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RESUMO

FERRARI, Marco Aurélio. Estudo Numérico da Sedimentação de Duas Partículas em Flu-

ido Tixotrópico utilizando o Método de Lattice Boltzmann e Fronteira Imersa. Dissertação

de Mestrado. Programa de Pós-Graduação em Engenharia Mecânica e de Materiais, Universi-

dade Tecnológica Federal do Paraná, Curitiba, Brasil, 110 páginas, 2020.

A sedimentação de múltiplas partículas em fluidos não newtonianos tem grande relevância in-

dustrial. Durante a operação de perfuração na exploração de óleo e gás, cascalhos necessitam

ser retirados do poço. Para a tarefa é utilizado fluidos de perfuração que carregam os cas-

calhos para a superfície. Os fluidos de perfuração têm certas propriedades, que no evento de

parada, são capazes de reduzir a velocidade no qual os cascalhos sedimentam e consequente-

mente reduzir a taxa que acumulam no fundo do poço. A capacidade do fluido aumentar sua

viscosidade e tensão limite de escoamento é associada com a tixotropia, propriedade dependente

do tempo que aumenta o nível de estruturação das partículas presentes no fluido. O problema

estudado consiste da sedimentação de esferas soltas em repouso em fluido inicialmente deses-

truturado, que ao longo do tempo reestrutura-se e aumenta sua tensão de escoamento. Portanto

ter uma forma confiável de investigar os efeitos das propriedades do fluido na sedimentação é

importante. Para atingir o objetivo, foi proposto modelo numérico baseado no metodo de lat-

tice Boltzmann acoplado com metodo da fronteira imersa, com implementação em linguagem

CUDA®/C++. O efeito tixo-viscoplástico foi implementado utilizando uma segunda função de

distribuição de partículas, sendo responsável pelo transporte do parâmetro estrutural no escoa-

mento. A dinâmica das partículas possuem seis graus de liberdade, enquanto que para colisão

foi utilizado o modelo de esfera macia. O código numérico então foi verificado em etapas para

aferir cada componente do método, considerados satisfatórios e permitiram a continuidade do

estudo da sedimentação em fluido tixo-viscoplástico. A primeira parte do estudo compreendeu

avaliar o comportamento das partículas que sedimentam em função do números de Bingham

e do parâmetro estrutural computando a quebra e reconstrução. Os dados para velocidade ter-

minal permitiram propor correlação numérica em função dos parâmetros variados. Na segunda

parte foi avaliado o efeito que a propriedades do fluido tem na interação entre duas partículas.

Os resultados mostraram que existem diferentes regimes de interação entre as partículas, onde

para alguns casos o processo de "aproximação-colisão-tombamento" não ocorre, enquanto em

outros casos as partículas continuaram a sedimentar em condições que não ocorreram com uma

única.

Palavras-Chave: Sedimentação de Partículas, Tensão de Limite de Escoamento, Tixotropia,

método lattice Boltzmann, Fronteira Imersa.



ABSTRACT

FERRARI, Marco Aurélio A Numerical Study of Two-Particle Settling in a Thixotropic

Fluid using the Immersed Boundary–Lattice Boltzmann Method . Master of Science Dis-

sertation. Postgraduate Program in Mechanical and Materials Engineering, The Federal Uni-

versity of Technology - Paraná, Curitiba, Brazil, 110 pages, 2020.

The settling of multiple particles in non-Newtonian fluids has great industrial importance.

During the drilling operation in the oil and gas exploration, cuttings need to be removed from

the borehole. The task is accomplished by a drilling fluid is used to transport these cuttings

to the surface. The drilling fluid may have certain properties, that in the event of pumping

stop, are capable of reducing the cuttings settling velocity and consequently reduce the build-up

rate at the bottom of the borehole. The fluid’s ability to increase its viscosity and yield-stress

is associated with thixotropy, a time-dependent property caused by the increasing structuring

level of the particle present in the fluid. The studied problem then consists of spheres settling

released from rest in an initially unstructured fluid which will be structured over time and in-

crease its yield stress. Therefore have a reliable form to study the effects of fluid properties in

this problem is important. The objetive is achieved by using a numerical model based on the

lattice Boltzmann method coupled with the immersed boundary method, with its implementa-

tion in CUDA®/C++. The thixo-viscoplastic effect was implemented with the use of secondary

particle distribution function, which was responsible for transporting the structural parameter

in the flow. The particle dynamics had a six degree of freedom and the collision model used a

soft-sphere approach. The numerical code was then verified in steps to assess each component

of the numerical method. The results were considered satisfactory and allowed to proceed with

the study of particles settling in a thixo-viscoplastic fluid. The first part of the study included

evaluating of the settling behavior of a single sphere as a function of the Bingham numbers,

breakdown, and build-up parameters. The data for terminal velocity then allowed the construc-

tion of numerical correlation as a function of the studied parameters. The second part of the

study encompassed studying of the effects of the fluid properties in the interaction between the

two settling particles. It was found different interactions regimes between the particles, where

some cases did not perform the draft-kissing-tumbling process while others the particles con-

tinued to settle in conditions where a single particle would not.

Keywords: Particles Settling, Yield-Stress, Thixotropy, lattice-Boltzmann method, Immersed

Boundary.
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De Eq. 2.13 Deborah Number [–]

He Eq. 2.11 Hedstrom number [–]

Re Eq. 2.4 Reynolds number [–]

Tx Eq. 2.17 Thixotropic number [–]

Wi Eq. 2.14 Weissenberg Number [–]

YG Eq. 3.1 Yield gravity parameter [–]

Superscripts
( )eq Eq. 4.2 Equilibrium

( )E Eq. 4.36 Eulerian

( )L Eq. 4.36 Lagrangian

( )m Eq. 4.47 Iteration

( )neq Eq. 4.17 non-Equilibrium

( )reg Eq. 4.15 regularized

( )t Eq. 4.52 Time-step

( )∗ Eq. 4.10 Post collision populations, non-Dimensional

( )+ Appx. B Lattice Unit

( )noF Eq. 4.45 Without force term



Subscripts
( )B Fig. 2.2 Buoyancy

( )D Eq. 2.1 Drag, Diameter

( )eff Eq. 6.1 Effective

( )f Eq. 2.2 Fluid

( )g Eq. 4.27 Secondary

( )i Eq. 4.4 Discrete velocity direction

( )j Eq. 4.58 Particle index

( )p Eq. 2.5 Particle, plastic

( )s Eq. 4.4 Sound

( )t Eq. 2.5 Terminal

( )y Tab. 2.2 Yield

( )w Eq. 4.21 Wall

( )α Eq. 4.4 Cartesian direction

( )∞ Tab. 2.3 Infinity shear-rate

( )0 Tab. 2.3 Zero (Initial, Shear-rate)
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1 INTRODUCTION

1.1 Context

Petroleum has been one of the principal energy sources for humankind since the 19th century. Its by-

products have several applications, from vehicle’s fuel to road construction. In most cases, it is necessary

to drill the Earth’s crust to extract the oil contained in the reservoir rocks (CHILINGAR et al., 2005). In

many operations, this is accomplished by using a rotary drilling process, Fig. 1.1.

Figure 1.1 – Schematic representation of drilling fluid flow.
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Source: Own elaboration.

In this type of drilling process, a bit rotates while weight is applied in the drill pipe direction. The

combination of axial pressure and circular movement breaks the rock in small pieces. A drilling fluid

is then continuously pumped through the center of the drill pipe until it reaches the borehole’s bottom.

There, the fluid removes the cuttings from the bit region and transports them to the surface through the

annular region between the rocks and the external surface of the drill pipe. When the cuttings reach the

surface, they are separated from the fluid, which returns to the system continuing the cycle.

Other than removing the cuttings from the bit region, the drilling fluid also needs to perform other

functionalities while remaining physicochemically stable (EUSTES, 2011):

• Cooling and lubrication of the drilling bit;

• Fluid-loss control;

• Pressure control;

• Transmit power to the drilling bit.

However, due to programmed or unforeseen circumstances, such as increasing the drill pipe length

or drill head switch, the drilling operation needs to be halted. When this happens, the cuttings in mid

transport will tend to sink, due to the relative density difference to the fluid, and pile up in the bottom
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of the borehole assembly (BHA) region. If enough cuttings pile up in the BHA, they will stick the drill

pipe and, in severe cases, leading to the loss of the well.

In order to prevent the cuttings from settling is necessary that the fluid buildup a gel-like structure

when at rest, but it also needs to exhibit a low viscosity when pumping. Some fluids feature this reversible

change between gel-like material in low strain rates and liquid in high strain rates. The phenomenon may

be associated with the microstructure change between a highly structured and unstructured condition of

the immersed particles present in the fluid. Also, in some fluids, if a minimum shear is not reached,

the cuttings will remain suspended, thus preventing their settling. The rheological behavior allows the

cuttings to be transported during the regular drilling operation and reduce the settling rate when it is

necessary. Being able to predict the rate at which the cuttings pile up at the bottom of the borehole (in

case of the circulation interruption) is highly essential since it allows the field engineer to determine the

correct time window safe to operate without risk of losing the well.

1.2 Non-Newtonian, Thixotropic and Drilling Fluids

Depending on fluid’s composition, they exhibit different rheological behaviors. To study these ma-

terials, classes or groups are created to cluster the ones that present similar properties. Chhabra and

Richardson (2008) divide the fluids into three groups based on their stress time-response.

The first group, denominated generalized Newtonian fluids (GNF) have time-independent properties,

in other words, the shear stress only depends on the instantaneous strain rate. GNFs can be divided into

some categories (BIRD et al., 1987): shear-thinning fluids exhibit a decrease in the apparent viscosity

with the increase of shear rate. Meanwhile, shear-thickening fluids increase the apparent viscosity as the

shear rate increases. Another subgroup of time-independent fluids inside the GNFs is the one where a

minimal stress needs to be applied to shear, named yield-stress. The subgroup that encompass this kind

of fluid is denominated viscoplastic fluids. Like the previously mentioned time-independent fluids, the

viscoplastic fluids can also have the viscosity that changes with the shear rate.

Another class of fluids defined by Chhabra and Richardson (2008) is composed of the ones whose

apparent viscosity also dependent on the shear’s duration. The class can be further divided into two

subgroups: thixotropic or rheopectic fluids. Thixotropic fluids exhibit a decrease in the apparent viscosity

as a function of the shear’s duration, while rheopectic fluids have the opposite behavior: it increases the

apparent viscosity the longer the fluid is under shear (CHHABRA and RICHARDSON, 2008). An

accepted definition of thixotropic fluid is given by Mewis as: "The continuous decrease of viscosity with

time when a flow is applied to a sample that has been previously at rest and the subsequent recovery

of viscosity in time when the flow is discontinued." (MEWIS and WAGNER, 2009, p. 215)1. The

thixotropic effect can be explained as the process of microstructure breakdown, of the immersed particles

present in the fluid, caused by the shear and the microstructure build-up back to the previous state,

when at rest, occasioned by the Brownian motion of these particles (BARNES, 1997). These states are

represented in Fig. 1.2:

On the left side, the fluid sample was let to age for a long period. Due to the Brownian motion, a

microstructure will be formed. If shear is applied over time, the microstructure connections will start to

1 Reprinted from Advances in Colloid and Interface Science, Vol 147, Jan Mewis, Norman J. Wagner,
Thixotropy, 214-227,2009, with permission from Elsevier
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Figure 1.2 – Schematic representation of the thixotropic structure in a a) structured and b)unstructured state.

b) Unstructureda) Structured

Source: Own elaboration

collapse, represented on the right side, and the material will start to flow. If the shear is then removed, the

immersed particles will start to structure again and return to the previous state. The rheological behaviors

previously mentioned are not strict; this means that some fluids can exhibit properties from one or more

groups, e.g. plasticity and elasticity at same time. The overlapping often depends on time and force scale.

These fluids are usually denominated as thixo-elasto-visco-plastic fluids (EWOLDT and MCKINLEY,

2017). Drilling fluids are not an exception to this. They can present the properties of one or more of the

behaviors cited above. This work will be focusing on the drilling fluids that exhibit thixotropic effects

allied with yield-stress, in other words, the elastic behavior that may exist will be excluded from the

analysis.

1.3 Problem Statement

The problem under consideration is the particle settling in the annular region between the drill pipe

and the borehole walls after the drilling fluid flow shut down, as represented in previously in Fig. 1.1.

Initially, the drilling fluid is pumped inside the drill string until it leaves through the drill bit. In this

region, the fluid removes the cuttings and transports them through the annular region between the drill

string and the substrate. When the drilling fluid stops being pumped, the cuttings begin to sink and start

to settle.

In order to gain a basic understanding of the phenomenon, the analysis will consider a simplified ver-

sion settling in the borehole region. The problem will be composed of two spherical particles immersed

in a thixo-viscoplastic quiescent fluid. The particles will be released from rest, in a rectangular prism

domain, and settle due to the gravitational force until the movement stops, either by hitting the domain

floor or by the fluid gelification. A visual representation of the simplified problem described above is

shown in Fig. 1.3.
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Figure 1.3 – Geometry of the simplified problem of two particles settling in drilling fluid.
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1.4 Kinetic Theory

The lattice Boltzmann method (LBM) is a numerical method that approaches the fluid flow solution

in the mesoscopic scale, where conventional CFD solvers based on finite element methods (FEM) or

finite volume method (FVM) solve the fluid flow in the macroscopic scale. At the microscopic scale,

the fluid dynamic is analyzed through Newton’s second law and intermolecular forces have a significant

role. On the mesoscopic scale, the molecules are grouped and Boltzmann kinetic theory is applied.

Meanwhile, in the macroscopic scale, the fluid flow parameters are resolved, ignoring possible molecular

interactions, the mass and momentum transport equations represent the fluid behavior (GUO and SHU,

2013).

On the mesoscopic scale, a group of atoms/molecules/particles are clustered. Over time these meso-

scopic clusters, often called populations, will collide with another group and will change its momentum.

The particle distribution function then represents the probability of the particles to be in a given velocity

state.

1.4.1 Why LBM?

In the last years, an increasing interest in using the lattice Boltzmann method (LBM) to solve the

Navier-Stokes equations arose. This change in perception could be attributed to how High-Performance

Computing (HPC) changed in the last 15 years. At the beginning of the century, the computational

performance was closely related to the operational frequency of the central processing unit (CPU). But

because of thermal constraints, the maximum CPU frequency has been slowly increasing since 2005
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(MOORE, 2011).

In order to increase the processing speed, the focus changed from higher frequencies to a higher

number of cores in a single CPU. This allowed the increase of processing power in CPUs to continue, as

long the application is capable of running in multiple cores. Alongside the CPUs, graphical processing

units (GPU) also started to increase the number of cores. One difference from CPUs to GPUs is the

architecture design focused on multiple cores instead, currently with two times the order of magnitude

higher but lower operating frequencies. This high number of cores allows several processes to be exe-

cuted at the same time. In the LBM the operations are local, which allows the calculations to be spread

in multiple cores, and consequently take advantage of the shift to multi-core architectures of the last

decade.

1.5 General Objective

In this work is developed a mathematical and numerical method based on LBM coupled with the

immersed boundary method (IBM) for the representation of two particles settling in a thixotropic fluid.

The method will allow comprehend the settling phenomenon of spherical particles and determine the

effects of fluid properties, yield stress, and thixotropic parameters in such a system. Also, the results will

be used to construct a numerical correlation for the terminal velocity of a single settling sphere, which

could be used by field engineers in the decision-making process when restarting a drilling operation,

potentially avoiding the loss of the well.

Due to the complex interactions between immersed particles and non-Newtonian fluids expected on

this work, the application was written in CUDA®/C++, an application programming interface (API) from

NVIDIA® for GPUs. The implementation of the computational code follows several methodologies for

memory transfer (MAWSON and REVELL, 2014), memory layout (JANUSZEWSKI and KOSTUR,

2014), and parallelization strategy (VALERO-LARA et al., 2015) which are combine (OLIVEIRA et

al., 2019) to accomplish a high degree of efficiency in memory arrangement and processing speed 2.

Several substeps were performed to execute this study: First, a computational application capable of

solving three-dimensional non-Newtonian models (Power-Law, Bingham) fluid flows, utilizing the lattice

Boltzmann method was created. Next, the Immersed Boundary method was coupled to solve the settling

problem. Finally, a numerical model that considers some of the thixotropic behaviors of the drilling fluid

was added.

1.6 Document Outline

The dissertation is organized into seven chapters as follows: Chapter 2 describes the fundamentals

regarding non-Newtonian fluids and settling of immersed particles in Newtonian fluids. Chapter 3 ex-

poses the literature review about particle settling in Newtonian and non-Newtonian fluids. Chapter 4

presents the mathematical and numerical method utilized to model and solve the settling behavior of the

spheres. Validations cases are presented in chapter 5 for both non-Newtonian fluids and particle settling.

Chapter 6 presents the results and discussions about the settling of two spherical particles in a thixotropic

fluid. The final remarks related to the study and suggestions for future works are shown in Chapter 7.

2 An open-source version can currently be found in https://github.com/CERNN/
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2 THEORETICAL FOUNDATION

In this chapter, the basis regarding the flow patterns behind a sphere and single-particle settling

behavior in Newtonian fluids are introduced. It also presents the fundamentals of non-Newtonian fluids

and its essential properties, with emphasis on mathematical modeling.

2.1 Flow over a Static Sphere

The foundation for the particle settling can be based on the flow around a static sphere. Taneda

(1956) executed an experimental study on the wake formation for Reynolds numbers between 5 and 300.

In his experiment, it was obtained the Reynolds number for when the wake vortex ring is established

(Re = 25), as well as when the vortex begins to oscillate (Re = 130). Sakamoto and Haniu (1990)

extended experimental study for the flow around a sphere, with Reynolds numbers between 130 and

4000. For Reynolds numbers under 130, there is no detached wake pattern, as shown by Taneda (1956)

and Sakamoto and Haniu (1990). Increasing the Reynolds numbers between 130 and 300, an oscillatory

movement surges. When the Reynolds numbers surpass 300, hairpin-shaped vortices start to form in

a stable axial position (ACHENBACH, 1974). The wake pattern then begins to rotate along the axis

when it reaches Reynolds numbers superior to 420. Finally, for Reynolds numbers over 800, a vortex

instability and breakdown begin to be observed.

When a fluid flow passes over an immersed object, a drag force will emerge due to pressure differ-

ences and friction. Stokes (1850) proposed an analytical solution for the drag force in spherical particle

immersed in a fluid at low Reynolds number, later named as Stokes’ drag (CHHABRA, 2006):

FD = −3πµDU (2.1)

where µ is the dynamic viscosity, D is the sphere diameter, and U is the relative velocity between the

particle and the fluid. The drag force is generally defined as:

FD = −ρf
U2

2
CDA (2.2)

where A the cross-section area of the particle relative to the flow direction, ρf is the fluid density and

CD is the drag coefficient. Combining the Eq. 2.2 with the Eq. 2.1, the drag coefficient for a sphere in

creeping flow is:

CD = 24/ReD (2.3)

where ReD is the Reynolds number defined as :

ReD =
ρfUD

µ
(2.4)

The Stokes’ solution agrees with experimental data obtained for Reynolds numbers under 0.1. Mean-

while, for Reynolds numbers over 0.1, the drag coefficient starts to diverge from the analytical solution,

mainly because the inertial terms of the Navier-Stokes equations cannot be disregarded. Due to that,

the drag coefficient for Reynolds number higher than 0.1 have been collected over the years and conse-

quently allowing the construction of correlations which are later used by engineers. Figure 2.1 presents

the drag coefficient as a function of the Reynolds number based on one of these correlations.
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Figure 2.1 – Drag coefficient of a smooth sphere as a function of Reynolds number using the correlation proposed
by Morrison (2013).
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For higher Reynolds numbers than the creeping flow regime, the adverse pressure gradient over the

sphere surface causes the detachment of the laminar boundary layer and consequently create vortices

behind the sphere, reducing the drag coefficient. As the Reynolds number increases
(

ReD & 3× 105
)

the boundary layer over the sphere transition from laminar to turbulent (SCHLICHTING, 1979) and

causes a drop in the drag coefficient.

2.2 Particle Settling

A body immersed in a fluid under the action of a gravitational force is subject to Archimedes’ princi-

ple. If the buoyant force is larger than the gravitational force, the body will rise until it reaches the fluid

surface. On the contrary, if the gravitational force is stronger than the buoyancy force, the particle will

sink. According to Newton’s second law of motion, the body will accelerate in both conditions unless

an equilibrium between the forces acting in the body occurs. When the body reaches a certain velocity,

the forces acting up in the body (drag, buoyancy, and gravitational) will reach that equilibrium state and

the particle will not accelerate, which is known as terminal velocity. Figure 2.2 represents the free body

diagram of the forces in acting in a sphere settling in a fluid.

In the creeping flow regime (ReD < 0.1), the force balance using the Stokes’ solution for the drag

force, Eq. 2.1, and Newton’s second law of motion can be used for derivation of the terminal velocity

(DAVIS and ACRIVOS, 1985):

Ut =
1

18

(ρp − ρf )

µ
gD2 (2.5)

combining the Eq. 2.5 and Eq. 2.4, the terminal Reynolds number (Ret) in creeping flow is:

Ret =
gD3

18ν2

(

ρp
ρf

− 1

)

=
Ar
24

(2.6)
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Figure 2.2 – Force balance in sphere particle settling in creeping flow.
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where Ar is Archimedes number for a Newtonian fluid, commonly encounter in the literature regarding

particle settling, which will represent the ratio between the difference of the gravitational and buoyant

forces versus the viscous forces acting in an immersed particle and it is defined as (CHHABRA, 2006):

Ar =
4

3

[

gD3ρf (ρp − ρf )

µ2

]

(2.7)

When the Reynolds number increase, the different vortex shedding patterns change the forces acting

in the settling particle, affecting its trajectory. In this case, there are two main force directions: one

parallel to the gravity field and another perpendicular. The first is linked to the drag coefficient and,

consequently, on the Reynolds number, as previously mentioned, and determine the speed at which

the particle settles. The analytical solution for the transient behavior from a static position to settling

velocity in low Reynolds numbers in Newtonian was studied by Bromwich (1929). But for flows outside

the creeping flow, there is no knowledge of an analytical solution, and hence experimental evaluations

were carried. Table 2.1, compiled by Cliff et al. (2005), shows some of the correlations created, which

can be used to determine the drag coefficient and, consequently, the terminal velocity.

Meanwhile, the lateral trajectory of the particle depends on the lift coefficient. Through experiments,

Horowitz and Williamson (2010) analyzed the settling regimes of spherical particles for Reynolds num-

bers between 100 and 15 000 and different density ratios. For Reynolds numbers below 260, the particles

settle with a linear trajectory and may exhibit some minimal oscillation. For rising spheres, density ratio

less than unity, with a Reynolds number over 260 and density ratio less than critical, the particle will

perform a zigzag pattern. For densities ratio above this critical value, which depends on the Reynolds

number, the particle trajectory in a sense, agrees with the wake patterns of static spheres, independent

of the density ratio of fluid and particle. These lateral movements will cause some increase in the drag

coefficient when compared with data of a fixed sphere in a wind tunnel, and thus it cannot be ignored.
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Table 2.1 – Recommended drag coefficient correlations

Reynolds Range Drag Coefficient (CD)

ReD < 0.01 CD = 24
ReD

(

1 + 3
16ReD

)

0.01 < ReD < 20 CD = 24
ReD

[

1 + 0.1315Re(0.82−0.05w)
D

]

20 < ReD < 260 CD = 24
ReD

[

(1 + 0.1935Re−0.06305
D

)

260 < ReD < 1500 logCD = 1.6435− 1.1242w + w2

1500 < ReD < 1.2× 104 logCD = −2.4571 + 2.558w − 0.9295w2 + 0.1049w3

1.2× 104 < ReD < 4.4× 104 logCD = −1.9181 + 0.637w − 0.0636w2

4.4× 104 < ReD < 3.38× 105 logCD = −4.339 + 1.5809w − 0.1546w2

3.38× 105 < ReD < 4× 105 CD = 29.78− 5.3w

4× 105 < ReD < 106 CD = 0.1w − 0.49

106 < ReD CD = 0.19−
(

8×104

ReD

)

where: w = logReD

Source: Used with permission of Dover Publications Inc, from Bubbles, Drops, and Particles, Clift, R., Grace, J.
R., Weber, M. E., 2005; permission conveyed through Copyright Clearance Center, Inc

2.3 Non-Newtonian Fluids Models

Newton’s law of viscosity defines the linear relationship between the viscous stress tensor and the

strain rate tensor, for what came to be known as a Newtonian fluid (BIRD et al., 1987):

σ = µγ̇ (2.8)

where σ is the viscous stress tensor, γ̇ is the strain-rate tensor and µ is the scalar dynamic viscosity of

the fluid. Non-Newtonian fluids are the ones which do not obey Newton’s viscosity law. The viscosity

of these fluids depends on several factors. One of them is the magnitude of the strain rate tensor (γ̇).

In incompressible and shear flows, γ̇ reduces to be only a function of the strain-rate tensor magnitude

(BIRD et al., 1987):

|γ̇|=
√

1

2

∑

i

∑

j

γ̇ij γ̇ji (2.9)

where γ̇ij are the components of the strain rate tensor. Constitutive equations have been proposed for

the apparent viscosity (η) over the years to accommodate the different fluid behaviors. For generalized

Newtonian fluids, one can cite Power-Law, Bingham, and Herschel-Bulkley models, represented in Table

2.2. The Power-Law model represents a fluid with shear-thinning or shear-thickening behavior depending

on the value of the power-law index n. Meanwhile, the Bingham and Herschel-Bulkley model represent

a viscoplastic fluid with a yield stress value (σy). Two dimensionless numbers are typically associated

with the analysis of viscoplastic fluids flows. The Bingham number correlates the ratio of yield stress

and viscous stress (HUILGOL, 2015):

Bn =
σy
µ

L

U
(2.10)

where L is the characteristic length, µ is the viscosity and U is the fluid velocity. Another important non-

dimensional group relevant to viscoplastic fluids is the Hedström number, which was initially defined

on the work of Hedström (1952), where the friction factor for cement suspensions was correlated as a
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Table 2.2 – Generalized Newtonian fluid constitutive equations (BIRD et al., 1987)

Model Equation

Power-Law η(γ̇) = K|γ̇|n−1

Bingham η(γ̇) =

{

∞ , |σ|≤ σy

µp + σy/|γ̇| , |σ|> σy

Herschel-Bulkley η(γ̇) =

{

∞ , |σ|≤ σy

K|γ̇|n−1+σy/|γ̇| , |σ|> σy

Source: Own elaboration.

function of Reynolds number. Both these dimensionless numbers help correlate similar flow patterns and

friction for viscoplastic fluids.

He =
ρfL

2σy
µ2

= ReBn (2.11)

Figure 2.3 shows the rheological behavior of the previous models for time-independent fluids, where

the shear-thinning fluids reduce the apparent viscosity with increasing shear rate, meanwhile the shear-

thickening fluids increase. For viscoplastic fluids, there is a minimum necessary stress for flow to occur.

Figure 2.3 – Apparent viscosity as a function of shear strain rate for some time-independent fluid models.

Newtonian

Shear-thinning

Shear-thickening

Herscehel-Bulkley

Bingham

Shear rate

η

Source: Own elaboration.

Another group of fluids, defined by Chhabra and Richardson (2008), exhibits a Hookean solid prop-

erty at a low strain rate: elasticity. The elasticity of the fluids allows them to return to the original state

of deformation when the stress is removed, like solids in the elastic regime. Because of the nature of

elastic and viscous properties, these fluids are denominated viscoelastic. James Clerk-Maxwell (1867
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apud BIRD et al., 1987) correlated both effects, elastic and viscous, in only one equation. Other mod-

els emerged later, like Jeffrey’s model. These models can be written in integral form denominated the

General Linear Viscoelastic Model (GLVM) (BIRD et al., 1987):

σ =

∫ t

−∞
M
(

t− t′
)

γ
(

t, t′
)

dt′ (2.12)

where M (t− t′) is the memory function that stores the time-dependent behavior of the fluid, and it

depends on the model utilized, γ is the shear function of the previous time. Since the memory function

continually decreases to zero as the time between past events (t′) and the current time (t) increase, the

effects of previous stress fade over time. Flows with viscoelastic fluids can be described by Weissenberg

and Deborah numbers (POOLE, 2012):

De =
tc
T

(2.13)

Wi =
tcU

L
(2.14)

where U is the flow velocity, L is the characteristic length, T is the duration of the observation and tc

is characteristic time that is related to the fluid relaxation times. The Deborah number correlates the

material response time to the observation time. Low Deborah numbers indicate that the material will

behave like a fluid, while for high Deborah numbers, the material will behave like a solid with elastic

properties. The Weissenberg number is the ratio of elastic and viscous forces.

2.3.1 Fundamentals of Thixotropic Fluids

As mentioned earlier, thixotropic fluids present a nature that depends on the shear duration. In

order to accommodate this behavior and understand it better, researchers created constitutive equations

to model it. These constitutive equations can be divided into two approaches: phenomenological or

microstructural (BARNES, 1997). In the phenomenological approach, the constitutive equations are

formulated to fit the experimental data of material response with time and shear rate. Microstructural

approaches formulate constitutive equations based on physical phenomena. It can be divided into direct

and indirect microstructural models. Direct models are based on the actual physics in the fluid and

immersed particle structures responsible for the buildup and breakdown. Indirect models are formulated

based on a numerical structural parameter, λ. The structural parameter then represents how bounded

the polymeric structure is. It can assume values between 0, for fluid without connections Fig. 1.2.b,

and 1, for fluid with particles fully interconnected Fig. 1.2.a. The general constitutive form is given by

(MEWIS and WAGNER, 2009):

σ = f1 [λ (t) ,Πγ̇ (t)] (2.15a)

dλ (t)

dt
= f2 [λ (t) ,Πγ̇ (t)] (2.15b)

where Πγ̇ is a function of the flow condition and λ is the structural parameter.

Mewis and Wagner (2009) list mechanisms that affect λ: Particle attraction, thermal and convective

motion can operate to build up the fluid-structure. Meanwhile, the flow shear and even the thermal

motion can act to breakdown the structure. Typically, indirect microstructural models only consider

the Brownian motion as an aging factor and the shear rate as the responsible term for the structure
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breakdown. Mewis and Wagner (2009) on their review, compiled a table for some of the structural

thixotropic models, for the function f1 is listed on Table 2.3 while f2 is on Table 2.4. In the kinetic

Table 2.3 – Constitutive equations for thixotropic fluids in the form σ = σy(λ) + ηλ(λ, γ̇)γ̇

Author(s) σy(λ) ηλ(λ, γ̇)

Moore (1959) − λη0

Worrall and Tuliani (1964) σy,0 λη0

Houska (1981) λ(σy,0 − σy,∞) + σy,∞ λK0γ̇
n−1

Toorman (1997) λσy,0 λη0

Mujumdar et al. (2002) λa+1G0γ
a
c −λK0γ̇

n−1

Coussot et al. (2002) − λaη∞
Dullaert and Mewis (2006) λG0γc(λγ̇)

a λη0

Source: Reprinted from Advances in Colloid and Interface Science, Vol 147, Jan Mewis, Norman J. Wagner,
Thixotropy, 214-227,2009, with permission from Elsevier.

Table 2.4 – Kinetic equations for thixotropic fluids in the form dλ (t) /dt = −fbreak + fbuild

Author(s) fbreak fbuild

Moore (1959) k1γ̇λ k2 (λ0 − λ)

Worrall and Tuliani (1964) k1 −
Houska (1981) k1λγ̇

m k2 (1− λ)

Toorman (1997) k1λ
aγ̇ k2 (1− λ)

b

Mujumdar et al. (2002) k1λγ̇ k2 (1− λ)

Coussot et al. (2002) k1γ̇λ k2

Dullaert and Mewis (2006) k1γ̇λt
−β k2 (1− λ) t−β + k3γ̇

0.5 (1− λ) t−β

Source: Reprinted from Advances in Colloid and Interface Science, Vol 147, Jan Mewis, Norman J. Wagner,
Thixotropy, 214-227,2009, with permission from Elsevier.

equation for the structural parameter, fbreak represents the rate at which the structural parameter breaks

due to the local shear rate and fbuild model the aging process of the fluid.

Moore (1959) and Coussot et al. (2002) constitutive equations do not include yield stress, Worrall

and Tuliani (1964) has constant yield stress, while the other models the value of the yield stress depends

on the structural parameter. The apparent viscosity is then based on the product between the structural

parameter λ and the viscosity at zero shear rate η0. Coussot et al. (2002) adopted the viscosity at a high

shear rate as a base. Houska (1981) and Mujumdar et al. (2002) added shear-thinning effects to it.

The current work was used a simplified version of the Houska (1981) model, where only the yield

stress is dependent on the structural parameter, with plastic viscosity remaining constant. The shear-rate

exponents were kept constant and equal to a unit. Finally, the kinetic equation is modified to support the
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transport of the structural parameter for an incompressible fluid:

σ = η(γ̇, λ)γ̇, (2.16a)

η(γ̇, λ) =

{

∞ , |σ|≤ σy

ηp + σy|γ̇| , |σ|> σy
(2.16b)

σy = λσy,0 + (1− λ)σy,∞ (2.16c)

∂λ

∂t
+ ui

∂λ

∂xi
= −k1λ|γ̇|+k2(1− λ), (2.16d)

where ηp is the plastic viscosity, σy,0 and σy,∞ the static and dynamic yield stress, k1 is the breakdown

parameter, and k2 is the build-up parameter. For the chosen fluid model, an important dimensionless

parameter is the Thixotropic number, which represents the ratio between the breakdown and build-up

rates:

Tx =
k1
k2

U

L
(2.17)

Chapter Summary

In this chapter, the foundation for the particle settling phenomena was presented. Details about the

vortex shedding in a sphere as a function of the Reynolds number are presented. Next, the basic theory

for modeling non-Newtonian fluid was shown. In the next chapter, a literature review about the settling

behavior of spheres in non-Newtonian fluids will be presented.
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3 LITERATURE REVIEW

In this chapter introduces a review of previous works regarding the settling behavior of one or two

particles in Newtonian and non-Newtonian fluids. It is also shown the methods developed to solve

the boundary conditions that arise when trying to model immersed bodies using the lattice Boltzmann

method.

3.1 Particle settling in non-Newtonian fluids

Non-Newtonian fluids exhibit different behaviors when compared with Newtonian fluids, so it is

expected that the particle settling phenomenon to change. The creeping flow around a sphere create

regions with different shear rates. Consequently, the apparent viscosity will be a function of the surface

distance and angle from the particle’s axis (REYNOLDS and JONES, 1989). Reynolds and Jones (1989)

characterized four different settling behaviors in shear-thinning fluids. For tiny Reynolds numbers the

fluid behaves like a Newtonian-fluid, followed by a transition zone connecting to the power-law region

as the Reynolds number increases. On the power-law region, the particle settling velocity depends on the

power-law index. In the last region, where ReD > 0.1, the convective effects start to act in the particle.

Numerical models were also used to study the particle settling in power-law fluids, such as the work of

Nardi and Franco (2018), which implemented an IB–LBM solution to analyze the effect of the power-law

index in the settling behavior of a two-dimensional particle.

Viscoplastic fluids need minimum stress to start shear, creating regions around the particle with an

unyielded fluid (WHITMORE and BOARDMAN, 1962). Ansley and Smith (1967) obtained experimen-

tal results in tomato sauce and proposed the shape of the unyielded region using the slip-line field theory.

The shape obtained by them was the external surface of a spindle toroid with the particle in its cen-

ter. Beaulne and Mitsoulis (1997) executed numerical simulations with the Finite Element Method for

Herschel-Bulkley fluids and compared with the experimental results of the unsheared region data from

Atapattu et al. (1995), reproduced in Fig. 3.1, showing the spindle toroidal form.

Due to minimal stress for fluid flow to occur, some situations where a particle left to settle in an

unyielded fluid will not move, because not enough stress is exerted by the particle weight. Tabuteau et

al. (2007) define the yield number for a sphere in a viscoplastic fluid as:

YG =
3σy

gD (ρp − ρf )
(3.1)

where τy is the yield stress, g is the gravity acceleration, D is the particle diameter and ρp − ρf is the

density difference between the particle and the fluid. The yield number correlates the stress necessary

to start the fluid motion and the force applied by the particle. Blackery and Mitsoulis (1997) and Beris

et al. (1985) obtained the breakpoint value of 0.143, through the finite-element method, on which values

inferior to that the particle starts to move. Meanwhile, Tabuteau et al. (2007) obtained the value of

0.145 through experimental data with Carbopol gels, showing an agreement between experimental and

numerical results. Several factors can influence this value such as fluid elasticity (FRAGGEDAKIS et

al., 2016), particle shape (PUTZ and FRIGAARD, 2010)(FRIGAARD et al., 2017), and wall effects

(BEAULNE and MITSOULIS, 1997)(MITSOULIS, 2004).
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Figure 3.1 – Comparison between numerical results and the experiments by Atapattu et al. (1995) for Bi = 1.285.

Source: Reprinted from Journal of Non-Newtonian Fluid Mechanics, Vol 72 Issue 1, M. Beaulne and E Mitsoulis,
Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids, 55-71,55-71, with permission from
Elsevier

Ferroir et al. (2004) performed experiments of a settling iron sphere in a mixture of water and

Laponite, a thixotropic fluid. They obtained results for the particle velocity and travel distance as a

function of the fluid aging time and the influence of the frequency when the fluid is mechanically ag-

itated. It was observed that depending on fluid aging levels, the particle would either reach terminal

velocity or slow down and stop. A mathematical model was formulated and validated with experimental

results to predict the settling behavior as a function of the particle’s terminal velocity in an unstructured

fluid; their results are reproduced in Fig. 3.2. Their result was in a function of W, which is similar to

Figure 3.2 – Predictions of the Ferroir et al. (2004) mathematical model for the motion of a sphere through
a thixotropic paste under the action of a force of different levels (from top to bottom:
(ρp − ρf ) gD

2/18η0 = 0.60; 0.59; 0.58; 0.575; 0.57; 0.568; 0.565; 0.56; 0.55).

Source: Reprinted from Physics of Fluids, Vol 16 Issue 3, Ferroir, T., Huynh, H. T., Chateau, X., Coussot, P.,
Motion of a solid object through a pasty (thixotropic) fluid, 594-601, with permission from AIP Publishing

the inverse of yield parameter for viscoplastic fluids. If its value is below a certain critical point, the

build-up of the fluid-structure will be faster than the breakdown created by the sphere settling, which

will cause an increase in the apparent viscosity and consequently reduce the particle velocity. Otherwise,
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the breakdown and build-up process will reach an equilibrium, and the particle will attain a terminal

velocity.

Other studies were conducted with thixotropic fluids, such as in Gueslin et al. (2009) where exper-

iments in laponite suspensions observed an exponential decrease in the terminal velocity of the particle

as a function of the aging time. Gumulya et al. (2014) analyzed the effects of Deborah number in the

structural parameter field as well as in the drag coefficient, through Volume-of-Fluid numerical method.

Fluids with a higher relaxation time had an increase in the drag coefficient while fluids with lower re-

laxation times had a reduced drag associated with the shearing regions being close to the sphere at high

relaxation times. A reduced apparent viscosity was observed in the region where a settling sphere had

passed. The effect of the breakdown and build-up parameters in flow past a cylinder was investigated

through the finite element method in the work of Syrakos et al. (2015). The breakdown rate was observed

to be higher in the boundary layer, while unyielded zones were observed behind the cylinder. Finally, an

elasto-viscoplastic thixotropic fluid was studied with the finite element method in the work of Fonseca

et al. (2013), where the thixotropic model of Souza Mendes (2009) was utilized. It was observed an

increase in the drag around a sphere as the thixotropic number increases.

3.1.1 Two-Particle Settling

When two or more particles settle together, interactions between them are bound to happen. Fortes

et al. (1987) analyzed the fluidization of two-dimensional beds composed of spherical particles in a

Newtonian fluid. In their work is explained the primary mechanism of how two particles interact with

each other when settling together.

Initially, when two particles are settling together in a vertical alignment and separated by initial

distance, the upper one begins to approach the other, denominated "Drafting". Because of the existence

of a relative velocity between the particles, a collision will occur. The collision stage is then denominated

"Kissing". Due to instabilities generated in the collision, the top particle will tumble over and both

particles stay side by side. The complete phenomenon is often called "Drafting-Kissing-Tumbling"

(DKT) and it is represented in Fig. 3.3, where it also shows the relative distance between the particles

over time. When the particles are side by side, it creates a non-symmetric wake that, depending on the

conditions, can make the particles being vertically aligned again and consequently restarting the DKT

process.

Riddle et al. (1977) carried out experiments of two vertically aligned spheres in a shear-thinning

fluids. They found that exists a minimum distance for the DKT process to occur. For Generalized

Newtonian fluids, Sulaymon et al. (2013) conducted experiments with fluids that can be approximated

by the power-law model. In their study, the critical distance on which two settling spheres will interact

was analyzed. With a vertical alignment, the collision occurred if the initial distance is less than five

diameters. Meanwhile, for horizontal alignment, if the distance is less than two diameters, the collision

would occur. For distances between two and five diameters, it was observed a decrease in the separation

distance but no collision, while for higher separation distance, no interaction would happen.

Liu et al. (2003) conducted one of the first numerical studies for two particles settling in a Bingham

fluid, it utilized the finite element method to obtain the yielded regions. With the separation distance kept

constant it was observed a union of the yielded zones that exist around each particle. The arising of this
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Figure 3.3 – Drafting-kissing-tumbling process.
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connection would depend on the Bingham number as well as the distance between the particles

Prashant and Derksen (2011) analyzed the separation distance in the settling of two spheres in Bing-

ham fluid using the lattice Boltzmann method, with Reynolds numbers of 1 and 6.2, and Bingham number

of 0.36 inside a rectangular channel. For the Reynolds number equal to 1, both spheres settle with the

same terminal velocity independently of the initial gap between them, meaning that the DKT process

was not observed. When the distance between the spheres increased, the terminal velocity also raised,

approaching the single sphere terminal velocity for large gaps. When the Reynolds number raised to 6.2

and the initial distance between the particles was two diameters it was observed a collision between the

particles.

Pan and Glowinski (2018) used a distributed Lagrange multiplier based fictitious domain method

to study the behavior of two and three spheres horizontally aligned, settling in Oldroyd-B fluid. In the

viscoelastic fluid studied, the DKT process was inverted, which means that when two particles horizon-

tally aligned start to settle, then they will perform lateral drafting, collide and finally tumble. The final

configuration was both particles settling in a stable vertical alignment.

Daugan et al. (2002) conducted experiments of two vertically aligned spherical particles settling in

Xanthan gum in a creeping flow regime ReD < 10−2). In their analysis, the distance between particles

varied from 5 to 60 diameters. If the separation distance were less than critical, the trailing particle would

have a higher velocity than the leading particle, causing them to create a chain. The chain formation is

attributed to the shear-thinning behavior of the fluid that will create a "corridor of reduced viscosity" and

consequently increasing the trailing particle velocity. The critical separation distance was between 15

and 30 diameters depending on the fluid properties. Daugan et al. (2002) also presented data regarding

the ratio of the settling velocity of the leading and trailing sphere as a function of the non-dimensional

separation distance, which increases as the particles get closer.

Yu et al. (2006) utilized a finite element method to analyze the settling of two spheres in a structural

parameter thixotropic model. Their study focused mainly on a Reynolds number of 0.1. It was noted,

on their numerical model, that the trailing particle would start to accelerate when it reached the initial

position of the leading particle. When more than two particles settle together, the chain behavior was
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observed, but was not stable, causing the DKT process to repeat multiple times over time between the

particle that formed the chain.

Moseley et al. (2019) obtained experimental results of two spheres settling in Xanthan gum. The

experiments were conducted for a Reynolds number of 0.04. Data was obtained using particle image ve-

locimetry, allowing to obtain the velocity field in the settling direction. They also provided a correlation

for the particle velocities.

3.2 Immersed Bodies in Lattice Boltzmann Method

The lattice Boltzmann method is one of the methods that researchers have to numerically study fluid

flows. One of the LBM benefits is the higher level of parallelization when compared to velocity-pressure

solvers utilized in conventional CFD methods. The basic LBM can then be modified to include the effects

of solid boundaries and non-Newtonian fluid behavior. This section introduces the available methods to

model these solid objects when coupled with the LBM, and the reasoning to behind choose the immersed

boundary method.

First, the simplest method to implement the no-slip boundary condition in LBM is the bounce-back

method. In the bounce-back method, the populations are reflected to their oncoming position when

meeting a flat wall. Following this principle, Ladd and Verberg (2001) developed a method to enable

both static and moving walls. The method exhibits some advantages and disadvantages, one of them is

that the boundary exists somewhere between the lattice, however, it is viscosity dependent.

Following a different route to work around viscosity dependency of the bounce-back method, Zou

and He (1997) developed the Non-equilibrium Bounce-Back Method (NEBB). In this formulation, the

non-equilibrium populations are reflected instead and while the lattice nodes are placed on the fluid-

solid interface. These modifications removed the viscosity dependence and allowed it to be a third-order

accurate scheme. Nevertheless, the issue that the lattice structure defines where the fluid-solid interface

is not removed from either of these approaches, causing the staircase effect when modeling curved walls.

Researchers developed several techniques to improve the model’s accuracy near curved boundaries.

Lallemand and Luo (2003) modified the bounce-back method making the interpolation based on the

distance between the boundary and the lattice nodes. Yu et al. (2002) developed the multi-block strategy

that allows the existence of fine and refined lattice in the same domain with a coarse one. For movable

boundaries, the method needs adaptive mesh refinement, first utilized in Yu and Fan (2010).

The no-slip condition can also be modeled by using the partially saturated bounce-back method, ini-

tially idealized by Noble and Torczynski (1998), where the bounce-back depends on the fluid saturation

in the lattice. Figure 3.4 represents a schematic of this method, where each lattice cell has a solid/fluid

ratio. For cells that describe the immersed body, the value is 1, while for fluid cells the value is 0.

The computational challenge of this method is in determining the solid fraction for each time-step when

working with a moving particle. This occur because populations need to be transported when a lattice

that previously only had fluid and now has part of it occupied by a solid, in order to conserve the system

mass.

Finally, there is the Immersed Boundary Method (not exclusive for LBM) designed by Peskin (1972).

On this approach, a set of Lagrangian points represent a surface by exerting a body force in the mo-

mentum transport equation. By doing that, the fluid decelerates in order to satisfy non-penetration and
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Figure 3.4 – Two-dimensional sketch of two DEM spheres mapping on the LBM lattice grid with the lattice reso-
lution N =5. The darkness of a lattice cell corresponds to its solid ratio: white (ǫ = 0), grey (0 < ǫ < 1)
and black (ǫ=1) refer to fluid, partially saturated and solid cells, respectively.

Source: Reprinted from Computers and Geotechnics, Vol 114, G.C. Yang,L. Jing,C.Y. Kwok,Y.D. Sobral, A com-
prehensive parametric study of LBM-DEM for immersed granular flows, 103100, with permission from Elsevier.

no-slip in surface that is represented by the Lagrangian points. Figure 3.5 represents a circular surface

overlapped with an Eulerian domain.

Figure 3.5 – Representation of Lagrangian and Eulerian nodes.

Lagrangian Node Eulerian Node

Source: Own elaboration.

Feng and Michaelides (2004) implemented the IBM coupled within the LBM scheme. In their

method, each node of the Lagrangian mesh applies a local body force in the nearest lattices, scaled

by a kernel. The forces then changes the particle distribution function and consequently modifies the

flow velocity. The problem arises when trying to determine the correct force direction and magnitude

so that no-slip condition be satisfied in the boundary nodes. Several techniques were developed to solve

this problem.

The first approach is the explicit feedback adopted in Feng and Michaelides (2004). In this method,

the force is proportional to the node displacement, similar to Hooke’s law. However, on this method,

instabilities will arise if an unsatisfactory proportionality constant value is chosen. Other methods were

designed in other to bypass this problem.
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One of them is the implicit velocity correction developed by Uhlmann (2005) and applied into the

LBM by Wu and Shu (2009). The method solves simultaneously both the force required and the no-slip

condition in the boundary nodes, which it is accomplished by building a linear equation system. The

number of variables in the system increases with the number of Lagrangian nodes. For movable bound-

aries, a new linear equation system is necessary for each time-step, a computationally costly operation

for a broad set of Lagrangian nodes.

An iterative process to determine the force was formulated in the works of Luo et al. (2007) and

Wang et al. (2008) with LBM implementation by Kang and Hassan (2011) denominated multi-direct-

forcing scheme. The force and the velocity interpolation are then locally evaluated by the iterative

method, which avoids solving the linear equation system in each time step. The current work opted for

the iterative formulation of Kang and Hassan (2011), due to reduced memory usage.

Because two grid coexist in the method (one Lagrangian and another Eulerian), the discretization

ratio between then will have a effect over the solution. Fučík et al. (2019) analysed its effect for a flow

over a fixed sphere and concluded that a ratio close to 1 presented satisfactory results for drag coefficient.

This result will be later investigated in the present work.

Chapter Summary

In this chapter, it was presented the literature review regarding the particle settling phenomenon in

non-Newtonian fluids. The drafting-kissing-tumbling process when two particles interact was reviewed,

as well as the changes that might occur in non-Newtonian fluids. It was observed by the author that

exists a scarcity of studies regarding the settling of two particles in thixo-viscoplastic fluids. From the

works researched, the particles are relatively small, around 1mm in diameter, and settle in the creeping

flow regime. For the problem declared in chapter 1, the particles are larger, up to 5mm, and density ratio

particle-fluid up to 3. Therefore, it exists a scientific opportunity regarding the settling of two particles

in different geometry, fluid, and flow configurations. The multiple methods to model immersed bodies

in the lattice Boltzmann method were presented, and the immersed boundary method was chosen due

to its ease of implementation compared to the other available method. The next chapter will present

the mathematical and numerical methods used in the implementation of LBM-IBM for non-Newtonian

fluids.
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4 NUMERICAL METHOD

This chapter presents the mathematical basis of the lattice Boltzmann method to model the fluid

flow. Next, the mathematical formulation used to consider the effects of non-Newtonian fluids, including

thixotropy, is explained. The particle settling is then modeled using the immersed boundary method.

The collisions between two particles and the walls use a soft sphere model, where the collision force is a

function of the inter-particle penetration. Finally, the methods coupling and the algorithm’s flowchart is

described.

4.1 The Lattice Boltzmann Method

As previously mentioned in Chapter 1, the particle dynamics can be modeled by the Boltzmann

equation, which represents the time evolution of the particle distribution function f (BOLTZMANN,

1896 apud KREMER, 2010):

∂tf + ξ · (∇xf) + g · (∇ξf) =

∫

(

f
′

1f
′ − f1f

)

(ξ1 − ξ) d–V dξ1 = Ω (4.1)

where g is the acceleration field, ∇x = ∂/∂xα, ∇ξ = ∂/∂ξα and Ω is the collision operator responsible

for the change in the particle trajectory due to collisions with other groups of particles 1. Which assumes

a rarefied gas, negligible external force during collision, assumption of molecular chaos and a small

variation of the distribution function over time (BOLTZMANN, 1896 apud KREMER, 2010). If enough

time is given, a point in the space will reach an equilibrium state. This equilibrium is achieved when the

number of particles in a particular state that enters and leaves the space is equal (Ω = 0). Applying this

condition in the Eq. 4.1 is possible to determine the particle distribution function as (PHILIPPI et al.,

2006):

f eq = n
( m

2πkT
)

d
2

exp

[

−(ξ − u)2

2kT /m

]

(4.2)

where d is the number of Euclidean dimensions, k is the Boltzmann constant, T is the temperature,

ξ is the particle velocity, u is the particle mean velocity, and m is the particle’s mass. The Eq. 4.2

is denominated the Maxwell-Boltzmann distribution function and represent the probability equilibrium

distribution function of particles to be in a given velocity state. The lattice Boltzmann method is based on

the discrete form of the Boltzmann equation, Eq. 4.1. Bhatnagar et al. (1954) proposed a simplification

of the collision operator. In their model, currently called the BGK collision operator, Ω is defined as:

Ω =
f eq − f

τ
(4.3)

where τ is a relaxation time parameter, and f eq is the particle equilibrium distribution function. There

are other collision operators, for example, the two relaxation time (TRT)(GINZBURG et al., 2008) and

the multiple relaxation time (MRT)(HUMIERES, 1994). Both models increase the number of relaxation

parameters when compared with BGK in order to increase the stability of the model, but they also might

raise the simulations computational cost.

1 f
′

and f
′

1 represent post collision values of two particle which have the respectively pre-collision velocities: ξ
and ξ1.
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4.1.1 Discretization of Boltzmann equation

The discretization of the Boltzmann equation, Eq. 4.1, requires a transformation of the phase space

into a discrete domain. Because the LBM originates from the lattice gas automata (LGA), the phase

space is divided into lattices that accommodate the particle populations between each time step. These

particles can only travel to other lattices by determined paths defined by velocity sets.

The velocity space can be discretized by using Hermite polynomials (HE and LUO, 1997), (SHAN et

al., 2006), (PHILIPPI et al., 2006). The discretization then returns a group of lattice directions on which

the particles can move, denominated velocity sets. The velocity sets are commonly classified based on

the number of spatial dimensions and discrete velocities. For two dimensional space and isothermal case,

the most common velocity set that preserves the mass and momentum is the D2Q9 (2 dimensions and

9 directions). While for three-dimensional space and isothermal, it is the D3Q19 (3 dimensions and 19

directions), shown in Fig. 4.1.a , and the D3Q27( 3 dimensions and 27 directions), Fig. 4.1.n.

Figure 4.1 – a) D2Q9 and b) D3Q19 velocity sets.
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Source: Own elaboration.

Another important part related to the velocity space is the discretization of the equilibrium distribu-

tion function, 4.2, which requires that the first moments in the velocity space of the discrete function

being equal to the moments in the continuous velocity space. By using Hermite polynomials expansions

(PHILIPPI et al., 2006):

f eq
i = wiρ

[

1 +
ciαuα
c2s

+
uαuβ

(

ciαciβ − c2sδαβ
)

2c4s

]

(4.4)

where cs is the speed of sound, u is the fluid velocity, ci is the velocity vector and wi is the direction

weight. For the velocity sets previously mentioned (D2Q9, D3Q19, D3Q27), the speed of sound is equal

to 1 /
√
3, while the other constants (ci and wi), are exposed in Table 4.1.

The Eq. 4.1 in the discrete DdQq velocity space can be described as (HE et al., 1998):

∂tfi + ciα∂αfi = Ωi + Fi, i = 0, . . . , q − 1 (4.5)
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Table 4.1 – Weight values for D2Q9 and D3Q19 velocity schemes.

Velocity Set i wi

D2Q9
0 16/36

1 – 4 4/36
5 – 8 1/36

D3Q19
0 12/36

1 – 6 2/36
7 – 18 1/36

Source: Own elaboration.

using the BGK collision operator and with a discretization over time:

fi (x+ ci∆t, t+∆t)− fi (x, t) =

− 1

τ

∫ ∆t

0
[fi (x+ cis, t+ s)− f eq

i (x+ cis, t+ s)] ds+

∫ ∆t

0
Fi (x+ cis, t+ s) ds

(4.6)

with a second order discrete integration scheme is:

fi (x+ ci∆t, t+∆t)− fi (x, t) =− ∆t

2τ
[fi (x+ ci∆t, t+∆t)− f eq

i (x+ ci∆t, t+∆t)]

− ∆t

2τ
[fi (x, t)− f eq

i (x, t)]

+
∆t

2
Fi (x+ ci∆t, t+∆t) + Fi (x, t) +O

(

∆t3
)

(4.7)

adopting the variable change proposed by He et al. (1998):

f̄i = fi +
∆t

2τ
(fi − f eq

i )− ∆t

2
Fi (4.8)

considering ∆t = 1 the Eq. 4.7 becomes:

f̄i (x+ ci∆t, t+∆t) = (1− ω∆t) f̄i (x, t) + ω∆tf eq
i (x, t) +

(

1− ω∆t

2

)

Fi (x, t)∆t (4.9)

where ω is the relaxation frequency defined as the inverse of the relaxation time. Equation 4.9 can be

divided into two operations denominated "Streaming" and "Collision". The collision part is represented

as:

f∗
i (x, t) = (1− ω∆t) f̄i (x, t) + ω∆tf eq

i (x, t) +

(

1− ω∆t

2

)

Fi (x, t)∆t (4.10)

where the particle collisions occur, and the populations on the lattices are calculated, represented by

Fig. 4.2.a. In the second part of the equation denominated streaming, the populations propagate to

neighboring lattices, the right side of Fig. 4.2.b. Both of these operations happen at the same time step.

f̄i (x+ ci∆t, t+∆t) = f∗
i (x, t) (4.11)

Knowing the particle populations is not enough to solve engineering problems. It is also necessary

to know the macroscopic properties: pressure and velocity. These macroscopics can be obtained by

calculating the lower order moments in the velocity space (SILVA and SEMIAO, 2012):

ρ = Π0 =
∑

i

f̄i +
∆t

2

∑

i

Fi (4.12a)

ρuα = Πα =
∑

i

f̄iciα +
∆t

2

∑

i

Ficiα (4.12b)
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Figure 4.2 – Collision–streaming process. On the collision (a) the particles collide and change direction. While on
the streaming step (b) the particles propagate to neighbor lattices.

a) Collision b) Streaming

Source: Own elaboration.

It is also necessary to define the force term presented in Eq. 4.9 and Eq. 4.12. The force can be

obtained the same way as the equilibrium distribution function, through Hermite polynomials expansions

(SHAN et al., 2006). For a second-order discretization, the force term can be approximate as (GUO et

al., 2002):

Fi = wi

[

ciα
c2s

+

(

ciαciβ − c2sδαβ
)

uβ

c4s

]

Fα (4.13)

A critical aspect is that the lattice Boltzmann method can be used to model fluid flow. If the BGK col-

lision operator is utilized, the Boltzmann equation returns the Navier-Stokes equations if the relaxation

time is correlated with the fluid viscosity as (GUO et al., 2002):

η = ρc2s

(

τ − ∆t

2

)

(4.14)

4.1.2 Regularized Lattice Boltzmann Method

One of the methods to increase the accuracy and stability of the lattice Boltzmann method is the pre-

collision regularization proposed by Latt and Chopard (2006). On this approach, instead of propagating

the particle distribution function, it is used the regularized populations. The regularized distribution

function with a force term is defined as:

f reg
i = f eq

i + f
(1)
i (4.15)

where f (1)
i is the second term of expansion fi = f

(0)
i + ǫf

(1)
i + ǫ2f

(2)
i + . . . from the Chapman-Enskog

expansion (BUICK and GREATED, 2000). The term f
(1)
i can be correlated with the force term of the

Boltzmann equation as (LUGARINI et al., 2020):

ǫf
(1)
i ≈ wi

2c4s

[

(

ciαciβ − c2sδαβ
)

∑

i

fneq
i ciαciβ −∆tc2sciαFα

]

(4.16)
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where fneq
i is the non-equilibrium distribution function defined as:

fneq
i = fi − f eq

i (4.17)

using the definition of regularized population, Eq. 4.15, into Eq. 4.10, is obtained the regularized lattice

Boltzmann equation with force term:

f∗
i (x, t) =

(

1− ∆t

τ̄

)

f reg
i (x, t) +

∆t

τ̄
f eq
i (x, t) +

(

1− ∆t

2τ̄

)

Fi (x, t)∆t (4.18)

Another advantage of this method is the local calculation of Πneq
αβ , which correlates to the viscous

stress tensor (SILVA and SEMIAO, 2012), which will be necessary to model a non-Newtonian fluid

behavior.

4.2 Boundary Conditions

In order to correctly simulate a problem is necessary to define what is the fluid’s behavior on the

system’s boundary. In the finite volume method, the macroscopic quantities, such as pressure and veloc-

ity, are defined in the boundary surface. Meanwhile, in the LBM context, this is achieved by changing

how the streaming-collision process behaves in the boundary lattices. On this work mainly three bound-

ary conditions are utilized: symmetry, periodicity, and walls. Here is utilized the D2Q9 scheme for

visualization purposes.

4.2.1 Periodic

The periodic boundary condition considers that the fluid leaving through a surface will resurface on

the opposite surface. It is mainly used to model channel flows or represent periodic arrangements such as

porous media or an array of immersed bodies. In the lattice Boltzmann method is the periodic boundary

condition is computed by a modification of the streaming equation, Eq. 4.11, as (KRÜGER et al., 2017):

fi (x, t) = f∗
i (x+L− ci∆t, t) (4.19)

where L is the domain’s period, implicating that the population leaving in one of the boundaries will be

transported to the boundary on the opposite side, as represented in Fig. 4.3:

Figure 4.3 – Representation of a periodic boundary condition for D2Q9 scheme with a period of L = 7.

f ∗
1 (6, t)

f ∗
5 (6, t)

f ∗
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f8 (0, t)

Source: Own elaboration.
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In the middle node at x = 6, three post-collision populations are leaving the domain (f∗
1 , f

∗
5 and f∗

8 ).

Because no lattices exist outside of the domain and the periodic condition is applied in the east and west

sides, these populations will stream to lattices at x = 0.

4.2.2 Symmetry / Free-slip

The symmetry and free-slip boundary conditions are often used to reduce the domain size. It ap-

plies zero normal velocity through its plane, which can be accomplished in the LBM by reflecting the

streaming of the populations specularly (KRÜGER et al., 2017):

fi (x+ cj∆t, t+∆t) = f∗
i (x, t) (4.20)

where cj = −ci, meaning that the velocity components opposite to the symmetry plane have the signal

reversed. Figure 4.4 represents this condition, applied to the populations f2, f5, and f6.

Figure 4.4 – Representation of a symmetric/free-slip boundary condition for D2Q9 scheme post-collision (a) and
post-streaming (b).
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Source: Own elaboration.

4.2.3 No-Slip

The no-slip boundary condition makes the fluid near a wall have the same velocity as the wall itself.

In the LBM, this condition translates to determining the unknown populations from the wall while also

respecting the no-slip condition. It can be adopted two approaches to solve this problem. The first is the

wet-node, which considers the lattice being approximately in the same position as the boundary, and the

macroscopic condition is imposed. Inside this approach, there are several methods to find the unknown

populations, such as the non-equilibrium bounce-back scheme by Zou and He (1997), which uses the

non-equilibrium populations.

The other approach is the link-wise, in which the boundary is located between a fluid node and a

solid node. The most common method on this approach is the half-way bounce back method. In this

method, the unknown populations are obtained by the reflection back to the original position, as showed

in Fig.4.5.
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Figure 4.5 – Representation of a link-wise no-slip boundary condition in D2Q9 scheme post-collision (a) and post-
streaming (b).
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Source: Own elaboration.

For moving walls, this boundary can mathematically be expressed as (LADD and VERBERG, 2001):

fī (x, t+∆t) = f∗
i (x, t)− 2wiρw

ci · uw

c2s
(4.21)

where ī represents the opposite velocity direction, uw is the wall velocity in x+ ci∆t/2.

One of the LBM problems is about corner treatment, especially in three-dimensional problems,

which can cause some directions to other lattices. The wrong treatment of the corners might not lead to

the mass conservation of the system by removing or adding populations.

4.3 Lattice Boltzmann method for non-Newtonian Fluids

In order to model non-Newtonian fluids in LBM is usually necessary to compute stress tensor and

strain tensor in each lattice. From Silva and Semiao (2012) the viscous stress tensor can be computed as:

σαβ ≈ −
(

1− ∆t

2τ

)

∑

i

(fi − f eq
i ) ciαciβ − ∆t

2

(

1− ∆t

2τ

)

(Fαuβ + uαFβ) =

(

1− ∆t

2τ

)

Tαβ

(4.22)

then the stress tensor can be correlated with the rate of strain-rate tensor γ̇αβ for a generalized Newtonian

fluid, by using the viscosity information from the previous time-step:

γ̇nαβ =
σn
αβ

η (|γ̇|)n−1 (4.23)

where n is the time-step. An option is utilize iterative methods in order to avoid using explicit formu-

lation, Appendix A. With the rate of strain tensor determined in each point, the apparent viscosity on

the next time is determined using the proper constitutive equation of the non-Newtonian fluid. Using a

reordered version of Eq. 4.14 the relaxation frequency ω is determined for the streaming-collision LBM

step is:
1

τ
=

(

η

c2s
+

∆t

2

)−1

= ω (4.24)

For fluids that exhibit yield stress, it is necessary to make some modifications. If the stress is smaller

than the yield stress, it can be numerically modeled as the apparent viscosity tends to infinity, this will



Chapter 4. Numerical Method 45

cause ω → 0. If the stress is greater than the yield stress, then the viscosity is modeled according to the

Eq. 4.24.

4.3.1 Thixotropy modeling

It will be used a structural parameter model to model thixotropy, as mentioned in Chapter 2. On this

approach, the thixotropy is based on the parameter (λ), which determines the structural level of the fluid.

The time-dependency is then described based on the transport evolution equation for λ:

∂λ

∂t
+ ui

∂λ

∂xi
= −k1|γ̇|λ+ k2(1− λ) (4.25)

Derksen and Prashant (2009) utilized explicit finite volume discretization with flux limiter to solve

this transport equation and reduce the numerical diffusion. Derksen and Prashant (2009) pointed out that

it is possible to solve this transport equation in the LBM context, that will be opted in this work in order

to take advantage of the GPU architecture. Equation 4.25 is part of a more general transport equation

that accounts for diffusive terms:

∂λ

∂t
+

∂ (uiλ)

∂xi
=

∂

∂xi

(

D
∂λ

∂xi

)

+ q (4.26)

where D is the diffusive coefficient and q = −fbreak + fbuild. Similar to the lattice Boltzmann method,

this equation can be discretized as (SETA, 2013):

gi (x+ ci∆t, t+∆t) =

(

1− 1

τg

)

gi (x, t) +
1

τg
geqi (x, t) +

(

1− 1

2τg

)

wiq (x, t) (4.27)

geqi = wiλ

(

1 +
ciαuα
c2s

+
(ciαuα)

2

2c4s
− uαuα

2c2s

)

(4.28)

λ =
∑

i

gi +
Qi∆t

2
(4.29)

where through Chapman-Enskog analysis it returns the Eq. 4.26 if:

ωg =
1

τg
=

(

D

c2s
+

∆t

2

)−1

(4.30)

where τg is the relaxation time and D is the diffusion coefficient of the convection-diffusion equation, Eq.

4.26, which only returns the Eq. 4.25 if τg = 0.5. However, adopting a value of 0.5 for the relaxation

time is infeasible due to the nature of LBM, where is unstable for this value and so is necessary to

utilize a value close to it. The method is similar to the one adopted by Guo et al. (2002) with the

Boussinesq approximation for buoyancy or in Malaspinas et al. (2010) and Wang et al. (2019) to transport

the conformation tensor in viscoelastic fluids.

Chopard et al. (2009) underline an issue in using this formulation for the advection-diffusion equa-

tion. It was observed the necessity of correction factor in Eq. 4.27, which will depend on the equilibrium

distribution function chosen. For the equilibrium distribution adopted, the correction factor is:

Fi = −wi

c2s

(

1− 1

2τg

)

ρ

ρf
ci∇pf (4.31)

where ρf is the fluid density and pf is the pressure field. But since a value of τg ≈ 0.5 will be utilized,

the correction factor will be Fi ≈ 0, and consequently, the error if ignored, will be small. In order to
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reduce overall memory usage, will be used reduced velocity set (D3Q7) for the transport of the structural

parameter. According to Ginzburg et al. (2010) this should not be an issue regarding numerical stability

or accuracy based on the results of Wang et al. (2019).

With the structural parameter and the stress tensor determined in every lattice is then possible to

calculate the apparent viscosity and, consequently, the local relaxation frequency based on Eq. 4.24,

which is used in the next time-step. In this work, the thixotropic model adopted is a simplified version

of the one proposed by (HOUSKA, 1981), which is reproduced below:

σ = η(γ̇, λ)γ̇, (4.32a)

η(γ̇, λ) =

{

∞ , |σ|≤ σy

ηp + τy|γ̇| , |σ|> σy
(4.32b)

σy = λσy,0 + (1− λ)σy,∞ (4.32c)

∂λ

∂t
+ ui

∂λ

∂xi
= −k1λ|γ̇|+k2(1− λ) (4.32d)

The model adopted has five constants: k1 represents the breakdown rate caused by shear, k2 is the

build-up parameter, ηp is the plastic viscosity, σy,0 and σy,∞ the static and dynamic yield stress. Through

some algebraic manipulation, for this constitutive equation, is possible to avoid the different time steps

in Eq. 4.23. The relaxation frequency is then defined as, Appendix A:

ω = ωpmax

(

0, 1− λσy,0 + (1− λ)σy,∞
|T |

)

(4.33)

where ωp = (1/2 + 3ηp)
−1 and T is the auxiliary stress tensor from the Eq. 4.22:

|σ|≈
(

1− ∆t

2τ

)

|T | (4.34)

4.4 Immersed Boundary Method

4.4.1 Continuous IBM

The Immersed Boundary Method (IBM) was developed by Peskin (1972) in order to study the blood

flow patterns inside a heart. In this method, a body force term is added to the momentum transport

equations and with its location in the surface of a immersed boundary. The force magnitude and direction

is defined to exert in the flow the same effects that wall would apply, i.e.: no-penetration and no-slip.

This boundary is then composed of Lagrangian poins (Γ), that must have the same velocity as the fluid

in order to satisfy the non-slip boundary condition, hence:

∂X (s, t)

∂t
= u (X (s, t) , t) (4.35)

where u is the fluid velocity on the boundary node location and X (s, t) is the Lagrangian surface

coordinates. The body force defined in the Lagrangian surface it is then transferred to the fluid domain

(Θ):

FE (x, t) =

∫

Γ
F L (s, t) δ (x−X (s, t)) ds (4.36)
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where δ (x−X (s, t)) is the Dirac delta function. Meanwhile, this same transformation can be applied

for no-slip condition:
∂X (s, t)

∂t
=

∫

Θ
u (x, t) δ (x−X (s, t)) dx (4.37)

4.4.2 Discretized IBM

The first implementation of IBM simultaneously with LBM was presented in the work of Feng and

Michaelides (2004), which was discretization of the Lagrangian surface in set of Lagrangian points over

the Eulerian Mesh utilized in the LBM, represented in Fig. 4.6.

Figure 4.6 – Representation of Lagrangian (X (s, t)) and Eulerian lattices (x) and respective forces (FL and FE).

FL

FE

Lagrangian
Node –X (s, t) Eulerian Node – x

Source: Own elaboration.

The black dots, in the coordinate x, represent the lattice nodes and are used in the lattice Boltzmann

method. Meanwhile, the blue dots of index s and coordinate X (s, t), denote the Lagrangian nodes and

are part of the immersed boundary method. Each of these nodes has a respective body force acting on

them. F L (s, t) is the force exerted by the Lagrangian node s while FE (x, t) is the body force suffered

the fluid in the Eulerian domain (Θ).

The continuous Dirac delta function has a value different than zero in just one point. Because of

this, the force distribution will only affect the fluid when the position of a Lagrangian node is the same

as the Eulerian if this definition is used in a discrete domain. The Dirac delta function then needs to be

modified to affect a specific area in order to work around this problem. The Dirac delta function can be

mollified for a tridimensional system as (PESKIN, 2002):

̺ (x−X (s, t)) =
1

h3
φ

(

x−X

h

)

φ

(

y − Y

h

)

φ

(

z − Z

h

)

(4.38)

where some of the kernels (φ) formulated by Peskin are:

φ2 (r) =

{

1− |r| 0 ≤ |r|≤ 1

0 1 < |r|
(4.39)
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φ4 (r) =























1
8

(

3− 2|r|+
√

1 + 4|r|−4|r|2
)

0 ≤ |r|≤ 1

1
8

(

5− 2|r|−
√

−7 + 12|r|−4|r|2
)

1 < |r|≤ 2

0 2 < |r|

(4.40)

with r being the distance between the Lagrangian node and the Eulerian lattice and h is the lattice

size. The φ4, when compared with φ2 features a smooth distribution, Fig. 4.7.a, but increases the

computational load due to the presence of roots and powers. It also affects more lattices, 16 vs 4 in 2

dimensions and 64 vs 8 in 3 dimensions as represented in Fig. 4.7.b. With the same number of points,

Figure 4.7 – Effect of distribution kernel – a) Kernel magnitude as a function of r. b) Bi-dimensional area of effect
of the kernels around a Lagrangian node.
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Source: Own elaboration.

φ2 introduces a higher body force in the lattice node when compared to φ4, consequently, it attributes

a sharper behavior of φ2 when compared with the diffusive effect of φ4, which spreads the force over

a higher number of lattice nodes. It is opted to utilize the φ4 kernel because it offers an increase in the

numerical stability for moving particles.

After defining the Dirac delta function for a discrete system is possible to proceed with the derivation

of the discrete immersed boundary equations. From the definition of fluid velocity, Eq. 4.35, is possible

to separate in two terms, velocity without the force and force correction term:

uE =
1

ρ

∑

i

f̄iciα +
∆t

2ρ

∑

i

Ficiα = uE,noF +
∆t

2ρ
FE (4.41)

Equation 4.36 can then be discretized as:

FE =
∑

L

F L̺ (x−X)∆S (4.42)

where ∆S is the surface area of the Lagrangian node. The no-slip condition, Eq. 4.37, can also be

discretized as:

uL =
∑

E

uE̺ (x−X)h3 (4.43)
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substituting the Eq. 4.41 and 4.42 in the Eq. 4.43, and after some algebraic manipulation:

uL =
∑

E

uE,noF̺ (x−X)h3 +
∑

E

[

∑

L

∆t

2ρ
F L̺ (x−X)∆S

]

̺ (x−X)h3 (4.44)

The linear system can be solved by matrix inversion (WU and SHU, 2010), which for fixed boundaries

will stay the same during the simulation. However, for moving boundaries, it is necessary to determine a

new matrix for each time step, which is a cumbersome task, and for large domains and nodes would not

be viable.

In order to avoid matrix inversion, it is possible to utilize iterative methods to determine the force.

One of the methods is the implicit direct forcing method with the diffuse interface used by Kang and Has-

san (2011). The method can be improved with a successive relaxation parameter(ε) proposed by Dash

et al. (2014). In this method, after the LBM streaming step, the uncorrected velocities are calculated,

without the IBM force term:

uE,noF =
1

ρ

∑

i

fici (4.45)

followed by the calculation of the unforced velocity in the Lagrangian node as

uL,0 =
∑

E

uE,0̺ (x−X)h3 (4.46)

then the iterative procedure begins, with sub-step m. The first step is the evaluation of the force on the

boundary node:

F L,m+1 = 2ρ
uL,m −

∑

E uE,m̺ (x−X)h3

∆t
(4.47)

then the force is distributed to Eulerian lattices:

FE,m =
∑

L

F L,m̺ (x−X)∆S (4.48)

The fluid velocities are recalculated with the force correction term:

uE,m = uE,m−1 +
∆t

2ρ
FE,m (4.49)

and finally, the velocity on the boundary nodes is recalculated:

uL,m =
∑

E

uE,m̺ (x−X)h3 (4.50)

The algorithm returns to the step represented by Eq. 4.47 and repeats the process. Dash et al. (2014)

proposed use of |∆t
2ρF

E,m|≦ 10−6 as a stop criterion for the iterative process to ensure the no-slip

condition in the wall. Dash et al. (2014) pointed out the necessity of number of sub-steps between 20

and 30 to ensure the no-slip condition in the wall. Finally, the term
∑

m FE,m will correspond to the

force necessary to accelerate the fluid from a situation where the immersed boundary does not exist to a

state where it exist, in a single time step. Chapter 5 will be verified the necessary number of sub-steps.
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4.5 Particle Dynamics

It is necessary to describe its dynamics equations in order to model the movement of a particle inside

the fluid. Due to the IBM’s nature, the fluid flow inside the immersed boundary still affects the particle

movement. Some methods were created by researchers, and their differences investigated in the work of

Suzuki and Inamuro (2011), in order to mitigate this problem. Based on their conclusions, the method

chosen is the rigid body approximation of Feng and Michaelides (2009), due to the explicitness and no

constrains regarding density ratios between particle and fluid. Suzuki and Inamuro (2011) recommend

to be careful about its application when there is a significant rotational movement of the immersed body.

Because of their results, where a settling sphere showed no apparent errors, this method was adopted.

4.5.1 Movement

The equation for the translation of one particle immersed in a fluid is defined by Newton’s second

law of motion:

mp
dU

dt
=

∫

Γp
(σ + p) dS + (ρp − ρf ) –Vpg (4.51)

where the integral term of the right side corresponds to the sum of all forces acting the immersed

boundary, while the second term is the buoyancy force, the explicit discrete form is then (FENG and

MICHAELIDES, 2009):

U t+1
p =

(

1 +
ρf
ρp

)

U t
p −

ρf
ρp

U t−1
p +

1

mp



−
∑

Lp

F L∆S + (mp −mf ) g



∆t (4.52)

the negative sign on the force term is due to Newton’s Third Law and F L be the force acting in the

fluid. With the particle velocity defined is possible to determine its center in a given time step by the

trapezoidal rule as:

Xt+1
p = Xt

p +
U t+1

p +U t
p

2
∆t (4.53)

Newton’s second law of motion can also be applied for rotation. Thus the equation is defined as:

Ip
dω

dt
= −

∫

Γp
(X −Xp)× σdS (4.54)

with the discrete form:

ωt+1
p =

(

1 +
ρf
ρp

)

ωt
p −

ρf
ρp

ωt−1
p + I−1

p



−
∑

Lp

(

Xt −Xt
p

)

× F L∆Ss



∆t (4.55)

where I is the inertia tensor of the particle.

After obtaining information of both translation and rotation velocity in the particle’s center of mass

is possible to update the velocity of the nodes that create the particle as:

U t+1
n = U t+1

p + ωt+1
p ×

(

Xt+1
n −Xt+1

p

)

(4.56)

as well its position:

Xt+1
n = Xt+1

p +R
(

Xt
n −Xt

p

)

(4.57)

where R is the rotation matrix around the rotation axis.
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4.5.2 Particle Collision

When two or more particles are modeled in the same spatial domain, it must compute how they will

interact with each other. If no particle collision treatment is done, the boundary of two or more bodies

will penetrate each other. A repulsive force is added when the distance between two particles is less

than a threshold distance in order to avoid the particles to occupy the same space. Feng and Michaelides

(2005) proposed a force term for spherical particles as:

F P
ij =











































[

cij
ǫp

(

‖xi−xj‖−Ri−Rj−ζ

ζ

)2
+

cij
Ep

Ri+Rj−‖xi−xj‖
ζ

]

(

xi−xj

‖xi−xj‖

)

, ‖xi − xj‖ ≤ Ri +Rj

cij
ǫp

(

‖xi−xj‖−Ri−Rj−ζ

ζ

)2 (
xi−xj

‖xi−xj‖

)

, Ri +Rj < ‖xi − xj‖ ≤ Ri +Rj + ζ

0 , ‖xi − xj‖ > Ri +Rj + ζ
(4.58)

where Ri and Rj are the radii of the spheres pair i and j respectively, x is the position of the sphere’s

center, ζ is the threshold distance for the force act, cij is the force scale, ǫ and Ep is the stiffness collision

parameters for field force and overlapping, respectively. In order to model the particle collision with a

wall, virtual sphere is placed symmetrically on the other side of it, then the collision is performed if the

critical distance is satisfied . The definitions for scale and stiffness parameters are described in the work

of Glowinski et al. (2001). The behavior of the collision force based on its parameters is represented in

Fig. 4.8 as a function of the penetration distance δ.

Figure 4.8 – Magnitude of the collision force as a function of penetration distance and calibration parameters.
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When δ/D > 0 it will represent an overlap of the particles, while for δ/D < 0, there will be no

collision. The component cij is chosen to be equal buoyancy force, –V g (ρp − ρf ), like in the work

Feng and Michaelides (2004). The adoption of this value and ǫp = 1 permit that when the particle
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is at rest in the floor, no penetration will be perceived. The reason is that the collision force acting

will be equal to the difference between buoyancy and gravitational forces acting in the particle. The

coefficient Ep will dictate the elastic behavior of the material when an overlap of the particles occurs.

Meanwhile, ζ will represent the area of effect for the collision force and the allowed penetration. Due

to the force being configured in this format, special care is necessary with the relative velocity of the

particles. High velocity can cause a high penetration, leading to a high collision force and consequently

causing instabilities. Two solutions are possible to avoid this problem: reduce the time step or increase

the value of ζ.

4.6 Coupling between methods

The proposed numerical scheme uses different methods to model the settling of a particle in a thixo-

viscoplastic fluid. So it is expected that some coupling occurs between the main equations, which will

mainly occur by forces. First, the coupling between the immersed particle and the fluid occurs through

a body force term imposed by the Lagrangian nodes in Eq. 4.12 and 4.18. In the opposite direction, the

fluid velocity will affect the immersed boundary through Eq. 4.47. The influence of the mass/momentum

transport in the transport of λ occurs through Eq. 4.28. With the inverse direction taking a longer path,

where it first defines the new relaxation frequency, Eq. 4.33, that is used in the majority of the LBM

equations. In Eq. 4.33 there is another coupling, where |T | will depend on the body force applied to the

fluid, which can originate from the IBM.

4.7 Algorithm

The computational routine developed to resolve the numerical method previously described is eluci-

dated in Fig. 4.9. Each step is described as:

1. Parameters Initialization: Domain size is defined. Macroscopic parameters ρ , u and λ are

initialized with an initial value. Lattices are populated with equilibrium distribution function.

Boundary conditions are defined. Particles are converted into a set of Lagrangian nodes.

2. Collision: The collision step is performed according to Eq. 4.10. The collision step for the

structural parameter is also performed.

3. Streaming : The streaming step is performed according to Eq. 4.11. The streaming step for the

structural parameter is also performed.

4. Boundary Conditions: Depending on the lattice locations, the populations are recalculated based

on which boundary conditions are imposed.

5. Macroscopic: Both ρ and u are calculated based on Eq. 4.12 and λ according to 4.29.

6. IBM: If an immersed boundary is presented:

a) Velocity Interpolation: The velocity on the Lagrangian is defined according to Eq. 4.46

b) Lagrangian Force: The Lagrangian force is calculated based on Eq. 4.47.
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c) Eulerian Force: With the force in the Lagrangian nodes defined, it is spread to lattices Eq.

4.48.

d) Velocity Update: With the force defined, the velocity for the Eulerian system can be updated

using the Eq. 4.49 followed by the spread to the Lagrangian velocities, Eq. 4.50

e) Convergence: If the sub-iteration is over a limit of steps, it proceeds to the next time step,

otherwise, it resumes to step 6.a

f) Particle Collision: If a particle collides, the force defined by Eq. 4.58 is applied.

g) Particle Position Update: With all forces defined in the particle, the positions of the La-

grangian nodes are updated according to Eq. 4.52 – 4.57.

7. Stress Tensor: With all populations and forces defined over the fluid space, the stress tensor is

calculated based on Eq. 4.22.

8. Calculate Dλ/Dt: With the stress tensor determined, the rate of change of the structural param-

eter is calculated based on the kinetic equation that relates both breakdown and build-up, RHS of

Eq. 4.25.

9. Calculate η: With the structural parameter and stress tensor determined, the value of the apparent

viscosity is calculated, consequently the relaxation frequency based on Eq. 4.24.

10. Stop Criterion: For transient problems, the simulation ends with a fixed number of time-steps,

which will depend on the problem conditions. If the max duration is not reached, it returns to step

2 on a new time step.

Chapter Summary

In this chapter, it was presented the mathematical and numerical models. It was exposed the discrete

equations necessary for the lattice Boltzmann method and immersed boundary method. Regarding the

particle dynamics, the equations and collision models utilized were presented. Finally, the algorithm

design to build the numerical model was explained. In the next chapter, preliminary verification studies

will be presented.
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Figure 4.9 – Algorithm flowchart.
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5 VALIDATION TESTS

In order to ensure reliability in the developed algorithm is necessary to compare its results with al-

ready consolidated studies in the literature. The first section presents the results for Newtonian fluids,

where the numerical code is compared with the analytical solution for two–dimensional Hagen–Poiseuille

flow in a circular duct. Next, the analysis of the drag coefficient over a sphere in a channel is used to

understand the meshing for the Langrangian nodes. Then, the particle movement is assessed by the set-

tling of one sphere in a closed domain. The test is also used to determine the number of sub-iterations.

The second section presents the results for non-Newtonian fluids. Here, the Hagen–Poiseuille solution

for Power-Law, Bingham, and Thixotropic fluids is utilized to assess the non-Newtonian implementa-

tion. Finally is analyzed the effect of diffusion factor in the advection-diffusion transport equation for

the structural parameter.

5.1 Newtonian Fluid

5.1.1 Hagen–Poiseuille Duct Flow

The first test to assess the method’s accuracy is the Hagen–Poiseuille fluid flow inside a circular duct.

A schematic of the problem is represented in Fig. 5.1, the dots represent the Langrangian nodes of the

IBM and the black square is the frontier of the LBM domain:

Figure 5.1 – Schematic representation of the Hagen–Poiseuille flow in a circular duct.
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Source: Own elaboration.

A cylindrical immersed boundary with diameter D is placed centered inside a square-shaped domain

with sizes L×L×L/8. A constant force field, represented by the vector ~F leaving the plane in the Fig.

5.1, is applied in the z-direction to start the flow. The velocity of the immersed boundary nodes is set

to be equal to 0, to model a stationary wall. Meanwhile, the boundaries of the rectangular domain are

set periodic in the z-direction and for the walls parallel to the force is utilized the halfway bounce-back.

The purpose of this verification is to assess the error convergence rate of the implemented immersed



Chapter 5. Validation tests 56

boundary method. For this, the quadratic error norm is utilized (PENG et al., 2019), defined as:

L2 =

√

∑

(qnum − qref )
2

∑

(qref )
2 (5.1)

where qnum is the value of the numerical results, evaluated only inside the duct, and qref is the reference

value, which for this problem is the analytical solution. The simulations are conducted with τ = 0.9,

ǫ = 0.8, sub-iteration convergence criteria is used 30 sub-timesteps, which is based on the results of

Dash et al. (2014), and using the kernel φ4. The ratio between the Eulerian mesh and Langragian mesh

size (R) was evaluated for values of 0.5, 1, and 2. The dimensional values, number of Lagrangian nodes

for each mesh ratio, force magnitude, and time-steps are presented in Table 5.1 and the L2 error as a

function of the mesh refinement showed in Fig. 5.2.

Table 5.1 – Dimensional parameters utilized for the circular Hagen–Poiseuille flow.

Nx ×Ny ×Nz D R = 0.5 R = 1 R = 2 |~F | Time Steps

32× 32× 4 25 4710 936 521 1.00× 10−4 2000

64× 64× 8 50 9420 2512 702 2.50× 10−5 8000

128× 128× 16 100 28 888 7536 2041 6.25× 10−6 32 000

256× 256× 32 200 97 968 25 120 6594 1.56× 10−6 128 000

Source: Own elaboration.

Figure 5.2 – Quadratic error norm L2 for a Poiseuille duct flow with different meshes ratios.
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Source: Own elaboration.

According to the results, the decay error is strongly dependent on the lattice numbers. The error

decay has an order of approximately O (∆x). The result agrees with the analysis and findings of Peng

et al. (2019), where IBM is only first-order accurate for this case. Refining the Lagrangian mesh did not

have a significant improvement in the accuracy. One possible explanation is that the flow does not have

a velocity component perpendicular to the mesh. Hence there is no fluid penetration in the Lagrangian

mesh. The velocity magnitude for the case where the mesh is 128× 128× 16 is displayed in Fig. 5.3.
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Figure 5.3 – Velocity contour of the flow inside a circular duct formed by IBM (white circle) inside a squared
domain. Nx = Ny = 128, Nz16 and R = 1. The red dashed circles delimit the kernel influence area.
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The Lagrangian mesh used for the IBM is represented by the white circle, with its inner radius

being coincident with the nodes. Inside the duct, the fluid velocity exhibit the parabolic profile with its

maximum velocity being in agreement with the analytical solution. It can seem that still exists a flow in

the region between the Lagrangian nodes and the domain frontier, which is a consequence of the force

field affect all domain. The presence of this flow was reported by Peng et al. (2019) when using the same

boundary conditions.

5.1.2 Fixed Sphere

The second verification test for the immersed boundary method is the laminar flow over a stationary

sphere, and it has the objective to understand how spatial discretization affects the force over a spherical

particle. In this case, the sphere is positioned in a square channel, according to Fig. 5.4:

Figure 5.4 – Geometry of the flow around a fixed sphere.

2L

D

L/2

L/2 3L/2

LU∞

z

y

Source: Own elaboration.
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The sphere with diameter D is positioned in the channel’s centerline at a distance L/2 from the inlet,

the channel has dimensions of L× L× 2L. In the inlet, a prescribed velocity U∞ is imposed with half-

way bounce back method, Eq. 4.21. For the outlet, the same inlet uniform velocity is applied, since in

preliminary tests it only started to affect the significantly when the domain length was lower than 1.5D.

Meanwhile, for other boundaries, the free-slip condition is utilized, Eq. 4.20. Details for spherical mesh

construction can be found in Appendix C.

Due to hardware constraints was not possible to execute simulations without the wall stop affecting

the solution. Hence three blockage ratios (D/L) are evaluated: 1/3, 1/4, and 1/6. Three Reynolds num-

bers were evaluated with the different blockage ratios: 7.5, 100, and 300, with four mesh refinements,

D = 10, 20, 30, and 40 lattice units. The values for U∞ and τ are shown in Table 5.2.

Table 5.2 – Simulation parameters utilized for the drag of a fixed sphere.

D U τ ReD D/L

10 0.1

0.9 7.5

1/3

1/4

1/6

20 0.05

30 0.033

40 0.025

10 0.1

0.53 100

1/3

1/4

1/6

20 0.05

30 0.033

40 0.025

10 0.1

0.51 300

1/3

1/4

1/6

20 0.05

30 0.033

40 0.025

Source: Own elaboration.

Figure 5.5 depicts the results for the drag coefficient as a function of the Reynolds number, the mesh

refinement and the inverse of blockage ratio (D/L). For the Reynolds numbers 7.5 and 100, the drag

coefficient converged as the mesh was refined. For the Reynolds number of 300, the coarse mesh with

D = 10 did not converge, indicating that it is not sufficient to represent the flow structures. Another

aspect is that the drag coefficient for ReD = 300 had a relatively small change with the mesh refinement

when compared with the other Reynolds numbers.

With the decrease of the blockage ratio (D/L) the drag coefficient for all evaluated Reynolds num-

bers approach the values of Morrison’s (2016) correlation. Because the fluid is compressed between the

sphere and the channel walls leading to a increase of the fluid velocity. Consequently, the friction and

the pressure difference between the fore and aft regions of the sphere increases, causing a rise in the drag

coefficient. The ratio between the Langrangian and Eulerian mesh is again evaluated, with the results

presented in Fig. 5.6.

Increasing the ratio d/h, a coarse Langrangian mesh only promoted a change in the drag coefficient

results when the nodes’ distance was higher than 2. When the distance was equal or lesser than 2, the

lattices are always affected by at least two Lagrangian nodes when utilizing the φ4 kernel. Increasing the

separation distance to 3 causes that some lattices will only be affected by one Langragian node, meaning
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Figure 5.5 – Drag coefficient for a fixed sphere in a channel for Reynolds numbers a) ReD = 7.5, b) ReD = 100,
and c) ReD = 300 with three blockage ratios L/D = 6, 4, and 3 as a function of mesh discretization.
d) Represents the convergence towards Morrison’s (2016) external flow correlation values with D =
40 lattices units.
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that this node is the only responsible for ensuring the non-slip condition in that lattice. Consequently, the

force imbalance will be distributed to the neighbor’s lattices, leading to numerical errors. Increasing the

ratio further will imply that no overlap between the kernels will exist and therefore, the no-slip condition

is not satisfied in some nodes. The error increases with the Reynolds number because a higher force is

required to be applied to satisfy the no-slip condition.

5.1.3 One particle settling

The dynamic aspect of the immersed boundary method is tested by investigating the settling of one

particle in a Newtonian fluid and comparing with the experimental results of Cate et al. (2002). The

results for the trajectory and velocity are evaluated for Reynolds numbers ranging from 1.5 to 32. The

geometry of Cate et al. (2002) experiment is shown in Fig. 5.7.
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Figure 5.6 – Effect of ratio between the lattices size (h) and Langrangian nodes (d) drag coefficient for Reynolds
numbers equal to 7.5, 100, and 300.
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Figure 5.7 – Geometry of one particle settling in a Newtonian fluid used by Cate et al. (2002).
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Initially, a spherical particle with a diameter equal to 15mm and density 1120 kgm−3 is positioned

at 120mm from the bottom of a rectangular tank. The tank has dimensions of 100mm × 100mm ×
160mm and it is filled with Newtonian fluid. The half-way bounce-back method is used as a boundary

condition for all the domain frontier. Three meshes with different degrees of refinement are utilized:

1mm, 0.66mm, and 0.5mm. The fluid properties and the simulation parameters for the coarse mesh

∆x = 1mm are exhibited in Table 5.3. The procedure to determine the simulation’s parameters for the

other meshes can be found in Appendix B.

The number of sub-iterations in the immersed boundary method is the first test performed. The test
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Table 5.3 – Fluid properties and simulation parameters for ∆x =1mm

Case ReD ρf [kgm−3] µf [Pa s] τ ∆t [s] g∗

1 1.5 970 0.373 0.90 3.47× 10−4 1.18× 10−3

2 4.1 965 0.212 0.90 6.07× 10−4 3.61× 10−3

3 11.6 962 0.113 0.80 8.51× 10−4 7.11× 10−3

4 31.9 960 0.058 0.65 8.28× 10−4 6.72× 10−3

Source: Own elaboration.

employed the parameters of case 4 with 1, 2, and 3 sub-iterations. The particle sedimentation velocity

results are exposed in Fig. 5.8. There was no perceived difference in the particle velocity when increasing

Figure 5.8 – Effect of the number sub-iterations performed (m) in the immersed boundary method for case 4.
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the number of sub-iterations and a 0.1% difference in the maximum terminal velocity. With only 714

Lagrangian nodes the simulation speed suffered a 20% performance impact when going from 1 to 3 sub-

iterations, 77.7 MLUPS1 versus 63.4 MLUPS, respectively. The performance is expected to decrease as

the number of Lagrangian nodes increases as well as increasing the number of sub-iterations. Based on

these results and considering the performance impacts, the simulations for particle settling will use just

one sub-iteration.

The next test is the verification of the numeric results with the experimental data of Cate et al. (2002).

The particle velocity and trajectory as a function of the time for the cases, listed in Table 5.3, are exposed

in Fig. 5.9 and Fig. 5.10.

As the mesh is refined, the results lean toward the experimental data of Cate et al. (2002), demon-

strating that the code so far is satisfactorily capable of predicting the settling behavior of a spherical

particle in a reasonable range of Reynolds numbers.

1 MLUPS stands for Million lattices updates per second.
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Figure 5.9 – Comparison between the numeric and experimental results of Cate et al. (2002) of the particle velocity
with three mesh refinements. Black: ∆x = 1mm; Red: ∆x = 0.66mm; Blue: ∆x = 0.5mm.
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5.2 Non-Newtonian Fluids

5.2.1 Power-Law and Bingham Hagen-Poiseuille Flow

The first validation with non-Newtonian is the Hagen-Poiseuille flow between two infinite planes.

The geometry of this problem is represented in Fig. 5.11. The no-slip boundary condition in the walls is

formulated based on the half-way bounce-back method. The rest of the domain frontier is set as periodic

conditions to create the aspect of an infinite plate. With the fluid initially at rest, a body force is applied

to start the flow. After a sufficient period, a steady-state is achieved.

Two fluid models are initially evaluated: Power-Law and Bingham and its velocity profile are com-

pared with the analytical solution for this flow (BIRD and STEWART, 2002). For the Power-Law model,

the domain size is fixed at 64×64×4 lattices. The fluid is initialized with τ = 0.6 and one million time-

steps are performed to ensure a steady-state solution. Three Power-Law indexes are evaluated: 0.5, 1.0,

and 1.5. Each of the Power-Law indexes has a corresponding body force of 10−4, 10−5, and 10−7,

respectively. The velocity profile results are shown in Fig. 5.12. The results show that the model can

represent both shear-thickening and shear-thinning behaviors.

Next, the Bingham model is evaluated for this Hagen-Poiseuille flow. The L2 error is evaluated for

four Bingham numbers: 0, 0.23, 0.34, and 0.45. Like the Power-Law fluid, a body force is applied in

the fluid and has a value of 10−5. Only the yield-stress of the fluid is then modified in order to assess

different Bingham numbers, The yield-stress values, as well as the respective domain size and L2, errors

are exposed in Table 5.4.
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Figure 5.10 – Comparison between the numeric and experimental results of Cate et al. (2002) for the particle
trajectory with three mesh refinements. Black: ∆x = 1mm; Red: ∆x = 0.66mm; Blue: ∆x =
0.5mm.
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Figure 5.11 – Schematic representation of Hagen-Poiseuille flow between two parallel plates.
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Table 5.4 – Fluid properties and simulation parameters for Bingham channel flow.

Bn Domain τy L2

0.00 64×64×4 0.00× 10−4 0.02%

0.23 64×64×4 1.44× 10−4 0.18%

0.34 128×128×4 2.16× 10−4 0.57%

0.45 256×256×4 2.89× 10−4 0.72%

Source: Own elaboration.

The steady-state condition is then satisfied after performing one million time steps. For this flow, a

Bingham number of 0.5 corresponds to channel flow plugged. The velocity profiles as a function of the

Bingham numbers are shown in Fig. 5.13.
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Figure 5.12 – Comparison between the obtained numerical results and the analytical solution of the steady-state
velocity profile for Power-Law fluid between two infinite plates with three Power-law index.
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Figure 5.13 – Comparison between the obtained numerical results and the analytical solution of the steady-state
velocity profile for Bingham fluid between two infinite plates with four Bingham numbers.
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The domain size was increased for higher Bingham numbers to obtain a stable simulation. The

increase in the domain size was necessary because, near the walls, there is a high-velocity gradient,

where a small number of lattices are not capable of modeling it correctly. The results demonstrate that

the algorithm is also capable of model fluids that have yield stress.
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5.2.2 Drag in Bingham fluid

In this subsection, the analysis of drag around a fixed sphere is extended for a Bingham fluid. Similar

to the Newtonian case, the sphere is positioned in the center of a rectangular channel. However, in this

case, the sphere is located midway between the inlet and outlet. For the boundary conditions are the

similar to the Newtonian case: Fixed velocity in the inlet and outlet, but with the remain frontiers with

a free-slip condition. The numeric results will be compared with the data obtained by the finite element

method of Blackery and Mitsoulis (1997). The domain utilized was 8D × 8D × 8D, with the sphere’s

diameter being 30 lattice units. τ is kept constant at 0.8, implying an inlet velocity and walls of 3× 10−3

for a Reynolds number of 1. In order to assess the method the Stokes’ drag coefficient is utilized, which

is defined as (BERIS et al., 1985):

CD =
F

6πηUR
(5.2)

The results for the drag coefficient are presented in Table 5.5. The errors are relatively small, considering

the mesh refinement utilized, bounded due to memory constraints. The errors could also be associated

with the low flow velocity necessary to achieve the small Reynolds number and close to zero in the

sphere surface. The small velocity is known for causing convergence problems in the regularized lattice

Boltzmann method (MATTILA et al., 2017).

Table 5.5 – Stokes’ drag coefficient for a fixed sphere in a Bingham fluid.

Bn 0 2.25 9.90 27 90

Present 1.33 6.69 19.3 44.7 131.3

Blackery and Mitsoulis (1997) 1.35 6.04 18.9 44.19 126.4

| (θ − θref ) /θref | × 100% 0.97% 10.8% 2.26% 1.21% 3.87%
Source: Own elaboration.

Another important aspect of this test is to verify the interface between the yielded and unyielded

regions of the flow, represented in Fig. 5.14. As the Bingham number decreases, the yielded zone size

increases because of the reduced stress necessary to break it. The relative velocity vectors, with the

reference in the unyielded fluid, are also represented. The unyielded region produced around the sphere

is truncated toroid, the same format obtained by Beris et al. (1985). The zone is continually being built

and destroyed as the fluid enters and exits the regions with a higher shear rate. These results follow the

existing literature, showing that the method can model both non-Newtonian fluid flows with immersed

bodies.

5.2.3 Thixotropic Poiseuille Flow

The Poiseuille flow of Houska’s fluid can be used to assess the error decay order of the numerical

solution due to the existence of an analytical solution (AHMADPOUR and SADEGHY, 2013). Here,

instead of flow inside a circular duct, it is modeled the flow between two infinite parallel plates separated

by a distance H. The fluid is initially at rest and unstructured; a body force F is then applied over

the domain to initialize the flow. The simulation is carried out until achieving a quasi-steady-state,

λ (x = 0) = 0.999. The analysis is performed for the flow case, where Bn0 = 0.139, Bn∞ = 0.104

and Tx = 12.8. The secondary relaxation frequency is varied from 1.25 to 1.999 98. The velocity
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Figure 5.14 – Velocity vectors (black) and unyielded (gray) / yielded (white) regions for four Bingham numbers a)
2.25, b) 9.90, c) 27, and d) 90 for flow around a fixed sphere and Reynolds number equal to 1. Flow
is from bottom to top.

a) b)

c) d)

Source: Own elaboration.

scale utilized is U0 = FH2/ηp . The numerical results for the velocity and structural parameter profile

represented in Fig. 5.15.a and Fig. 5.15.b respectively show a excellent agreement with the analytical

solution, found in Appendix A.

The unyielded zone is well captured, with the structural parameter reaching the value of 0.999 in

the "plug" region. As shearing the fluid, the structural parameter rapidly decreases until it reaches the

minimal near the wall surface, similar to the results obtained by Ahmadpour & Sadeghy (AHMADPOUR

and SADEGHY, 2013). The L2 error for the velocity and structural parameter field as a function of the

mesh discretization, where is the number of cross-section lattices, and relaxation time for the advection-

diffusion equation is shown in Fig. 5.16.
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Figure 5.15 – Velocity (a) and structural parameter (b) profile for analytical and numerical solutions. N = 128,
Bn0 = 0.139, Bn∞ = 0.104, Tx = 12.8.
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Figure 5.16 – L2-error norm for the Velocity and structural parameter as a function mesh size (a and b) and diffu-
sion coefficient (c and d) respectively.
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When τg is sufficiently high (high diffusion coefficient), the error from the numerical diffusion effect

surpasses the spatial discretization error when the mesh is refined, indicated by the plateaus. As τg

reduces, the dominant error is the spatial one, which makes the overall error initially decay with order 2

for the fluid velocity, Fig. 5.16.a, similar to Malaspinas et al. (2010) and Lugarini et al. (2020), and 1 for
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the structural parameter, Fig. 5.16.b. But when the diffusion error surpass it, the error decay rate reduces.

If the spatial discretization is fixed, the error decay order is approximately 0.75, Fig. 5.16.c, and 0.5,

Fig. 5.16.d, for the velocity and structural parameter field when it is varied the diffusion coefficient. In

this case, decreasing the relaxation time further, τg <0.500 03, did not improve the numerical accuracy,

similarly to the results of Malaspinas et al. (2010), as instabilities in the λ field started to occur near the

yield-surface. Another aspect to point out is that the difference in the error decay orders of fluid velocity

and the structural parameter is not problematic since the magnitude order that D can be varied is superior

to the order range obtained by the spatial discretization. In conclusion, the numerical setup must be such

that the spatial discretization error is superior to the diffusion error, which is achieved by choosing a

sufficiently high relaxation frequency (D ≈ 10−5).

Chapter Summary

In this chapter, the verification results for the numerical method were presented. First was analyzed

the error behavior for Newtonian fluids as a function of mesh parameters. Next was evaluated with

the results for non-Newtonian fluids, with particular attention for the viscoplastic behavior. Finally was

assessed the inherent error of adopting the advection-diffusion transport equation. The results were

considered satisfactory; this allows to conduct the main study of this work: settling in thixo-viscoplastic

fluid.
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6 RESULTS

Here is presented the results for particle settling in a thixo-viscoplastic fluid. First, the results for a

single particle settling, where the influence of the fluid properties in the particle velocity is investigated,

divided when the dynamic Bingham number is equal to zero or not. The results are used to propose a

correlation for the particle terminal velocity as a function of the Bingham and Thixotropic numbers. All

results are presented in dimensionless numbers. The analysis of the dimensionless equations and groups

for this problem can be found in Appendix D. Next the analysis is extended for two particles settling in

the same type of fluid.

6.1 One particle settling

It is considered a spherical particle with diameter D = 25 (lattice units) and a density ratio equal

to 2.65, similar to the cuttings encountered during a drilling operation. Initially, the particle center is

positioned at 18.75D from the bottom in a tank with dimensions 8D × 8D × 20D. The fluid is initially

fully unstructured, represented in Fig. 6.1.

Figure 6.1 – Geometry of the one-particle settling study.
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The particle is released under the action of gravity and settles towards the bottom. In the present

study, focused on the effects of the fluid’s rheology, hence the dynamic and static Bingham numbers, as

well as the kinetic parameters. Based on the characteristic velocity, the Archimedes number is fixed at

139. The yield stress values, as well as the kinetic parameters, are varied in the present study.
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The domain is discretized with 200×200×500 lattice units, and the spherical particle has a diameter

of 25 lattice units. The first relaxation time, responsible for the mass and momentum transport, is kept

constant as 1/ωp = 0.8, while the relaxation time for the λ transport equation is τg = 0.5001.

6.1.1 Case study Bn∞ = 0

First, it is analyzed the velocity and structural parameter field for the case where Bn0 = 0.028,

k∗1 = 2.25, and k∗2 = 1/344. The snapshots of these fields for the times t∗ = 83 and 334 are represented

in Fig. 6.2.

Figure 6.2 – Velocity and structural parameter field for Bn0 = 0.028, k∗1 = 2.25, and k∗2 = 1/344 at times t∗ = 83
and t∗ = 334.
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Source: Own elaboration.

The particle accelerates due to the gravitational force in the initial settling moments until it reaches

a peak velocity. During this stage, the fluid has an almost homogeneous structural parameter value,

Fig. 6.2.c. Consequently, the particle settles with characteristics similar to the Bingham fluid with a

low yield-stress value, e.g., the yield-surface acquiring a shape similar to the Bingham fluids. As time

passes, the fluid build-up and progressively reduces the yield envelope size around the particle, which

can be perceived by the reduced diameter of the unstructured fluid trail behind the particle, Fig. 6.2.b.

The sharp interface in the trail of the structural parameter field, Fig. 6.2.d, occurs because the fluid only

breaks inside the yield-surface, creating two distinct zones: one where the particle traveled and sheared

the fluid (in gray), and another where the fluid did not suffer any kind of shear and only structured itself

(in black).
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After some time, the particle reaches a quasi-steady-state regime (when the unsheared fluid has

λ ≈ 0.95). Here, it is compared two different static Bingham numbers, Bn0 = 0.012 and Bn0 = 0.028,

with the same breakdown and build-up parameters, k∗1 = 2.25 and k∗2 = 1/344. The velocity, shear-rate,

and structural parameter field for these two cases are represented in Fig. 6.3.

Figure 6.3 – Velocity, shear-rate, and structural parameter field for Bn0 = 0.012 and Bn0 = 0.028 with k∗1 = 2.25
and k∗2 = 1/344.
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Source: Own elaboration.

The lower static Bingham number causes an increase in the yielded surface size around the particle,

black regions in Fig. 6.3.a and Fig. 6.3.b. The shape is similar to the one encountered using the Bingham

fluid model. However, there is a difference for the thixotropic case: the broken structural parameter,

which reduces the yield stress, extends the yield surface downstream - causing the appearance of an

asymmetry between the fore and aft sections of the particle. The particle’s uneven position causes the

flow inside the yield envelope to be compressed in the fore section and, consequently, increase the shear-
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rate magnitude. The recirculation zone’s position does not seem to be altered relative to the particle

remaining near its equator. The structural parameter only starts to break when inside the yielded surface,

and it reaches its minimal value in the particle surface, Fig. 6.3.e and Fig. 6.3.f. The exact location

where the fluid-structure rupture occurs can be seen in the Dλ/Dt field, as shown in Fig. 6.4, where the

orange-red regions represent the breakdown zones and the green zones the recovery of the material.

Figure 6.4 – Dλ/Dt field for a) Bn0 = 0.012 and b) Bn0 = 0.028 with k∗1 = 2.25, and k∗2 = 1/344. Red:
Dλ/Dt < 0, Green: Dλ/Dt > 0.

a) Bn0 = 0.012 b) Bn0 = 0.028

Source: Own elaboration.

Despite the fact that the highest shear-rate is near the particle’s equator, as seen in Fig. 6.3, the fluid is

mostly broken in its fore section, which corresponds to the zone where the settling particle displaces the

fluid. Consequently, the fluid passing through this region will have a structural parameter close to 0 when

near the particle surface. The high shear-rate will be responsible for keeping the structural parameter in

an equilibrium state, where its recovery balances the fluid breakdown.

There are another two regions where this equilibrium state will occur: the first is in the edge of

the recirculation zone, which inherently has a reduced shear-rate, causing the fluid to restructure. After

the fluid leaves the recirculation, it moves to a higher shear-rate region and starts to break up again.

Further downstream, the other transition occurs when the material that was sheared in the fore section

and transported to a less shear-rate region. Here, the material is mainly unstructured, and consequently,

it has a higher build-up rate. The fore-aft asymmetry then increases the distance between the particle and

the yield envelope; therefore, the fluid has more space to flow, reducing the shear rate. The combination

of these two effects causes the fluid to build-up past the end of the particle. When the particle settles

further, the aft section’s fluid will yield, and consequently will only age since it does not shear anymore.

Increasing the material’s static yield stress raised the shear intensity in the fore section because the

yielded envelope reduced in size, despite having a lower settling rate. The balance between the structure

breakdown and the fluid yield-stress near the yield surface causes a parallel alignment in the mid-section

with the settling direction. The yield surface then starts to curve back when the fluid transits from

breakdown to recovering. The particle velocity response will depend on these different flows inside the

yield envelope, which depend on the model’s parameters.
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6.1.1.1 Effect of the build-up parameter k∗
2

In the first analysis of the parameters’ effect in the particle velocity, the dynamic Bingham number

(Bn∞) is kept constant at 0, while three build-up parameters are compared with a static Bingham number

(Bn0) ranging from 0.012 to 0.05. Due to the relatively short settling time, the build-up parameter is high:

1/344, 1/688, and 1/2158. The results for the particle velocity and undisturbed structural parameter

(fluid which did not suffer shear) values, represented by a dashed line, are presented in Fig. 6.5.

Figure 6.5 – Particle settling velocity over time as a function of the static Bingham number for three different
build-up rates. a) k∗2 = 1/2158 b) k∗2 = 1/688 c) k∗2 = 1/344.
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First, during the acceleration phase, the particle reaches a peak velocity and afterward decay towards

its terminal velocity. It is observed that for a lower build-up parameter, Fig. 6.5.a, the time to reach

this peak velocity is weakly affected by the fluid static yield-stress. While for faster build-up fluids,

Fig. 6.5.c, the static yield-stress has a more substantial effect in the time to reach the peak velocity,

which occurs because during the acceleration phase, the fluid can be assumed as Newtonian (λ ≈ 0),

and the particle has approximately a constant acceleration. As the fluid starts to restructure, the plastic

effects begin to rise, and consequently, the drag increases and initiate the particle deceleration sooner.

Increasing the static Bingham numbers causes the peak velocity to have reduced magnitude; hence the

time to achieve this peak will occur sooner.

The particle then proceeds with its deceleration until it reaches a quasi-steady-state (λ∞ > 0.95)
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regime and posteriorly collides with the domain’s floor. A true steady-state would only be achieved when

the undisturbed fluid is fully structured (λ∞ = 1), which will only occur in an infinite time. Instead, it

is noted that for studied cases, the particle velocity has a 1% difference when λ∞ ≈ 0.95 and 5% when

λ∞ ≈ 0.85 from a theoretical terminal velocity, adjusted from exponential decay, independently of the

static Bingham number. Higher build-up rates also caused a reduced time to reach the quasi-steady state

velocity. For some cases, when the static Bingham number and build-up parameter are small, the particle

collied with the domain floor before reaching its terminal velocity.

6.1.1.2 Effect of the breakdown parameter k∗
1

In this subsection is evaluated the effects of the breakdown parameter (k∗1) in the settling velocity.

The Bn∞ is kept equal to zero, while the Bn0 is 0.028 and 0.053. The breakdown parameter is varied

from 0.025 to 5.5, and the results are reported in Fig. 6.6.

Figure 6.6 – Particle settling velocity over time as a function of the breakdown parameter (k1) for two static Bing-
ham numbers. a) Bn0 = 0.028 b) Bn0 = 0.053.
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The increase in the breakdown rate also increases the particle velocity because the particle creates

a shear zone in its front, which breaks the fluid and reduces yield stress perceived by the particle on its

surface. For Bn0 = 0.028, the maximum yield number would be approximately 0.083. Independently of

the breakdown parameter value, the particle always achieved a finite terminal velocity. As the breakdown

parameter decreases, the particle terminal velocity asymptotically approaches the terminal velocity of a

Bingham fluid with Bn0 = Bn∞, as shown in Fig. 6.7.

For higher values of k∗1 there is also an indication that the terminal velocity asymptotically converges

towards a fixed velocity value, corresponding to the velocity in an entirely unstructured fluid (λ = 0).

When the fluid presents a higher breakdown parameter, the steady-state value of λ leans towards 0.

Consequently, the terminal velocity will also have a value close to what would experience in a fully

unstructured fluid, which can be seen in Fig. 6.8, where a significant part of the fluid inside the yielded

region has a lower structural parameter value.

Another aspect is the yield surface format, which stretches in the trajectory direction with a higher

breakdown rate. Downstream, where the fluid leaves the yielded region, the fluid still retains its lower
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Figure 6.7 – Particle terminal velocity as a function of the breakdown parameter (k1) for two static Bingham
numbers (0.028 and 0.053). Dashed line represent the terminal velocity in a Bingham fluid with
Bn = 0.028.
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Figure 6.8 – Structural parameter field and yield surface (red) at t∗ = 830 and Bn0 = 0.028 for two different
breakdown parameters a) k∗1 = 0.5; b) k∗1 = 2.25.
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structural parameter value. Consequently, if a second particle settles in that path, it will perceive this

reduced yield stress and will lead to an increase in its settling velocity, as noted in experimental results

in thixotropic fluids (GHEISSARY and BRULE, 1996)(MOSELEY et al., 2019).

When Bn0 = 0.053, the theoretical maximum yield number would be 0.157. Due to this, there are

some cases where the particle is retained by the fluid, as shown in Fig. 6.6. The time-evolution of the

yield-surface with the velocity field is presented in Fig. 6.9 in order to understand the phenomenon.

Initially, the yield-surface acquire the characteristic shape of viscoplastic fluids. As time progresses,

the particle decelerates and the unyielded regions, caps, and near the equator grow in size. After a

point, the equatorial unyielded zone connects with the external unyielded fluid downstream. The result

is distinct from the Bingham results of Wachs and Frigaard (2016), where the yield-surface uniformly
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Figure 6.9 – Yielded (white) and unyielded (gray) zones for Bn0 = 0.053 , Bn∞ = 0.0 , k1 = 0.5, and k2 = 1/344
for different times and unscaled velocity vectors; a) t∗ = 330, b) t∗ = 497 c) t∗ = 662, d) t∗ = 704.
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c) d)

Source: Own elaboration.

collapsed. The yield surface collapse mechanism’s difference can be explained by returning to the dλ/dt

field, Fig. 6.4. The breakdown zone after the recirculation zones ceases to exist due to the reduced

shear-rate, causing the material to further structure. Consequently, when the material that passed through

the recirculation zone hits the aft section it will have higher yield stress and yielding, blocking the flow

inside the yield envelope. Afterward, the fluid movement near the particle stops, leading to an increase

in the drag force until the particle ceases to move. Further analysis of the yield-surface evolution beyond

this point was impossible because spatial resolution constraints forbid this fine since the yielded fluid

region’s scale is similar to the lattice size.

6.1.2 Case study Bn∞ 6= 0

Here is evaluated the effects of the dynamic yield stress in the particle velocity. The effects are

assessed for three build-up parameters and three static yield-stress values. The results for the particle



Chapter 6. Results 77

velocity are shown in Fig. 6.10. The breakdown parameter was kept constant at k1 = 2.25.

Figure 6.10 – Particle velocity as a function of dynamic yield stress. +Bn∞ = 0.0, ◦Bn∞ = 0.25Bn0, ∗Bn∞ =
0.5Bn0, Bn∞ = Bn0
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It is noticed that by increasing the dynamic yield stress the particle velocity decreases, resulting from

the overall increase in the flow’s plastic effects. Another aspect is that dynamic yield stress reduced the

particle’s peak velocity compared with the terminal velocity. Increasing the Bingham ratio made the

terminal velocity leans towards the value achieved in a Bingham fluid (Bn∞ = Bn0), stronger when the

Bn0 increases. A particular case occurs when Bn0 = 0.46, which should not flow in the Bingham model,

however for lower build-up rates, it still settles except when Bn∞ = 0.5Bn0 = 0.23 and k∗2 = 1/344,

where the particle leans towards a cease of movement. Meaning that average yield stress around the

particle was enough to cause this condition.
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6.1.2.1 Numerical correlation

Finally, based on the numerical results, it is proposed a correlation for terminal velocity as a function

of the Thixotropic number, static and dynamic Bingham numbers. As previously noted, the particle

velocity will always be limited between two velocities, which corresponds to viscoplastic fluid with

Bingham numbers between Bn0 and Bn∞. With that in mind, the proposed correlation utilizes a new

variable, denominated effective structural parameter, which is responsible for translating between these

two states:

U = λeffU
∗ (Bn0) + (1− λeff)U

∗ (Bn∞) (6.1)

where λeff is the effective structural parameter, U (Bn0) and U (Bn∞) is the particle terminal velocity in a

Bingham fluid with Bingham number equal to Bn0 and Bn∞, respectively. The effects of the breakdown

and build-up parameter are consolidated in the Thixotropic number, which will have an S-shape in semi-

log scale, based on Fig. 6.7, which translates initially to:

λeff = 1− Tx
Tx + a

(6.2)

Its value then needs to be scaled when Tx → ∞, which is made by an approximation using the results

when Tx = 1550 and Bn∞ = 0, shown in Fig. 6.11.

Figure 6.11 – Particle terminal velocity as function of the static Bingham number for Bn∞ = 0 and Bn∞ = Bn0
with Tx = 1550.
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The result can be approximated by a power decay f(Bn0) = c(Bn0)
d + e . For static Bingham

number values superior to 0.12, the particle reached a state that could be considered retained by the

fluid, which is approximately three times the necessary yield stress to retain the particle compared with

a Bingham fluid model.

To account for the effect of a higher Bn∞ in the terminal velocity, it was investigated its effect in the

two Thixotropic numbers ( Tx = 34 and 755), the results are represented in Fig. 6.12.

As the Bingham number ratio increases, the effective structural parameter linearly decreases until

the yield stress ratio gets closes to 1, where it abruptly converges towards 0. To account for this effect

in Eq. 6.1 it is utilized a linear approximation that is independent of the Thixotropic number. The lack
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Figure 6.12 – The effective structural parameter value as a function of the Bingham ratio for Tx = 34 and 755.
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of the asymptote in the linear approximation does not generate a considerable error in the velocity result

since for Bingham ratios close to a unit, the velocities will approximately equal. As a result, the final

correlation for the effective structural parameter is:

λeff = 1− Tx
Tx + a

[

1 + b

(

Bn∞
Bn0

)]

[

c(Bn0)
d + e

]

(6.3)

With the present numerical results, a regression analysis returns the fitting parameters: a = 105, b =

0.75, c = −2.57, d = 0.15, and e = 1.87. The comparison between the numerical results and the

calculated results from the Eq. 6.3 are shown in Fig. 6.13, where the dashed lines represent the relative

error of ± 10%. The adjusted R2 obtained by this correlation was 0.9860, with the tabulated numerical

results data for the terminal velocity in Appendix E. The correlation should capture all the behaviors

observed in the cases analyzed, with the only exception being the cease of the particle motion.

6.2 Two particle settling

In this section, the previous study is extended for a two-particle system configuration. A schematic

representation of the problem geometry is represented in Fig. 6.14. The particle and fluid properties are

the same as the one-particle configuration. In this study, the trailing particle is positioned 43.4D from

the bottom of the tank, which has dimensions of 7.5D× 7.5D× 45D. The center of the leading particle

is then positioned a distance W from the tailing particle center. It also exists an offset of 0.02 D in the

horizontal alignment to induce perturbation when the particles collide.

For this settling configuration, the domain is discretized with a lattice size of h = 0.2 mm, as

consequence, the domain has a size of 150 × 150 × 900 lattice units, and the spherical particles have a

diameter of 20 lattice units. In all cases, the lattice viscosity is kept constant as 0.1 (1/ωp = 0.8), which

leads to a time-step of 4× 10−5s and a lattice gravity acceleration of g∗ = 7.85× 10−5. The relaxation

time for the λ transport equation is τg = 0.5001.
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Figure 6.13 – Comparison between the obtained terminal velocity results and the correlated ones. Dashed lines
represent the relative error of ±10%.
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6.2.1 Bingham cases Bn∞ = Bn0

First is investigated the settling in a Bingham fluid, which will provide a base for future comparisons

in order to understand two-particle thixotropic settling. The settling is assessed for three Bingham num-

bers: Bn = 0.0031, 0.0093, and 0.0278 and with an initial separation distance of W = 2D. Figure 6.15

shows the results for the particle velocities and the separation over time.

Based on these results, it is possible to differentiate three regimes. The first regime occurs for low

Bingham numbers, where the DKT process develops. The trailing and leading particles had a higher

velocity than the settling of a single sphere. because the new flow configuration of the sphere pair

reduces the drag effect. After the collision, the trailing slowly tumbles and finally collides with the

domain floor. The second regime occurred for intermediate Bingham numbers. In this regime, the

particles still draft but do not collide with each other. Here a the trailing particle moves towards the

leading particle until they reach a critical distance and remain stable in this position without collision,

as seen by the relative distance between the particles. In the final regime, for high Bingham numbers,

there is no relative velocity between the settling particles, meaning that they start from a stable position.

Therefore, it suggests that exists a minimal stable distance on which the particles will not perform the

DKT process, which will be a function of the Bingham number. Figure 6.16 shows the flow around the

particles for these two stable state regimes.

Differently from the settling of a single sphere, the yielded surfaces of the particles connect in the

central region while a larger external yielded surface surges. Resulting in the rise of new internal un-

yielding regions, reported by Liu et al. (2003) and Prashant and Derksen (2011). The first unyielded
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Figure 6.14 – Geometry of the two particle settling study.
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region is located in the midplane away from the particles, assuming a toroidal shape. Meanwhile, the

second is located in the central region between the particle centers.

6.2.2 Effect of the initial separation distance W ∗
0

The first evaluation of the dual particle settling in a thixo-viscoplastic fluid is for the case where

Bn∞ = 0 and with different initial distances, ranging from W ∗
0 = 2 to 5. The breakdown and build-

up parameters are k∗1 = 3 and k∗2 = 1/650, while the static Bingham number is Bn0 = 0.0278. The

temporal evolution of the structural parameter field and yield surface when W ∗
0 = 5 is shown in Fig.

6.17.

During the early settling stages (t∗ = 104), Fig. 6.17.a, the fluid is still weakly structured (λ ≈ 0.15),

which causes the yield zone to extend until the walls. Its shape exhibit the characteristic form which

occurred for the Bingham fluid case. As time passes (t∗ = 363), Fig. 6.17.b, the increase in fluid

structuring level causes the yield surface in the side of the leading particle to shrink. Meanwhile, the

yield surface in the trailing particle remains practically the same size. The difference in size results in

a yield surface with a slope, in agreement with the structural parameter field. The unsheared fluid then

forces the yield surface of the trailing particle to shrink, according to the structural parameter field. The

particles continue to settle until a point (t∗ = 623),Fig. 6.17.c, where the slope is low enough, and the

particles are close enough, that the stress caused by both displace the outside unyielding fluid. Causing

an acceleration in both particles, which can be seen in Fig. 6.18.a through c. The only exception being

for W ∗
0 = 2, because of the already initial proximity between the particles.

The trailing particle then continues to drift towards the leading one (t∗ = 881), Fig. 6.17.d, until
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Figure 6.15 – Left: Settling velocity for © - trailing and △ - leading particle; Right: Particle center distance;
a) Bn = 0.0031; b) Bn = 0.0093; c) Bn = 0.0278
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it collides. The tumbling then begins, which is perceived by the increase in the velocity of the trilling

particle while maintaining the same relative distance. With the tumbling finished, the particles separate

and settle with the same velocity towards the bottom in a side-by-side configuration. The side-by-side

settling then can be explained as follow: if one of the particles is in a lower position, it will experience

a higher resistance by the fluid, which reduces its velocity. Meanwhile, the particle in a higher position

would felt a lower drag because the fluid is being broke by the lower particle and consequently acceler-

ates. As a result, the particles reach a periodic state where both have the same average terminal velocity

and vertical position.

W ∗
0 = 2 is meaningful because it allows comparing the terminal velocity with results obtained for a

single particle settling. Utilizing Eq.6.3, the terminal velocity for this case would be U∗
t = 0.0126 for

a single particle, meanwhile for the dual particle settling, the terminal velocity was U∗
t = 0.0148, an

increase of 17%.
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Figure 6.16 – Yielded (white) and unyielded (gray) zones for a) Bn = 0.0093 and b) Bn = 0.0278 with unscaled
velocity vectors for two particle settling in a Bingham fluid.
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Source: Own elaboration.

6.2.3 Effect of the dynamic yield stress

Next is evaluated the effects of the dynamic yield stress in the settling of two particles. The static

Bingham number is fixed in 0.046, while the dynamic Bingham number varies from 0 to 0.023. The

initial separation distance is equal to 3D, while the remaining parameters are equal to the previous

results. The results for the particle velocities and relative distance are shown in Fig. 6.19.

In Fig. 6.19.a, where Bn∞ = 0, is observed the same DKT behavior from the separation distance

analysis. The differences when compared with Fig. 6.18.c, Bn0 = 0.046 versus Bn0 = 0.028, is a lower

terminal velocity and a deceleration of the trailing particle during the drafting. It does not appear that

the increase in the static yield number influenced the time for the collision between the particles. But

decreased the tumbling duration in almost half. It is unclear if this is due to different yield stress or the

chaotic behavior of the double particle system.

Increasing to dynamic yield stress to Bn∞ = 0.015 reduced the initial peak velocity for both par-

ticles, similar to what was observed for the single-particle case. With the initial separation distance of

W ∗
0 = 3 , the yield surface to connected in the central annular region, Fig. 6.20 (t∗ = 647), similar to the

Bingham results from Liu et al. (2003). However, this was enough to reduce the drag force and reduce

the particle distance over time. When the distance between the particles reduces beyond a certain point

(t∗ = 1942), the external yield surface saw in the Bingham case shows up and will increase the velocity

of both particles, as seen in Fig. 6.19.b. For this case, the tumbling duration was short, which led the

particles to a side-by-side configuration, and consequently, a decrease in the velocity.

The final case is when Bn∞ = 0.023. Here the initial yield surfaces around the particles connect

in the same annular central region as in the previous case. However, differently from the previous case,

where the particles reduce the separation distance over time, here the trailing particle increases this

separation distance, which may be attributed to a combination of the lower terminal velocity and the

higher structural parameter between the particles. That causes the drag force of the leading particle to be
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Figure 6.17 – Time evolution of structural parameter field and yield surface (red). Bn∞ = 0.0, Bn0 = 0.0278,
k∗1 = 3, k∗2 = 1/650, and W ∗

0 = 5.
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Source: Own elaboration.

lower than the trailing one.

6.2.4 Effect of the breakdown parameter k∗
1

The evaluation of thixotropic effects is performed for the breakdown parameter k∗1 with values equal

to 4, 2, 1, and 0.5. The initial separation distance is W ∗
0 = 3 and the build-up parameter is k∗2 = 1/650.

The static and dynamic Bingham numbers are respectively equal to 0.0278 and 0. The results for the

particle velocities and trajectories are shown in Fig. 6.21.

The first observation, based on these cases, is that as the breakdown parameter decreases the time

for the collision between the particles increases because the leading particle breaks the fluid with higher

intensity, and consequently, the trailing particle perceives a reduced viscosity that increases its relative

velocity.

Two regimes can be described in the studied range of the breakdown parameter. The first is for high
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Figure 6.18 – Left: Settling velocity for © - trailing and △ - leading particle; Right: Particle center distance;
a) W ∗

0 = 5; b) W ∗
0 = 4; c) W ∗

0 = 3; d) W ∗
0 = 2;
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values of k∗1 , represented in Fig. 6.21.a and b. In this regime, the breakdown rate is high enough to

permit the lateral movement of the trailing particle, which leads to the observation of the DKT process.

The second regime occurs for low values of k∗1 , represented in Fig. 6.21.d and c. Here the trailing

particle performs the draft until it collides with the leading particle. Nevertheless, after the collision,

it does not perform the tumbling process. A possible explanation can be obtained by analyzing the

structural parameter field, shown in Fig. 6.22.

Here it can be seen the difference between the two regimes. In the second regime the DKT process

is not completed is that the leading particle creates a narrow path of reduced viscosity, as seen previously
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Figure 6.19 – Left: Settling velocity for © - trailing and △ - leading particle; Right: Particle center distance;
a) Bn∞/Bn0 = 0; b) Bn∞/Bn0 = 0.3; c) Bn∞/Bn0 = 0.5;
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in Fig. 6.8.a. As a consequence, the trailing particle is trapped in this path. The reason is that when the

trailing particle starts its lateral movement, it encounters a region of higher viscosity while leaving one

of reduced viscosity empty in the opposite direction. Since the particle seeks the path of least resistance

to settle, it will return to the previous position, creating a stable system where both particles settle in

a vertical alignment. When they finally collide with the domain floor, the trailing particle can finally

tumble if existed a lateral displacement to the leading one, 6.21.c, or remain stacked one over the other,

6.21.d.

6.2.5 Build-up parameter k∗
2 and cease of movement

To investigate the ability of the fluid to retain the particle is necessary to reduce the breakdown

parameter while also increase the build-up rate. For that is used the same fluid conditions for a single

sphere where was observed a cease of particle movement, Fig. 6.7. The breakdown parameter for that

case k∗1 = 0.25 and the build-up parameter was k∗2 = 1/344, while the yield stresses are Bn∞ = 0 and

Bn0 = 0.053. Since that for this condition is know that a single particle will be retained by the fluid, the

introduction of the second particle will only affect if both are close together. For that is again evaluated
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Figure 6.20 – Time evolution of structural parameter field and yield surface (red). Bn∞ = 0.015, Bn0 = 0.046,
k∗1 = 3, and k∗2 = 1/650.
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the initial separation distance, which will range from W ∗
0 = 3 to 1.05. The results are presented in Fig.

6.23.

In Fig.6.23.a the particles initially approach each other while the fluid is still unstructured. After

the fluid is broke by the leading particle it starts to restructure, increasing the structural parameter, and

consequently, the yield stress, as seen in the previous images. The structuring level downstream then can

be associated as a function of distance from the leading particle. Making that a particle with a higher

separation distance will perceive a higher structuring level of the material causing it to have a lower

velocity. If the separation distance is large enough, the trailing particle will still be retained by the fluid.

In the other two cases, where the separation decreased, the trailing particle was not retained by fluid and

accelerate both itself and the leading particle. As a result, the capacity of a thixo-viscoplastic fluid to

hold particles is not only determined by its properties but also the distance and quantity of particles that

settle together.
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Figure 6.21 – Left: Settling velocity for © - trailing and △ - leading particle; Right: Particle center distance;
a) k∗1 = 4; b) k∗1 = 2; c) k∗1 = 1; d) k∗1 = 0.5;
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Chapter Summary

In this chapter, it was presented the new results, not present in the literature for one and two particles

settling in a thixo-viscoplastic fluid. For a single particle settling, it was evaluated the effects of the

yield stress and kinematic parameters in the flow and evolution of the particle velocity over time. In

the end is proposed, for the studied case, a correlation for the particle terminal velocity as a function

of the Bingham and Thixotropic numbers. Next, a qualitative analysis of the two-particle system was

realized. It was observed different settling regimes depending on the fluid properties which will influence

the terminal velocity of the particle couple. And the fluid’s capacity to retain a settling particle reduced
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Figure 6.22 – Time evolution of structural parameter field and yield surface (red) for different breakdown parame-
ters at t∗ = 1035.
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when material recovery rate is not high enough that prevents the interaction between two or more settling

particles.
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Figure 6.23 – Left: Settling velocity for © - trailing and △ - leading particle; Right: Particle center distance;
a) W ∗

0 = 3; b) W ∗
0 = 1.5; c) W ∗

0 = 1.05;
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7 CONCLUSION

The prediction of the settling rate is vital in several industrial applications. In the oil and gas industry,

especially during the drilling operation, a wrong prediction can lead to a rise in the operation costs. For

that reason, it is critical to have a reliable method to study the settling phenomenon in drilling fluids.

Therefore, in the present work, a numerical method was proposed to study the particle settling in a

thixo-viscoplastic material. The method was based on a dual-population lattice Boltzmann method,

one responsible for mass and moment transport equations while the second was responsible for the

thixotropic phenomenon. The particle-fluid coupling was achieved by using the immersed boundary

method, while the particle-particle interaction used a soft-sphere model. The numerical code was written

in CUDA®/C++ in order to take advantage of GPUs parallel computing advantage.

The numerical method was then verified against the analytical solutions for Poiseuille flows and val-

idate for some cases in Newtonian and non-Newtonian flows. Later, it was evaluated the single-particle

settling in a thixo-viscoplastic fluid, where the effects of kinetic parameter and yield stress in the particle

terminal velocity are assessed. By analyzing the dλ/dt field, it was found that the fluid mainly breaks in

the fore section away from the particle, despite the highest shear-rate located near the equatorial surface

of the particle. The particle terminal velocity had a sigmoidal behavior between the minimum and maxi-

mum permissible velocities as a function of the breakdown parameter. The breakdown parameter, depict

as the Thixotropic number, was also responsible for increasing the critical yield number for a particle

that is already in movement. The results were compiled and used to propose a numerical correlation for

the terminal velocity as a function of the studied parameters

In a two-particle configuration was evaluated the effects of initial separation distance, dynamic yield

stress, and breakdown rate. Depending on the initial distance between the particles, it was observed

the formation of flow structures that resemble the flow in a viscoplastic fluid. These structures rise and

disappear depending on the separation distance and structural parameter field around the particles. In the

dynamic yield stress analysis, increasing it will also increase its resemblance with the flow in Bingham

fluid since the dynamic and static yield stresses are close. It is also explained the stability the arises

in the side-by-side settling configuration that occurs after the tumbling. The fluid breakdown rate had

some interesting effects on the steady-state settling alignment between the particles. Lower values create

a narrow wake of reduced viscosity that traps the trailing particle and consequently hinders the system

from performing the tumbling phase of the DKT process.

All these results are significant since it increases the understanding of particle settling in thixo-

viscoplastic fluids, which in the future might help field-engineers to determine the settling rate of cut-

tings. The knowledge that the addition of a second particle impacts the capacity of thixo-viscoplastic

fluid to hold the cuttings have a direct translation with a multi-particle settling that occur in the bore-

hole, with initial separation distance correlating to the particle concentration. By performing a non-

dimensional study, it is expect that the results here presented can be extrapolated to problems in field,

taking due precautions.
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7.1 Recommendations

The main objectives of this work were achieved, develop a three-dimensional program, and study

particle settling in a thixo-viscoplastic fluid. However, some improvements still can be made in future

works.

The settling in a viscoplastic model can be improved since the current method to obtain the forces

acting in the particle is based on the velocity difference between the particle and the fluid, which does

not allow the particle to remain truly static in an unyielded fluid. Extend the fluid models in such a way

that permits the addition of viscoelastic models and posteriorly a full thixo-elasto-visco-plastic material.

Which will allow the fluid calibration with rheological data and later a validation with experimental

results.

The collision model can also be improved. The soft-sphere collision model has its advantages, e.g.

allows a triple collision in the case of multiple particle settling. However, a hard-sphere scheme would

enable the model to be calibrated with real parameters, such as the coefficient of restitution and friction

factor. The collision model can also be enhanced to allow cohesion forces between the particles.

Regarding the particle settling phenomenon, some cases still need to be explored. The study of

one/two-particle settling can be extended for other diameters and density ratios and assess if the proposed

correlation is still valid. It can also be evaluated the effect of different channel sizes and different particle

shapes, such as ellipsoidal or prismatic particles. Ultimately the goal would be the study of multi-particle

settling, where the distribution particle velocity would be obtained and utilized to elaborate a predictive

model for the particle settling rate.
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A ANALYTICAL DERIVATIONS

A.1 Thixotropic relaxation frequency

For a Herschel-Bulkley fluid stress/strain-rate relation is:

|σ|= K|γ̇|n + σy (A.1)

From the Eqs. 4.14, 4.22, and generalized Newtonian fluid:

η = ρc2s

(

τ − ∆t

2

)

(A.2a)

|σ|=
(

1− ω∆t

2

)

|T | (A.2b)

|γ̇|= |σ|
η

(A.2c)

Substituting these equations in Eq. A.1 and considering ∆t = 1:

K

(

1

ρc2s

)n( 2ω

2− ω

)n [(2− ω

2

)

|T |
]n

+
|T |ω
2

− |T |+ σy = 0 (A.3)

Factoring ω
2K

(ρc2s)
n |T |nωn + |T |ω + 2 (σy − T ) = 0 (A.4)

But from Eq. 4.14 it is also possible:

2K

ρc2s
|γ̇|n−1 =

2

ωp
− 1 (A.5)

Consequently, Eq. A.4 becomes:

|T |ω +

(

1

|γ̇|ρc2s

)n−1( 2

ωp
− 1

)

|T |nωn − 2 (|T | − σy) = 0 (A.6)

which can be solved ω with iterative methods. In the simplified Houska’s model used in this work n = 1.

Hence Eq. A.6 becomes:

|T |ω +

(

2

ωp
− 1

)

|T |ω − 2 (|T | − σy) = 0 (A.7)

solving for ω:

ω = ωp

(

1− σy
|T |

)

(A.8)

The yield stress in model is σy = λσy,0 + (1− λ)σy,∞ and ω > 0, consequently:

ω = ωpmax

(

0, 1− λσy,0 + (1− λ)σy,∞
|T |

)

(A.9)

which is the Eq. 4.33.



Appendix A. Analytical Derivations 101

A.2 Thixo-viscoplastic Hagen-Poiseuille – Analytical Solution

Channel diagram:

2H
~Fz

y

The conservation of mass and momentum equations:

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (A.10)

ρ

(

∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

)

= −
[

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

]

+ ρgx (A.11a)

ρ

(

∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

)

= −
[

∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

]

+ ρgy (A.11b)

ρ

(

∂uz
∂t

+ ux
∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

)

= −
[

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

]

+ ρgz (A.11c)

with the hypotheses:

• Incompressible fluid;
• Isotropic fluid;
• Unidimensional;
• Isothermal;
• Body force field only in the z-direction;

reduces to:

0 = −∂σyz
∂y

+ F (A.12a)

uy = 0 (A.12b)

ux = 0 (A.12c)

on this uni-dimensional flow: σyz = σ. The thixotropic model used is based on Houska (1981):

σ = η(γ̇, λ)γ̇, (A.13a)

η(γ̇, λ) =

{

∞ , |σ|≤ σy

ηp + σy|γ̇| , |σ|> σy
(A.13b)

σy = λσy,0 + (1− λ)σy,∞ (A.13c)

∂λ

∂t
+ ui

∂λ

∂xi
= −k1λ|γ̇|+k2(1− λ) (A.13d)
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for the Hagen-Poiseuille channel flow, the shear stress on steady-state can be written as a function of the

distance from the channel center:

σ = Fy (A.14)

rewriting in terms of shear-rate:

γ̇ =

∣

∣

∣

∣

Fy

η(λ)

∣

∣

∣

∣

(A.15)

and considering the yield-stress:

γ̇ =

{

0 , |σ|≤ σy

|Fy − σy (λ) |/ηp , |σ|> σy
(A.16)

In the steady-state kinetic equation for the structural parameter, Eq.A.13d reduces to:

k1λγ̇ = k2(1− λ) (A.17)

substituting it on the Eq. A.16:
{

λss = 1 , |σ|≤ σy

k1λss|yF − σy (λss) |/ηp = k2(1− λss) , |σ|> σy
(A.18)

for |σ|> σy and y > 0, it can be rewritten as:

k1 (σy,∞ − σy,0)

ηp
λ2
ss +

[

k2 −
k1 (σy,∞ − Fy)

ηp

]

λss − k2 = 0 (A.19)

with valid solution for y > 0:

λss(y) =
− [k2ηp − k1 (σy,∞ − Fy)] +

√

[k2ηp − k1 (σy,∞ − Fy)]2 + 4k1k2ηp (σy,∞ − σy,0)

2k1 (σy,∞ − σy,0)
(A.20)

With the the solution for the structural parameter defined, the velocity profile can be obtained by substi-

tuting the Eq.A.20 in the Eq.A.15:

∂uz
∂y

=
Fy − [λssσy,0 + (1− λss)σy,∞]

ηp
(A.21)

Considering the boundary condition uz = 0 at y = H , it has the solution:

uz =
1

4k1ηp

{

ηp (k2ηp − k1σy,∞ + k1Fy)

k1F

√

k22 +
k21(σy,∞ − Fy)

2

η2p
+

2k1k2 (σy,∞ − 2σy,0 + Fy)

ηp

+
4k2ηp (σy,∞ − σy,0)

F
ln

[

ηpk2 − k1 (σy,∞ − Fy) + ηp

√

k22 +
k21(σy,∞ − Fy)

2

η2p
+

2k1k2 (σy,∞ − 2σy,0 + Fy)

ηp

]

−y2k1F − 2y (k2ηp + k1σy,∞)

}

− 1

4k1ηp

{

ηp (k2ηp − k1σy,∞ + k1FH)

k1F

√

k22 +
k21(σy,∞ − FH)

2

η2p
+

2k1k2 (σy,∞ − 2σy,0 + FH)

ηp

+
4k2ηp (σy,∞ − σy,0)

F
ln

[

ηpk2 − k1 (σy,∞ − FH) + ηp

√

k22 +
k21(σy,∞ − FH)

2

η2p
+

2k1k2 (σy,∞ − 2σy,0 + FH)

ηp

]

−k1FH2 − 2H (k2ηp + k1σy,∞)

}

(A.22)
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B CONVERSION LATTICE UNITS TO REAL PARAMETERS

Due to the nature of the lattice Boltzmann method, it is necessary to convert the mesoscopic values

to real values, and vice-versa. The procedure will depend on the information that is initially provided.

For the case of a particle settling, the three known units are length, viscosity, and density. The conversion

procedure is the follow (KRÜGER et al., 2017):

1. Define length conversion rate:

Cl =
L

Nx
=

∆x

h
(B.1)

where L is real characteristic length, N is the characteristic lattice length, ∆x is the real length of

one lattice unit and h is the size of one lattice unit, usually adopted as 1.

2. Define the lattice relaxation time used in the simulation and calculate the lattice viscosity:

ν+ = c+2
s

(

τ+ − 1

2

)

(B.2)

where τ+ is the lattice relaxation time, c+s is the lattice sound speed and ν+ is the lattice kinematic

viscosity.

3. Define the viscosity conversion rate:

Cν =
ν

ν+
(B.3)

where ν is the real viscosity.

4. Determine the time conversion rate:

Ct =
C2
l

Cν
=

δ

∆t
(B.4)

where δ is the real time for one lattice time step and ∆t is the step time size, usually adopted as 1.

5. Determine the velocity conversion rate:

Cu =
Cl

Ct
=

U

U+
(B.5)

where U is the real velocity and U+ is the lattice velocity.

6. Determine the correct value for the lattice gravity:

g+ = g
Ct

Cu
(B.6)

where g is the real gravity and g+ is the lattice acceleration field.

7. Define the density conversion rate

Cρ =
ρ

ρ+
(B.7)

where ρ is the real fluids density and ρ+ is the lattice density, usually defined as 1.



Appendix B. Conversion Lattice Units to Real Parameters 104

8. Define mass conversion rate:

Cm = CρC
3
l (B.8)

9. Define stress conversion rate:

Cp = CρC
2
u =

Cm

ClC
2
t

=
σ

σ+
(B.9)

10. Determine the pressure field (KRÜGER et al., 2017):

P − P0 = c+2
s

(

ρ+ − ρ+0
)

Cp (B.10)

where P0 is the real reference pressure, P is the real pressure,
(

ρ+ − ρ+0
)

is the lattice density

variation.



105

C SPHERICAL MESH DISCRETIZATION

Meshing a sphere where the distance between the closest nodes is the same is a complicated task.

Several methods can be found in the literature (KRÜGER et al., 2011) (KATANFOROUSH and SHAHSHA-

HANI, 2003). On the icosahedron division, there is a fixed sequence of the number of nodes that the

sphere can have, based on the number of iterations. Meanwhile using a randomized node placement fol-

lowed by using the Coulomb law to distribute the nodes in the surface, similar to charged particles, allows

a precise control on number of nodes but does not allow estimate the distance between the nodes before

its execution. For this reason, will be used the Polar Coordinates Subdivision approach with a post-

processing execution of the Coulomb energy optimization defined by Katanforoush and Shahshahani

(2003). This formulation allows use the distance between nodes as input parameter while maintaining

the distribution of distance between nodes narrow.

Defining the base distance between nodes equal to 1 for a sphere with radius of 5, result in a sphere

composed of 263 nodes. The minimum node distance is 1.05 instead of the desired 1.0 while the max-

imum node distance is 1.55. This can be attributed by the irrationality of the circle perimeter when

divided by an integer. To reduce this effect, the nodes positions are modified in order to minimize the

potential Coulomb energy. The results of the Coulomb optimization are represented in the Fig. C.1 as a

function of number of iterations used.

Figure C.1 – Relative Coulomb energy of each node without and with Coulomb energy optimization for a sphere
with radius 5 lattice units.
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As the number of iterations increased the node distribution trend to a stable configuration. This

method smooth the distance between the nodes while also reducing the difference between the minimum

and maximum distance.

The mesh structure of the spherical particle is represented in Fig. C.2. Where the colors of each node
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represent the relative Coulomb energy while not optimized. The standard deviation of Coulomb energy

for the not optimized mesh is 0.001 while for the optimized reduces to 8.36 × 10−6, showing that the

optimization smoothed the energy distribution in the sphere surface.

Figure C.2 – Relative Coulomb energy of each node without (a) and with Coulomb energy optimization (b) for a
sphere with radius 5 lattice units.

a)

b)

Source: Own elaboration.
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D DIMENSIONLESS EQUATIONS AND GROUPS

In this work, it was used the following normalization parameters:

l∗ =
l

Lc
(D.1a)

U∗ =
U

U0
(D.1b)

t∗ = t
U0

Lc
(D.1c)

γ̇∗ =
Lcγ̇

U0
(D.1d)

σ∗ =
σ

ηp

Lc

U0
(D.1e)

where Lc is the characteristic length equal to the particle diameter, and U0 = (ρp − ρf ) gL
2
c/ηp is the

characteristic velocity of a settling particle. The constitutive equation, Eq. 4.32 in terms of apparent

viscosity, transforms in:
{

η = λBn0
|γ̇∗| + (1− λ) Bn∞

|γ̇∗| + 1 , |σ∗| ≥ λBn0 + (1− λ)Bn∞

η = ∞ , |σ∗| < λBn0 + (1− λ)Bn∞
(D.2)

the kinetic equation:
∂λ

∂t∗
+ u∗ · ∇λ = −k∗1λ|γ̇∗|+ k∗2(1− λ); (D.3)

the mass and momentum transport equation, without static pressure, is:

∂u∗i
∂x∗i

= 0 (D.4)

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

=
1

Re

∂σ∗
ji

∂x∗j
+ F ∗

i (D.5)

and the particle movement equations, Eq. 4.51 and Eq. 4.54 is:

ρrRe
mp

ρpD3

dU∗

dt∗
=

∫

Γ
σ∗ · dS∗ +

g

|g|
mp

ρpD3
(D.6a)

ρrRe
I

D5

dω∗

dt∗
=

∫

Γ
(X∗ −X∗

p)× σ∗ · dS∗ (D.6b)

These dimensionless equations have the following dimensionless groups:

• Bingham Number:

Bnx =
σy,x
ηp

Lc

U0
=

σy,x
(ρp − ρf ) gD

(D.7)

• Kinetic parameters:

k∗1 = k1 (D.8a)

k∗2 = k2
Lc

U0
= k2

ηp
(ρp − ρf ) gD

(D.8b)
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• Reynolds Number:

Re =
ρfU0Lc

ηp
=

ρf (ρp − ρf ) gD
3

η2p
(D.9)

• Density Ratio:

ρr =
ρp
ρf

(D.10)

And in a steady-state regime:

• Thixotropic Number:

Tx =
k∗1
k∗2

(D.11)

Is important to highlight that the Reynolds number here defined have the same form as the Archimedes

numbers, defined in Chapter 2, differing by a factor of 4/3. The same applies to the Bingham number,

which will differ from the Yield number, defined in Chapter 3, by a factor of 3.
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E SINGLE PARTICLE TERMINAL VELOCITY

ID Bn0 Bn∞ k∗
1 1/k∗

2 U∗
t ID Bn0 Bn∞ k∗

1 1/k∗
2 U∗

t

000 0.000 0.000 0 0 0.036 041 0.046 0.023 2.25 344 0.000
001 0.028 0.000 2.25 689 0.015 042 0.046 0.012 2.25 344 0.004
002 0.034 0.000 2.25 689 0.013 043 0.046 0.012 2.25 689 0.004
003 0.040 0.000 2.25 689 0.010 044 0.046 0.012 2.25 2158 –
004 0.028 0.000 2.25 344 0.014 045 0.028 0.007 2.25 344 0.011
005 0.034 0.000 2.25 344 0.011 046 0.028 0.007 2.25 689 0.011
006 0.046 0.000 2.25 344 0.007 047 0.028 0.007 2.25 2158 –
007 0.040 0.000 2.25 344 0.009 048 0.012 0.003 2.25 344 0.021
008 0.019 0.000 2.25 344 0.019 049 0.012 0.003 2.25 689 0.021
009 0.012 0.000 2.25 344 0.023 050 0.012 0.003 2.25 2158 –
010 0.046 0.000 2.25 689 0.008 051 0.053 0.000 5.5 344 0.008
011 0.019 0.000 2.25 689 0.020 052 0.028 0.000 0.1 344 0.005
012 0.012 0.000 2.25 689 0.024 053 0.028 0.000 5.5 344 0.016
013 0.012 0.000 2.25 2158 – 054 0.028 0.000 0.025 344 0.003
014 0.019 0.000 2.25 2158 – 055 0.003 0.003 0.025 344 0.029
015 0.028 0.000 2.25 2158 – 056 0.006 0.006 0.025 344 0.023
016 0.034 0.000 2.25 2158 – 057 0.007 0.007 0.025 344 0.021
017 0.040 0.000 2.25 2158 – 058 0.014 0.014 0.025 344 0.012
018 0.046 0.000 2.25 2158 – 059 0.023 0.023 0.025 344 0.005
019 0.053 0.000 2.25 2158 – 060 0.012 0.012 2.25 689 0.015
020 0.053 0.000 2.25 689 0.006 061 0.040 0.040 2.25 2158 0.000
021 0.053 0.000 2.25 344 0.005 062 0.009 0.009 2.25 2158 0.018
022 0.053 0.000 1 344 0.003 063 0.021 0.021 2.25 2158 0.006
023 0.053 0.000 0.5 344 0.000 064 0.012 0.009 2.25 344 0.016
024 0.053 0.000 0.25 344 0.000 065 0.028 0.021 2.25 344 0.005
025 0.028 0.000 1 344 0.012 066 0.028 0.007 0.1 344 0.004
026 0.028 0.000 0.5 344 0.010 067 0.028 0.014 0.1 344 0.004
027 0.028 0.000 0.25 344 0.007 068 0.028 0.021 0.1 344 0.003
028 0.046 0.046 0.25 344 0.000 069 0.062 0.000 4.5 344 0.006
029 0.034 0.034 0.25 344 0.001 070 0.068 0.000 4.5 344 0.005
030 0.028 0.028 0.25 344 0.003 071 0.074 0.000 4.5 344 0.004
031 0.019 0.019 0.25 344 0.008 072 0.028 0.025 0.1 344 0.003
032 0.012 0.012 0.25 344 0.014 073 0.028 0.026 0.1 344 0.003
033 0.012 0.006 2.25 2158 – 074 0.028 0.027 0.1 344 0.003
034 0.012 0.006 2.25 689 0.019 075 0.028 0.028 0.1 344 0.003
035 0.012 0.006 2.25 344 0.018 076 0.012 0.012 2.25 344 0.014
036 0.028 0.014 2.25 2158 – 077 0.012 0.012 2.25 344 0.014
037 0.028 0.014 2.25 689 0.008 078 0.012 0.012 2.25 344 0.014
038 0.028 0.014 2.25 344 0.008 079 0.012 0.012 2.25 344 0.014
039 0.046 0.023 2.25 2158 – 080 0.012 0.012 2.25 344 0.014
040 0.046 0.023 2.25 689 0.002 081 0.090 0.000 4.5 344 0.003
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ID Bn0 Bn∞ k∗
1 1/k∗

2 U∗
t ID Bn0 Bn∞ k∗

1 1/k∗
2 U∗

t

082 0.100 0.000 4.5 344 0.002 151 0.062 0.000 2.25 344 0.004
083 0.110 0.000 4.5 344 0.001 152 0.068 0.000 2.25 344 0.003
084 0.120 0.000 4.5 344 0.000 153 0.074 0.000 2.25 344 0.002
101 0.012 0.000 0.025 344 0.015 154 0.062 0.000 1 344 0.000
102 0.012 0.000 0.1 344 0.016 155 0.068 0.000 1 344 0.000
103 0.012 0.000 0.25 344 0.018 161 0.009 0.000 4.5 344 0.027
104 0.012 0.000 0.5 344 0.020 162 0.006 0.000 4.5 344 0.029
105 0.012 0.000 1 344 0.021 163 0.003 0.000 4.5 344 0.033
106 0.012 0.000 2.25 344 0.023 164 0.015 0.000 4.5 344 0.022
111 0.019 0.000 0.025 344 0.009 165 0.002 0.000 4.5 344 0.034
112 0.019 0.000 0.1 344 0.011 201 0.046 0.023 4.5 344 0.002
113 0.019 0.000 0.25 344 0.013 202 0.053 0.026 4.5 344 0.000
114 0.019 0.000 0.5 344 0.015 203 0.062 0.031 4.5 344 0.000
115 0.019 0.000 1 344 0.017 211 0.046 0.012 4.5 344 0.005
116 0.019 0.000 2.25 344 0.019 212 0.053 0.013 4.5 344 0.004
121 0.034 0.000 0.025 344 0.001 213 0.062 0.015 4.5 344 0.002
122 0.034 0.000 0.1 344 0.002 214 0.068 0.017 4.5 344 0.000
123 0.034 0.000 0.25 344 0.005 215 0.074 0.019 4.5 344 0.000
124 0.034 0.000 0.5 344 0.007 216 0.090 0.022 4.5 344 0.000
125 0.034 0.000 1 344 0.010 221 0.046 0.012 2.25 344 0.004
131 0.040 0.000 0.025 344 0.000 222 0.053 0.013 2.25 344 0.002
132 0.040 0.000 0.1 344 0.000 223 0.062 0.015 2.25 344 0.000
133 0.040 0.000 0.25 344 0.002 224 0.068 0.017 2.25 344 0.000
134 0.040 0.000 0.5 344 0.005 225 0.074 0.019 2.25 344 0.000
135 0.040 0.000 1 344 0.007 231 0.046 0.012 1 344 0.002
141 0.046 0.000 0.025 344 0.000 232 0.053 0.013 1 344 0.000
142 0.046 0.000 0.1 344 0.000 241 0.046 0.012 0.5 344 0.000
144 0.046 0.000 0.25 344 0.000
143 0.046 0.000 0.5 344 0.003
145 0.046 0.000 1 344 0.005
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