow. With a lower incumbent cycle

time, performance constraints (Inequalities 66 and 75) can more easily discard parts of the search

space. This suggests that with larger numbers of buffers, the highest sum of processing times

becomes a better approximation of the realized cycle time. In other words: the naive lower bound

on cycle time approaches the optimal value of cycle time when more buffers are added.

It has been repeatedly stated that combining the degrees of liberty provides better

answers (BOYSEN et al., 2008). However, doing so explicitly and in a single mathematical

model might lead to computational difficulties and intractability, in particular for larger instances.

In that regard, the proposed iterative decomposition combines these degrees of freedom by

iteratively transforming part of the decision variables in parameters. This results in more easily

tractable mathematical models, which have led to better performance: when instances are large

and have a less restricted search-space, the decomposition generated better answers than the

monolithic model. For small and very restricted instances, the decomposition still found many

optimal solutions, even though it had significant difficulties to prove their optimality.

5.6.1 Sequential Procedure, Lower Bounds, and Integer Gaps

In order to evaluate how well the proposed decomposition and monolithic model

combine these degrees of liberty, a sequential method was also implemented and executed

with the same hardware and software conditions. This method (hereafter abbreviated as ‘Seq’)

consisted of a two-stage process: First, a virtual single model assembly line balancing problem

is solved. This model, seeks to minimize the 𝐿𝐵𝐶𝑇 variable, bounded by the Inequality 77. The

only other constraints are the occurrence (Inequality 61) and precedence relations (Inequality 62).

The best answer obtained within the time limit (900 seconds) is then solved by the Model D2 to

provide the optimal sequencing and buffer allocation solutions. This sequential approach mimics

the procedure described by Sawik (2004) and employs the same virtual model definition used by

Battini et al. (2009).

𝐿𝐵𝐶𝑇 ≥
∑︁
𝑡 ∈ 𝑇

∑︁
𝑚 ∈ 𝑀

𝑁𝑚 ·𝐷𝑡,𝑚 · 𝑥𝑡,𝑠 ∀ 𝑠 ∈ 𝑆 (77)

It is easy to show that a lower bound to 𝐿𝐵𝐶𝑇 is a lower bound to the cycle time (𝐶𝑇 )
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of the original problem: if each station operates at 100% efficiency, each MPS will take at least

the total processing time assigned to the most loaded station (Inequality 77) to flow through

the line in the steady-state. Hence the MPS-wise cycle time is higher or equal to 𝐿𝐵𝐶𝑇 . Thus,

if 𝐿𝐵𝐶𝑇 is higher than the lower bound obtained by the monolithic model, its value can be

used as a lower bound of the original problem. If the optimal 𝐿𝐵𝐶𝑇 value is unknown, then the

best bound obtained by the virtual single model is employed for the comparisons. This allows

integer gaps to be calculated for the Sequential, the Decomposition and the Monolithic best

answers. The average integer gaps are presented by Table 20. Notice that the average Dec gap

(5.3%) is 19% smaller than the average Mono gap (6.6%) and 68% smaller than the average Seq

gap (16.9%). These gaps tend to be smaller for instances with more buffers: For instance, the

average gap for large instances with six buffers is lower than that of the same instances with

four for all values of ordering strength. This might be explained by the fact that more buffers

allow better cyclical schedules and the assumption that lower bounds might not change much,

since they are very difficult to compute even without taking the buffer information into account.

Furthermore, instances with higher ordering strength tend to have smaller gaps. This is explained

by the smaller search field, which makes finding better solutions and bounds easier.

Table 20 – Average integer gaps and lower bounds
Dataset Integer Gaps LB comparisons Gap Best − 𝐿𝐵𝐶𝑇

Size Buffers OS N Seq Dec Mono Rate NImp. All Optimal

Small
|T|=20
|S|=10

2
0.2 75 20.1% 5.7% 6.6% 99.2% 30 7.6% 7.8%
0.6 75 18.4% 3.9% 4.4% 97.0% 18 7.6% 6.8%
0.9 25 15.0% 0.0% 0.0% 92.3% 0 7.7% 7.7%

4
0.2 75 13.2% 3.0% 3.5% 99.4% 24 4.1% 2.4%
0.6 75 11.7% 1.5% 2.0% 98.4% 23 3.8% 3.7%
0.9 25 8.0% 0.0% 0.0% 96.7% 0 3.3% 3.3%

Large
|T|=50
|S|=15

4
0.2 75 22.2% 8.8% 11.3% 100.2% 62 8.8% -
0.6 75 20.6% 8.7% 10.9% 100.6% 66 8.7% -
0.9 25 14.8% 6.8% 8.0% 101.0% 17 7.0% -

6
0.2 75 18.0% 7.1% 9.5% 100.1% 61 7.1% -
0.6 75 16.9% 7.1% 9.1% 100.5% 66 7.1% -
0.9 25 11.4% 4.5% 5.1% 100.7% 14 4.7% -

Average/Total 16.9% 5.3% 6.6% 99.2% 381 6.7% 5.0%

Table 20 also presents lower bound comparisons between the monolithic model and

𝐿𝐵𝐶𝑇 . The ‘Rate’ column presents the rate between 𝐿𝐵𝐶𝑇 and the lower bound obtained

by the monolithic model: values lower than 100% indicate that the monolithic model provided

better bounds in average. Notice that for small instances, in average, the monolithic model

provided better lower bounds and that the reverse happened for the larger instances. Column

‘NImp.’ indicates the number of instances in which 𝐿𝐵𝐶𝑇 was higher than the bound provided by
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the monolithic model. Notice that this was the case for the majority of Large instances, however

the difference was relatively small. For a minority of small instances, the sequential approach

improved lower bounds.

Lastly, Table 20 presents a gap between the best upper bound (usually found by the

proposed decomposition) and the 𝐿𝐵𝐶𝑇 lower bound. This rate is computed by dividing

the difference between 𝐿𝐵𝐶𝑇 and the 𝐶𝑇 for the best method by 𝐿𝐵𝐶𝑇 . The ‘All’ column

presents the average difference across all instances and the ‘Optimal’ column presents the average

across the instances solved to optimality. Notice that the values in these columns are similar

for small instances, suggesting that gaps to the optimal solutions are smaller than reported by

the Integrality Gap columns: Instances that were solved to optimality presented average gaps to

𝐿𝐵𝐶𝑇 comparable in magnitude to those that were not. This suggests that the monolithic model

and the proposed decomposition might have more difficulty in providing good lower bounds than

in providing good solutions. This is expected, lower bounds for the BCSB-P tend to be difficult

to establish due to both the combination of the three degrees of freedom and the difficulties in

performance measure.

5.6.2 Influence of Optimality Cuts

In order to measure the influence of the Optimality Cuts (Inequality 75 and Equation 76)

on the method’s performance, the following tests were conducted: For a fifth of BCSB-P

instances in each dataset (140 out of 700 total), 25 randomly generated sequences were supplied

to model D1. For each product sequence, the model was executed twice, once with and once

without the Optimality Cuts (7000 total Model D1 instances). Each Model D1 instance was

solved with a time limit of 60 seconds, the same one employed by the decomposition step.

The solutions obtained with and without the Optimality Cuts were compared both in terms of

solution quality (cycle time) and solution time. The percentage of instances with different values

(reductions and increases) of cycle time and solution time is reported by Table 21. Instances

in which solution quality and time were better with the Cuts than without them are reported as

reductions (Red.) and when the contrary happened they are reported as increases (Inc.). The

average relative difference in those measures is also reported by Table 21. For multiple Model D1

instances, the difference in 𝐶𝑇 between solutions was only 1 time unit (less than 0.05%) of one

another. In order to restrict the analysis to more substantial differences, these were considered as

ties for the purpose of counting. Similarly, time comparisons are considered ties when optimality
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is not reached neither with or without the optimality cuts.

Table 21 – Influence of Optimality Cuts: Cycle Time and Solution Time comparisons
Instances 𝐶𝑇 Differences Time Differences
Size OS Nb. Red. Nb. Inc. Avg. Red. Nb. Red. Nb. Inc Avg. Red.

Small
0.2 27.6% 11.3% 0.16% 87.5% 3.2% 44.4%
0.6 32.8% 11.5% 0.26% 92.8% 2.2% 50.9%
0.9 52.0% 18.8% 1.2% 98% 2% 47.7%

Large
0.2 63.7% 3.2% 0.66% 0% 0% 0%
0.6 55.2% 4.4% 0.59% 0% 0% 0%
0.9 72.4% 16.8% 0.44% 98.8% 0% 73.5%

For both instance sizes and all values of OS, the number of instances with CT reductions

was more than double the number of instances with increases. A large number of these instances

was solved to optimality, meaning that comparing the time required to do so can be relevant.

In small instances (with low, medium, and high OS), as well as large ones with high OS, the

majority of iterations were solved significantly faster when the optimality cuts are employed. For

small instances, this time reduction was near 50%, while for large ones reductions only occurred

for high OS, averaging 73.5%. This means that more iterations can be performed within the time

limit, as more cyclical product sequences and buffer allocations are fully tested. Large instances

with low and medium OS displayed too broad search fields so that none of their model D1

instances were solved to optimality. This means that time comparisons were not possible in these

datasets, as all instances tied at the time limit. However, in the majority of executions on these

instances, the optimality cuts led to better solutions (63.7% and 55.2%, as indicated by column

Nb. Red.), averaging around 0.5% reductions in cycle time. Therefore, Table 21 shows that, for

most instances, the optimality cuts lead to better average performance both in terms of the goal

function (cycle time minimization) and in terms of time required to solve Model D1 instances.

5.7 CONCLUSIONS

Optimizing throughput of mixed-model asynchronous lines requires the solution of

three optimization problems: balancing the task distribution, sequencing product models, and

allocating buffers (internal storage). While many works have focused on each of these problems,

and on some combinations of them, none thus far had explicitly combined all three degrees

of freedom. This chapter expands a cyclical formulation capable of measuring steady-state

performance of said lines when cyclical sequencing and buffer allocation are parameters, and

allows these to be decision variables.



108

A new mixed-integer linear programming model is presented to describe and optimize

the simultaneous Balancing, Cyclical Sequencing and Buffer allocation asynchronous assembly

line Problem (BCSB-P). These three degrees of freedom have not been previously combined in

the literature. However, by comparing the proposed monolithic model to a sequential procedure

(which mimics previous literature methods), tests on a 700-instance dataset show that combining

the degrees of freedom is very important to achieve good answers: the average integer gap of the

solutions obtained by the monolithic model is 60% smaller than those of the sequential approach

(Table 20). However, the combined problem is computationally challenging.

Based on this computational difficulty, an iterative decomposition procedure is also

presented to obtain better answers than the proposed monolithic model (Figures 15 and 16). Two

mathematical models operate alternatively: a balancing model in which product sequence and

buffer layouts are parameters, and a sequencing and buffer allocation model in which processing

times (balancing) are parameters. These models are based on the monolithic model (Defined

by Expressions 60 to 72): they retain part of the original decision variables and change the

others to parameters. Optimality cuts are also incorporated by the decomposition (Expressions 75

and 76) and are shown to lead to better solution quality and time at the method’s iterations

(Table 21). The proposed decomposition outperforms the monolithic model in the production of

upper bounds for the problem. The average integer gap of solutions obtained by the proposed

decomposition is 19% smaller than those of the monolithic model (Table 19). This difference is

more significant for large instances and tends to be stronger for less restricted cases. Although

the decomposition’s focus is to generate good solutions rather than optimality proof, it does

have the capacity to do so. A key challenge for that to occur more often, however, lies in lower

bounds: in most large instances, the bounds obtained by the monolithic model were weaker than

the lower-bound provided by the virtual single model balancing problem.
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6 BALANCING UNDER STOCHASTIC SEQUENCING

This chapter is based on an article published in Computers and Operations Research

(LOPES et al., 2020b). In it, a simheuristic procedure is proposed to balance asynchronous

assembly lines when sequencing is beyond the line manager’s control and can be treated as

stochastic. While this random element prevents cyclical scheduling from finding a direct appli-

cation, the article is also a follow-up to a conference paper presented at the L SBPO in Rio de

Janeiro (LOPES et al., 2018). In the conference paper, the stochastic steady-state is approximated

by a weighted sum of cyclical scheduling steady-states of finite size. In Lopes et al. (2020b),

however, a new algorithmic line simulator is used for that purpose, and the article focuses on

the solution method. Another conference paper by the author (LOPES et al., 2019), presented

at the XIX CLAIO in Lima (Peru), addresses another dimension of this problem. It described

a Markov-chain formulation to obtain exact performance measurements for given balancing

solutions, but that is beyond the scope of this chapter.

6.1 CONTEXT

Assembly Line Balancing (ALB) problems consist of distributing operations (tasks) to

workers or robots (stations) in a manner that maximizes a given performance measure under a

set of practical constraints. Assembly line balancing is key to efficient design and operation of

production systems (SCHOLL, 1999). The simplest ALB problem which is widely studied in

the literature is the Simple Assembly Line Balancing Problem (SALBP) whose assembly line is

assumed to be composed of simple serial stations producing a single product model. Furthermore,

it is assumed that operations have given deterministic processing times and precedence relations,

and that the sum of processing times in each station is bounded by the cycle time (either variable

or parameter) which determines the line pace (BAYBARS, 1986). While several variants of

these problems have been studied, this chapter is focused on the Mixed-Model Assembly Lines

Balancing (MMALB), i.e. lines that are shared by a set of similar product models.

In mixed-model assembly lines, it is assumed that products can be mixed without setup

times. However, differences in the processing times of tasks for different models can make

the effective cycle time (or throughput) difficult to compute. The effective cycle time is not

only a function of line balancing, but also of assembly line’s physical characteristics and of



110

how products are sequenced. This chapter assumes that the assembly line is reliable and has

an asynchronous line control with a given number of stations and buffers between them. An

infinite input buffer before the first station and an infinite output buffer after the last one are also

assumed. In asynchronous lines, a workpiece is allowed to independently and discretely move to

the following station when processing is completed at the current station and the next station is

empty. Mixed-model sequencing is often treated as a separate optimization problem (BOYSEN et

al., 2009c). However, some authors also focus on simultaneous balancing-sequencing problems

(SAWIK, 2012) or consider product sequences as parameters (BIELE; MÖNCH, 2018). In this

chapter, a make-to-order context is considered as usually defined in the assembly line balancing

literature (BUKCHIN et al., 2002; VENKATESH; DABADE, 2008; TIACCI, 2015b). The model

of the next workpiece to enter the line is a random variable and the probability of being an

instance of a specific model matches the model’s demand rate. This means that even if processing

times are considered deterministic for each task and product model, there is a stochastic sequence

of product models to be produced that makes the throughput of the assembly line hard to predict.

A series of recent publications (TIACCI, 2012; TIACCI, 2015b; TIACCI, 2015a;

TIACCI, 2017; TIACCI; MIMMI, 2018) have addressed variants of this problem with simulation-

based evaluation functions. However, the throughput maximization variant of this problem (given

the number of workstations and buffers) has not been addressed by these works. To the best of the

authors’ knowledge, few works have addressed this issue. Bukchin et al. (2002) and Venkatesh

and Dabade (2008) describe goal functions and discuss surrogates such for horizontal balancing

(BECKER; SCHOLL, 2006). However, Tiacci (2015b) points out that these are not objectives in

themselves, but rather supposed means to achieve a high and stable throughput. A different body

of literature (MCNAMARA et al., 2016) discusses the “bowl phenomenon” in unpaced lines. It

states that adequately unbalanced lines might outperform balanced ones as a result which has

been shown to be robust (HILLIER; SO, 1996). Even though the bowl phenomenon literature

presupposes stochastic components other than ones of the make-to-order context studied here,

some of the obtained results present similar findings of the literature.

This chapter addresses the throughput maximization (or cycle time minimization) of

possibly buffered mixed-model assembly lines with stochastic product sequences. The main con-

tribution is to propose a new simheuristic (JUAN et al., 2015) procedure (PSH) as optimization

method that utilizes a new cycle time simulator (CTS) to evaluate solution quality. CTS is a

specialized simulator that runs faster than other benchmark simulators. It allows PSH to find
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good solutions within practical runtime. Results are compared to benchmarks of the literature,

and to what is expected from the bowl phenomenon.

This chapter is structured as follows. Section 6.2 presents an overview of related works.

Section 6.3 presents a formal definition of the problem and notation. Section 6.4 presents

the new cycle time simulator CTS designed to simulate effective cycle time of mixed-model

assembly lines. Section 6.5 presents the simheuristic method PSH developed to employ CTS and

maximize the throughput of mixed-model assembly lines. Section 6.6 presents the undertaken

computational experiments, and Section 6.7 summarizes the chapter’ findings and contributions.

6.2 RELATED WORKS

Readers can refer to review papers (BECKER; SCHOLL, 2006; BOYSEN et al., 2007;

BOYSEN et al., 2008; BATTAÏA; DOLGUI, 2013) for more details on basic elements of

assembly line balancing. Some specific topics of particular interest for this chapter are: reductions

from mixed-model to single model (BECKER; SCHOLL, 2006) and common approaches tied

to mixed-model lines; classifications and discussions of line features (BOYSEN et al., 2007;

BOYSEN et al., 2008) such as line control and buffers; an overview of problems, common goal

functions and solution approaches (BATTAÏA; DOLGUI, 2013).

Mixed-model assembly lines often employ a conveyor with given constant speed and an

evenly spaced product launch discipline. In that case, throughput is stable and the optimization

problem consists of providing balancing and sequencing solutions that minimize the required

number of stations and work overload (BOYSEN et al., 2009c). However, for some types of

line, the conveyor does not move with constant speed; such is the case in unpaced synchronous

and asynchronous lines. For these lines, or when the optimization problem targets throughput

maximization, determining throughput (or its inverse, the effective cycle time) is challenging.

While product sequencing and line characteristic factors affect such throughput calculation,

there are four main approaches commonly used in the literature: worst case, best case, indirect

evaluation, and direct evaluation.

The most widely used analysis is the worst case one, in which processing times are

controlled such that a given cycle time is valid for all product models regardless of product

sequence and line control: Karabati and Sayin (2003) employ that concept for synchronous lines,

Akpinar and Baykasoglu (2014a) and Akpinar and Baykasoglu (2014b) apply it for a variant with

set-ups between tasks, Roshani and Nezami (2017) employ it for multi-manned mixed-model
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lines, Dong et al. (2018) present a chance-constrained version of this rationale for problems with

stochastic task times, Kucukkoc and Zhang (2015) and Kucukkoc and Zhang (2016) use it for

problems with parallel assembly lines.

Some authors consider the best case scenario (usually associated with large buffer

availability), in which effective cycle time is approximated by the highest station-wise weighted

average of processing times: Sawik (2002) uses it as the first stage of a decomposition procedure

in a balancing-sequencing problem, Alghazi and Kurz (2018) employ it in a problem variant

incorporating parallel workstations and ergonomic constraints, Merengo et al. (1999) present a

vertical balancing formulation that incorporates that core idea. Another very common approach

is the use of indirect goal functions, in particular workload smoothing (DECKER, 1993; ÖZCAN

et al., 2010; HAMZADAYI; YILDIZ, 2012; HAMZADAYI; YILDIZ, 2013) and deviations from

an ideal average (KIM et al., 2000; KIM et al., 2006; BATTINI et al., 2009). The most accurate,

and most problem-specific, is to explicitly take sequencing and line features into account to

provide a direct measure of throughput: Sawik (2012), Öztürk et al. (2013) and Öztürk et al.

(2015) combine balancing and sequencing to minimize the makespan of a product set, Biele and

Mönch (2018) present a cost-oriented optimization problem in which specific product sequences

are given, Chapters 2-5 have aimed at stable cycle time minimization on the context of given

cyclical product sequences and integrated balancing with cyclical sequencing.

In the specific case of asynchronous lines with a make-to-order context (BUKCHIN et

al., 2002), in which product sequences are stochastic, typical indirect performance measures have

been mostly replaced by simulation-based direct evaluation procedures: A recent series of works

have applied these methods to lines with parallel stations (TIACCI, 2015a), buffer allocation

(TIACCI, 2015b), U-shaped lines (TIACCI, 2017), and ergonomic constraints (TIACCI; MIMMI,

2018). These works, however, employ a cost-oriented framework with a target throughput, and

do not aim directly at an effective cycle time minimization (throughput maximization). This

chapter, therefore, presents an optimization method to bridge this specific gap: minimizing the

effective cycle time of (possibly buffered) asynchronous mixed-model lines on a make-to-order

context and analyze the impact of buffer allocation on efficient balancing solutions.

In this chapter, simheuristics are chosen as the method to achieve such simulation-based

optimization (JUAN et al., 2015). They are a rather recent research line with a diverse range of

applications (GONZALEZ-NEIRA et al., 2017; HATAMI et al., 2018; GUIMARANS et al.,

2018) that go beyond using a simulation as a black-box evaluation function of a meta-heuristic.
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Simheuristics use problem-specific information to closely integrate optimization and simulation,

using information on feasibility and solution quality prior to simulation runs (JUAN et al., 2015).

6.3 PROBLEM STATEMENT

A high-level definition of the studied problem is presented by Expressions (78) to (81).

Consider an assembly line consists on series of stations and buffers, represented by the set of

integers 𝑆 = 1,2,...,|𝑆|. Workstations are equally manned and equipped so that any task can be

assigned to any station. Buffers are represented by the set 𝑆𝐵, a sub-set of 𝑆, and no task can

be assigned to them. The line produces a set 𝑀 of different product models, each model 𝑚 of

which has a given demand rate 𝑂𝑚. Product models share a set of tasks 𝑇 , and each task 𝑡 has a

deterministic duration 𝐷𝑡,𝑚 for each product model 𝑚. For specialization purposes, tasks must

be assigned to the same station for all product models (Constraint (79)). Furthermore, there is a

set of precedence relations 𝑅, as stated by Constraint (80). Lastly, the processing time 𝑇𝑥𝑚,𝑠 at

each station 𝑠 for each product model 𝑚 is the sum of processing times of the tasks assigned to

the station, as stated by Constraint (81).

Minimize 𝐸 [ 𝐶𝑇 (𝑇𝑥𝑚,𝑠, 𝑂𝑚) ] (78)∑︁
𝑠 ∈ 𝑆∖𝑆𝐵

𝑥𝑡,𝑠 = 1 ∀ 𝑡 ∈ 𝑇 (79)

∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝑡1,𝑠 ≤
∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝑡2,𝑠 ∀ (𝑡1,𝑡2) ∈ 𝑅 (80)

𝑇𝑥𝑚,𝑠 =
∑︁
𝑡 ∈ 𝑇

𝐷𝑡,𝑚 · 𝑥𝑡,𝑠 ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆 (81)

Product flow is asynchronous: each workpiece can move forward discretely when

processing at the current station is completed and the next station (or buffer) is empty. Starvations

occur when a station is empty and the previous one has not completed processing of the next

piece while blockages occur when a piece has completed processing and the following station is

occupied by a product. By hypothesis, an infinite input buffer exists before the first station and

an infinite output buffer exists after the last one, meaning the first station is never starved and the

last one is never blocked. Product sequence is stochastic, i.e. the model of the next product to

enter the line is a random variable dictated with probabilities equal to the demand rates 𝑂𝑚 of

each model 𝑚.
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The optimization problem consists of defining a task-station assignment that respects

precedence relations (feasible) and that maximizes the expected throughput (i.e. minimizes the

effective cycle time). While precedence relations can be quickly checked, throughput must be

simulated in order to be measured.

6.4 CYCLE TIME SIMULATOR (CTS)

Consider the first workpiece 𝑝 to enter a straight asynchronous assembly line without

parallel stations: its schedule will not depend on subsequent workpieces. Furthermore, departure

times from each station are the only information needed to describe blockages or starvations tied

to the second piece. For instance, if the first piece leaves a station after the second piece is ready

to depart the previous one, the second piece will be blocked; on the other hand, if the first piece

leaves a station before the second one can enter it, that station will be starved. This behavior

can be generalized by knowing the departure times of workpiece 𝑝 from each station. These

departure times are enough to describe the departure times (scheduling) of workpiece (𝑝 + 1).

Algorithm 1 synthesizes the proposed cycle time simulator CTS. Given a balancing

solution 𝑠𝑜𝑙, |𝐾| replications of simulations with |𝑃 | workpieces are conducted. 𝑇𝑥𝑀,𝑆 stores

the processing times of each model 𝑚 ∈𝑀 at each station 𝑠 ∈ 𝑆. The NextModel() subroutine

sets the next product model to enter the assembly line either randomly (based on product demand

rates, as presented by Algorithm 2) or according to a given fixed sequence. The time each station

𝑠 is available to receive the next workpiece is stored in 𝑇𝑓𝑟𝑒𝑒𝑠. Initially, these values are set to

zero. Each simulated workpiece 𝑖 updates these values one station at a time: at each station 𝑠,

these values are updated by considering possible starvations by station (𝑠− 1) and blockages

by station (𝑠 + 1). Naturally, the update rules are slightly different for the first and last stations

(lines 6 and 10 in Algorithm 1, respectively). The first station is never starved and the last station

is never blocked.

The NextModel() function is presented by Algorithm 2. In line 1, it generates random

number generator, with uniform distribution between 0 and 1, which is used to determine the next

product to enter the line given the demand rates 𝑂𝑚. It is assumed that
∑︀

𝑚 𝑂𝑚 = 1, meaning the

demand rates add up to 100%. This function is employed by the proposed Cycle Time Simulator

(CTS) in the case of stochastic product sequences.

CTS is designed to simulate assembly lines with stochastic product sequence and

deterministic processing times. However, it can be easily adapted to incorporate deterministic



115

Algorithm 1 – CycleTimeSimulator(𝑠𝑜𝑙, |𝐾|, |𝑃 |)
1: 𝑇𝑥𝑀,𝑆 ← ProcessingTimesFromSolution(𝑠𝑜𝑙)
2: 𝑠𝑢𝑚𝐶𝑇 = 0
3: for 𝑘 = 1, 𝑘 ≤ |𝐾|; 𝑘 + + do ◁ Outer loop: |𝐾| simulation replications
4: 𝑇𝑓𝑟𝑒𝑒1...𝑛𝑆 ← 0
5: for 𝑝 = 0; 𝑝 ≤ |𝑃 |; 𝑝 + + do ◁ Inner loop: Simulation size of |𝑃 | products
6: 𝑚← NextModel()
7: 𝑇𝑓𝑟𝑒𝑒1 ← max(𝑇𝑓𝑟𝑒𝑒1 + 𝑇𝑥𝑚,1, 𝑇 𝑓𝑟𝑒𝑒2) ◁ First station is never starved
8: for 𝑠 = 2; 𝑠 < |𝑆|; 𝑠 + + do
9: 𝑇𝑓𝑟𝑒𝑒𝑠 ← max(𝑇𝑓𝑟𝑒𝑒𝑠−1 + 𝑇𝑥𝑚,𝑠, 𝑇 𝑓𝑟𝑒𝑒𝑠+1) ◁ Standard rule for central stations

10: end for
11: 𝑇𝑓𝑟𝑒𝑒|𝑆| ← 𝑇𝑓𝑟𝑒𝑒|𝑆|−1 + 𝑇𝑥𝑚,|𝑆| ◁ Last station is never blocked
12: if 𝑝 = 0 then
13: 𝐹𝑖𝑟𝑠𝑡← 𝑇𝑓𝑟𝑒𝑒|𝑆|
14: end if
15: end for
16: 𝑠𝑢𝑚𝐶𝑇 ← 𝑠𝑢𝑚𝐶𝑇 + (𝑇𝑓𝑟𝑒𝑒|𝑆| − 𝐹𝑖𝑟𝑠𝑡)/|𝑃 |
17: end for
18: return 𝑠𝑢𝑚𝐶𝑇/|𝐾|

Algorithm 2 – NextModel()
1: 𝑟𝑎𝑛← Random() ◁ Random number: 0 ≤ 𝑟𝑎𝑛 ≤ 1
2: 𝑠𝑢𝑚← 0
3: for 𝑚 = 1; 𝑚 < |𝑀 |; 𝑚 + + do ◁ |𝑀 |: number of product models
4: 𝑠𝑢𝑚← 𝑠𝑢𝑚 + 𝑂𝑚

5: if 𝑠𝑢𝑚 ≥ 𝑟𝑎𝑛 then
6: return 𝑚
7: end if
8: end for
9: return |𝑀 |

sequences and stochastic processing times. For instance, the processing time 𝑇𝑥𝑚,𝑠 at lines 6,

8, and 10 of Algorithm 1 is set as a parameter, but it can be easily replaced by a random variable.

Furthermore, a warm-up period can be implemented at line 11 by considering the first (valid)

workpiece as being different from zero, i.e., a warm-up period is measured in number of pieces

rather than time units.

An illustrative example of the proposed cycle time simulator (CTS) for an assembly line

with 2 product models and 5 stations is presented by Table 22. Demand rates are set to 50% of

each product model with production of 10 workpieces (|𝑃 | = 10), and the number of simulation

replications is set to one (|𝐾| = 1). Processing times for each model 𝑚 at each station 𝑠 are

presented on the left side of Table 22. Columns of the right side of Table 22 presents values

of 𝑇𝑓𝑟𝑒𝑒𝑠 for each station when each product leaves the station. In this short simulation, the

average cycle time (Algorithm 1, lines 15 and 17) is (86− 20)/10 = 6.6 time units per product.

Notice that product workpiece 0 functions as a warm-up for the simulation, as described in

Algorithm 1 (Lines 12 to 14).
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Table 22 – Illustrative example of CTS execution
Processing (𝑇𝑥𝑀,𝑆) 𝑇𝑓𝑟𝑒𝑒𝑠 for each station 𝑠 after each product 𝑝

Model 𝑚 Product 𝑝 0 1 2 3 4 5 6 7 8 9 10
Station 𝑠 1 2 Model 𝑚 1 2 1 1 1 1 2 2 1 1 2

1 7 3 𝑠 = 1 7 10 17 24 31 38 41 45 50 57 64
2 2 4 𝑠 = 2 9 14 19 26 33 40 45 50 57 64 69
3 2 5 𝑠 = 3 11 19 26 31 36 42 50 57 64 69 74
4 4 7 𝑠 = 4 15 26 31 36 41 46 57 64 69 74 81
5 5 5 𝑠 = 5 20 31 36 41 46 51 62 69 74 79 86

6.4.1 Comparison to Literature Benchmark

The Cycle Time Simulator (CTS) presented by Algorithm 1 is hereby compared to the

most recent benchmark Assembly Line Simulator (ALS) presented by Tiacci (2012). CTS is

more specialized than ALS, which can incorporate other features such as parallel workstations

and U-shaped lines. However, this section restricts the comparison to the specific capabilities of

CTS: namely straight lines without parallel workstations. There are two variable dimensions that

both CTS and ALS can process: stochastic vs. deterministic processing times, and stochastic

vs. deterministic product sequences. ALS is made available for download by its author at the

DOI:10.13140/RG.2.2.16680.72961. The data used in these simulation comparisons originates

from Chapter 2’s practical case study, and is made available in Lopes et al. (2020b)’s supple-

mentary material. A very long simulation length (2.5 · 106 workpieces/loads) was used to reduce

the impact of the transient behavior and provide the total simulation time in seconds. Table 23

presents the results.

Table 23 – Average cycle time (CT) in time units and simulation runtime in seconds for ALS and CTS
ALS CTS

Processing Sequencing CT Runtime CT Runtime
Deterministic Deterministic 1605.7 2.66 1605.7 0.26
Deterministic Stochastic 1592.6 2.99 1592.4 0.29

Stochastic Deterministic 1617.5 8.08 1617.3 0.80
Stochastic Stochastic 1617.3 8.01 1618.5 0.85

According to Table 23, the computed cycle times for both simulators are very similar.

Such small differences (less than 0.1%) are easily attributable to the sampling process using

random variable generators. However, runtimes are quite different. CTS is approximately ten

times faster than ALS. This is expected as CTS is more specialized than ALS. However, the

development of such fast specialized simulator is key to the simheuristic presented in Section 6.5

as simulation is extensively used.

http://doi.org/10.13140/RG.2.2.16680.72961
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Algorithm 3 – Proposed Simheuristic
1: while TimeLimitNotReached do
2: 𝑏𝑒𝑠𝑡← GenerateInitialSolution(|𝑇 |, |𝑆|)
3: 𝑖𝑛𝑖← null
4: 𝑍𝑖𝑛𝑐←∞
5: 𝑍𝑏𝑒𝑠𝑡←∞
6: while 𝑖𝑛𝑖 ̸= 𝑏𝑒𝑠𝑡 do ◁ Until convergence to local minimum
7: 𝑖𝑛𝑖← 𝑏𝑒𝑠𝑡
8: for all 𝑠1,𝑠2 ∈ 𝑆 ∖ 𝑆𝐵 such that 𝑠1 is adjacent to 𝑠2 do
9: 𝑠𝑜𝑙← 𝑖𝑛𝑖

10: UnassignTasks(𝑠𝑜𝑙, 𝑠1, 𝑠2, 𝐿𝑡𝑎𝑠𝑘𝑠) ◁ 𝐿𝑡𝑎𝑠𝑘𝑠: list of unassigned tasks
11: IterativeSearch(𝑠𝑜𝑙, 𝑏𝑒𝑠𝑡, 𝑍𝑏𝑒𝑠𝑡, 𝑠1, 𝑠2, 𝐿𝑡𝑎𝑠𝑘𝑠, 1) ◁ Local search subrouting
12: end for
13: end while
14: 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑎.𝐴𝑑𝑑(𝑏𝑒𝑠𝑡) ◁ 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑎: list of local minimal solutions
15: 𝑍𝑠𝑜𝑙← CycleTimeSimulator(𝑏𝑒𝑠𝑡, |𝐾|𝑙, |𝑃 |𝑙) ◁ |𝐾|𝑙, |𝑃 |𝑙: external parameters
16: if 𝑍𝑠𝑜𝑙 < 𝑍𝑖𝑛𝑐 then
17: 𝑍𝑖𝑛𝑐← 𝑍𝑠𝑜𝑙
18: 𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡← 𝑏𝑒𝑠𝑡
19: end if
20: end while
21: return (𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡, 𝑍𝑖𝑛𝑐)

6.5 PROPOSED SIMHEURISTIC (PSH)

In order to exploit CTS presented in Section 6.4, the following simheuristic procedure

is proposed. It is based on Iterated Local Search (ILS) (LOURENÇO et al., 2003), which starts

with randomized feasible solutions and performs local searches until a local minimum is found.

Local minima are then stored in a solution list that prevents duplicate solutions, effectively acting

as a Tabu list (GLOVER, 1986).

The proposed simheuristic assumes a given number of stations and buffers between

them. Buffers are modeled as dummy stations with no task assigned to them. The neighborhood

search is based on repeated two-station optimization: tasks are fixed on all but two stations,

and all relevant ways to reassign tasks within that station pair are tested for all adjacent station

pairs. Blockages and starvations happen between adjacent pairs. Therefore, it is expected that

neighborhoods defined in terms of adjacent pairs of stations will contain solutions with different

amounts of blockages and starvations. This means these neighborhoods will lead to incremental

improvements as required by ILS algorithms (LOURENÇO et al., 2003).

Algorithm 3 presents the high level operations of the proposed simheuristic. The initial

solution at Line 2 is provided by a simple randomized priority rule: tasks are given random

priorities and re-ordered accordingly. They are then assigned one at time such that tasks with high

priority and whose predecessors were already assigned are selected first. The task 𝑖 to be selected
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is then assigned to the station ⌊1 + (𝑖−1) · |𝑆|/|𝑇 |⌋th in 𝑆 ∖𝑆𝐵 . For instance, if there are 20 tasks

and five stations, the first four task selected will be assigned to the first non-buffer station, the

next four tasks to the second non-buffer station, and so on. At Lines 8 to 12, Algorithm 3 selects

pairs of adjacent non-buffer stations to remove all tasks and test all possible re-assignments of

such tasks. This makes feasibility verification easier, as only precedence between tasks assigned

to the station pair (𝑠1, 𝑠2) must be checked. At Line 15, CTS is used to measure the performance

of the most recent local minimum, which is saved in the 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑎 list (Line 14) and stored

as incumbent if appropriate (Lines 16 to 19). Notice that the CTS takes into account buffers

between stations, meaning that solution performance will be dependent on the buffer layout. The

IterativeSearch() subroutine (Line 11) is further explained by Algorithm 4.

Algorithm 4 – IterativeSearch(𝑠𝑜𝑙, 𝑏𝑒𝑠𝑡, 𝑍𝑏𝑒𝑠𝑡, 𝑠1, 𝑠2, 𝐿𝑡𝑎𝑠𝑘𝑠, 𝑖)
1: 𝑡← 𝐿𝑡𝑎𝑠𝑘𝑠(𝑖) ◁ Current task to be assigned
2: if Assignable(𝑠𝑜𝑙, 𝑡, 𝑠1, 𝑍𝑏𝑒𝑠𝑡) then ◁ Assign 𝑡 at 𝑠1 branch
3: Assign(𝑡, 𝑠1, 𝑠𝑜𝑙)
4: if 𝑖 = 𝐿𝑡𝑎𝑠𝑘𝑠.𝐶𝑜𝑢𝑛𝑡 then ◁ Complete solution check
5: if not 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑎.𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑠𝑜𝑙) then
6: 𝑍𝑠𝑜𝑙← CycleTimeSimulator(𝑠𝑜𝑙, |𝐾|𝑠, |𝑃 |𝑠) ◁ |𝐾|𝑠, |𝑃 |𝑠: simulation parameters
7: if 𝑍𝑠𝑜𝑙 < 𝑍𝑏𝑒𝑠𝑡 then
8: 𝑏𝑒𝑠𝑡← 𝑠𝑜𝑙 ◁ Store incumbent
9: end if

10: end if
11: else IterativeSearch(𝑠𝑜𝑙, best, Zbest, 𝑠1, 𝑠2, 𝐿𝑡𝑎𝑠𝑘𝑠, 𝑖 + 1) ◁ Incomplete solution, assign next task
12: end if
13: Unassign(𝑡, 𝑠1, 𝑠𝑜𝑙)
14: end if
15: if Assignable(𝑠𝑜𝑙, 𝑡, 𝑠2, 𝑍𝑏𝑒𝑠𝑡) then ◁ Assign 𝑡 at 𝑠2 branch
16: Assign(𝑡, 𝑠2, 𝑠𝑜𝑙)
17: if 𝑖 = 𝐿𝑡𝑎𝑠𝑘𝑠.𝐶𝑜𝑢𝑛𝑡 then ◁ Complete solution check
18: if not 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑎.𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑠𝑜𝑙) then
19: 𝑍𝑠𝑜𝑙← CycleTimeSimulator(𝑠𝑜𝑙, |𝐾|𝑠, |𝑃 |𝑠) ◁ |𝐾|𝑠, |𝑃 |𝑠: simulation parameters
20: if 𝑍𝑠𝑜𝑙 < 𝑍𝑏𝑒𝑠𝑡 then
21: 𝑏𝑒𝑠𝑡← 𝑠𝑜𝑙 ◁ Store incumbent
22: end if
23: end if
24: else IterativeSearch(𝑠𝑜𝑙, best, Zbest, 𝑠1, 𝑠2, 𝐿𝑡𝑎𝑠𝑘𝑠, 𝑖 + 1) ◁ Incomplete solution, assign next task
25: end if
26: Unassign(𝑡, 𝑠2, 𝑠𝑜𝑙)
27: end if
28: return

The IterativeSearch() procedure is the local search aspect of the proposed simheuristic.

Tasks unassigned from stations 𝑠1 and 𝑠2 are stored in list 𝐿𝑇𝑎𝑠𝑘𝑠. Algorithm 4 begins with

𝑖 = 1, taking the first task of the list and attempting to re-assign it to each station. Lines 2

to 14 present such attempt for 𝑠1 and Lines 15 to 27 present the analogous attempt for 𝑠2. The

Assignable() test at Line 2 serves a dual feasibility-optimality role: on one hand it tests whether
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the assignment of task 𝑡 to 𝑠1 violates a precedence relation in regard to a task assigned to 𝑠2

(feasibility); on the other hand, it tests whether the sum of processing times of tasks already

assigned to 𝑠1 is too large if 𝑡 is assigned to it (optimality condition). The optimality condition of

this test is based on the observation that each workstation is a potential line bottleneck (BECKER;

SCHOLL, 2006). Therefore, the expected assembly line performance (and, hence, cycle time)

is bounded by the expected performance of each station, which is trivially determined by the

weighted averages of processing times. Such comparison is dynamically strengthened during

the iterative search as it is based on the performance of the current best neighbor (𝑍𝑏𝑒𝑠𝑡). This

allows substantial reductions on the number of simulations on unpromising neighbors. By doing

this, simulation and optimization are more closely integrated (JUAN et al., 2015): answers

reported by simulations are used to accelerate neighborhood searches by informing performance

requirements, and problem-specific information is used to reduce the number of simulations runs

on low-quality solutions.

A logical test at Line 4 of Algorithm 4 verifies whether all tasks were reassigned. If

so, the current solution 𝑠𝑜𝑙 is tested as a member of 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑎 list (Line 5). If it is a new

solution, 𝑠𝑜𝑙 is tested for performance, and saved as the best solution of the current iteration

(𝑏𝑒𝑠𝑡), if appropriate (Lines 6 to 9). Back to Line 4, if not all tasks were assigned, the search

iterates by incrementing the depth 𝑖 as stated at Line 11. Tasks are unassigned at Line 13 from 𝑠1

so that they can be tested as possible assignments for 𝑠2 (Lines 15 to 27).

In that sense, the neighborhood of each solution tested in Algorithm 3 is the set of

all relevant (feasible, new, and promising) two-station reassignments: they must be feasible

regarding precedence relations, new in regard to the Local Minima List, and promising in the

sense that their performance lower bound must be better than the current solution (𝑏𝑒𝑠𝑡). Until

the time limit or a stopping criterion is reached, this procedure is iterated by randomized re-starts.

The Local Minima restriction prevents the method from converging to previous solutions and,

therefore, enhances solution diversity.

Notice that, while both Algorithm 3 and Algorithm 4 use the proposed CTS (Algo-

rithm 1), the parameters change. During the local search, simulations are shorter and, therefore,

less accurate (for experiments, |𝐾|𝑠, |𝑃 |𝑠 were set to 1 and 1000, respectively). While in the outer

loop of the algorithm, simulations are longer (|𝐾|𝑙, |𝑃 |𝑙 were set to 50 and 50000, respectively).

This is justified as it is not desirable to overload the simheuristic with long simulations. In

order to allow the search procedure to converge, quick approximate evaluations are used in the
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lower-level loops, while longer, more precise, and exhaustive simulations are reserved for the

subset of promising solutions (CHICA et al., 2017).

Lastly, this procedure can be easily parallelized. Multiple local searches can be executed

on different CPU cores with several threads. The only objects that must be shared between

threads are the solution 𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡, its performance value (𝑍𝑖𝑛𝑐), and the list 𝐿𝑜𝑐𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑎.

The later can be implemented as a hash table to improve the computational performance.

6.6 COMPUTATIONAL EXPERIMENTS

The proposed simheuristic PSH was applied to an expanded dataset (Based on Chap-

ter 2’s instances) with 2625 instances, in which five buffer layouts were considered for each of

the 525 task-property data vectors, with five product models each. These instances are based

on the dataset provided by Otto et al. (2013). Instance data is made available in Lopes et al.

(2020b)’s supplementary material, as well as the solutions obtained by PSH and the benchmarks.

All tests were conducted with a Core i7-8700 (3.2GHz, 12 CPUs) with 32GB RAM. The time

limit was set according to the number of tasks (3 seconds per task) in each instance for each PSH

execution using 12 available threads.

The one-way ANOVA analyses have been computed with a confidence level of 99%

for comparing results obtained by simulation, indicating that there are statistically significant

differences whenever p-value<1%. Bonferroni corrections and Tukey’s post-hoc test were used

for multiple comparisons.

Tests were separated into two categories: (i) small and (ii) medium and large instances.

For the 875 small instances, PSH is compared with four benchmarks. Its convergence behavior is

analyzed and the influences of buffers on efficient solutions are discussed in light of the bowl

phenomenon literature (MCNAMARA et al., 2016). For 1750 large instances, the performance

of PSH is compared with the best benchmark of item (i) in terms of average cycle time (inverse

of throughput).

6.6.1 Small Instances: Influence of Buffer Layout

This section describes the observed impact of buffer layout in light of the “bowl phe-

nomenon” introduced by (HILLIER; BOILING, 1979). Several authors have shown that unpaced

lines with stochastic processing times can have better performance when adequately unbalanced.
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Readers can refer to a recent review (MCNAMARA et al., 2016) for more information. This

section’s tests were conducted using 875 instances generated combining 175 task-property data

vectors to 5 buffer layouts. All small instances have 20 tasks, and the number of workstations

was fixed to seven.

In order to verify how buffers affect the processing time distribution among stations,

five buffer layouts are tested. They are presented by Figure 17. Buffers are naturally expected to

enhance the performance of asynchronous assembly lines even when balancing solutions are

kept unchanged (BOYSEN et al., 2008). The simulator CTS presented in Section 6.4 considers

buffers as dummy stations with zero processing times. Therefore, PSH takes the given buffer

layout explicitly into consideration.

Figure 17 – Tested buffer layouts. Darker squares represent workstations, lighter ones represent buffers.

S1 S3 S2 S4 S6 S5 S7 None 

Full 

Begin 

Middle 

End 

S1 S3 B1 S2 B2 B3 S4 S6 B4 S5 B5 B6 S7 

S1 S3 B1 S2 B2 S4 S6 S5 S7 

S1 S3 S2 B1 S4 S6 B2 S5 S7 

S1 S3 S2 S4 S6 S5 B1 B2 S7 

Source: Lopes et al. (2020b)

ANOVA and post-hoc tests confirm that there are differences in processing time distri-

butions for each buffer layout (LOPES et al., 2020b). In order to visualize the impact of buffer

layout on balancing solutions found by PSH, the results are averaged by the following procedure:

(i) the weighted (by demand rates) average processing time in each station is divided by sum of

weighted average processing times in the whole line; (ii) such normalized values are averaged

over 175 instances and used to determine the average normalized processing time profile for a

given buffer layout, i.e., a perfectly balanced assembly line has average normalized processing

time of 100% in every station. Figure 18(a) and Figure 18(b) presents the profiles for unbuffered

and fully buffered layouts, respectively.

The unbuffered profile in Figure 18(a) presents an interesting bowl phenomenon variant:

processing times are increased near the entrance and exit stations of the assembly line. As

expected, post-hoc tests (LOPES et al., 2020b) show statistically significant differences between

the processing time averages of the extreme stations (1 and 7) and their neighbors (2 and
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6). Interestingly, this happens despite the differences in stochastic components between the

studied problems and the bowl phenomenon literature. However, the observed profile violates the

“monotonicity” assumption (HILLIER; SO, 1991) of the bowl phenomenon literature. The second

and second-last stations have lower average processing times (around 97%) than the center ones

(around 99%). Such “ripple effect” might be justified as a way to better exploit the high average

processing times at the first and last stations. In other words, the second and second-last station

act as “partial buffers” for their heavy loaded neighbors. This difference in regard to standard

bowl phenomenon literature can be explained by the aforementioned differences in the nature of

the problem’s stochastic dimensions.

The fully buffered profile (Figure 18(b)) present a much milder bowl phenomenon, with

processing time averages differing at most 2.5% compared to the 6.5% observed in the unbuffered

layout. Indeed, post-hoc tests (LOPES et al., 2020b) still show statistically significant differences

in processing time averages of the extreme stations (1 and 7) and their neighbors (2 and 6). This

verifies a result from the bowl phenomenon literature, as the ideal degree of imbalance decreases

when increasing of internal storage (HILLIER; BOILING, 1979). Furthermore, this resembles

the desired results of vertical balancing (MERENGO et al., 1999) by homogenizing the average

workloads across workstations.

Figures 18(c) 18(e) helps explaining the differences between the None and Full layouts.

For the three remaining layouts, processing times are concentrated around buffers: whether

they are around the entrance of the line (Figure 18(c)), its middle (Figure 18(e)), or its exit

(Figure 18(d)). Incumbent solutions concentrated, for each layout, processing times around

buffers. Indeed, post-hoc tests (LOPES et al., 2020b) verify statistically significant differences

between key station pairs such as stations 2 and 6 for both begin and end layouts, and stations

4 and 6 for the middle layout. A possible explanation for such phenomenon corroborates the

standard understanding of why the bowl phenomenon exists (MCNAMARA et al., 2016): buffers

can compensate for differences in processing times between models, therefore, buffered stations

can afford to have longer processing times without the same risk of starving and blocking

adjacent stations. The assumed infinite input and output buffers, before the first station and after

the last one, further explain the profile observed in Figure 18(a). More importantly, the proposed

simheuristic is shown to be able to properly take advantage of buffer layouts, hinted by the

differences in average solution profiles, which are further discussed in the following sections.
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Figure 18 – Weighted average processing time profiles for each buffer layout
(a) Profile for the unbuffered layout
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(b) Profile for the fully buffered layout
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(c) Buffers between stations pairs 1-2 and 2-3
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(d) Buffers between stations pairs 5-6 and 6-7
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(e) Buffers between stations pairs 3-4 and 4-5
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Source: Lopes et al. (2020b)

6.6.2 Small Instances: Comparison to Alternative Goal Functions

Due to the stochastic component of the problem, a direct measure of effective cycle time

is challenging. Consequently, several indirect approaches were developed to optimize throughput

indirectly. This is the case of four benchmarks considered here for comparison with PSH results:

Horizontal Balancing (HBal), Vertical Balancing (VBal), Maximum Sub-cycle Time (MST),

and the squared Base Model deviation plus smoothness Index (BMI). These formulations were

presented by Decker (1993), Merengo et al. (1999), Karabati and Sayin (2003), and Venkatesh

and Dabade (2008), respectively. The formal definitions of these formulations are presented by

the Expressions (82), (83), (84), and (85).
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HBal: Minimize max
𝑚 ∈ 𝑀

(︃
max
𝑠 ∈ 𝑆

(︃
𝑇𝑥𝑚,𝑠 −

∑︁
𝑡 ∈ 𝑇

𝐷𝑡,𝑚

|𝑆|

)︃)︃
(82)

Subject to: (79)-(81)

Vbal: Minimize
∑︁

𝑠1 ∈ 𝑆

(︃
max
𝑠 ∈ 𝑆

(︃ ∑︁
𝑚 ∈ 𝑀

𝑂𝑚 · 𝑇𝑥𝑚,𝑠

)︃
−
∑︁

𝑚 ∈ 𝑀

𝑂𝑚 · 𝑇𝑥𝑚,𝑠1

)︃
(83)

Subject to: (79)-(81)

MST: Minimize max
𝑚∈𝑀, 𝑠∈𝑆

𝑇𝑥𝑚,𝑠 (84)

Subject to: (79)-(81)

BMI: Minimize
∑︁
𝑚∈𝑀

𝑂𝑚 ·
∑︁
𝑠∈𝑆

⎛⎝⎛⎝𝑇𝑥𝑚,𝑠 − max
𝑠′∈𝑆
𝑚′∈𝑀

𝑇𝑥𝑚′,𝑠′

⎞⎠2

+ (𝑇𝑥𝑚,𝑠 − 𝐶𝑚)2

⎞⎠ (85)

Subject to: (79)-(81)

Expression (82) seeks to homogenize station-wise workload distributions for each

model. Expression (83) minimizes the highest station-wise weighted average of processing times,

which can be seen as a best-case scenario optimization. Expression (84) minimizes the highest

processing time value, which can be seen as a worst case scenario optimization. Expression (85)

attempts to balance the minimization of variability in regard to the highest value of processing

time and the minimization of processing time variability for each model. In it, 𝐶𝑚 states the

theoretical minimum cycle time of model 𝑚, defined by the ceiling of the division of total task

processing time by the number of workstations (SCHOLL; BECKER, 2006).

The first three benchmarks (Hbal, VBal, and MST) are either linear or easily linearizable

goal functions. Given the size of instances, it is possible to compare PSH solutions to the optimal

solutions of these benchmarks that have linearizable goal functions (HILLIER; LIEBERMAN,

2015). Therefore, they were converted into mixed-integer programming instances and solved

with Gurobi 8.0 under the same hardware conditions PSH was executed. BMI, on the other hand,

cannot be straightforwardly linearized and was instead tested using the simheuristic procedure

described in Section 6.5 by replacing CTS by Expression (85) as the performance evaluation

routine on Algorithm 4. The first three benchmarks produced MILP instances that were solved

to optimality. The forth one (BMI) was executed with a time limit of 3 seconds per task per

instance, the same used by PSH.

The average cycle time obtained for each benchmark solution was compared with the
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cycle time obtained for PSH solution using long simulations of CTS (50 replications with 50,000

products each). The average cycle time improvements (avg) and standard deviations (sdv) of

PSH solutions compared to each benchmark for different buffer layouts are presented in Table 24.

It also presents the results of a one-way ANOVA, which show that the performance differences

between benchmarks are statistically significant for all buffer layouts. Post-hoc Tukey’s HSD tests

(LOPES et al., 2020b) confirmed (p-value<0.1%) that the performance difference between PSH

and all benchmarks is statistically significant. Furthermore, these tests confirmed (p-value<0.1%)

that BMI outperforms the other benchmarks, hence justifying its use for comparisons in larger

instances.

Table 24 – Cycle time improvement (%) of PSH solutions compared to each benchmark for each buffer
layout

Benchmark
Buffer Layout Rate MST Vbal Hbal BMI ANOVA

None avg 3% 10.9% 4.6% 2% F-value=306
sdv 1.8% 4.9% 2.5% 1.8% p-value<0.01%

Begin avg 6.3% 12.1% 6.7% 4.1% F-value=166
sdv 2.8% 4.9% 3.3% 2.5% p-value<0.01%

Middle avg 4.3% 9.3% 5.3% 4.1% F-value=102
sdv 2.5% 4.2% 3.1% 2.5% p-value<0.01%

End avg 6.7% 13.7% 7.9% 6.5% F-value=149
sdv 2.7% 5.4% 3.2% 2.8% p-value<0.01%

Full avg 13% 16.5% 13.1% 8.2% F-value=131
sdv 3.7% 4% 4% 4% p-value<0.01%

Notice that all benchmarks’ relative performances worsen when more buffers are added.

This further highlights the proposed algorithm’s better capacity to exploit buffers as resources. For

the fully buffered case, PSH had solutions with homogenized station-wise averages (Figure 18(b)).

However, the poor performance of VBal shows that balancing average station-wise workloads is

not sufficient to ensure good stable cycle time, even for the fully buffered case. The other cases

(MST, VBal and BMI) show that homogenizing model-wise workload distribution can often be

better than homogenizing station-wise average workload distribution, but are also insufficient to

guarantee a good performance, especially when buffers are added to the line.

Figure 19 presents the distribution of cycle time improvement (%) of PSH solutions

compared to each benchmark for all buffer layouts. Notice that, while PSH is outperformed by

the benchmarks on a few instances, for the vast majority of them, it outperforms the benchmarks

substantially. Out of 875 small instances, PSH obtained better results than all benchmarks on

853 (97.5% of them), performing 3.7% better in average than the instance-wise best out of the

four benchmarks.
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Figure 19 – Distribution of cycle time improvement (%) of PSH solutions compared to each benchmark
(a) HBal benchmark
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(b) VBal benchmark

0
20
40
60
80

100
120
140
160
180
200
220

N
u

m
b

er
 o

f 
In

st
an

ce
s

Realized Cycle Time Difference

Difference Distribution - VBal

(c) MST benchmark
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(d) BMI benchmark
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Source: Lopes et al. (2020b)

Table 25 – Cycle time reduction (%) for each buffer layout compared with unbuffered solutions
PSH MST Vbal Hbal BMI

Begin 4.6% 1.6% 3.6% 2.7% 2.7%
Middle 4.1% 2.9% 5.5% 3.4% 3.1%

End 4.6% 1.1% 2.2% 1.5% 1.0%
Full 12.0% 3.5% 7.5% 4.9% 4.7%

Lastly, the impact of each buffer layout in each approach was measured by dividing the

performance of buffered solutions with unbuffered ones. The cycle time improvement (%) of PSH

and benchmark solutions for each buffer layout compared with the respective unbuffered solutions

are presented in Table 25. Notice that the proposed method was able to better exploit buffers

than all benchmarks as the improvement rates for PSH were greater than those of benchmarks.

The single exception was VBal for middle layout buffer (improvement of 5.5%>4.1%), but that

can be attributed to that benchmark’s poor performance on the unbuffered layout (Table 24).

Furthermore, notice that for all benchmarks, the “Middle” layout led to greater improvements

than the “Begin” and “End” ones. This echoes established results on the bowl phenomenon

literature as (HILLIER; SO, 1991) states that buffers are better assigned to the center of the

assembly line. However, this was not observed for PSH: buffer allocations in the Begin and End

of the line led to better performance than in the Middle (4.6% versus 4.1%). A one-way ANOVA

confirms that there are statistically significant differences between the performances of PSH for
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Begin, Middle, and End layouts (F-value=5.27, p-value=0.54%). This can be explained by: (i) the

differences in balancing solutions that accumulate processing times around buffers (Figure 18);

(ii) the aforementioned difference nature of the stochastic component of the problem.

6.6.3 Convergence Behavior

During PSH computational experiments, the time limit was set to 3 seconds per task,

meaning 60, 150 and 300 seconds for small, medium and large instances, respectively. During the

optimization procedure, for each instance, all incumbents were saved along with the elapsed time

necessary to find them. For most instances, few solutions were found until the best incumbent.

However, time required to find them was different for each instance. In order to evaluate the

algorithm’s convergence behavior, the following steps were undertaken: The objective value of

each incumbent was divided by its instance’s last incumbent’s one, defining a rate to the best

solution. These rates define instance-wise convergence steps, which allow a convergence curve to

be drawn for each percentile. Such curves are presented by Figure 20 with a logarithmic (base 2)

time axis. They can be interpreted by generalizing the following: the 10% curve indicates that

only 10% of the instance convergence curves are above it and 90% are below it.

Figure 20(a) compares the best benchmark’s (BMI) average performance to the con-

vergence behavior for small instances. This highlights that PSH quickly finds solutions that

outperform the benchmark’s average relative performance. Figures 20(b) and 20(c) confirm that

the 3 second per task time limit is reasonable compromise: Medium and large datasets display

slower drops for all percentiles, meaning more instances took longer to converge, which suggests

that larger time limits could lead to further improvements. However, for half of the instances

(50% curves), no improvement was found after half the time limit and, for most of those that did,

the improvement was lower than 2%. In the following section, PSH’s performance is compared

to BMI, i.e. the benchmark with best performance observed in Section 6.6.2.

6.6.4 Medium and Large Instances

Medium instances had 50 tasks and 13 workstations, while large ones had 100 tasks

and 25 workstations. Buffer layouts were defined similarly to the small instances with partially

buffered layouts representing buffer allocations at the first, central and last third part of stations

for Begin, Middle and End layouts, respectively (4 buffers for medium instances and 8 buffers
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Figure 20 – PSH convergence behavior for each dataset
(a) Small instances
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(b) Medium instances
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(c) Large instances
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Source: Lopes et al. (2020b)

for large ones). Given the results reported in Section 6.6.2, BMI was chosen as benchmark due

to its better performance compared to other alternatives (HBal, VBal, MST).

A total of 1750 instances (875 medium and 875 large) were tested with the same

hardware and time limit used for small instances. For each instance, the cycle time improvement

of PSH compared with BMI was measured as a percentage. Furthermore, the number of local

minima (number of iterations) found by both PSH and BMI were also saved. Table 26 presents a

comparison between PSH and BMI for medium and large instances with different buffer layouts.

For convenience, results for small instances (from Table 24) are also included in Table 26.

One of the noteworthy results reported by Table 26 is that more neighborhoods are

explored for the ‘Full’ layout of each dataset. This reflects the optimality nature of the valid reas-

signment concept described in Section 6.5. Only reassignments that are not trivially dominated
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Table 26 – Cycle time improvement (%) and number of iteration comparison between PSH and BMI
Improvement Iterations

Instances avg sdv PSH BMI

Small

Empty 2.0% 1.8% 2000

73800
Begin 4.1% 2.5% 2850

Middle 4.1% 2.5% 2450
End 6.5% 2.8% 2350
Full 8.2% 4.0% 5750

Medium

Empty 2.4% 1.8% 1500

5100
Begin 4.7% 2.2% 1700

Middle 4.4% 2.3% 1750
End 4.5% 2.1% 1700
Full 6.3% 3.2% 3100

Large

Empty 0.8% 1.1% 750

2700
Begin 1.6% 1.7% 700

Middle 1.2% 1.5% 800
End 1.8% 1.7% 680
Full 8.3% 2.2% 1100

by the incumbent are simulated. Given that more buffers tend to lead to better cycle times, it is

only natural that better incumbents allow a larger portion of neighborhoods to be dominated.

Another expected result reported by Table 26 is that increasing the instance size leads to fewer

iterations. This is expected, as neighborhoods of each solution tend to increase significantly

in size. The computation of the BMI performance measure is much faster than the simulation

performed by CTS and, therefore, the number of neighborhoods explored using it is consistently

larger than that of PSH. However, this does not necessarily reflect in better solution quality,

especially when buffers are added between stations. Figure 21 presents the distribution of cycle

time improvement (%) of PSH solutions compared to BMI.

Figure 21 – Distribution of cycle time improvement (%) of PSH solutions compared to BMI
(a) Comparison for medium instances

0

50

100

150

200

250

300

350

N
u

m
b

er
 o

f 
In

st
an

ce
s

Realized Cycle Time Difference

Difference Distribution - BMI - Medium Instances

(b) Comparison for large instances
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Source: Lopes et al. (2020b)

Notice that Figure 21(a), similarly to Figure 19(d), reports few instances in which the

difference in solution quality obtained by PSH and BMI favors BMI (difference smaller or equal

than zero). However, as reported by Figure 21(b), this was more common for larger instances.
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PSH outperformed BMI in 870 instances, and 661 instances (out of 875) from the medium,

and large dataset, respectively. Table 26 indicates that this difference is primarily due to the

instances with ‘Empty’ and ‘Middle’ layouts, indicating that it is hard to outperform BMI for

these assembly line layouts. These results suggest that, for extremely large instances (more

than 100 tasks), neighborhood-based searches are overwhelmed by the amount of neighboring

solutions, especially if time-consuming performance measures are required. This would explain

a reduced improvement of PSH over BMI by increasing the instance sizes.

Despite difficulties observed for larger instances, both in average performance (Table 26)

and number of instances (Figure 21), PSH outperformed BMI for all datasets. Furthermore,

a one-way ANOVA confirms that the difference in performance is statistically significant for

every instance size and buffer layout (F-value>14, p-value<0.02%). This difference was more

substantial for fully buffered cases, highlighting the capacity of CTS to explicitly take buffer

information into account.

6.6.5 A Case-Study on the Impact of Demand Rates

In order to evaluate the proposed simheuristic approach regarding different demand

rates, an instance (small dataset, number 1, available in this Lopes et al. (2020b)’s supplementary

material) was solved by PSH with two demand scenarios: (i) Equal Demands (ED), in which all

five models have 20% demand rate, and (ii) Dominant Model (DM) scenario, in which product

model 1 has a 90% demand rate, and all others have 2.5%. This leads to two different solutions,

whose processing times for each product model (M1 to M5) at each station are presented by

Figure 22.

Figure 22 – Processing time of solutions obtained for each demand scenario
(a) Equal Demands (ED) scenario
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(b) Dominant Model (DM) scenario
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Figure 22 highlights product model 1 for both scenarios using a darker blue color

and solid fill. Notice that its processing times are much better balanced in the DM scenario

(Figure 22(b)), at the cost of higher variance of other product models. This happens in the DM

scenario because model 1 is much more common than the other models. Thus, PSH balances the

processing time of model 1 across stations regardless of the impact on other product models.

This is corroborated by applying the solution obtained in one scenario to the other and

comparing the realized cycle times, as depicted by Table 27. Notice that applying the balancing

solution obtained for one demand scenario to the other leads to worse performance. This case

study confirms that solution quality is sensible to the demand rates, and illustrates PSH’s capacity

to take them into account.

Table 27 – Realized cycle time for each solution at each scenario
Solution from Scenario: Performance

Tested Scenario: Equal Demands Dominant Model difference
Equal Demands 811.5 852.3 4.8%

Dominant Model 914.5 794.7 13%

6.7 CONCLUSIONS

This chapter deals with a variant of the throughput maximization of mixed-model

assembly line balancing problem. It presupposes a given number of stations, asynchronous

line pace, number of buffers between stations, and deterministic processing times. However,

the product sequence is considered stochastic in a make-to-order environment as defined in

the assembly line balancing literature. A specialized simulator CTS is proposed to measure

the solution quality as well as a simheuristic PSH that finds good solutions using CTS as a

performance measure.

CTS outperforms a literature object and event-oriented benchmark simulator by an

order of magnitude as, expected due to its higher degree of specialization. However, due to fast

simulation, it allows a more extensive use of simulations by PSH. Even not representing features

as U-shaped assembly lines and parallel stations, CTS can easily be adapted to include features

such as stochastic processing times and deterministic product sequence.

Computational experiments with PSH have shown that buffers affect task distributions.

They allow processing times to be more substantially concentrated around buffers. Interestingly,

this lead to a bowl phenomenon variant which partially verifies established results and concepts

of the bowl phenomenon literature. Furthermore, surrogate benchmark goal formulations have
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been compared to the proposed simheuristic PSH. The later produced better solutions for 90.8%

of instances, outperforming the best benchmark in average by 5.0%, 4.2%, and 2.3% for small,

medium, and large instances, respectively. Lastly, a case study has illustrated the relevance of

demand rates in solution quality, as well as PSH capacity to adequately take them into account.
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7 A CONTRIBUTION TO MULTI-MANNED BALANCING

This chapter is based on a note published in Journal of Manufacturing Systems (LOPES

et al., 2019). It is a simpler contribution, which fundamentally points out inconsistencies and

limitations of a previous work (CHEN, 2017). Consequently, this chapter is less self-contained

than the others in this document. The studied problem is a multi-manned assembly line balancing

problem, in which the cyclical scheduling component is significantly smaller and essentially

internal to each station. The solution method described in this chapter also plays a key warm-start

role in a Combinatorial Bender’s Cut solution strategy presented in a article published in the

Operations Research Perspectives journal (MICHELS et al., 2020).

7.1 CONTEXT

Multi-manned Assembly Lines Balancing Problem (MALBP) is a type of generalized

assembly line that allows multiple operators (workers) to share the same workstation (station). In

contrast, the Simple Assembly Line Balancing Problem (SALBP) only allows one worker per

station. MALBP has three basic elements: assignment of task to workers, workers to stations,

and scheduling tasks for each worker within each station. Tasks have deterministic durations,

are indivisible, and must be performed by a single worker. Precedence relations between tasks

impose a partial ordering in task execution and the line’s cycle time (productivity requirement)

limits the time a product can stay in each station. While each worker operates in a single station,

multiple workers can be assigned to the same station. This means intra-station task-scheduling

is required to ensure that task performance respects both precedence relations and cycle time

constraints. Multiple variants of this problem have been studied (BATTAÏA; DOLGUI, 2013), but

the most common ones seek to minimize the required number of workers and stations. A recent

work presented a heuristic procedure and a case study based on data from a real-world assembly

line (CHEN, 2017). One of the results of such case study is the following observation: allowing

more workers to share the same station reduced the required number of workers. However,

further examination shows that this observation is more easily attributable to features (possibly

weaknesses) of the heuristic procedure, rather than to the characteristics of the problem itself or

data itself. This chapter addresses that observation as well as other inconsistencies in the results

reported in the paper. Italicized fonts are used to refer to sections and tables of Chen (2017)’s
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article, while regular fonts are used to refer to this chapter.

In Chen (2017)’s Section 4.1, CPLEX is compared to the heuristic procedure proposed

by the paper. Table 2 states that the presented heuristic procedure obtained solutions with better

fitness values (0.4516 and 0.2286) than CPLEX (0.4856 and 0.3973) for problems 4 and 5.

However, Table 3 states that CPLEX obtained solutions with fewer stations (3 and 2) and fewer

workers (2 and 1) than Chen (2017)’s proposed algorithm (for problems 4 and 5 respectively).

Furthermore, in Section 4.3, a case study is presented. In it, the solution reported in Tables 8

and 9 requires 60 workers, and 32 stations. Nonetheless, Figure 12 suggests that, for the case

study’s parameters (Maximum of three of workers per station), the solution requires 58 workers

and 22 stations. Besides, Figure 13 suggest that, for the case study’s parameters (Cycle time of

172 time units.), the solution requires 60 workers and 28 stations.

The practical case study also presents a provocative result: Figure 12 shows that increas-

ing the maximum number of workers per station leads to fewer total workers required along the

line. While this is theoretically possible (BECKER; SCHOLL, 2009), it is not very commonly

observed. For instance, Kellegöz (2017) presented a 89-instance case study in which it did not

happen once: in not a single instance, the required number of workers for the best solutions

found was smaller than that of the equivalent SALBP instance (SCHOLL; BECKER, 2006).

Attempts to replicate the results reported by Figure 12 started with solving the problem

for SALBP version of the data presented by Chen (2017), leading to a solution with 53 workers.

This solution is naturally feasible for MALBP if each worker is assigned to a different station

(53 stations). Chen (2017)’s reported solutions ranged from 58 to 62 workers. Therefore, using

SALBP models, a solution with fewer workers was found. A natural question followed: given

the SALBP solution with 53 workers, what is the best MALBP solution? That is, what is the

minimum number of stations required for the 53 workers, and their task assignments, so that

precedence relations and cycle time constraints are respected in every station? In order to discover

such minimum number of multi-manned stations, a residual multi-manned problem is defined,

i.e. one in which task-worker assignments are parameters, while worker-station assignments

and task-scheduling remain variables. A mathematical model for this problem is presented in

Section 7.2, and the obtained results are presented in Section 7.3.
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7.2 WORKER-STATION ASSIGNMENT AND TASK-SCHEDULING MODEL

The residual problem is defined with the following parameters: let 𝑇 be the set of tasks

𝑡, each with duration 𝐷𝑡. Each task 𝑡 is assigned to some/a worker; task-worker assignments

are informed by 𝐴𝑡 for each task 𝑡. Let 𝑊 be the set of workers 𝑤. Workers must be assigned

to stations (set 𝑆) such that no more than 𝑤𝑚𝑎𝑥 workers are allowed per station. Tasks must

be scheduled in a manner that respects the set of precedence relations (listed by (𝑡1,𝑡2 vectors

in the set 𝑅) and the cycle time 𝐶𝑇 in each station. The worker-station assignment decisions

are controlled by the binary variables 𝑥𝑘,𝑗 , which are set to 1 when the worker 𝑤 is assigned

to station 𝑠. The binary variable set 𝑦𝑠 controls whether stations are open or not, and is set to 1

when the station 𝑠 is open. The task-scheduling decisions are controlled by two variable sets:

the continuous 𝑇𝑠𝑡𝑎𝑟𝑡𝑡 control the starting time of each task 𝑡, and the binary set 𝑓𝑡1,𝑡2 controls

the order workers perform their tasks. These variables are set to 1 when workers perform task 𝑡1

before task 𝑡2. The following model formally defines the residual problem.

Minimize
∑︁
𝑠 ∈ 𝑆

𝑦𝑠 (86)

Subject to:∑︁
𝑠 ∈ 𝑆

𝑥𝑤,𝑠 = 1 ∀ 𝑤 ∈ 𝑊 (87)

∑︁
𝑤 ∈ 𝑊

𝑥𝑤,𝑠 ≤ 𝑤𝑚𝑎𝑥 ∀ 𝑠 ∈ 𝑆 (88)

𝑥𝑤,𝑠 ≤ 𝑦𝑠 ∀ 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆 (89)

𝑦𝑠 ≤ 𝑦𝑠−1 ∀ 𝑠 ∈ 𝑆 : 𝑠 > 1 (90)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡 ≥ 𝐶𝑇 ·
∑︁
𝑠 ∈ 𝑆

(𝑠− 1) · 𝑥𝐴𝑡,𝑠 ∀ 𝑡 ∈ 𝑇 (91)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡 + 𝐷𝑡 ≤ 𝐶𝑇 ·
∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝐴𝑡,𝑠 ∀ 𝑡 ∈ 𝑇 (92)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡2 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡1 + 𝐷𝑡1 ∀ (𝑡1,𝑡2) ∈ 𝑅 (93)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡2 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡1 + 𝐷𝑡1 − 𝐶𝑇 · (𝑓𝑡1,𝑡2) ∀ 𝑡1,𝑡2 ∈ 𝑇 : 𝐴𝑡1 = 𝐴𝑡2 , 𝑡2 > 𝑡1 (94)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡1 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡2 + 𝐷𝑡2 − 𝐶𝑇 · (1− 𝑓𝑡1,𝑡2) ∀ 𝑡1,𝑡2 ∈ 𝑇 : 𝐴𝑡1 = 𝐴𝑡2 , 𝑡2 > 𝑡1 (95)

Expression 86 states the goal function, i.e. minimizing the number of required stations.

Equation 87 states that each worker must be assigned to a station. Inequality 88 states that at
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most 𝑤𝑚𝑎𝑥 workers can be assigned to each station. Constraint 89 states that a worker can only

be assigned to stations that are open. Inequality 90 serves as a symmetry breaking constraint.

Constraints 91 and 92 require tasks to be performed within the station their worker is assigned

to, furthermore, these constraints impose the cycle time restriction. Inequality 93 imposes the

precedence relations. Lastly, Constraints 94 and 95 require each worker to perform only one task

at a time.

7.3 RESULTS

All tests reported herein were obtained using Gurobi 8.0 on a Intel Core i7-3610QM

CPU (2.3GHz). Using a standard SALBP model (SCHOLL; BECKER, 2006), the solution

reported by Table 28 was obtained for the problem in 135 seconds. Alternatively, any literature

SALBP method such as SALOME (SCHOLL; KLEIN, 1997) can be employed to find a solution

with the same number of operators.

Table 28 – Simple assembly line balancing solution with 53 workers
Worker Tasks Worker Tasks Worker Tasks

1 49, 67 19 6 37 5, 15
2 11, 60 20 7 38 20, 34
3 16, 56 21 14, 90 39 59, 84
4 17, 41 22 43, 82 40 87, 95
5 21, 25 23 38, 39 41 47, 96
6 26, 35 24 24 42 48, 93
7 27, 42 25 40, 61 43 74
8 22, 50 26 44, 76 44 75, 88
9 29, 30 27 8 45 71, 78

10 23 28 19, 62, 66 46 86
11 36, 85 29 1, 31, 46 47 55
12 18, 63 30 32, 77 48 79
13 52, 64 31 57, 58 49 91
14 37, 69 32 9, 33, 73 50 68, 92, 94
15 28, 53 33 10, 83 51 72
16 65, 81 34 2, 51 52 89
17 12, 54 35 3, 80 53 97, 98
18 13, 45 36 4, 70

Given that this solution respects precedence relations, it is automatically feasible with

53 workers and 53 stations. However, that number can be substantially reduced: the model

described in Section 7.2 was applied to the assignment solution 𝐴𝑡 provided by the SALBP

solution reported by Table 28. The three values of 𝑤𝑚𝑎𝑥 used by Chen (2017) (2, 3, and 4) were

used leading to the answers reported by Table 29. The residual problems were all solved in less

than 15 seconds each.
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Table 29 – Multi-manned balancing solutions with 53 workers
Workers Workers

Station 𝑤𝑚𝑎𝑥=2 𝑤𝑚𝑎𝑥=3 𝑤𝑚𝑎𝑥=4 Station 𝑤𝑚𝑎𝑥=2 𝑤𝑚𝑎𝑥=3 𝑤𝑚𝑎𝑥=4
1 1, 19 3, 4, 5 3, 4, 5, 6 15 29, 30 40, 44 47, 50
2 9, 20 6, 12, 13 7, 11, 12, 13 16 32, 34 41, 42, 48 51
3 27, 45 7, 11, 16 1, 2, 15, 23 17 28, 35 47, 50 52
4 23 2, 22, 23 8, 9, 17, 18 18 33, 36 46, 51 53
5 5, 6 14, 25, 26 16, 19, 25, 29 19 21, 37 52 -
6 2, 11 1, 15, 19 10, 20, 22, 34 20 31, 38 53 -
7 8, 25 9, 17, 18 14, 26, 27, 35 21 39, 49 - -
8 3, 4 8, 20, 29 24, 28, 31, 36 22 40, 43 - -
9 12, 13 10, 30, 34 21, 30, 32, 37 23 41, 44 - -

10 10, 14 24, 27, 35 33, 43, 45 24 42, 48 - -
11 7, 15 28, 32, 36 38, 46, 49 25 47, 50 - -
12 16, 22 21, 33, 37 39 26 46, 51 - -
13 24, 26 31, 38, 49 40, 44 27 52 - -
14 17, 18 39, 43, 45 41, 42, 48 28 53 - -

Figure 23 compares the solutions reported by Chen (2017) to those obtained by the

method described herein-above. Solutions presented by Table 29 outperform those presented by

Chen (2017) in both the number of workers and stations. Furthermore, the reduction in number

of workers reported by Chen (2017) associated to increases in 𝑤𝑚𝑎𝑥, while theoretically possible,

seems to be a consequence of the employed algorithm rather than a typical feature of the problem

itself.

Figure 23 – Influence of the maximum number of workers per station
(a) Influence on number of stations
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(b) Influence on number of workers
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The presented method was also tested for higher values of cycle time described by

Chen (2017) (172, 207, 258, and 344) and the solutions were compared to those reported therein.

Figure 24 compares the reported and obtained solutions. This time, the obtained results confirm

the tendencies observed by Chen (2017), but once again the answers reported by the original

article are dominated both in terms of number of workers and number of stations. Figure 24(a)
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presents three curves for the number of stations, as it was not clear from Chen (2017) which

value of maximum number of workers per station (𝑤𝑚𝑎𝑥) had been employed to generate the

reported values.

Figure 24 – Influence of the cycle time
(a) Influence on number of stations
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(b) Influence on number of workers
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Source: Lopes et al. (2019)

The obtained solutions reported in the comparisons in Figures 23 and 24 are made

available in Lopes et al. (2019)’s supporting information. They include task-worker assignments,

worker-station assignments and task-scheduling that respect precedence relations and cycle time

constraints. All tests required less than 150 seconds total per instance, to both find the SALBP

solution and solve the residual problem.

7.4 DISCUSSION

The obtained results outperformed those reported by Chen (2017) both in number of

workers and stations. Features of Chen’s algorithm might contribute to that outcome. He proposes

a Hybrid Simulated Annealing (HSA) composed of two key elements: A Constructive procedure

that employs priority vectors for task-assignment, and an SA procedure that generates and

exploits neighborhoods of such priority vectors. The constructive procedure produces solutions

that maximize average station-wise worker efficiency, one station at a time. This is a greedy

aspect of the algorithm that can lead to sub-optimality in large instances, since allowing some

larger inefficiencies for the first stations might lead to better long-term efficiency for latter

stations, and hence, to a better solution.

However, a more likely source of lower solution quality is the priority rule-based task

assignments: Consider that, for the original cycle time value (𝐶𝑇=172), the average worker
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efficiency of a solution with 53 workers (obtained via SALBP model) is 94.5%, meaning workers

would only have 5.5% idle time in average. This is quite high to be randomly achieved by a

priority rule (Chen (2017)’s Table 8 reports achieving only 85.3%), specially when the greedy

aspects are taken into account.

Furthermore, priority-based neighborhoods do not necessarily produce similar solutions:

small perturbations in the priority vector can lead to entirely different solutions. Chen (2017)’s

priority vectors, produced by the SA aspect of the algorithm (NS in the original article) are

first converted to a task-sequence vector (FAST in the original article). The conversion process

includes a rather arbitrary modulus operation (Step 2.4 in the original article), which produces

task-sequence vectors (FAST) that bear little resemblance to the SA’s priority vector (NS). The

author does not provide in his paper explanations about the purpose of such modulus operation.

The FAST task-sequence vectors are then used to build solutions (Steps 3-9 in the original article).

A problem with this approach is that neighborhood operations on the NS vector tend to produce

solutions that bear little resemblance to the previous solution, i.e. task-station and task-worker

assignments in neighbor solutions tend to be unrelated.

Perturbation operations more directly related to the actual key operational decisions

(task-worker assignments) would have greater chances of producing promising neighborhoods

and successful search procedures. Naturally, this can impose the challenge of more complex

codifications. Further works should, therefore, attempt to balance the codification’s simplicity

and its distance to actual operational decisions.

7.5 CONCLUSIONS

In this chapter, inconsistencies in the results reported by Chen (2017) are highlighted.

Attempts to solve the practical case study reported therein lead to solutions that dominate those

presented by Chen (2017) in both number of workers and number of stations. Moreover, these

solutions were obtained in relatively small computational times (less than 150 seconds per in-

stance). The method used to find these solutions is hereby described, and the solutions themselves

are made available as supporting information. Furthermore, Chen (2017)’s reported results sug-

gested that increasing the number of allowed workers per station reduces the number of required

workers. This chapter shows that such result, while theoretically possible, is uncommon and the

fact that it occurred in Chen (2017)’s case study is more easily attributable to characteristics of

the employed algorithm (possibly weaknesses) than to the problem’s specific data and nature.



140

Features of Chen (2017)’s algorithm that might cause the aforementioned performance issues are

discussed.
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8 A PARADIGM SHIFT FOR MULTI-MANNED BALANCING

This chapter is based on an article published in the journal Omega (LOPES et al.,

2020). In it, a paradigm shift is proposed for multi-manned assembly lines. Typically, these

lines consider discrete stations with rigid boundaries within which workers can perform tasks.

Under such consideration, line pace does not affect the problem definition. However, as shown in

Chapter 3, the line’s physical pace can be tied to relevant opportunities if explicitly considered.

This chapter considers how to benefit from continuous line pace in the context of multi-manned

assembly lines by allowing flexible station boundaries.

8.1 INTRODUCTION

Assembly lines are production systems commonly used in the large-scale production of

standardized or similar products (SCHOLL, 1999). In them, the workpiece flows through the

workstations, moved by a transportation system. The time available for operators or machines

in each station to perform tasks is called cycle time, and is tied to the system’s production

rate. The optimization problem of distributing workload among the stations is called assembly

line balancing problem. Naturally, there are many different features among assembly lines

(BECKER; SCHOLL, 2006) and, therefore, it is necessary to make assumptions regarding the

referred system.

The most commonly studied type of balancing problem is the simple assembly line

balancing (SALB), which models assembly lines with several restrictive hypotheses (BAYBARS,

1986). First studied by Salveson (1955), the problem is defined (SCHOLL; BECKER, 2006) by:

production of one standardized product, fixed process, serial paced line with common cycle time,

tasks sequence subjected to precedence constraints, deterministic task times, each task must be

assigned to only one station, and all stations are equally equipped.

While SALB is the most studied balancing problem, it has several limitations regarding

its applicability. Due to its simplifying assumptions, not all assembly lines are accurately

described by the SALB formulation. Consequently, multiple researchers have studied and

described variants that remove or replace SALB’s simplifying hypotheses (BOYSEN et al., 2008;

BOYSEN et al., 2009c; BATTAÏA; DOLGUI, 2013). These generalized assembly line balancing

(GALB) works take into account different aspects of an assembly line, such as product diversity
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(PASTOR et al., 2002; KARABATI; SAYIN, 2003; AKPINAR; BAYKASOGLU, 2014a), skilled-

workers allocation (COROMINAS et al., 2008), ergonomic restrictions (ALGHAZI; KURZ,

2018; TIACCI; MIMMI, 2018), traveling workers (SIKORA et al., 2017), lines with non-

deterministic task times (PEREIRA; ÁLVAREZ-MIRANDA, 2018), and parallelism. Parallelism

can take multiple forms, such as parallel lines (ÖZCAN et al., 2010; KUCUKKOC; ZHANG,

2015), parallel workstations (TIACCI, 2015b), and parallel work within stations (DIMITRIADIS,

2006; KELLEGÖZ, 2017). This chapter focuses on the later characteristic, which is the defining

feature of two-sided and multi-manned assembly lines.

Two-sided assembly lines were first studied by Bartholdi (1993). Since then multiple

variants have been proposed, taking into account factors such as product diversity (ÖZCAN;

TOKLU, 2009) and stochastic task times (ÖZCAN, 2010). Two-sided Assembly Line Balancing

(TALB) allows up to two workers to operate simultaneously in the product: one at the left side

and the other at the right side. Due to precedence constraints, it is necessary to schedule tasks

within each station to respect the cycle time constraint.

Multi-manned Assembly Line Balancing (MALB) further generalizes TALB by allow-

ing up to 𝑤𝑚𝑎𝑥 (with 𝑤𝑚𝑎𝑥 ≥ 2) workers to perform tasks simultaneously in the same workpiece.

The maximum number 𝑤𝑚𝑎𝑥 of workers that can work in parallel is primarily determined by the

product’s size. Hence, multi-manned assembly lines are often dedicated to the production of

large products, such as in the automobile industry (CHEN, 2017). The most common practical

application is found in the final assembly of vehicles. Dimitriadis (2006) was one of the first

to study MALB, establishing basic formulations and concepts. Multiple variants have been

presented and studied since then: Becker and Scholl (2009) introduced various MALB with

variable parallel workplaces formulations, such as a model that allows the allocation of extra-long

tasks. Moon et al. (2009), Yilmaz and Yilmaz (2016) studied a problem variant with workers

with different skills and wages. Chang and Chang (2010), Roshani and Nezami (2017) present

mixed-model multi-manned assembly line models and solution methods. Kazemi and Sedighi

(2013) developed a cost-oriented model for mixed-model multi-manned assembly lines. Roshani

and Giglio (2016) introduced cycle time minimization variants.

For some MALB definitions, the cycle time is given and the objective is to minimize

the required number of workers and stations. Fattahi et al. (2011) developed a mixed-integer

linear programming (MILP) formulation used to optimally solve small-size instances and an ant

colony optimization metaheuristic to solve larger instances. Kellegöz and Toklu (2012), Kellegöz
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and Toklu (2015) presented exact and heuristic solution methods for that problem. More recently,

Kellegöz (2017) developed a new MILP formulation with fewer variables and constraints, as well

as a simulated annealing method to solve medium and large-size problems. These outperformed

Fattahi et al. (2011)’s model and algorithm, and, therefore, Kellegöz (2017)’s instances and

results are used as a benchmark for this chapter.

While it is possible to provide specific examples in which multi-manned stations allow

a reduction of the required number of workers (BECKER; SCHOLL, 2009), this was not the

case in any of the instances tested by the literature benchmark (KELLEGÖZ, 2017): the number

of stations is substantially reduced when compared to the equivalent SALB instance, but the

number of workers remained unchanged. Therefore, the main contribution of MALB, evidenced

in literature, is to reduce the required space (stations). This is particularly relevant considering

that multi-manned lines are most often employed to produce large products such as vehicles.

Therefore, the line length tends to be long, and reducing it implies on saving significant amounts

of money, especially on the context of line design.

Line control (e.g., paced, unpaced asynchronous or unpaced synchronous) is a key

characteristic of assembly lines (BOYSEN et al., 2008). While most MALB works consider a

continuous paced line, works on unpaced lines demonstrate the importance of explicitly taking

line control into account. Unpaced lines can be further classified as synchronous (KARABATI;

SAYIN, 2003; CHIANG et al., 2012; URBAN; CHIANG, 2016), asynchronous (SAWIK, 2000;

SAWIK, 2002; ÖZTÜRK et al., 2013; TIACCI, 2015a), and hybrid (KOUVELIS; KARABATI,

1999). Chapter 3 shows that it’s possible to obtain better solutions by explicitly taking line control

into account in the mathematical definition of the problem.

In order to better exploit line control, multiple authors have presented flexible variants

to assembly lines. For unpaced lines, it is common to incorporate parallel stations (SAWIK,

2004; ÖZTÜRK et al., 2015) and buffers (SAWIK, 2012; TIACCI, 2015b). Flexible definitions

have also been applied to paced lines, such as open stations (SARKER; PAN, 2001) that allow

line length minimization (DEFERSHA; MOHEBALIZADEHGASHTI, 2018). Incorporating

these flexibilities tends to offer superior performance. However, it might also imply on more

complex formulations and more challenging problems.

As aforementioned, most previous works on multi-manned lines consider a paced con-

tinuous line. However, station boundaries are rigid, and the specific features of such line control

are not explicitly considered: for most previous works (mathematical models and algorithms),
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changing the line control from paced to unpaced (synchronous or asynchronous) would have

no apparent consequence. This suggests that the continuous paced nature of the line controls

might not have been properly explored. Contrary to discrete or unpaced lines, paced ones allow

stations to have arbitrary starting and ending positions. Given that the line moves forward at

constant speed, the length of the station is superiorly bounded by the cycle time. Adding such

station-boundary flexibility to the problem defines the flexible multi-maned assembly lines. Fig-

ure 25 conceptually compares the different herein-above described line types: simple, two-sided,

multi-manned, and flexible multi-manned. Notice that, for the later, at any given line position,

at most 𝑤𝑚𝑎𝑥 (in this case, 𝑤𝑚𝑎𝑥 = 3) workers operate on the workpiece at the same time.

Therefore, assembly line segments can have different numbers and sets of workers performing

tasks on the product. Furthermore, the positions in which such numbers and sets change are

flexible.

Figure 25 – Comparison of line concepts.
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Source: Lopes et al. (2020)

Previous multi-manned formulations allow multiple workers to operate simultaneously,

but require that they share starting and ending station positions if they do so. If this restriction is

eliminated, workers would have more flexibility, leading to shorter line lengths - which is one

of the main contributions of MALB when compared to SALB. Naturally, this requires more

complex constraints to ensure simultaneous respect to precedence relations, cycle time, and the

maximum number of operators working at the same workpiece. Furthermore, line balancing

problems are known to be NP-Hard as they can be seen as generalized bin packing, which is
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NP-Hard (ÁLVAREZ-MIRANDA; PEREIRA, 2019). FMALB is at least as complex as SALB

given that every feasible SALB solution is a feasible FMALB solution. Therefore, FMALB is

NP-Hard, which motivates the development of heuristic procedures. The purpose of this chapter

is to introduce this Flexible Multi-Manned Assembly Line Balancing (FMALB) problem, as

well as present a formal mathematical definition with a MILP model, a heuristic solution method,

and lower bounds for it.

This chapter is structured as follows: the problem is presented and described in Sec-

tion 8.2. Section 8.3 presents the exact mathematical model. The proposed heuristic solution

method is presented in Section 8.4. Section 8.5 presents the lower-bounds defined for this

problem. Section 8.6 presents the results obtained on a literature dataset, compares the solution

to those of a multi-manned assembly line balancing benchmark, and presents a study on the

relationship between efficient values of cycle time and line length. Section 8.7 summarizes this

chapter’s contributions.

8.2 PROBLEM STATEMENT

The Flexible Multi-Manned Assembly Line Balancing Problem (FMALB) consists

on assigning a set of tasks 𝑇 , with given durations 𝐷𝑡 for each task 𝑡, to a set of workers 𝑊 ,

and consistently schedule them such that both precedence relations (𝑅) and the cycle time

(𝐶𝑇 ) are respected. Workers are represented by integers listed in 𝑊={1,2,...,|𝑊 |}, and the

number of workers (|𝑊 |) is a parameter. They are ordered by their starting position. Each worker

can only perform one task at a time, and at most 𝑤𝑚𝑎𝑥 workers can operate simultaneously

in the same workpiece. The problem’s goal is to minimize the line length 𝐿, a continuous

variable. By hypothesis, the line’s speed 𝑣 is normalized at one Length Unit (L.U.) per Time

Unit (T.U.). The time required by the worker to walk back to the starting position is neglected,

a common hypothesis for MALB (FATTAHI et al., 2011; KELLEGÖZ, 2017). If such time

is not negligible, then it can simply be subtracted from the cycle time. Figure 26 is used as

an example of precedence diagram: in it, the numbers within circles indicate the task indexes

(elements of set 𝑇 ), and those on the upper right corner indicate processing times(𝐷𝑡). The

arrows indicate direct precedence relations between tasks, i.e. the elements of set 𝑅. They are

represented mathematically by ordered pairs (𝑡1,𝑡2) interpreted as “𝑡1 must precede 𝑡2”. By

hypothesis, tasks are topologically ordered, meaning 𝑡2 > 𝑡1 for all precedence relations, as in

Figure 26. This is a common consideration for assembly line formulations (SCHOLL, 1999;
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OTTO et al., 2013; SCHOLL et al., 2013).

Figure 26 – Illustrative problem’s precedence diagram
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Consider an instance with seven workers (|𝑊 | = 7), a cycle time of 37 T.U. (𝐶𝑇 = 37),

and task properties (durations and precedence relations) given by the diagram in Figure 26. Fig-

ure 27 compares the optimal answers of regular and flexible multi-manned balancing-scheduling

problem. These answers were obtained by employing Kellegöz (2017)’s model and the MILP

model described in Section 8.3, respectively. In both solutions, the number of workers that

simultaneously operate in a workpiece is limited by three (𝑤𝑚𝑎𝑥 = 3). Also, workers execute at

most one task at a time. The main difference between the regular (Figure 27(a)) and flexible (Fig-

ure 27(b)) Multi-Manned Assembly Line Balancing (MALB) problem is their stations boundary

definition: The regular version imposes strictly equal starting and finish positions for workers that

operate simultaneously, as represented by the dashed lines in Figure 27(a). The flexible version,

however, requires only that each worker finishes his tasks within the cycle time (time between

starting the first task and finishing the last one), but they are not required to do so within fixed

station borders. For instance, in Figure 27(b), Workers 1 and 2 perform tasks simultaneously in

the workpiece from position 16 L.U. to 37 L.U.. However, they start at different positions (0 L.U.

and 16 L.U., respectively). Workers 6 and 7 share starting positions and operate in parallel from

position 103 L.U. to 134 L.U.. A similar parallelism occurs with Workers 3, and 4. However,

between positions 69 L.U. and 90 L.U., workers 3, 4, and 5 operate in triple parallelism.

Notice that the spaces in which each worker operates are flexible, in that, while workers

can operate from the same starting to ending position (like Workers 6 and 7 in Figure 27(b)),

they are not required to do so. This is particularly valuable if there are many precedence relations

that form “bottleneck” like tasks, such as tasks 1, 8, 17, and 22, highlighted in dark gray in

Figures 26 and 27. In this example, the regular MALB optimal solution (Figure 27(a)) has less

parallelism and, consequently, requires a longer line length.

This example highlights how special structures in the precedence relations might limit



147

Figure 27 – Comparison between flexible and regular multi-manned optimal balancing-sequencing solutions
(a) Standard multi-manned optimal solution for |𝑊 | = 7 and 𝐶𝑇 = 37 with 𝐿 = 179
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(b) Flexible multi-manned optimal solution for |𝑊 | = 7 and 𝐶𝑇 = 37 with 𝐿 = 134
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Source: Lopes et al. (2020)

the degree to which MALB can lead to reductions in line length in comparison to sequential

SALB lines without parallelism. By allowing station boundaries to be flexible, the FMALB

formulation allowed a reduction of 25% (179 to 134 L.U.) in line length when compared to

MALB in this example. As shown in Section 8.6, this might not be a rare event. However, a

major modeling difficulty arises from such flexibility, namely describing a schedule in which,

simultaneously: cycle time is respected by all workers; precedence relations between tasks are

enforced; and at most 𝑤𝑚𝑎𝑥 workers perform operations at the workpiece at any given time.

Section 8.3 describes the proposed modeling approach to this challenge.

8.3 MATHEMATICAL MODEL

The Mixed-Integer Linear Programming (MILP) model is based on two binary variable

sets: 𝑥𝑡,𝑤 (assignment variable set), whose variables are set to one when task 𝑡 is assigned

to worker 𝑤, and 𝑓𝑡2,𝑡1 (ordering variable set), whose variables are set to one when task 𝑡2 is

performed after task 𝑡1 is completed. Three continuous variable sets are employed as scheduling

variables: 𝑇𝑠𝑡𝑎𝑟𝑡𝑡 states the starting time of task 𝑡, 𝑊𝑠𝑡𝑎𝑟𝑡𝑤 and 𝑊𝑒𝑛𝑑𝑤 state the starting and

finishing times of worker 𝑤’s operations. The FMALB formal mathematical definition is given
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by Expressions (96) to (106):

Minimize 𝐿 (96)

Subject to:∑︁
𝑤 ∈ 𝑊

𝑥𝑡,𝑤 = 1 ∀ 𝑡 ∈ 𝑇 (97)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡2 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡1 + 𝐷𝑡1 ∀ (𝑡1,𝑡2) ∈ 𝑅 (98)

𝑊𝑒𝑛𝑑𝑤 −𝑊𝑠𝑡𝑎𝑟𝑡𝑤 ≤ 𝐶𝑇 ∀ 𝑤 ∈ 𝑊 (99)

𝑊𝑠𝑡𝑎𝑟𝑡𝑤 ≤ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡 + 𝐻 · (1− 𝑥𝑡,𝑤) ∀ 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊 (100)

𝑊𝑒𝑛𝑑𝑤 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡 + 𝐷𝑡 −𝐻 · (1− 𝑥𝑡,𝑤) ∀ 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊 (101)

𝑓𝑡1,𝑡2 + 𝑓𝑡2,𝑡1 ≥ 𝑥𝑡1,𝑤 + 𝑥𝑡2,𝑤 − 1 ∀ 𝑤 ∈ 𝑊, 𝑡1,𝑡2 ∈ 𝑇 : 𝑡2 > 𝑡1 (102)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡2 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡1 + 𝐷𝑡1 −𝐻 · (1− 𝑓𝑡2,𝑡1) ∀ 𝑡1,𝑡2 ∈ 𝑇 : 𝑡2 ̸= 𝑡1 (103)

𝐿 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡 + 𝐷𝑡 ∀ 𝑡 ∈ 𝑇 (104)

𝑊𝑠𝑡𝑎𝑟𝑡𝑤 ≥ 𝑊𝑒𝑛𝑑𝑤−𝑃 ∀ 𝑤 ∈ 𝑊 : 𝑤 > 𝑤𝑚𝑎𝑥 (105)

𝑊𝑠𝑡𝑎𝑟𝑡𝑤 ≥ 𝑊𝑠𝑡𝑎𝑟𝑡𝑤−1 ∀ 𝑤 ∈ 𝑊 : 𝑤 > 1 (106)

Expression (96) states the goal function, which is line length minimization. Equa-

tion (97) states the occurrence constraint: each task is performed by one worker. Inequali-

ties (98) and (99) state precedence and cycle time constraints, respectively, in terms of the

scheduling variables. Inequalities (100) and (101) state that, if a task is assigned to a worker,

it must be performed between his starting and ending positions. Inequality (102) states that if

two tasks are assigned to the same worker, one of them must be performed before the other.

Inequality (103) enforces the desired effect of the 𝑓𝑡2,𝑡1 variable set. Inequality (104) states that

all tasks must be performed within the line. Constraint (105) allows that at most 𝑤𝑚𝑎𝑥 workers

to operate simultaneously, and Constraint (106) complements Constraint (105) with an ordering

requirement. The Big-M factor 𝐻 in Constraints (100), (101), and (103) is a large integer, that

acts as a relaxation factor. One valid value of 𝐻 is the sum of tasks’ processing times, however,

any feasible value of 𝐿 is also a valid value of 𝐻 .
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8.4 MILP-BASED HEURISTIC PROCEDURE

The model presented in Section 8.3 tends to be computationally difficult to solve. This

mainly occurs because all binary variables are tied to Big-M constraints (Inequalities (100), (101),

and (103)). In order to generate good solutions for medium and large cases, an MILP-based

heuristic procedure is hereby proposed. Its main strategy is presented in Section 8.4.1. The two

employed MILP models are presented in Section 8.4.2.

8.4.1 Method Overview

The proposed heuristic procedure is based on Combinatorial Benders’ Cuts (CODATO;

FISCHETTI, 2006): the original FMALB instance, hereafter referred to as “Main Problem”, is

separated in two parts according to the type of binary decision variables: assignment (𝑥𝑡,𝑤) and

order (𝑓𝑡2,𝑡1). The Main Problem is split into a Master Problem (MP) - limited to the assignment

variables, and a Slave Problem (SP) - limited to order and scheduling variables. SP employs

the assignment variables of MP solutions as parameters and any feasible solution to the SP is

feasible for the Main Problem. This choice is explained by the hierarchal relationship between

assignment and ordering decision variables: Constraint (102) states that assignment variables

only affect order variables for tasks assigned to the same worker. This justifies deeming the

FMALB’s assignment dimension as the Master Problem, and the order/scheduling part as the

Slave Problem.

Every time MP finds an assignment solution that can be feasible in regard to the Main

Problem, SP is solved for the assignment vector provided by MP. A Combinatorial Benders’ Cut

is added to the main problem regardless of the solution found by SP. This can be implemented

using callbacks and lazy constraints, techniques available for both Gurobi and CPLEX, two

broadly used universal solvers for MILP problems.

Contrary to straightforward standard Combinatorial Benders’ Cuts Method (CODATO;

FISCHETTI, 2006), the proposed procedure is not exact, but rather heuristic: The employed

Master Problem is not simply a relaxation of the Main Problem, but rather an approximation that

incorporates a version of the precedence relations that can eliminate feasible solutions on the

Main Problem. Furthermore, the Slave Problem is not solved to optimality, but rather to a short

time limit.
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8.4.2 Master and Slave Mathematical Models

Consider the model defined by Expressions (107) to (110). It is a standard SALB-2

Model (SCHOLL; BECKER, 2006) and is much more computationally tractable than the Main

Problem defined in Section 8.3: its constraints state occurrence (Equation (108)), precedence

(Inequality (109)), and cycle time (Inequality (110)) without the need of scheduling variables.

This model is hereafter referred to as “Master Problem”.

Minimize 𝐶𝑇 ′ (107)

Subject to:∑︁
𝑤 ∈ 𝑊

𝑥𝑡,𝑤 = 1 ∀ 𝑡 ∈ 𝑇 (108)

∑︁
𝑤 ∈ 𝑊

𝑤 · 𝑥𝑡1,𝑤 ≤
∑︁

𝑤 ∈ 𝑊

𝑤 · 𝑥𝑡2,𝑤 ∀ (𝑡1,𝑡2) ∈ 𝑅 (109)

∑︁
𝑡 ∈ 𝑇

𝐷𝑡 · 𝑥𝑡,𝑤 ≤ 𝐶𝑇 ′ ∀ 𝑤 ∈ 𝑊 (110)

Any task-assignment obtained by the Master Problem with a cycle time value (𝐶𝑇 ′)

lesser or equal to the Main Problem’s parameter (𝐶𝑇 ) is guaranteed to generate feasible solutions

for the Main Problem. This occurs because every feasible SALB solution can be converted

to feasible FMALB solutions. Let 𝐴𝑡 state the worker to which each task 𝑡 is assigned in the

solution given by the Master Problem. Its feasibility and goal function in regard to the Main

Problem can be checked by the “Slave Problem” defined by the Expressions (111) to (115):

Minimize 𝐿 (111)

Subject to (98), (99), (104)-(106) and:

𝑊𝑠𝑡𝑎𝑟𝑡𝐴𝑡 ≤ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡 ∀ 𝑡 ∈ 𝑇 (112)

𝑊𝑒𝑛𝑑𝐴𝑡 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡 + 𝐷𝑡 ∀ 𝑡 ∈ 𝑇 (113)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡2 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡1 + 𝐷𝑡1 −𝐻 · (1− 𝑓𝑡2,𝑡1) ∀ 𝑡1,𝑡2 ∈ 𝑇 : 𝑡2 > 𝑡1, 𝑤𝑡1 = 𝑤𝑡2 (114)

𝑇𝑠𝑡𝑎𝑟𝑡𝑡1 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡𝑡2 + 𝐷𝑡2 −𝐻 · (𝑓𝑡2,𝑡1) ∀ 𝑡1,𝑡2 ∈ 𝑇 : 𝑡2 > 𝑡1, 𝑤𝑡1 = 𝑤𝑡2 (115)

The hierarchal relationship between task-worker assignment decisions and task-

scheduling decisions is reflected in the strength of the Slave Problem’s constraints: Notice



151

that Constraints (112) to (115) are stronger versions of Constraints (100) to (103): Inequali-

ties (112) and (113) do not require the Big-M relaxation factor 𝐻 because the assignment of

tasks are parameters in the Slave Problem. Constraints (114) and (115) employ less than half of

binary 𝑓𝑡2,𝑡1 variables and Big-M relaxations required by Constraints (102) and (103). This is

only possible because the task assignment is a parameter, and hence, the sets of tasks assigned to

the same workers are known. The number of constraints is also substantially reduced as they can

be defined only for the required cases.

Every solution found by the Slave Problem is feasible in regard to the Main Problem

(FMALB). This means that when the Slave Problem is solved, its solutions can be directly

compared in goal function to the incumbent, and eventually replace it. In either case, the current

Master Problem assignment solution 𝐴𝑡 is used to generate the combinatorial Benders’ Cut

presented by Inequality (116) to be added to the Master Problem problem (Provided 𝐶𝑇 ′ ≤ 𝐶𝑇 ).

∑︁
𝑡 ∈ 𝑇

𝑥𝑡,𝐴𝑡 ≤ |𝑇 | − 1 (116)

If the Master Problem’s search field is exhausted within the time limit, the heuristic

procedure is terminated. Because its precedence constraint (Inequality (109)) is more restrictive

than that of the Main Problem, it is not possible to assure the optimality of the incumbent.

Section 8.5 presents the lower bound efforts undertaken to address this limitation of the proposed

heuristic procedure.

8.5 LOWER BOUNDS

In order to measure the quality of the obtained values of line length, two lower bounds

are defined. In this Section, their high-level pseudo-codes are presented and explained. The

instance’s information is: the tasks’ duration (𝐷𝑡), precedence relations (𝑅), the cycle time (𝐶𝑇 ),

the number of available workers (|𝑊 |), and the maximum number of parallel workers (𝑤𝑚𝑎𝑥). By

dividing the sum of processing times by the maximum degree of parallelism (
∑︀

𝑡∈𝑇 𝐷𝑡/𝑤𝑚𝑎𝑥),

a trivial bound on line length is obtained. A stronger version of this perfect division bound is

presented by Algorithm 5.

By considering account the number of available workers, Lower Bound 1 takes into

account the following fact: when the number of workers is not divisible by 𝑤𝑚𝑎𝑥, some of them

will not work 100% of their time in maximum parallelism capacity (𝑤𝑚𝑎𝑥 workers simultane-



152

Algorithm 5 – Lower Bound 1: Perfect Division of Processing Times
1: function LOWERBOUND1(𝑇 , 𝐷, 𝐶𝑇 , |𝑊 |, 𝑤𝑚𝑎𝑥)
2: 𝑟𝑒𝑞𝑃𝑟𝑜𝑐←

∑︀
𝑡∈𝑇 𝐷𝑡 ◁ Total processing required

3: 𝑎𝑣𝑊𝑜𝑟𝑘𝑒𝑟𝑠← |𝑊 | ◁ Total workers available
4: 𝑙𝑏1← 0
5: while 𝑟𝑒𝑞𝑃𝑟𝑜𝑐 ≥ 𝐶𝑇 · 𝑤𝑚𝑎𝑥 and 𝑎𝑣𝑊𝑜𝑟𝑘𝑒𝑟𝑠 > 𝑃 do ◁ Best case full station
6: 𝑟𝑒𝑞𝑃𝑟𝑜𝑐← 𝑟𝑒𝑞𝑃𝑟𝑜𝑐− 𝐶𝑇 · 𝑤𝑚𝑎𝑥

7: 𝑎𝑣𝑊𝑜𝑟𝑘𝑒𝑟𝑠← 𝑎𝑣𝑊𝑜𝑟𝑘𝑒𝑟𝑠− 𝑤𝑚𝑎𝑥

8: 𝑙𝑏1 ← 𝑙𝑏1 + 𝐶𝑇
9: end while

10: 𝑙𝑏1 ← 𝑙𝑏1 + ⌈𝑟𝑒𝑞𝑃𝑟𝑜𝑐/min(𝑎𝑣𝑊𝑜𝑟𝑘𝑒𝑟𝑠,𝑤𝑚𝑎𝑥)⌉ ◁ Lower bound for remaining length
11: return 𝑙𝑏1
12: end function

ously). This perfect division bound is also used to compute lower bounds on sub-problems as a

part of the critical path bound (Lower Bound 2), presented by Algorithm 6.

The critical path bound is presented by Algorithm 6. In order to compute it, the prece-

dence relations set (𝑅) is generalized to include all indirect relations (𝑅*). In the algorithm’s

first step (Lines 2 to 9), for each task, an initial bound on line length required by its successors

and predecessors is computed: For each task 𝑡, the set of predecessors (𝑇𝑝𝑡) and successors

(𝑇𝑠𝑡) is computed (Lines 3 and 4); The minimum number of dedicated workers required by 𝑡’s

predecessors (𝑚𝑖𝑛𝑊𝑝𝑡) and successors (𝑚𝑖𝑛𝑊𝑠𝑡) are computed with floor operations based on

the tasks’ processing times (Lines 5 and 6). The first approximation for the minimum length

required to perform all the predecessors of 𝑡 (𝑚𝑖𝑛𝐿𝑝𝑡) is computed using Algorithm 5, with 𝑇𝑝𝑡

as the set of relevant tasks, and |𝑊 | −𝑚𝑖𝑛𝑊𝑠𝑡 as the number of available workers (Line 7).

This subtraction occurs because the 𝑚𝑖𝑛𝑊𝑠𝑡 workers, that are fully dedicated to successors of 𝑡,

cannot contribute to the predecessors. This is also the reason why Lines 4 and 5 employ floor

operations rather than ceiling ones. The analogous process is required to compute the minimum

length required to perform all the successors of 𝑡 (𝑚𝑖𝑛𝐿𝑠𝑡) in Line 8.

In the algorithm’s second step (Lines 10 to 17) the critical path for predecessors of each

task is computed. For each task 𝑡𝑎 and for each of 𝑡𝑎’s predecessors 𝑡𝑏, a lower bound is computed

for the in-between length (𝐼𝑡𝑏,𝑡𝑎) required by the set of tasks that are simultaneously successors

of 𝑡𝑏 and predecessors of 𝑡𝑎. Algorithm 5 is once again used for that purpose, and the number

of available workers is decreased by the number of workers that are dedicated to successors

of 𝑡𝑎 and predecessors of 𝑡𝑏 (Line 13). The minimal starting position (𝑚𝑖𝑛𝐿𝑝𝑡𝑎) of task 𝑡𝑎 is

then revised in Line 14 if a more critical path is found in task 𝑡𝑏. In order for this to be most

accurate, 𝑡𝑏’s critical path must be already computed. However, tasks are topologically ordered

(by hypothesis), and following such order (Lines 10 and 11) ensures the desired consistency.
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Algorithm 6 – Lower Bound 2: Critical Path Bound
1: function LOWERBOUND2(𝑇 , 𝑅*, 𝐷, 𝐶𝑇 , |𝑊 |, 𝑤𝑚𝑎𝑥)
2: for all 𝑡 ∈ 𝑇 do
3: 𝑇𝑝𝑡 ← {𝑡𝑝 ∈ 𝑇 |(𝑡𝑝,𝑡) ∈ 𝑅*} ◁ Set of tasks that precede 𝑡
4: 𝑇𝑠𝑡 ← {𝑡𝑠 ∈ 𝑇 |(𝑡,𝑡𝑠) ∈ 𝑅*} ◁ Set of tasks that succeed 𝑡
5: 𝑚𝑖𝑛𝑊𝑝𝑡 ← ⌊

∑︀
𝑡𝑝∈𝑇𝑝𝑡

𝐷𝑡𝑝/𝐶𝑇 ⌋ ◁ Minimum number of workers exclusively required by 𝑇𝑝𝑡
6: 𝑚𝑖𝑛𝑊𝑠𝑡 ← ⌊

∑︀
𝑡𝑠∈𝑇𝑠𝑡

𝐷𝑡𝑠/𝐶𝑇 ⌋ ◁ Minimum number of workers exclusively required by 𝑇𝑠𝑡
7: 𝑚𝑖𝑛𝐿𝑝𝑡 ← LowerBound1(𝑇𝑝𝑡,𝐷,𝐶𝑇,|𝑊 | −𝑚𝑖𝑛𝑊𝑠𝑡,𝑤𝑚𝑎𝑥) ◁ Minimum line length before 𝑡
8: 𝑚𝑖𝑛𝐿𝑠𝑡 ← LowerBound1(𝑇𝑠𝑡,𝐷,𝐶𝑇,|𝑊 | −𝑚𝑖𝑛𝑊𝑝𝑡,𝑤𝑚𝑎𝑥) ◁ Minimum line length after 𝑡
9: end for

10: for 𝑡𝑎 = 1; 𝑡𝑎 ≤ |𝑇 |; 𝑡𝑎++ do ◁ Topological order
11: for 𝑡𝑏 = 1; 𝑡𝑏 ≤ 𝑡𝑎 − 1; 𝑡𝑏++ do
12: if (𝑡𝑏,𝑡𝑎) ∈ 𝑅* then ◁ Improve bound based on tasks between 𝑡𝑏 and 𝑡𝑎
13: 𝐼𝑡𝑏,𝑡𝑎 ← LowerBound1(𝑇𝑝𝑡𝑎 ∩ 𝑇𝑠𝑡𝑏 ,𝐷,𝐶𝑇,|𝑊 | −𝑚𝑖𝑛𝑊𝑠𝑡𝑎 −𝑚𝑖𝑛𝑊𝑝𝑡𝑏 ,𝑤𝑚𝑎𝑥)
14: 𝑚𝑖𝑛𝐿𝑝𝑡𝑎 ← max(𝑚𝑖𝑛𝐿𝑝𝑡𝑎 , 𝑚𝑖𝑛𝐿𝑝𝑡𝑏 + 𝐷𝑡𝑏 + 𝐼𝑡𝑏,𝑡𝑎)
15: end if
16: end for
17: end for
18: for 𝑡𝑎 = |𝑇 |; 𝑡𝑎 ≥ 1; 𝑡𝑎- - do ◁ Reverse topological order
19: for 𝑡𝑏 = |𝑇 |; 𝑡𝑏 ≥ 𝑡𝑎 + 1; 𝑡𝑏- - do
20: if (𝑡𝑎,𝑡𝑏) ∈ 𝑅* then ◁ Improve bound based on tasks between 𝑡𝑎 and 𝑡𝑏
21: 𝐼𝑡𝑎,𝑡𝑏 ← LowerBound1(𝑇𝑠𝑡𝑎 ∩ 𝑇𝑝𝑡𝑏 ,𝐷,𝐶𝑇,|𝑊 | −𝑚𝑖𝑛𝑊𝑝𝑡𝑎 −𝑚𝑖𝑛𝑊𝑠𝑡𝑏 ,𝑤𝑚𝑎𝑥)
22: 𝑚𝑖𝑛𝐿𝑠𝑡𝑎 ← max(𝑚𝑖𝑛𝐿𝑠𝑡𝑎 , 𝑚𝑖𝑛𝐿𝑠𝑡𝑏 + 𝐷𝑡𝑏 + 𝐼𝑡𝑎,𝑡𝑏)
23: end if
24: end for
25: end for
26: 𝑙𝑏2 ← 0
27: for all 𝑡 ∈ 𝑇 do ◁ Tasks bind length by their duration added to preceding and succeeding length bounds
28: 𝑙𝑏2 ← max(𝑙𝑏2, 𝑚𝑖𝑛𝐿𝑝𝑡 + 𝐷𝑡 + 𝑚𝑖𝑛𝐿𝑠𝑡)
29: end for
30: return 𝑙𝑏2
31: end function

The analogous procedure for successors, and for 𝑚𝑖𝑛𝐿𝑠𝑡𝑎 , is performed (Lines 18 to 25) in the

reverse topological order (Lines 18 and 19) for the same consistency reason.

Once the critical paths before and after each task are computed, the Lower Bound 2 is

computed in Lines 26 to 30: The duration of each task, summed to the critical paths for both

predecessors and successors is a lower bound for the line’s length for each task. The highest such

value is returned as Lower Bound 2.

These lower bounds tend to be stronger in different occasions: Lower Bound 1 provides

a better approximation when precedence relations are weaker, but tends to be weak when the

value of 𝑤𝑚𝑎𝑥 is large. Lower Bound 2 tends to be better when precedence relations are stronger

and more chains of tasks are present (OTTO et al., 2013). The maximum of both bounds is

employed for the computational experiments.
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8.6 RESULTS

The developed heuristic procedure was applied to FMALB instances based on clas-

sical SALB instances (SCHOLL, 1999) available at www.assembly-line-balancing.de/salbp/

benchmark-data-sets-1993/. Out of these classical SALB, only the subset tested by Kellegöz

(2017) were used, so that a direct benchmark comparison is possible. Table 30 presents the

number of tasks (|𝑇 |) and order strength (OS) of each precedence graph, which measures how

restrictive precedence relations are (OTTO et al., 2013), with 0 meaning no precedence relations

and 1 meaning all tasks belong to a single chain of precedence relations. Table 30 also presents

instance parameters: maximum number of parallel workers (𝑤𝑚𝑎𝑥), cycle time (𝐶𝑇 ), and total

number of workers for each cycle time (|𝑊 |). While the latter was set in accordance to the

answers reported by Kellegöz (2017), they match the SALB optimal solution for their respective

cycle time for all instances except for Barthol2 (CT=106) and Scholl (all CT values), for which

it is one worker more. In total, the case study includes 88 instances.

Tables 31, 32, and 33 summarize the obtained results for small, medium, and large

instances, respectively. The line lengths are converted in normalized (decimal) number of stations

for each instance, by dividing them by the cycle time, then reported under the “Proposed”

columns. Tests were conducted on a Core-i7-8700 (3.2GHz CPU with 32GB RAM) with a time

limit of one hour per instance and Gurobi 8.0 was employed as the MILP solver.

Table 30 – Instance Information
Precedence Diagram Instance Parameters

Instance |𝑇 | OS 𝑤𝑚𝑎𝑥 𝐶𝑇 |𝑊 |
Mitchell 21 0.71 2 14, 26, 39 8, 5, 3

Heskiaoff 28 0.22 2, 4 138, 256, 342 8, 4, 3
Sawyer 30 0.58 2, 4 25, 27, 54, 75 14, 13, 7, 5

Kilbridge 45 0.45 2, 4, 6 57, 110, 184 10, 6, 3
Tonge 70 0.59 2, 4, 6 176, 410, 527 21, 9, 7
Arcus1 83 0.59 2, 4, 6 5048, 7571, 10816 16, 11, 8

Mukherje 94 0.44 2, 4, 6 176, 248, 351 25, 18, 13
Arcus2 111 0.40 2, 4, 6 5755, 10743, 17067 27, 15, 9

Barthol2 148 0.26 2, 4, 6 84, 106, 170 51, 41, 25
Barthold 148 0.26 2, 4, 6 403, 513, 805 14, 11, 7
Scholl 297 0.58 2, 4, 6 1394, 1883, 1394 51, 38, 26

Answers reported by Kellegöz (2017) are presented on the Benchmark columns (Bmk.)

and those obtained by the proposed heuristic procedure are reported under the “Proposed”

columns. The “Reduction” columns present how shorter the “Proposed” (𝑃𝑟𝑜𝑝) is when com-

pared to the benchmark (𝐵𝑚𝑘): (𝐵𝑚𝑘 − 𝑃𝑟𝑜𝑝)/𝐵𝑚𝑘.

www.assembly-line-balancing.de/salbp/benchmark-data-sets-1993/
www.assembly-line-balancing.de/salbp/benchmark-data-sets-1993/
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Table 31 – Result Summary for small size instances
Instance Information Solutions Lower Bound Solution Time

Name 𝐶𝑇 𝑤𝑚𝑎𝑥 |𝑊 | Proposed Bmk. Reduction LB Gap (seconds)

Mitchell
14 2 8 5.43 7 22.45% 5.29 2.63% 0.2
26 2 5 2.85 4 28.85% 2.85 0% 0.6
39 2 3 2 2 0% 1.9 5.13% 0.2

Heskiaoff

138 2 8 4.01 5 19.71% 3.97 1.08% 47.1
138 4 8 3.38 4 15.4% 3.38 0% 0.1
256 2 4 2.28 3 23.96% 2.14 6.16% 0.6
256 4 4 1.82 3 39.19% 1.82 0% 0.1
342 2 3 1.99 2 0.29% 1.99 0% 0.1
342 3 3 1.37 2 31.73% 1.37 0% 1.0

Sawyer

25 2 14 6.72 8 16% 6.48 3.57% 73.9
25 4 14 5.88 8 26.5% 5.88 0% 0.7
27 2 13 6.41 8 19.91% 6 6.36% 1777
27 4 13 5.44 8 31.94% 5.44 0% 24.7
54 2 7 3.09 4 22.69% 3 2.99% 39.9
54 4 7 2.72 4 31.94% 2.72 0% 0.2
75 2 5 2.32 3 22.67% 2.32 0% 1936
75 4 5 1.96 3 34.67% 1.96 0% 18.1

Kilbridge

57 2 10 5.33 6 11.11% 5.14 3.62% 958
57 4 10 3.6 5 28.07% 3.6 0% 1002
57 6 10 3.6 5 28.07% 3.6 0% 0.6

110 2 6 2.66 3 11.21% 2.62 1.71% 168
110 4 6 1.86 3 37.88% 1.82 2.44% 27.2
110 6 6 1.86 3 37.88% 1.82 2.44% 0.1
184 2 3 2 2 0% 2 0% 0.1
184 3 3 1.26 2 37.23% 1.17 6.93% 533

Averages - - - - - 23.2% - 1.8% 264.4

For each instance, the best out of the two lower bounds described in Section 8.5 is

reported under the “LB” columns, and the integrality gap of the best solution is presented

under the “Gap” columns. It is computed as the percentage difference between the best upper

bound (𝑈𝐵) and the lower bound (𝐿𝐵): (𝑈𝐵 − 𝐿𝐵)/𝑈𝐵. The time required to reach the best

incumbent is reported by the rightmost columns. As expected, this time is greater, in average,

for larger instances (Table 32 and 33 versus Table 31). This reflects the algorithm’s capacity

to improve its solution with more computational time, suggesting early convergence is not a

problem.

Out of 88 instances, the proposed heuristic procedure obtained strictly better answers

than the benchmark in 81. In average, the line length of solutions obtained by the proposed

procedure is 18% smaller (weighted average of 23.2%, 14.7%, and 16.3%) than those associated

to the benchmark solutions. Furthermore, 17 optimal solutions were identified in regard to line

length. In three instances (Mitchell-39-2-3, Kilbridge-184-2-3 in Table 31, and Barthold-805-2-7

in Table 33) both methods reached the optimal solution. In one instance (Barthold-403-2-14 in

Table 33) the proposed heuristic procedure was outperformed by the benchmark. Lastly, in three
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Table 32 – Result Summary for medium size instances
Instance Information Solutions Lower Bound Solution Time

Name 𝐶𝑇 𝑤𝑚𝑎𝑥 |𝑊 | Proposed Bmk. Reduction LB Gap (seconds)

Tonge

176 2 21 10.64 12 11.32% 9.97 6.3% 39.7
176 4 21 7.34 10 26.65% 6.72 8.37% 2275
176 6 21 6.98 10 30.23% 6.72 3.66% 2806
410 2 9 4.67 5 6.63% 4.56 2.3% 3166
410 4 9 3.42 4 14.39% 2.89 15.74% 703
410 6 9 3.68 4 8.11% 2.89 21.5% 441
527 2 7 3.68 4 8.06% 3.66 0.46% 162
527 4 7 2.83 3 5.57% 2.46 13.19% 493
527 6 7 2.82 3 6.01% 2.46 12.79% 708

Arcus1

5048 2 16 8.59 10 14.13% 8.49 1.08% 1014
5048 4 16 8.01 10 19.88% 8.01 0% 0.5
5048 6 16 8.01 10 19.88% 8.01 0% 0.5
7571 2 11 5.81 6 3.17% 5.66 2.52% 41.6
7571 4 11 5.43 6 9.42% 5.34 1.7% 1.0
7571 6 11 5.43 6 9.42% 5.34 1.7% 1.1

10816 2 8 4.15 5 16.92% 3.96 4.56% 619
10816 4 8 3.85 5 23.08% 3.74 2.77% 4.3
10816 6 8 3.85 5 23.08% 3.74 2.77% 4.9

Mukherje

176 2 25 14.11 16 11.83% 13.36 5.28% 4.1
176 4 25 10.12 13 22.16% 9.07 10.33% 1157
176 6 25 9.4 13 27.71% 8.28 11.91% 2.8
248 2 18 9.75 10 2.46% 9.48 2.77% 36.3
248 4 18 7.31 8 8.62% 6.44 11.91% 204
248 6 18 6.62 7 5.47% 5.88 11.21% 46.4
351 2 13 7.04 8 12.04% 6.7 4.78% 2246
351 4 13 5.3 7 24.22% 4.55 14.23% 218
351 6 13 5.01 6 16.48% 4.15 17.17% 2072

Averages - - - - - 14.7% - 6.9% 840.2

other instances (Marked with “*” in Table 33) the heuristic procedure failed to reach a feasible

solution within the time limit. This is due to the fact that the SALBP instance (Barthol2, 𝐶𝑇=84,

|𝑊 |=51) associated with it is particularly challenging (SCHOLL; KLEIN, 1997). Consequently,

the Master Problem of the heuristic procedure have not reach the target cycle time1.

The best solutions found by the procedure for all instances, are made available by

Lopes et al. (2019)’s Supplementary Material. Solutions are reported in terms of assignment and

scheduling decisions for each task and can be easily checked for feasibility or converted in a

Gantt chart.
1 By providing a feasible SALB solution as a MIP start to the heuristic procedure, solutions with normalized line

length of 25.8, 16.1, and 13.9 were obtained for 𝑤𝑚𝑎𝑥 values of 2, 4, and 6, respectively. Such solutions are not
reported by Table 33 as they required this specific warm-start, which is not a part of the procedure described in
Section 8.4. These solutions are nevertheless available in Lopes et al. (2019)’s Supplementary Material.
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Table 33 – Result Summary for large size instances
Instance Information Solutions Lower Bound Solution Time

Name 𝐶𝑇 𝑤𝑚𝑎𝑥 |𝑊 | Proposed Bmk. Reduction LB Gap Seconds

Arcus2

5755 2 27 14.61 16 8.71% 13.61 6.84% 237
5755 4 27 11.68 13 10.19% 10.62 9.04% 987
5755 6 27 11.16 13 14.16% 10.62 4.84% 1827

10743 2 15 7.72 9 14.24% 7.29 5.56% 3590
10743 4 15 6.17 8 22.83% 5.69 7.86% 58
10743 6 15 5.97 8 25.37% 5.69 4.72% 1081
17067 2 9 4.86 5 2.71% 4.81 1.08% 1212
17067 4 9 3.93 5 21.35% 3.58 8.94% 1625
17067 6 9 3.91 5 21.74% 3.58 8.5% 1163

Barthol2

84 2 51 * 26 * 25.4 1.61% *
84 4 51 * 16 * 12.81 19.94% *
84 6 51 * 14 * 9.89 28.61% *

106 2 41 20.51 21 2.34% 19.97 2.62% 2369
106 4 41 11.7 13 10.01% 9.99 14.6% 3283
106 6 41 9.69 12 19.26% 7.84 19.08% 2878
170 2 25 12.94 13 0.5% 12.91 0.23% 510
170 4 25 7.69 8 3.82% 6.91 10.24% 2513
170 6 25 5.93 8 25.88% 4.91 17.26% 3264

Barthold

403 2 14 7.12 7 -1.74% 6.99 0.14% 979
403 4 14 4.27 5 14.64% 3.99 6.51% 8.4
403 6 14 3.39 5 32.16% 2.99 11.85% 2872
513 2 11 5.98 6 0.29% 5.98 0% 297
513 4 11 3.23 4 19.35% 2.99 7.19% 1251
513 6 11 2.84 4 29.09% 2.2 22.27% 2062
805 2 7 4 4 0.03% 4 0% 3.5
805 4 7 2 3 33.33% 2 0% 871
805 6 7 2 3 33.37% 2 0% 40

Scholl

1394 2 51 27.97 30 6.77% 25.28 9.62% 1896
1394 4 51 20.44 25 18.24% 16.54 19.08% 408
1394 6 51 19.26 26 25.92% 16.25 15.64% 3126
1883 2 38 20.18 23 12.25% 18.71 7.28% 453
1883 4 38 14.75 20 26.26% 12.25 16.97% 143
1883 6 38 13.79 20 31.07% 12.03 12.74% 143
2787 2 26 13.52 18 24.91% 12.64 6.46% 365
2787 4 26 9.76 15 34.91% 8.27 15.26% 2158
2787 6 26 9.27 16 42.08% 8.13 12.3% 3303

Averages - - - - - 16.3% - 9.3% 1423.5

8.6.1 Line Length versus Cycle Time

The relationship between cycle time and optimal line length might be of particular

interest when a range of possible cycle time values are considered rather than one specifically. In

order to investigate the way in which these factors correlate, the illustrative problem presented

by Figures 26, and 27 (with |𝑊 | = 6, and 𝑤𝑚𝑎𝑥 = 3) was solved to optimality (using the

model presented in Section 8.3) for multiple values of cycle time (including fractional ones, with

increments of 0.5 T.U.). The feasible region, as well as the Pareto-efficient solutions for that

instance are presented by Figure 28.
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Figure 28 – Illustrative problem’s feasible solutions: cycle time and line length

35

37

39

41

43

45

47

49

51

53

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

C
yc

le
 T

im
e

Line Length

Feasible and Efficient Solutions

Feasible Region Feasible Frontier Pareto Efficient Solutions

Source: Lopes et al. (2020)

Notice that the Pareto frontier is discontinuous even though the feasible region is not.

Furthermore, all Pareto efficient solutions have integer values of both line length and cycle

time. This relationship between 𝐿 and 𝐶𝑇 is further explored by a small example presented by

Figure 29.

Figure 29(a) presents the instance data, Figures 29(b) and 29(c) depict two solutions

with different values of line length and cycle time for three workers (|𝑊 | = 3, 𝑤𝑚𝑎𝑥 = 3). Notice

that the task assignments (tied to the 𝑥𝑡,𝑤 binary variable set) and ordering (tied to the 𝑓𝑡2,𝑡1

binary variables) are the same for both solutions. By fixing these binary decisions, the model

presented in Section 8.3 defines a residual linear problem with continuous scheduling variables

for tasks (𝑇𝑠𝑡𝑎𝑟𝑡𝑡), workers (𝑊𝑠𝑡𝑎𝑟𝑡𝑤 and 𝑊𝑒𝑛𝑑𝑤), as well as cycle time (𝐶𝑇 ) and line length

(𝐿). This means that if two solutions are feasible, there is a continuum of intermediary solutions

between them (HILLIER; LIEBERMAN, 2015). Consider line length and cycle time (𝐿, 𝐶𝑇 ):

Figure 29(b) presents a solution with (9, 6) and Figure 29(c) presents a solution with (10, 5). This

means that any linear interpolation such as (9.5, 5.5) is also a feasible solution of the problem.

Figure 29 – Illustrative example with continuous Pareto frontier
(a) Instance data
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(c) Solution with 𝐶𝑇 = 5 and 𝐿 = 10
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This leads to the conclusion that, while the Pareto frontier can be discontinuous (Fig-

ure 28), it can also have continuous segments depending on the instance parameters, in particular
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task durations and precedence relations.

8.7 CONCLUSIONS

In this study, multi-manned assembly lines are addressed. These lines are usually

employed when products are large and, therefore, allow multiple operators to perform tasks

simultaneously on them. Previous literature defined the problem in terms of discrete workstations

with fixed frontiers to which multiple operators can be assigned. However, when lines are

continuous (in contrast to unpaced synchronous and asynchronous lines), there is no need to

impose such constraint. This chapter presents a formulation that allows the definition of flexible

workstation boundaries, which allow much more freedom in regard to the combined balancing-

scheduling problem that defines such multi-manned lines. While Chapter 3 shows that line

control is a relevant performance factor for mixed-model balancing problem variants, this chapter

shows that it is also relevant for single-product balancing problem variants.

A new Mixed-Integer Linear Programming (MILP) model is presented. It incorporates

simultaneously balancing and scheduling decisions such that integer solutions will: respect the

cycle time and precedence relations, allow at most a given number of workers to perform tasks

in the workpiece simultaneously, and allow each worker to perform one task at a time. The

model incorporates multiple Big-M constraints and can be intractable for medium and large

instances. Hence, a MILP-based heuristic procedure is presented. Furthermore, two algorithmic

lower bounds are introduced and explained.

Tests were conducted on a 88-instance dataset. The proposed heuristic procedure

outperformed the previous multi-manned benchmark in 81 instances. Incumbent solutions have

line length 18% smaller than the benchmark in average, and up to 42% in the best case. This

highlights the contribution of allowing flexible workstation frontiers. Algorithmic lower bounds

allowed to demonstrate that 17 out of the solutions found by the proposed procedure are optimal.

Further analysis show that a dispute exists between efficient values of cycle time and line

length, indicating it as a direction for further works on multi-objective optimization. Examples

show that the Pareto frontier in terms of cycle time and line length can be either continuous or

discontinuous, depending on the instance’s parameters.
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9 A CONTRIBUTION ON FRACTIONAL TASK ALLOCATIONS

This chapter is based on an article published in the International Journal of Production

Research (LOPES et al., 2021). It contributes to a previous body of literature (dynamic balancing,

work-sharing) that had already considered fractional task allocations as a means to potential

performance gains. By applying cyclical scheduling analyses to two problem variants, this chapter

describes how those performance gains are tied to internal storage requirements. Mathematical

formulations that allow for their minimization describe these costs for each line control type: for

asynchronous lines, buffers allow lower cycle times (similarly to what is discussed in Chapter 5);

meanwhile, for paced lines a trade-off between line length and cycle time is observed (similarly

to what was found in Chapter 8).

9.1 INTRODUCTION

Assembly lines are product-oriented production layouts commonly employed in various

industrial settings. The most classical optimization problem associated to them is the assembly

line balancing problem (SCHOLL, 1999), which consists in assigning task to stations. The most

basic of such problems is the Simple Assembly Line Balancing Problem (SALBP), which has

multiple simplifying assumptions (BAYBARS, 1986). These have been questioned and relaxed by

many authors, defining many general problem variants (BOYSEN et al., 2008). Out of SALBP’s

basic hypotheses, fewer works challenge the binary nature of the task-station assignments.

To the best of the authors’ knowledge, two overlapping bodies of literature have con-

sidered challenging this hypothesis: dynamic balancing and work-sharing (CHEN; ASKIN,

2006; ANUAR; BUKCHIN, 2006). These literature bodies allow some tasks to be performed

sometimes at one station and sometimes at the next or previous one. This means that for that task,

its allocation decision variable is a fraction that states how often the task is performed on each

station. Naturally, some restrictions apply: e.g. each station pair can only share one task, and

each task can only be shared by two stations. Nonetheless, this represents an additional balancing

flexibility, and the common conclusion drawn from these literature bodies is this added flexibility

allows higher throughputs (or equivalently, lower cycle times). The concept of fractional task

allocations is also found in lines with station parallelism: in them, tasks are performed 50% of

the time in each of the parallel stations (assuming there are two of them). This body of literature
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also concludes that higher throughput is achievable under the greater assignment flexibilities.

However, parallel stations require significant layout changes and increased worker training costs

due to the increase in number of tasks performed. A current limitation of the work-sharing and

dynamic balancing literatures is not adequately describing the costs and trade-offs required by

the fractional allocation of tasks. Consequently, task-sharing has not yet been formalized in terms

of a proper variant of the assembly line balancing problem: The most recent reviews on the topic

(BOYSEN et al., 2008; BATTAÏA; DOLGUI, 2013) do not address this potential flexibility.

This chapter formally defines the Fractional Allocation Assembly Line Balancing

Problem (FA-ALBP) as a direct variant from SALBP. Its main contribution to the related

literature is the description of how internal storage costs are tied to these fractional allocations

for each line type. This formalization allows a better understanding of the trade-offs tied to this

performance enhancing opportunity.

This Chapter is structured as follows: Section 9.2 presents the relevant literature and

contextualizes the Chapter’s contribution. Section 9.3 presents the formal notation and gen-

eral definitions of the considered problem. Section 9.4 presents the cycle time minimization

(throughput maximization) aspect of the problem, while Section 9.5 presents the internal stor-

age minimization one. Experiments are presented in Section 9.6 and the key discussions and

contributions are presented in Section 9.7.

9.2 LITERATURE REVIEW

Assembly line balancing problems are generally NP-Hard optimization problems

(ÁLVAREZ-MIRANDA; PEREIRA, 2019). Its most basic version, the Simple Assembly Line

Balancing Problem (SALBP) has several simplifying hypotheses that reflect the earliest studies

on production lines. In the definition presented by Baybars (1986), the hypothesis that “a task

cannot be split among two or more stations” is second only to “all input parameters are known

with certainty”. Multiple problem variants are defined by deviating from the other hypothesis,

but are beyond the scope of this review. Readers can refer to Boysen et al. (2008) and Battaïa

and Dolgui (2013) for classifications of such variants.

Chen and Askin (2006) define flexibility on task-station assignments for specific tasks as

“dynamic line balancing”: some tasks are fixed to stations while others are allowed to be shared

between two adjacent stations. In their experiments, this flexibility leads to higher productivity.

However, other authors define dynamic balancing differently: Shtub (1993) discusses it as part of



162

the just-in-time philosophy of Japanese manufacturers (SCHONBERGER, 1982), and Ahn and

Righter (2006) present it in terms of a flexible assignment of cross-trained workers to stations.

These works often employ simulations to analyze policies or combine them to optimization

approaches (DAGKAKIS et al., 2019). For instance, Pasupa and Suzuki (2019) recently presented

a simulation-based case study for dynamic line balancing under heterogeneous workers. In this

literature, a common theme is the achievement of a higher throughput.

Anuar and Bukchin (2006) share Chen and Askin (2006)’s definition of dynamic line

balancing, but later works (BUKCHIN; SOFER, 2011; BUKCHIN; WEXLER, 2015) simply

refer to it as “work-sharing”. Anuar and Bukchin (2006) consider that the assembly sequence

is fully given, and that each station can share a task with both its upstream and downstream

neighbor simultaneously. Bukchin and Sofer (2011) go further by allowing more general task

sequences. Both works, however, limit their analyses to asynchronous unpaced lines and the

costs of task-sharing are considered given parameters which do “not depend on the sharing

proportion of the task” - a hypothesis that is questioned by the present chapter. Furthermore, the

bi-directional work-sharing complicates analytical descriptions of buffer requirements, requiring

simulations to address that aspect of the problem (ANUAR; BUKCHIN, 2006). Nonetheless,

work-sharing tends to offer better efficiency, both as lower cycle times (BUKCHIN; SOFER,

2011) and as lower makespan (GULTEKIN, 2012; BUKCHIN; WEXLER, 2015).

Other examples of work-sharing encompass performing tasks in different stations

for different product models (YANG et al., 2014) and splitting some tasks via alterations

in the precedence diagram (GRZECHCA; FOULDS, 2015). Hence, task splitting/sharing, or

partial/fractional task-station allocations are research topics that were addressed by some authors

in multiple manners. In a recent paper, Jeong and Jeon (2020) further investigated the conditions

for balanceability (reaching the minimum possible cycle time) tied to work-sharing for both

straight and U-shapped assembly lines. However, the authors consider unlimited buffers between

stations and do not investigate the impact of work-sharing on internal storage requirements.

However, a limitation of the aforementioned literature is that line control (BOYSEN

et al., 2007) is either not discussed or presumed to be unpaced asynchronous, a context in

which buffers are naturally used to compensate performance oscillations and to allow higher

throughputs, as shown in Chapters 2-6. Chapter 3 shows that a line’s control can influence its

performance. Paced lines can also employ line length to compensate for fluctuations in processing

times (BOYSEN et al., 2008), a feature that allows lower cycle time in specific contexts, as
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shown in Chapter 8. Work-sharing or fractional task allocations naturally cause station-wise

performance oscillations, which must be compensated by internal storage. However, the current

literature on the subject lacks an analytical description on how internal storage is tied to fractional

allocations.

Lastly, it is important to compare the flexibilities of task-sharing to those of parallel

stations. The later are common to various practical contexts and have been extensively studied

(SAWIK, 2012; ÖZTÜRK et al., 2015; MICHELS et al., 2018). In some contexts, parallelism

is employed if a task exceeds the cycle time in duration (BECKER; SCHOLL, 2009) or as a

manner to add additional scheduling flexibility to mixed-model lines, as shown by Chapter 4.

Parallel stations can be seen as a form of fractional task allocation, i.e. tasks are 50% (assuming

2 simple parallel stations) assigned to each workstations. This means that they tend to have most

of the allocation flexibilities of task-sharing. However, not all contexts are adequate for parallel

stations: loss of worker specialization, layout complications, and increases in tool duplication

costs tend to be larger for parallel stations than to fractional task allocations. In fact works that

consider parallel stations often seek to limit or minimize their number (ÁLVAREZ-MIRANDA

et al., 2020) in order to minimize these costs.

This chapter defines a deterministic fractional allocation assembly line balancing prob-

lem in which each station is only allowed to share one task. By doing so, it is possible to define

analytically the required internal storage costs for both paced and unpaced lines, without any

simulation requirement (ANUAR; BUKCHIN, 2006).

9.3 PROBLEM DESCRIPTION

The Fractional Allocation Assembly Line Balancing Problem (FA-ALBP) consists in

assigning a set of tasks 𝑇 (each with a given duration 𝐷𝑡) to a set of stations 𝑆, while respecting

the precedence relations 𝑃𝑡 for each task. Two problem goals are considered: first, to minimize

the line’s cycle time, second, to minimize the line’s space requirements. In this chapter, these

objectives are treated as hierarchical in nature, meaning that minimizing cycle time is considered

strictly more important than minimizing space requirements. This leads to a two-stage approach:

in the first stage, the line’s cycle time is minimized; in the second, space requirements are

minimized, while imposing as a constraint cycle time performance obtained by the first stage.

In this chapter, the number of stations is considered given, hence line efficiency is measured in

terms of the cycle time 𝐶𝑇 . Space costs are measured in terms of either line length or buffer
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requirements, depending on the line control. While tasks are indivisible for each individual

product, tasks can be fractionally assigned to stations in the following sense:

1. The fractional assignment value states the percentage of products for which the task will

be performed at each station;

2. A task can only be split/shared by two adjacent stations;

3. Precedence relations must be respected for all products that flow through the line;

4. Only one task can be shared between two stations;

5. Each station can share tasks with either their upstream or downstream neighbor, but not

both at once.

6. Both stations that share the task can perform it, and the task’s duration is constant, regard-

less of the station that performs it.

Figure 30 – Precedence diagram example and solution examples
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Figure 30 presents a precedence diagram and illustrates the differences between SALBP

and FA-ALBP, as well as some requirements of the latter. These definitions reflect a series of

feasibility and practical considerations, such as producing a solution that can be straightforwardly
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implemented. For instance, allowing stations to share tasks with both the upstream and down-

stream neighbor makes the problem easier to solve (Polynomial time for cycle time minimization)

and allows maximum cycle time reduction (BUKCHIN; SOFER, 2011). However, this can also

produce confusing scheduling solutions that would be very impractical to implement. Hence,

for each station, fractional task allocations are limited to either the previous or the next one.

This means that the line can be seen as a set of regular stations and task-sharing station blocks.

The former are typical of traditional assembly lines, and always processes the current product

within the cycle time. The latter consists of two adjacent stations that share a task, meaning the

processing time of each station oscillates between a value higher than 𝐶𝑇 and another one lower

than 𝐶𝑇 . In average, however, these blocks (and its stations) must process one product every

cycle time, meaning its oscillations must be compensated by internal storage (buffers or line

length). Cyclical scheduling can be used to validate the block’s capacity to reach the required

average cycle time with the available internal storage.

9.4 CYCLE TIME MINIMIZATION

This section presents the proposed mathematical model used to describe the studied

problem. In this section, the model describes the cycle time minimization step. In order to

represent this task-station allocation problem, three sets of decision variables are employed: 𝑥𝑡,𝑠,

𝑦𝑡,𝑠, and 𝑧𝑡,𝑠. Each variable in the first one (𝑥𝑡,𝑠) is set to 1 when task 𝑡 is fully assigned to station

𝑠, meaning it is performed in it for all products. The second one (𝑦𝑡,𝑠) is set to 1 when task 𝑡 is

shared between stations 𝑠 and 𝑠 + 1. The third one (𝑧𝑡,𝑠) states the percentage of products for

which task 𝑡 is performed at station 𝑠, e.g. 𝑧1,2 = 0.5 means that for 50% of products, task 1 is

performed at station 2. The proposed model for time efficiency maximization is presented by

Expressions (117) to (128).

The problem’s goal (Expression (117)) is to minimize the cycle time, as the number

of stations is given by hypothesis. Equation (118) states that every task must be either always

performed at a station or shared between a station pair. Constraint (119) states that the sum

of fractional allocations for every task must add up to 100%, i.e. every task is performed for

every product. Constraint (120) states the direct precedence relations requirements: tasks must

be assigned or shared at a station pair prior to their direct successors. Inequality (121) also states

precedence constraints in terms of the fractional decision variables. Constraint (122) states the
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cycle time constraint: every station’s average performance is a potential line bottleneck.

Minimize 𝐶𝑇 (117)

subject to:∑︁
𝑠 ∈ 𝑆

(𝑥𝑡,𝑠 + 𝑦𝑡,𝑠) = 1 ∀ 𝑡 ∈ 𝑇 (118)

∑︁
𝑠 ∈ 𝑆

𝑧𝑡,𝑠 = 1 ∀ 𝑡 ∈ 𝑇 (119)

∑︁
𝑠 ∈ 𝑆

𝑠 · (𝑥𝑡1,𝑠 + 𝑦𝑡1,𝑠) ≤
∑︁
𝑠 ∈ 𝑆

𝑠 · (𝑥𝑡2,𝑠 + 𝑦𝑡2,𝑠) ∀ (𝑡1,𝑡2) ∈ 𝑅 (120)

∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑧𝑡1,𝑠 ≤
∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑧𝑡2,𝑠 ∀ (𝑡1,𝑡2) ∈ 𝑅 (121)

∑︁
𝑡 ∈ 𝑇

𝐷𝑡 · 𝑧𝑡,𝑠 ≤ 𝐶𝑇 ∀ 𝑠 ∈ 𝑆 (122)

∑︁
𝑡 ∈ 𝑇

(𝑦𝑡,𝑠−1 + 𝑦𝑡,𝑠) ≤ 1 ∀ 𝑠 ∈ 𝑆 : 𝑠 > 1 (123)

𝑧𝑡,𝑠 ≥ 𝑥𝑡,𝑠 ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (124)

𝑧𝑡,𝑠 ≤ 𝑥𝑡,𝑠 + 𝑦𝑡,𝑠 + 𝑦𝑡,𝑠−1 ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 : 𝑠 > 1 (125)

𝑧𝑡,1 ≤ 𝑥𝑡,1 + 𝑦𝑡,1 ∀ 𝑡 ∈ 𝑇 (126)

𝑥𝑡,𝑠, 𝑦𝑡,𝑠 ∈ {0,1} ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (127)

𝐾 · 𝑧𝑡,𝑠 ∈ Z+ ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (128)

Inequality (123) states that a station cannot simultaneously share tasks with both the pre-

vious and following neighbor, and that only one task can be shared per station. Constraints (124)

to (126) logically tie the variable sets 𝑥 and 𝑦 to 𝑧. Expression (127) presents the binary re-

quirements for variable sets 𝑥 and 𝑦. Last, Expression (128) states an optional special integer

requirement for the otherwise continuous variable set 𝑧: by adding it, 𝑧 is allowed to be a fraction

of a given integer denominator 𝐾. For instance, if 𝐾 = 4, the fractional allocations variables

𝑧𝑡,𝑠 can only assume the values 0, 0.25, 0.5, 0.75, and 1. Section 9.5 discusses the relevance

of this factor for each assembly line type. Regarding implementation by general solvers, this

constraint can be added using auxiliary integer variables. Furthermore, upon implementation,

pre-processing can eliminate some variables, by fixing their values as zero: a valid upper bound

on 𝐶𝑇 allows discarding some of the 𝑥𝑡,𝑠 variables using natural adaptations of the earliest and

latest stations concepts (GÖKÇEN; EREL, 1997). Similarly, the 𝑦𝑡,𝑠 variables at the last station

𝑠 = |𝑆| are always zero because there is no station 𝑠 + 1 in this case. If, for any practical reason
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a specific task 𝑡 cannot be shared, all the associated 𝑦𝑡,𝑠 variables should also be set to zero as

well.

9.4.1 Problem’s Complexity

The studied problem’s complexity depends on the number of stations. For a fixed

number of stations of at least 3, the problem is at least NP-complete in the weak sense. This

is proven based on the fact that the bi-partition problem (HAYES, 2002) reduces to FA-ALBP

with cycle time restriction. Given integers 𝑎1, ... , 𝑎𝑛, 𝑏 such that
∑︀

𝑗 𝑎𝑗 = 2 · 𝑏, the following

instance of FA-ALBP can be constructed with 𝑛 tasks and 3 stations:

𝐶𝑇 = 𝑏

𝐷1 = 𝑏 + 𝑎1 𝐷𝑡 = 𝑎𝑡 ∀ 𝑡 ∈ {2, ... , 𝑛}

𝑅 = {(1,𝑡) : 𝑡 ∈ {2, ... , 𝑛}}

The first task precedes all others, therefore, it must be assigned to the first station.

Because its size exceeds cycle time, it must also be shared between the first and second stations.

This consumes all task-sharing possibilities, since the second station cannot simultaneously share

tasks with both neighbors. The first task has duration 𝑏 + 𝑎1, which must be split as follows:

𝑏 time units are performed at the first station, and 𝑎1 at the second. The remaining tasks with

durations 𝑎2, ... , 𝑎𝑛 must be partitioned between the second and third stations. Therefore, the

FA-ALBP instance is feasible if and only if the bi-partition has a solution.

If the number of stations is part of the instance, FA-ALBP is NP-complete in the strong

sense. This is proven based on the fact that the 3-Partition (GAREY; JOHNSON, 1979) problem

reduces to FA-ALBP. Given integers 𝑎1, ... , 𝑎3·𝑛, 𝑏 such that 𝑏/4 < 𝑎𝑗 < 𝑏/2 and
∑︀

𝑗 𝑎𝑗 = 𝑛 · 𝑏,

the following instance of FA-ALBP can be constructed with 4 · 𝑛 tasks and 2 · 𝑛 stations:

𝐶𝑇 = 2 · 𝑏

𝐷𝑡 = 𝑎𝑡 ∀ 𝑡 ∈ {1, ... , 3 · 𝑛}

𝐷𝑡 = 3 · 𝑏 ∀ 𝑡 ∈ {3 · 𝑛 + 1, ... , 4 · 𝑛}

𝑅 = ∅

In order for this instance to be feasible, the 𝑛 large tasks (𝐷𝑡 = 3 · 𝑏) must all be shared:

their duration exceeds cycle time. There are 2 · 𝑛 stations, each can only share one task with
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one of its neighbors (either previous or next station). This means only 𝑛 tasks can be shared,

therefore, only the 𝑛 large tasks are shared. This defines 𝑛 blocks of two stations with 𝑏 time

available. The instance is feasible if and only if the first 3 ·𝑛 tasks (integers 𝑎𝑗) can be partitioned

in blocks of sum 𝑏. That is, if and only if the 3-Partition has a solution.

9.5 INTERNAL STORAGE COST MINIMIZATION

The model presented in Section 9.4 allows to compute the best cycle time 𝐶𝑇 that

can be obtained by adding the fractional task allocation flexibility. This value can differ from

the optimal cycle time of the equivalent SALBP instance (CHEN; ASKIN, 2006; ANUAR;

BUKCHIN, 2006). If that is the case, it is interesting to investigate the internal storage cost tied

to this additional flexibility. Such storage is needed to compensate for production rate oscillations

of stations in task-sharing blocks. This can be done by solving the balancing problem once again,

with an additional constraint tied to cycle time performance (Expression (129)) and a new goal

function that reflects the aforementioned internal storage costs.

𝐶𝑇 ≤ 𝐶𝑇 (129)

These costs are dependent on the assembly line’s control: for continuous paced lines

they mean longer stations, hence a longer line length. These translate to greater internal storage

because products enter the line at a constant rate, meaning longer lines (measured in time

units) mean greater Work-in-Progress. Meanwhile, for unpaced asynchronous lines internal

storage mean buffers between stations. These costs are conceptually illustrated in Figure 31. The

following sections present goal functions that reflect worst-case bounds for these space costs for

each of these line types.

9.5.1 Line Length Cost on Paced Lines

There are multiple variants of paced assembly lines from a scheduling perspective

(BOYSEN et al., 2009c). In this section, it is assumed that (i) products launch is rigidly disci-

plined (i.e. one product enters the line every 𝐶𝑇 time units), and (ii) that stations are rigidly

separated (i.e. no station overlap is allowed). These hypotheses reflect “default” assumptions

about paced assembly lines. Furthermore, considering them allows analyzing the impact of

fractional allocations in isolation.
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Figure 31 – Comparison of internal storage costs for different line controls (T.U. = time units)
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Under these considerations, it is possible to show that each task-sharing “block” can be

studied independently: by placing boundaries between blocks and regular stations, it is clear that

a product must cross each boundary every 𝐶𝑇 time units (hypothesis (i)). Furthermore, because

station boundaries are rigid (hypothesis (ii)), the scheduling required within a block does not

affect neighboring stations and blocks. This is illustrated by Figure 31. This implies that the total

line length is the sum of lengths of all blocks and stations.

The length of regular stations are determined by their total processing time, which is

given by the sum of tasks performed in them. This means it is only necessary to analyze blocks

of adjacent stations that share a task. Let 𝐷 state the duration of the task shared in the block, and

𝐵1 and 𝐵2 indicate the “base” time of each station in the block, i.e. the time required when they

do not perform the shared task. In order to define a worst-case scenario for these blocks, it is

assumed that the sum of the processing time of tasks assigned to these two stations is two cycle

times (𝐵1 + 𝐵2 + 𝐷 = 2 · 𝐶𝑇 ). This means that there can be no idle time in these stations and

that the percentage of time the shared task will be performed at each station is fixed when 𝐵1,

𝐵2 and 𝐷 are given. Notice that Constraint (128) requires 𝑧𝑡,𝑠 to be a fraction of denominator

𝐾, meaning that it is possible to define cyclical schedules based on 𝐾 products. This can be

done by defining residual problems of models developed to describe mixed-model paced lines
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(DEFERSHA; MOHEBALIZADEHGASHTI, 2018). These residual problems will only have 𝐾

binary variables, meaning they are tractable, and can be solved extensively for multiple values of

𝑧 and 𝐷 for the purposes of screening the required line length costs.

Preliminary tests indicated that the length of the block (𝐿 = 𝐿1 + 𝐿2) can be stated as

twice the cycle time plus a cost that is proportional to the shared task’s duration. This means that,

by fixing the percentage of times (𝑧) task are performed at each station, the line length increases

linearly with the shared task’s duration, as indicated by Equation (130).

𝐿 = 2 · 𝐶𝑇 + 𝐹 (𝑧) ·𝐷 (130)

The cost factor 𝐹 is hence a function of the fraction 𝑧. Figure 32(a) presents the results

of initial screenings with multiple values of 𝑧, which did not provide a clear growth or decline

pattern. However, a more clear pattern, shown by Figure 32(b), is obtained by plotting 𝐹 against

the irreducible denominator 𝑑𝑧 of the allocation fraction 𝑧. For instance, for 𝑧 = 6
8
, 𝑑𝑧 = 4.

Notice that, because of Constraint (128), 𝑑𝑧 is at most 𝐾.

Figure 32 – Length cost factor 𝐹 behavior
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In fact, the pattern observed in Figure 32(b) matches the expression 𝐹𝑑 = (2 ·𝑑𝑧−2)/𝑑𝑧.

This can be proven by tracking the position 𝑝 in which the worker finishes processing a product

on the block’s first station. Figure 33 serves as visual support for this proof. After each product,

the paced nature of the line means the worker walks 𝐶𝑇 time units upstream to reach the next

product. If by doing that he walks out of his station boundaries, then idle time occurs. However,

this is a worst-case analysis in which no idle time is allowed: idle time would imply violating

cycle time because 𝐵1 + 𝐵2 + 𝐷 = 2 · 𝐶𝑇 . This means that the finishing position can never be

less than 𝐶𝑇 time units, which can serve as a zero reference point for this analysis. The finishing
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position changes for each product by the difference (𝛿) between cycle time and the processing

time of that product, as illustrated by Figure 33. Furthermore, positive differences for the block’s

first station translate into negative ones for the second station, and vice-versa. This imposes a

symmetry in which the length of both station is the same and equal to the cycle time plus a cost

tied to the variable part. As suggested by Figure 32(b), this cost should be (𝐾 − 1)/𝐾 for each

station (or (2 ·𝐾 − 2)/𝐾 for the block), where 𝐾 is 𝑧’s irreducible integer denominator. This is

proven hereafter:

Figure 33 – Scheduling scheme for minimal block length
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First, consider the simpler case in which the shared task processing time 𝐷 is equal to 𝐾

and cycle time 𝐶𝑇 is an integer. In this case, if the task is assigned 𝑛 out of 𝐾 times to the block’s

first station, then 𝑛, 𝐾 and 𝐾 − 𝑛 are relative primes because 𝐾 is an irreducible denominator

by hypothesis. If the screening is correct, the cost should equal 𝐾 − 1 for the simpler case. This

is true if and only if the optimal cyclical schedule of 𝐾 products matches that value. By tracking

the position in which the last product’s processing was completed, the cyclical schedule defines

a walk in integer values such that the difference between two consecutive positions is either +𝛿+

or −𝛿−. The highest position equals the station’s length cost, which should be 𝐾 − 1, based

on the preliminary screenings. The sufficiency of this value is proven first, by contradiction:

suppose that there is a position 𝑝 in the walk such that both 𝑝 + 𝛿+ > 𝐾 − 1 and 𝑝− 𝛿− < 0.
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Because 𝛿+ + 𝛿− = 𝐾, those inequalities can be re-arranged to show that 𝛿− − 1 < 𝑝 < 𝛿−,

meaning either 𝑝 or 𝛿− is not an integer (Figure 33). This is impossible because both differences

are integer by hypothesis and the walk is a walk on integer numbers. Therefore, it is always

possible to perform a step and stay within the range [0, 𝐾 − 1]. This means that 𝐾 − 1 should

be sufficient to define a walk of arbitrary length. Its necessity is proven next: Consider that the

starting position of the walk is 0. After 𝐾 steps it is possible to return to the initial position. This

is true because there are 𝐾 positions in the range and after 𝐾 steps, a repeated position must

be reached (Pigeonhole principle). If that repeated position is 0, the result is true. Otherwise,

the repetition occurred in less than 𝐾 steps. This would imply that there is a smaller walk that

defines a cyclical schedule with fewer than 𝐾 products. However, this is impossible because

the relative prime nature of the integers differences (𝛿+ and 𝛿−) means their minimal common

divisor is their product which can only be reached with 𝑛 steps forward (+𝛿+) and (𝐾 − 𝑛)

steps backward (−𝛿−), which total 𝐾 steps. This is relevant because a cyclical schedule means a

walk in integer values such that the sum of movements forward equals the sum of movements

backward. Therefore, 𝐾 − 1 is both sufficient and necessary for the cyclical schedule. This result

can be easily generalized for other values of 𝐷 and fractional values of cycle time. The former

follows from observing that, for the same allocation fraction 𝑧, the 𝛿 steps are proportional to 𝐷

(Figure 33). The latter reduces to a case with integer cycle time by multiplying all task durations

by the cycle time’s denominator.

This leads to two conclusions, first, that having lower denominators in the fractional

task allocations lead to lower costs, which might motivate using a low value for 𝐾, such as 2

or 4. Second, the length cost of the fractional task allocations is bounded between one and two

times the duration of shared tasks. This means that Expression (131) presents a worst-case MILP

formulation for line length cost minimization step of FA-ALBP in the case of paced lines. If only

fractions of up to a denominator 𝐾 are used, then Expression (132) can be used instead.

Minimize 2 ·
∑︁
𝑡 ∈ 𝑇

𝐷𝑡 ·
∑︁
𝑠 ∈ 𝑆

𝑦𝑡,𝑠 (131)

subject to: (118)-(129)



173

Minimize 𝐹𝑑(𝐾) ·
∑︁
𝑡 ∈ 𝑇

𝐷𝑡 ·
∑︁
𝑠 ∈ 𝑆

𝑦𝑡,𝑠 (132)

subject to: (118)-(129)

9.5.2 Buffer Cost on Asynchronous Lines

In unpaced asynchronous lines, internal storage (buffers) are commonly used to compen-

sate for temporary disturbances in processing times such as mixed-model production (BOYSEN

et al., 2008). In this section, the worst-case for the minimum number of buffers required by a

given fractional task allocation is analyzed. Once again, in order to reach a target cycle time 𝐶𝑇 ,

a cyclical schedule based on 𝐾 products is used. Similar to paced lines, this analysis is based on

defining the worst-case for each block of task-sharing stations. In order to do so, no intra-station

idle time is allowed: Neighboring regular stations have processing times of 𝐶𝑇 time units, and

the sum of processing times of station pairs in blocks is 2 · 𝐶𝑇 . This implies that the duration 𝐷

of the shared task is necessarily smaller than twice the cycle time. The analysis is presented in

two parts: first on buffer costs between regular stations and blocks, second on buffer costs within

and between blocks.

Given a balancing solution, for a task-sharing block, the minimal buffer requirements

can be derived by defining a cyclical scheduling and buffer allocation residual problem. This can

be viewed as residual version of a combined balancing and buffer allocation problem discussed

in Chapter 5.

Consider the entry buffer: by hypothesis, it is preceded by a regular upstream station.

Hence, one product must enter every 𝐶𝑇 time units (T.U.), while the block’s first workstation

will take more or less than 𝐶𝑇 T.U. depending on whether it has performed the shared task.

Naturally, both stations of the block process, on average, one product every 𝐶𝑇 T.U.. While

these oscillations imply that at least one unitary buffer is necessary, it is also possible to show that

is sufficient under a specific condition (𝐷 ≤ 𝐶𝑇 ). The proof of this result is visually supported

by Figure 34, and is based on measuring the time each product stays in the entry buffer: the

difference between the processing time in the block’s first station is compensated by the buffer. If

processing is longer than 𝐶𝑇 (share task is performed by the block’s first station) the difference

equals the increment of time spent in the buffer for the next product. Conversely, lower processing

times than 𝐶𝑇 (shared task not performed by the block’s first station) will demand products

earlier from the buffer, meaning the next product will spend less time spent in the buffer.



174

Figure 34 – Scheduling scheme for time products stay in buffers
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Let 𝛿+ and 𝛿− as the differences between 𝐶𝑇 and the long and short processing times,

respectively. Let 𝑤𝑝 indicate the time product 𝑝 spent in the buffer. These values must be positive,

as negative values would indicate insufficient buffer capacity. Furthermore, their maximum value

dictates the minimal buffer capacity requirements: because products are feed by the upstream

station every 𝐶𝑇 T.U., if the maximum time products stay in the station is 𝐽 · 𝐶𝑇 (𝐽 is an

integer) then a buffer with capacity 𝐽 is sufficient. Expression (133) states how 𝑤𝑝+1 can be

computed in function of 𝑤𝑝 and whether the first station performed the shared task or not. From

this scheduling rule, it is easy to infer the feasibility condition expressed by Expression (134).

𝑤𝑝+1 = 𝑤𝑝 − 𝛿− or 𝑤𝑝+1 = 𝑤𝑝 + 𝛿+ (133)

𝑤𝑝 − 𝛿− ≥ 0 or 𝑤𝑝 + 𝛿+ ≤ 𝐽 · 𝐶𝑇 (134)

In order to determine the worst-case requirements of buffer capacity, we try to violate

this feasibility condition, as stated by Expression (135). The first part can be turned into an

equality, by adding a positive value 𝜖, as stated by Expression (136). This allows 𝑤𝑝 to be replaced
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in the second part (Expression (137)). Further replacing the values of 𝛿+ and 𝛿− by functions of

𝐶𝑇 , 𝐷 and the base time of the block’s first station (𝐵1) leads to Expression (138). Its terms can

be rearranged into the condition that implies 𝐽 buffers are insufficient, i.e. Expression (139).

𝑤𝑝 − 𝛿− < 0 and 𝑤𝑝 + 𝛿+ > 𝐽 · 𝐶𝑇 (135)

𝑤𝑝 = 𝛿− − 𝜖 (136)

𝛿− − 𝜖 + 𝛿+ > 𝐽 · 𝐶𝑇 (137)

𝐶𝑇 −𝐵1 − 𝜖 + 𝐵1 + 𝐷 − 𝐶𝑇 > 𝐽 · 𝐶𝑇 (138)

𝐷 > 𝐽 · 𝐶𝑇 + 𝜖 (139)

This means tasks shorter or equal to the cycle time (𝐷 ≤ 𝐶𝑇 ) require one entry buffer

to be shared, and those bigger (𝐷 > 𝐶𝑇 ) may require two. It is not possible to require more than

two since 𝐷 ≤ 2 · 𝐶𝑇 . A symmetrical argument, visually supported by Figure 34, proves the

same requirement for departure buffers between blocks and regular stations. These are worst-case

analysis, meaning for some cases they might not be required.

Once the worst-case requirements for buffer capacity between a regular station and a

block station is defined, it is easy to determine the other two cases: buffer requirements between

stations of a block and between blocks. Both follow the same argument, hereafter presented

for the intra-block case: Add a dummy regular station between each station of the block. In

the worst-case, this imposes a buffer requirement of capacity 𝐽 between the regular station and

each of the block’s stations. This means that 2 · 𝐽 buffers are sufficient within the block: any

schedule defined using the dummy regular station remains feasible when it is removed because

it moves products regularly every 𝐶𝑇 T.U., meaning when one departs it, the next one enters.

As mentioned before 𝐽 is either one or two, depending on the tasks duration when compared to

𝐶𝑇 . In the particular case of two adjacent blocks, this argument leads to the conclusion that the

worst-case requirements for buffers between them is the sum of two requirements: that between

the first block and a regular station and that between a regular station and the second block.

Hence, the cost of adjacent blocks add up in the worst-case.
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A particular case warrants further exploring, namely that in which a task is evenly

shared between stations, i.e. the 50-50 case. Because of its particular regularity, it is always

possible to define schedules that require fewer buffers than the other fractional allocations do.

Figure 35 presents an example of a cyclical scheduling between a block and two adjacent regular

stations that (i) has a long task (𝐷 > 𝐶𝑇 ), (ii) does not require intra-block buffers, and (iii)

requires only one buffer between each regular station and the block (𝐽 = 1).

Figure 35 – Cyclic scheduling for a task sharing block between two regular stations
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Source: Lopes et al. (2021)

Lastly, if a task is shared between the first and second station in the line, then that block

does not require an input buffer. The same argument holds for the last two stations of the line and

an output buffer. This is namely because it is commonly considered that the first station is never

starved and the last one is never blocked (SCHOLL, 1999). This means that Expression (140)

presents a worst-case MILP formulation for line buffer cost minimization step of FA-ALBP in

the case of unpaced lines. In it, the cost parameter 𝐺𝑡,𝑠 assumes the values presented in Table 34.

Minimize
∑︁
𝑡 ∈ 𝑇

∑︁
𝑠 ∈ 𝑆

𝐺𝑡,𝑠 · 𝑦𝑡,𝑠 (140)

subject to: (118)-(129)

Table 34 – Values of 𝐺𝑡,𝑠 in function of station 𝑠 and task 𝑡

Fraction General Case 50-50 Case
Station 𝑠 middle begin/end middle begin/end
𝐷𝑡 ≤ 𝐶𝑇 4 3 2 1
𝐷𝑡 > 𝐶𝑇 8 6 2 1
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9.6 EXPERIMENTS AND RESULTS

The proposed models were tested in three complementary experiments: First, Sec-

tion 9.6.1 presents an illustrative and motivating example for a specific instance of the classical

assembly line balancing dataset (SCHOLL, 1999). Second, Section 9.6.2 presents a screening

on 1050 instances of a more recent extended dataset Otto et al. (2013). Lastly, Section 9.6.3

presents a case study in which the core studied concepts are applied to industrial data. The

first experiment discusses in detail the advantages and trade-offs of the flexibility afforded by

the fractional allocations. The second inquires on how specific instance parameters affect the

aforementioned trade-offs. The third one discusses how to adapt the formulation to mixed-model

lines as well as insights on the relevance of demand stability for the solutions’ performance.

All MILP models were solved using Gurobi 9.0 on a Core i7-8700 CPU (3.2 GHz, 6 CPUs, 12

threads) with 32 GB RAM and a 300 second time limit.

9.6.1 Illustrative Example

The Gunter instance was chosen from the Scholl (1999) dataset for the following

reasons: First, it’s optimal SALBP-2 solutions differed significantly from the trivial lower bound

(⌈
∑︀

𝑡𝐷𝑡/|𝑆|⌉) for multiple numbers of stations. Second, it is an instance that originates from a

practical case study, meaning it is representative rather than randomly generated.

The FA-ALBP models were applied to this instance with all benchmark number’s

of stations (7-14) and with three values of 𝐾 (2, 12, and ∞). Table 35 presents the optimal

cycle time value (𝐶𝑇 ) for each instance, and compares it to the trivial lower-bound (𝐿𝐵 =

⌈
∑︀

𝑡 𝐷𝑡/|𝑆|⌉). The internal storage costs required to realize the cycle time differences to the

SALBP solutions is presented for both paced and unpaced lines as 𝐿-cost and 𝐵-cost, respectively.

𝐵-costs state the number of required buffers, a straightforward cost. In order to more adequately

compare paced to unpaced lines, 𝐿-cost states the normalized line length cost: Products enter

the line every 𝐶𝑇 time units, meaning this is the temporal length of a regular workstation

(THOMOPOULOS, 1968). This means that dividing the line length cost (which is measured in

time units by Expression (132)) by 𝐶𝑇 informs a normalized line length cost (e.g “1.5 products”)

that can be directly compared to the buffer cost (e.g. “buffers with capacity for 2 products”). For

each number of stations and value of 𝐾, three MILP models are solved: The first minimizes cycle

time and defines the performance requirement value 𝐶𝑇 for the latter two. The second minimizes
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the line length cost (𝐿-cost) required by a paced line to meet the performance requirement. The

third minimizes the buffer cost (𝐵-cost) required by an asynchronous line to meet the same

performance requirement.

Table 35 – Results for the Gunther instance
SALBP FA-ALBP 𝐾 = 2 FA-ALBP 𝐾 = 12 FA-ALBP 𝐾 →∞

Stations 𝐶𝑇 𝐿𝐵 𝐶𝑇 𝐿-cost 𝐵-cost 𝐶𝑇 𝐿-cost 𝐵-cost 𝐶𝑇 𝐿-cost 𝐵-cost
7 72 69 70 0.57 1 70 1.14 4 69 1.71 7
8 63 61 62 0.37 2 61 1.31 3 61 0.75 3
9 54 54 54 0 0 54 0 0 54 0 0

10 50 49 49 0.1 2 49 0.2 3 49 0.2 3
11 48 44 45 0.42 1 45 0.84 3 44 1.73 11
12 44 41 42 0.33 1 42 0.66 3 42 0.66 3
13 42 38 40 1.55 3 40 3.1 10 39 6.77 25
14 40 35 38 3.84 8 37 3.11 22 36 7.66 30

Table 35 shows that the flexibility FA-ALBP allows is often capable of realizing all

the improvement potential of the associated SALBP instance, i.e. the difference between its 𝐶𝑇

and the previously mentioned trivial lower bound, 𝐿𝐵. For some combinations of parameters,

however, this potential will be small or inexistent (9 stations). Furthermore, it is noticeable that

higher values of 𝐾 allow greater cycle time reduction for some cases, although they also require

higher internal storage costs. Lastly, paced lines seem to require generally lower space costs to

realize the cycle time improvement potential afforded by the fractional allocations.

Figure 36 presents a visual comparison between SALBP and FA-ALBP in regards to

feasible values of cycle time. Notice that for some numbers of stations, the FA-ALBP performs

as well as (and even better than) SALBP with one full additional station. This is particularly

interesting as 𝐶𝑇 reductions and requiring fewer stations to reach the same 𝐶𝑇 translate to

continuous monetary returns, while the line-length and buffer costs that are required for the

FA-ALBP solution are essentially one-time investments.

Figure 36 – Feasible cycle time comparison between SALBP and FA-ALBP for the Gunther instance
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9.6.2 Screening

Additional tests on 1050 instances were performed in order to verify more general

trends about the problem and the relevance of its parameters, in particular ordering strength

(how restrictive precedence relations are) and task duration distributions. Otto et al. (2013)

provided systematically generated instances for simple assembly line balancing, which were

used for this screening. Instances were first solved for SALBP-2 with a fixed number of stations.

The equivalent FA-ALBP instances were then solved with a cycle time minimization objective

(Expressions (117)-(128)) so that the obtained FA-ALBP cycle times can be compared to SALBP

ones. Two further executions of the FA-ALBP model used the obtained cycle time as a constraint,

and employed the described internal storage minimization goals for paced (Expressions (132) and

(118)-(128)) and unpaced lines (Expressions (140) and (118)-(128)). All FA-ALBP instances set

𝐾 = 2. Furthermore, the 𝐶𝑇 minimization FA-ALBP run used SALBP’s answer for warmstarts,

and the space cost minimization FA-ALBP runs used the 𝐶𝑇 minimization FA-ALBP one.

Tables 36 and 37 present the results for small and medium instances, respectively:

average time required (in seconds) per instance is informed. The cycle time differences are

described in three terms: the average theoretical potential (avg. Theo.) compares the obtained

SALBP cycle time to the lower bound (⌈
∑︀

𝑡 𝐷𝑡/|𝑆|⌉); the average realized potential (avg. Real.)

means the average difference between cycle times obtained for SALBP and FA-ALBP as a

percentage of the SALBP’s cycle time. The best case column (Best Real.) presents the highest

such percentage value. Internal storage costs are informed as average increases in line length

compared to the line’s base length (7 for small instances and 15 for large ones). For paced lines,

the line length cost (L-cost) is normalized by dividing it by the cycle time (THOMOPOULOS,

1968), so that the increase can be measured in number of stations. For unpaced lines, buffers

are considered to be equivalent in size to stations for the purposes of the buffer cost (B-cost)

measure.

In each line of Table 36 the results are presented for the subset of instances with the

specified parameter (OTTO et al., 2013). The first three lines divide instances in terms of order

strength (OS), i.e. how restrictive the precedence diagram is. The following three separates

instances in terms of their task duration distributions (dist(𝐷𝑡)): peak at the bottom (PB), peak

in the middle (PM), and bimodal (BM). It is apparent that higher OS translates to both higher

theoretical (Theo. column) and realized (Real. column) cycle time differences averages. However,
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this is a general tendency and not a guarantee as illustrated by the 15.1% best realized difference

(Best column) with OS=0.2. The task duration distribution, however, appears to be less relevant

for the difference between SALBP and FA-ALBP cycle times.

Table 36 – Screening results for small instances (20 tasks 7 stations; CPU times in seconds)
Parameter SALBP FA-ALBP 𝐶𝑇 Difference Avg. Costs (%)

OS/dist(𝐷𝑡) time CT time L time B time Theo. Real. Best L-cost B-cost
0.2 0.8 26.5 33.9 28 2.0% 1.4% 15.1% 9.9% 42.9%
0.6 0.1 3.9 2.1 1.8 3.6% 2.1% 9.9% 9.4% 40.1%
0.9 0.1 0.9 0.1 0.1 8.2% 3.9% 17.2% 8.1% 33.7%
PB 0.3 7.6 9.3 7.6 3.4% 1.9% 9.9% 9.4% 39.6%
PM 0.7 26 30.7 23.8 3.5% 1.9% 7.9% 8.9% 39.4%
BM 0.2 5.9 6.3 7.1 3.9% 2.3% 17.2% 9.6% 40.3%

It is also noticeable that FA-ALBP is more computationally costly than SALPB, as

shown by the average time required to solve the small instances to optimality. Furthermore, the

average space cost associated to the cycle time reduction does not seem proportional to it and its

average behavior seems insensitive to instance parameters.

Table 37 – Screening results for medium instances (50 tasks, 15 stations; CPU times in seconds)
Parameter SALBP FA-ALBP 𝐶𝑇 Difference Avg. Costs (%)

OS/dist(𝐷𝑡) time CT time L time B time Theo. Real. Best L-cost B-cost
0.2 298.7 300 14.3 14.7 0.7% 0.0% 3.4% 0.2% 0.9%
0.6 197.9 300 103.1 100.6 1.4% 0.3% 20.5% 2.4% 14.1%
0.9 8.1 64.2 68.2 55.2 7.0% 3.7% 9.2% 1.7% 8.6%
PB 202.4 262 47.9 48.3 1.9% 0.7% 20.5% 1.7% 8.6%
PM 248.7 276 60.1 54.1 1.8% 0.5% 5.7% 1.1% 6.7%
BM 191 261 72 69.6 2.0% 0.8% 9.2% 2.4% 12.4%

The medium cases are noticeably more difficult, with whole subsets of instances failing

to reach optimality proofs within the time limit. It is also noticeable that, in average, the cycle time

reduction was smaller with many instances reporting no difference (similarly to the case study

with 9 stations, see Figure 36). This is mostly attributable to the lower observed potential, which

seems to emerge from the greater flexibility of medium instances (50 tasks) when compared to

smaller ones (20 tasks). However, under high precedence constraints (OS=0.9), similar results to

the small cases were obtained. Furthermore, the best case for medium instances presented higher

realized 𝐶𝑇 difference (20.5%) than the small ones (17.2%). Task distributions do not appear

to be any more relevant for medium instances than they were for previously, and average space

costs also seem mostly unaffected by parameters, except for low OS. However, this is easily

explained: medium instances with low OS often produced solutions with the same value of 𝐶𝑇

as the SALBP equivalent, meaning that no buffers or additional line lengths in comparison to

SALBP is required.
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The relationship between realized potential and theoretical potential is further elucidated

by Figure 37, in which each instance is translated to a semi-transparent point. Naturally, the

realized cycle time reduction is bounded by its potential. The figure suggests that (for 𝐾 = 2)

around two thirds (𝑦 = 2
3
𝑥, R2 = 0.81) of the available potential (difference between SALBP’s

𝐶𝑇 and a perfect division) is realized. Furthermore, this benefit seems easier to extract for

SALPB instances with higher potential.

Figure 37 – Realized cycle time reduction versus available potential
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Lastly, Figure 38 illustrates the distribution of internal storage costs of the realized cycle

time reductions for paced lines (Figure 38(a)) and unpaced ones (Figure 38(b)). It is apparent

that, while higher cycle time reductions tend to imply higher costs, the correlation is rather weak.

It is also important to notice that storage costs are mostly one-time investments and only part of

the total costs of running the assembly line, while cycle time reductions reflect on continuous

performance improvements, meaning that a 20% longer line for a 10% cycle time reduction

can be a very favorable trade-off. In terms of line pace comparison, paced lines tend to require

much smaller costs than unpaced ones to realize the same cycle time reductions. This, however,

depends on the assumption that buffers are equal stations in size, which is reasonable for final

lines in the automobile industry, but may not be the case for smaller products such as electronics

devices - for which (even “infinite”) buffers can be substantially smaller than stations.
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Figure 38 – Realized cycle time versus required internal storage cost
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9.6.3 Application to Practical Data

This section describes the results obtained by the proposed mathematical formulation

when applied to data of a practical industrial case. The instance data describes a car seat assembly

line dedicated to the manufacture of two product models: a simpler high-demand one, and a more

complex one with lower demand. The line is asynchronous unpaced, has seven workstations as

well as physical space available for two unitary buffers (𝐵𝑚𝑎𝑥 = 2). Chapter 2 discusses this

line in the context of cyclical scheduling - which requires stable demands. The present chapter

described fractional allocations for single model assembly lines, therefore, some adaptations

were required for the present case study. First, each product model 𝑚 is modeled as having

its own cycle time 𝐶𝑇𝑚. Second, models have expected relative demand 𝑂𝑚, which must sum

to 100%. This case study discusses what happens if these demands are not stable. Third, the

throughput of a line with fractional task allocations is measured as a weighted average of these

model-wise cycle times. Finally, task allocations are required to be the same for both product

models, in order to maintain the benefits of worker specialization. Data required to reproduce

this case study is made available as this Lopes et al. (2021)’s supplementary material.

This allows a mixed-model version of the proposed formulation to be defined using

most of the constraints of Section 9.4’s model, as presented by Expressions (141)-(143). In it, 𝑀

is the set of product models (in this case, 𝑀 = {1, 2}), Constraint (142) is the adapted version

of Constraint (122): each task 𝑡 is modeled as having a specific duration 𝐷𝑡,𝑚 for each product
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model 𝑚. If a task does not exist for a product model, its duration is set as zero. Constraint (143)

states the buffer resource limit. In this case study, 𝐾 = 2 was used because it offers a reasonable

trade-off between cycle time reduction, space requirements and implementation simplicity. In

this case study, expected relative demands are, approximately, of 83% and 17% for product

models 1 and 2, respectively - 5 units of the first product model per unit of the second one,

similarly to Chapter 2.

Minimize
∑︁

𝑚 ∈ 𝑀

𝑂𝑚 · 𝐶𝑇𝑚 (141)

subject to:

Constraints (118)-(121), (123)-(128)∑︁
𝑡 ∈ 𝑇

𝐷𝑡,𝑚 · 𝑧𝑡,𝑠 ≤ 𝐶𝑇𝑚 ∀ 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀 (142)

∑︁
𝑠 ∈ 𝑆

∑︁
𝑡 ∈ 𝑇

𝐺𝑡,𝑠 · 𝑦𝑡,𝑠 ≤ 𝐵𝑚𝑎𝑥 (143)

The balancing solution obtained using this formulation is compared to that obtained by

the simultaneous balancing-sequencing-buffer allocation one, described in Chapter 5, using the

same buffer limit. This benchmark is hereafter referred to as “Cyclical Scheduling”. These model-

wise processing ties of these solutions are presented by Figure 39. In it, the darker bars represent

product model one, and the lighter ones represent product model two. In Figure 39(b), the second

and third stations have have two processing times for each product model - representing the

cases in which the shared task is and is not performed at that station. For those stations, the

model-wise cycle time is bounded by the average between the high and low values. Consequently,

Figure 39(b) presents lower model-wise cycle time values than Figure 39(a). However, this better

performance is associated to processing time oscillations that require a model-wise cyclical

scheduling to be realized. The buffer allocations for each solution also differ: for the benchmark,

single unitary buffers are optimally assigned after stations one and two. Meanwhile the fractional

task allocations solution assigns buffers to after stations one and three.

The solutions’ performances are compared by considering multiple realized demand

scenarios that differ from the expected scenario (83%-17%). For both formulations, the balancing

solution is fixed and its average cycle time (Avg. 𝐶𝑇 ) is computed for each realized demand

scenario. For the fractional allocations solution, the performance is measured as a weighted

average of the model-wise cycle times. For the cyclical scheduling benchmark, an additional
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Figure 39 – Processing times for each balancing solution
(a) Cyclical Scheduling Benchmark
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residual cyclical sequencing and scheduling problem is solved. Table 38 compares the perfor-

mance of these formulations in terms of their average cycle time values (Avg. 𝐶𝑇 ), as well as

their theoretical efficiency (Theo. Eff.), i.e. comparison to a simple division of total task time by

the number of stations. Lastly, the solutions’ relative performance is computed by dividing their

average cycle times.

Table 38 – Performance comparison for multiple demand scenarios
Demand Cyclical Scheduling Fractional Allocations Relative
Scenario Avg. 𝐶𝑇 Theo. Eff. Avg. 𝐶𝑇 Theo. Eff. Performance

100%-0% 1316 96.2% 1276 99.2% 103.1%
90%-10% 1349.5 96.8% 1345.9 97.1% 100.3%
83%-17% 1372 97.2% 1392.5 95.7% 98.5%
80%-20% 1412.6 95.3% 1415.8 95.1% 99.8%
70%-30% 1537.9 90.2% 1485.7 93.3% 103.5%
60%-40% 1667.2 85.6% 1555.6 91.7% 107.2%
50%-50% 1792.5 81.9% 1625.5 90.3% 110.3%
40%-60% 1921.8 78.5% 1695.4 88.9% 113.4%
30%-70% 2051.1 75.5% 1765.3 87.7% 116.2%
20%-80% 2180.4 72.8% 1835.2 86.6% 118.8%
10%-90% 2309.7 70.5% 1905.1 85.5% 121.2%
0%-100% 2439 68.4% 1975 84.5% 123.5%

Notice that, on the one hand, the benchmark outperforms the fractional task allocations

solution for the original or “expected scenario” (highlighted in italic), as well as for the neigh-

boring 80%-20% one. On the other hand, the cyclical scheduling benchmark is outperformed

for both product models individually (100%-0% and 0%-100% scenarios), as well as all other

demand scenarios. Indeed, the benchmark’s solution performance is contingent on the stability

of demands. This leads to increasingly poorer performance the more realized demands differ

from the expected ones. Furthermore, the worst relative performance by the fractional allocations

formulation was 98.5% (1.5% worse), while its highest relative performance was over 20%
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better than the benchmark. This suggests that fractional task allocations can lead to more robust

solutions in the context of mixed-model lines.

9.7 DISCUSSIONS AND CONCLUSIONS

This chapter questions the assumption of the binary nature of task-station assignments

in assembly line balancing problems. While other works had addressed some aspects of what

amounts to adjacent stations “sharing tasks”, none had analytically investigated the internal

storage costs required to realize the cycle time reduction potential. A mathematical model for the

Fractional Allocation Assembly Line Balancing Problem (FA-ALBP) is presented, with three

variants: one that seeks to minimize the line’s cycle time, and two that seek to minimize the

internal storage required to realize a given cycle time value.

Line length is the cost metric for paced lines; on the other hand, buffer requirements is

the cost metric for asynchronous unpaced ones. These costs are determined using worst-case

analysis for both types of line control. In both cases, these costs are shown to be functions

of the shared task’s duration and of the allocation fraction, in particular its irreducible integer

denominator (contrary to previously hypothesized by Bukchin and Sofer (2011)). For paced

lines, line costs are continuous and proportional to the shared task’s duration. For unpaced ones,

the buffer requirements are discrete, they depend on task’s duration relative to the cycle time, on

whether the allocation fraction is 1/2 (𝐾 = 2) or not, and on whether the assignment happens on

the first/last stations or not.

This chapter shows that for specific instances, fractional allocations allow lower cycle

times with the same number of stations or the same cycle time with fewer stations than what

is possible with SALBP. Furthermore, contrary to the base problem, the longest task is not

a bound on cycle time, meaning that lower values of cycle time are possible for FA-ALBP

than SALBP even when the latter has unlimited stations. Increasing the fractional allocation’s

maximum integer denominator 𝐾 can allow greater reductions, but is also associated with higher

internal storage costs and more complex cyclical scheduling. The most adequate value for 𝐾 can,

therefore, depend on instance and context-specific managerial preferences, although the smallest

value of 𝐾 = 2 seems to offer a simple and effective compromise.

This difference in cycle time is not, however, guaranteed to exist. Screening on a

1050-instance dataset showed that for many instances, SALBP optimal solutions are close to a

perfect division of tasks’ durations amongst stations. However, some instances lead to cycle time
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reductions as high as 20%. Experiments suggest that this difference tends to be larger for more

restrictive instances (precedence diagrams with high order strength), and that the distributions

of task durations is not an as relevant factor. In terms of the internal storage cost required to

realize these cycle time differences, paced lines tend to outperform their unpaced counterparts

assuming that buffers are similar in size to stations for the latter. The required storage costs vary

significantly on an instance by instance basis. However, these are mostly one-time investments

and cycle time reductions represent continuous gains. This suggests fractional allocations can

be an interesting alternative to increase performance: contrary to increasing the number of

workstations, internal storage usually has relatively low continuous operating costs. Such indirect

costs tied to internal storage such as Work in Progress (WIP) and Time in System (TIS) can

be analyzed for both line types: In the case of paced lines, these costs are trivially proportional

(WIP) or equal (TIS) to the line length cost measured in time units. For unpaced lines, the WIP

and TIS costs can easily be shown to equal those of paced lines with the same balancing solution.

With minor adaptations, the proposed methodology was also applied to industrial data

of a mixed-model assembly line. The resulting solution offered better cycle time performance

than a previous cyclical scheduling benchmark solution for both product models. The resulting

line balancing also lead to better performance the more realized demands differ from the expected

ones. That was achieved with the simplest possible sharing (50-50%) of a single task.

The following key managerial insights can be drawn from this Chapter: fractional

allocations are a performance enhancing possibility tied to an internal storage cost trade-off.

They can be seen as an alternative to parallel stations with some advantages tied to the fact

that only one task is shared: Regarding worker training, they require less and are also tied to

less specialization losses. Regarding physical structure, they require fewer layout changes, as

well as less tool duplication costs, specially for asynchronous lines. The main disadvantage of

fractional allocations are the internal storage costs, which are tied to greater work-in-progress

and time-in-system than the parallel stations alternative. Furthermore, while this chapter focuses

on single model assembly lines, the industrial data case study suggests that fractional allocations

can also be useful for mixed-model lines. Indeed, the case’s balancing solutions was remarkably

more robust regarding demand fluctuations.

Finally, FA-ALBP is shown to be at least either weakly or strongly NP-complete,

depending on how the number of stations scales with instance size. This means that larger

instances might be intractable for generic solvers: experiments suggest that just the cycle time
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minimization effort tends to be significantly harder than SALBP. Indeed, a drawback of the

proposed mathematical model is its difficulty in solving larger size instances. This drawback is

increase by the fact that a follow-up step of internal storage cost minimization is also desirable,

in order to achieve the cycle time reduction with minimum internal storage cost.
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10 THE MULTI-OBJECTIVE PACED LINE CASE

This chapter is an adapted version of a conference paper presented in the XXI ROADEF

(LOPES et al., 2020a), held in Montpelier (France) in 2020. That work shared the prize of best

student paper presented in the conference. In it, a method to solve multi-objective problems with

mixed-integer linear Pareto fronts is presented. The method has been developed as a means to

offer a more meaningful solution for the paced assembly line balancing-sequencing problem.

As suggested by Chapters 8 and 9, this class of problems can display a multi-objective dispute

between line length and cycle time.

10.1 CONTEXT

Frequently, in various practical environments, decision makers have to consider multiple

objectives at the same time. These are often in conflict, meaning it is not possible to simulta-

neously reach the best score in all of them. This context defines multi-objective optimization,

which commonly employs one of two main strategies: (i) using weight factors for each objective,

transforming the problem back into a single objective one; and (ii) obtaining the set of Pareto

efficient solutions and allowing the decision maker to choose a posteriori (KELLER, 2017;

RANGAIAH, 2009). This chapter focuses on the latter case. For the sake of simplicity, this

chapter considers a problem definition with two minimization objectives.

Multi-objective problems can relate to integer programming, which implies each integer

solution leads to one value for each objective. Furthermore, solution methods are commonly

problem-specific (UNGULU; TEGHEM, 1994). However, in the case of mixed-integer linear

programming (MILP) problems, fixing the integer variables and optimizing the continuous

ones of a solution can lead to a Pareto front made of continuous segments, as illustrated by

Figure 40(a). By combining the Pareto fronts of various integer solutions, a part-wise continuous

Pareto front is obtained, as depicted by Figure 40(b).

Chapter 8 provides an example of the aforementioned multi-objective disputes in the

context of assembly line balancing problems (SCHOLL, 1999). In particular, cycle time (tied to

production rate) and line length (tied to implementation costs) display a mixed-integer linear

multi-objective dispute, when treated as minimization objectives. A recent work (DEFERSHA;

MOHEBALIZADEHGASHTI, 2018) on simultaneous line balancing-sequencing presents a
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Figure 40 – Combining feasible regions of integer solutions
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mathematical model that can be easily adapted to test that dispute.

While some methods have been developed to solve multi-objective MILP problems,

they are rather limited in terms of the size of problems that are treatable. Recent branch and

bound methods (MAVROTAS; DIAKOULAKI, 2005; VINCENT et al., 2013), for instance,

were only tested on instances with up to 70 variables and constraints, which were considered

“large instances”. More commonly (KELLER, 2017; RANGAIAH, 2009), two main approaches

are applied: the multiple-weighted sums method and the epsilon-constrained method. The former

consists on solving the problem using weighted sums for each objective, gradually changing

the weights to reach new solutions in the Pareto front. The later consists in minimizing one

objective and using bounds on the others. These limits can then be gradually increased in further

executions to generate the Pareto front.

These two methods share the strategy of solving multiple single objective MILP prob-

lems to solve a multi-objective one. The inherent advantage of this approach is that the multi-

objective problem is tractable whenever multiple executions of the single objective one is. Given

the increasing strength of commercial MILP solvers, it is reasonable to expect that exact solutions

are attainable for problems ranging from hundreds to a few thousands variables and constraints.

However, there are some limitations of these methods: the weighted goal functions only allows

some extreme point solutions to be found; on the other hand, the epsilon method might find the

same integer solution multiple times, leading to redundancies. The aforementioned capacity to
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solve MILP instances does not address these limitations, which motivates the development of a

new method that overcomes them.

This chapter is structured as follows: Section 10.2 presents an overview of the class

of studied problems; Section 10.3 presents the proposed method to solve them; Section 10.4

describes a mathematical model for balancing and cyclically sequencing paced mixed-model

assembly lines. Section 10.5 presents a example that illustrates why this balancing-sequencing

problem belongs to the class of studied problems. Section 10.6 revisits Chapter 2’s case study

data and compares pace to unpaced line controls. Finally, Section 10.7 summarizes this chapter’s

contributions.

10.2 PROBLEM DEFINITION

Consider a mixed-integer linear problem with two minimization objectives 𝑍1 and

𝑍2, as stated in Expression (144). Let these goals be bounded by linear functions of two sets

of decision variables x and y, as presented in Expression (145) and (146). Finally, let x rep-

resent integer/binary decisions and y be the set of continuous decision variables, as stated in

Expression (148).

Minimize 𝑍1 and 𝑍2 (144)

Subject to:

𝑍1 ≥ f1(x,y) (145)

𝑍2 ≥ f2(x, y) (146)

𝐴 · x + 𝐵 · y ≥ C (147)

and:

x ∈ Z, y ∈ R (148)

By fixing all the integer variables x to a specific set x, an integer solution is defined.

Notice that the residual problem defined by the y variables is linear, meaning its feasible region

is convex. By defining a plane such that the goals 𝑍1 and 𝑍2 correspond to its axis, it is possible

to project integer solutions to it, defining convex feasible regions as illustrated by Figure 40(a):

an area bounded by Pareto-efficient continuous solution segments and lines for the minimum

possible values of each objective. Naturally, by combining multiple integer solutions, a global
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part-wise continuous Pareto front is defined for the studied problem (Figure 40(b)).

10.3 PROPOSED METHOD

In order to define the optimal Pareto front for this problem, a method composed of two

parts is presented hereafter: First, it is necessary to extract the full continuous set of solutions for a

given integer solution. This is achieved using a duality-based method described in Section 10.3.1.

Second, a procedure for generating an initial global Pareto front and then refining it to optimality

is required to determine which set of integer solutions is Pareto efficient. This is done by

exploiting a second MILP-based model, and is described in Section 10.3.2. In these sections, an

overline is used to distinguish variables/goal functions from reference values they can be set to.

For instance, x represents the variables, and x refers to values they can be set to.

10.3.1 Extracting the Pareto front of each Integer Solution

Consider a given integer solution x = x. The residual linear problem ties the goals

𝑍1 and 𝑍2 to the set of continuous variables y. This defines a feasible region Ω(x) as stated by

Equation (149):

Ω(x) = {(y,𝑍1,𝑍2) : 𝑍1 ≥ f1(x,y), 𝑍2 ≥ f2(x, y), 𝐴 · x + 𝐵 · y ≥ C, y ∈ R} (149)

Algorithm 7 describes how to define the Pareto front of this feasible region Ω(x)

by solving a set of linear programming problems. Similarly to other works (IGNIZIO, 1985;

POURKARIMI; ZAREPISHEH, 2007) on multi-objective problems, Algorithm 7 exploits

duality theory to explore the feasible region of the residual linear problem. However, contrary for

instance to reference (ECKER; KOUADA, 1978), the analysis is based on the objective space

(𝑍1-𝑍2 plane) rather than the decision space (defined by the y variables).

This algorithm solves linear programming models in its three main steps (A, B, C),

which are illustrated in the criterion-space by Figures 41(a) and 41(b). The step A is the most

straightforward, and consists in simply using 𝑍2 as the only goal function and solving the linear

problem to optimality. The optimal value of the goal function in this step is used to define a

resource constraint, as stated in lines 2-4.

In Step B, a model that incorporates this resource constraint is solved, and its objective
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Algorithm 7 – ParetoGiven(x)

1: 𝑍2 ← min 𝑍2 : (y, 𝑍1, 𝑍2) ∈ Ω(x) ◁ Step A
2: Constraint (I)← 𝑍2 ≤ 𝑍2 + 𝜀 ◁ 𝜀 is a small number
3: 𝜋 ← dual variable associated to Constraint (I) ◁ 𝜋 states the variable’s value
4: Ω1(x)← Ω(x) ∩ {(y, 𝑍1, 𝑍2) : Constraint (I) is satisfied}
5: 𝑍1 ← min𝑍1 : (y, 𝑍1, 𝑍2) ∈ Ω1(x) ◁ Step B - save value of 𝜋
6: Store (𝑍1,𝑍2)
7: if 𝜋 < 0 then
8: Ω2(x)← Ω(x) ∩

{︀
(y, 𝑍1, 𝑍2) : 𝑍1 − 𝑍1 = 𝜋 · (𝑍2 − 𝑍2)

}︀
9: 𝑍1 ← min𝑍1 : (y, 𝑍1, 𝑍2) ∈ Ω2(x) ◁ Step C

10: 𝑍2 ← 𝑍2 − (𝑍1 − 𝑍1)/𝜋 ◁ Update 𝑍2 for Constraint (I)
11: Go to Line 2
12: end if
13: return stored values of (𝑍1,𝑍2)

Figure 41 – Generating the feasible region of an integer solution
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is set to minimize 𝑍1. The dual variable 𝜋 stores the shadow price of 𝑍2 as a resource, i.e. what is

the relative reduction of 𝑍1 enabled by a marginal increase of 𝑍2. A small value (𝜀) can be added

to the RHS (Right Hand Side) of this constraint in order to ensure that its slack is zero and that a

valid shadow price 𝜋 is generated. Adequately defining this 𝜀 value may require problem-specific

knowledge. The minimal value of 𝑍1 obtained in this step defines the first Pareto efficient point

for the integer solution, namely (𝑍1, 𝑍2).

Assuming a non-zero shadow price 𝜋, its value can be combined with that information

to define the line that contains this point and its associated Pareto efficient segment, as stated

in Algorithm 7’s line 8. This leads to step C, in which 𝑍1 is minimized again. The resulting

value of 𝑍2 is then used to update 𝑍2 and iterate step B. This process iterates until 𝜋 is set to
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zero, meaning a vertical line is reached in the feasible region and no further reduction of 𝑍1 is

possible.

10.3.2 Defining and refining the global Pareto front

The previous section detailed how to extract the Pareto front associated to an integer

solution x = x. Algorithm 8 determines the full set of efficient x solutions, as well as the global

Pareto front. Algorithm 8 first steps determine the global minimal values of 𝑍1 and 𝑍2. It is

possible, however, that their combined Pareto fronts do not cover all possible ranges of 𝑍1.

Figure 42(a) illustrates how to tie them using artificial Pareto segments such that all potentially

efficient values of 𝑍1 are covered. The resulting initial front contains segments that cover all

potentially relevant values of 𝑍1, but is not guaranteed to contain solutions of the problem’s true

Pareto front.

Algorithm 8 – Defining the global Pareto front
1: x1 ← x : 𝑍1 is minimized
2: 𝑃𝑜𝑖𝑛𝑡𝑠1 ← ParetoGiven(x1)
3: x2 ← x : 𝑍2 is minimized
4: 𝑃𝑜𝑖𝑛𝑡𝑠2 ← ParetoGiven(x2)
5: if min𝑍1 ∈ 𝑃𝑜𝑖𝑛𝑡𝑠2 > max𝑍1 ∈ 𝑃𝑜𝑖𝑛𝑡𝑠1 then ◁ Not all ranges of 𝑍1 are covered
6: 𝑃𝑜𝑖𝑛𝑡𝑠1.𝐴𝑑𝑑((min𝑍1 ∈ 𝑃𝑜𝑖𝑛𝑡𝑠2,min𝑍2 ∈ 𝑃𝑜𝑖𝑛𝑡𝑠1)) ◁ Add artificial segment
7: end if
8: IncFront← Generate Initial Front by Combining Adjacent (𝑍1, 𝑍2) in 𝑃𝑜𝑖𝑛𝑡𝑠1 and 𝑃𝑜𝑖𝑛𝑡𝑠2
9: repeat

10: for all seg ∈ IncFront: seg.TruePareto=false do
11: ∆← max ∆ : ∆ =distance(𝑠𝑒𝑔, (𝑍1,𝑍2)) with (x,y, 𝑍1, 𝑍2) ∈ Ω𝑠𝑒𝑔

12: Store x values for x variables in previous step
13: if ∆ = 0 then
14: seg.TruePareto=true
15: else
16: 𝑃𝑜𝑖𝑛𝑡𝑠← ParetoGiven (x)
17: Combine new solution’s Pareto front with IncFront
18: Discard fully dominated segments in IncFront
19: exit for
20: end if
21: end for
22: until all segments in IncFront are flagged as TruePareto
23: return IncFront

Algorithm 8 then tests each segment in the incumbent Pareto set using a maximization

model (Line 11). This model tests each segment 𝑠𝑒𝑔 by considering the region Ω𝑠𝑒𝑔 (defined by

Equation (150)), under the segment. The test maximizes ∆, a continuous variable that measures
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how much bellow the tested segment a given solution is.

Ω𝑠𝑒𝑔 = {(x,y,𝑍1,𝑍2) : (145)− (148), 𝑝1.𝑍1 ≤ 𝑍1 ≤ 𝑝2.𝑍1 − 𝜀} (150)

The maximum value of ∆ defines an optimality test for the line segment: if the resulting

maximum value of ∆ is zero, then there is no solution bellow the line segment and it is a

Pareto efficient. Otherwise, a new integer solution is found and guaranteed to partially dominate

the segment for at least one value of 𝑍1. Figure 42(b) illustrates such optimality test for a

line segment. It highlights a particularity: The small value 𝜀 must be subtracted from 𝑍+
1 in

Expression (150) so that the model does not consider as feasible a solution that belongs to the

next line segment. That is, so that the best solution found under the tested region is the one

marked with an “A” rather than the one marked with a “B” in Figure 42(b). Naturally, adequately

defining the 𝜀 value may require problem specific knowledge.

Figure 42 – Determining the optimal Pareto front
(a) Initial incumbent Pareto front
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10.4 A MODEL FOR PACED LINES

This section presents a mixed-integer programming model to describe continuous paced

lines. It is similar to the model presented in Chapter 3, but contains more scheduling variables

to reflect the paced nature of the line: in unpaced lines scheduling variables existed for entry

(𝑇𝑖𝑛), processing (𝑇𝑥) and departure (𝑇𝑜𝑢𝑡) times at each station. Meanwhile, in paced lines,
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products may physically enter (𝑇𝑖𝑛 states entry time, 𝐿𝑖𝑛 states entry position) the station before

processing start (𝑇𝑠𝑡𝑎𝑟𝑡) as well as conclude processing before leaving it (𝑇𝑒𝑛𝑑 states moment

processing is complete, 𝐿𝑒𝑛𝑑 states position in which it occurs), meaning more scheduling

variables are required. Furthermore, to measure line length additional scheduling variables are

added to define positions (𝐿𝑖𝑛 and 𝐿𝑒𝑛𝑑) as well as station boundaries (𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥).

Minimize 𝐶𝑇 and 𝐿 (151)

subject to:∑︁
𝑠 ∈ 𝑆

𝑥𝑡,𝑠 = 1 ∀ 𝑡 ∈ 𝑇 (152)

∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝑡1,𝑠 ≤
∑︁
𝑠 ∈ 𝑆

𝑠 · 𝑥𝑡2,𝑠 ∀ (𝑡1,𝑡2) ∈ 𝑅 (153)

∑︁
𝑚 ∈ 𝑀

𝑦𝑝,𝑚 = 1 ∀ 𝑝 ∈ 𝑃 (154)

∑︁
𝑝 ∈ 𝑃

𝑦𝑝,𝑚 = 𝑁𝑚 ∀𝑚 ∈ 𝑀 (155)

𝑇𝑥𝑝,𝑠 ≥
∑︁
𝑡 ∈ 𝑇

𝐷𝑡,𝑚 · 𝑥𝑡,𝑠 − (1− 𝑦𝑝,𝑚) ·𝐻 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀 (156)

∑︁
𝑝 ∈ 𝑃

𝑇𝑥𝑝,𝑠 =
∑︁

𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀

𝑁𝑚 ·𝐷𝑡,𝑚 · 𝑥𝑡,𝑠 ∀ 𝑠 ∈ 𝑆 (157)

𝑇𝑠𝑡𝑎𝑟𝑡𝑝,𝑠 ≥ 𝑇𝑖𝑛𝑝,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (158)

𝑇𝑒𝑛𝑑𝑝,𝑠 = 𝑇𝑠𝑡𝑎𝑟𝑡𝑝,𝑠 + 𝑇𝑥𝑝,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (159)

𝑇𝑒𝑛𝑑𝑝,𝑠−1 ≤ 𝑇𝑖𝑛𝑝,𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 : 𝑠 > 1 (160)

𝑇𝑒𝑛𝑑𝑝−1,𝑠 ≤ 𝑇𝑠𝑡𝑎𝑟𝑡𝑝,𝑠 ∀ 𝑝 ∈ 𝑃 : 𝑝 > 1, 𝑠 ∈ 𝑆 (161)

𝐶𝑇 · |𝑃 | ≥ 𝑇𝑒𝑛𝑑|𝑃 |,𝑠 − 𝑇𝑠𝑡𝑎𝑟𝑡1,𝑠 ∀ 𝑠 ∈ 𝑆 (162)

𝐿𝑖𝑛𝑝,𝑠 = (𝑇𝑖𝑛𝑝,𝑠 − 𝑇𝑖𝑛𝑝,1) · 𝑉 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (163)

𝐿𝑒𝑛𝑑𝑝,𝑠 = (𝑇𝑒𝑛𝑑𝑝,𝑠 − 𝑇𝑖𝑛𝑝,1) · 𝑉 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (164)

𝐿𝑖𝑛𝑝,𝑠 ≥ 𝐿𝑚𝑖𝑛𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (165)

𝐿𝑒𝑛𝑑𝑝,𝑠 ≤ 𝐿𝑚𝑎𝑥𝑠 ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (166)

𝐿 = 𝐿𝑚𝑎𝑥|𝑆| (167)

𝐿𝑚𝑖𝑛𝑠 ≥ 𝐿𝑚𝑎𝑥𝑠−1 ∀ 𝑠 ∈ 𝑆 : 𝑠 > 1 (168)

𝑇𝑖𝑛𝑝,1 − 𝑇𝑖𝑛𝑝−1,1 = 𝐶𝑇 ∀ 𝑝 ∈ 𝑃 : 𝑝 > 1 (169)
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Expression (151) states the minimization objectives (cycle time and line length). Con-

straint (152) states that every task must be assigned to a station. Precedence relations between

tasks are imposed by Constraint (153). Constraints (154) and (155) define the basic requirements

of mixed-model sequencing. Constraint (156) combines balancing and sequencing to determine

processing times of each product at each station. Equation (157) is a cut that improves the

model’s linear relaxation. The following constraints describe the basic cyclical scheduling rules:

Products must enter each station before processing can start (Constraint (158)); they must be fully

processed (Equation (159)) before entering the next station (Constraint (160)) and before the

next product can start being processed (Constraint (161)) at the current one. Constraint (162) ties

the time between the first and last products to the line’s cycle time. Products are also scheduled

in terms of their position in the line. Here, it is usually assumed that the line speed 𝑉 equals one

length unit per time unit. This means that 𝐿 also denotes the time it takes for a product to move

through the line, i.e. the system’s flow-time or lead-time. Equations (163) and (164) measure the

positions in which products enter and complete processing at each station, respectively. These

positions are bounded by each station’s boundaries, as stated by Constraints (165) and (166).

Finally, Equation (167) defines the last boundary of the last station as the line length. The two

last constraints reflect practical concerns: Stations are not allowed to overlap (Constraint (168)),

and products are evenly spaced (Constraint (169)).

10.5 AN ILLUSTRATIVE EXAMPLE

The following example demonstrates the possible multi-objective nature of the rela-

tionship between line length and cycle time. It also allows the discussion of how to take into

account line speed in a simplified context. Consider the problem data presented by Table 39 and

an assembly line with four workstations.

Table 39 – Illustrative example: Task durations and precedence relations
Task 1 2 3 4 5 6 7

Model 1 21 9 36 12 42 0 42
Model 2 42 0 21 0 27 0 42
Model 3 39 0 42 0 30 12 18

Predecessor - 1 1 3 3 5 5

Figure 43(a) presents the Pareto front resulting from applying this Chapter’s proposed

method to the model described in Section 10.4. Two of its solutions (highlighted with squares in

Figure 43(a)) are represented in detail by Figures 43(c) and 43(d): in them, the vertical dashed
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lines represent station boundaries, each horizontal line represents a product being manufactured,

the numbers within blocks represent their processing time, the blocks’ colors represent the

product model, and the diagonal dotted lines represent the worker’s upstream movement after

finishing work on a product.

Notice that the size and sequence of processing time blocks is the same in both Fig-

ure 43(c) and 43(d). This happens because the solutions share all binary decisions (task as-

signments and product sequence) but differ in terms of their continuous (scheduling) decision

variables, leading to different performance in both objectives. This confirms Chapter 8’s assertion

that mixed-integer linear multi-objective disputes can occur between line length and cycle time.

Figure 43 – Illustrative example: Pareto front and solutions

(a) Pareto front, line length in T.U..
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(b) Pareto front, line length in O.L.U..
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(c) Schedule for 𝐶𝑇 = 38 and 𝐿 = 183
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Finally, the model described in Section 10.4 effectively describes line length in Time

Units (T.U.) which is a common simplification that follows from considering that the line

speed is constant (DEFERSHA; MOHEBALIZADEHGASHTI, 2018). However, this obscures

comparisons to unpaced lines, whose lengths are measures in discrete terms (i.e. 4 stations). In

order to make “apples-to-apples” comparisons to lines of discrete pace, the line length measured

in T.U. can be divided by the cycle time, defining a length metric in Operational Length Units

(O.L.U.), i.e. one that relates to the size of the product manufactured in the line. A similar strategy

was applied in Chapter 9 regarding line length costs.

10.6 REVISITING A CASE STUDY

The method presented in Section 10.3 is here applied to practical data from the assembly

line previously studied in Chapter 2. The main research question is: how does the current line

control (Asynchronous unpaced) compare to a continuous paced alternative? In this case study,

the number of workstations is fixed as seven for both line types. Therefore, the optimization

objectives are to minimize cycle time and internal storage requirements. As demonstrated in

Section 10.5, these objectives can naturally conflict, defining a bi-objective problem. Furthermore,

in the case of paced lines, fractional values for both objectives are admissible. By normalizing the

paced line length as Operational Length Units (O.L.U), as described in Section 10.5, the resulting

Pareto front for this practical case is presented in Figure 44. The performance of (unbuffered)

synchronous and (buffered) asynchronous lines are denoted by 𝑆0 and 𝐴𝑏 (𝑏 states the number of

buffers). These were obtained using the MILP models described in Chapters 3 and 5.

Figure 44 – Practical Case’s global Pareto front for both line control types
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Notice that each line type is dominant for a specific range of cycle time values. In this

particular case, the asynchronous line control is efficient in the 1438-1460 Time Units (T.U.) and

1560-1670 T.U. ranges. The paced line control is efficient for the remaining ones. Furthermore,

for both line controls, the cycle time reduction offered by increased internal storage is subject

to diminishing returns. However, these seem to be less penalized for paced lines than for its

unpaced counterparts. One explanation for this fact is that internal storage can be continuously

distributed for paced lines, but only discretely distributed for asynchronous ones, i.e. there cannot

be fractional buffers between stations. Lastly, paced lines allow arbitrary increases to 𝐶𝑇 to

reduce line length (measured in O.L.U.) to less than seven (the number of stations). This normally

represents too high cycle time values, but is an useful flexibility in cases with lower demand and

in which line length is extremely costly.

10.7 CONCLUSIONS AND PERSPECTIVES

The newly introduced method allows to optimally solve multi-objective mixed-integer

linear programming problems with part-wise continuous Pareto fronts. This is achieved by

solving a finite number of single objective linear and mixed-integer linear problems. The former

are employed to obtain the Pareto front of the residual problem defined by fixing the integer

variables x, and the later is used to verify whether incumbent segments in the objective space are

part of the true Pareto front. By doing so, the proposed method converts the exact solution of this

class of multi-objective MILP problems to multiple, but finitely many, solutions single-objective

MILP instances of similar size.

This method addresses some of the major drawbacks of common alternatives that are

based on reductions to single objective problems: the weighted sum and 𝜀-constrained methods.

The former tends not to find all efficient solutions and the latter might find the same solution

multiple times without being able to guarantee that the Pareto front has been fully defined.

Assuming the instance is tractable, the proposed method is guaranteed to require a finite number

of single-objective MILP model solutions to find the full Pareto front.

Applying the proposed method to industrial data, lead to a few inferences: First, the

multi-objective dispute between line lenght and cycle time is confirmed. Second, it is possible to

compare the performance of different line paces using that framework: in the case study, paced

lines offered more efficient compromises between space and throughput for lower ranges of

cycle time, and were outperformed by their unpaced counterparts in the higher ranges.
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11 CONCLUDING REMARKS

This chapter highlights the thesis main contributions and presents its final considerations,

i.e. specific comments on the thesis objectives, listed in Chapter 1. Lastly, this chapter lists

possible directions for further works presented in the publications that based this thesis. Some

of the originally suggested directions have already been followed and became chapters in this

document. Others are suggestions as well as ongoing works that have not yet been published.

11.1 SUMMARY OF CONTRIBUTIONS

This thesis addressed variants of the assembly line balancing problem with cyclical

scheduling aspects and proposed mathematical models and solution methods to address them.

Chapter 2 presents a mathematical formulation to balance mixed-model asynchronous assembly

lines under a cyclical product sequence. This formulation is extended by the following chapters to

incorporate product sequencing and other line paces (Chapter 3), parallel workstations (Chapter 4)

and finally buffer allocation (Chapter 5). Chapter 5 is also the first one to depart from solving

a mathematical model to proposing a solution method - an iterative decomposition. Chapter 6

furthers that departure by presenting a solution method independent of mathematical models (a

simheuristic) to solve a stochastic variant of the problem. In it, specific contributions to the bowl

phenomenon and a fast algorithm for asynchronous line simulation are also presented. Chapter 7

presents a contribution for the multi-manned assembly line balancing literature in the form of

corrections to a previous paper. Chapter 8 introduces a paradigm shift that allows significantly

shorter multi-manned lines. Chapter 8 also describes a potential multi-objective dispute between

line length and cycle time, which can be both continuous and discrete. Chapter 9 investigates

fractional task allocations in assembly lines and describes the internal storage costs required to

achieve the cycle time reductions that they offer. Chapter 10 presents a method to solve general

mixed-integer linear multi-objective problems and shows how the balancing-sequencing of paced

lines define such a problem - which was shown by Chapter 8.

In multiple chapters, the proposed formulations and methods are compared to literature

benchmarks and shown to significantly outperform them, both in the deterministic problem

classes (Chapter 2 and 3) and in stochastic contexts (Chapter 6). Chapter 4 offers a particularly

strong comparison as the tested instances were introduced by the benchmark article itself.
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Chapters 2-5 can be seen as continuations of one another - gradually incorporating more

decision variables and features in the formulation. Chapter 6 discusses how to balance lines

from Chapter 2 when product sequence is beyond the decision maker’s control. Chapters 7-9 are

somewhat independent of the previous five, as they address different problem variants. However,

the multi-objective relationship between line length and cycle time is shown to also occur for the

balancing-sequencing class of problems studied in Chapter 10.

Multiple Operational Research techniques were employed in this thesis. The most com-

mon throughout its chapters is mathematical modelling with mixed-integer linear programming.

However, other solution methods were also applied: Chapter 5 presents an iterative decomposi-

tion; Chapter 6 presents a simheuristic; Chapter 7 and 8 present hierarchical decompositions;

Lastly, Chapter 10 presents a criterion-space multi-objective method. Simulations were also

applied (Chapters 2 and 6), as well as graph-based lower bound algorithms (Chapter 8), and

complexity proof by reduction (Chapter 9). During his doctorate, the author also collaborated in

works that applied combinatorial Bender’s Cuts and graph-based feasibility cuts/valid constraints

(MICHELS et al., 2019; MICHELS et al., 2020).

11.2 FINAL CONSIDERATIONS

This section refers back to the thesis’ objectives listed in Section 1.2. In short, these

were: (1) to develop and (2) adapt mathematical models to describe problem variants; (3) to

describe the role of line control; and (4) to develop efficient solution methods. The following

paragraphs highlight how the thesis’ contributions accomplish these objectives.

Regarding the objectives of developing and adapting mathematical models, this thesis:

presents a mixed-integer programming model tying mixed-model line balancing to cyclical

scheduling and extends it to incorporate mixed-model sequencing, parallel stations and buffer

allocation. Mathematical models are also presented for multi-manned lines, tied to two solution

methods and a paradigm shift regarding paced line controls. A mathematical formulation is

also presented in the context of fractional task allocations, in which cyclical scheduling allows

a description of the internal storage costs tied to this additional flexibility for line balancing.

Lastly, the original mixed-model line balancing formulation is adapted to describe paced lines in

a bi-objective context.

Regarding the objective of describing the role of line control (i.e. type of conveyor

system), this thesis reached several conclusions: the distinction between synchronous and asyn-
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chronous ones was mathematically described and tied to a trade-off between investment cost

and line efficiency: Asynchronous lines are more costly, but can be more efficient and also allow

buffers to play a more important role. Comparisons between paced and unpaced lines are more

delicate and were first addressed in this thesis in the context of multi-manned lines: paced line

controls allow significantly shorter multi-manned lines lengths than their unpaced counterparts,

but require a more flexible definition for station boundaries. A possible mixed-integer linear

multi-objective dispute between cycle time and line length was shown in this particular context.

This dispute was shown to also happen in paced mixed-model lines. Chapter 10’s case study

suggests that paced lines outperform unpaced lines for lower ranges of cycle time, and that paced

lines are outperformed in higher cycle time ranges by unbuffered asynchronous lines.

Regarding the objective of developing solution methods, those presented in this the-

sis have ranged from solving mathematical programming models to decompositions and a

simheuristic. It is apparent that the cyclical scheduling component adds significant computational

challenges to these problems, specially when linked to decision variables involving Big-M

constraint relaxations. Hence, the solution methods appear to be more efficient the more the

scheduling (e.g. sequencing) decisions can be hierarchically separated from the balancing deci-

sions, while still maintaining a higher order model capable of estimating performance without

them. In a particular stochastic case, the simheuristic presented in Chapter 6 applies that concept

by using and algorithmic simulator only for balancing solutions, whose lower bound on perfor-

mance is better than a reference solution in the local search algorithm. While this hierarchical

separation may be desirable, it may not always be possible, as shown in the multi-objective

dispute between line length and cycle time: there, each balancing-sequencing solution is tied to a

whole Pareto front of efficient values of cycle time and line length, making the tie between the

line balancing and cyclical scheduling decision variables rather inextricable.

11.3 FURTHER WORKS

Out of the possible extensions of the formulation presented in Chapter 2, multi-model

and U-shaped lines remain the most significant unexplored opportunities. Chapter 3’s discus-

sion regarding synchronous and asynchronous line controls can be extended by incorporating

economic pricing of transport systems. Further works can apply Chapter 4’s boundary-wise

formulation to other scheduling problems with parallelism such as job-shops and flow-shops.

Chapter 5’s combination of degrees of freedom lead to major performance challenges regarding
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lower bounds. Hence, stronger lower bounds are very desirable for that class of problems. The

contributions described in Chapter 6 can be enhanced by extending the proposed Cycle Time

Simulator to include other assembly line features. Another direction lies in employing exact

performance evaluations, such as the Markov-Chain formulation described in Lopes et al. (2019),

and analytical lower bounds to produce an exact method for this stochastic problem. Chapter 7

was mainly a correction to a previous paper, but its proposed method has already been employed

as a heuristic warm-start to solve a related multi-manned balancing problem (MICHELS et al.,

2020). Chapter 8’s flexible multi-manned line formulation can be enhanced by incorporating

space constraints in order to better describe potential collisions of workers and how to avoid them.

Regarding Chapter 9’s fractional task allocations, proposed directions for further works include

adapting or developing effective (meta)-heuristic or exact solution methods for the problem.

Furthermore, more research can investigate adequate throughput performance metrics and the

explicit incorporation of mixed-model sequencing to lines that allow fractional allocations. Lastly,

further works should thoroughly compare Chapter 10’s multi-objective method to previously

described strategies, as well as generalize it for problems with more objectives.
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