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RESUMO

TEIXEIRA, Marco Antonio Simões. MOBILE ROBOTS: A study on sensing and
perception systems. 2021. 106 f. Tese (Doutorado em Engenharia Elétrica e Informática
Industrial) – Universidade Tecnológica Federal do Paraná. Curitiba, 2021.

Robôs móveis são equipamentos utilizados para executar tarefas que necessitam que o equipa-
mento se locomova no ambiente. Estas tarefas podem ou não ser inteligentes, dependendo da
necessidade da ação. Para que um robô seja capaz de tomar decisões, ele precisa coletar dados
do ambiente, processar estes dados e convertê-los em informação. Esta tese tem por objetivo
estudar técnicas de sensoriamento de ambiente utilizados tradicionalmente por robôs móveis e
propor uma nova técnica de sensoriamento, que utiliza os dados fornecidos pelos sensores, os
processa e retorna informações. Para alcançar o objetivo esperado, primeiro foi realizado um
estudo sobre os sensores tradicionais utilizados na robótica móvel, para posteriormente ser pro-
posto uma nova abordagem de sensoriamento. Primeiro, foi desenvolvida uma abordagem de
mapeamento específico para tanques de armazenamento de Gás Liquefeito de Petróleo (GLP)
para que um robô de inspeção escalador, desenvolvido pela UTFPR em parceria com a Petro-
bras, fosse capaz de realizar a inspeção preventiva em tanques de GLP. Esta técnica foi capaz
de predizer toda a superfície do ambiente sem a necessidade de uma varredura completa. Poste-
riormente, foi estudado a aplicação de técnicas inteligentes de processamento de dados 3D para
a navegação e autopreservação de veículos aéreos não tripulados (VANT’s). Foi desenvolvido
uma técnica de navegação em formação para 4 VANT’s, evitando colisões com o ambiente e
entre eles, sempre mantendo a formação durante todo o percurso. Esta ação só foi possível pelo
processamento dos dados dos sensores 3D, convertidos em informação de distância a partir do
centro do VANT e utilizada para a realização de tarefas de desvio de obstáculo, e autopreser-
vação. A partir destes dois primeiros trabalhos, ficou evidente a necessidade de processar os
dados fornecidos pelos sensores para que fossem geradas informações uteis para a tomada de
decisão. O próximo trabalho da tese teve como objetivo o desenvolvimento de uma abordagem
de processamento de dados provenientes de sensores 3D e imagens RGB para a geração de
informações, que podem ser utilizadas por um robô. A abordagem consistiu no uso de uma téc-
nica de visão computacional para identificar objetos em uma imagem RGB e posteriormente,
na junção da imagem RGB com os dados 3D provenientes do sensor para a identificação destes
objetos no mundo real em relação ao centro do equipamento. Posteriormente, a abordagem foi
embarcada em um equipamento compacto, chamado de sensor DeepSpatial. Este equipamento
foi acoplado a um robô, e validado para aplicações tradicionais em robôs móveis, comprovando
a eficiência das informações fornecidas pelo sensor. Como resultado deste trabalho, uma nova
abordagem de sensoriamento foi proposta, onde sensores tradicionais são utilizados para ações
inteligentes. A abordagem é embarcada em um equipamento compacto, que pode ser consider-
ado um novo sensor.

Palavras-chave: Robótica móvel. Sensores. Percepção 3D. YoLo. DeepSpatial.



ABSTRACT

TEIXEIRA, Marco Antonio Simões. MOBILE ROBOTS: A study on sensing and
perception systems. 2021. 106 p. Thesis (Doctorate in Electrical and Computer Engineering)
– Universidade Tecnológica Federal do Paraná. Curitiba, 2021.

Mobile robots are equipment used to perform tasks that require the equipment to move around
the environment. Mobile robots are equipment used to perform tasks that require the equipment
to move around the environment. Mobile robots can use machine learning techniques to perform
intelligent tasks, such as recognizing objects and making decisions. For a robot to make deci-
sions, it needs to collect data from the environment, process it, and convert it into information.
This thesis aims to study environment sensing techniques traditionally used by mobile robots
and to propose a new sensing technique, which uses the data provided by the sensors, processes
them, and returns information. To achieve the objective of the thesis, a study was carried out on
the traditional sensors used in mobile robotics and, then, a new sensing approach was proposed.
First, a specific mapping approach was developed for Liquefied Petroleum Gas (LPG) storage
tanks so that a climbing inspection robot, developed by UTFPR in partnership with Petrobras,
was able to carry out preventive inspection on LPG tanks. This technique could predict the entire
surface of the environment without the need for a complete scan. Subsequently, the application
of intelligent 3D data processing techniques for navigation and self-preservation of unmanned
aerial vehicles (UAVs) was studied. A navigation technique was developed in formation for 4
UAVs, avoiding collisions with the environment and between them, always maintaining the for-
mation throughout the route. This action was only possible by processing the 3D sensor data,
converting it into distance information from the center of the UAV, and performing obstacle
avoidance tasks and self-preservation. From these first two works, the need to process the sen-
sors’ data to generate useful information for robot decision-making became evident. The next
paper of the thesis aimed to develop an approach for processing data from 3D sensors and RGB
images to generate information, which can be used by a robot. The approach consisted of using
computer vision to identify objects in an RGB image and point cloud processing to identify
these objects in the real world. Subsequently, the approach was embedded in a compact device,
called a DeepSpatial sensor. This equipment was coupled to a robot and validated for traditional
applications in mobile robots, proving the sensor’s information’s efficiency. As a result of this
thesis, a new sensing approach was proposed, where traditional sensors are used for intelligent
actions. The approach is embedded in a compact device, which can be considered as a new
sensor.

Keywords: Mobile robotics. Sensors. 3D perception. YoLo. DeepSpatial.
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1 INTRODUCTION

Mobile robotics is an area of science that studies the development of complex robotic

systems, which can freely move in the environment (DUDEK; JENKIN, 2010; NEHMZOW,

2012; CAO et al., 1997). Unlike a fixed robot, such as robotic arms used in factories (HAYATI,

1986), a mobile robot can move around in the environment, whether by land, water, and sky

(POLLARD; TALLAPRAGADA, 2016; TAN et al., 2017; RYLL et al., 2017; PARKER et al.,

2016) (Fig. 1).

Figure 1 – Examples of mobile robots.

Source: Own authorship.

All robots in Fig. 1 have in common the need to understand the environment around

them. Regardless of whether the robot is on the ground, the sea, or flying over a city, it needs to

have a minimum of perception of the environment to avoid accidents. A robot without a sensor

can be compared to a person without senses. If the robot is unable to identify at least if there

is an obstacle in front of it, it will not take actions such as stopping or deflecting. However,

the use of intelligent sensors can make the work of these robots collaborative and increase their

productivity.

To perceive the environment, mobile robots can make use of different types of sensors.

Land and air robots can make use of the same sensors, and underwater robots need individual

sensors capable of operating underwater. There are several sensors for mobile robots. An ultra-

sonic sensor can be used to identify an object in front of the robot, for example (CARULLO;
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PARVIS, 2001). The ultrasonic sensor can provide the distance of an object in front of the robot

over the signal’s flight time; however, its distance data is not accurate, as the signal is cone-

shaped, having a high degree of openness, and can provide the wrong position of the obstacle.

In addition to ultrasound, laser sensors are also capable of capturing the distance to an object

through the time of flight (KONOLIGE et al., 2008). There are sensors capable of providing

more points in a single measurement, such as laser scanning sensors (LiDAR). LiDAR sensors

use a fixed laser, and a rotating mirror to collect flight time at different angles, thus generating

a 2D distance plan, which can be used by mobile robots for the most diverse tasks, such as

avoiding obstacles, generating planar maps, and others (PALACÍN et al., 2020; SABATINI et

al., 2014; GHORPADE et al., 2017).

With the use of LiDAR sensors, it is possible to perform safe navigation by stopping

when identifying an obstacle, for example. In addition to 2D sensors, there is another category of

sensors capable of providing a higher amount of information. These are 3D sensors. 3D sensors

provide data known as PointCloud (BOULCH et al., 2017; RUSU; COUSINS, 2011). These

data are matrices containing the 3D coordinates of each point. They can be collected in two

ways, whether by time of flight (HAGEBEUKER; MARKETING, 2007), which is the case with

ultrasonic sensors, for example, or by structured light (ROCCHINI et al., 2001) being the most

common and cheapest of the techniques. Usually, 3D sensors also provide colors associated with

the 3D point; these data are known as RGB-D. This data can be used for various mobile robotics

tasks, such as building 3D maps, performing object detection, and other activities (JAFARI et

al., 2014; HUANG et al., 2017; GIORDANO et al., 2016). A visual representation of the sensors

mentioned can be seen in Fig. 2.

Figure 2 – Visual representation of sensors used in mobile robotics.

Source: Own authorship.
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Independent of the type of sensor being used, the collected data must be processed

to generate useful information for the robot. During navigation, it is necessary to collect all

data and process to obtain distance information and check if there is any object close to the

robot or not, in order to perform an emergency stop action, for example. For instance, during

the map building phase, it is necessary to collect the data from the sensors, convert into dis-

tance information in relation to the robot’s position, and save it to generate a map. Thus, the

sensors are capable of supplying data to the robot and not information. It must continuously

process them, often generating reworks. Some modern sensors try to integrate the processing

with the sensor, thus facilitating the creation of intelligent mobile robot projects, as is the case

with (MOKHTARI et al., 2017) that propose the development of a sensor that can identify peo-

ple or (RONAO; CHO, 2016; CHEN et al., 2017) that make use of conventional sensors with

processing techniques, generating useful information for the user.

In this way, sensors are essential for robotic applications because it is impossible to per-

form simple tasks such as navigating the environment without them. However, they are designed

to provide raw data, which in some cases is not sufficient. Several papers focus on converting

sensor data into information, for example, in (LIANG et al., 2018; WANG et al., 2018). How-

ever, these papers are not aimed at robotic applications and are usually performed on computers

with high processing power.

This thesis aims to study and analyze the use of sensors in mobile robots to propose

contributions in sensing techniques, mainly processing data provided by traditional sensors into

information used by the robot. Intelligent sensors combine physical sensing with data process-

ing techniques to generate intelligent information, which can be used for the robot to obtain

information from the environment. A study of sensors was first carried out on terrestrial robots,

where the limitations of traditional sensors were verified. Most sensors provide the same type of

data, point cloud. Subsequently, converting point cloud data into useful information was carried

out in a study with drones. After the preliminary studies with the sensors, an intelligent sensing

approach was proposed, using deep learning techniques. Finally, a sensor architecture was pro-

posed, where all the developed technique is embedded in a single equipment. Validations were

made at all stages of the thesis.
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1.1 OBJECTIVE

This thesis proposes a study, analysis, and new approach to environmental sensing. The

main focus is to expand the sensors’ information, transforming the measured data into useful

information. This new technique of perception of the environment will allow robots to safely

navigate the environment, knowing which objects are around them, making the robot capable

of performing specific actions for each object. This technique must be embedded in hardware

that is robust enough to perform all robot actions independently. Therefore, this thesis’s general

objective is to develop an intelligent sensor capable of identifying dynamic and static objects,

extracting characteristics from the identified objects, and when coupled to a robot, interact with

it to support an autonomous decision-making capacity by part of the robot.

1.1.1 Specific objectives

In order to achieve the main objective, the following specific objectives are outlined.

1. Develop a study and analysis of sensing techniques for mobile robots, using the manipu-

lation of point cloud data provided by different sensors, for the creation of maps, object

identification, and navigation in order to understand the use of traditional sensors applied

to mobile robotics and identify possible improvements;

2. Apply point cloud techniques in aerial robot problems in order to validate sensing tech-

niques. Aerial robots share the same sensing needs as terrestrial robots. This study aims

to validate the data manipulation approach for generating information for the robot;

3. Propose a 3D perception system from the data processing of traditional sensors. The pro-

posed system must be able to generate information such as the three-dimensional position

of objects in the environment around the sensor and identify objects using computer vi-

sion techniques in RGB images;

4. Develop an approach to solving the egomotion problem so that intelligent sensing tech-

niques can identify movements. In addition, it is expected to embark the entire approach

proposed in a compact equipment, coupled to a mobile robot;
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1.2 PUBLICATIONS

During this thesis development, the results were published both in scientific journals

and in chapters of books and congresses. The publications directly related to the thesis are

presented below.

1.2.1 Journal

1. TEIXEIRA, M. A. S.; NEVES-JR, F. ; KOUBAA, A. ; ARRUDA, L. V. R. ; OLIVEIRA,

A. S. DeepSpatial: Intelligent Spatial Sensor to Perception of Things. IEEE Sensors

Journal, 2020.

2. TEIXEIRA, M. A. S.; NEVES-JR, F.; KOUBAA, A.; ARRUDA, L. V. R.; OLIVEIRA,

A. S. A Quadral-Fuzzy control approach to flight formation by a fleet of unmanned aerial

vehicles. IEEE Access, 2020.

3. TEIXEIRA, M. A. S.; NOGUEIRA, R. C. M. ; DALMEDICO, N. ; SANTOS, H. B.

; ARRUDA, L. V. R.; NEVES-JR, F. ; PIPA, D. R. ; RAMOS, J. E. ; OLIVEIRA, A.

S. Intelligent 3D Perception System for Semantic Description and Dynamic Interaction.

Sensors, v. 19, p. 3764, 2019.

4. TEIXEIRA, M. A. S.; SANTOS, H. B.; DALMEDICO, N.; ARRUDA, L. V. R.; NEVES,

F.; OLIVEIRA, A. S. Intelligent environment recognition and prediction for NDT inspec-

tion through autonomous climbing robot. Journal of Intelligent & Robotic Systems, v.

92, p. 323-342, 2018.

1.2.2 Book chapters

1. TEIXEIRA, M. A. S.; SANTOS, H. B.; OLIVEIRA, A. S.; ARRUDA, L. V.; NEVES, F.

Robots Perception Through 3D Point Cloud Sensors. Studies in Computational Intelli-

gence. 2ed.: Springer International Publishing, 2017, v. , p. 525-561.



15

1.2.3 Congresses

1. TEIXEIRA, M. A. S.;DALMEDICO, N.; SANTOS, H. B.; OLIVEIRA, A. S.; ARRUDA,

L. V.; NEVES-JR, F. Enhancing Robot Capabilities of Environmental Perception through

Embedded GPU. In: 2017 VII Brazilian Symposium on Computing Systems Engi-

neering (SBESC), 2017, Curitiba. 2017 VII Brazilian Symposium on Computing Sys-

tems Engineering (SBESC), 2017. p. 217.

2. TEIXEIRA, M. A. S.; DALMEDICO, N.; OLIVEIRA, A. S.; ARRUDA, L. V.; NEVES-

JR, F. A pose prediction approach to mobile objects in 2D costmaps. In: 2017 Latin

American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics

(SBR), 2017, Curitiba. 2017 Latin American Robotics Symposium (LARS) and 2017

Brazilian Symposium on Robotics (SBR), 2017. p. 1.
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1.3 THESIS STRUCTURE

This thesis is developed in the form of a collection of articles. This new format allows

the thesis to be composed of at least three articles published in journals, attached in full, where

the author of the thesis must be the first author. This means that the format can vary from

chapter to chapter, as some chapters are added articles, maintaining their publication format.

Other sections are in the form of a thesis, and aim to contextualize the research developed.

Thus, this first chapter aims to present the problem as a whole, adding the reader to the theme

of sensing for mobile robots. Chapter 2 aims to present the relevance of the research topic,

presenting comparisons with recent works and a literature review. The chapters 3,4,5 and 6

present the articles already published in full journals, while the chapter 7 presents a conclusion

of the thesis.

In chapter 2, the research topic about recent academic works is presented. In chapter

3 it is presented the first paper published by the author (TEIXEIRA et al., 2018) in Journal

of Intelligent Robotic Systems. This chapter is part of the first specific objective, where the

traditional sensors were used to the maximum, in order to study their applications and develop

improvement strategies. Chapter 4 presents the second article published in IEEE Access (TEIX-

EIRA et al., 2020). The focus is to understand the sensing needs of mobile robots. In this thesis,

drones were used with a 3D perception sensor.

Chapter 5 presents a proposal for an intelligent sensor. The robot can use the proposed

sensor without the need for the robot to know its operation. The results were published in

the Sensors journal (TEIXEIRA et al., 2019). However, in this thesis, the movement of the

sensor or robot itself is not considered. The technique was improved and shipped with a set

of equipment’s that together can be considered as a new sensor, presented in chapter 6. In

chapter 6, the proposed strategy is embedded and can be added directly to the robot, like a

black box. The robot does not need to know how the information is processed. It has access to

ready information, such as dynamic objects in front of it and the speed and direction of these

objects, in addition to being able to measure its movements in the environment. The results were

published in the IEEE Sensors journal (TEIXEIRA et al., 2021).

Finally, chapter 7 presents a conclusion to the thesis. Thus, this thesis aimed to study

sensing techniques for mobile robots, aiming to generate the maximum amount of information

that can be used by different intelligent strategies. This thesis leaves open future work, such as

the improvement of the proposed sensor for the development of an intelligent map.
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2 CONTEXTUALIZATION

This chapter aims to contextualize the papers attached to this thesis with the theme

of studies, which is "Mobile robotics: Perception of the environment". In addition to bringing a

contextualization of the works with the research area, a brief comparative theoretical framework

will present the works developed and the state of the art. The specific theoretical review of each

work is presented in its respective chapter.

With this thesis’s focus on the study of sensors for use in mobile robots, the gen-

eral objective was divided into four specific objectives. In the first specific objective, the work

(TEIXEIRA et al., 2018) was developed, while in the second specific objective, the result was

the work (TEIXEIRA et al., 2020). For the third specific objective, the work (TEIXEIRA et

al., 2019) was developed. The fourth specific objective is presented in the chapter 6. Figure 3

presents an illustration of the works attached to this thesis. It is worth mentioning that some

works were developed for congresses and book chapters and are not attached to this thesis.

Figure 3 – Division of the works presented in this thesis by specific objectives proposed.

Source: Own authorship.

In the chapter 3, the work “INTELLIGENT ENVIRONMENT RECOGNITION AND

PREDICTION FOR NDT INSPECTION THROUGH AUTONOMOUS CLIMBING ROBOT”

(TEIXEIRA et al., 2018) was developed. This work aimed to develop a mapping strategy for

an inspection robot for liquefied petroleum gas (LPG) tanks. LPG tanks are spherical tanks that
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require periodic inspections. In this work, Fuzzy control techniques and the use of multiple 3D

sensors were used to create a mapping strategy. An environment prediction strategy was de-

veloped, based on data obtained by the sensor and knowledge inference about the inspection

environment. For the prediction, artificial neural networks were used to infer a certain percent-

age of the predicted points.

Although the map developed in this thesis was not traditional mapping techniques, tra-

ditional 2D (THRUN, 2003; ELFES, 1989; MEHREZ et al., 2017) and 3D (HORNUNG et al.,

2013; WURM et al., 2010; SUN et al., 2018) mapping techniques were studied. It was realized

that in traditional mapping techniques, the robot must navigate throughout the environment,

and this action is costly for the inspection robot. A solution to this problem was the creation

of an environment prediction strategy. The work presented by this thesis infers knowledge in

the algorithm, such as the construction format of the tanks, to predict the positions of the weld

beads.

Regarding the perception sensors, four different sensors were used. Three were fixed

on a mobile base. All sensors were different, but they provide the same type of information,

distances. It was noticed that, with so many sensors, points overlapped. To address these prob-

lems, a merger of points was proposed. In related works, it is possible to quote (LIANG et al.,

2018; KNOOP et al., 2006; PEŁKA et al., 2019) where strategies were also presented to merge

different sources of perception to decrease the amount of information coming from the sensors.

In this thesis, the fusion took place due to the precision of each sensor with the distance from its

points. The sensor that, according to its technical data sheet, presents a better accuracy, receives

a higher percentage in the fusion. A separate work, only with the fusion of the sensor data, was

developed, and can be accessed at (TEIXEIRA et al., 2017).

Still, with the focus of understanding the sensors and improving the sensing techniques

in mobile robotics, in the chapter 4 the work "A QUADRAL-FUZZY CONTROL APPROACH

TO FLIGHT FORMATION BY A FLEET OF UNMANNED AERIAL VEHICLES" is presented

(TEIXEIRA et al., 2020). This paper consists of a new proposal for navigation in training with

multiple drones. If Drones fly in formation, they can perform collaborative tasks, such as cargo

transportation. The work used intelligent control techniques, such as the use of a Fuzzy sys-

tem. The information was shared from the leading Drone to the worker Drones, who together

performed an obstacle avoidance action maintaining the formation.

Regarding the control of mobile robots through Fuzzy systems, there are several re-
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lated works (ABDALLA et al., 2017; ABIYEV et al., 2017; YEN; CHENG, 2018; HUANG,

2016). In (BACIK et al., 2017), was presented using Fuzzy systems to control the position of a

drone, where the position is defined using tags fixed to the ground. Unlike that work, the work

presented in this thesis proposes using Fuzzy techniques for position controls, where the posi-

tions of the working drones are defined from the position of the leading Drone. Our work also

proposes using Fuzzy techniques to avoid obstacles based on the 3D perception sensor data.

The work also covered flying techniques in formation. Similar recent work can be

found (LI et al., 2019; YU et al., 2019; WANG et al., 2019), where the goal is to develop smart

strategies for collaborative work between multiple agents. The purpose of these works is to

make the robots work collaboratively to act. In (ALONSO-MORA et al., 2019) a flight training

strategy is presented. However, the training is undone when trying to avoid an obstacle, which is

different from the work proposed in this thesis, where the objective is to maintain the formation

at any cost.

In this thesis, a single 3D perception sensor was used. The sensor data were processed

by the Drone Leader and the information on identified obstacles shared with the other Drones

in the formation. This single work made use of sensing techniques, intelligent controls, and

multiple robot systems and was essential for this thesis. From it, it was possible to identify the

main problems in sensing for mobile robots. 3D sensors provide only distance data, raising the

following question: If the obstacle identified by the robot is known, the robot could not take a

better action than choose one side and deflect? What if the object in question is also moving?

From these works, it became clear the need for a robot to identify objects and their po-

sitions. The work used the identification of the weld bead and its junctions to predict the entire

environment. With the results obtained in the papers (TEIXEIRA et al., 2018) and (TEIXEIRA

et al., 2020), the next work of this thesis aimed to develop a sensing strategy, not focusing

on the robot, but in generating information from traditional sensors for used by the robot. The

work "INTELLIGENT 3D PERCEPTION SYSTEM FOR SEMANTIC DESCRIPTION AND DY-

NAMIC INTERACTION" (TEIXEIRA et al., 2019) was developed, where it aimed to develop a

new environment perception strategy, using computer vision and sensing techniques.

In this thesis, computer vision techniques were used to identify objects in an RGB

image. Related works can be seen at (LIU et al., 2020; ZHAO et al., 2019; HU et al., 2018),

where deep learning concepts are used to recognize objects in traditional images. For object

recognition, YoLo (REDMON; FARHADI, 2018; REDMON; FARHADI, 2017) was used, as it
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has a good ratio between performance and accuracy. The data obtained by YoLo are processed

with the 3D perception sensors to identify the object’s position. Related works can be found at

(SIMONY et al., 2018; SIMON et al., 2019; YANG et al., 2018), where computer vision tech-

niques were used together with 3D perception data to identify objects. Unlike the works cited,

the work present in this thesis, in addition to identifying objects in the real world, performed

the tracking calculating speed, direction, and acceleration.

Chapter 4 resulted in a sensing strategy, in which objects in the environment and their

3D positions are identified and calculating their speeds, direction, and accelerations. However,

the strategy was developed on a fixed computer and cannot be coupled onto the robot. From this

paper, the work presented in the chapter 6 under the name "DEEPSPATIAL: INTELLIGENT

SPATIAL SENSOR TO PERCEPTION OF THINGS" (TEIXEIRA et al., 2021) was developed,

where the objective is to improve the techniques developed and embed them on portable equip-

ment and attach it to the robot, thus fulfilling the third and final specific objective proposed by

this thesis. In this work, he was also concerned with the movement of the robot in the environ-

ment. If the robot moves, the calculated direction, speed, and acceleration measurement data

can be wrong. To solve this problem, a sensor capable of measuring the robot’s movement itself

in the environment using a visual odometer was used.

Visual odometry uses computer vision techniques to calculate the robot’s movement in

the environment. With this technique, it is possible to calculate the robot’s movement through

RGB cameras, where a specialized algorithm compares these images and returns the displace-

ment. Many works use visual odometry, with different techniques (FORSTER et al., 2016;

MUEGGLER et al., 2017; ZHANG et al., 2016; MUEGGLER et al., 2018). In (MOHANTY

et al., 2016) a visual odometry technique is proposed using deep learning with the AlexNet net-

work.In (FORSTER et al., 2016), an algorithm is proposed that identifies specific points in the

image, and according to the displacement of these points, the displacement of the equipment in

relation to the image is calculated.

The proposed sensor, DeepSpatial, identifies objects in the environment and their 3D

position, tracking them and calculating their speed and direction, compensating for their move-

ments in the environment using visual odometry techniques and is mobile, and can be embedded

onto the robot. In this way, this thesis fulfilled all the proposed objectives, being the study of

traditional mobile robotics techniques, the proposal and validation of new sensing techniques.
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3 INTELLIGENT ENVIRONMENT RECOGNITION AND PREDICTION FOR NDT

INSPECTION THROUGH AUTONOMOUS CLIMBING ROBOT

This chapter presents the article published in the Journal of Intelligent & Robotic Sys-

tems (ISSN: 0921-0296). The data of the paper is shown in Table 1.

Table 1 – Data of the paper Intelligent environment recognition and prediction for NDT inspection through
autonomous climbing robot.

Authors Teixeira, M.A.S.; Santos, H.B.; de Oliveira, A.S.;
Arruda, L.V.R.; Neves-Jr, F.

Title Intelligent environment recognition and prediction for NDT inspection
through autonomous climbing robot

Journal Journal of Intelligent & Robotic Systems
ISSN 0921-0296
DOI https://doi.org/10.1007/s10846-017-0764-6
Publication date January 19, 2018 online and October 2018 printed

Source: Own authorship.

This work’s motivation was due to the difficulty in carrying out inspections in storage

tanks for liquefied petroleum gas (LPG). Inspections are carried out by people who need to

put themselves in situations that are often dangerous to their health, such as in high places or

an environment with a high concentration of gases harmful to the human body. In this way,

the project aims to avoid exposing people to risk. For this, a mobile robot is proposed under

development by the Federal University of Technology – Paraná in partnership with Petrobras.

The creation of the mobile inspection robot, called Autonomous inspection robotis currently has

three versions. This work uses version 1, called AIR1.

To be able to inspect an LPG storage tank by a robot autonomously and intelligently,

the equipment needs to be able to collect data from the environment, analyze and process them,

and make decisions. This work focuses on processing data from different sensors to create and

predict the map of the environment. This map is also possible to carry out the trajectory plan-

ning, which would be the path to be taken by the robot during the inspection. Defining trajectory

planning is not the focus of this work. The main objective is to create a three-dimensional repre-

sentation of the environment, with as many features as possible, without going through the entire

environment. The goal is achieved with the use of artificial intelligence techniques, knowledge

inference, raw sensor data processing, among others.

This work concludes the first specific objective of the thesis, contributing to identifying

possible improvements and contributions in the area of data processing from sensors used in

robots. The license for this article with permission for use in this thesis is in Appendix A.
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Abstract
This paper presents a novel approach to environment mapping prediction with focus on autonomous climbing robot to
NDT (Non-Destructive Technique) inspection. In industrial installations, the inspection of non-planar surfaces requires that
NDT probes passe on whole surface, while the autonomous robot navigates over an unknown environment based only on
its perception abilities. However, the path planning of inspection is not a trivial task specially when there is no precise
information about environment. In this work, a special kind of climbing robot is used to inspect large metallic surfaces such
as spherical pressure vessels used to store Liquified Petroleum Gas (LPG). The robot has adherence skills that allow it to
safely navigate through the internal and external surface of the vessel. As a result, robot mobility suffers from hard magnetic
adhesion constraints. A new approach is proposed to environment detailed prediction, including specific characteristic (like
weld beads and plates) of inspected surface. The goal is the automatic extraction of some environment characteristics to
predict the storage tank dimensions and robot localization, based on a group of 3D perception sources (laser rangefinder, light
detection and ranging and depth camera) mounted over a rolling platform to improve its reach. The environment prediction
is carried out after the robot visually detects two or more weld beads corners. A multi-measuring environment is firstly build
by Fuzzy data fusion of the different perception measurements allowing to estimate plates and weld beads based on design
and safety standards. Virtual and real experiments are carried out to illustrate proposed method performance.

Keywords Environment identification · Data fusion · Path planning · Inspection · Climbing

1 Introduction

The robotic inspection is a task where a robot must cover
all surface to be inspected, searching for structural fails and
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damages through inspection probes. The inspection plan-
ning requires a reliable knowledge of the inspection envi-
ronment to ensure an effective path planning which runs
across whole surface. However, robot usually has not a
precise description of the surface to be inspected and
some automatic procedures must be applied to acquire this
knowledge.

3D Perception promotes the spatial awareness on mobile
robots, allowing the perception of obstacles around it, but
without recognize them. The robot can estimate its distance
from obstacles although it does not identify the kind of
objects. This object perception is very important to allow
automatic behaviors (such as navigation and mapping).
Many studies discuss how to apply 3D perception to object
recognition, as in [1] which uses a Kinect sensor to create
3-D maps and 3-D objects for recognition. Browatzki et al.
[2] uses an iCub humanoid robot for recognition and to
discover new objects. Singh et al. [3] creates a data set of
100 objects through depth and image sensors. However,
perception is an instantaneous ability because the robot only
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detects obstacles into the perceived region and it does not
maintain the memory about previous perceptions.

Simultaneous Localization and Mapping (SLAM) is a
crucial technique to autonomous navigation because it
creates a memory of perceptions into an environment map.
This classic approach is discussed in many studies, e.g.,
in [4], a Kinect is mounted on a PR2 robot to get data
distance between Kinect and the environment and to build
a 3-D map of the environment. [5] presents an open-
source tool that facilitates maps development, this tool uses
three-dimensional data to create a map based on octrees
technique and probabilistic occupancy estimation. In [6],
scanning laser sensor is used to create a cloud of 3-D
points to represent the environment. The laser scan is widely
used to create 2-D maps, but to create a 3-D map it is
necessary to rotate the laser so that it is possible to obtain
various environmental reference points and then build the
map. Such map is dynamically designed with environment
perception and previous environment statistical knowledge.

Path planning requires at least a superficial knowledge
of the whole environment or map estimation. In large
environments, it is not simple to use a long-range perception
due the presence of many probably blind points. A solution
can be the environment reconstruction using a unique or
partial view and then to estimate the blind surfaces. The
reconstruction is the act of modeling a real object to the
digital world by creating a 3D model of the object. These
techniques are discussed, mainly on computer vision area,
e.g., in [7] RGB-D sensors are used to obtain data from
the real object, then the data is refined and processed
before being submitted to the reconstruction algorithm.
Finally, textures are added to the model using data provided
by the RGB camera present in the sensor. Also in the
reconstruction area, a Kinect is used for the data scene and
then its reconstruction [8]. The differential of this study
is an interaction system which is developed between the
user in real and virtual scene, opening up new possibilities
in the reconstruction area and human-machine interaction.
However, the presented reconstruction method develops the
3D models of real objects but without taking into account
the object localization, not allowing its inclusion in an
environment map.

Map prediction aims to estimate the environment
topology based only on simple observations through 3D
perceptions. Some studies use this approach to predict
unobserved parts in partially known maps. [9] discusses the
simultaneous localization and mapping with environmental-
structure prediction (P-SLAM), where the unobserved areas
are estimated from of known areas in indoor environments.
This approach is based on the assumption that unknown
sectors have correlation with known sectors, to delimit
a standard in the environment topology and predict
unobserved areas, and it is proposed to predict a small

piece of map. In [10], this approach is expanded to predict
the motion of moving objects. This kind of prediction is
very dependent on observed areas or previous knowledge of
environment and cannot be applied in dynamic maps where
the maps are fully created during robot navigation.

Some papers discuss distinct mapping techniques and
path planning, as is the case of [11] where a mapping
and trajectory planning technique is developed for a robot
with legs and applied to rough and unstructured terrains.
Another related work can be seen in [12], where mapping
and path planning based on long range sensors is developed
and the uncertainties present in this type of measurement
are quantified. These approaches have discussed the
same primordial requirement despite to discuss different
techniques to mapping and path planning. Both are very
dependent of robot’s observation and require a long motion
in environment to perform a reliable mapping and allowing
the path planning.

This present work is focused in propose an alternative
to mapping and planning through a small and instantaneous
observation of environment with a reliable prediction of
unobserved part.

This work proposes a novel approach to intelligent pre-
diction of occupancy map based on a minimal observation
to allow a reliable path planning. The main focus is to ensure
a precise planning of nondestructive inspection task to an
intelligent autonomous climbing robot. The inspection envi-
ronment is projected through a very small set of observation
with use of distinct 3D perception sources, which are care-
fully fused in a most reliable and condensed perception
data set. A voxels group (volumetric element) are applied
to generate an occupancy grid wrapping the inspection tank
and the confidence analysis of these voxels is performed to
determine their uncertainties. The result is a reliable map
prediction, including specific characteristics of inspection
environment (as weld beads and plates), which allows a
rigorous inspection planning.

The paper is organized as follows. In Section 2 the
requirements for inspection of storage tanks are discussed.
Section 3 presents the developed Autonomous Inspection
Robot and its perception systems. Section 4 describes the
whole approach of planning of nondestructive inspection
in storage tanks. In Section 5, the benefits of proposed
approach are experimentally proved. Section 6 presents the
conclusions and future works.

2 Requirements of Storage Tanks Inspection

Storage tanks are metallic structures commonly used in
industries to store liquids and gasses. The cylindrical tanks
are preferred by some industries due to their reduced
installation cost and easier maintenance. However, spherical
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Fig. 1 Spherical pressure vessel

tanks (or spherical pressure vessels) are recommended to
store great amounts of highly pressurized fluids, such as
liquefied petroleum gas (LPG) because mainly it has no
corners which weaken the structure (Fig. 1).

The inspection of spherical pressure vessels is a haz-
ardous and complex task due to the unhealthy environment
(especially, inside the tank), size of the inspection area
and mainly to the structure height (about 18m). Therefore,

an automation process by robot is highly recommended to
ensure a reliable and accurate inspection. The robot must
cover the entire tank’s surface and detect the environment’s
inconsistencies during the autonomous inspection task. In
this context, inspection robots are designed to navigate in
several planes, including the Earths surface perpendicular
ones, climbing on outside and inside tank surfaces. Thus,
the gravitational force acts as a highly important disturbance
and cannot be neglected during the conception of the mobile
inspection robot.

The robot localization through the environment is crucial
to a successfully inspection because when a surface fault
is detected, its exact position must be saved to allow
a posteriori depth analysis of flaws and maintenance.
Spherical pressure vessels are fully dark, with no landmarks
and no different faces (from any viewpoint, the robot will
see a semi-sphere). The most appropriate perception source
for this kind of environment are the rangefinder sensors,
because they are active exteroceptive sensors. All these facts
turn the robot localization a hard task that can be carefully
implemented.

Inspection task must be accurately planned to ensure that
the inspection probe evaluates the whole surface, without
missing any areas. However, the planning of an inspection
path without detailed tank information, such as dimensions
and localization of the robot, becomes a very complex or
even insoluble task.

Fig. 2 Autonomous Inspection Robot (AIR-1)
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Fig. 3 Perception sources with
its fields of view and ranges

3 Autonomous Inspection Robot

The Autonomous Inspection Robot (AIR) developed at
UTFPR is designed to safely carry electronic and NDT
components in order to inspect big metallic surfaces such
as spherical pressure vessel shown in Fig. 1. For this, it is
expected that the robot will carry also umbilical cords with
length up to 20m. Besides, the robot also carries monitoring
systems needed for its own navigation. The first UTFPR
robot prototype (AIR-1) has a mechanical structure based
on two parallel sets of fixed magnetic wheels (not steerable).
Each wheel set is linked by a v-belt where only two motors
are responsible to ensure torque for four magnetic wheels,
i.e., the robot has two controllable degrees of freedom, as
seen in Fig. 2.

Magnetic wheel sets are misaligned to overpass small
obstacles (as weld beads) without decreasing their adhesion
force. Each wheel consists of a set of two ring shaped
neodymium magnets positioned between two steel disks
and attached by screws with low magnetic permeability.
A high hardness polyurethane rubber covers the bonded
set. Its magnetic force is approximately 45kgf. The robot
weighs 12kg (without NDT and monitoring systems) and
the umbilical cord weights 0.4kg/m. The adhesion system
was designed to provide a secure adherence between robot
and surface during navigation and stopping to inspection.
For this, a neural network analysis of magnetic field
to the intelligent recognition of adhesion disturbances
and to prevent robot overthrow is developed using an
additional electromagnet during unsafe situations (wheels

detachment). More details about the robot’s mechanical
design, wheel’s adhesion and magnetic force analysis can
be found in [13–17].

AIR-1 has a set of perception systems, composed by
five main sources, as shown in Figs. 3 and 4 where the
field of view and range of each sensor are displayed. A
pair of depth cameras is used for environment mapping and
obstacle detection. The first one is fixed in front of the
robot (short-range depth camera) and the other is fixed in a
structure above robot (middle-range depth camera).

A subset of perception sources is mounted on a mobile
platform that can be rotated around pitch axis, improving
sources sensing range and their precision (Fig. 4). One
of them is a long-range laser finder (up to 70 meters
with precision of millimeters) used to measure the relative
distance between robot and environment, allowing the tank
parameters estimation. A light detection and ranging sensor
(scanning range finder) is used to detect any obstacle
during navigation and to measure the lateral features of
the environment. A time-of-flight industrial camera (wide-
range ToF camera) provides 3D high-resolution image with
wide field-of-view and it is used to improve the environment
recognition.

4 Inspection Planning of Spherical Tanks

The inspection of storage tanks is only started after a
rigorous planning that requires some specific information
about the tank’s topology. The robot must perform several

Fig. 4 Perceptions sources with
improved range
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procedures to understand the environment around it and
prepare the inspection task, as seen in Fig. 5, where the
robot can be operated in autonomous and non-autonomous
mode. In non-autonomous mode, the operator manually
controls the inspection robot (in position/velocity mode) or
the operator delimits a specific fault to superficial or depth
reinspection (return to a detected fault).

The robot can be inserted in any position of the storage
tank and needs to perform an autonomous search for a
standard observation point. From this special point, the
robot is able to find the crucial features allowing a realiable
estimation, based on computer vision techniques. After
that, the robot performs the tank data measuring and
improves this measure by fusing the multiple perceptions
sources. The environment features are estimated based on
the environment measures, considering the robot orientation
and its position at the standard observation point. Thus,
the environment topology can be estimated with basis on

relative position of measured points. According to the
tank’s design standards, it is also possible to estimate
some tank’s specific components such as weld beads and
plates. In the following, an occupancy grid is build up,
including all storage tank’s main features that are perceived
and/or inferred by the robot. Finally, a prediction reliability
analysis is carried out by an artificial neural network.
After all these procedures, the robot will have a previous
knowledge about the tank that will be inspected and a
reliable inspection path can be planned. Preliminary results
of these approach are discussed in [18].

4.1 Autonomous Search for the Standard
Observation Point

AIR-1 robot needs to localize two corners in a weld
bead to perform a reliable estimation of the storage tank.
These two points compose a standard observation point.

Fig. 5 Approach for the
intelligent inspection planning
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The characteristics of these corners (such as distance and
angle between them) are crucial to the prediction. The
search for the standard observation point must be executed
autonomouslywithout any operator interference, because the
inspection robot can be initially placed in any tank position.

The robot uses two depth sensors for this task, wide-
range ToF camera (Heptagon SR4000) and middle-range
depth camera (Microsoft Kinect), which are aligned to
expand the depth perception through of motion of TOF
camera in 15 degrees about pitch to enlarge the vertical
sensing. These sensors operate at reduced light or without
light, which is ideal because the inspection environment is
almost totally dark and the use of powerful lights must be
avoided due to the risks of sparks generation by heating
since the atmosphere inside the tank is highly explosive.

The procedure to implement the autonomous search are
described in Fig. 6, where the robot performs a sequence
of motions to find and align the weld beads corners based

on its depth vision. The first step is to achieve the correct
orientation with the weld beads. The robot performs this
action through wide-range ToF camera with 10 meters of
range. The depth perception is obtained in 3D points (point
cloud) and it is converted to grayscale image to find corners
through Harris-Stephens algorithm, as discussed in [19]. If
no corner is found, the robot turns to the right and repeats
this step until finding any corner. When the first corner is
found, the robot turns to the opposite side to detect the
second corner.

As soon as the robot is frontally aligned with a pair of
weld bead corners, the robot moves forward until it detects
and focuses the weld bead with its middle-range depth
camera. This step is identified as proximity correction in
Fig. 6. The weld bead recognition is achieved through the
use of Roberts filter [20].

The heading correction is made to ensure the orientation
between the robot and the target (i.e., weld bead corners)

Fig. 6 Flowchart rules for
autonomous search of the
standard observation point
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Fig. 7 Coordinate systems of
perception sources

after the forward motion inside a spherical pressure vessel.
At this time, the robot must look for a pair of weld bead
corners with its middle-range depth camera. The difference
of resolution between these perception sources can generate
false corners, which must be avoided to achieve the correct
alignment.

The point cloud from middle-range depth camera is
also converted to a grayscale image and a Roberts filter
is applied to recognize the weld beads. However, it is
necessary to apply a morphological open function [21] to
remove small noises from the obtained images. At last, the
morphological dilation function [21] is applied so that the
weld beads become larger and more visible, allowing the
correct recognition.

4.2 Perception of the Environment and Sensor
Fusion

The acquired points of the environment obtained by multi-
measuring are related to different coordinates system, one
for each perception source. Thus, they are represented by

different coordinate systems and it is necessary to transform
all points to the same reference system. In this case, the robot’s
reference system (fixed on its center), as seen in Fig. 7.

The proposed approach is totally independent of the
robot’s position and orientation, because it uses the inertial
measurements information to represent the transformation
between robot’s center and environment. All information
coming from perception sources is translated to be
expressed by the same coordinate system, in this case the
robot’s center. Thus, this information can be analyzed and
fused because it represents the same measure, regardless of
its source.

The Autonomous Inspection Robot (AIR) has five kinds
of 3D perception sources, each one dedicated to measure
a specific condition, as discussed previously in Section 3.
However, these systems present intersection of various
measurement sections, where the measurements of different
sources are overlapped. This condition can occur in the
border measurements of perception sources or near an
obstacle. In this case, two or more sources overlap because
there is an obstacle near the robot as shown in Fig. 8.

Fig. 8 Overlay of the perception
sources
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Table 1 Specifications of
perception’s sources Scanning

Range
Finder

Short-range
Depth
Camera

Middle-
range Depth
Camera

Wide-range
ToF Camera

Long-
distance
Range Finder

Range 0.02 to 4m 0.2 to 1.2m 0.8 to 4m 0.1 to 10.0m 0.05 to 70m

Minimum Error 3cm *ns *ns 1cm 0.2cm

Maximum error 3% 5% 5% 1% 0.3%

Accuracy (in centimeters)

0.5m 3 2.5 *ns 1 0.2

3 5 5 1 0.2

2.5m 7.6 *ns 12.5 2.5 0.75

4m 12 *ns 20 4 1.2

5.5m *ns *ns *ns 5.5 1.65

7m *ns *ns *ns 7 2.1

9m *ns *ns *ns 9 2.7

11m *ns *ns *ns *ns 3.3

∗ns is not specified

The fusion of the overlapped measurements is performed
to reduce the number of environment points without the loss
of the overall precision. The adopted strategy to data fusion
is based on the relevance degree (δn) of each measured point
(Pi), reflecting its Euclidean distance to neighboring points
Pi, i = 1..n. The new fused point (Pnf ) is defined by:

Pnf
=

i=1∑

n

δi

δT

Pi (1)

where δT is the global relevance. It is worthwhile to note
that the value of the relevance degree (δi) is related to the
sensor accuracy and the measured point distance from robot,
as presented in Table 1.

The δi value of each perception data is applied as input
in sensor fusion procedure where its value varies from 0
(least relevant) to 1 (most relevant). The rules are designed
to consider an ideal region of each source of perception,
where the error is smaller in relation to the other sources.

Table 2 shows the adopted rule basis developed from
Table 1 information about distance and error for each
perception source. It is possible to obtain an attribute value
for each point depending on its origin and distance. The
relevance is given according to the attribute, where VL (very

low) has a relevance degree equal to 0.2, L (low) has a
relevance degree equal to 0.4, R (reasonable)has a relevance
degree equal to 0.6, H (High) has a relevance degree equal
to 0.8 and VH (very high) has a relevance degree equal to
1.0.

4.3 Environment’s Estimation

The estimation of spherical pressure vessel topology
is carried out by minimizing the sum of the squared
differences between the estimated and observed data, as in
[22].

E =
m∑

i=1

ri − r (2)

where, r is the initial value of the estimated radius and ri is
the observed value.

The radius r can be obtained by

r =
√

(x − xc)2 + (y − yc)2 + (z − zc)2 (3)

and the observed radius ri can be computed as

ri =
√

(xi − xc)2 + (yi − yc)2 + (zi − zc)2 (4)

Table 2 Rules and concepts

>1 2.5 4 5.5 7 <10

1 Scanning Range Finder R R R VL VL VL

2 Short-range Depth Camera L VL VL VL V.L VL

3 Middle-range Depth Camera VL L L VL VL VL

4 Wide-range ToF Camera H H H H H VL

5 Long-distance Range Finder VH VH VH VH VH VH
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where xc, yc and zc represent the center of the sphere; x, y
and z represent any point on the sphere; and xi , yi and zi

represent a point on sphere with index i.
From Eqs. 3–4, it is possible to rewrite Eq. 2 as

E =
m∑

i=1

(
(xi − xc)

2 + (yi − yc)
2 + (zi − zc)

2 − r2
)2

(5)

and a coordinates estimation of the sphere center is obtained
by solving

C =
⎡

⎣
xc

yc

zc

⎤

⎦ = arg min E (6)

The center of spherical pressure vessel is computed by
LS approach as:

C = ((A′A)−1A′B) (7)

where

A = 2 ∗

⎡

⎢⎢⎢⎣

x1 y1 z1
x2 y2 z2
...

...
...

xn yn zn

⎤

⎥⎥⎥⎦ B =

⎡

⎢⎢⎢⎣

x1
2 y1

2 z1
2

x2
2 y2

2 z2
2

...
...

...
xn

2 yn
2 zn

2

⎤

⎥⎥⎥⎦ (8)

The sphere radius sr is estimated by a mean of all computed
radios (Eq. 3), defined as

sr =
√√√√ 1

m

m∑

i=1

(xi − xc)2 + (yi − yc)2 + (zi − zc)2 (9)

4.4 Prediction of the Environment Features

There are 4 types of spherical pressure vessels according to
the plate’s arrangements [23] used to build them:

– expanded cube, square segment, or soccer ball type is
commonly applied to small spheres with less than about
6 meters in diameter;

– meridian, orange peel, or watermelon type in 3-course
version are related to spheres with diameter between 6
and 9 meters;

– partial soccer ball type is designed to spheres with
diameter between 9 and 18 meters;

– meridian, orange peel, or watermelon type in 5-course
version is applied to big sphered with more than 18
meters in diameter.

The spheres used in Brazilian petroleum refineries have
more than 18 meters of diameter and they are built
according to the manufacturing standards to spherical
pressures vessels [24–27]. These spheres are meridian type
in 5-course version. These types of sphere vessels are sub-
divided equatorially in five sections (as seen in Fig. 9),
according to the distance between two plates (hN ), asUpper
Head (h1), Upper Shell Plates (h2), Equator Plates (h3),
Bottom Shell Plates (h4) and Bottom Head (h5).

Considering at this time, the robot has reached its
standard observation point, in front of two weld beads
corners (Section 4.1) and it knows an estimation of the
center and radius of spherical pressure vessel (Section 4.3).
Thus, the height of each equatorial section (hN ) and the
position of each equatorial section in relation to the tank’s
base (zN ), as shown in Fig. 9, can be calculated. The
equatorial sections values computation considers the design
and fabrication standards for pressure vessels, which specify
the equilibrium of volumes between these areas [23], as

h3h4 = z4 − c

h5 = sr − h3h4
h4 = 0.54065 ∗ h3h4
h3 = 0.91870 ∗ h3h4
h2 = h4
h1 = h5

(10)

where, sr is the radius of spherical pressure vessel (given
by Equation 9) and c is the center of the tank (estimated by
Eq. 7).

Fig. 9 Spherical pressure vessel

(a) (b)
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After these procedures, it is possible to estimate the
position of all equatorial section in relation to the tank base
(zN ), as

z3 = z4 + h4
z2 = z3 + h3
z1 = z2 + h2

(11)

where, z4 is the position of observed equatorial section, esti-
mated by autonomous search for the standard observation
point procedure (Section 4.1), and hn is the size of the plate
as shown in Fig. 9.

4.5 Occupancy Grid Prediction

After environment estimation and features prediction, the
occupancy grid can be now predicted, aiming to create
all surfaces of the inspection environment. This task is
based on the uniform distribution of voxels in the predicted
occupancy grid, ensuring an equal spacing between each
voxel and all its neighboring voxels. The occupancy grid
is estimated to wrap the inspection environment, creating
a regular grid in tridimensional space that represents the
predicted tank, as shown in Fig. 10.

The procedure to determine the voxels’ uniform distribu-
tion, in predicted occupancy grid, is based on environment
prediction where its main features are the estimated center c
(Eq. 7) and radius sr (Eq. 9). The occupancy grid resolution
is determined by the size of NDT probe, identified as voxel
size vs. Algorithm 1 describes all steps need to determine
the voxel distribution.

Fig. 10 Example of occupancy grid prediction of inspection
environment

Algorithm 1: Prediction of occupancy grid.
Input: c[x, y, z] is the vector of coordinates of tank’s

center [m]; sr is the tank radius[m]; vs is the
voxel size [m].

Output: op[m][3] is a m × 3 matrix of the scatter
points on the sphere.

/* length of a section of sphere
(i.e., a slice or circle) */

le ← 2 ∗ π ∗ sr

/* ratio of the sphere section
length per voxel size */

np ← le/vs

/* counter */
i ← 0

/* defines the spacing in the Z-axis

*/
for θ ← (−π/2) : 2π

np
: (

π/2
)
do

/* computes the next point on the
axis Z */

z ← (sin(θ) ∗ sr) + c[z]
/* radius of sphere’s section in

the axis Z */
rc ← √

(2 ∗ sr) − (2 ∗ (sr − (z + sr)))

/* defines the spacing in the axes
X and Y */

for φ ← (−π) : 2π
np

: (
π) do

/* computes the coordinate of
voxel on X axis */

op[i, x] ← (
cos(φ) ∗ rc) + c[x]

/* computes the coordinate of
voxel on Y axis */

op[i, y] ← (
sin(φ) ∗ rc) + c[y]

/* computes the coordinate of
voxel on Z axis */

op[i, z] ← z

i ← i + 1
end

end

/* returns the matrix with
coordinate of all voxels */

return op[m][3]

4.6 Confidence degree

After the occupation model is built, the modeled envi-
ronment is estimated and decomposed into a group of
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Fig. 11 Example of occupancy
grid prediction of the inspection
environment

Fig. 12 Inputs and outputs of the Fuzzy system

Fig. 13 Surface of Fuzzy rules
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Fig. 14 ANN architecture to confidence degreee estimation

three-dimensional points (voxels) uniformly distributed on
tank surface, creating the occupancy grid. However, most
of these points are estimated and not observed, introducing
uncertainties in environment estimated model. The confi-
dence degree is the measurement of prediction’s uncertain-
ties which is directly related with its distance of measured
voxels. Thus, a Fuzzy model is designed to quantify this
uncertainty, in terms of an estimation confidence degree
to each estimated voxel in the occupancy grid. A deep
discussion about Fuzzy rules can be seen in [28, 29].

The Fuzzy inference of the voxel confidence degree
uses as input the percentage of observed voxels in the
neighborhood, the neighborhood of the analyzed voxel, the
smallest distance among the analyzed and observed voxels,
and the radius of the spherical pressure vessel. Figure 11
illustrates the approach, where the green voxel represents
the point being analyzed and the voxels in blue represent
the observed points through perception sources. The red
circle shows the neighborhood limits used to identify the
percentage of known points. Furthermore, the percentage

Fig. 15 Comparison between
Fuzzy and ANN in a 10 meter
sphere with known points
grouped and distributed. Top
left: Fuzzy with grouped points.
Top right: Fuzzy with distributed
points. Bottom left: ANN with
grouped points. Bottom right:
ANN with scattered points
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Fig. 16 A boxplot with the difference between confidence degree computed by the Fuzzy and ANN model for a 10 meters diameter sphere with
20% of the known voxels. Left: Grouped voxels. Right: Randomly distributed voxels

of observed voxels is the sum of the known points in the
neighborhood divided by the total of known points.

The smallest distance between the analyzed voxel and
the closest observed point is illustrated in Fig. 11 by a red
arrow. If there are no observed points (blue square is null
in Fig. 11) inside the neighborhood, the nearest point of the
analyzed point is considered the only observed point and it
is taken to compute confidence degree.

The membership functions to Fuzzy model are designed
in such a way that the radius of the sphere influences
the confidence degree. For example, in a large sphere, the
degree of confidence decays slowly and over a larger region.
In a small sphere, all points on the sphere will receive a

high degree of confidence. Thus, the degree of confidence
is decay along the sphere is directly related to sphere size.
Figure 12 shows the input and output membership functions
of the Fuzzy model while Fig. 13 presents the output
surface mapping generated by the considered rule base. The
proposed Fuzzy model has presented good results, however
aiming to reduce computational cost, an Artificial Neural
Network (ANN) was developed to reproduce the developed
Fuzzy model behavior.

The ANN architecture, observed in Fig. 14, has 3 layers
with 6 neurons in the hidden layer and the same input and
output of the Fuzzy model. The inputs are represented by
the vector X, the connection weights are represented by the

Fig. 17 Virtual scenario for
validate the proposed approach

(a) (b)
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Fig. 18 Search for standard
observation point in virtual
pressure vessel

(a) (b)

matrix W1 and vector W2, the output of the hidden layer’s
neurons is represented by the vector O and the final output
is represented by the variable Y .

The output neuron Y has a linear activation function
(purelin), whereas the activation function of neurons O(n)

is the Tangent Sigmoid function (tansig). The output of
neuron O is given by Eq. 12 while output Y is given by
Eq. 13. More information about design and operation of
artificial neural networks can be found in [30–34].

O(n) = tansing

(
M∑

i=1

(X(i) ∗ W(i, n) + bias)

)
. (12)

Y = purelin

(
M∑

i=1

(O(i) ∗ W(i) + bias)

)
. (13)

The experiments to train the neural network model were
organized according to the quantity of observed points
and their localization. These points are either grouped and
placed in a specific sphere regions or they can be randomly
scatered over the sphere surface. The data set is composed
by 1%, 20%, 40%, 60% and 99% (5 data set for each
grouped or scattered experiment) of observed points. Four

Fig. 19 Estimation of the pressure vessel

pressure vessels with diameters of 6, 10, 14.6 and 18.25
meters are considered totalizing 40 experiments.

The set of voxels used to ANN training is composed by
the points of all pressure vessels (539.410 points) minus
the number of observed voxels (270.705 points), result-
ing in 268.705 points, where, 70% were used for training
(188.793), 15% for validation (40.456) and 15% for test
(40.456). The Mean Squared Error (MSE) of training step
was 8.21x10-04. For the test step the MSE attained 8.16e-04
and to validation was 8.21x10. Figure 15 shows the com-
parison between Fuzzy and ANN models applied to a tank
with 10 meters in diameter, with both grouped and scat-
tered known points, where it is possible to observe that ANN
model absorbs the Fuzzy model characteristics, generating
similar results in both grouped and distributed points.

ANN model has a shorter runtime, while the Fuzzy
model takes 0.05 seconds to compute the confidence degree
to a voxel, ANN model takes 0.03 seconds. For a 10
meters diameter sphere, 7926 voxels must be analyzed,
making the run time difference between the Fuzzy model
and ANN model around 158.53 seconds. To validate the
results obtained by ANN model, two boxplot built. These

Fig. 20 Prediction of pressure vessel features
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Fig. 21 Occupancy grid
prediction and confiability
analysis

(a) (b)

plots shown in Fig.16, consider the difference of the degree
of reliability obtained with both models to the above cited
sphere. The first boxplot considers 20% of grouped known
voxels and the other ones takes 20% of scattered knows
voxels. These boxplot results confirm that RNA model can
replace Fuzzy model with a good accuracy and a better
result time.

5 Experiments in Virtual Pressure Vessel

Simulation experiments were carried out to validate the
complete proposed approach. A virtual spherical pressure
vessel, considering all characteristic of a real sphere, was
implemented into Virtual Robot Experimentation Platform
(V-Rep) [35] (Fig. 17). The virtual robot was designed with
the same perception sources and magnetic adhesion skills as
the real robot.

During the automatic search for the standard observation
point, discussed in Section 4.1, the robot moves around
looking for two corners of weld beads. When the robot finds
the corners, it moves to reach this position in the middle
of the shorter distance between these corners, by using the
wide-ranging ToF camera. After that, robot moves forward
in a straight line until its middle-range depth camera finds
the pairs of corners and then a fine angular robot’s position
correction is carried out. The result of this procedure is
shown in Fig. 18.

When the robot achieves the correct observation point,
the procedure ofmulti-measuring of environment and sensor
fusion is started. The robot measures the environment
with its several perceptions sources (Fig. 19). In virtual
experiment, the radius is estimated obtaining 9.105 meters
against the real value of 9.125 meters, that is an error of
0.021%, and the estimated center is [0.098,-0.088,9.037]
meters with only 1.47% of error.

The components of computed pressure vessel are now
predicted and used to create a detailed estimation of storage

tanks characteristics including its specific features, as well
as its plates and weld beads, as discussed in Section 4.4. All
calculations are based on the location and distance between
the two weld beads corners and this result can be seen in
Fig. 20.

After estimation of main environment features, it is
possible to predict the occupancy grid of pressure vessel,
wrapping the whole tank with a voxel mesh, as discussed
in Section 4.5. However, these voxels have different
confidence degree, which varies in accord with their
distance of a observed known voxel, as detailed in
Section 4.6. Each voxel receives a confidence degree with
range from 0 (unobserved) to 1 (observed). The Fig. 21
shows the result of this approach in the virtual pressure
vessel, where each voxel has color varying from blue (cold)
to red (hot), where the hottest temperature represents the
lower confidence index.

6 Real Experiments

A preliminary experiment has been carried out with real
Autonomous Inspection Robot (AIR-1) in a square room

Fig. 22 Scenario of real experiment with AIR-1
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Fig. 23 Experiment with real
inspection robot

(a) (b)

emulating a spherical pressure vessel. The weld beads are
placed in an appropriate location of this room to promote a
similar scenario with a real storage tank, as seen in Fig. 22,
where the room has a diameter of 2.02 meters. In this
experiment, the points acquired from perception sources
were processed to reduce the error in sphere estimation, i.e.,
the points related to room corners are discarded because
these features are not present in a real tank. A sample of the
real perception data acquired by the Autonomous Inspection
Robot in experimental scenario can be seen in Fig. 23.

The AIR-1 has estimated a small spherical tank, due
to experiment characteristics, with 1.334 meters in radius.
The tank features (as weld beads and plates) are also
estimated based in the pair of weld beads corners, found
by the automatic search, as seen in Fig. 24a. The tank
occupancy prediction grid is also performed, where each
voxel is analyzed to determine its confidence degree. The
obtained occupancy grid is illustrated by Fig. 24b. The
difference between the diameter of the predicted sphere and
the diameter of the room, 64 centimeters (24.28%), refers

to the curvature of the sphere. The diameter in the Bottom
Head (Fig. 9) is smaller than in the middle of the sphere, as
shown in Fig. 25.

7 Comparison with Classic Navigation
Approach

This work presented a unique technique of mapping
environment for NDT inspection by mobile robots without
the need to navigate the whole sphere, besides identifying
characteristics of the environment as the weld beads and
position of the metal plates. A comparison with classic
navigation method is presented aiming to emphasize the
skills of proposed approach.

The technique used as reference is presented in [5]. The
data captured by the robot perception sources are converted
into structures known as octree, are the environment map is
created only during robot navigation. This reference method
is fully dependent of environment observation and the full

Fig. 24 Results of experiment
with real AIR-1

(a) (b)
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Fig. 25 Result of experiment with real AIR-1, difference between the
diameter value of the room and the predicted sphere

resulting map is achieved only after the robot navigates the
entire environment.

The comparison scenario is a spherical vessel with
diameter of 18.25 meters and an area of 1046.346 square
meters. For both methods,the robot always start the mapping
in the bottom center of the sphere (Bottom Head, see Fig. 1).
The robot will perform the navigation over the virtual tank
during 25 minutes. After this the total distance traveled by

the robot, percentage of observed area, observed aspects
and actions performed by robot with both methods will be
computed and analyzed.

With the traditional method, the robot needs to navigate
the entire spherical vessel to perform the mapping. At the
end of 25 minutes, the robot walked a total of 52 meters, and
observed a total of 165 meters2 of the sphere, corresponding
to only 15.769% of the whole sphere’s surface. The Fig. 26
shows the path traveled by the robot over the sphere, as well
as the generated map.

With the proposed method, covered a total of 3.930
meters and performed a pseudo-observation of 100%
of pressure vessel features. The followed trajectory and
generated map by the proposed approach are those shown
in Figs. 17, 18, 20 and 21. This successful mapping is
only possible because relevant information such as the
characteristics of the tank are taken into account in the
prediction of the map during navigation, making the method
efficient for mapping of spherical storage tanks.

In classic method, robot should cover all tank surface
(locomotion effort) to observe whole environment and to
registration its observations (processing effort) in a map
accord to its localization global. In proposed method, robot
not needs to perform whole observation to identify all
structural landmarks and to predict entire pressure vessel
surface. Thus, the motion is reduced (locomotion effort)
but the processing are increased. However, more effective
results are attained during less execution time with the
propose method. The Fig. 27 presents a diagram comparing
the robot’s processing and locomotion times, for both
method where it is possible to observe that the proposed
method uses only 1.85 minutes of total time to locomotion

Fig. 26 Followed trajectory and
generated map after 25 minutes
of navigation using classic
mapping technique

(a) (b)
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Fig. 27 Time description of robot actions in environment mapping [LC = locomotion and PC = processing]

and the remainder for processing. The processing time can
be significantly reduced it a more powerful processing
system is used or a parallel version of the method is
implemented as discussed in preliminary results of [36].

The Table 3 presents the comparison between the two
techniques, where is evidenced which the classic method
not identify the tank features even after observation of entire
environment.

8 Conclusion

This work has discussed an approach to identification
and prediction of environment features aiming the reliable
planning of inspection path. This method is focused on
automatic inspection of spherical pressure vessel by an
autonomous climbing robot.

The proposed approach is designed in several steps.
First, the robot automatically finds and moves to a
correct viewpoint to environment identification. The second
step consists of the environment measure by a group
of distinct perception sources, in which all sensors are
merged into a more reliable measured data set and reducing
the computational complexity. In sequence, the inspection
environment is predicted including its fundamental sphere
characteristics such as radius and center.

The environment features can be predicted, after the
fundamental identification of environment, where it is
estimated the specific components (as weld beads, plates
and corners) in accord with international standards of

Table 3 Comparison between the traditional mapping method and the
proposed method

Classic method Proposed method

distance traveled 52.006m 3.930m

total time 25min 21.42min

observed area 15.77% 3.82%

predicted area 0% 96.18%

knowledge of the 15.77% 100%

environment

observed aspects only distance distance and tank features

storage tank design. The next step is related to estimation of
occupancy grid, which wraps the storage tank with a group
of voxels, where each voxel is designed with a confidence
degree based in observed voxels in its neighborhood. At
last, the climbing robot has a deep knowledge of inspection
environment and can to make a reliable inspection planning.

Future works will discuss the reliability updating of
occupancy grid during the robotic inspection, application of
evolutionary methods to the inspection planning and a more
in-depth discussion of application in real pressure vessels.
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ABSTRACT This paper addresses the control of a fleet of unmanned aerial systems (UAVs), termed
as drones, for flight formation problems. Getting drones to fly in formation is a relevant problem to be
solved when cooperative cargo transportation is desired. A general approach for this problem considers the
coordination of a fleet of UAVs, by fusing all information coming from several individual sensors posed on
each UAVs. However, this approach induces a high cost as every UAV should have its advanced perception
system. As an alternative, this paper proposes the use of a single perception system by a fleet composed
of several elementary drones (workers) with primitive low-cost sensors and a leader drone carrying a 3D
perception source. We propose a Quadral-Fuzzy approach to ensure that all drones fly in formation and
will not collide with each other or with environment obstacles. We also develop a new way to compute
potential fields based on possibility fuzzy (fuzziness) measure with the focus of avoiding collisions between
the drones. The proposed approach encompasses four high-coupled intelligent controllers that respectively
control the leader and worker drones’ motion and implement obstacle and collision avoidance procedures.
Simulation results using a fleet of four aerial drones are presented, showing the potential for solving usual
problems to flights in formation, such as dodging obstacles, avoiding collisions between the drones, among
others.

INDEX TERMS Unmanned aerial vehicles (UAVs), multi-agent systems, distance-based formation,
flight-formation control, autonomous flight.

I. INTRODUCTION
Nowadays, unmanned aerial vehicles (UAVs) are used in
several applications from military and civilian domains such
as forest fire monitoring, surveillance, terrain mapping, and
surveying, tracking, disaster management, blood or medical
equipment delivery, and others [1]–[5]. Aerial drones are
fast, flexible, lightweight, low-cost, and easy to use UAV
with the potential to reduce the cost and time in the logistic
field. An extensive survey of aerial drones for civilian appli-
cations is given in [6]. From this survey, one of the most

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongping Pan .

promising applications of aerial drones is for autonomous
cargo transport and delivery by e-commerce retailers and
also for express delivery of perishable goods such as food
or medicines. However, several challenges must be solved
for the service to be effective [6]–[8]: (1) Limited payload:
in general, goods must not weigh more than 2 kg; (2) Inte-
gration of low-cost sensors and positioning system, that is,
several sensors like gyroscope, accelerometer, among others,
can be used to create the odometry. The sensor fusion with
accurate high location sensors, such as Real Time Kine-
matic GPS [9], allows to obtain the drone position in a
global reference system; (3) Avoid obstacles and collisions:
it is necessary to establish a flyable collision-free path in a
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dynamic environment; (4) Communication and connectivity:
communication links with the ground control station are need
to receive instructions; (5) Landing at specified locations
or the use of a parachute to delivery goods, (6) Limited
flight range due to energy requirement (battery duration): the
traveled distance depends on power transfer efficiency for
motor, cruising velocity and power consumption of electron-
ics, (7) Other concerning including government regulation
and public acceptation.

This paper addressed challenges 1 to 3 above mentioned.
The problem of the limited payload can be circumvented by
the use of multiples drones that cooperatively transport the
product. However, the use of a fleet of drones introduces new
problems such as flight formation, drones communication
issues, the need for a distributed system for collision, and
obstacles avoidance. In this paper, collision avoidance refers
to a drone trying to avoid another drone, while obstacle
avoidance means that the drones try to avoid obstacles from
the environment.

This work aims to present a novel intelligent and coop-
erative strategy of load transportation using multiple drones
through a quadral-fuzzy approach. The added value of this
work is the use of a predefined formation for navigation, for
a fleet of drones composed of a leader drone equipped with
precise 3D perception system and worker drones equipped
with low-cost positioning systems [10], [11]. The mul-
tiple drones system can autonomously deflect obstacles,
thus avoiding collisions and possible damage to load and
agents.

Concerning challenge 2, the proposed approach has as
the prerogative the use of a unique perception system, with
resolution and amplitude to supervise the whole group and
environment. The fleet leader computes the goal locations of
worker drones based on its perception of the situation at every
instant of time, based on the distance to the nearest obstacle.
Workers know their locations in the environment using sensor
fusion (e.g., accelerometer, gyroscope, and GPS) to estimate
the position of the drone in the environment. The goal is to
use a single 3D perception sensor in the leader to reduce the
cost of the system and avoid overlapping information from
multiple 3D sensors.

Based on such sensor data, the fleet leader can compute
the flyable collision-free path to the entire formation (chal-
lenge 3). Moreover, each worker drone is also equipped with
a collision-avoidance system based on potential field [12].

Our main contribution lies in the design and development
of a highly-coupled quadral-fuzzy approach to managing
the multiple-agent motion applied to cooperative transport.
A fuzzy controller is developed to control the leader motion,
considering the current position of the drone and its desired
position, as well as the environment perception information
to deviate from obstacles. Worker drones act with a similar
fuzzy controller, but without the obstacle deviation skill,
i.e., their position is defined by the leader. Another fuzzy sys-
tem performs obstacle deviation for the whole formation and
ensures the optimal configuration for cargo transportation.

A fuzzy self-preservation strategy is adopted to prevent col-
lisions, assuring a safe flight to drones and cargo.

This work is divided into five sections. Section 2 brings
some related works. Section 3 describes in detail the proposed
quadral-fuzzy approach. Section 4 discusses the approach
evaluation based on some experiments results. At last,
section 5 presents the work conclusions.

II. RELATED WORKS
Several studies have contributed to making cargo delivery by
drone a reality [6]. The researches are looking for improv-
ing navigation capabilities such sensing ability [13], [14],
intelligent control [15]–[19] and obstacle and collision avoid-
ance [12], [20], [21].

The integration of visual sensing techniques in drone
applications is a trend for researches on position-attitude
control, pose estimation and mapping, obstacle detection as
well as target tracking [13], [22]. Following this trending,
we use a 3D perception source providing a cloud of points
(or PointClouds), which can collect spatial information from
the environment that is combined with information from
low-cost sensors (multi-fusion sensor), allowing run proce-
dures for collision and obstacle avoidance and also for path
planning.

Nowadays, fuzzy systems have been successfully used for
navigation, guidance, and control of autonomous vehicles and
mobile robots [23]–[25]. This extensive use is explained by
the simple control structure and also the natural and practical
design of fuzzy systems [26]. A survey of nonlinear and adap-
tive intelligent control techniques for a quadcopter drone,
as the drones used in this paper, is given in [15] in which
the use of fuzzy control is highlighted. For example, the work
in [27] develops an autonomous drone, able to follow planned
trajectories by using a robust fuzzy controller based on a
precise dynamic and kinematic models of the drone. Dif-
ferent from [27] but similar to some works cited in [15],
the proposed quadral-fuzzy approach developed herein does
not require any model and can adapt to unforeseen situa-
tions, providing excellent coverage of wide-ranging operating
conditions.

Formation control is an essential issue for the development
of collective and collaborative behaviors in multi-agents sys-
tems. Potential field and leader-follower are the two main
approaches for formation control [12]. Hybrid approaches,
combining both theories, are often used to build and move
formations because they are effective, robust, and easy to
handle [28]–[31]. In this paper, besides the use of fuzzy the-
ory to develop intelligent controllers for drones motion and
obstacle avoidance as usual in literature [15], [20], we com-
bine potential field and leader-follower approaches to develop
a fuzzy system to avoid the collisions in formation. This
fuzzy self-preservation system is based on a fuzzy possibil-
ity map in which the potential field reflects the fuzziness
of each direction vector in the field. This fuzzy potential
field computation is a contribution of this work. Finally, all
fuzzy controllers in this paper are modeled as recommended
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by [32], using centroid defuzzification, conjunction in min-
imum, disjunction in maximum, activation in minimum and
accumulation in maximum.

It is worthwhile to note that the main contribution of this
work is an original solution (quadral-fuzzy approach) for the
multiple drones flight formation. Cargo transportation has
been only cited as a motivating example for flight formation
problems.

III. THE PROPOSED quadral-fuzzy APPROACH
In this section, we propose a multi-drone formation flight
strategy for cooperative cargo transportation. We consider
two main safety requirements in the design of the system:
• all drones must maintain formation (position and orien-
tation);

• all drones must avoid collision among them and with the
environment’s obstacles to assure their integrity.

For this purpose, the proposed approach adopts a
leader-workers configuration developed through four sub-
systems: leader control, worker control, self-preservation,
and formation maintenance. In this configuration, the leader
drone can perceive the environment and presents an
active/reactive behavior while workers exhibit only reactive
behavior. Each subsystem is an independent fuzzy system
that models the corresponding individual (leader/workers)
or collective (team) behavior. All subsystems run in
a highly-coupled way composing the new quadral-fuzzy
approach for cooperative cargo transportation, as shown
in Figure 1.

FIGURE 1. schematic of the complete proposed system for multi-drone
formation flight (quadral-Fuzzy approach).

In this Figure, the first block is related to the leader con-
trol subsystem that generates the position and orientation
control for the leader drone, including obstacle avoidance
skill. The obstacle deviation maneuvers should not affect the
other drones in the formation; thus, only linear deviations
are allowed. The second block refers to the worker control
subsystem that controls the worker drones’ position, assuring

a global formation stabilization. Eachworker is endowedwith
the worker control subsystem. The third fuzzy system con-
cerns the self-preservation ability, where a knowledge-based
method is developed to avoid collisions inside formation that
can damage the drones. All fleet members are endowed with
this security system. Finally, the block called formation is
responsible for establishing the flying formation rules assur-
ing cargo transportation safety. This module computes the
positions of workers around the leader and develops an intel-
ligent strategy for detecting and avoiding external obstacles.
This subsystem manages the entire fleet.

In the proposed quadral-fuzzy approach, all fuzzy subsys-
tems correspond to fuzzy non-linear functions g(x) that map
fuzzy input variables (x ∈ Ux ⊂ <n) to fuzzy output variables
(y = g(x) ∈ Uy ⊂ <). The universe of discourse is defined as
U = [0, lim] or U = [−lim, lim], according to the mapped
variables. The membership functions describing the fuzzy
sets Wx = {(x, µA(x)|x ∈ Ux} and Wy = {(y, µA(x)|x ∈ Ux}
are pseudo-trapezoid ones defined in<, and given by Eq. (1),
where [a, d] ∈ <; a ≤ b ≤ c ≤ d and a < d ( [32]).

µA (x; a, b, c, d) =



x − a
b− a

, if x ∈ [a, b)

1, if x ∈ [b, c]
x − d
c− d

, if x ∈ (c, d]

0, if x ∈ < − (a, d)

(1)

All fuzzy controllers are based on product inference engine
with center average defuzzifier.

The aerial vehicles modeled in this paper is a quadcopter
drone with six degrees of freedom corresponding to the linear
and angular velocities about X , Y , and Z axis in a 3D environ-
ment. Such degrees of freedom are labeled as Vx , Vy and Vz
for linear motion and Wx , Wy and Wz for angular movement
(roll, pitch, and yaw) as shown in Figure 2.A.

The position and orientation of the drone are determined
by inertial sensors (i.e., IMU, Gyroscope, GPS). When using
multiples drones, all positions must be given in the same
coordinate system. Figure 2.C shows an example in which the
positions of four drones are converted to the same reference
frame. Thus, linear and angular transformations based on
rotation and translation matrices are used to convert data
captured by a sensor to any reference point by the use of
transformation trees [33]–[35]. As a result, data from mul-
tiples sensors placed on several drones can be translated and
processed to the same coordinate system.

In this paper, the coordinates of each drone are transformed
into a coordinate in the global frame, that is used as a ref-
erence frame for all the drones positioning. Furthermore,
homogeneous transformation matrices translate the sensor
data to a unique reference point, such as the center of
the drone, for example, supporting data processing at the
same coordinate system, independent of drone and type of
sensor used to data capture. All systems composing the
quadral-fuzzy approach in Figure 1 are detailed in the next
sections.
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FIGURE 2. Overview of used aerial vehicles (drones). (A) Degrees of
freedom of an aerial vehicle (drone). (B) Differences between leader and
work drones. (C) Representation of all drones in the same coordinate
system.

A. LEADER’s CONTROL SYSTEM
A leader drone composes the fleet considered in this paper.
This drone can perceive the environment and other drones and
also it can estimate their displacement. The leader drone is
endowed with a source of 3D perception, and the other drones
are considered worker drones, as illustrated in Figure 2.B.

The 3D perception source embedded in the leader drone
delivers a cloud of points at a resolution of 176 by 144 points
with a viewing angle of 69◦ (h) x 56◦(v). This source can
operate up to 10 meters away, and the simulated sensor is
based on the Mesa SR4000 3D ToF sensor [36]. This per-
ception source allows detecting the environment’s obstacles
by the leader drone. All drones (leader and workers) are
identical, but only the leader has a source of perception.

The leader control system aims to ensure a safe flight
for the leader drone. It consists of two fuzzy subsystems,
as shown in Figure 3. TheFuzzy position control is themotion
controller driving the drone to reach the desired position
while the Fuzzy avoid obstacles block determines leader

FIGURE 3. Representation of the leader drone position control system.
The two Fuzzy controls (Fuzzy position control and Fuzzy avoid obstacles)
compete for drone leader speed control, where selection takes place by
the distance of identified obstacles.

maneuvers to avoid obstacles while trying to achieve the
desired point. Moreover, the block called switch turns off
the motion controller in the presence of imminent collision,
leaving the leader free to carry out obstacle detour, under
Fuzzy avoid obstacles control.

1) FUZZY POSITION CONTROL SUBSYSTEM
The fuzzy subsystem for position control of the leader drone
implements three fuzzy mappings to calculate leader veloci-
ties in direction to the desired point that is defined as the goal
for the leader, considering the current position of the drone,
Rp, and the desired position, Dp. Given in the 3D reference
coordinate frame, three measurement distances among these
positions are used as input (input1 in Figure 3) for this
fuzzy subsystem: (1) the Euclidean distance in meters (δe)
between the position of the drone and the desired point, (2) the
angular distance over z-axis that corresponds to the angular
orientation error in degrees (δa) and (3) linear distance over
z-axis computing the linear position error in meters (δz).
Thesemeasured distances are computed by equations 2 and 3.

δe =

√
(Rp(x)−Dp(x))2+(Rp(y)−Dp(y))2+(Rp(z)−Dp(z))2

(2)

δz = (Dp(z)− Rp(z)) (3)

The δa calculation considers the drone’s current position
as well as its angular orientation. This input provides the
necessary angular rotation so that the drone has pointed to the
desired angle. The computational procedure used to obtain δa
is given by Algorithm 1.

The fuzzy sets Ai(x) are defined for each input vari-
ables (x = [δe, δa, δz]T ) over their universe of discourse
(δe ∈ [0, 20], δa ∈ [−180, 180] and δz ∈ [−20, 20]).
These fuzzy sets and their correspondent membership func-
tions µAi (x; a, b, c, d) are given in Table 1. Based on these
fuzzy sets, the fuzzy values of the euclidean distance δe are
combined with the other two input variables (δa, δz) to fire
three rule bases generating the output of position controller.
The outputs of the leader’s control subsystem are the

speeds that will be directly applied to the leader. Although the
leader drone is omnidirectional, this control subsystem only
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TABLE 1. Input variables of position control: fuzzy sets Ai (x) and membership functions µAi
(x; a,b, c,d ).

Algorithm 1 Compute δa
1 angleDifference←
antan2(Dp(Vy)− Rp(Vy),Dp(Vx)− Rp(Vx));

2 if angleDifference < 0 then
3 angleDifference← π + (π − abs(angleDifference));

4 δa← angleDifference− Rp(Wz);
5 if abs(δa) > π then
6 δa = 2 ∗ π − abs(δa);
7 if Rp(Wz) < angleDifference then
8 deltaa← deltaa ∗ −1;

9 return δa;

promotes linear motion over x − z plan, preventing sideways
sliding. Thus, the three outputs are the linear velocities over
the axis x (vx) and over the axis z (vz), given in meters
per second (m/s), and the angular velocity (ωz) in radians
per second (rad/s). Since decision block (switch) in Figure 3,
only chooses if the leader’s control system output (output)
comes from Fuzzy position control or Fuzzy avoid obstacles
subsystems, such velocities are also the output variables of
position controller. The fuzzy sets Ai(y) defined for each out-
put variables and their correspondent membership functions
µAi (y; a, b, c, d) are given in Table 2.

The three non-linear maps (one for each output velocity),
generated by the rule bases of fuzzy position control subsys-
tem are shown in Figure 4. As discussed above, the Euclidean
distance that corresponds to the 3D position error affects
all velocities (angular and linear). It is worthwhile to note
that the x-axis linear velocity (vx) decreases when angular
error (deltaa) grows-up (see the upper surface in Figure 4).
This behavior indicates that the drone must first correct its
orientation angle before proceeding to the desired point.

As soon as a goal position is set to the leader drone,
the fuzzy position control subsystem continuously computes
linear and angular speed that should be applied to the drone’s
motors according to the decision taken by switch block. This
decision takes into account the proximity of obstacles, as will
be explained in the next section.

2) FUZZY OBSTACLES AVOIDANCE SUBSYSTEM
This subsystem aims to prevent collisions with external obsta-
cles. In this paper, any object that is not identified by the
leader as a worker drone is considered as obstacles and
the formation must deviate it. For this, the cloud of points

FIGURE 4. Lead drone Position Control - Velocity maps generated by
fuzzy position control system. (A) Map of the linear velocity in the X-axis,
about the linear error (Euclidean distance) and angular error (angular
difference) between the drone position and the desired position. (B) Map
of the angular velocity in the Z-axis, about the linear error (Euclidean
distance) and angular error (angular difference) between the drone
position and the desired position. (C) Map of the linear velocity in the
Z-axis, about the linear error (Euclidean distance) and linear Z-axis error
(height difference) between the drone position and the desired position.

obtained by 3D perception sensor is processed to detect
objects in front of the leader drone, as proposed in [14].
Thus, the closest object is identified, and three distance mea-
surements, in meters, among this object and the leader are
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TABLE 2. Output velocities of position control: fuzzy sets Ai (y ) and membership functions µAi
(y; a,b, c,d ).

FIGURE 5. Lead drone avoid obstacles control system - Velocity maps
generated by fuzzy position control system. (A) Obstacle detection and
measured distances to the drone. (B) Map of the linear velocity in the
Z-axis, about the linear error (Euclidean distance) and linear error in
Z-axis (Z-axis difference) between the drone position and obstacle
detected. (C) Map of the linear velocity in the Y-axis, about the linear
error (Euclidean distance) and linear error in Y-axis (Y-axis difference)
between the drone position and obstacle detected.

computed and used as input (input2 in Figure 3) to this
subsystem: Euclidean distance (δe), the linear distance over
the y-axis (δy) and the linear distance over the z-axis (δz).
Figure 5.A illustrates these measured distances, where the
green dot represents the obstacle closest to the drone.

Some linguistic predicates are used to define input fuzzy
sets. Concerning Euclidean Distance(δe), the object can be
close to, far or so far from the leader. The object position
over z-axis (δz) can be in front of, above or below the drone.
The object position over y-axis (δy) can be in face, to the
right or to the left of the leader drone. Therefore, the fuzzy
set for Fuzzy obstacles avoidance subsystem and their cor-
respondent membership functions µ(x; a, b, c, d) are given
in Table 3.

Similar to the position control subsystem, the outputs of
this block are speeds in meters per second (m/s) that will be
directly applied to the leader drone. The adopted strategy only
implements obstacle detour maneuvers in the z - y plan. Thus
the leader drone linearly moves along these two axes. Any
angular actions are carried out to deflect obstacles; that is,
the leader drone is ever oriented to the goal position.

The fuzzy sets Ai(y) and their correspondent membership
functions µAi (y; a, b, c, d) for both output variables (linear
velocities vy and vz) are the same and they are given in Table 3.
The fuzzy non-linear function (derived from the rule bases)
used to compute both velocities are given in Figure 5. Both
functions are smooth surfaces, assuring that the leader drone
maneuvers to obstacle avoidance do not cause bumps in the
cargo.

As the position controller, the obstacle avoidance sub-
system is always active; that is, it is always sending speed
information to the leader drone. However, the decision about
which velocities signals should act on the motors, whether
they are the outputs of the position controller, or they come
from the obstacle avoidance subsystem, is taken by the switch
block in Figure 3. For this decision, a simple threshold test
is carried out. If the Euclidean distance among the closest
obstacles and the leader drone is less than a threshold, then
the leader’s control system output (output in Figure 3) comes
from obstacle avoidance subsystem otherwise they are the
velocities computed by fuzzy position control subsystem.

B. WORKER CONTROL SYSTEM
The worker drones have only position sensors. Thus, these
drones only know their current position relative to their initial
position. Moreover, the only worker drone goal is to maintain
the formation, and for this, it has a position controller a little
simpler than the one described above for the leader. A worker
drone safety flight is assured by the Self-preservation system
that will be described in next section III-C

The worker drone control system can be seen in Figure 6.
Its inputs are the same measured distances (δe, δa, δz) of the
leader’s position controller. However, in this case, the desired
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TABLE 3. Fuzzy variables of Obstacles avoidance block.

FIGURE 6. Representation of the workers drone position control system.

position corresponds to the position that the worker drone
should occupy in the formation. The system outputs also
are the same: the linear speeds (vx and vz), and the angular
velocity (ωz). However, the position control of the worker
drone is organized into three independent fuzzy functions,
one for each velocity to be computed. Unlike the leader drone
who does not need agility but precision, the workers must
take quick actions to keep their place in the formation. Thus,
the use of 3 independent controllers provides agility enabling
better results in worker drones control.

As the leader and workers are the same kinds of drones,
the only difference among them is their embedded perception
system, the fuzzy sets and memberships functions for worker
drones input/output variables are the same given in Figure 4.
However, the universe of discourse for such variables has
been expanded (vz, ωz ∈ [−4, 4]), narrowed (δe ∈ [0, 1]
and δz ∈ [−5, 5]) or maintained (δa ∈ [−180, 180] and
(vx ∈ [0, 1]) to assure the agility requirements.

The rule base developed to drive the worker drone along
x-axis contains rules modeling heuristic knowledge such as

• if the worker drone is very close (δe ∈ A1) to desired
position then the speed is very slow (vx ∈ A1).

• if the worker drone is far (δe ∈ A3) from desired position
then speed is fast (vx ∈ A3).

Similarly, the rules driving movements along z-axis are for
example,

• if the vertical distance among the worker drone and the
desired position is very down (δz ∈ A1) then the speed
is positive and very fast (vz ∈ A5).

• if the worker drone is in the face of (δz ∈ A3) the desired
position, then the speed is near zero (vz ∈ A3).

As a result of rules firing, if the output of the Linear Z
Position control subsystem in Figure 6 is negative, the drone
descends, and if the linear velocity δz is positive, the drone

goes up. The Linear Z Position control goal is vertically to
keep the drone as close as possible to its desired position in
the formation.

Furthermore, the Angular Z Position control subsystem is
always looking to keep the worker drone pointed to its desired
position in the formation. For this, it computes drone rotation
speed (ωz) around the z-axis in radians per second (rad/s)
according to rules such as

• if the angular error among the worker drone and the
desired position is very high and positive (δz ∈ A5) then
rotation speed to the right is very fast (ωz ∈ A1).

• if the worker drone is aligned to (δz ∈ A3) the desired
position, then the rotation speed is near zero (ωz ∈ A3).

C. SELF-PRESERVATION SYSTEM
A self-preservation strategy is developed to prevent collisions
between the drones during flight. This strategy adopts for
each drone, a security cube centered at the drone. If any object
(another worker drone) is detected over this cube surface, then
the drone must perform a detour maneuver. This maneuver is
based on the drone’s expectation tomove towards the obstacle
position P(x, y, z). Thus a possibility map is built describing
all directions that a drone can take. A direction is represented
by a vector linking the drone center to a position P(x, y, z)
over the cube’s surface. In addition, a fuzzy system is used to
infer the degree of possibility (fuzziness) associated to each
direction in this map [32], considering drones angular and
linear velocities, as well as the Euclidean distance among
the drone in the center of the cube and the position P(x, y, z)
defining the direction. During flight, positions with angular
errors into the interval [−90◦, 90◦] are in front of the drone,
on the contrary these points are behind the drone (δa ∈
[−180◦,−90◦] ∪ [90◦, 180◦]). In the same way, if the linear
drone velocity is positive (vx > 0), the drone is approaching
the position; otherwise it is flying away from the position
(vx < 0).

The first step to build suchmaps is to generate a vector field
around each drone to assign all possible directions (vectors)
for drone displacement, as shown in Figure 7.A. Each vector
Pv[i], associated with a direction, is uniquely determined
by its position P(x, y, z) and fuzziness, corresponding to a
degree of possibility of the drone moving in this direction.
This degree of fuzziness is computed based on drone position
and velocity information by a fuzzy system composed of two
modules, as shown in Figure 7.B: linear motion and angular
motion.
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FIGURE 7. Self-preservation system overview. (A) Possibility vector [Vp]
scattered around the drone’s. (B) Self-preservation system strategy to
apply degree of possibility to each possibility vector [Vp].

The first one assigns a fuzziness degree due to the drone’s
linear velocity uncertainty, weighting forward, or backward
dronemovements (upper vector field in Figure 7.A). The sec-
ond fuzzy system considers the angular velocity uncertainty,
and it weights turn left or right actions (lower vector field
in Figure 7.A). The output of both systems is the degree of
possibility of the drone moving in the direction of the vector
Pv[i]. The s-norm algebraic sum is used to combine these
two fuzzy variables giving the final possibility degree of each
vector Pv[i] [32].

The input variables for both fuzzy systems are the
Euclidean (δe from equation 2) and angular (δa from algo-
rithm 1) distances among the drone and the desired position
P(x, y, z) of a Pv[i] vector. A third input variable for the fuzzy
linear motion system is the linear velocity (vx ∈ [−1, 1]) over
x axis that indicates forward or backwardmotion. The angular
velocity (ωz ∈ [−1, 1]) that indicates the left or right rotation
is the third input for the fuzzy angular motion system. The
input membership sets are the same given above for these
variables: euclidean distance and linear velocity are given
in Figure 5.D, angular distance, and angular velocity are given
in Figure 4.

The output of both fuzzy systems reflects the possibility
for the drone to carry out the linear and angular motion in
each direction Pv[i]. This degree of possibility can be very
low (VL), low (L), high (H) or very high (VH), in a range
from 0 to 1.

For the sake of clarity, the fuzzy surface of both systems
is displayed in two graphs combining inputs two by two.
For fuzzy linear motion, the rule base has generated the two
graphs in Figure 8. From these graphs, when the drone is
moving forward, for example, and there are points in the face
of it having a low angular difference, that is a small angular
error, there is an excellent possibility to the drone reach these
points. On the other hand, the fuzzy angular motion system
is developed to predict the future position of the drones when
performing an angular rotation. Thus Pv[i] with a high left
angular error, for example, has a higher degree of possibility
if the angular velocity is high on the left. The two surfaces
in Figure 8model such inference resulting from fuzzy angular
motion rule base.

An example of the two vector fields resulting from both
fuzzy linear and angular motion inferences is shown in
Figure 9. In this Figure, a high degree of possible results
in a light color vector, otherwise a dark vector indicates a
direction with a low degree of possibility. The combination
(by s-norm algebraic sum) of both fields in Figure 9 generates
the final vector field, reflecting the possibilities of the drone
moving in each direction.

Finally, a heuristic procedure is developed to prevent col-
lisions based on the vector field computed by a fuzzy motion
system. The cube volume around the drone is divided into
four quadrants, from 0 to 90 degrees, from 90◦ to 180◦, from
−180◦ to −90◦ and from −90◦ to 0◦. When another drone is
detected in one of these areas, a diversion maneuver is carried
out, causing the drone to slide to the opposite side, according
to a repulsive force. The degree of probability of the drone
moving in a particular direction is used to assign the force of
the deviation to be executed in case of another drone has been
detected in such direction. All directions Pv’s that meet the
surface of the detected (blue) drone, as shown in Figure 9.A,
are identified, defining an interception area. The degree of
possibility for all vectors in the interception area is averaged,
generating the repulsive force. This deviation maneuver uses
the linear velocities on the x and y-axis, weighted by the
repulsive force, to move the drone into directions of 45, 135,
−135, and−45 degrees from the area containing the detected
drone.

When there are two drones around the drone performing
the detour maneuver, it calculates the weights (repulsive
force) based on the directions Pv’s connecting it with both
detected drones, and then the drones detour is carried out
relative to the detected drone with the highest possibility of
collision (highest repulsive force).

D. FORMATION MAINTENANCE SYSTEM
This section develops the technique of flying in fleet forma-
tion proposed by this work. Firstly, the leader drone is set
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FIGURE 8. Self-preservation system - Degree of possibility maps generated by the Fuzzy linear system [(A), (B)] and Fuzzy angular system
[(C), (D)]. (A) Map of degree of possibility, about the linear error (Euclidean distance) and linear velocity (in m/s) between the drones positions.
(B)Map of degree of possibility, about the angular error and linear velocity (in m/s) between the drones positions. (C) Map of degree of
possibility, about the linear error (Euclidean distance) and angular velocity between the drones positions. (D) Map of degree of possibility,
about the angular error and angular velocity between the drones positions.

to reach point B from point A. During the flight, all worker
drones must quickly reach specified positions, set from a
leader’s position, so that it is possible to assume and maintain
the formation. The worker drone positions are computed
by a formation function specifying the desired geometry
shape of the formation. The formation function inputs are
the leader position and information about obstacles that have
been detected by the 3D perception sensor. There are two
types of flight formation: cruiser formation that corresponds
to an arbitrary geometrical shape defined according to cargo
transportation requirements and safe formation (line mode) to
be assumed in the presence of two or more external obstacles.

If the perception sensor identifies only one obstacle in front
of the leader drone, the obstacle data is captured (δx , δz and
δa) and inputted to a deviation obstacles fuzzy system, com-
puting the necessary sliding maneuver to be carried out by the
worker drones around the leader. Thus the formation function
computes the new position of each drone in the fleet, assuring
that all drones can deflect the obstacle while maintaining the

formation. If two or more obstacles are detected in the face
or both sides of the leader drone, and the euclidean distances
among them are less than 1meter each, the formation assumes
the safe mode. In this safe formation, each drone lines up at
a predefined order, forming a shell. As before, the formation
function computes the new position of each drone in the fleet.

Both cruiser and safe formations take into account the posi-
tion of the leader drone to determine the worker’s position.
During a flight, these relative positions are always the same,
concerning the position and orientation of the leader. When
the leader drone bypasses a nearby obstacle, for example,
the deviation degree computed by the fuzzy system is added
to the preset position of each drone, causing it to spin around
the leader. Each worker drone tracks its desired position all
the time except when it slides to deviation from another drone
in the fleet, as explained in section III-C. This proposed strat-
egy for formation maintenance is summarized in Figure 10.

The formation is a unique entity, where each drone is part
and plays a role. Virtual markers inform the desired and

64374 VOLUME 8, 2020

51



M. A. S. Teixeira et al.: Quadral-Fuzzy Control Approach to Flight Formation by a Fleet of UAVs

FIGURE 9. Example of self-preservation strategy in operation.
(A) Representation of an intersection between two drones. (B) Vectors of
possibility indicating that there is a possibility of drone collision in the
right side. (C) Vectors of possibility indicating that there is a possibility of
drone collision in the front.

actual position of each drone, as well as define the formation
limits. These markers are created from the actual position
of each drone, obtained through the position sensors and
transformation trees. The Figure 11.A shows such markers.

Considering a 3D coordinate [x, y, z] system, the current
position of the leader is written as Lp = [x, y, z]′ and the
actual position of the i-th worker drone is Wp[i] = [x, y, z]′

(i also refers to the initial position of the drone in formation).
The desired position of the working drone to maintain forma-
tion isWdp[i] = [x, y, z]′.

1) CRUISER FORMATION
The first step to establishing the cruiser formation geomet-
rical shape is to choose all drones’ relative positions. For
this, the initial leader’s position Lp = [x, y, z]′ is set, and
the positions for each worker drone in the formation are

FIGURE 10. Diagram representing all strategy developed for formation
maintenance system.The strategy can be divided into 4 main parts,
namely predefined formation, perception source processing, obstacle
deviation and saved mode (predefine line formation).

established. Each drone must be at a specific angle and a par-
ticular distance from the leader, to assure pose maintenance.
A vector Vd [i] indicating the displacement of each drone in
each [x, y, z] - axis relative to the leader’s position Lp is cre-
ated to save this geometrical shape. This vector can be added
to the leader’s current position during the flight, giving the
desired new position of each worker drone all the time. How-
ever, a Vd [i] has always the same orientation, independent
of the leader drone has made an angular displacement. Thus,
an angular correction term must be introduced, allowing to
compute every time, the worker drone desired position

Wdp[i].x = ((Vd[i].x ∗ cos(Lw.z))

−(Vd[i].x ∗ sin(Lo.z)))+ Lp.x

Wdp[i].y = ((Vd[i].x ∗ cos(Lw.z))

−(Vd[i].x ∗ sin(Lo.z)))+ Lp.x

Wdp[i].z = Lp.z, (4)

where we assumes for simplicity that Lp.x corresponds to
the values of x-coordinates of vector Lp = [x, y, z]′ and Lw
represents the rotation of the drone leader (Figure 2.A). The
same is valid for all vectors in the equation 4.

In a fleet with four drones, an initial position of the cruiser
formation is represented in Figure 12.A. During the flight,
the obstacle deviation maneuvers are carried out to always
maintain the displacements (Vd [i]) according to this position,
revising only its orientation.
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FIGURE 11. The virtual representation of the formation flight, presenting the limits and positions imposed on each drone, as well as the
possible deviation maneuvers of the whole formation. (A)Formation limits set by virtual markers, the control proposed by this paper aims
to ensure that each drone stays within specific limits. (B) Deviation of all formation in linear Z-axis (when there are obstacles above or
below the formation). (C) Deviation of all formation in linear Y-axis (when there are obstacles to the right or left of the formation).
(D) Deviation of all formation in the angular X-axis. (E)Line formation (when there are obstacles on both sides).

FIGURE 12. Pre-established drone formation. (A) Example of drones’
position in cruiser formation. (B) Example of drones’ position in safe
formation (line mode).

2) SAFE FORMATION
When there are obstacles on both sides of the leader drone,
at a distance of fewer than one meter on each leader side,
the formation must assume the safe mode. It consists of a
predefined geometrical shape in which worker drones form
a shell behind the leader drone, causing all drones to pass

through the same space. This shape assures no drone will
hit off the charge, unlike what would happen if the forma-
tion rotated 90 degrees along the x-axis (roll rotation Vx
in Figure 2.A). The worker drones’ relative position com-
putation is also given by Equation 4, considering that the
distance vector (Vd ) now corresponds to position for this safe
formation as presented in Figure 12.B.

3) OBSTACLE DEVIATION
In the presence of an external obstacle, workers can slide
around the leader to maintain formation while avoiding
the obstacle. Rotation and translation matrices are used to
modify the desired position of each worker drone in order
to carry out the detour maneuver. The rotation movement
changes the position of the worker drone without drawing it
from the formation. In this way, the preset distance showed
in Figure 12.A is always kept; only the corresponding vector
is rotated around the leader drone.

Therefore, the procedure for obstacle deviation by the
formation can be implemented into two steps. In the first one,
the deviation obstacles fuzzy system infers the angle needed
to execute the detour. In the second step, the desired position
of each drone is rotated by this angle, considering the leader
orientation.

The obstacle information used by the deviation obstacles
fuzzy system is the same input variables of the fuzzy obstacles
avoidance system in section III-A.2. They are δe, δy and δz.
Their universes of discourse, fuzzy sets, and associated mem-
bership functions are the same given in Figure 5.D. δe refers
to the Euclidean distance in meters between the leader and
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FIGURE 13. Surface graph of the Fuzzy system used for the diversion of
obstacles in formation. (A) Degrees applied to the deviation in Yaw, about
the linear error (Euclidean distance) and linear error in Y-axis (Y-axis
difference) between the leader drone position and obstacle detected.
(B) Degrees applied to the deviation in Pitch, about the linear error
(Euclidean distance) and linear error in Z-axis (Z-axis difference) between
the leader drone position and obstacle detected.

the closest detected obstacle. δy refers to the orientation of
the obstacle, considering the leader drone current position,
whether it is on the right or the left of the leader, and how
many meters. δz refers to the obstacle orientation related to
the leader drone, whether it is above or below the leader
drone, in meters.

The proposed fuzzy system to define the angular deviation
of the formation has two outputs: the yaw angle (δyaw) around
the Z-axis and the pitch angle (δpitch) aroundY-axis (Vz andVy
rotation in Figure 2.A). Both outputs are defined over the
same universe of discourse δyaw, δpitch ∈ [−150◦, 150◦] and
their fuzzy sets have five triangular membership functions,
equally spaced over this universe. Yaw deviation angle (δyaw)
provides an angular value that will be added to the formation
calculation so that all the worker drones rotate around the
leading drone. If δyaw is positive, the drones will advance to
the right; if it is negative, they will move to the left. In the
same way, if δpitch is positive, the workers move up above
the leader’s position, if it is negative, the movement is to the
bottom.

Figure 13 presents the surface graphs of both fuzzy sub-
systems. It is possible to observe that closer the obstacle is,
the higher the angular deviation. These computed angular
deviations are summed up to the initial positions of the cruiser
formation discussed in section III-D.1. Then the rotation and
translationmatrices are applied to compute the news positions

to be assumed by all working drones so that the formation
always maintains the distance between all the drones, thus
preserving the original formation geometrical shape.

Figure 11 illustrates the possiblemotions for the formation,
where ωz refers to the rotation around the leader drone on
the Z-axis. This rotation is given by the outputδyaw of the
fuzzy system added to leader drone actual orientation relative
to z-axis Lw.z. A similar motion is carried out in the y-axis
where the rotationωy of the working drones around the leader
is established from the output δpitch of the fuzzy system added
to leader drone actual angle Lw.y relative to the y-axis. The
rotation ωx concerns the ability of the working drones to
rotate around the leader drone along the x-axis. This rotation,
also shown in Figure 11.D, is only applied in safe formation
mode and corresponds to the roll angle δroll added to leader
drone actual orientation relative to z-axis Lw.z.

The rotation values ωx , ωz, and ωy are applied in sequence,
considering the working drones’ position Wdp, the leader
position Lp and the vector Vd . This last vector indicates the
displacement vector of each worker drone about the leader
drone characterizing the formation of geometrical shape
(cruiser or safe), as discussed above.

Equation 5 computes the 3D coordinates position values
[x, y, z] for the worker drones considering a rotation along
x-axis (ωx = δroll + Lw.x).

Wdp[i].x = (Vd[i].x);

Wdp[i].y = (Vd[i].y ∗ cos(δroll + Lw.x))

−(Vd[i].z ∗ sin(δroll + Lw.x));

Wdp[i].z = (Vd[i].y ∗ sin(δroll + Lw.x))

+(Vd[i].z ∗ cos(δroll + Lw.x)); (5)

After computing the ωx rotation, it is possible to compute
rotation along z-axis (ωz = δyaw+Lw.z.) through equation 6.
Note that Vd is no longer used; instead, we use now Wdp
computed by equation 5 that corresponds to the new worker
drone position already rotated by ωx .

Wdp[i].x = (Wdp[i].x ∗ cos(δyaw + Lw.z))

−(Wdp[i].z ∗ sin(δyaw + Lw.z));

Wdp[i].y = Wdp[i].y;

Wdp[i].z = (Wdp[i].x ∗ sin(δyaw + Lw.z))

+(Wdp[i].z ∗ cos(δyaw + Lw.z)); (6)

Finally, the rotation along y axis can be computed by
Equation 7 (ωy = δpitch + Lw.y.), considering Wdp compute
by equation 6.

Wdp[i].x = (Wdp[i].x ∗ cos(δpitch + Lw.y))

−(Wdp[i].y ∗ sin(δpitch + Lw.y));

Wdp[i].y = (Wdp[i].x ∗ cos(δpitch + Lw.y))

+(Wdp[i].y ∗ sin(δpitch + Lw.y));

Wdp[i].z = Wdp[i].z; (7)

All rotations, ωx , ωz, and ωy are computed based on
the displacement vector of each working drone and angular
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FIGURE 14. Graphical representation of the environment and path taken during navigation. (A) Graph representing the path traveled by all
drones on the Y-axis. (B) Graphical representation of the path traveled by the drones on the Y-axis. (V-rep simulator). (C) Graph representing
the path traveled by all drones on the Z-axis. (D) Graphical representation of the path traveled by the drones on the Z-axis. (V-rep simulator).

orientation of the leader drone. The resulting position Wdp
must be now translated, considering the actual position of the
leader drone, in order to maintain the formation. This motion
is carried out through Equation 8, where Lp refers to the
actual position of the leader drone in 3D space.

Wdp[i].x = Wdp[i].x + Lp.x;

Wdp[i].y = Wdp[i].y+ Lp.y;

Wdp[i].z = Wdp[i].z+ Lp.z; (8)

However, as discussed in section III-C, the position control
of the drone interleaves between avoiding collisions with
other drones or going to the desired position. The result of the
formation maintenance module only generates a new desired
point; the decision about to reach or not the desired position
depends on the self-preservation system.

IV. EXPERIMENTAL RESULTS
The proposed quadral-fuzzy approach has been tested and
validated through simulated experiments using the Virtual

Robot Experimentation Platform (V-Rep) [37]. Firstly, each
module has been one to one tested, and finally, the complete
system was validated.

This simulated experiment is carried out with a four drones
fleet. The cruiser formation has the leader in front of the
platoon and in the back line, a worker drone just behind the
leader, one on its left and the other on the right, as shown
in Figure 12.A. The three workers drones in the backline keep
the same Euclidean distance from the leader.

A scene with several obstacles has been build to asses
quadral-fuzzy approach performance. This scene is shown
in Figure 14.B contains several obstacles that force the fleet
to perform deviation maneuvers in the three axes of the
3D space. The drones must traverse the whole scene without
colliding with any obstacle and with each other while main-
taining the formation.

The position of the four drones is monitored throughout
the course. Figure 14) presents the complete traveled paths
by all drones during the simulation. The goal is to verify if
the formation is maintained during flight navigation, even
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FIGURE 15. Boxplot representing the results obtained during navigation.
(A) Distance from working drones to drone leader. (B) Distance between
the drones in relation to the middle drone. (C) Distance between the
drones in relation to the right drone. (D) Distance between the drones in
relation to the left drone.

in the diversion of obstacles. An analysis of the distance
between the drones is carried out to show the efficacy of
the self-preservation system. Figures 14) A and C show,
respectively, the paths developed by all drones in the X-Y
and X-Z plans. Figures 14) B and D are respectively, the top
views of the trajectories in the X-Y plan and the side view

of the trajectories in the X-Z plan. From the latest figures,
we can note that some of the drones have sometimes flown in
the loop (ellipses shape). This occurred when the leader drone
identified an obstacle close to the worker drone that has been
forced to carry an evasive action to avoid collisions. After the
maneuver, the drone accomplishes a loop to resume its path.

During the simulation, the position of each dronewas taken
in a rate of 0.2 seconds, when the Euclidean distance between
them was calculated. Those measurements are presented in
the boxplots at Figure 15 having each drone as reference:
Figure 15.A shows the distances from the leader to all other
drones, while Figure 15.B shows the Euclidean distance of
the middle worker drone to the others, and so on.

As discussed in previous sections, the goal is to keep
the distance between the drones throughout the navigation,
causing them to fly in formation and do not crash at any
moment. As shown in the results, this objective was reached,
showing that most of the time the distance between the drones
was preserved, with the exception of a few moments, where
the obstacle diversion action is performed, moving from a
maximum of 20 centimeters.

V. CONCLUSION
This work has presented a quadral-fuzzy approach for flight
formation using multiple drones. This approach can be
applied for several purposes, such as cooperative transport of
goods, or patrolling in multi-robot environments, for exam-
ple. The approach is composed of four central systems: leader
drone control, worker drones control, self-preservation, and
formation maintenance.

The leader drone commands the platoon since this drone
is equipped with a 3D sensor to map the environment. The
leader’s flight control is toggled between two subsystems:
position control and obstacle bypass control. The switching
between these two subsystems can determine a change in the
positions of worker drones in order to maintain formation.
The position control of worker drones is very simple. It only
receives a point to be reached and moves the drone towards
it. This desired position can be modified at any time during a
flight. The self-preservation system prevents collision among
the drones inside the formation. The deviation maneuvers are
based on the possibility (fuzziness) degree of a drone moving
in a particular direction. If two drones are detected inside a
path intersection area, a repulsive force proportional to their
fuzziness degree is applied moving away both drones.

The formationmaintenance strategy consists in continually
assigning positions to the worker’s drones based on actual
leader drone position and information about external obsta-
cles detected by the perception 3D sensor embedded in the
leader drone. In the presence of a detected obstacle, the for-
mation is rotated, causing all drones to deviate from it. If there
are several detected obstacles, the fleet can quit cruiser for-
mation, assuming an in-line safety formation until there are
no more obstacles. Simulation experiments have been car-
ried out, showing that the proposed approach provides safe
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navigation for multiple drones, avoiding collisions between
the drones and with obstacles presented in the environment.
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Abstract: This work proposes a novel semantic perception system based on computer vision and
machine learning techniques. The main goal is to identify objects in the environment and extract
their characteristics, allowing a dynamic interaction with the environment. The system is composed
of a GPU processing source and a 3D vision sensor that provides RGB image and PointCloud data.
The perception system is structured in three steps: Lexical Analysis, Syntax Analysis and finally
an Analysis of Anticipation. The Lexical Analysis detects the actual position of the objects (or
tokens) in the environment, through the combination of RGB image and PointCloud, surveying their
characteristics. All information extracted from the tokens will be used to retrieve relevant features
such as object velocity, acceleration and direction during the Syntax Analysis step. The anticipation
step predicts future behaviors for these dynamic objects, promoting an interaction with them in
terms of collisions, pull, and push actions. As a result, the proposed perception source can assign
relevant information to mobile robots, not only about distances as traditional sensors, but about
other environment characteristics and object behaviors. This novel perception source introduces a
new class of skills to mobile robots. Experimental results obtained with a real robot are presented,
showing the proposed perception source efficacy and potential.

Keywords: perception; pointCloud; prediction and object recognition

1. Introduction

Nowadays, mobile robotics is one of the most prominent research areas [1,2]. Robots with the
ability to freely move through an environment, knowing their positions and able to sense the world
can execute intelligent tasks. Such robots may develop tasks, for example, in industries [3–5] and in
rescue tasks [6–8], or replacing humans in hazardous work.

Such robots need to perceive the environment around them to identify obstacles and execute
actions without collisions. That is, the robot needs to see the world before making some decision.
For this, it uses sensors that allow for converting real-world data into digital information that can be
used by robots and promote actions [9,10].

There are numerous types of sensors for mobile robotics. Some are popular due to their low cost
and easy data manipulation, such as color image (RGB image) provided by cameras. These sensors
can be used to identify Augmented Reality Tags (AR-Tags) [11,12], among other computational vision
tasks [13–15]. Despite its worldwide use, the RGB sensor provides a simple image of the environment,
without any specific characteristic that allows smart actions.

Sensors 2019, 19, 3764; doi:10.3390/s19173764 www.mdpi.com/journal/sensors
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Intelligent behaviors are not achieved without a detailed understanding of the environment that
allows a reliable mapping and safe obstacle avoidance. The depth sense is primordial to obtain
a three-dimensional insight and execute instantaneous reactions in the presence of obstacles or
planned deviations. RGB sensors provide a cloud of points (or PointClouds), which can collect spatial
information from the environment. They are used in numerous works in mobile robotics [16–18],
mainly towards obstacles avoidance and environment mapping.

However, this type of sensor provides only the notion of distance between the robot and nearby
objects without identifying them. This lack of information causes the robot to consider all objects
(dynamic, static, animate, or inanimate ones) in the same way. In summary, all objects are understood
as a static obstacle in a scene simplification. In fact, the environment is commonly composed of a lot of
moving objects, and a static sensing compromises the robot navigation since planning must consider
instantaneous information that changes over time.

For example, consider a person walking inside the same room where a robot must navigate from
point A to B. This robot has a depth sensor which sees all objects in the environment (including the
person) and can plan the path to achieve point B avoiding all obstacles. Nevertheless, the person crosses
the robot’s path, and a new path is computed to avoid collision. This process can be eternal if the person
continues to move and the robot always chooses the same side to implement an avoidance maneuver.
To prevent such situation, It is primordial that more detailed information about the environment (for
example, person motion forecast) is available to enhance intelligent behaviors, such as [19–21].

In addition to RGB sensors and depth sensors, other sensors can be used to add extra information
to robots, such as temperature and localization, among others. The usefulness of this additional
information requires a correlation analysis with primary sensors or simply a data fusion procedure
that enhances a robot’s understanding and or improves specific sensing. In fact, the use of a group of
sensors does not effectively increase the robot knowledge about the environment, but only provides
several independent information sources.

The transformation of raw information from the sensors into useful information for robots requires
the execution of several procedures based on different techniques. Such procedures compose the
so-called perception system that helps robots perform a dynamic interaction with scene elements to
make inferences about features of the environment.

For instance, some papers use data from the RGB sensor to identify objects, and others combine
such data with methods to segment objects in environments with 3D sensors [22,23]. These works
manipulate raw sensor data to extract some useful information. The problem with this approach is
that it should be done to each robot and a specific task, without any generalization.

There have been several object recognition techniques developed in recent years [24–26].
Deep learning techniques stand out as the best choice due to the best accuracy for object detection
tasks [27–32]. Among them, one that stands out is YOLO (You Only Look Once) [33] due to its high
accuracy and quickness in object recognition tasks. Such characteristics make YOLO a potential tool
for being integrated into a sensor allowing a more detailed information catch.

This work proposes a novel intelligent perception source that introduces a new class of mobile
robots skills through a detailed sensing of environment components. The approach rigorously
decomposes RGB-D camera data through three analysis: lexical, syntax, and anticipation. Thus,
decomposition is based on Semantic Description and Dynamic Interaction (SD2I). Mobile robots with
SD2I perception will identify objects from the environment and understand the dynamic behavior of
time-variant elements, allowing intelligent interaction.

This paper is organized as follows. A brief description of the used 3D perception sources is
carried out in Section 2. The proposed perception system is developed in Section 3. Section 4 brings
practical experiments and results and a discussion about the efficacy of the proposed system. Section 5
concludes the paper presenting an overview of the work.
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2. Overview of Used 3D Perception Sources

The approach developed in this paper applies Semantic Description and Dynamic Interaction
(SD2I) to collect information from the environment through RGB-D sensors and convert them into
useful and intelligent information for a robot. In addition, we also present a compatible embedded
hardware supporting such approach. An illustration of the proposed system, called the Intelligent 3D
Perception (I3P) system, can be seen in Figure 1.

Figure 1. Intelligent 3D Perception (I3P) system.

The SD2I methodology is based on an embedded system with a 3D sensor. The PointCloud is
acquired through an RGB-D sensor, which can be Intel RealSense [34], Kinect v1 or Kinect v2 [35],
among others.

I3P system uses YOLO (You Only Look Once) to identify the objects by the RGB image from
the source of perception. The third version of YOLO is available since 2018 [33]. In addition to the
standard version, there is the “tiny-YOLO” version, which makes it possible to identify the same
objects with lower precision. The main advantage of “tiny-YOLO” is a reduced number of layers,
which makes it ideal to be embedded. Moreover, YOLO has showed good results when used with
several different datasets, such as COCO [36], PASCAL VOC [37], and the KITTY dataset [38]. In this
way, YOLO becomes suitable for object recognition in any previously cited databases.

A robot embedded device using YOLOv3 must have processing capacity to run a Convolutional
Neural Network (CNN) [29]. Such devices make use of GPUs to execute these tasks; some examples
are Jetson Tx1, Jetson Tx2, Jetson Nano or Jetson Xavier [39]. For the I3P system, this device is
corresponding to Processor for Ai application in Figure 1.

The I3P required processor must be capable of collecting information from Points Cloud and from
the Processor for the AI application, processing and returning information in a time period useful to
the robot. A mini computer is chosen due to its processing power since the information delay due to
an RGB-D sensor affects the run time of the proposed strategy. A suggested piece of equipment is Intel
Nuc I5 (Santa Clara, CA, USA) [40] or similar.

The perception sensor is a distributed system composed of two processing sources and a 3D
sensor. The I3P system management is based on an Robot Operating System (ROS) [41] to gather all
information coming from different sources. ROS is a framework with tools that allow the use of parallel
programming and distributed systems. Thus, the I3P system can operate with various sources of
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processing, and perception, as well as providing a method for the robot to read the information from
the sensor in a comfortable and agile way.

All components presented herein compose the hardware supporting the application of the
approach proposed by this paper.This will be further detailed in Section 3, where the developed
methodology for I3P system will be presented in detail.

3. Semantic Description and Dynamic Interaction (SD2I)

This paper presents a new intelligent perception source with a high abstraction level to mobile
robots. It is called Semantic Description and Dynamic Interaction (SD2I), and it is shown in Figure 2.
The main goal is the introduction of a new class of skills to mobile robots, allowing their interaction
with a large group of time-varying objects from a crowded environment. The proposed methodology is
conceived to be embedded into the Intelligent 3D Perception (I3P) system described above or another
similar powerfully processor.

The SD2I methodology comprises three distinct steps to process and extract the environment
features. The first step is the Lexical Analysis. In this step, the environment objects are identified
and their attributes such as kind, height, width, confidence, and position are extracted. The second
part, Syntax Analysis, consists of an element (Token) analysis, in which all objects’ particular features
like speed, acceleration, mass, and strength are estimated. Finally, the Anticipation Analysis uses the
estimated parameters to infer future actions of dynamic objects. These analyses will be detailed in the
following subsections.

Figure 2. An overview of Semantic Description and Dynamic Interaction (SD2I) methodology.

3.1. Lexical Analysis

Lexical analysis is responsible for extracting information from the environment, generating
objects (called Tokens) with specific characteristics. Therefore, each Token will contain various pieces of
information about a single object. Figure 3 presents a diagram showing the steps of the lexical analysis.

Figure 3. An overview of Lexical Analysis.
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From Figure 3, all extracted information is associated with a Token. Such information are obtained
from the RGB sensor (class, probability, center in pixel, width in pixel, height in pixel, sum of the
histogram and peak of histogram) and the others come from the Depth sensor, as a spatial position
of the object in the sensor frame. YOLOv3 is used for Token identification. For this, YOLOv3 has
been trained with the COCO database [36] so that 80 different objects can be identified. The YOLOv3
convolutional neural network (CNN-YOLO) provides the name of the object, class, probability, and a
box around the object from which the width and height are obtained. Figure 4 shows an example
of data provided by the network from an image, and the strategy used to calculate height and
width information.

Figure 4. Extraction of the tokens from the image.

The class of Tokens are obtained as the output of CNN-YOLO without any pre-processing step.
The other data need some processing for their extraction. In the lexical analysis, the objective is only to
extract the relevant data; all relevant information will be obtained from this data in the next syntax
analysis step. Therefore, Token extraction must be carried out with as little computational effort
as possible.

From an object image, a subtraction is made between the i_ f inal minus the i_initial pixels,
as shown in Equation (1), in order to obtain the object’s height information in pixel. The same
procedure, using j (Equation (2)), is used to get the width. In order to obtain the central pixel of the
object in the image, center_img[x, y], Equation (3) can be used. It is worth mentioning that the obtained
position refers to the object in the image, not its actual location in the world, which will be obtained
later. Therefore, some characteristics referring to the object and its position in the RGB image can be
evaluated, for instance, height, width, and center:

height_img = i_ f inal − i_initial, (1)

width_img = j_ f inal − j_initial, (2)

center_img = [(i_initial + (height/2), j_initial + (width/2)]. (3)

The predominant gray tone from an image can be captured by a histogram [42,43]. Thus,
such histogram is added as an object information and its peak is saved into the Token. This information
may be interesting to identify if the object is light or dark, for example. Other information taken from
the histogram is the sum of all values. This information can be used to identify the same object at
different time states. Only the object being observed is cut out of the image to obtain the histogram
for each element. After cutting the object, the image is converted to grayscale, and then its histogram
is generated. Figure 5 gives an example, where the complete image is presented, the cut object is
highlighted, and its histogram identified peak is computed.
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Figure 5. Analysis of histogram.

The 3D depth sensor associates each pixel of the image (img[i, j]) with a 3D point (pc[x, y, z]) of
its point cloud. It is thus possible to identify the actual position of the object in the world, from the
position of the object in the image. The proposed strategy consists of averaging the points relative to
the object, resulting in an estimate of its position. However, the 3D sensor does not always provide the
distance of all pixels; when, for different reasons, such information can not be read, the corresponding
data position img[i, j] are pc[NaN, NaN, NaN] or some other invalid value. The method to avoid
obtaining erroneous values consists of averaging the pixels that are in the box of the object, ignoring
the values that are not valid. A second error can also happen when the box is larger than the object,
generating 3D points that do not correspond to the object in question. This error is avoided with the
use of only 60% of the box for averaging, ignoring the borders. The calculation of the new box consists
of adding to the center of the object (center_img) 30% for more and for less of the height (height_img)
for the values of i, and 30% for more and for less of the width (width_img) for the values of j.

Algorithm 1 presents the proposed strategy for identifying the object’s 3D position, where the
inputs are the point cloud provided by the depth sensor, with a resolution of 640x640, and each position
contains a 3D point [X, Y, Z], named pc[640, 480, 3]. The second entry consists of the center of the object
in the image (center_img[i, j]). The third and fourth entries, respectively, are the object’s height and
width, in pixels, provided by the image, called height_img and width_img. The computation is made
by averaging in X, Y, and Z of the points in the center of the object’s box, reduced 40%. The output of
the algorithm, a single 3D position [X, Y, Z], is found containing the position of the object considered
by the proposed strategy, named p_center[x, y, z].

This strategy is applied to all objects identified in the image, extracting the Tokens for all objects
identified by YOLOv3. To review, Tokens are object name (class), obtained by YOLOv3; height of
the object in the image (height_img) is obtained by Equation (1), width of the object in the image
(weidth_img) is obtained by Equation (2), central pixel of the object in the image (center_img) is
obtained by Equation (3), sum of histogram (sum_histogram) and histogram peak (peak_histogram) are
as seen in Figure 5 and real position of the 3D object (p_center) is obtained by Algorithm (3). The next
steps convert the Tokens into smart information.
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Algorithm 1: Identification of the object’s 3D center.
Input: PointCloud obtained by the 3D sensor, with dimension 640x480x3. pc[640, 480, 3].
Input: Center of the object in the image. center_img[i, j]
Input: Height of the object in the RGB image, in pixels. height_img
Input: Width of the object in the RGB image, in pixels. width_img
Output: 3D point corresponding to the position of the object in relation to the source of

perception, p_center[x, y, z]

p_center.x ← 0 /* Starts center x with zero */
p_center.y← 0 /* Starts center y with zero */
p_center.z← 0 /* Starts center z with zero */

counter ← 0 /* Counter used to calculate the average */
x ← 0 /* Variable used to save a sum of all x */
y← 0 /* Variable used to save a sum of all y */
z← 0 /* Variable used to save a sum of all z */
for i← (center_img.i− (height_img ∗ 0.30)) : 1 : (center_img.i + (height_img ∗ 0.30)) do

for j← (center_img.j− (width_img ∗ 0.30)) : 1 : (center_img.j + (width_img ∗ 0.30)) do

/* notNull is used to check if the value is valid, not null or inf or
NaN */

if notNull(pc[i, j, 0]) and notNull(pc[i, j, 1]) and notNull(pc[i, j, 2]) then
x ← x + pc[i, j, 0]
y← y + pc[i, j, 1]
z← z + pc[i, j, 2]
counter ← (counter + 1)

end
end

end
if counter! = 0 then

p_center.x ← (x/counter)
p_center.y← (y/counter)
p_center.z← (z/counter)

end
return p_center[x, y, z]

3.2. Syntax Analysis

Syntax analysis aims to convert information from lexical analysis into useful information for the
robot. At the end of this analysis, the object will be classified as dynamic or non-dynamic, animate or
inanimate, and its speed, direction, and acceleration will be calculated if the element is time-variant.
Figure 6 gives an overview of the Analysis syntax.

The objects will be divided into categories, as static or dynamic objects and animate or inanimate
objects. When the objects are classified as static or dynamic objects, the robot can make use of this
information to know if there is a risk of an object moving around. Knowing if the object is animate
or inanimate, the robot can use this information to measure its actions, to avoid acting dangerously
and risking its integrity. Table 1 presents examples of objects that belong to dynamic category and
life category (animate); other objects that don’t belong to any of the two types are static or inanimate.
A list of such objects can be accessed in [36].

The computation of dynamic objects’ velocity, direction, and acceleration consist of collecting the
Tokens at two different time moments. The variable t and t− 1 will be used to respectively indicate
present and past into the vector of token token_vector[time][token_id].
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Figure 6. Overview of syntax analysis.

Table 1. Inferred knowledge in objects.

Object Class

Is it dynamic?

person, bicycle, car, motorbike, aeroplane,
bus, train, truck, boat, bird,
cat, dog, horse, sheep, cow,
elephant, bear, zebra, giraffe, frisbee,
snowboard, sports ball, skateboard, surfboard
tennis racket, chair

Is there life? person, bird, cat, dog, horse,
sheep, cow, elephant, bear, zebra, giraffe

To identify the same token at different time periods, a comparison between the data from a
previous(t− 1) moment and the current one(t) is necessary. The compared information are the token’s
class (class), the peak of the histogram (peak_histogram) and Euclidean distance between the central
points (p_center). First, they are compared in different moments (t and t− 1) to verify if they belong to
the same class. The second step is to use the histogram peak, where the objects are separated by gray
tones, so a light grayscale dynamic object in the t− 1 is compared only with the light grayscale dynamic
object at the instant t. Finally, the Euclidean distance is used as the last criterion, considering that the
tokens are generated at a small-time difference, something between 0.1 and 0.5 s, and a Euclidean
distance of 0.7 m is considered as the maximum possible value for the displacement of an dynamic
object of this time interval. This way, if two objects have the same class, the same shade of gray,
and separated by a valid (small) value of a Euclidean distance between them, then they are the
same object.

Algorithm 2 presents the procedure to identify the same object at two different instances of time.
There are two vector inputs to the algorithm, where the first one contains all the present-instance tokens
saved, while the other has all the past-instance tokens, the vectors are called token_vector[t].[token_id]
and token_vector[t − 1].[token_id], where t refers to the present instance time and t − 1 to the past
instance. The time difference depends on the processing capacity of the sensor, ranging from 0.1 to
0.5 s. In the algorithm processing, a comparison between all objects of both vectors is made. Where
it is verified, if both objects are dynamic, then if they belong to the same class; next, if the difference
between the histogram peak is less than 30, and, finally, if the distance between their centers is less
than or equal to 70 cm. If all the requirements are met, the position of the two tokens is saved in a third
vector, called same_token[position].[id_(t), id_(t− 1)]. In the future, these positions will be used to get
the information of a Token to calculate the direction, velocity, and acceleration.
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Algorithm 2: Identify the same object in two instants of time.
Input: Vector with all tokens at time t. token_vector[t].[token_id].
Input: Vector with all tokens at time t− 1. token_vector[t− 1].[token_id]
Output: Vector with the id of the same token in the two instants of time.

same_token[position].[id_(t), id_(t− 1)]

/* Acceptable histogram difference */
di f f erence_histogram_peak = 30
/* Acceptable euclidean distance */
euclidean_di f f erence = 0.7

counter = 0

/* Traverses the vector containing all the tokens of the present time (t) */
for i← (0 : 1 : size(token_vector[t]) do

/* Traverses the vector containing all the tokens of the past time (t-1) */
for j← (0 : 1 : size(token_vector[t− 1]) do

/* Checks whether both objects are dynamic */
if (token_vector[t].[i].isDynamic == True) and
(token_vector[t− 1].[i].isDynamic == True) then
/* Checks whether both objects belong to the same class */
if token_vector[t].[i].class == token_vector[t− 1].[i].class then

/* Check the difference of the histogram peak */
if (token_vector[t].[i].peak_histogram− token_vector[t−
1].[i].peak_histogram) <= di f f erence_histogram_peak then
/* Checks the difference of the Euclidean distance */
if calculate_euclidean_distance(token_vector[t].[i].p_center, token_vector[t−
1].[i].p_center) < euclidean_di f f erence then
/* Assigns to vector same_token the index values of the same

object in time (t) and time (t-1) */
same_token[counter].id_(t) == i
same_token[counter].id_(t− 1) == j
counter = counter + 1

end
end

end
end

end
end
/* Returns the vector containing the index of the combined object in the two

times. */
return same_token[position].[id_(t), id_(t− 1)]

The direction of a dynamic object can be computed by the function atan2 that provides the
angular difference between the two points [44]. Then, an angular deviation of 180 degrees is
added to this difference, generating the course of the dynamic object. Algorithm 3 presents the
complete computation of object direction. As input to the algorithm, there are the two vectors
with all tokens saved, in the present instance (t) and in the past instance (t − 1), with the respective
names token_vector[t].[token_id] and token_vector[t− 1].[token_id]. The third input concerns the output
of Algorithm 2, where the identification of the same tokens is stored, the name of this entry is
same_token[position].[id_(t), id_(t− 1)]. The processing consists in obtaining the angular difference
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between the two points representing the same token at different times so that it is possible to obtain
the direction of the token. As output, a variable called as is created where the dynamic token
direction, velocity, and acceleration data are stored. In this algorithm, the direction is saved in
the Syntax_Analysis[id].direction field.

Algorithm 3: Calculate the direction of the dynamic object.
Input: Vector with all tokens at time t. token_vector[t].[token_id].
Input: Vector with all tokens at time t− 1. token_vector[t− 1].[token_id]
Input: Vector containing the index of the combined object in the two times,

same_token[position].[id_(t), id_(t− 1)]
/* Traverses the vector containing the index of the combined object in the two

times */
for i← (0 : 1 : size(same_token) do

/* Difference in the x-axis between the two points */
delta_x ← token_vector[t].[same_token[i].id_(t)].p_center.x− token_vector[t−
1].[same_token[i].id_(t)].p_center.x
/* Difference in the y-axis between the two points */
delta_y← token_vector[t].[same_token[i].id_(t)].p_center.y−
token_vector[t1].[same_token[i].id_(t)].p_center.y

/* Calculate the angle between the two points */
angle_between← antan2(delta_y, delta_x)
/* Adds 180 degrees to the angle, and saves in the variable responsible for

the Syntax Analysis data. */
Syntax_Analysis[same_token[i].id_(t)].direction← angle_between + 3.14159

end
return Syntax_Analysis

The ratio between the variation of position and the variation of time is used to calculate the velocity
of the dynamic object at time t. This feature is shown in meters, and the time in seconds, so the speed
obtained is in meters per second (m/s). The Algorithm 4 presents the method applied to all the dynamic
points identified by the Algorithm 2. The inputs to the algorithm are the same as those in Algorithm 3,
while their output is the addition of speed of the moving token, called Syntax_Analysis[id].direction.
The algorithm processing consists of taking the time difference between the two tokens, the Euclidean
distance traveled, and finally calculating the velocity by dividing the distance by time.

The acceleration is calculated using the speed variation divided by time. To calculate the
acceleration, it is necessary that the object in question already has speed. Therefore, the velocity
is first calculated, and, in the next cycle, its acceleration is calculated. Algorithm 5 brings the
acceleration calculation, where the entries are the same as in Algorithms 3 and 4. The processing
consists of first checking if the tokens are assigned any speed in the Syntax_Analysis[id].velocity field.
Thus, the difference between the velocities of the tokens is calculated, and the time difference is
obtained. Finally, acceleration is calculated by dividing the velocity variation by the time variation and
saved in the Syntax_Analysis[id_(t)].acceleration variable.
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Algorithm 4: Calculate the velocity of the dynamic object.
Input: Vector with all tokens at time t. token_vector[t].[token_id].
Input: Vector with all tokens at time t− 1. token_vector[t− 1].[token_id]
Input: Vector containing the index of the combined object in the two times,

same_token[position].[id_(t), id_(t− 1)]
/* Traverses the vector containing the index of the combined object in the two

times */
for i← (0 : 1 : size(same_token) do

/* Time difference between the two tokens */
delta_time←

token_vector[t].[same_token[i].id_(t)].time− token_vector[t− 1].[same_token[i].id_(t)].time

/* Distance traveled by the object */
delta_distance← euclidean_distance(token_vector[t][same_token[i].id_(t)].p_center,
token_vector[t− 1].[same_token[i].id_(t− 1)].p_center)
/* Calculate the velocity */
velocity← delta_distance/delta_time
/* Save the object’s velocity in the variable responsible for the Syntax

Analysis data */
Syntax_Analysis[same_token[i].id_(t)].velocity← velocity

end
return Syntax_Analysis

Algorithm 5: Calculate the acceleration of the dynamic object.
Input: Vector with all tokens at time t. token_vector[t].[token_id].
Input: Vector with all tokens at time t− 1. token_vector[t− 1].[token_id]
Input: Vector containing the index of the combined object in the two times,

same_token[position].[id_(t), id_(t− 1)]
/* Traverses the vector containing the index of the combined object in the two

times */
for i← (0 : 1 : size(same_token) do

/* Checking whether the dynamic object has speeds */
if token_vector[t].[same_token[i].id_(t)].velocity! = 0 and

token_vector[t− 1].[same_token[i].id_(t− 1)].velocity! = 0 then
/* Time difference between the two tokens */
delta_time← token_vector[t].[same_token[i].id_(t)].time− token_vector[t−
1].[same_token[i].id_(t)].time
/* velocity difference between the two tokens */
delta_velocity← token_vector[t].[same_token[i].id_(t)].velocity− token_vector[t−

1].[same_token[i].id_(t)].velocity /* Calculate the acceleration */
acceleration← delta_velocity/delta_time
/* Save the object’s acceleration in the variable responsible for the

Syntax Analysis data */
Syntax_Analysis[same_token[i].id_(t)].acceleration← acceleration

end
end
return Syntax_Analysis
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At the end of the syntax analysis, there is some new information of the token—for instance, stating
if the object is dynamic or not, and whether it has a life or not (Table 1). The is also the calculation of
the object’s direction (Algorithm 3), velocity (Algorithm 4) and acceleration (Algorithm 5). The next
step consists of a strategy of anticipation, where the future position of the object will be calculated,
based on speed and acceleration, to take preventive actions.

3.3. Anticipation Analysis

The future position of dynamic objects is estimated through the data obtained in syntax analysis,
in the next SD2I step, called anticipation analysis. The prediction of future behavior of time-varying
elements is primordial to the robot attaining reliable path planning [45]. Moreover, for safety
reasons, unnecessary calculations must be prevented during trajectory planning or maneuvers to
avoid collisions with objects that are moving toward the robot. Figure 7 presents a diagram of the
proposed strategy.

Figure 7. Diagram of the anticipation strategy.

The object motion estimation is based on acceleration, speed, and direction of the object. It is
always assumed that the element maintains its direction. The Intelligent 3D Perception is designed to
predict behavior at two future times: 0.5 and 1 s ahead. Equation (4) presents the calculation used to
define the object displacement in time, where time must be replaced by the time to be predicted. The
variable Syntax_Analysis possesses the direction, velocity, and acceleration of the object:

displacement = Syntax_Analysis.velocity ∗ time +
Syntax_Analysis.acceleration ∗ time2

2
. (4)

The predicted position is calculated by adding the displacement to the current object position,
as shown in Equation (5). This process is carried out for two different time frames, being time = 0.5
and time = 1:

f uture_position = current_position + displacement

f uture_direction = current_direction.
(5)

The next section will present the experiments and results. An explanation about the user interface
detailing the displayed information is also presented.

4. Experiments and Results

The data provided by the proposed perception source are published in the format of ROS
topics [41], where the robot can access them in an agile and easy way. This information allows
the robot to make decisions and take action in navigation time. The robot accessing all the information
of each Token is assured. The available information is: class, probability, center of the object in the
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image, center of the object in 3D, width in pixels, height in pixels, histogram peak, histogram sum,
speed, direction, acceleration, whether the object is dynamic and if the object has life or not. This
information is returned directly to the robot, without the need for any additional processing.

To facilitate information understanding, a graphic strategy is developed. Data can also be
displayed in graphical format by using Interactive Markers [46]. This way, it is possible to view the
objects in a 3D environment; additionally clicking on the object will display all collected information
related to it.

A first experiment in which the perception source was pointed at a shelf, as in Figure 8, is carried
out to validate the Lexical Analysis. Figure shows the RGB image output added to YOLOv3, (YOLOv3
output). The output of the perception source Intelligent 3D Perception (I3P) is presented in two ways:
a top view and a frontal view. In these views, each object position is checked against the source of
perception (Algorithm 1). The objects are represented by colored spheres, where yellow represents
the laptop, red the sofa, green the books, orange the bottles and blue the suitcase. The source of
perception I3E is represented by a red robot. In the figure, the Point Cloud with color (RGB-D data) is
also displayed. All information obtained from each object can be viewed by clicking on its respective
sphere. The image I3P output, (information display) provides an example, where all information obtained
from the book object on the right is displayed. The same can be done with any identified object.

Figure 8. Result of the application of the Lexical Analysis.
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The Syntax Analysis is concerned with obtaining information from data provided by the lexical
analysis. First, the object behavior is inferred. If it is a dynamic and or animated object (Table 1),
then all the Tokens are saved in two instants of different times and the procedure to identify the same
object in these two instants is applied (Algorithm 2). Once this is done, it is possible to calculate its
direction, velocity, and acceleration based on the displacement of the object (Algorithms 3–5). Figure 9
shows the result of the syntax analysis, when two people are moving in front of the robot. As soon
as the dynamic object is identified by I3P, it is converted to a vector, which points to the direction in
which the object is moving. The figure shows the path developed by the object (pink trail) so that
it is possible to infer its direction, as well as validate the proposed strategy with multiple dynamic
objects of the same class, one of the situations with the highest degree of complexity. In this Figure,
the refrigerator is represented by a red sphere, the dining table by a light green sphere, the chair by a
blue sphere, the bottle by an orange sphere, and person is represented in pink.

The Anticipation Analysis consists of predicting the future position of the moving object by its
direction, speed, and acceleration. Figure 10 shows the working strategy, where the purple vector
represents the future position of the object in 1 s. This time frame can be changed to identify the future
position of the object; the Equations (4) and (5) are used. A second visual strategy has been developed
where a black sphere is created around the perception source if the future position of a moving object
may come crashing into the robot.

The proposed strategy was implemented and proved to be satisfactory for use in mobile robots.
A specific sensor to provide intelligent information slows down the development of intelligent robotic
systems and prevents accidents if the information provided by the sensor is used correctly, fulfilling the
main objective of this paper.

Accuracy and Precision

The error of the proposed strategy of lexical analysis corresponds to the object identification error
of YOLOv3 plus the distance error provided by the depth sensor. The YOLOv3 has an accuracy of
35.4 mAP (mean Average Precision). The position error of the 3D object refers to the sensor error and
may vary according to the employed perception source. The paper [47] presents the data from the
RealSense D435 3D sensor, which was used by this work, which shows an error of 0.707 mm for an
object at 1 m. Based on the data provided by the work, an object identified at 1 m by the strategy
proposed by this paper would have an accuracy of 35.4 mAP on the object identification and an error
of 0.707 mm on its position.

One of the problems that can occur when calculating velocity and acceleration is not having the
same object in two moments. This issue is caused by YOLOv3 not identifying the object in a specific
image frame, or the proposed strategy not recognizing the same dynamic object. Ten experiments were
performed to quantify the accuracy, where a dynamic object moved around nonstop within the sensor
range. During the experiment period, all Tokens data were saved. Tokens that have velocity, direction,
and acceleration data are considered valid. That did not track the same objected are considered stopped
were defined as errors for obtaining I3P sensor data. The results are presented in Table 2, containing
the duration of each experiment, the amount of total tokens captured, the calculated tokens per second,
the number of tokens with velocity, direction, and acceleration data, number of tokens with calculation
errors as well as the percentage of the error. The I3P sensor error in the experiments was 4.835% on the
average.

Anticipation Analysis is valid for different tasks, such as high preservation by avoiding collision
with an object moving towards the robot, or for trajectory calculation. A dynamic object was taken
towards the robot in a total of 10 experiments, aiming to validate the analysis in a quantitative way.
Data were collected from their actual position, and position established by the Anticipation Analysis,
and then the Euclidean distance from both locations to the robot was performed. An average of the
variation of the two places was shown, where the obtained result was of 84 cm. On average, the robot
was able to anticipate an object’s movement towards it from up to 84.79 cm. The smallest distance
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difference between the tests was 34.43 cm and the largest 2.77 m. This distance varies with the speed
of the object.

Figure 9. Result of the application of the Syntax Analysis.
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Figure 10. Result of the application of the Anticipation Analysis.

Table 2. Errors in the accuracy experiments.

Time Tokens Tokens
Per Second

Tokens with
Speed/Direction/Acceleration

Tokens with
Calculation Error

Error
Percentage

32.19 100 3.107 94 6 6.000
46.37 247 5.327 235 12 4.858
38.74 128 3.304 122 6 4.688
69.58 227 3.262 215 12 5.286
35.18 111 3.155 110 1 0.901
58.44 185 3.166 180 5 2.703
51.98 233 4.482 221 12 5.150
76.31 355 4.652 311 44 12.394
40.39 130 3.219 126 4 3.077
47.96 152 3.169 147 5 3.289

Average 49.71 186.8 3.684 186.8 10.7 4.835
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5. Conclusions

The paper has presented a novel source of perception, capable of identifying objects in 3D,
and extracting as much information as possible, such as name, position in the real world in relation
to the source of perception, predominant gray tone, speed, direction and acceleration, in addition to
predicting its future position. The proposed approach is carried out in three steps. A Lexical Analysis
was performed, where the RGB image from the sensor was used to identify the objects through YoLoV3.
From the image, data such as the class of the object, center of the object in the image, Box around
the object, probability of hit and histogram peak were identified. Moreover, the Lexical Analysis
also implements the computation of the object position in the real world, from its position in the
image, using the cloud of points provided by the depth sensor. All these data were stored in a Token.
Each Token contains information about each object identified in the scene. The error of the sensor is
highly dependent on YOLOv3 accuracy, which is 35.4 mean average precision. The 3D position error
from the sensor, which is specified by the manufacturer by up to 2%.

The second step consisted of a Syntax Analysis, where two Tokens were obtained at different
time instants, called (t) for the current instant, and (t-1) for the previous instant. A procedure was
then developed to identify the same Token at both instants of time. Having the same Token in both
instances of time, it is possible to calculate object properties such as speed, direction, and acceleration,
based on the known data of each Token. This procedure is validated through the analysis of error
from obtaining the velocity, direction, and acceleration data of the dynamic objects by the strategy
proposed by this paper resulting in an absolute error of 4.835%.

Finally, with velocity, direction, and acceleration, an Anticipation Analysis is developed, where the
position of the moving object at two future instants of time was predicted. These data are important
for a mobile robot in order to avoid future collisions with a moving object. In the experiments
performed, it was possible to verify that an object towards the robot with an average distance of
84.79 cm, having particular cases of identifying at a distance of up to 2.77 m, makes this sensor better
suited to provide information for avoidance behaviors.

At the end of these three analyses, the proposed perception source provided the robot with the
ability to identify objects, know their position in the world, calculate their speed and acceleration,
predict their future position and present the obtained data in an intelligent way, alerting the robot and
the viewer about collision hazards.

The sensor has some particular issues to be improved, such as the instantaneous lack of calculation
the speed, direction, and acceleration of dynamic objects in single frames. This problem does not pose
a risk to the robot because a frame lasts, on average, 0.3367 s, and the error happens in isolated cases
in very tiny time intervals. As future efforts, it is possible to refine the strategy to work with a more
significant amount of time intervals, thus preventing such errors from occurring.

The use of an intelligent sensor can prevent the loss of material and processing resources.
By predicting the future position of a dynamic object, it is possible to develop a high preservation
strategy to avoid collisions, for example. Focusing on processing and performance of the robot, it is
possible to avoid the recalculation of trajectory, considering busy positions where dynamic objects
have a chance to occupy. These are just a few examples of how the proposed strategy can contribute to
the advances of research and development in mobile robotics.
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6 DEEPSPATIAL: INTELLIGENT SPATIAL SENSOR TO PERCEPTION OF

THINGS

This chapter presents the paper published in the IEEE Sensors journal (ISSN: 1558-

1748 ). The data of the paper is shown in Table 4.

Table 4 – Data of the paper DeepSpatial: Intelligent Spatial Sensor to Perception of Things.

Authors TEIXEIRA, Marco Antonio Simoes; NEVES-, FLAVIO ; KOUBAA, ANIS;
DE ARRUDA, LUCIA VALERIA RAMOS ; DE OLIVEIRA, ANDRE SCHNEIDER

Title DeepSpatial: Intelligent Spatial Sensor to Perception of Things
Journal IEEE Sensors
ISSN 1558-1748
DOI 10.1109/JSEN.2020.3035355
Publication date 04 November 2020

Source: Own authorship.

The paper presented in chapter 5 showed good results validating the proposed strategy

but left some problems open that need to be improved to be coupled to the robot. It is possible

to mention two main problems, egomotion, and the need to embark the entire approach in a

compact device so that it can be attached to the robot.

Thus, this paper aims to solve the egomotion problem, create compact equipment ca-

pable of executing the proposed approach, couple the equipment to the robot, and perform real

experiments. The proposed equipment consists of an Intel Nuc NUC5i5RYH minicomputer,

Nvidia Jetson Nano and the Intel RealSense D435i and Intel RealSense Tracking Camera T265

sensors. The Intel Nuc NUC5i5RYH and Nvidia Jetson Nano equipment’s main configurations

can be seen in the Table 5.

Table 5 – Components used in the development of the paper DeepSpatial: Intelligent Spatial Sensor to Per-
ception of Things.

Component Description Specification
Intel Nuc NUC5i5RYH

CPU Intel® Core™ i5-5250U
Cores: 2,

Threads: 4,
Frequency: 1.60 GHz

RAM memory DDR3L-1600 1.35V SO-DIMM 8 gb
Nvidia Jetson Nano

CPU ARM® A57
Cores: 4,

Frequency: 1.43 GHz
GPU NVIDIA Maxwell 128-core

RAM memory 64-bit LPDDR4 25.6 GB/s 2 gb
Source: Own authorship.

This paper fulfills this thesis’s last specific objective, validating the new approach pro-

posed in real experiments. As a result, the approach was embedded in compact equipment, and
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the equipment was coupled to the robot. The license for this article with permission for use in

this thesis is in Appendix B.
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DeepSpatial: Intelligent Spatial Sensor
to Perception of Things

Marco Antonio Simões Teixeira , Flávio Neves-JR, Anis Koubaa , Member, IEEE,
Lúcia Valéria Ramos de Arruda , Member, IEEE, and André Schneider de Oliveira, Member, IEEE

Abstract—This paper discusses a spatial sensor to identify
and track objects in the environment. The sensor is composed
of an RGB-D camera that provides point cloud and RGB
images and an egomotion sensor able to identify its displace-
ment in the environment. The proposed sensor also incorpo-
rates a data processing strategy developed by the authors
to conferring to the sensor different skills. The adopted
approach is based on four analysis steps: egomotive, lexical,
syntax, and prediction analysis. As a result, the proposed
sensor can identify objects in the environment, track these
objects, calculate their direction, speed, and acceleration,and
also predict their future positions. The on-line detector YOLO
is used as a tool to identify objects, and its output is combined
with the point cloud information to obtain the spatial location of each identified object. The sensor can operate with
higher precision and a lower update rate, using YOLOv2, or with a higher update rate, and a smaller accuracy using
YOLOv3-tiny. The object tracking, egomotion, and collision prediction skills are tested and validated using a mobile robot
having a precise speed control. The presented results show that the proposed sensor (hardware + software) achieves
a satisfactory accuracy and usage rate, powering its use to mobile robotic. This paper’s contribution is developing an
algorithm for identifying, tracking, and predicting the future position of objects embedded in a compact hardware. Thus,
the contribution of this paper is to convert raw data from traditional sensors into useful information.

Index Terms— Spatial sensor, egomotion, YOLO, mobile robot.

I. INTRODUCTION

ADVANCESin sensing techniques and technologies have
allowed the development of small and useful sensors

capable of providing a large amount of data. A class of such
sensors is the RGB-D type that provides spatial information
about the environment. The distance information is linked to
pixels of the image such that each pixel can be represented by
its coordinates X, Y, Z in a Cartesian plane, relative to the cen-
ter of the sensor. This operation generates a data point cloud.
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These RGB-D sensors are used for a multitude of applica-
tions, such as facial recognition [1], [2], object measurement
and classification in industries [3] among several other applica-
tions. Specially in mobile robotics, RGB-D sensors are usually
used for navigation tasks and environment mapping [4], [5].
Moreover, they can also be used for robust tasks, such as object
tracking [6], [7], and identification of the robot’s position in the
environment [8], [9]. However, the successful accomplishment
of all these activities involves reliable data processing beyond
the mere data capture by the RGB-D sensor.

Indeed, RGB-D sensors provide only distance data asso-
ciated with an RGB image. This raw data is not enough
to support any decision made by a robot, or to identify the
person passing in front of the sensor, for example. Thus, It is
necessary to process this data to generate useful information,
such as an occupation map for mobile robots, or identify a
person’s face for a security system.

In general, computer vision techniques are applied to RGB
images to extract such useful knowledge. For example, deep
learning methods allow us to perform advanced tasks such as
identification of objects or people, identification of anomalies,
among many others [10]–[14]. One of the techniques that
stands out in objects’ recognition from RGB images is YOLO
(You only look once) [15], [16]. This technique does not
need robust hardware for online running and promotes a good

1558-1748 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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trade-off between processing power and precision of results.
Besides, the used computer vision technique must also be able
to deal with the point cloud data corresponding to the pixel
coordinates generated by the RGB-D sensors [17]–[19].

In this paper, an embedded intelligent sensor, named Intel-
ligent Spatial Sensor to Perception of Things (DeepSpatial
sensor), is developed. The proposed sensor is an arrangement
of different perception sources, which are merged to produce
concise and reliable information. An RGB-D sensor is used to
obtain a cloud of points containing the distance of the objects
around it and also giving spatial notion of the environment.
An egomotion sensor is used to identify sensor displacement
and provide its linear and angular velocity. All pre-processing
and merge-processing are carried out on an embedded CPU.
The YOLO is used as a tool to object identification, and
information matching for different perception sources, being
processed over an embedded GPU that supports deep learning
techniques.

The work [20] presents a comparison between CNN object
detection techniques being performed in embedded systems,
such as Jetson TX1, TX2, and Xavier. YoLo is the algorithm
with the highest update rate in embedded systems, according
to the authors. Thus, YoLo was chosen as an object detection
tool. In the results section (sec::Performance), a comparison is
presented between the different versions of YoLo running on
Nvidia Jetson Nano. Our main contribution lies in integrating
some well-known sensing hardware into a single perception
system able to identify objects in the environment, track them,
and predict their future positions.

Some works discuss similar approaches for sensing systems,
also presenting solutions for objects tracking in the spatial
environment using YOLO [21]–[24]. However, these works
are not concerned with the technique’s materialization into
an embedded solution, with the identification and prediction
of detected objects motion, and with the reference movement
(i.e., the sensor motion by itself). As proposed in this paper,
these techniques also use known deep learning tools for the
development of a new sensing strategy. However, different
from these cited works that only use computer vision tech-
niques to track objects in the environment, the sensor herein
proposed is capable of tracking objects using the Point Cloud
and it also provides spatial object disposition based on the
distance between objects in the environment, predicting the
future positions of such objects.

There also are some papers concerned with the prediction
of the objects’ trajectory, as [25], [26]. Especially in [25],
a time difference strategy similar to that presented in this
work is used. However, in these works, the authors are not
concerned with the acceleration and possible collision calcu-
lation between dynamic objects and the object being tracked,
as it will be done in this paper.

Finally, our recent paper [27] presents a software strategy
very similar to that developed herein. However, this recent
paper is not worrying about the sensor displacement by itself
in the environment and about the processing capacity or
hardware requirements. In summary, this work aims to develop
a perception system (in terms of hardware and software) using
deep learning techniques as a tool for object identification and

tracking, predicting their future position, and identifying the
relative sensor displacement in the environment. The result
will be a compact equipment capable of carrying out all the
proposed actions.

II. DEEPSPATIAL SENSOR

This paper aims to develop an intelligent sensor to identify
objects in the environment, track them, and predict their
future positions. The sensor is called Intelligent Spatial Sensor
to Perception of Things or simply DeepSpatial sensor. The
DeepSpatial development is presented through two steps.
First, the proposed sensor architecture and used hardware will
be presented in section II-A. Thus the software procedures
implementing the sensing intelligent approach is discussed
in section II-B.

A. DeepSpatial Hardware
The proposed sensor hardware has four components. The

first is a small computer implementing three tasks: data
processing, information exchange with the user (a mobile robot
in this paper), and Wireless network creation and management.

The chosen computer is the Intel Nuc NUC5i5RYH due
to its processing power, small size, and low battery con-
sumption. An Nvidia Jetson Nano board is the second com-
ponent. It is used to run computer vision procedures for
object identification in the environment (YoLo). This graphics
processor is ideal for performing tasks in parallels, such as
deep learning techniques and other Artificial Intelligence (AI)
applications.

The other two hardware components are sensing elements.
The Intel RealSense D435i sensor is used to perceive the
environment. This component has an RGB camera to collect
images of the environment and infrared sensors to obtain
spatial information. This information is used to identify objects
and their positions around the sensor. The Intel RealSense
Tracking Camera T265 is used to capture the DeepSpatial
displacement. This camera measures its movement allowing
to infer information such as speed and travel direction of
DeepSpatial, for example.

The communication between all components of DeepSpatial
sensor is implemented through Ethernet and USB interfaces,
as shown in Figure 1. A direct connection between the NUC
computer and the Intel RealSense D435i via a USB 3.0 is
established. The same occurs with the Intel RealSense Track-
ing Camera T265 sensor. The communication between Jetson
Nano and the NUC computer is carried out via an Ethernet
network. Finally, the NUC computer creates a wireless net-
work allowing access to information from DeepSpatial sensor
and communication with other equipment, such as the mobile
robot.

The entire proposed strategy runs entirely on the DeepSpa-
tial sensor. External equipment, such as a computer, can collect
sensor data, but it is not necessary to employ it. This work aims
to propose a novel embedded and independent equipment to
spatial perception.

Finally, the integration and management of all hardware
components is carried out through “Robot Operating System”
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Fig. 1. Representation of communication between DeepSpatial sensor
components. For AI processing, it is using an Nvidia Jetson Nano. The
tracking sensor is an Intel RealSense Tracking Camera T265, and the
RGB/Pointcloud sensor is an Intel RealSense D435i.

Fig. 2. All hardware components of the DeepSpatial sensor. For
AI processing, it is using an Nvidia Jetson Nano. The tracking sensor
is an Intel RealSense Tracking Camera T265, and the RGB/Pointcloud
sensor is an Intel RealSense D435i.

(ROS) [28], [29] as can be seen in Figure 2. The center of
this figure shows the DeepSpatial view, including all hardware
components. It is worthwhile to note that the specific hardware
components above cited are not mandatory. They can be
replaced by any similar component with the same processing
and sensing capacities and playing the same role.

B. DeepSpatial Software
The Intelligent Spatial Sensor to Perception of Things is

able to identify objects in the environment, classify them

into static and dynamic types, and track all of them. These
tasks are accomplished through four analyzes: egomotion, lex-
ical, syntax, and prediction analysis. The developed software
strategy adopts a follow-up approach, where each analysis
provides information to the next ones. However, it is also
possible to collect all data and independently perform the
analysis, according to the desired use of the DeepSpatial
sensor. The software aspects will be presented and discussed
in the following sections.

1) Egomotion Analysis: One of the main problems in the
development of the DeepSpatial sensor is its spatial displace-
ment. As the robot moves, errors can be generated in the
calculation of the movement of the identified objects, since
movement direction is based on the spatial displacement of
the object concerning the sensor. In this way, a static object
can have a misrepresentation of movement.

The Intel RealSense Tracking Camera T265 sensor is
adopted to correct the influence of the sensor displacement.
This equipment can support visual odometry techniques, like
those presented in [30]–[32], which allow calculating the
displacement of the sensor in the environment (egomotion).
In this way, it is possible to obtain the linear speed (LVS)
and angular speed (AVS) of the DeepSpatial sensor. This
information will be used in the next Syntax analysis to
compensate errors due to DeepSpatial displacement in the
environment when the direction, speed, and acceleration of
the identified objects are calculated.

2) Lexical Analysis: The lexical analysis aims to survey
the characteristics of objects in the environment. The objects
identified by the Lexical Analysis will be stored in tokens.The
token’s attributes are related to the object characteristics. Such
attributes are object’s class (Ct ), probability (P ROt ), object’s
center in the image (Ctimg), object’s height in the image
(Himg), object’s width in the image (Wimg ), 3D position of
the object in the real environment (Pt ) and the object’s life
time (Tt ).

• Object’s class and probability These information are
generated by YOLO, which can identify objects in an image.
For each object detected by YOLO, a box is created around
the object and an object name (class) is given. A degree
of probability (probability) of the detected object belongs
to the given class is also added. Both attributes (class and
probability) are directly taken from YOLO. The image is
collected by the D435i sensor, inputted to YOLO, processed
and the YOLO answer is stored.

• Center, height, and width of the object in the image These
data refer to the shape of the object identified in the image.
This shape is computed from the object’s box provided by
YOLO. The number of pixels forming the height (Htimg) and
the width (Wtimg) of the object’s box are computed, as also
the position in the image of the box’s center (Ct img). These
measures correspond to the height and width of the object in
pixels and to the position of the center of the object in the
image. These data are used to extract future information and
can be employed by the sensor user to carry other specific
tasks.

• 3D position of the object The position of the object in
the real world is one of the most critical information to be
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captured. The previous attributes (center of the object in the
image, height and width in pixels) and the information from
the Intel RealSense D435i sensor are used to identify the
object’s position in the world. D435i sensor provides a cloud
of points where each pixel of the image has an associated
spatial point, given by spatial coordinates [x, y, z] indicating
the distance among the pixel and the center of the D435i
sensor. Thus, each pixel [i, j] has a distance data x, y, z in
the point cloud (PC [i, j, x, y, z]).

• Life time that is the time values when the object is detected
by YOLO. Time is running continuously, starting at zero when
the DeepSpatial is turned on.

The object’s localization is estimated through an average
of the points belonging to the box of the identified object.
As YOLO does not perform segmentation of the object,
the average is carried out only with 20% of the box’s height
and width pixels, thus only the center of the identified object
is obtained, ensuring that the points used for the average of
its 3D position are referring to the object. Equations [1,2,3,4]
present the calculation used to obtain the 3D position of each
object identified by the sensor, where the variable PC [i, j, x,
y, z] refers to all 3D points identified by the RGB-D sensor,
being i and j their dimensions in a 2D matrix, and (x, y, z)
are the distance data. Moreover equation 5 computes the limits
over the coordinate axes that are used in the summation. In this
equation, C Hstart and C Hend correspond to the height ranges
used in the RGB-D data, and CWstart and CWend limit the
width ranges. These intervals correspond to 10% of the size
of the width and height taken from the center of the identified
object. Finally, the spatial position of the object is a 3D point
(Pt ) having the positions (x, y, z) of the identified object.
To cut only the center of the box, its size is multiplied by
0.1 (10%) (Equations 23 and 4) of its height and width from
the center. In this way, the box is converted to 20% of its total
height, and 20% of its total width.

Pt = (Pt [x], Pt [y], Pt [z]) (1)

where

Pt [x] = 1

C Hend

1

CWend

C Hend∑

i=C Hstart

C Wend∑

j=C Wstart

PC[i, j, x] (2)

Pt [y] = 1

C Hend

1

CWend

C Hend∑

i=C Hstart

C Wend∑

j=C Wstart

PC[i, j, y] (3)

Pt [z] = 1

C Hend

1

CWend

C Hend∑

i=C Hstart

C Wend∑

j=C Wstart

PC[i, j, z] (4)

and

C Hend = (Ctimg + (Htimg ∗ 0.1))

C Hstart = (Ctimg − (Htimg ∗ 0.1))

CWend = (Ctimg + (wt img ∗ 0.1))

CWstart = (Ctimg − (wt img ∗ 0.1)) (5)

3) Syntax Analysis: Syntax analysis is responsible for con-
verting the data of each token into useful information. The
information generated in this step is the speed, direction,

TABLE I
INFERRED KNOWLEDGE IN OBJECTS

and acceleration of each identified dynamic object. An object
is considered dynamic or not, according to the pre-defined
classification given in Table I. This table also indicates which
dynamic objects are alive. Thus, at the end of this analysis,
each identified object will have information such as dynamic
or static, alive or not, velocity, direction, and acceleration if
they are in motion.

• Identification of the same token The displacement of the
object in space allows the computation of speed, direction,
and acceleration. Thus, it is necessary to have the position
of the same object in two instants of time, to calculate
these variables. The strategy to identify the same object in
two moments is given by a simple comparison between all
tokens of two objects at two instants of time,present time
(Tpresent ) and past time (Tpast). In this way, the identification
of the same token in both times is made by comparing all
objects from time Tpresent with objects from time Tpass .
First, it is compared whether the two tokens are dynamic and
belong to the same class, if it is true, the Euclidean distance
between the real position of the objects, identified through the
point cloud, is compared. If the Euclidean distance is bigger
than 0.15, we assume that it is not the same object. This value
was defined empirically, after proving to be enough to not lose
the movement of an object and to prevent different grouping
tokens.

• Velocity Calculation eThe object’s speed, direction, and
acceleration are based on the same token identification in two
moments.. The speed calculation is given by the displacement
of the object in the environment (δDistance) divided by time
(δT ime). The distance is obtained by calculating the Euclid-
ean distance between (Pt [x, y, z]Tpass ) and (Pt [x, y, z]Tpresent ).
Time is obtained by the difference between TtTpresent and
TtTpass , where Tpresent refers to the time of the last set of
tokens collected, and Tpass refers to the tokens previously
received. Finally, the sensor speed, obtained by the egomotion
analysis, is subtracted from the speed of the token. In this way,
the calculation of the linear token velocity (LVt ) is given by
the equation 6.

LVt = δDistance

δT ime
− LV S (6)

where LV S is the linear speed of the sensor.
• Direction calculation The direction is used to check

the object’s trajectory in the environment. This calculation
is done by measuring the angle between the same token in
two moments using the function atan2 [33]. The direction is
calculated in 2D, thus only (Pt [x, y]Tpass ) and (Pt [x, y]Tpresent )
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are used, despising the z information for each identified object.
The atan2 function returns the angle between the two points
in radian. This information is added to the angular speed of
the DeepSpatial sensor obtained in the analysis of egomotion.
The direction (Dt ) calculation is given by the equation 7.

Dt = atan2((Pt [y]Tpresent − Pt [y]Tpass ),

(Pt [x]Tpresent − Pt [x]Tpass ) − AV S (7)

where AV S is the angular speed of the sensor.
• Acceleration calculation The acceleration of an object

is due to the speed difference during two instants of time
divided by time. In this way, it is only possible to calculate
the acceleration of objects that already have speed. Therefore,
to perform the acceleration calculation (ACCt ), it is first
checked whether the token has speed at two instants of time,
if so, equation 8 is computed, which corresponds to the speed
variation (δV el) by the time variation (T ime).

ACCt = LVtTpresent − LVtTpass

δT ime
(8)

4) Prediction Analysis: Prediction analysis uses egomotion
data, lexical, and syntax analyses, to infer the future position
of the object. The prediction of the next object, position
is computed through the speed, acceleration, and direction
of a dynamic object. These future positions can be used to
prevent potential collisions between dynamic objects and the
DeepSpatial sensor.

The future position of dynamic objects at a different time in
the future (Tp) is computed based on acceleration information.
If an object has an acceleration value, equation 9 is used to
identify the object’s displacement in space (Obd ). If the object
has no acceleration, its speed, considered as constant, is used,
multiplying Tp by LVt .

Obd = LVt ∗ Tp + ACCt ∗ T 2
p

2
(9)

After calculating the displacement of the object in the
environment, it is possible to calculate its future position after
Tp seconds. Having the object’s spatial position (Pt [x, y, z])
its displacement in the environment (Obd ) and its direction
(Dt ), it is possible to calculate its new position in the environ-
ment (Pp[x, y]) as presented in Equation 10. The displacement
of the object on the Z-axis is not considered.

Pp[x] = Pt [x] + sin(Obd + 90) ∗ Obd;
Pp[y] = Pt [y] + cos(Obd + 90) ∗ Obd ; (10)

As all collected data are related to the DeepSpatial sensor
center, the calculation of the future position of the sensor is
applied using the equation 9 considering, instead of ACCt ,
the linear speed of the sensor LV S. The points used to
represent the initial position of the sensor are [0,0,0] because
the sensor is considered the origin of the coordinate plane.
The new predicted position of the sensor in Tp time is defined
as Spp.

• Collision prediction Having the future position of all
the identified dynamic objects and the DeepSpatial sensor
position, at time Tp, it is possible to predict possible collision

Fig. 3. Sensor attached to the Pioneer P3-AT robot. Left, front view of
the robot. Right, top view of the robot, where it is possible to view the
batteries for powering the sensor.

paths. The collision predaiction is carried out by calculating
the Euclidean distance between the future position of the
DeepSpatial sensor, and all future positions of the dynamic
objects identified in the environment. If this distance is less
than a predetermined threshold, it means that the sensor and
the dynamic object will be very close to each other in the
future, signaling a possible collision.

By default, the future position of identified objects is
continually calculated with Tp taking values of 1, 3, and
5 seconds. After the next location of all objects is obtained,
the collision prediction is also carried out for each instant of
time. If possible collisions are predicted, an alert is published,
so that the DeepSpatial sensor user can take the appropriate
actions.

III. RESULTS AND DISCUSSIONS

This section aims to present the results obtained with the
developed Intelligent Spatial Sensor to Perception of Things.
A first experiment is presented in order to analyze as the
operating data are collected and processed by DeepSpatial
sensor. Then, an experiment with the DeepSpatial sensor
embedded in a mobile robot is carried out. The mobile robot
has linear and angular speed control, making it possible to
perform a comparison between the speeds obtained by the
robot and by the proposed DeepSpatial sensor.

The mobile robot Pioneer P3-AT was used (Figure 3). This
robot is compatible with ROS, and it has been connected to
the DeepSpatial sensor. From the wireless network created by
the DeepSpatial sensor, it was possible to collect data from the
DeepSpatial sensor and send commands to the robot. The robot
has linear and angular speed control, besides encoders used to
calculate these speeds logically. All the described experiments
were carried out with the DeepSpatial sensor embedded to the
robot, powered by batteries and communicating through the
wireless network created by the DeepSpatial sensor.

A. Knowledge Extraction From Collected Data
All information processed by the DeepSpatial sensor can

be visually obtained throughout a user interface. Thus it is
possible to view the identified objects, their positions around
the sensor, their predicted positions, and the possible collision
paths. This information is also available in a textual form,
through a topic from ROS. In this way, the information can be
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Fig. 4. Graphical display provided by the DeepSpatial sensor.
(a) Representation of a dynamic object, its movement and future posi-
tions. (b) Token information.

directly read from the DeepSpatial sensor in order to support
actions and decisions, such as stopping the robot or deflect it
if a future collision is predicted, or look for a specific object
in the environment and others. This DeepSpatial sensor opens
up a wide range of options in the field of mobile robotics.

Figure 4 and Figure 5 show the information provided by
the DeepSpatial sensor. In Figure 4, the sensor is directly
connected to a monitor, where the information is displayed.
First, the image is processed by YOLO, then identified object
information such as object’s position in the world is calculated
based on data coming from the RGB-D view. The appearance
of dynamic objects changes from sphere to an arrow, point-
ing to the calculated direction for object displacement. The
information about predicted positions are also displayed as
arrows, pointing to the possible future positions of the object.
All future positions can be visible or it is possible to filter
them for 1, 3, and 5 seconds. Finally, when a possible collision
between objects is inferred, a black sphere is generated around
the possible collision locus.

B. Performance Analysis
All experiments are carried out at a frequency of 10 Hertz.

After 30 minutes from the beginning of the operation,
the DeepSpatial sensor CPU (Intel Nuc) is operating at 53.4%
and using only 10.42% of memory. The CPU is handily
running; however, the entire system is limited by YOLO’s
update rate. If YOLO operates at 2 Hertz, the whole system
will work at the same frequency. There are different versions
of YOLO, the last being YOLOv3. A smaller version, but
with less precision, is the YOLOv3-tiny, it operates at a higher

Fig. 5. Graphical display provided by the DeepSpatial sensor. The grid
is represented in meters. (a) YOLOv3-tiny. (b) 3D position of the objects
identified in the environment. (c) Information about a specific object.
(d) A vector pointing to the predicted positions in 1 (blue), 3 (green)
and 5 (red) seconds. (e) Possible collision warning.

frequency but with a lower mean Average Precision (mAP).
Figure 6 presents two bar plots, where the first one shows the
operating frequencies of the YOLO version running on the
DeepSpatial sensor, and the second shows the mAP of all ver-
sions, according to its developer [15], [16]. YOLOv3 has the
highest mAP, but its update rate is minor (1.40). YOLOv2 has
a good mAP and an acceptable refresh rate in some situations.
YOLOv3-tiny offers a reasonable update rate and an adequate
mAP. GPU usage remains 99% regardless of the chosen
version of YOLO.

C. Egomotion
The DeepSpatial sensor’s ability to capture and calculate its

displacement is evaluated in the next experiments in which the
DeepSpatial sensor is connected to the mobile robot. Visually,
Figure 7 presents a representation of the robot in motion,
and stopping in front of a person. In Figure 7.a and 7.c,
it is possible to observe that the robot calculated its future
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Fig. 6. On the left, frequency of operation in Hertz. On the right, Mean
Average Precision (mAP).

Fig. 7. DeepSpatial sensor embedded into the robot and all sensor
information are collected over the wireless network. The grid is repre-
sented in meters. (a) Robot in motion. (b) Robot stopped. (c) Information
calculated during robot motion. (d) Information calculated during robot
stop.

position, but It did not consider the person as a moving
object, this is because it compensated for its speed angular
and linear with the calculated velocities for the dynamic object.
In Figure 7.b and 7.d, future movements are not calculated for
the robot, nor for the dynamic object, as both are still stoped.

The spatial motion capture is compared with odometry
computed by the mobile robot. The robot is a standard mobile
platform that estimates its relative displacement through a
fusion of encoder odometry and inertial movement sensor. This
estimation is susceptible to errors because it is based on dead-
reckoning, with error accumulation. The results are presented
in Figure 8, where “commands” represents the speed reference
sent to the robot controller, “robot” represents the speed
calculated by the robot’s encoder and DeepSpatial sensor
represents the speed calculated by the sensor DeepSpatial
sensor.

The average error for the linear velocity calculated by the
sensor was around 0.04 m/s, and for the angular velocity, it
was around 0.06 m/s when compared to the speed obtained
by the robot’s encoder. Figure 9 presents a boxplot of the
difference between speed data from both DeepSpatial sensor
and the robot encoder. This error does not significantly affect

Fig. 8. Representation of linear and angular velocities measured
during the experiment. commands are the velocity references sent to the
robot controller. Robot is the speeds calculated by the robot’s encoder.
DeepSpatial sensor is the speeds calculated by the DeepSpatial sensor.

Fig. 9. Boxplot of the error between the speeds calculated by the
DeepSpatial sensor and by the robot.

the calculation of the future speed for identified dynamic
objects. For example, an object has been identified at 1 meter
from the robot and it moves in δt1, that is, 1 second in the
future, it will be identified at 0.96 meters, causing the robot
to detect the collision in advance.

D. Object Tracking
This experiment aims to analyze the behavior of the pro-

posed strategy and the Intel RealSense Tracking Camera
T265 tracking sensor. Specific information about its sensor
can be obtained at [34], [35].

One of the main difficulties in calculating the future posi-
tion, speed, acceleration, and direction of an object, is to iden-
tify the same object in two moments. The strategy developed
in this work uses only the Euclidean distance between the
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Fig. 10. Top figure: Euclidean distance between the current object
position, and its predicted positions in 1, 3 and 5 seconds. Bottom figure:
velocity and acceleration calculated for the object.Left Plot of the distance
between the current position of the object, and its predicted positions in 1,
3 and 5 seconds.Right plots of velocity and acceleration calculated for
the object.

position of dynamic objects in two moments. If this distance is
less than 0.15 and more significant than 0.035, and the objects
belong to the same class, then they are considered the same
object. As the update frequency of the sensor is high, it is
allowed to use a shorter distance, since the object does not
move much between the two-time instants. The distance value
greater than 0.035 is used to avoid false calculations, resulting
from small movements of the object.

Figure 10 shows the tracking of a moving person. On the
left plot, the Euclidean distance between the person’s current
position and his predictions of future positions is shown,
on the right plot, the calculated acceleration and speed profiles
are presented. When both acceleration and speed are high,
the future status of the object is calculated at a greater distance,
as shown at position 24 of the plot. When we have a high
speed, and low acceleration, the object’s next location is
considered to be less since the object is decelerating. In some
cases, with a negative acceleration value, the object is deemed
to stop in the future, position 4 of the plot.

The validation of dynamic object tracking by the DeepSpa-
tial sensor is carried out by an experiment with the worst
possible scenario: two dynamic objects of the same class are
side by side. In this way, the proposed tracking algorithm must
differentiate the objects to carry their tracking. The strategy
used for this action was presented in the section II-B.3.
During the experiment, two people walk side by side, and the
Euclidean distance between these two positions obtained by
the DeepSpatial sensor must be monitored. Figure 12 shows

Fig. 11. Graph representing the distance between the two people during
the experiment. People walked back and forth, side by side.

Fig. 12. DeepSpatial sensor view aimed at two people side by side.
(a) People are standing still. (b) People are on the move. (c) Sensor
output, people are standing still. (d) Sensor output, people in motion,
with their future positions calculated.

the two people standing side by side, and then moving, where
it is possible to observe the calculation of the future positions
for both dynamic objects. Figure 11 presents the Euclidean
distance between the objects (people) during the experiment.
It is worth mentioning that during the entire monitoring, both
people were correctly identified and tracked, validating the
proposed tracking algorithm.

IV. APPLICATION EXAMPLE

The DeepSpatial sensor will be demonstrated in an example
task To validate the approach proposed by this article. The
equipment will be integrated into an autonomous navigation
strategy and used as safety equipment to prevent accidents.
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Fig. 13. Pioneer P3-At robot performing autonomous navigation.
(a) Robot in the test environment, being an office. (b) Map of the
environment, the trajectory to be covered in green, and the robot’s
position on the map.

The Pioneer P3-AT robot is assigned to perform autonomous
navigation from point to point. This is a traditional strategy
for autonomous cargo transport robots [36]–[38] and, thus,
validate the sensor during the execution of a conventional task
in the area of mobile robotics. The robot’s navigation circuit
will be repetitive, so the robot will always navigate the same
environment.

The DeepSpatial sensor will send environmental informa-
tion to the robot, such as the need to perform an emergency
stop. The robot will read the sensor’s information in the token
format and then decide to stop or continue according to the
information provided by the DeepSpatial sensor. Some rules
will be created for the robot’s action based on the sensor’s
statement, which is presented below.

• If the prediction analysis identifies a collision in the
present position or predicted positions in the future
(1,3 and 5 seconds), the robot must save the navigation
data for analysis.

• If the objective is in motion, but is not towards the robot,
and is at a distance greater than 0.5 meters, the robot must
continue its trajectory, and thus avoid an unnecessary
stop.

In this way, the robot will perform navigation from point
to point, repeating the points, and stopping when some of
the conditions mentioned previously are reached. The distance
between the object and robot at the time of stop will be
stored, and the speeds of the object and robot, to evaluate
the performance.

The robot sailed for 1 hour in an office, and 60 possible
collisions were identified, being a possible collision in the
present time, 17 potential collisions in one second, 26 col-
lisions predicted in 3 seconds, and 16 predicted collisions
for 5 seconds in the future, according to with the prediction
analysis developed in this paper.

Figure 13 shows the robot navigating the defined cir-
cuit,where the robot makes a map of the environment, and then
runs the SLAM. The navigation and localization technique is
not interesting for this work, being used only and exclusively
to validate DeepSpatial in a real application.

During navigation, the DeepSpatial sensor was turned on,
and when it identified a possible collision, it wrote down
the information. Table II presents an average containing the

TABLE II
COLLISION DATA DETECTED BY THE DEEPSPATIAL SENSOR DURING

THE AUTONOMOUS NAVIGATION OF THE ROBOT. A TOTAL OF

60 COLLISIONS WERE IDENTIFIED, ONE AT TIME 0, 17
AT TIME 1, 26 AT TIME 3, AND 16 AT TIME 5

Fig. 14. Image provided by DeepSpatial during its operation. The
identification, tracking, and prediction of the position of a person on the
movement is presented. (a) The person is perpendicular to the sensor.
(b, c) The person is performing a turning action. (d) The person is moving
towards the sensor.

distance between the robot and the Token at the time of the
collision is detected, both in the present time (0) and in the
future (1.3 and 5 seconds). The robot’s actual distance and the
predicted distance to the object are also shown in the table.
It is worth mentioning that the higher the object’s speed and
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the robot, the greater the distance from the predicted collision,
as the forecast will consider that the object is accelerating.

As DeepSpatial calculates the identified objects’ speed and
direction, it considers that a collision will only happen if the
object is in its direction, thus avoiding unnecessary stops and
accidents, anticipating a stop or slow down. Figure 14 presents
an identified trajectory of a person, where first, he is going in
a direction perpendicular to the robot. Then he performs a
contour action and goes towards the robot.

This section presented the software and hardware of the
DeepSpatial sensor proposed by this work, also discusses
the sensor’s advantages in a traditional application in mobile
robotics and sensing.

V. CONCLUSION

This work has developed an embedded sensor, composed of
a set of components, where the raw data of each component
is collected and gathered, generating useful information for
several applications. With the proposed sensor, it is possible
to develop an intelligent equipment capable of identifying
dynamic objects and tracking them, in addition it also provides
information such as, for example, a bottle is on a table,
which can be used by a household robot, for example. In this
way, the development of such intelligent equipment can be
concerned with treating the information from the DeepSpatial
sensor and not trying to collect them from the environment.

The sensor processing runs on Intel Nuc NUC5i5RYH,
and it is observed that after 30 minutes of uninterrupted use,
the computer remained with only 53.4 % of its processing
capacity and 10.42 % of its occupied memory. The Jetson
Nano was used to perform object detection. When using
YOLO to identify objects, Jetson Nano used 99% of its GPU.
However, this use does not represent a risk during execution,
since it has a CPU, leaving the GPU dedicated to YOLO.
In terms of hardware, the sensor proved to be satisfactory,
having no problems at run-time, always running online.

The logical approach is organized in some steps, egomo-
tion analysis, lexical analysis, syntax analysis, and prediction
analysis. In egomotion analysis, the Intel RealSense Tracking
Camera T265 is used to identify the sensor’s movement.
The ability to identify movements was verified, where its
presentedresults have attained an average error concerning the
data obtained by the robot of 0.04 at linear speed, and 0.06 for
angular speed. Then the lexical analysis is performed, where
all the information of the object is collected, using the YOLO
and the RGB-D depth sensor. In syntax analysis, the data
collected from the objects is used to calculate their displace-
ment in the environment, direction, speed, and acceleration.
In prediction analysis, a prediction of the future position of
all dynamic objects is carried out. This prediction is able to
prevent a possible collision between two dynamic objects in
the environment.

The experiment results have showed that the DeepSpatial
sensor performance was satisfactory. Its limited frequency of
operation is directly linked to YOLO. However, a new setting
can be done since we choose between using YOLOv2 for
greater accuracy, and operating at a low rate, or losing effi-
ciency using the YOLOv3-tiny and operating at a frequency

of 10 hertz. In future works, the replacement of either Jetson
Nano or YOLO will be considered to seek a reasonable
rate with a better accuracy on the identified objects. Finally,
the sensor was proposed and used in a real application. Thus,
this article proposed not only creating the sensor, in terms
of hardware and software, but also brought examples of
application.
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7 CONCLUSION AND FUTURE WORK

This thesis proposes a new sensing approach for mobile robots. Mobile robots need to

see the environment around them to make decisions, such as avoiding obstacles. The sensors

can also be used to develop mapping techniques, object identification, inspection, and many

other activities. This thesis aimed to improve the data coming from traditional RGB-D sensors,

which are images with a notion of depth, in order to develop a device capable of identifying

objects and tracking them, they can be used by the robot for making the decisions. The thesis

is written in the format of a collection of articles, thus, some chapters of the thesis are articles

already published in journals.

Chapter 1 presents the problem of this thesis, with a brief description of mobile robots’

need to perceive the environment around them. The general and specific objectives of the thesis

were also presented. Chapter 2 presented a contextualization of the thesis, comparing the works

developed with related works in the literature and associating each work with the general and

specific objectives proposed.

Chapter 3 presents the work Intelligent environment recognition and prediction for

NDT inspection through autonomous climbing robot (TEIXEIRA et al., 2018), where a strategy

for mapping Liquefied Petroleum Gas (LPG) storage tanks to a mobile inspection robot was de-

veloped. For the preparation of the map, knowledge of the inspection environment was inferred,

such as the spacing between the weld beads. In this way, it was possible to predict the entire

structure, by identifying parts of the tank, such as weld junctions. This work made use of several

sources of perception, being 1D, 2D, and 3D. In this way, this work explored to the maximum

of the use of traditional perception sensors, making evident the need for improvement in this

area.

Chapter 4 presents the work A Quadral-Fuzzy Control Approach to Flight Formation

by a Fleet of Unmanned Aerial Vehicles (TEIXEIRA et al., 2020) where a drone formation

strategy was proposed. The strategy aims to carry out the flight while maintaining a specific

formation between 4 drones so that they can perform collaborative tasks, such as cargo trans-

portation. The work uses a single RGB-D sensor to detect obstacles, and Fuzzy controllers to

perform obstacle avoidance and position control. As a result, the strategy proved capable of

maintaining formation even during obstacle avoidance’s. This work fulfills the second specific

objective of the thesis, where point cloud processing techniques are applied in aerial robots
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so that the sensing techniques can be validated not only in terrestrial robots but also in aerial

robots.

The strategy presented in the chapter 3 and 4 made use of several traditional sensors in

mobile robotics, showing the need for innovation in this area. In this way, the work presented in

the chapter 5 (TEIXEIRA et al., 2019) was developed. Chapter 5 presents the work Intelligent

3D Perception System for Semantic Description, and Dynamic Interaction (TEIXEIRA et al.,

2019), where a new sensing strategy is proposed. In this work, a new approach to sensing from

traditional sources of perception is proposed. In this way, the RGB-D perception sensor is used

to generate new types of information, such as identifying objects in the environment and their

spatial positions. It is used for object identification, computer vision techniques; in this work,

the YoLo algorithm was used. This chapter fulfilled the third specific objective of the thesis,

focusing on elaborating a new sensing proposal.

Chapter 6 presents the work DeepSpatial: Intelligent Spatial Sensor to Perception of

Things (TEIXEIRA et al., 2021), an improvement on the previous work, where the proposed

strategy is embedded in a compact equipment that can be attached to the mobile robot. The

proposed sensor comprises several pieces of equipment: a computer (an Nvidia Jetson board to

perform the graphic processing), an RGB-D camera, and a camera to perform the visual odome-

try. With visual odometry, it is possible to calculate the robot’s displacement in the environment

and compensate for this displacement in the identified objects’ position. As a result, the equip-

ment proved to be capable of executing the technique without using much CPU processing,

about 53.4 %. This work fulfilled the thesis’s objective to develop a new source of perception

for mobile robots, where intelligent information is provided, not just depth data.

This thesis addressed the study of sources of perception in mobile robots, starting with

a preliminary study on traditional sensing strategies, such as the use of sensors to avoid obstacles

and map obstacles, ending with the proposal of a new source of perception of the environment,

proposing a new sensor capable of identifying objects and their spatial position, in addition to

predicting their displacement in the environment. In this way, this thesis carried out a study

on sensing techniques for mobile robots, elaborated a proposal for a new sensing approach,

and developed and validated the strategy on embedded hardware, leading the author to browse

through several science areas.
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7.1 FUTURE WORK

Based on the studies developed in this thesis, it was possible to identify some points

that can be improved in the future, both about the works presented here, as well as new works

to be developed. Future works are presented in the list below.

1. Adding cargo to the flew in formation with Drones, and experiments in real environments.

The work showed that it is possible to carry out cargo transport with multiple drones.

However, the effect of cargo on the flight was not discussed. Real experiments need to be

done to validate the strategy in a real environment;

2. Addition of the DeepSpatial sensor to the leading Drone during the flight. In this way, the

obstacle avoidance maneuver can be performed beforehand, using the prediction of the

identified obstacles’ position;

3. Enhancement of the DeepSpatial sensor to be used in the inspection environment. The

sensor currently identifies only objects through the YoLo network. To use the sensor in

the inspection environment, the sensor can be adapted to identify critical environmental

components, such as tubes and weld beads. This information can be used for location and

other inspection actions;

4. The improvement of the object tracking strategy present in the DeepSpatial sensor, in its

latest version, the strategy consists of verifying whether the objects belong to the same

class, and if they belong, the Euclidean distance between them is calculated. Deep learn-

ing tracking algorithms can be used. However, it is necessary to assess whether these

techniques do not impair the performance of the sensor;

5. The creation of a semantic map, where the position of the objects identified by the

DeepSpatial sensor is used to develop an intelligent mapping strategy. The position of

each object will be saved, and its movements will also be calculated continuously if the

object is in motion;

6. Use and adapt the sensing techniques developed for mobile robots in other environments,

such as industries and smart cities.
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