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RESUMO

Escoamentos turbulentos de fluidos viscoplásticos estão presentes em várias aplicações indus-
triais. No entanto, o desenvolvimento de métodos e modelos de simulação para turbulência em
fluidos não Newtonianos ainda está em fase inicial. Nesta tese, um esquema numérico baseado
no método dos retículos de Boltzmann (LBM) foi desenvolvido para escoamentos de fluidos
viscoplásticos. Em seguida, esse esquema foi usado em simulações numéricas diretas de escoa-
mento em canal turbulento com fluido viscoplástico. Foi formulada uma metodologia numérica
completa para o escoamento do fluido de Bingham, bem como a expansão de Chapman-Enskog
para a demonstração de sua equivalência macroscópica. O uso de regularização de momen-
tos fantasmas resultou em simulações notavelmente estáveis, com frequências de relaxamento
muito baixas ou altas. Uma excelente característica do LBM é a possibilidade de representar
viscosidade infinita ajustando a frequência de relaxação para zero. Isso permite a representação
da equação constitutiva de Bingham sem artefatos. Casos de benchmark de regimes perma-
nente e transiente foram resolvidos a fim de validar o presente esquema LB. Para o escoamento
turbulento em canal com fluido Bingham, o número de Reynolds de atrito foi fixado em 180,
enquanto o número de Bingham variou de 0 (Newtoniano) a 0,15. É mostrado que porções
plásticas de material são transportadas pelo escoamento ao redor da linha central. Ao contrário
do que alguns estudos sugerem, essas porções plásticas não desaparecem rapidamente, mas têm
uma vida útil significativa. Outro resultado interessante é que a tensão limite de escoamento
tem o efeito de aumentar a anisotropia da turbulência, fazendo com que as flutuações da veloci-
dade normal e transversal diminuam, enquanto que a componente na direção do escoamento
aumenta. Em geral, os resultados numéricos diretos obtidos por LBM foram muito semelhantes
aos obtidos por outros métodos numéricos.

Palavras-chave: Método dos Retículos de Boltzmann, Viscoplástico, Turbulência, Simulação
Numérica Direta.
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ABSTRACT

Turbulent flows of viscoplastic fluids are present in a number of industrial applications. How-
ever, the development of simulation methods and models for non-Newtonian turbulence are still
in its early days. In this thesis, a numerical scheme based on lattice Boltzmann method (LBM)
was developed for viscoplastic fluid flows. Then, this scheme was used in direct numerical sim-
ulations of viscoplastic turbulent channel flow. A complete numerical methodology for Bing-
ham fluid flow was formulated, as well as the Chapman-Enskog expansion for the demonstration
of its macroscopic equivalence. The use of regularization of ghost moments has resulted in re-
markably stable simulations, at very low or high relaxation frequencies. A great characteristic
of LBM is the possibility of representing infinite viscosity by setting the relaxation frequency
to zero. This enables the representation of the Bingham constitutive equation without artifacts.
Steady-state and transient benchmark cases were solved in order to validate the present LB
scheme. For the turbulent channel flow with Bingham fluid, the friction Reynolds number was
fixed at 180, while the Bingham number varied from 0 (Newtonian) to 0.15. It is shown that
unyielded portions of material travel along with the flow around the centerline. Unlike some
studies suggested, these unyielded spots do not disappear quickly, but rather have a significant
life-time. Another interesting outcome is that the yield stress has the effect on increasing the
turbulence anisotropy, by making the spanwise and normal velocity fluctuations lower, while
the streamwise component increases. In general, the direct numerical results achieved by LBM
were very similar to those obtained by other numerical methods.

Keywords: Lattice Boltzmann Method, Viscoplastic, Turbulence, Direct Numerical Simula-
tion.
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Subscripts
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1 INTRODUCTION

1.1 Context and Motivation

Turbulent flow of yield stress (or viscoplastic) fluids take place in a number of natural or industrial

instances. As examples, one can mention the slurry transport in mining activities, arterial blood flow

and mud flow in wellbore drilling. In the mining industry, it is often necessary to transport ore for long

distances, for further processing, treatment and disposal. This ore may be mixed with a fluid, such as

water, and be efficiently transported for many kilometers (GUANG et al., 2011). The thin mixture is

called slurry and it can exhibit a yield stress. The flow regimes in mining slurry transport can be laminar,

transitional or fully turbulent. In order to design efficient pipeline and pumps, friction factor estimation

needs good accuracy. Rheological uncertainty and lack of comprehensive experimental data make this a

difficult task.

Blood flow in arteries can transition to turbulence when cholesterol and other lipids deposit beneath

the intima of the arterial wall, creating stenosis (MOLLA and PAUL, 2012). This biological fluid is a

complex suspension that possesses many non-Newtonian characteristics, including yield stress (PICART

et al., 1998). Flow patterns and fluctuations caused by turbulence are associated with some pathologies.

For instance, high wall shear stresses influence endothelial damages of vessel and atherosclerosis. As

shown by Molla and Paul (2012), the post-stenotic flow has a recirculation zone, which may become

momentarily unyielded. Thus, combined modeling of viscoplasticity and turbulence would be desired as

an analysis tool for arterial blood flow.

Figure 1.1 – Illustration of hole cleaning processes in typical oil-well drilling. (a) In vertical wells the mud may
undergo turbulent flow inside the drill string, though the flow in the annular region is most likely
laminar due to the larger cross section area. (b) In horizontal wells subject to laminar flow a cuttings
bed is formed, which may obstruct the drill string and eventually interrupt its movement. One of the
possible workarounds is to induce turbulence in order to resuspend cuttings and free the drill string.

(a)

0
hole wall

drill string

drill bit

cuttings

bit nozzles

(b)

hole wall

drill string
(obstructed)

cuttings bed

laminar flow

turbulent flow

drill string
cuttings bed

suspended 
cuttings

Source: the author.
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In the wellbore drilling process, a viscoplastic fluid is often used as drilling fluid due to its ability to

keep cuttings suspended (MITCHELL and MISKA, 2011). In this particular industry, the drilling fluid is

called mud. Figure 1.1a illustrates a vertical well being drilled. The mud is pumped into the drill string,

passes through the bit nozzles, and returns upwards in the annular region formed between the string and

the hole walls. It is well known that at high flow rates a turbulent regime may take place inside the drill

string. In the annular region, the mud flow path comes across a series of contractions where turbulence

can be induced, such as in the bit nozzles, stabilizers and tool joints. Another occasion in which the

mud may undergo turbulent flow is during the cleaning of a horizontal well obstructed by a cuttings

bed. Figure 1.1b depicts how the turbulent mud flow can keep more cuttings suspended, in contrast to

the laminar flow. Indeed, inducing turbulence in horizontal wells is one of the techniques employed in

case of serious obstruction risks caused by poor hole cleaning (OKRAJNI and AZAR, 1986). Given the

variety of situations in which viscoplastic turbulent flow happens during oil-well drilling operations, it is

important to have reliable predictive methods to assist in decision making processes and to improve the

design of drilling accessories.

Although the above mentioned and many other applications are related to the turbulent flow of vis-

coplastic fluids, the present work is mainly motivated by the oil-well drilling and completion industry.

Despite the long research history in this field, there are still many limitations on the accuracy of predic-

tive methods. Quantities of interest, such as friction factors and velocity fields, are difficult to be reliably

estimated. The empirical correlations available in the literature have to be used with care, for they typ-

ically fit a complex thixotropic elastoviscoplastic material’s response to a simple constitutive equation,

such as the Bingham model. Moreover, closure models for turbulence equations of Non-Newtonian flu-

ids are still in their early days. The approach of the present work is to take advantage of the scalability of

the lattice Boltzmann method to achieve cost-effective direct numerical simulations of viscoplastic tur-

bulent flow. Therefore, this work has a prominently scientific character, and its vision is guided towards

industry needs.

1.2 Literature Review

In this section a review of the pertinent literature on viscoplastic turbulent flow is presented. The

scope of the present review is limited to studies on fluids with yield stress and insignificant thixotropy or

elasticity. A formal definition of viscoplastic material is given in Chapter 2. The bibliographic material

on the subject can be broadly divided into three approaches, which in the following text will be discussed

separately. Section 1.2.1 discusses the most important works on empirical correlations for the friction

factor. In section 1.2.2, experimental investigations on the detailed velocity field will be discussed.

In section 1.2.3, focus will be on reports of direct numerical simulations. Finally, the most important

remaining open questions are highlighted in section 1.2.4, revealing the scientific opportunity explored

in the present thesis. Their relevance with respect to oil-well drilling engineering is explained whenever

opportune. Also, the reasons why direct numerical simulation is a potential candidate to clarify the above

issues are emphasized.
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1.2.1 Friction Factor

Before getting into the subject of friction factor itself, the relevant dimensionless groups and the

efforts made to characterize laminar-to-turbulent transition will be mentioned. The most used param-

eter to determine pipe flow transition of Bingham fluids is the plastic Reynolds number, defined as

Rep = ρUD/ηp, where ρ is the density, U is the average fluid velocity, D is the pipe’s diameter

and ηp is the plastic viscosity according to the Bingham fluid constitutive equation (Eq. 2.40). An-

other relevant parameter to determine the flow behavior of yield stress fluids is the Hedstrom number,

He = ρσyD
2/η2

p , where σy is the yield stress. This dimensionless group was defined in Hedström’s

work on turbulent slurry flow (HEDSTRÖM, 1952), one of the first exhibition of theoretical analysis

on the subject. Based on a few experimental data for cement rock suspensions, Hedström was able to

draw meaningful conclusions. He correctly predicted that the critical Reynolds number for the onset of

turbulence increases with He. Moreover, the friction factor for turbulent slurry flow was estimated to be

close to that of a Newtonian fluid with µ = ηp. Even though this is a questionable approximation, it is

still recommended in oil-well drilling manuals (API, 2010).

An early effort to determine the laminar-to-turbulent transition of yield stress fluid flow was made

by Caldwell and Babbitt (1941). The authors believed transition should take place at Rep ≈ 2500, and

calculated a critical velocity for transition. Hanks (1963) and Hanks (1967) took a step further and pre-

sented a more rigorous mathematical development considering a Bingham fluid, which proved consistent

against extensive experimental data. Hanks’ transition criteria for pipe flow, showed graphically in Fig-

ure 1.2, is present in many drilling hydraulics textbooks. Shah and Sutton (1990) curve-fitted Hanks’

equation to cement slurry data and obtained an alternative correlation for critical Rep as a function of

He, although it may fail to represent other slurry varieties.

Figure 1.2 – Critical plastic Reynolds number (vertical axis) as a function of Hedstrom number (horizontal axis).
Hanks’ correlation is the solid line. The markers represent experimental data from third-parties.

Source: Hanks (1967).

The current understanding of transition in pipe flow of viscoplastic fluids dictates that it happens in

two stages. First, low frequency oscillations of the axial velocity may be observed near the wall, while

the central region has an either true (PEIXINHO et al., 2005) or pseudo-plug flow (GÜZEL et al., 2009).
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In this stage the friction factor departs slightly from the laminar curve. Eventually, the friction factor

reaches a local minimum. Then, with further increasing Rep, turbulent spots appear in the form of puffs

(or slugs), that are initially far from each other (GÜZEL et al., 2009). Between two successive puffs, the

presence of the plug zone is possible, characterizing a type of viscoplastic intermittent flow. The friction

factor then increases with Rep because of the increasing size of puffs. At some point, these spots fill up

the whole pipe, and the flow reaches a fully turbulent regime. In the fully turbulent flow at feasible He

and Rep, there have been yield stress effects observed (SHAH and SUTTON, 1990; HALLBOM, 2008),

even though the asymptotic behavior of the friction factor is expected to approach the Newtonian’s as

Rep → ∞. The general picture of the transition for a viscoplastic material is similar to a Newtonian

fluid. However, the critical points and transition ranges remain to be clarified.

Dodge and Metzner (1959) suggested that their power-law fluid correlation correctly represented the

friction factor for viscoplastic fluids, as if the yield stress would have a negligible effect during fully

turbulent flow. Although their expression correlated well for attapulgite clay suspension, the validity

of their approach for viscoplastic fluids has been questioned by several authors (GOVIER and AZIZ,

1972; HANKS and RICKS, 1975). After Hedström (1952), a relevant theoretical analysis of Bingham

fluid turbulent flow was done by Tomita (1959), who derived an expression for fully turbulent friction

factor based on Prandtl’s mixing length concept. Thomas (1962) made another interesting contribution.

He developed a Blasius type equation through data-fitting of flocculated suspensions of kaolin, titanium

dioxide and thorium oxide in water. His results showed the friction factors of these suspensions to be

smaller than those of water. Contrary to the views of Hedström and Hanks, neither Tomita’s or Thomas’

correlations can be expressed in terms of He.

Figure 1.3 – Friction factor for a Bingham fluid (vertical axis) as a function of plastic Reynolds number (called
"NRe" in the horizontal axis). The dashed curve represents the critical plastic Reynolds number.

Source: Hanks and Dadia (1971).

The first comprehensive friction factor chart for a Bingham fluid was presented by Hanks and Dadia

(1971), and it is exhibited in Figure 1.3. They performed a semi-theoretical formulation and obtained
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a numerical routine for the calculation of f . Hanks would latter extend the methodology for Herschel-

Bulkley fluids (HANKS, 1978). Many drilling textbooks and engineering manuals cite Darby and Mel-

son (1987) for the friction factor of Bingham turbulent flow. It must be emphasized that Darby and

Melson simply fitted data points present in (HANKS and DADIA, 1971) to a convenient mathematical

expression, so it seems that more credit should be given to the work of Hanks and Dadia. The most

interesting features of Figure 1.3 are listed below:

• Transition seems to occur in two stages, as depicted by Peixinho et al. (2005). However, the local

minima are only present for He ≥ 106.

• The transition range for He ≥ 106 spans an order of magnitude in Rep, while for He < 106 the

transition is rather abrupt.

• On fully turbulent flow, all curves are parallel to the Newtonian flow curve;

Besides the paper by Hanks (1978), the Hershel-Bulkley model was explored by Wilson and Thomas

(1985), Thomas and Wilson (1987). They employed velocity scale arguments to re-calibrate the conven-

tional viscous layer thickness and logarithmic sub-layer constants for the case of non-Newtonian flow.

For the sake of simplicity, only the Bingham friction factor is reproduced here. Figure 1.4 shows Wil-

son and Thomas’ friction factor along with experimental data points. The most important contrasting

features in relation to (HANKS and DADIA, 1971) are:

• The transition region for He < 106 is significantly broader;

• The transition region for He ≥ 106 is significantly narrower;

• All constant He curves merge into the same fully turbulent curve, corresponding to a Newtonian

behavior at high Rep.

Figure 1.4 – Bingham model friction factor (vertical axis) as a function of plastic Reynolds number (horizontal
axis). The solid lines represent the turbulent friction factor and the markers are experimental data
points.

Source: Wilson and Thomas (1985).

In the present author’s opinion, the overall available experimental data seem to support Wilson and

Thomas’ short transition range. However, treating fully turbulent f as independent ofHe is questionable,
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for no conclusive data has pointed that way. Shah and Sutton (1990) conducted extensive experiments

on cement slurry and fitted its rheological parameters to a Bingham fluid. They curve-fitted its flow

loop results and identified distinct fully turbulent curves for He smaller and higher than 105. Also, both

curves fell below the Newtonian curve, which qualitatively agrees with Hanks and Dadia’s theory. In

practice, it is difficult to reach high Rep and high He in experimental flow loops. Therefore, one must

consider that in realistic viscoplastic turbulent flows, the Newtonian approximation may not apply.

Recently, an entirely theoretical determination of Bingham friction factor was published by Anbar-

looei et al. (2017). They used scale arguments and re-examined the energy cascade and energy spectrum

theories under the influence of yield stress. For the range 5 × 105 ≤ He ≤ 2 × 106, their theoretical

friction factor expression seemed to better represent the experimental data than the correlation by Darby

and Melson (1987) (curve-fitting of Hanks and Dadia’s theory). The comparison with DNS data also

looked very good (ANBARLOOEI et al., 2018). This theoretical development represents a significant

advance towards understanding the effects of rheological parameters into turbulent flow. The limits of

influence of many rheological characteristics such as thixotropy, elasticity and plasticity, on turbulence

are far from being well understood. For the oil industry particularly, it would be beneficial to the drilling

engineer to know at what conditions plasticity or elasticity can or cannot be neglected.

It can be noticed from this literature review that there exists a lack of experimental effort to charac-

terize turbulent friction factor for viscoplastic fluids from 1990 on. Comprehensive experimental studies

demand significant investments in infrastructure, rheometry and fluid supply. As an example of the

grandiosity of such installation, the Low Pressure Ambient Temperature (LPAT) flow loop of the Uni-

versity of Tulsa Drilling Research Projects (TUDRP) may be cited. The LPAT, pictured in Figure 1.5 is

one of the largest flow loops in the world. It consists of a 100 feet long test section, a transparent acrylic

outer casing (8 in. ID) and an aluminum inner drill pipe (4.5 in. OD). Drilling fluid can be pumped at up

to 700 gpm. The fluid volume required is approximately 1000 liters. This test facility was designed for

the study of cuttings transport. However, in order to obtain high Re and high He data for real industrial

muds or slurries, a similar installation would be necessary. Given such level of expenses, it is reasonable

to believe that more accurate and extensive data exist, but are under proprietary protection.

Figure 1.5 – The Large Indoor Flow Loop (LPAT) of the University of Tulsa Drilling Research Projects (TUDRP).

Sources: http://www.tudrp.utulsa.edu (TUDRP website) and (DUAN et al., 2008).

1.2.2 Flow Visualization

Motivated by the interest in drag reduction mechanisms of polymer solutions, some visualization

studies of non-Newtonian turbulent flow were published (PINHO and WHITELAW, 1990; PEREIRA
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and PINHO, 1994; PEREIRA and PINHO, 2002). From velocity profile data, an apparent asymmetry

caught the attention of researchers. As a means to eliminate any directional bias from the experimental

apparatus, Escudier et al. (2005) performed laser Doppler anemometry (LDA) measurements in unrelated

research programs in UK, France and Australia. They used a selection of polymer and clay suspensions,

and fitted their rheological curves in either Carreau-Yasuda or Herschel-Bulkley models. The results

revealed varying degrees of departure from symmetry in transitional pipe flow. Interestingly, symmetry

was maintained for laminar and fully turbulent flows. Typical velocity profiles, obtained by a subsequent

work, are shown in Figure 1.6. After eliminating other hypotheses, the authors came to the conclusion

that the asymmetry must be a consequence of a fluid-dynamic mechanism rather than imperfections in

the flow facilities.

Figure 1.6 – Mean axial velocity profiles at different Reynolds number. The working fluid is a 0.2 wt% aqueous
solution of Carbopol 940, with Herschel-Bulkley parameters σy = 9.75 Pa, K = 3.82 Pa.sn, n =
0.47.

Source: Esmael and Nouar (2008).

Since it was still not clear which rheological characteristic was responsible for the asymmetry, Peix-

inho et al. (2005) conducted an experimental study of the laminar, transitional and turbulent flow for

three fluids: a Newtonian glucose syrup, a shear-thinning CMC solution and a yield-stress Carbopol so-

lution. The Carbopol solution was fitted into a Herschel-Bulkley model with σy = 7.2 Pa, k = 4.3 Pa.sn,

n = 0.47. Both non-Newtonian fluids exhibited asymmetric velocity profiles at transitional flow, thereby

ruling out the possibility of yield stress being responsible for the phenomenon. Elasticity effects were

considered negligible based on the evaluation of the first normal stress difference (N1). An attempt to

characterize the asymmetric non-Newtonian flow was made by Esmael and Nouar (2008). They provided

a three-dimensional description of this phenomenon from axial velocity profiles measurements at various

axial and azimuthal positions. It was observed a robust nonlinear coherent structure characterized by two

weakly modulated counter-rotating longitudinal vortices. They found that the asymmetry was intensified

along the pipe axis. Bahrani and Nouar (2014) demonstrated experimentally that the asymmetric velocity
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profile is related to the emergence of turbulent spots, corresponding to the second stage of transition.

The recent and extensive work of Wen (2016) comprises a series of three-dimensional measurements

of shear-thinning and viscoelastic fluids under transitional pipe flow. Several degrees of shear-thinning

and viscoelasticity were tested through different concentrations of xanthan gum and polyacrylic acid

(PAA) solutions, respectively. It was observed that shear-thinning intensifies asymmetry, while vis-

coelasticy suppresses it. Moreover, the asymmetry has a preferred azimuthal and axial locations, which

means there is no helical pattern of turbulence fluctuations. High-speed stereoscopic PIV data showed

that when a turbulent puff went through the measurement plane, the average flow was symmetric. This

implies that the laminar flow between puffs is deformed to an asymmetric state.

A detailed flow visualization study was performed by Güzel et al. (2009). They focused on the effect

of yield stress on transition. Based on velocity fluctuations measurements, they sustained that transition

only starts when the Reynolds stresses exceed the yield stress and the plug region has completely van-

ished. In this case, they were referring to the second stage of transition, corresponding to the appearance

of puffs (or slugs). They concluded that in transitional or fully turbulent regime, a yield stress fluid be-

haves simply as a shear-thinning fluid. In the present author’s opinion, it is questionable to expect that

Reynolds stresses can alternate the yielding state of a viscoplastic fluid, since it is not a true stress. By

the way, the conditional applied to any viscoplastic constitutive equation is on the magnitude of the extra

(viscous) stress tensor, which does not include the Reynolds stress.

The experimental results of Güzel et al. (2009) and Peixinho et al. (2005) do not contradict each other,

although their interpretation diverges regarding the turbulent transition characteristics. It is definitely too

premature to accept that yield stress plays no role in transitional or fully turbulent flow. Conclusive

experimental results would be too difficult to obtain, if possible at all, because they would require pro-

totypical fluids with perfectly controlled rheology. As it was commented in the previous section, some

of the friction factor data presented in the literature diverges at high Rep (as noticed in Figure 1.4). Al-

though shear-thinning has certainly the major effect in viscoplastic turbulent flow, the quantitative effect

of yield stress still needs to be answered. Moreover, recent DNS results revealed that many unyielded

fluid portions travel along with the turbulent elastoviscoplastic flow, disappearing and reappearing again

somewhere else in the domain (ROSTI et al., 2018). Such numerical approaches are capable of eluci-

dating essential questions on this field. This and other DNS articles will be discussed in the following

section.

1.2.3 Direct Numerical Simulations

Direct numerical simulations (DNS) are becoming increasingly popular due to advances in high

performance computation and numerical methods. They offer the advantage of not having to model

closure terms in averaged or filtered momentum balance equations. In simple words, DNS consists of

solving the momentum balance equations exactly as they are, in a grid fine enough to capture the intended

time and space scales of the fluid motion. In the previous literature review, it was emphasized that the

experimental approach to non-Newtonian turbulent flow is to assume that the fluid behaves according

to a constitutive equation. However, doing so is practically equivalent to a regression exercise. Some

constitutive parameters do not even have physical meaning. Real fluids do not obey to any constitutive

equation, so there will always be some rheological characteristics that remain unrepresented. This is
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where DNS stands out. With DNS it is possible to isolate the effects of any non-Newtonian parameter

on turbulent flow, and consequently investigate limiting cases.

Even though there had been DNS studies of non-Newtonian fluid flow before, for investigations of

drag reducing in polymer solutions, the first to consider the presence of yield stress was Rudman et al.

(2004). The authors used a spectral element method to model power-law and Herschel-Bulkley pipe

flow. The singular viscosity at zero shear rate was prevented by a cut-off value, equivalent to a viscosity

regularization by bi-viscosity. The authors argued that the cut-off was never invoked. Although there

were evidences of insufficient domain length, their results showed a qualitatively fair comparison with

experimental data. For a power-law fluid with n = 0.5 an intermittent flow pattern was found, and

there was a mention of an observed asymmetry. In a follow-up paper, Rudman and Blackburn (2006)

focused on the yield stress parameter and revealed interesting features. It was seen that the yield stress

significantly dampens turbulence fluctuations in the core region of the flow where a quasi-laminar flow

co-exists with a transitional wall zone. Their results are in accordance with the experimentally-based

conclusions of Güzel et al. (2009). However, Rudman and Blackburn (2006) did not provide any whole

section velocity profile, which could be used to verify the occurrence of asymmetry.

Most of the DNS papers on purely viscous non-Newtonian flow deal exclusively with shear-thinning

effects, since it is known to have a major importance compared to yield stress. Ohta and Miyashita (2014)

developed a fourth-order central finite difference method to obtain DNS results for power-law fluid flow

in a periodic channel. Despite the absence of yield stress, their work is worth mentioning by the fact that

they attempted to use DNS data to model the turbulent viscous stress in large eddy simulation (LES).

In LES, a turbulent viscous stress term appears as a consequence of filtering the fluid’s non-linear stress

term. They showed that a well-resolved LES can solve the non-Newtonian motion without consideration

of the turbulent viscous stress. However, this would loose the advantage of LES in the first place, because

a well-resolved LES is almost as expensive as a DNS. Therefore, Ohta and Miyashita (2014) employed a

scale analysis to compute the turbulent viscous stress’ effect into the standard Smagorinsky model. Their

"extended" Smagorinsky model approximated the DNS results when coarse grids were used, indicating

that viscosity fluctuations are very small scale features. When referring to DNS studies of shear-thinning

fluids, one cannot fail to mention the pipe flow simulations of Singh et al. (2017b) and Singh et al. (2018),

whose methodology is similar to Rudman et al. (2004), but the quality of analysis was much improved.

Their most important findings can be summarized as follows: i) the mean bulk velocity is higher than

for a Newtonian fluid, causing a minor drag reduction effect, ii) there is an increasing anisotropy of

turbulence intensities when the power-law index is decreased, and iii) shear-thinning effects do not seem

to disappear or collapse at high Re.

A very helpful article on rheology characterization for DNS input parameters was published by

Singh et al. (2016). They emphasized the importance of using the correct shear rate range before the

adoption of a constitutive equation and consequent use in turbulence simulations. According to the

authors, the upper shear rate limit required in rheology characterization must be at least twice the shear

rate corresponding to the mean wall shear stress. In practice, this is considerably higher than what is

used in conventional rheometry. The reason for using high shear rheology is that the wall shear stress

will be defined by flow at a very high shear rate. This could explain why previous DNS studies were

not able to give accurate friction factor results. A particularly interesting observation made in (SINGH

et al., 2016) is that the Hallbom’s Yield Plastic model (HALLBOM and KLEIN, 2009) captured much



Chapter 1. Introduction 27

better the whole range rheogram (0.01 — 15000 s-1) than the usual Herschel-Bulkley equation for a

0.075 wt% Carbopol solution in water. Singh et al. suggested that at high shear rates, the model type has

little effect on turbulent flow predictions. In the present author’s opinion, this is actually an outcome of

the regression method used, most likely the least squares method (LSQ). Unless the squared terms are

normalized, LSQ will favor the fitting of data with the highest absolute value. Using a normalized LSQ

will probably evidence the unequal fitness of different constitutive equations.

Up to the present date, the most comprehensive DNS study focusing solely on viscoplasticity effect

is (SINGH et al., 2017a). In this investigation, direct numerical simulations were carried out for Bingham

fluid with yield stress equal to 5 to 20% of the mean wall shear stress, while the friction Reynolds number

defined with wall viscosity was kept constant at 323. Bi-viscosity was employed by a cut-off in the strain

rate. Figure 1.7 shows that increasing σy reduces the range of spatial scales of the flow and makes low

speed streaks run longer in the streamwise direction. No unyielded fluid portions were found traveling

with the turbulent flow. It was noticed that the yield stress had an effect similar to shear thinning as a

turbulence damping mechanism. However, while shear thinning acts most inside the viscous sublayer,

yield stress was found to only impact above this layer. An analysis of the turbulent kinetic energy

budget revealed that the yield stress effect on turbulence was mainly confined to the near wall region

(y+ . 60). This is somehow counter-intuitive because strain rates are lowest in the core region, so

one could expect yield stress manifestations in that area. In their work, the wall viscosity ηw was kept

constant throughout all different cases. This parameter choice is misleading because, by changing yield

stress, the plastic viscosity has to be changed also. Hence, it fails to isolate yield stress effects. As a way

to avoid misinterpretations in future work, the plastic viscosity should be fixed.

Figure 1.7 – Instantaneous axial velocity contours: (left) at y+ = 10 shown on developed cylindrical surfaces and
(right) at a cross section. Plots for Newtonian fluid and Bingham fluids with σy equal to 5, 10 and
20% of the mean wall shear stress. Flow is from left to right, and lighter grey represents higher speed.

Source: Singh et al. (2017a).

A recent numerical investigation by Rosti et al. (2018) revealed that unyielded portions of fluid travel

along with the flow for a material with elastoviscoplastic characteristics. They employed Saramito’s

constitutive model (SARAMITO, 2007), consisting of an Oldroyd-B viscoelastic fluid in the yielded
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locations and recoverable Kelvin–Voigt viscoelastic deformation in the unyielded locations. The ratio of

elastic to viscous forces was made very small (1%) as a means to focus on viscoplasticity effects. They

carried out DNS for turbulent flow with Rep = 5600. In Figure 1.8 a visual picture of the phenomena

is given. Unyielded regions grow from the centerline towards the walls as the ratio He/Rep increases.

For a relatively high He/Rep ratio (fourth picture from the top in Fig. 1.8) the authors observed a

seemingly intermittent flow, with characteristics reminding the experimental investigation of Peixinho et

al. (2005). The unyielded region interacts with the near-wall structures, forming preferentially above the

high-speed streaks. With increasing yield stress, turbulence anisotropy increased near the walls, and the

flow became more correlated in the streamwise direction. Since a very low level of elasticity was set in

their simulations, they suggested yield stress is the property responsible for the flow features found.

Figure 1.8 – Contours of instantaneous spanwise vorticity in and x − y plane (left) and in a y − z plane (right).
Rep is fixed at 5600. The dark areas represent the instantaneous regions where the flow is not yielded.
The yield stress magnitude increases from top-down.

Source: Rosti et al. (2018).

1.2.4 Open Issues

From the literature review exposed above, one can notice that for viscoplastic turbulent flow there is

general agreement concerning features that can be associated with shear-thinning. Since all viscoplastic

materials are also shear-thinning to some extent, it is not easy to isolate yield stress effects. When it

comes to particular yield stress effects, some disagreements are clear. Regarding laminar-to-turbulent

transition, two distinct descriptions were identified. Peixinho et al. (2005) believe that during transition

turbulent puffs alternate with quasi-laminar flow, and plug zones can be found in the latter. On the other

hand, Güzel et al. (2009) argue that transition only begins after the plug zone has completely vanished.
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Investigations by DNS have demonstrated disagreements with respect to the occurrence of unyielded

spots in turbulent flow. Some of the main open issues in the field are listed below:

• What is the true effect of the yield stress on the friction factor curve? Do the curves for different

σy really merge under fully turbulent flow? Is there really a local minimum in transitional flow?

• What is the physical origin and mathematical explanation of the asymmetric velocity profile? Can

it be reproduced in a virtual environment?

• How does the yield stress effect on turbulence differs from shear thinning over a wide Reynolds

number range?

• How may the turbulent viscous stress be modeled in averaged/filtered approaches, allowing for

cost-effective industrial simulations?

These questions serve as a motivation to expand the research involvement in the field, for there is still

much to be answered. Therefore, a worthwhile scientific opportunity is clearly defined. Moreover, there

is also an economic opportunity, since this type of research output may be used for the improvement of

industrial installations that are typically huge in size and power consumption, such as mineral transport

and oil-well drilling.

1.3 Objectives

From the vision that DNS can help solving some of the open questions mentioned above, the present

work is set up to develop such a tool. The following thesis is stated:

The lattice Boltzmann method can be formulated into an accurate, stable and efficient tool for

direct numerical simulations of viscoplastic turbulent flows.

The general objective of the present thesis is to formulate an LB scheme for the direct numerical

simulation of viscoplastic turbulent flow, and subsequently make use of the method to advance the phe-

nomena interpretation and produce industrial relevant outcomes. More specifically, the general objective

is partitioned into the following goals:

1. Development of an accurate, stable and efficient LB scheme for viscoplastic simulations;

2. Scheme’s validation and application for direct numerical simulation of viscoplastic turbulent

flows.

For the first goal, the challenge is to set the LBM’s relaxation frequency to zero in order to represent

the "infinite viscosity" of the Bingham fluid, while preventing spurious stresses from spoiling numerical

stability and accuracy. That way, it is not necessary to employ any viscosity regularization. Whatever

implementation choices must respect the method’s locality, which is a fundamental characteristic for high

efficiency in parallel computing. Validation of the viscoplastic LB scheme is obtained by reproducing

classical steady and transient laminar flow cases.
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For the second goal, a canonical turbulent flow is solved by DNS with viscoplastic fluid. Statistically

steady and developed channel flow is the configuration chosen for this purpose. Results are compared

with independent DNS works, since experimental data of viscoplastic turbulent flow is not available for

the channel geometry. Since the Reynolds number is constrained by hardware characteristics and time

limitations, it will be kept constant. The yield stress will be subject to parametric analysis. Its range is

going to the defined in further time. As of particular interest is the comparison between the present and

other DNS in terms of efficiency and physical outcome.

1.4 Why LBM?

Many numerical methods have been successfully formulated for direct numerical simulations, such

as finite differences, spectral element and lattice Boltzmann. A researcher interested in solving the mass

and momentum balance equations has to opt for whichever method better suits him/her. Every numerical

method has its advantages and disadvantages. Below a list of the most significant LBM advantages and

disadvantages is offered:

• Advantages

1. Most of the method’s operations are fully local, which allows very efficient parallelization.

As a consequence, cost-effective DNS is possible through the use of graphics processing

units (GPU);

2. The algorithm is significantly simpler than other numerical alternatives. This is an important

factor for anyone looking to start from scratch, and it makes the code simpler to learn, debug

and add on;

3. The inverse of viscosity is represented by the relaxation frequency, which is an algebraic

parameter within the method. This means infinite viscosity can actually be computed by

setting the relaxation frequency to zero. Although it has never been tried, this is worth the

effort because it could dismiss the need for viscosity regularization.

• Disadvantages

1. Every numerical method has some sort of numerical instability depending on a parameter

combination. In LBM, stability issues limit the practical range of velocity and viscosity.

Any high Reynolds or high viscosity simulation will require some treatment for stability;

2. LBM does not solve the macroscopic equations (Navier-Stokes) exactly. Rather, it repre-

sents them by a weakly compressible formulation. So, it is an indirect solver for the Navier-

Stokes equation. When working with LBM variables, insights on errors, mass sources and

boundary conditions do not come as intuitively as for macroscopic properties;

3. The LB schemes available in the literature are discretized in Cartesian coordinates. Convert-

ing the results to cylindrical coordinates requires additional post-processing and generates

interpolation errors. Additionally, up to the present date, feasible aspect ratios for non-

uniform grids remain small.
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The present author’s evaluation is that the trade-off is positive for LBM, because there are viable

remedies for many obstacles found during implementation and simulations. For instance, stability prob-

lems can be attenuated by regularization of ghost moments (not to be confused with viscosity regular-

ization, see section 3.3), and the compressibility can be lowered to negligible levels by setting a small

velocity. Add to that the fact that LBM is becoming an increasingly popular DNS tool due to its attractive

numerical efficiency (TOUIL et al., 2014; GEHRKE et al., 2017; PENG et al., 2018; PENG and WANG,

2018).

1.5 Document Outline

This thesis is organized as follows: Chapter 2 presents the fundamentals of the lattice Boltzmann

method, and how it can be applied to non-Newtonian or turbulent flows. Also, the Chapman-Enskog

expansion is performed in order to demonstrate the macroscopic equivalence of the method. Chapter 3

presents the numerical methodology developed for stable and accurate Bingham fluid flow simulations.

In Chapter 4, the validation of the present viscoplastic LB scheme is performed for steady and transient

laminar flows. Chapter 5 presents results and analyses for viscoplastic turbulent flow in a channel.

Finally, the main conclusions concerning this thesis are exposed in Chapter 6.
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2 THEORETICAL FORMULATION

This chapter is oriented towards the lattice Boltzmann method (LBM) and its theories. The equations

shown here form the basis for the viscoplastic LB scheme, detailed in the next chapter. Starting with the

implications of the mesoscopic treatment in Section 2.1, the present chapter goes on to explain the forcing

LBM in Section 2.2. The relation between the mesoscopic relaxation frequency and the macroscopic

viscosity is deduced in Section 2.3 through the Chapman-Enskog expansion. Finally, Sections 2.4 and

2.5 show how LBM can be formulated to simulate non-Newtonian and turbulent flows, respectively.

2.1 Kinetic Theory

While the microscopic treatment tracks individual atoms or molecules and their various degrees of

freedom, the macroscopic treatment averages out the atomistic picture and tracks more tangible quanti-

ties, such as density and fluid velocity. Both approaches derive from Newton’s Second Law, which for

the microscopic treatment results in the astoundingly expensive molecular dynamics (MD), and for the

macroscopic treatment results in the non-linear partial differential Navier-Stokes equation (NSE). The

NSE has been the preferred way for solving fluid flow problems in engineering because numerical meth-

ods are well established and the formulation of closure equations and boundary conditions are relatively

easy. However, there is another way to approach a fluid flow problem: the mesoscopic level.

2.1.1 The Particle Distribution Function

The essence of the kinetic theory is in focusing not on individual particles, but instead, on repre-

sentative collections of particles. Starting from the particle level, the relevant spatial scales are: the

atom’s or molecule’s size `a, the mean free path (distance traveled between two successive collisions)

`mfp, the typical scale for gradients in some macroscopic flow ` and the system size `S . The respective

time scales are: the collision time (duration of a collision event) tc, the mean collision time (time be-

tween two successive collisions) tmfp, the convection time tconv and the diffusion time tdiff . Figure 2.1

gives an illustrative picture of where the mesoscopic level stands. In the mesoscopic kinetic theory, the

representative collections of particles evolve on timescales around the mean collision time tmfp.

The fundamental variable in kinetic theory is the particle distribution function f(x, ξ, t). Krüger et

al. (2017) describe f as the density of particles with velocity ξ = (ξ1, ξ2, ξ3) at position x and time t.

Its dimensions are kg×m−3× (m/s)−3 = kg s3/m6. Macroscopic variables are obtained from moments

of the particle distribution function. These moments are integrals of f over the entire velocity space. For

instance, the macroscopic mass density is

ρ(x, t) =

∫
f(x, ξ, t)d3ξ (2.1)

and the macroscopic momentum density is

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t)d3ξ (2.2)
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Figure 2.1 – Hierarchy of length and time scales in typical fluid dynamics problems.

Source: Krüger et al. (2017).

Considering an isolated system left alone for sufficiently long time, it eventually reaches thermo-

dynamic equilibrium, which is isotropic in velocity space around ξ = u. An equilibrium distribution

function f eq(x, ξ, t) is defined to represent this state. James C. Maxwell first came up with the deriva-

tion of an equilibrium distribution function, and it was later proven to be unique through the statistical

mechanics approach of Ludwig E. Boltzmann. In a reference frame moving with speed u, the Maxwell-

Boltzmann distribution reads

f eq(x, |v|, t) = ρ

(
1

2πRT

)3/2

e−
|v|2
2RT (2.3)

where v(x, t) = ξ(x, t) − u(x, t) is the relative velocity, i.e., the particle’s velocity deviation from the

local mean velocity. A thorough derivation of the above equation is given in (GOMBOSI and GOMBOSI,

1994).

2.1.2 The Boltzmann Equation

In order to find an evolution equation for f , one must first observe its total derivative with respect to

time t:

df

dt
=

(
∂f

∂t

)
dt

dt
+

(
∂f

∂xα

)
dxα
dt

+

(
∂f

∂ξα

)
dξα
dt

(2.4)

where the terms on the right-hand side are dt/dt = 1, dxα/dt = ξα and dξα/dt = Fα/ρ (specific

body force). Einstein notation, which implies summation over repeated indices, was used in the above

equation. In the course of this work, the bold symbol is used to represent vectors and tensors, and
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Einstein notation is used for operations with components (the components of tensor A are denoted by

Aαβ).

The total derivative of f is treated as a source term, called collision operator df/dt = Ω(f), and the

result is known as the Boltzmann equation:

∂f

∂t
+ ξα

∂f

∂xα
+
Fα
ρ

∂f

∂ξα
= Ω(f) (2.5)

The simplest collision operator available was proposed in (BHATNAGAR et al., 1954) and is known

as BGK after its authors (Bhatnagar, Gross and Krook). It is also called single-relaxation-time since it

makes f evolves towards f eq with only one temporal parameter: Ω(f) = −(f − f eq)/τ . The relaxation

time τ is the most crucial parameter in LBM simulations because it is directly related to the fluid’s

viscosity, as will be demonstrated in Section 2.3. It is worth mentioning that, although the Boltzmann

equation and the equilibrium distribution function were derived for an ideal dilute gas, it is possible to

represent liquids with the Boltzmann equation, by tuning τ to an appropriate value. Even non-Newtonian

fluids can be correctly represented with the lattice Boltzmann method.

2.2 Lattice Boltzmann Method

The lattice Boltzmann method consists in solving the Boltzmann equation in the discrete phase space.

Discretization in the velocity space leads to the so-called velocity sets and discrete-velocity particle

distribution functions. Discretization in space and time generates explicit equations for the discrete-

velocity particle distribution functions for a finite number of points in space and time. The moments of

the discrete-velocity particle distribution functions lead back to the macroscopic quantities. Below, the

step-by-step of the lattice Boltzmann method will be briefly explained.

Figure 2.2 – Common two- and three-dimensional velocity sets (lattices) for LBM. Rest velocities c0 = 0 are not
shown. All sides have length 2∆x.

Source: adapted from Krüger et al. (2017).

2.2.1 Velocity Discretization

The discretization in velocity space enables one to reduce the continuous 3D velocity space to a

small number of discrete velocities without undermining the resulting macroscopic behavior. A velocity
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set, or lattice, for LBM is defined by velocity vectors {ci} and their corresponding weights {wi}. Also,

from a given velocity set, a scaling factor cs is defined. For isothermal models, cs represents the speed of

sound. In the present work, the naming of the velocity sets is given by the nomenclature DdQq, where d

is the number of spatial dimensions and q is the number of discrete velocities (including the rest velocity

c0 = 0). The commonly used D2Q9, D3Q19 and D3Q27 lattices are illustrated in Figure 2.2. Their

velocity vectors and weights are seen in Table 2.1.

Table 2.1 – Properties of the velocity sets (lattices) exhibited in Figure 2.2. The speed of sound for all of these
velocity sets is cs = 1/

√
3.

Name Velocity vectors (ci) Length (|ci|) Weight (wi)

(0, 0) 0 4/9
D2Q9 (±1, 0); (0, ±1) 1 1/9

(±1, ±1)
√

2 1/36
(0, 0, 0) 0 1/3

D3Q19 (±1, 0, 0); (0, ±1, 0); (0, 0, ±1) 1 1/18
(±1, ±1, ±1)

√
2 1/36

(0, 0, 0) 0 8/27
D3Q27 (±1, 0, 0); (0, ±1, 0); (0, 0, ±1) 1 2/27

(±1, ±1, 0); (±1, 0, ±1); (0, ±1, ±1)
√

2 1/54
(±1, ±1, ±1)

√
3 1/216

Source: Krüger et al. (2017).

A mathematically sound procedure for the velocity space discretization is a truncated Hermite ex-

pansion. A full description is found in (MARTYS et al., 1998) and will be left out because the derivation

is extensive and it is not part of the present thesis’ scope. The discrete-velocity Boltzmann equation is

∂fi
∂t

+ ciα
∂fi
∂xα

= Ωi + Fi (2.6)

where i ranges from 0 to q−1. The discrete-velocity particle distribution functions fi are commonly

called populations in LBM literature. The velocity space discretization is also performed for f eq, Ω and

Fα. The second-order truncated force term Fi is (GUO et al., 2002)

Fi = wi

[
ciα
c2

s

+

(
ciαciβ − c2

sδαβ
)
uβ

c4
s

]
Fα (2.7)

and its first three velocity moments, corresponding to the integrals in velocity space, are

∑
i

Fi = 0 (2.8a)

∑
i

Ficiα = Fα (2.8b)

∑
i

Ficiαciβ = Fαuβ + Fβuα (2.8c)

Accordingly, the second-order truncated discrete-velocity equilibrium distribution function is

f eq
i = wiρ

[
1 +

ciαuα
c2

s

+
uαuβ

(
ciαciβ − c2

sδαβ
)

2c4
s

]
(2.9)
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and its velocity moments are

∑
i

f eq
i = ρ (2.10a)

∑
i

f eq
i ciα = ρuα (2.10b)

∑
i

f eq
i ciαciβ = ρuαuβ + ρc2

sδαβ ≡ Πeq
αβ (2.10c)

∑
i

f eq
i ciαciβciγ = ρc2

s (uαδβγ + uβδαγ + uγδαβ) ≡ Πeq
αβγ (2.10d)

In Equations 2.10c and 2.10d the symbols Πeq
αβ and Πeq

αβγ are shorthand tensor notations for the

second and third velocity moments of f eq
i , respectively.

2.2.2 Space and Time Discretization

The discrete-velocity Boltzmann equation (Eq. 2.6) can be discretized in time and space by the

Method of Characteristics using ζ as a trajectory parameter (KRÜGER et al., 2017). The total derivative

of fi with respect to ζ is

dfi
dζ

=

(
∂fi
∂t

)
dt

dζ
+

(
∂fi
∂xα

)
dxα
dζ

(2.11)

Imposing dζ/dt = 1 and dζ/dxα = c−1
iα as conditions, the right-hand side of Equation 2.11 becomes

equal to Ωi (x(ζ), t(ζ)) +Fi (x(ζ), t(ζ)) (see Eq. 2.6). The integration of dfi/dζ along the trajectory ζ

has an exact solution: ∫ t+∆t

t

dfi
dζ

dζ = fi(x+ ci∆t, t+ ∆t)− fi(x, t) (2.12)

The remaining problem is to solve the integral∫ t+∆t

t
(Ωi + Fi) dζ (2.13)

This integral can be solved in many ways. In the present work, we follow the strategy of He et al.

(1998) which consists of a second-order trapezoidal integration followed by a clever change of variables:

f̄i = fi −
(Ωi + Fi) ∆t

2
(2.14)

Using the discrete results of the integrals 2.12 and 2.13 one finally gets to the so-called lattice Boltz-

mann equation (LBE)

f̄i(x+ ci∆t, t+ ∆t)− f̄i(x, t) = [Ωi(x, t) + Fi(x, t)] ∆t (2.15)



Chapter 2. Theoretical Formulation 37

It must be pointed out that the LBE may take several forms depending on the choice for the dis-

cretization method of the integral 2.13 and the presence (or absence) of the force term. The BGK colli-

sion operator may be combined with LBE to result in the second-order LBGK with force term

f̄i(x+ ci∆t, t+ ∆t)− f̄i(x, t) = −∆t

τ̄

[
f̄i(x, t)− f̄ eq

i (x, t)

]
+

(
1− ∆t

2τ̄

)
Fi(x, t)∆t (2.16)

with τ̄ = τ + ∆t/2.

2.2.3 Macroscopic Moments

As well as the continuous integrals of Equations 2.1 and 2.2 recovered macroscopic quantities ρ and

ρu, one may compute discrete moments of f̄i. The first, second and third velocity moments of f̄i are,

respectively (SILVA and SEMIAO, 2012)

ρ =
∑
i

f̄i +
∆t

2

∑
i

Fi (2.17a)

ρuα =
∑
i

f̄iciα +
∆t

2

∑
i

Ficiα (2.17b)

Παβ =

(
1− ∆t

2τ̄

)∑
i

f̄iciαciβ +
∆t

2τ̄

∑
i

f̄ eq
i ciαciβ +

∆t

2

(
1− ∆t

2τ̄

)∑
i

Ficiαciβ (2.17c)

The first and second moments correspond to density and momentum, respectively. The third one is

related to the inertial and viscous forces, and it was intentionally defined this way for reasons that will

be clear in the next section. To make sense of what it means, it is necessary to know the macroscopic

correspondence of the LBM variables. Equations 2.17 can be further simplified by considering the

moments of the force term (Equations 2.8):

ρ =
∑
i

f̄i (2.18a)

ρuα =
∑
i

f̄iciα +
∆t

2
Fα (2.18b)

Παβ =

(
1− ∆t

2τ̄

)∑
i

f̄iciαciβ +
∆t

2τ̄

∑
i

f̄ eq
i ciαciβ +

∆t

2

(
1− ∆t

2τ̄

)(
Fαuβ + Fβuα

)
(2.18c)

From this point on, the bar symbol will be dropped for simplicity.

2.3 Chapman-Enskog Expansion

Now that the LBE is known, it is opportune to understand how it can represent the macroscopic

momentum balance equation, which for Newtonian fluids is the Navier-Stokes equation (NSE). The

most common way to do so is through the Chapman-Enskog analysis. It begins with the notion that

when f ≈ f eq, the Boltzmann equation results in the Euler equation of motion (KRÜGER et al., 2017).

Therefore, the non-equilibrium part fneq = f − f eq must be responsible for viscous forces. As a
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way to determine fneq, the Chapman-Enskog analysis enters as a perturbation expansion of fi around

the equilibrium distribution f eq with an expansion parameter ε (originally devised to be the Knudsen

number1Kn):

fi = f eq
i + εf

(1)
i + ε2f

(2)
i + ... (2.19)

A common ansatz of the Chapman-Enskog procedure is to consider only the two lowest orders in ε

(up to ε1) to find the macroscopic momentum balance equation. A scale of order O(ε) for the force term

is sufficient in the present analysis (BUICK and GREATED, 2000), which implies Fi = εF
(1)
i . Another

important assumption comes from the observation of the first two moments of f eq
i and fi (Equations 2.10

and 2.18):

∑
i

f
(1)
i = −∆t

2

∑
i

F
(1)
i (2.20a)

∑
i

f
(1)
i ciα = −∆t

2

∑
i

F
(1)
i ciα (2.20b)

Thus, the higher-order solvability conditions are (SILVA and SEMIAO, 2012)

∑
i

f
(k)
i = 0 (2.21a)

∑
i

f
(k)
i ciα = 0 (2.21b)

with k ≥ 2.

A Taylor expansion can be written such as

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =
∞∑
n=1

(∆t)n

n!
(∂t + ciα∂α)n fi(x, t) (2.22)

where the contracted derivative notation ∂t() = ∂()/∂t and ∂α() = ∂()/∂xα was employed. Applying

the above relation to the LBGK (Equation 2.16), one gets

∆t (∂t + ciα∂α) fi +
(∆t)2

2
(∂t + ciα∂α)2 fi = −∆t

τ
(fi − f eq

i ) +

(
1− ∆t

2τ

)
Fi∆t (2.23)

where fi = fi(x, t). The terms with order superior to O(∆t2) were left out since they exceed the

discretization order of the LBGK. By subtracting (∆t/2) (∂t + ciα∂α) applied to the equation itself, the

second-order derivative can be eliminated. After some algebra, it results in

(∂t + ciα∂α)

[
fi −

∆t

2τ
(fi − f eq

i ) +
∆t

2

(
1− ∆t

2τ

)
Fi

]
= −1

τ
(fi − f eq

i ) +

(
1− ∆t

2τ

)
Fi (2.24)

1 The Knudsen number is defined as Kn = `mfp/`. For Kn < 0.1, the macroscopic approach (NSE) can be
used (LAURENDEAU, 2005). Otherwise, the microscopic motions have magnitudes close to the system size,
and the continuum assumption does not hold.
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The separation step consists in isolating terms of same order in ε. Before it is possible, a multiple-

scale separation of the derivatives is needed. For the spatial derivative, ∂α = ε∂
(1)
α , and for the temporal

derivative, ∂t = ε∂
(1)
t + ε2∂

(2)
t . The first and second terms of ∂t correspond to convective and diffusive

time scales, respectively. Unfolding Equation 2.24 based on the multiple-scale derivatives and fi, the

ε-perturbed equations are found to be

O(ε1) :
(
∂

(1)
t + ciα∂

(1)
α

)
f eq
i −

(
1− ∆t

2τ

)
F

(1)
i = −1

τ
f

(1)
i (2.25a)

O(ε2) : ∂
(2)
t f eq

i +
(
∂

(1)
t + ciα∂

(1)
α

)[(
1− ∆t

2τ

)(
f

(1)
i +

∆t

2
F

(1)
i

)]
= −1

τ
f

(2)
i (2.25b)

The 0th and 1st velocity moments of the perturbed equations are obtained by multiplying Equation

2.25 by 1 and ciβ , respectively, and then summing over i. For the O(ε1) equation they are:

∂
(1)
t ρ+ ∂(1)

α (ρuα) = 0 (2.26a)

∂
(1)
t (ρuα) + ∂(1)

α Πeq
αβ =

∑
i

F
(1)
i ciα (2.26b)

Also for the O(ε1) equation, the second velocity moment yields an important expression, which is

Π
(1)
αβ = −

(
τ − ∆t

2

)(
∂

(1)
t Πeq

αβ + ∂(1)
γ Πeq

αβγ −
∑
i

F
(1)
i ciαciβ

)
(2.27)

The 0th and 1st velocity moments of the O(ε2) equation are

∂
(2)
t ρ = 0 (2.28a)

∂
(2)
t (ρuα) + ∂

(1)
β Π

(1)
αβ = 0 (2.28b)

Recombining the O(ε1) terms, one gets

∂tρ+ ∂α (ρuα) = 0 (2.29)

which is precisely the mass conservation equation for compressible and transient flow, obtained through

continuum mechanics (WHITE, 2011). Recombining the O(ε2) terms yields

∂t (ρuα) + ∂β

(
Πeq
αβ + εΠ

(1)
αβ

)
= Fα (2.30)

The above equation is supposed to represent the macroscopic momentum balance. Therefore, it is

necessary to make sense of its tensorial terms. The spatial derivative to Πeq
αβ of Equation 2.10c is

∂βΠeq
αβ = ∂β (ρuαuβ) + ∂β

(
ρc2
sδαβ

)
(2.31)

which means that the equilibrium tensor represents the inertial and pressure forces of the momentum

balance, given a state equation for the thermodynamic pressure p = c2
sρ. Consequently, the Π

(1)
αβ term
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can only be associated with the viscous forces. The path to solving Π
(1)
αβ starts from Equation 2.27. The

spatial derivative of Πeq
αβγ is straightforward (see Equation 2.10d):

∂(1)
γ Πeq

αβγ = c2
s

[
∂(1)
α (ρuβ) + ∂

(1)
β (ρuα) + δαβ∂

(1)
γ (ρuγ)

]
(2.32)

Next, the temporal derivative ∂(1)
t Πeq

αβ = ∂
(1)
t (ρuαuβ) + ∂

(1)
t (ρc2

sδαβ) needs to be determined. Two

insights are invoked in order to do so. The first is a corollary of the product rule:

∂∗(abc) = a∂∗(bc) + b∂∗(ac)− ab∂∗c (2.33)

and the second is the use of Equation 2.26b. Together, these two ideas produce

∂
(1)
t Πeq

αβ = uα
∑
i

F
(1)
i ciβ + uβ

∑
i

F
(1)
i ciα − c2

s

[
uα∂

(1)
β ρ+ uβ∂

(1)
α ρ+ δαβ∂

(1)
γ (ρuγ)

]
(2.34)

Inputting Equations 2.32 and 2.34 into Equation 2.27, and distributing the parameter ε to recombine the

expanded terms:

εΠ
(1)
αβ = −

(
τ − ∆t

2

)
ρc2
s

(
∂αuβ + ∂βuα

)
(2.35)

A parameter of the form

η = ρc2
s

(
τ − ∆t

2

)
(2.36)

may be defined. Making use of it and rewriting Equation 2.30 yields

∂t (ρuα) + ∂β (ρuαuβ) = −∂αp+ ∂β [η (∂αuβ + ∂βuα)] + Fα (2.37)

and this is the momentum conservation equation for a Generalized Newtonian fluid with viscosity η

(BIRD et al., 1987). One may notice that at no point in the above formulation was τ considered constant

with respect to time or space. Another important observation is that the extensional stress, produced by

density changes, is not represented by Equation 2.37. As a matter of fact, the generalized Newtonian fluid

does not predict such stress, for it was inspired in the incompressible Newtonian constitutive equation

(MORRISON, 2001).

In order to approach the limit of incompressible flow, the Mach number Ma = U/cs, where U is a

typical fluid velocity scale, has to be made much smaller than the unity (Anderson JR, 2010). The above

LBM formulation serves this exact purpose, since terms of orderO(u3) arise in the momentum equations

as a consequence of insufficient Hermitian representation. This is why the LBM is often referred to as a

weakly compressible NSE solver. Throughout this work, all O(u3) terms were omitted in the Chapman-

Enskog expansion for clarity. Avoiding these spurious terms and solving high Ma flows would require

higher-order lattices, like the D2V17 (PHILIPPI et al., 2006).

2.4 Non-Newtonian Fluid Flow with LBM

The previous section demonstrated how the mesoscopic relaxation time τ is related to the macro-

scopic balance equations through Equation 2.36. It was demonstrated that τ is directly proportional to
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the viscosity η. In this section, the fundamentals of viscoplastic fluid mechanics will be discussed, as

well as the existing schemes in LBM.

2.4.1 Viscoplastic Fluid Mechanics

A Newtonian fluid is one that has a constant dynamic viscosity µ with respect to shear or elon-

gational rate, even though it can vary with temperature or pressure. The extra stress equation for an

incompressible flow is (MORRISON, 2001)

σαβ = µγ̇αβ (2.38)

where σ is the extra stress tensor and γ̇ = ∇u + (∇u)T is the rate-of-strain tensor. Such fluids cannot

sustain stress, i.e., the smallest stress will trigger continuous motion. On the other hand, a viscoplas-

tic fluid can sustain stress without continuous deformation through a property called yield stress2. The

generalized Newtonian fluid (GNF) model is able to represent this and many other non-Newtonian char-

acteristics by considering η as a function of the magnitude of γ̇ (BIRD et al., 1987):

σαβ = η (|γ̇|) γ̇αβ (2.39)

The simplest constitutive equation that exhibits the ability to sustain stress is the Bingham model

(BINGHAM, 1922). For three-dimensional flow, it is defined asη →∞ , |σ| ≤ σy
η = ηp +

σy
|γ̇| , |σ| > σy

(2.40)

where ηp is the plastic viscosity, corresponding to the viscosity at very high shear rates, σy is the yield

stress, and |A| =
√

(A : A)/2 is the second invariant (magnitude) of a tensor. The key computational

challenge when it comes to viscoplastic flow is to track the yield surfaces that separate plugs from

yielded regions (BALMFORTH et al., 2014). The most common approach to treat the singularity in

Equation 2.40 is to regularize the viscosity. The solid behavior is replaced by a very viscous fluid, thereby

eliminating any yield surfaces. As a side note, it must be kept in mind that the term regularization has

two different meanings in the present work: regularization of the viscosity and regularization of ghost

populations of the LBM (see Section 3.3). In practice, viscosity regularization approaches result in fairly

good velocity field, but their capacity to obtain precise yield surface shape and correct fluid dynamic

(and static) stability limits for a wide variety of flows is limited (FRIGAARD and NOUAR, 2005).

2.4.2 Existing Schemes

Several articles have been published concerning LBM of Bingham fluids. The immediate and natural

solution is to make the relaxation time vary in space by combining Equations 2.36 and 2.40. However,

2 There is a debate on whether the yield stress exists or not. Barnes and Walters (1985) argument in their
controversial article that with enough measurement accuracy, no yield stress would be observable. Regardless
of this debate, in many applications the timescale is low enough so that the consideration of a yield stress is
fine and, more importantly, practical.



Chapter 2. Theoretical Formulation 42

this requires τ to be truncated at some relatively high value to avoid disastrous instabilities. This corre-

sponds to the usual viscosity regularization. In the works (GINZBURG and STEINER, 2002; WANG

and HO, 2008; TANG et al., 2011; OHTA et al., 2011; GRASINGER et al., 2018) Papanastasiou’s regu-

larization was employed (PAPANASTASIOU, 1987), while in the works (PRASHANT and DERKSEN,

2011; XIE et al., 2016; KHABAZI et al., 2016) a bi-viscosity model was applied. None of these authors

quantified their errors against exact solutions though, except for Grasinger et al. (2018). Also, most of the

above works did not release any stability guidelines, so their safe ranges of relaxation time are unclear.

Grasinger et al. (2018) compared both single- and multiple-relaxation-time (MRT) collision operators

and tested the entropic filtering as a means to obtain numerical stability. These authors found for paral-

lel plates Poiseuille flow with a Bingham number near 0.25 (as defined in Section 4.1.1) a normalized

quadratic error of 1 × 10−1 for Ny = 64 (nodes in the normal direction) and 6 × 10−2 for Ny = 128,

thus, incompatible with the second-order decay of the LBM. In their MRT implementation, they ob-

tained a normalized quadratic error of 3 × 10−3 for Ny = 64, which is notably low for this resolution.

Strangely, refining the resolution caused the error to increase. The abnormal error behavior experienced

in Grasinger’s work was not related to accuracy issues of the LBM, but to instabilities caused by the

elevated relaxation time.

In the works of Vikhansky (2008) and Vikhansky (2012) it has been successfully demonstrated that

LBM can reproduce viscoplastic behavior while dismissing any type of viscosity regularization. He

opted for an alternative formulation instead of the standard LBM and built the collision operator ac-

cording to Ladd (1994), in such a way that an implicit tensorial equation dictated the relation between

shear rate and shear stress. Therefore, some inner iterations had to be performed within each time-step

to satisfy the fluid’s constitutive equation. Vikhansky (2008) presented results for two-dimensional par-

allel plates Poiseuille flow and flow through a periodic cylinder’s array, and three-dimensional squared

duct Poiseuille flow. The outcome was qualitatively good in comparison to reference results from the

literature. However, there are some indications that his method did not follow the second-order of error

convergence O(∆x2). As pointed out by Regulski et al. (2016), spurious Burnett stresses are present in

Vikhansky’s scheme, which introduces transversal currents to the flow. Actually, these “ghost” stresses

are also present in standard LB schemes. More important than accuracy itself, they may expressively

compromise numerical stability.

Considering this brief literature review, it is clear that there are still barriers for fast and stable cal-

culations of the exact Bingham model. These characteristics can be established by a more standard

approach of the LBM. The LB scheme formulated in the present thesis is based on two aspects. The first

comes from the observation that in LBM the relaxation frequency, corresponding to the inverse of the

relaxation time, can be set to zero without causing any algebraic indetermination. Instabilities are known

to inflict on LBM when the relaxation frequency is too high (approaching 2) or too low (under 0.5).

However, for viscoplastic simulation, an extremely low (zero) relaxation frequency is needed. Moreover,

to reach high Reynolds numbers, the scheme would also require convergence with high relaxation fre-

quency. To circumvent this, the second aspect of the present LB scheme is to make use of the so-called

regularization of ghost moments for the elimination of Burnett stresses. Details of this procedure are

given in Section 3.3.
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2.5 Turbulent Flow With LBM

The concept of direct numerical simulation (DNS) is quite straightforward. It consists in solving the

macroscopic balance equations in a grid fine enough to capture the smallest flow features. The smallest

grid spacing must be of the order of the smallest turbulent eddies, while the time step must follow some

numerical stability principle. So, in a sense, DNS do not require anything more than the mass and

momentum solvers, because there is no closure model to deal with. In Chapter 5, details of grid sizing

and data treatment are given. For now, it is opportune to explain what is the statistical approach to

turbulence and to give a brief review of the LBM as a DNS tool.

2.5.1 Statistical Approach

Suppose a large tank of a fluid undergoing turbulent motion. If a probe is positioned in a point A (Fig.

2.3a), the velocity component recorded would exhibit a random signal. Now, suppose this experiment is

repeated many times. Even though the experiments are very carefully conducted, minute variations in the

initial conditions will cause the signals of the many experiments to seem completely different. When the

velocity values of all realizations are averaged for each time t, the ensemble average 〈(∼)A〉 is obtained

(Fig. 2.3b). If one were to repeat the same experiment anytime later, the ensemble average would be

the same. Although the detailed properties of the velocity component seem to be highly disorganized

and unpredictable, its statistical properties are reproducible (DAVIDSON, 2015). Therefore, the study

of turbulence is largely developed in statistical terms.

Figure 2.3 – Decaying turbulence in a tank. (a) Illustration of the turbulent eddies and probe location. (b) Single
realization signal and ensemble average.

Source: Davidson (2015).

There are other forms of averaging. The time average (∼)A consists in averaging the velocity com-

ponent measured in point A in a single realization. In statistically steady flows, such as the turbulent pipe

flow, the ensemble and time averages are equal. Alternatively, a volume average could be obtained by
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probing the tank in many locations simultaneously and averaging their signals for each time t. In homo-

geneous turbulence, which means statistical properties independent on location, ensemble and volume

averages are equal. These averaging properties facilitate the calculation of the ensemble average for a

turbulent pipe (or channel) flow. Averages can be made in time, and also in space for the homogeneous

directions. Thus, reducing the total flow time required to achieve statistical convergence.

2.5.1.1 Reynolds Decomposition

In a statistically steady flow a variable can be split into a time-averaged and a fluctuation parcel. For

example, a velocity component can be written as

uα(t) = uα + u′α(t) (2.41)

While uα is time invariant, the fluctuation parcel u′α is not. It should be noted that u′α = 0. Higher-order

statistics such as u′αu′β are generally non-zero.

The mass balance equation was shown in Equation 2.29. An incompressible form of it produces a

divergence-free velocity field ∂αuα = 0. It can be easily demonstrated that the velocity field parcels are

also divergence-free: ∂αuα = ∂αu
′
α = 0. The momentum balance (Eq. 2.37) in an incompressible form

is

ρ∂tuα + ρuβ∂βuα = −∂αp+ ∂β (ηγ̇αβ) + Fα (2.42)

By time-averaging this equation for a statistically steady flow, one gets

ρuβ∂βuα = −∂αp+ ∂β

(
ηγ̇αβ + η′γ̇′αβ − ρu′αu′β

)
+ Fα (2.43)

where the quantities −ρu′αu′β and η′γ̇′αβ are the Reynolds stress and the turbulent viscous stress, respec-

tively. Note in passing that, since Fα is used as a flow drive term (constant), the time-averaged pressure

gradient in the streamwise direction ∂αp is zero. However, in a wall-normal direction the time-averaged

pressure gradient is generally non-zero.

The significance of the Reynolds stress is well known. It is a consequence of time-averaging the non-

linear inertial term. It is not a true stress, but rather a net effect of momentum fluxes induced by velocity

fluctuations. The turbulent viscous stress, on the other hand, is an actual stress. The time-averaged extra

stress for a generalized Newtonian fluid is σαβ = ηγ̇αβ = ηγ̇αβ + η′γ̇′αβ . So, both terms on the right-

hand side are stresses. The reason σ was described in terms of viscosity was simply to be consistent with

Reynolds-averaged models (RANS). If the fluid were Newtonian, the time-averaged extra stress would

be simply ηγ̇αβ with η corresponding to µ. For strain-rate dependent rheology, viscosity fluctuations

give rise to an additional viscous stress parcel η′γ̇′αβ . This component do not correspond to any peculiar

physical manifestation, it is just a result of the time-average breakdown of a product. The time-averaged

Bingham constitutive equation is η →∞ , |σ| ≤ σy
η = ηp + σyγ̇

−1 , |σ| > σy
(2.44)
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A couple of things must be noticed in Equation 2.44. First, the time-averaged stress magnitude |σ|
is composed of both mean and turbulent parcels. Second, γ̇−1 6= γ̇

−1
, so the time-average of the inverse

rate-of-strain has to be computed separately.

A RANS-like implementation of a GNF would require some closure model for the turbulent viscous

stress. A closure model for the Reynolds stress has been long pursued, and it remains a major challenge

in the field of turbulence. Equations 2.42 and 2.43 could be combined to generate an evolution equation

for the Reynolds stress. However, this equation would contain triple correlations of the form u′αu
′
βu
′
γ

that are unknown. When the chaotic, although perfectly deterministic, momentum balance equation is

converted to the reproducible time-average form, the equations become under-determined. This is the

closure problem of turbulence. The advantage of DNS is the fact that it does not need any closure. The

statistical properties presented above are built from DNS data, as if the simulation were a numerical

experiment. The overwhelming number of degrees of freedom in a direct numerical simulation normally

restricts its use to simple geometries and relatively low Reynolds numbers. Hardware performance and

limitations are discussed in Section 3.5.

2.5.2 Existing Schemes

The locality of LBM operations makes them particularly interesting for heavy-work computations,

since it can be efficiently parallelized for GPU computation (JANUSZEWSKI and KOSTUR, 2014).

Since the requirement for low Mach number prevents the characteristic velocity U to be increased, the

artifact for high Reynolds number simulations in LBM is reducing the relaxation time τ (reducing vis-

cosity). This causes problems in the standard LBM, because the LBGK suffers severe instabilities at low

τ . There are many workarounds for this problem, the most commonly employed being the Multiple-

Relaxation-Time (MRT) collision operator. The MRT has been successfully applied to DNS studies

(SUGA et al., 2015; PENG and WANG, 2018; WANG et al., 2019). However, in terms of accuracy, it

does not seem superior to LBGK (GEHRKE et al., 2017; NATHEN et al., 2018). An alternative fix for

stability problems is the regularization of ghost moments (LATT and CHOPARD, 2006; MATTILA et

al., 2017), which is adopted in the present work. This technique has been used by Nathen et al. (2018),

who solved three-dimensional turbulent Taylor-Green vortex flow by DNS. Hegele Jr et al. (2018) em-

ployed regularization of ghost moments in bulk and boundary nodes in direct numerical simulations of

lid-driven cavity flow with Reynolds number up to 5 × 104. In both works, the researchers obtained

good stability properties. Nonetheless, further work is necessary to assess the dissipative behavior of the

regularized LB.

In investigations on turbulent flow with LBM, there has been some controversy related to rotational

invariance. Kang and Hassan (2013) published results of large eddy simulation in circular and square

ducts for which the D3Q19 lattice broke the rotational invariance and produced unreasonable data. When

the D3Q27 lattice was employed, the rotational invariance in terms of long-time-averaged turbulence

statistics was achieved. However, more recently, Peng et al. (2018) published a comprehensive study

of lattice effects for DNS in circular duct and accurate turbulence statistics were obtained using both

D3Q19 and D3Q27 lattices. The only setback they found with D3Q19 was related to stability, not to

rotational invariance. The authors claimed that the spurious transversal currents found in previous works

(KANG and HASSAN, 2013; SUGA et al., 2015) are actually a much weaker artifact when a careful
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implementation is made.

2.6 Chapter Summary

In this chapter the fundamentals of the lattice Boltzmann method with force term were presented. A

Chapman-Enskog expansion analysis was performed in order to demonstrate how the mesoscopic relax-

ation time τ relates to the viscosity η of the macroscopic momentum balance for generalized Newtonian

fluid. The LB scheme presented is valid for low Mach number flows, which means it solves the nearly

incompressible mass and momentum balance equations. It was shown that the viscoplastic fluid treat-

ment requires τ to reach very high values. On the other hand, turbulence requires extremely low τ at the

walls. This wide range of τ calls for special attention regarding numerical stability. In the next chapter it

will be demonstrated how to achieve regularization of ghost moments for LBM with force term, and the

complete methodology for DNS of viscoplastic turbulent flow will be presented.
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3 NUMERICAL METHODOLOGY

This chapter describes the numerical methodology of the present LB scheme, for which viscoplastic

turbulent flow can be calculated through direct numerical simulations. The LBM formulation presented

in Chapter 2 is second-order accurate in space and time. The basic collision and streaming processes

of LBM, as well as initialization and boundary conditions, will be explained in Section 3.1. Then, in

Section 3.2, the viscosity treatment will be disclosed. The main challenge for such method is related to

numerical stability. The chosen approach to inhibit instabilities is the regularization of ghost moments,

and this will be the topic of Section 3.3. Section 3.4 presents a discussion on how to simulate real flows

on LBM based on the Law of Similarity. The performance of a GPU implementation of the present

numerical scheme is discussed in Section 3.5. Lastly, a flowchart of the present algorithm will be given

in section 3.6.

3.1 Solving the LBGK

The Equation to be solved is 2.16. There is more than one way to solve it. However, the power of

LBM is its parallelization capabilities, which are most evident in the traditional collision and streaming

algorithm. All numerical operations are done in terms of the inverse relaxation time. The relaxation

frequency is defined as ω = ∆t/τ .

3.1.1 Collision, Streaming and Macroscopics

Equation 2.16 may be decomposed in two steps. The first step is collision:

f∗i (x, t) = fi(x, t)− ω
[
fi(x, t)− f eq

i (x, t)

]
+
(

1− ω

2

)
Fi(x, t)∆t (3.1)

where f∗i is the post-collision population. The collision step is a local algebraic operation. Then, the

second part reconstitutes Equation 2.16 by streaming all populations along their lattice links:

fi(x+ ci∆t, t+ ∆t) = f∗i (x, t) (3.2)

One time step is elapsed once these two operations are completed throughout the domain. Unlike

the collision step, streaming is not a local operation. However, it also can be run in parallel for all lattice

nodes by allocating f∗i to the computer memory. Resorting to such strategy must be made carefully since

memory bandwidth may quickly become the program’s bottleneck.

Before moving on to the next iteration, the macroscopic variables must be computed, because they

will enter the equilibrium population f eq
i . The macroscopic variables are obtained through velocity

moments of fi, as given by Equations 2.18. The second velocity moment, Equation 2.18c, can be used

for obtaining a very fine approximation for the extra stress tensor. According to Equation 2.35, the

extra stress σαβ is equal to εΠ(1)
αβ . If one assumes that only first order terms in ε are responsible for

the second velocity moment of non-equilibrium (Πneq
αβ ), which is consistent with the current Chapman-
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Enskog analysis, it turns out that εΠ(1)
αβ = Παβ −

∑
i f

eq
i ciαciβ . The expression for the extra stress is

then

εΠ
(1)
αβ ≈ σαβ =

(
1− ω

2

)[∑
i

(fi − f eq
i )ciαciβ +

∆t

2
(Fαuβ + Fβuα)

]
(3.3)

The fact that the stress can be obtained without calculating any gradient is a very important characteristic

for computational performance.

3.1.2 Initialization

Transient problems require initial conditions. The simplest way to initialize the populations fi is to

equal them to their equilibrium state of a known initial density ρ0 and velocity u0:

fi(x, t = 0) = f eq
i (ρ0, ū0) (3.4)

where ū0 = u0−F∆t/2ρ0 in order to obey the discrete moment in Equation 2.18b (GINZBURG et al.,

2008). However, some types of problems are sensitive to initial conditions and require a more accurate

initialization. When this is the case, the non-equilibrium part fneq
i must be added to the right-hand side

of Equation 3.4. Section 3.3 will demonstrate how to obtain Equation 3.23 as a good approximation for

fneq
i , as long as the initial rate-of-strain field is known.

3.1.3 Boundary Conditions

Macroscopic numerical methods use functions of properties such as density, temperature and velocity

as boundary conditions. Converting these properties to particle distribution functions is not a trivial

task. Although the boundary condition treatment in LBM is not so intuitive, some principles do help

simplifying it. The boundary conditions used in the present work are of just two types: periodic and no-

slip. For more options and a thorough discussion on boundary conditions in LBM the reader is referred

to Latt et al. (2008).

3.1.3.1 Periodic Boundary

Periodic boundary conditions assume that the fluid leaving the domain at one side will re-enter in

the opposite side with the same properties. It is commonly used in fully developed flows and turbulence.

Though turbulence is never truly periodic, when applied correctly it provides reliable long-time-averages.

Care must be taken with the domain size L, because this boundary condition leads to finite size structures

with length no greater thanL. Thus, it is necessary to validate the domain size to make sure the physically

expected structures are in fact smaller than L. The driving force for the fluid flow could be a pressure

difference, but this would lead to an artificial mass increase within the domain (KRÜGER et al., 2009).

All along, the intention of formulating an LBM with force was to implement a source term to act as a

driving force. Consequently, the periodic boundary condition of the present work conserves mass and

momentum at all times.
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Figure 3.1 – Schematic of the periodic boundary condition on the left/right edges. Grey arrows are post-collision
populations and black arrows are streamed populations. Periodic boundaries are separated from adja-
cent nodes by a distance ∆x/2.
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Figure 3.1 illustrates a domain with periodic boundary condition in x1 and xN . The treatment used

in the present work is to simply stream the populations between the periodic nodes, as if both boundaries

were connected. For a D2Q9 velocity set for instance, one would find for the nodes at x1
f1(x1, y2, t+ ∆t) = f∗1 (xN , y2, t)

f5(x1, y2, t+ ∆t) = f∗5 (xN , y1, t)

f8(x1, y2, t+ ∆t) = f∗8 (xN , y3, t)

(3.5)

and for the nodes at xN 
f3(xN , y2, t+ ∆t) = f∗3 (x1, y2, t)

f6(xN , y2, t+ ∆t) = f∗6 (x1, y1, t)

f7(xN , y2, t+ ∆t) = f∗7 (x1, y3, t)

(3.6)

3.1.3.2 Solid Boundary: Halfway Bounce-Back

The principle behind the LBM approach for solid walls is called bounce-back. As shown in Figure

3.2 the population f8 (assuming D2Q9) hitting a wall is reflected back to where it came from. Hence,

the streaming step will take it to the opposite position (i =6). Formally, the halfway bounce-back can be

expressed as (LADD, 1994)

fī(xb, t+ ∆t) = f∗i (xb, t) (3.7)

where the bar over i represents its opposite direction and the subscript b means boundary. The bounce-

back of a population hitting a wall implies no mass flux across the boundary (impermeable wall). Also,

the particle’s return to its original node, as opposed to being bounced forward, implies no-slip. This
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boundary condition is prevalent in LBM due to its simplicity, which makes it particularly preferred for

3D domains. In the case of a moving wall, a correction term must be added:

fī(xb, t+ ∆t) = f∗i (xb, t)− 2wiρw
ci · uw

c2
s

(3.8)

Figure 3.2 – Schematic of the halfway bounce-back boundary condition for a D2Q9 lattice. The incoming popu-
lation f∗8 arrives at the wall and bounces back to the node where it came from, assuming the position
f6 after a single time step ∆t has elapsed.
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Source: the author.

It is important to note that the halfway bounce-back is a link-wise method, i.e., the solid wall is

expected to be distant ∆x/2 from the boundary node. The accuracy of the link-wise bounce-back is

τ -dependent, with an optimum at 1/2 +
√

3/16 (GINZBURG and D’HUMIÈRES, 2003). As a conse-

quence of using other τ values, the solid boundary will no longer be located at ∆x/2, which requires the

solution to be corrected in post-processing. Although it is second-order accurate in space, if a close-to-

optimal τ cannot be set at the wall, a more accurate boundary condition is recommended.

3.1.3.3 Solid Boundary: Non-Equilibrium Bounce-Back

Zou and He (1997) developed a third-order accurate bounce-back scheme by reflecting only the non-

equilibrium part. It is a wet-node method, meaning that the boundary node is placed exactly on the wall

interface. Remarkably, its accuracy is independent of τ . The underlying principle is

fneq
ī

(xb, t) = fneq
i (xb, t)−

t · ci
|ci|

Ct (3.9)

where t is a tangent unit vector on xb and Ct is a correction term necessary to ensure the desired tan-

gential velocity. The procedure requires that the density on xb is known a priori. In some cases, extrap-

olation is necessary. For a D2Q9 velocity set ρw can be determined by the known populations. Figure

3.3 illustrates the application of the non-equilibrium bounce-back on a top surface. After streaming, the

populations f4, f7 and f8 are unknown. The term f4 +f7 +f8 can be eliminated from the ρw calculation

(Equation 2.18a) by combining it with the second moment (Equation 2.18b). For an impermeable wall,

the resulting expression is

ρw = f0 + f1 + f3 + (f2 + f5 + f6) +
Fy,w∆t

2
(3.10)
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The application of Equation 3.9 leads to the following system
f4 = f2 + (f eq

4 − f
eq
2 )− Cy

f7 = f5 + (f eq
7 − f

eq
5 )− Cx − Cy

f8 = f6 + (f eq
8 − f

eq
6 ) + Cx − Cy

(3.11)

Cx and Cy can be solved by inputting the above equations into the x- and y-moments of Equation 2.18b,

respectively. Their solution is

Cx = −1

2
(f1 − f3) +

ρwux,w
3

− Fx,w∆t

2
(3.12a)

Cy = −Fy,w∆t

6
(3.12b)

Then, the final solution for the unknown populations is obtained by replacing Equation 3.12 into 3.9:
f4 = f2 −

2ρwuy,w
3 +

Fy,w∆t
6

f7 = f5 + 1
2 (f1 − f3)− ρwux,w

2 − ρwuy,w
6 +

Fx,w∆t
4 +

Fy,w∆t
6

f8 = f6 − 1
2 (f1 − f3) +

ρwux,w
2 − ρwuy,w

6 − Fx,w∆t
4 +

Fy,w∆t
6

(3.13)

Implementing the above procedure for 3D geometries is a cumbersome task. Also, a generic algo-

rithm of this method would be very inefficient. The trade-off for the excellent accuracy is its imple-

mentation difficulties. For instance, if the domain is a rectangular cuboid, it will require an individual

treatment for all unknown populations in 6 faces, 12 edges and 8 vertices. In this case, a D3Q27 lattice

would require 234 expressions to be determined!

Figure 3.3 – Schematic of the non-equilibrium bounce-back boundary condition. After streaming, the populations
represented by the solid arrows are known. The populations represented by the dashed arrows are
unknown and have to be determined.
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3.2 Viscosity Treatment

The relaxation frequency ω is intrinsically tied to the fluid’s viscosity η, as demonstrated through the

Chapman-Enskog expansion in Chapter 2. A potential advantage for simulation of yield stress materials
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with LBM comes from noting that ω could be set to zero to represent the singularity in the viscoplastic

constitutive equation. Equation 2.36 can be expressed in terms of relaxation frequency as

ω =
2η−

2
∆tρc2

s

+ η−
(3.14)

where η− is the inverse of viscosity, which in the case of Bingham fluid ranges from 0 (infinite viscosity)

to 1/ηp. In Equation 3.14 ω is bounded by 0, when η− = 0, and 2, when η− → ∞ (inviscid). The

Bingham constitutive equation in terms of η− is

η− =


0 , |σ| ≤ σy(
ηp +

σy
|γ̇|

)−1

, |σ| > σy
(3.15)

The relaxation frequency has to be computed in the macroscopics evaluation step, since it will be

required in the collision process of the next iteration. It is obtained by Equation 3.14 with η− from

Equation 3.15. The extra stress σ components are obtained by Equation 3.3. However, ω and σ are

implicitly related, because Equation 3.3 needs ω in the first place.

One way to solve this implicit relationship is through an iterative scheme (inner-iterations), but it

would compromise numerical efficiency. Another option is to take ω from the previous time-step to

insert in Equation 3.3. The temporal error introduced by this procedure can be diminished by decreasing

∆t, which in LBM occurs simultaneously along with spatial refinement. Indeed, this option was chosen

for the steady-state cases presented in Section 4.1, and it produced satisfactory results.

Fortunately, an exact solution for ω can be found. Considering the generalized Newtonian fluid, it

is noted that the magnitudes of stress and rate-of-strain are related by |σ| = η(|γ̇|)|γ̇|. The Bingham

viscosity η is an invertible function of |γ̇|. This means the stress magnitude is sufficiently defined by the

viscosity: |σ| = |σ|(η). The rate-of-strain function is

|γ̇|(η) =

0 , |σ| ≤ σy
σy

η − ηp , |σ| > σy
(3.16)

Consider for a moment a blob of yielded material. In this case the GNF relation predicts the stress

magnitude to be

|σ| = σy
1− ηpη−

=
σy

1−
(

1− ωp
ωp

)(
ω

2− ω
) (3.17)

where ωp is the relaxation frequency associated with the plastic viscosity ηp. The above equation will be

left aside for a while. Equation 3.3 gives another expression for the stress magnitude:

|σ| =
(

1− ω

2

)
|T | (3.18)

where the tensor T is simply the ω-independent part of σ

Tαβ =

[∑
i

(fi − f eq
i ) ciαciβ +

∆t

2
(Fαuβ + Fβuα)

]
(3.19)
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Eliminating |σ| between Equations 3.17 and 3.18 results in

ω = ωp

(
1− σy
|T |

)
(3.20)

Equation 3.20 gives an exact solution for ω in a yielded material. The question remaining is how

to obtain an answer for a unyielded portion of material. There is only one possible solution, which is

ω = 0. In that case, the consideration that the stress magnitude be lower, or equal than, the yield stress

requires |T | ≤ σy, or σy/|T | ≥ 1. Thus, the conditional solution for the relaxation frequency is

ω = ωp max

(
0, 1− σy

|T |

)
(3.21)

Whenever Equation 3.21 is checked in a unyielded point, the expression 1 − σy/|T | will be nega-

tive, which gives ω = 0 as answer. In Section 4.2, this viscosity treatment is validated against theoretical

solutions of transient viscoplastic laminar flows. Besides an improved transient accuracy, this implemen-

tation also contributed for a better numerical stability. The viscoplastic turbulent channel flow of Chapter

5 was solved with Equation 3.21. The above calculations retain the locality of the standard LBM, and are

therefore perfectly suitable for large scale computations. The same procedure could be used to obtain an

exact solution for the Power-Law constitutive equation. However, it would not be possible for the Her-

schel–Bulkley model, because its viscosity is not an invertible function of the rate-of-strain magnitude.

Viscoplastic flows are characterized by a wide range of viscosity levels throughout the domain. As a

consequence, the relaxation frequency is also going to have a spectrum. With respect to accuracy, an error

proportional to (τ − 1/2)2 is known to inflict on the LBGK (D’HUMIÈRES and GINZBURG, 2009).

The nature of this error comes from neglecting higher-order terms in the Chapman-Enskog expansion.

In Section 4.1 it is demonstrated that the overall error can be significantly brought down by resolution

refinement, implying that the relaxation frequency spectrum did not harm the solution. In the limit of

ω → 0, stability becomes troubling (GRASINGER et al., 2018). In the present work this problem is

worked out by regularization of ghost moments.

3.3 Regularization of Ghost Moments

In Equation 3.1 the orders f (k)
i entering the population fi are unbounded. Nonetheless, the Chapman-

Enskog analysis of Section 2.3 considered terms up to order O(ε) as relevant to the LBGK formulation.

All of those f (k)
i terms with k ≥2 are generative of ghost moments1, which recover higher-order dy-

namics such as the Burnett equations (CHAPMAN and COWLING, 1970). Although these higher-order

terms have small magnitude, they do spoil the solution stability.

Confronted with this problem, Latt and Chopard (2006) proposed a regularization of the ghost mo-

ments for low order LBM. Mattila et al. (2017) expanded the method, demonstrating how to apply it

for higher order of truncation and more elaborated lattices. Also, this approach is attractive because it

can be used with the simple BGK collision operator, dismissing the need for the time-consuming MRT.

1 Rigorously speaking, some high-order moments of f (1)
i are also ghosts, for they do not fit into the Hermitian

representation of the D2Q9 and D3Q19 lattices (MATTILA et al., 2017). As a consequence, O(u3) errors are
manifested in the macroscopic momentum equations and the method is bound to low U , as was stated in the
Chapman-Enskog expansion.
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The following procedure is inspired in the work of Latt and Chopard and validated by Silva and Semiao

(2012). It starts with Equation 2.25a, repeated here for convenience:

(
∂

(1)
t + ciα∂

(1)
α

)
f eq
i −

(
1− ∆t

2τ

)
F

(1)
i = −1

τ
f

(1)
i (3.22)

The solution for the temporal and spatial derivatives of f eq
i may be obtained by the exact same

procedures used in Section 2.3 to determine Π
(1)
αβ . After a great deal of algebra, the expression for f (1)

i is

εf
(1)
i = −wiτ

c2
s

[
Qiαβ

2
ρ (∂αuβ + ∂βuα) +

∆t

4τ

Qiαβ
c2
s

(uαFβ + uβFα) +
∆t

2τ
ciαFα

− ciα∂β (ρuαuβ) +
Qiαβ
2c2
s

ciγ∂γ (ρuαuβ)

] (3.23)

where Qiαβ = ciαciβ − c2
sδαβ is a symmetric tensor and it has the property QiαβAαβ = QiαβAβα.

It must be noticed that non-linear terms do not contribute to Π(1) and, therefore, are too small within

the above equation. Invoking Equation 2.35, εΠ(1)
αβ can replace the first term in the right-hand side of

Equation 3.23, and it becomes

εf
(1)
i =

wi
c4
s

[(
τ

2τ −∆t

)
Qiαβ

(
εΠ

(1)
αβ

)
− ∆t

4
Qiαβ (uαFβ + uβFα)− ∆t

2
c2
sciαFα

]
(3.24)

Considering εΠ(1)
αβ ≈ σαβ according to Equation 3.3:

εf
(1)
i ≈ wi

2c4
s

(
Qiαβ

∑
i

fneq
i ciαciβ −∆tc2

sciαFα

)
(3.25)

Equation 3.25 shows that the O(ε) populations can be approximated by the known populations and

a force term correction. The insight of regularization is to replace the non-equilibrium distribution fneq
i

by εf (1)
i during the collision operation, defining a new population f reg

i = f eq
i + εf

(1)
i . The collision step

thus becomes

f∗i = (1− ω)f reg
i + ωf eq

i + (1− ω/2)∆tFi (3.26)

Excellent stability properties are achieved with regularization. Latt and Chopard (2006) reported that

the maximum Reynolds number possible to be simulated in a lid-driven cavity flow increased by a factor

of 7.7 for the force-free LBGK. Also, regularization has been successfully implemented for turbulence

simulations (NATHEN et al., 2018; Hegele Jr et al., 2018). Stability tests’ results for viscoplastic flow

are presented in Chapter 4.

3.4 Lattice Units and Similarity

All variables entering the LBM equations are in lattice units, which are non-dimensional quantities

emanated from the velocity space discretization. The variables ∆t, ∆x and ρ (reference density) are

commonly set to unity. There is no good reason to depart from this habit. In LBM simulations, one has

to resort to the law of similarity to reproduce the desired physics. Apart from the geometric similarity,
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the dynamic similarity requires that the pertinent non-dimensional groups are the same in lattice (l) and

physical (p) units. For instance, the Reynolds number matching would require

UlLl
νl

=
UpLp
νp

(3.27)

The Mach number Ma = U/cs is kept small by making sure the maximum local velocity is an order

of magnitude lower than the speed of sound (cs = 1/
√

3 in lattice units). It must be noticed that the

similarity in Ma does not necessarily need to be obeyed for nearly incompressible flows. If Ma is small

enough, its absolute value does not make any detectable difference in the flow field (KRÜGER et al.,

2017).

The length scale in lattice units is Ll = Nx(∆x)l, where Nx is the number of lattices equally spaced

by (∆x)l. In mesh resolution tests, it is often necessary to increase the spatial resolution while keeping

Re constant. Therefore, the only two possibilities for it are decreasing Ul or increasing νl, while Nx is

increased proportionally. This sometimes causes confusion about the time scale of successive simulations

with resolution refinement. The rule of thumb is to remember the total time Tl = Nt(∆t)l is proportional

to the phenomenon time scale Ll/Ul (or L2
l /νl for highly viscous flow). Hence, the number of time steps

follows the proportion

Nt ∼
Nx[(∆x)l/(∆t)l]

Ul
(3.28)

3.5 Computational Performance

The numerical scheme developed in this work was implemented for computation in graphics pro-

cessing units (GPU). Implementation details can be found in Oliveira Jr et al. (2019). The distinguishing

characteristic of GPUs is the elevated number of processing cores. Due to the inherent locality of most

LBM operations, the parallel efficiency is remarkable. On the other hand, LBM is too demanding on

memory. So, the most accessible GPU models may not have enough memory for some direct numerical

applications. In the text that follows, the performance of the current GPU implementation for LBM is

discussed in detail.

3.5.1 Processing Speed

In the standard LBM, the collision and macroscopic evaluation operations are completely local. The

bounce-back operations in the present work are also local, because two sets of populations are stored, one

for post-collision and one for post-streaming. The aspect of locality can be very well explored in GPU.

In a relatively low-cost piece of hardware (US$1000), the NVIDIA Tesla K20x, the number of million

lattices/nodes updates per second (MLUPs) was 400. Taking a 3D case with 1283 nodes as example, one

million time-steps are solved in approximately 90 minutes. The NVIDIA Tesla K20x was used in the

laminar cases of Chapter 4. For the turbulent cases of Chapter 5, the NVIDIA Tesla V100 32Gb was

used. It is nearly ten times more expensive than the K20x. The number of MLUPs with this machine

was around 1500.

For reference, Zheng et al. (2019) investigated the computational performance of a finite volume code

(OpenFOAM) and a spectral element-Fourier code (Semtex) for DNS in a massively parallel system. The
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computational infrastructure consisted of hundreds of CPUs, installed in multiple compute nodes. The

authors reported 6 MLUPs for OpenFOAM with 512 CPUs, and 21 MLUPs for Semtex with 192 CPUs.

3.5.2 Memory Limitations

With the D3Q19 lattice, memory allocation of 19 populations is required. In practice, in order to

be able to perform the streaming process in parallel, two sets of populations are stored, post-collision

and post-streaming. This leads to a total of 38 double-precision floating point variables for each grid

node, without counting the macroscopic quantities (velocity components, density, relaxation frequency

and stress components). As if that was not enough, in the present LBM the grid is uniform, i.e., ∆x =

∆y = ∆z. This means that the grid is always overdimensioned, because the entire domain follows

the resolution of the most critical region. For example, in the turbulent channel flow of Chapter 5, ∆y

is defined according to the resolution necessary at the walls. However, the grid spacing in the x and

z directions could be much larger, without compromising the statistical outcome. To be precise, if a

non-uniform LBM grid was viable, the total number of grid nodes in this case would be ten times less.

Clearly, the memory demand of the LBM, compared with other methods, is overwhelming. The

NVIDIA Tesla K20x has 6Gb of internal memory, which was capable of allocating about 15 million

nodes. Because of the uniform grid, this amount was not enough for the channel length necessary for

DNS. Hence, the NVIDIA Tesla V100 32Gb had to be used in the case study of Chapter 5.

In the specialized literature, attention has been given to the formulation of non-uniform LBM grids.

This is commonly referred to as rectangular LBM. The most important works are the ones from He et

al. (1996), Hegele Jr et al. (2013), Peng et al. (2019). However, for one reason or another, the maximum

aspect ratio in these works is not large enough to justify its implementation in the present thesis. An

aspect ratio (∆x/∆y) around 5 would certainly be a phenomenal feature for direct numerical simulations

with LBM.

3.6 Algorithm

The numerical methodology described above is presented in this section in algorithmic form. All

steps from 3 to 7 are repeated for every point in space (x). Figure 3.4 illustrates the workflow of the

present LB scheme.

1. Definitions. The relevant non-dimensional groups such as Reynolds and Bingham numbers are

set, as well as the lattice resolution (Nx, Ny, Nz) and reference velocity (U ). The combination

of these parameters results in the LBGK inputs, which are the relaxation frequency (ω) and the

source term (Fx, Fy, Fz). The mesoscopic yield stress is also defined in this step.

2. Initialization. The initial macroscopic fields (u0 and ρ0) are converted into the initial populations

through Equation 3.4. In the case of sensitive initial conditions, the regularized non-equilibrium

term (Equation 3.23) is added to f eq
i .

3. Update ω. First, the components of the auxiliary tensor T are computed by Equation 3.19. Then,

the local relaxation frequency is updated via Equation 3.21.

4. Regularized Collision. The regularized collision step takes place with Equation 3.26.
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5. Streaming. The post-collision populations are advanced in time and space according to Equation

3.2. Care must be taken to avoid streaming to or from a null location. Moreover, a streamed

population cannot overwrite a post-collision population that has not yet been propagated.

6. Boundary Conditions. The boundary conditions described in section 3.1.3 are applied in this

step. Post-streaming populations at the boundaries are updated with the post-collision populations

of the current iteration.

7. Macroscopics. The macroscopic properties ρ and u are computed by Equations 2.18a and 2.18b,

respectively. Also, the stress tensor σ comes from Equation 3.3. If necessary, the macroscopic

quantities are stored for statistical processing.

8. Statistical Gathering. In the direct numerical simulations, volume averages are calculated in this

step. This is a very slow process because all macroscopic data have to be transferred from the

GPU to the CPU. So, this is only done once every 1000 time-steps.

9. Stop Criterion Reached? In this checkpoint the program must decide whether to continue or stop

the simulation. Two types of stop criteria may be used. It may either be the maximum number of

time steps (Nt) or the steady-state residual, defined by

LST =

√∑
x (ux,t − ux,t−1000∆t)

2 + (uy,t − uy,t−1000∆t)
2 + (uz,t − uz,t−1000∆t)

2∑
x (ux,t)

2 + (uy,t)
2 + (uz,t)

2 (3.29)

where the summation takes place over all fluid nodes. An LST residual of 10−12 is an adequate

stop criterion for many applications (LUO et al., 2011). In case the stop criterion has not been

reached, the program continues from step 3.

3.7 Chapter Summary

Intrinsic numerical aspects of the proposed viscoplastic LB scheme were discussed in this chapter.

The turbulence representation is intended to be obtained through direct numerical simulations, thereby

not needing any modeling. Proper initialization and boundary conditions for accurate simulations were

presented. The differential of the present scheme is the actual representation of infinite viscosity from

the Bingham constitutive equation. This is possible by implementing a regularization of ghost moments

for the LBM with force. In the next chapter, the proposed scheme will be tested for stability and accuracy

in classical viscoplastic laminar flows.
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Figure 3.4 – Flowchart of the computational routine for viscoplastic LB scheme.
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4 LAMINAR FLOWS

In this chapter, the numerical methodology presented in the preceding pages is put to the test in

viscoplastic laminar flows. By solving these cases, the objective is to evaluate the proposed viscosity

treatment, namely, setting the relaxation frequency to zero in the unyielded locations. Unless said other-

wise, regularization of ghost moments is employed in all test cases. First, steady-state flows are analyzed

in Section 4.1. Then, transient flows are presented in Section 4.2. Although the proposed LB scheme ex-

tends seamlessly for any generalized Newtonian fluid, only the Bingham constitutive equation is solved

for, because it is the simplest viscoplastic model that has a singularity.

4.1 Steady-State Problems

Numerical solutions of steady-state viscoplastic fluid flows are commonly found in the literature.

Hence, there is a plentiful database of benchmark cases. The cases investigated in this section are:

parallel plates Pouiseuille flow (Section 4.1.1), square duct Pouiseuille flow (Section 4.1.2), and lid-

driven cavity flow (Section 4.1.3). These simulations were done in an early stage of the project, when

the exact temporal solution for the relaxation frequency ω (Eq. 3.21) had not been developed. So, for

all cases presented in this section, ω used in the calculation of the stress components is taken from the

previous time-step.

4.1.1 Parallel Plates Poiseuille Flow

One of the simplest Bingham fluid flows that have an exact solution is the Poiseuille flow between

parallel plates. The problem is depicted in Figure 4.1. The fluid between the parallel plates is kept at a

constant average velocity of U . Both plates are no-slip boundaries and are separated from a distance H .

At a region far enough from the inlet, a fully developed region will take place. In this region, the velocity

profile will not change and the pressure drop will be constant.

Figure 4.1 – Physical representation of the parallel plates Poiseuille flow. The flow’s average velocity is U and
both walls are stationary.
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Source: the author.

The currently presented analytical solution is found in (BIRD et al., 2002). The only non-dimensional

group governing the solution is the Bingham number, defined as

Bn =
σy
HFx

(4.1)
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where Fx is the momentum source, equivalent to the pressure gradient, necessary to maintain a constant

average velocity U :

Fx = −∂p
∂x

=
12ηpU

H2 (1− 3Bn+ 4Bn3)
(4.2)

The cross section profile of such flow consists in a yielded (|σ| > σy) region close to the walls, and

a plug region (|σ| ≤ σy) delimited by

1

2
−Bn ≤ y

H
≤ 1

2
+Bn (4.3)

Thus, the limiting cases are Bn = 0, corresponding to the absence of a plug (for it would have no

volume), and Bn = 0.5, corresponding to the whole cross section being plugged (which means no flow

at all). The normalized plug velocity is

u

U
=

3

2

(2Bn− 1)2

(1− 3Bn+ 4Bn3)
(4.4)

and the normalized yielded fluid velocity is

u

U
=

1

(1− 3Bn+ 4Bn3)

{
3

2

[
1−

(
2

∣∣∣∣12 − y

H

∣∣∣∣)2
]
− 6Bn

[
1− 2

∣∣∣∣12 − y

H

∣∣∣∣
]}

(4.5)

This problem was solved with the proposed LB scheme for a 2D domain employing the D2Q9 lattice.

Periodic condition was imposed in the left-right boundaries, while the stationary walls were represented

by either halfway bounce-back (HWBB) or non-equilibrium bounce-back (NEBB) schemes. The flow

was enforced through a constant force term given by Equation 4.2, such that the average velocity U was

targeted at 0.1. The plastic Reynolds number Rep = ρUH/ηp does not influence this fully developed

flow, as long as it is laminar. At the walls, a nominal viscosity is defined by ηw = Bn/(1−2ηp). In each

simulation, the value for Rep was determined such that the relaxation time at the nominal wall viscosity

was approximately 0.98. The symbol Nx is used to denote the spatial resolution (for example, a grid

128×128 has Nx = 128).

Figure 4.2 – Velocity profiles without regularization of ghost moments. Solid lines are exact solutions. (a) NEBB
and Bn = 0.25 and (b) HWBB and Bn = 0.40.
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Source: the author.
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The consequence of setting a null relaxation frequency ω is that the under-relaxation is so severe that

the populations never relax to their local equilibrium. Without regularization of ghost moments, the post

collision population f∗i assume meaningless values caused by higher-order terms. As seen in Figure 4.2,

the velocity profiles will never be correctly predicted in this situation. Both HWBB and NEBB were

tested in Figure 4.2, as a means to show that the scheme without regularization failed in every attempt.

It must be emphasized that spatial refinement did not produce improvements for HWBB. Perhaps a little

improvement may be observable for NEBB, but it was not good enough to promote the desired "plug"

shape. Although the boundary condition has some effect in weakening the spurious currents, it is not

capable of damping them down to an acceptable level. The Burnett stresses are bulk quantities and

do not originate at the walls. The problem is more critical as Bn is increased, probably because the

under-relaxed region is larger.

The regularization of ghost moments makes feasible the simulation with such low ω. Figure 4.3a

shows the time evolution of the steady-state error LST (Eq. 3.29). It can be seen that the regularized LBE

succeeds in bringing the solution to a steady-state, while in the conventional scheme the residual never

decreases up to a reasonable solution. As a side note, it is interesting to realize that the regularization of

ghost moments stabilizes the solution not only for low τ , for which the method was originally conceived,

but also for extremely high τ (low ω). Figure 4.3b shows the velocity profile after the inclusion of

regularization. The stability issue is fixed. Even for Bn = 0.40, which is quite a difficult case for

convergence, the solution is accurate and the plug region is flat. The results of Figure 4.3b were obtained

with 128 grid nodes in each direction, which is not the highest resolution employed in the present study.

Figure 4.3 – Results obtained with regularization of ghost moments. (a) Steady state residual LST with NEBB and
Bn = 0.25. (b) Velocity profiles with NEBB and several Bn. Solid lines are exact solutions.
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Source: the author.

In order to evaluate the accuracy of the present solution, the quadratic error norm will be used. It is

defined as

L2 =

√∑
(qnum − qref)

2∑
(qref)

2 (4.6)

where qnum is the numerical value, qref is the reference value (preferably analytical) and the summation

takes place over a determined set of points of the domain. Figure 4.4 shows how the quadratic error

norm L2 evolved for viscoplastic simulations with HWBB and NEBB. Overall, the expected truncation
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order O(∆x2) did not suffer degradation from the implemented Bingham viscosity. For small Bn, the

NEBB boundary condition is only slightly better than HWBB. However, for Bn = 0.40, L2 of HWBB

was almost 3 times higher than of NEBB. It has been reported in the literature that when regularization

is applied, the use of very small mesoscopic velocities (small Mach number Ma = U/cs) may lead to

divergence (MATTILA et al., 2017). However, in all LBM simulations performed in the present work,

small Ma divergence was not found.

Single precision results were also obtained for this case. They are shown as empty markers in Figure

4.4. Although it appears that high Nx leads to single precision divergence, the feature that actually

causes it is the low mesoscopic velocity U . The data points of Figure 4.4 were obtained with fixed Re

and τ . Whenever Nx was doubled, U was decreased in half. U started at 0.1 for Nx = 32. Therefore,

for Nx = 256, U was 0.0125. The increasing single precision error for small mesoscopic velocity was

also reported by Januszewski and Kostur (2014). There is a safe range for single precision computation

with the Bingham model, though. In this particular test case, for U up to 0.025 the accuracy of single

precision calculations was almost identical to double (notice that the empty markers are behind the filled

ones). This is a very important outcome, especially for high-resolution simulations. With respect to

double precision on the NVIDIA Tesla K20x, using single precision decreases the memory demand by

50% and increases the processing speed (MLUPs) by a factor of 3.

Figure 4.4 – Quadratic error norm L2 for different boundary conditions and several Bn. Dashed lines represent
the second-order truncation error and empty markers represent single precision mode. (a) Bn = 0,
(b) Bn = 0.25 and (c) Bn = 0.40.
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4.1.2 Square Duct Poiseuille Flow

The leap from 2D to 3D in LBM requires many implementations and it is an essential demonstration

of control over the numerical method. The square duct Poiseuille flow of a Bingham fluid was the test

case selected for this purpose. Figure 4.5 shows a schematic of the problem. Inside a square duct with

half-length L, a Bingham fluid flows due to a constant body force Fz . East and west boundaries are

periodic, since the flow field is assumed to be fully developed. Saramito and Roquet (2001) approached

this problem with the augmented Lagrangian method (ALM) and a specific mixed finite element method.

In their work, the localization of yield surfaces was approximated by an anisotropic auto-adaptive mesh

procedure. They defined the Bingham number as

Bn =
2σy
LFz

(4.7)

Figure 4.5 – Physical representation of the square duct Poiseuille flow. The flow is driven by a body force Fz .
Front, back, south and north walls are stationary.
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This problem was solved by the presently proposed viscoplastic LB scheme with regularization of

ghost moments and D3Q19 lattice. The halfway bounce-back (HWBB) boundary condition was im-

posed on the stationary walls, and periodic condition on inlet/outlet. The spatial grid was 1283 in all

simulations. The flow was enforced through a constant force term, calibrated such that the maximum

velocity Umax was 0.05. The plastic Reynolds number Rep does not influence this fully developed flow.

It was determined such that the relaxation time at the plastic viscosity was approximately 0.88. Figure

4.6 compares the obtained mean and maximum velocities with approximate solutions from Saramito and

Roquet (2001). A good agreement was obtained with LBM. A detailed flow field comparison against

(SARAMITO and ROQUET, 2001) is shown in Figure 4.7. The auto-adaptive mesh of Saramito and

Roquet (2001) is a costly computational procedure. The LBM is undoubtedly a competitive alternative

for three-dimensional viscoplastic fluid flow simulations, in which the yield surface may assume complex

shapes. The typical computational execution time of these simulations was 90 minutes. Considering that

there were over two million nodes, the efficiency of the viscoplastic LB scheme on GPU is remarkable.
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Figure 4.6 – Mean and maximum velocities as a function of Bn. Critical Bingham number (no flow) is Bnc =
1.07. The velocity scale is defined as U = L2Fz/(2ηp). Markers are results from the present work
and lines are theoretical solutions.

Bn/Bnc

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Umean
U

Umax
U

Source: the author.

Figure 4.7 – Comparison of velocity profiles from the present work (lines) and Saramito and Roquet (2001) (mark-
ers). (a) Along the median. (b) Along the diagonal.
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The yielded and unyielded regions are shown in Figures 4.8 to 4.10. Comparisons are made with the

viscoplastic LB scheme of Vikhansky (2008). The unyielded regions consist of dead zones in the corners

and a moving "plug" in the center. It is interesting to note that the plug’s shape changes from circular at

low Bn to almost squared at high Bn. The yield surfaces from the present method are smoother, which

may be due to the lower resolution (803) employed by Vikhansky (2008). Nonetheless, the quality of the

obtained yield surfaces certainly builds up confidence in the present method.



Chapter 4. Laminar Flows 65

Figure 4.8 – Yielded (white) and Unyielded (grey) regions for Bn = 0.5. Left: (VIKHANSKY, 2008). Right:
present work.

Source: the author and Vikhansky (2008).

Figure 4.9 – Yielded (white) and Unyielded (grey) regions for Bn = 0.75. Left: (VIKHANSKY, 2008). Right:
present work.

Source: the author and Vikhansky (2008).
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Figure 4.10 – Yielded (white) and Unyielded (grey) regions for Bn = 1. Left: (VIKHANSKY, 2008). Right:
present work.

Source: the author and Vikhansky (2008).

4.1.3 Lid-Driven Cavity Flow

The lid-driven cavity flow is an interesting problem to study inertial effects. Since the geometry

and boundary conditions are simple, it has become a benchmark case in computational fluid dynamics

(GHIA et al., 1982; BOTELLA and PEYRET, 1998). An illustration of the problem is given in Figure

4.11. The squared enclosure has sides L and it is filled with Bingham fluid. All walls are stationary,

except for the north wall, which moves horizontally with constant velocity U . The north wall’s motion

causes the fluid to recirculate inside the cavity.

Figure 4.11 – Physical representation of the lid-driven cavity flow. The north wall moves to the positive x-direction
with constant velocity U .
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Results from the present viscoplastic LB scheme will be compared with finite volume method (FVM)

data available in the literature. The present LBM results were obtained with NEBB boundary condition,
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for stationary and the moving walls, and D2Q9 lattice. Syrakos et al. (2013) defined the Reynolds number

as Rep = ρUL/ηp and the Bingham number as

Bn =
σyL

ηpU
(4.8)

Figure 4.12 – Horizontal (x) velocity profile in the vertical mid-plane for Rep → 0 and Bn = 50. Comparison
with FVM data of Syrakos et al. (2013). Present work results were obtained with a grid 128×128.

u/U
-0.2 0 0.2 0.4 0.6 0.8 1

y
/
L

0

0.2

0.4

0.6

0.8

1

Syrakos et al. (2013)

Present Work

Source: the author.

The lid-driven cavity creeping flow (Rep → 0) was investigated in (SYRAKOS et al., 2013) with

a Bingham model regularized according to Papanastasiou’s expression. The x-velocity profile in the

vertical mid-plane for Bn = 50 is shown in Figure 4.12. An excellent comparison was obtained for a

grid 128×128. To reach creeping flow Reynolds number, the mesoscopic lid velocity had to be set very

small. A value of approximately 10-4 was used. It should be noted that, again, small Ma divergence did

not occur.

Figure 4.13 – Streamlines for Rep = 1000 and Bn = 0. Left: Syrakos et al. (2014). Right: present work (grid
256×256).

0.0 0.2 0.4 0.6 0.8 1.0
x/L

0.0

0.2

0.4

0.6

0.8

1.0

y/
L

Source: the author and Syrakos et al. (2014).



Chapter 4. Laminar Flows 68

Figure 4.14 – Streamlines and unyielded regions (grey areas) for Rep = 1000 and Bn = 1. Left: Syrakos et al.
(2014). Right: present work (grid 256×256).

Source: the author and Syrakos et al. (2014).

The cited authors further extended their work to study inertial effects in (SYRAKOS et al., 2014).

Reynolds numbers up to 5000 and Bingham numbers up to 100 were investigated with the same FVM

scheme. Those results are much more interesting because the non-linearity of the inertial terms makes

the numerical problem significantly harder. Figures 4.13 to 4.16 show streamlines and unyielded regions

obtained from the present work. The streamlines in all cases are practically identical to those of Syrakos

et al. (2014). For Newtonian fluid (Bn = 0) there is a weak counter-circulating region in the lower right

side of the cavity. A similar structure also exists in the lower left side, but it has a much lower stream

function value. When the fluid is viscoplastic, the counter-circulating regions disappear, because the

unyielded fluid in the lower corners is stationary.

Figure 4.15 – Streamlines and unyielded regions (grey areas) for Rep = 1000 and Bn = 10. Left: Syrakos et al.
(2014). Right: present work (grid 256×256).

Source: the author and Syrakos et al. (2014).
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Figure 4.16 – Streamlines and unyielded regions (grey areas) for Rep = 1000 and Bn = 100. Left: Syrakos et al.
(2014). Right: present work (grid 512×512).

Source: the author and Syrakos et al. (2014).

Overall, the unyielded regions compare well with (SYRAKOS et al., 2014). Both shape and size of

the unyielded portions are similar, except for the region joining the yield surface with the lateral walls.

In the work of Syrakos et al. (2014) the yield surface did not connect tangentially to the lateral walls for

Bn = 10 and Bn = 100. Based on experimental works that have investigated similar configurations (de

Souza Mendes et al., 2007; LUU et al., 2017), there is no reason to suspect that such irregularity near the

wall is a physical feature. ALM results of Dimakopoulos et al. (2018) also show a tangential connection

to the walls (not plotted here because they neglected inertial terms). Therefore, it can be argued that the

monotonic behavior is physically plausible and the yield surface shape obtained in the present work is

credible. As a means to give a quantitative comparison, the vortex center locations and the maximum

stream function were computed. Their comparison is shown in Table 4.1. The numerical agreement is

clear, suggesting that the proposed LB scheme is able to solve inertial viscoplastic flow as well as FVM.

In the reference works of Syrakos et al. their numerical method was subject to stringent stability and

accuracy enhancements. It should be highlighted that both methods resulted in similar outcomes, even

though they are intrinsically unrelated in terms of their fundamentals.

Table 4.1 – Vortex center position (xc, yc) and maximum stream function (ψmax) normalized by U and L from
Syrakos et al. (2014) and present work.

Syrakos et al. (2014) Present work
Rep Bn xc yc ψmax xc yc ψmax

1000 0 0.531 0.564 0.119 0.529 0.565 0.119
1000 1 0.539 0.567 0.103 0.537 0.569 0.103
1000 10 0.796 0.850 0.047 0.796 0.851 0.047
1000 100 0.535 0.950 0.019 0.534 0.949 0.020

Source: the author.
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4.2 Transient Problems

The transient character of the proposed LB scheme is assessed in this section. Unlike in the steady-

state simulations, for the transient cases presented hereafter, the relaxation frequency is exactly solved

in each time iteration by Equation 3.21. Analytical solutions for transient laminar flows of viscoplastic

fluid are rare. However, an approximate solution for startup flow of Bingham fluid in parallel plates is

used for transient assessment in Section 4.2.1. Moreover, in Section 4.2.2, the finite stopping time of a

Bingham fluid flow is investigated with the proposed viscoplastic LB scheme.

4.2.1 Startup Flow in Parallel Plates

The definition of the startup flow in parallel plates is as follows. A Bingham fluid is initially at rest

between two infinite parallel plates separated by a distance 2h. At an instant t = 0 a force G is applied

transversal to the wall-normal (y) direction, causing the viscoplastic fluid to accelerate, until steady-state

is reached. The region of interest is too far away from any inlet or outlet. Thus, this flow is assumed to

be fully developed. Also, the flow is symmetrical about the centerline, located at y = 0. At any instant

t > 0 the velocity profile consists of a unyielded region with velocity up(t), and a yielded region with

velocity u(y, t), such that the yield surface delimiting the two regions is located at y/h = δ < 1.

Safronchik (1959) obtained an approximate solution for very short times. The location of the yield

surface is

δ(t∗) = 1− 2a
√
t∗, t∗ ≤ t1 (4.9)

where t∗ = t/(ρh2/ηp), t1 = 1/4a2, and a is the solution for the following transcendental equation

e−a
2 − a

√
π [1− erf(a)] = Bn/G∗ (4.10)

The Bingham number is defined as Bn = σyh/ηp
√
σy/ρ, the non-dimensional force density is G∗ =

G/(ηp
√
σy/ρ/h

2), and erf(∼) is the error function.

In a recent work Huilgol et al. (2019) demonstrated that Equation 4.9 is actually valid for a shorter

time t ≤ t3 = (1 − Bn/G∗)2/4a2. Moreover, they found alternative approximate solutions for the

velocities in the yielded and plug regions. It was verified that the predicted plug velocity of Safronchik

(1959) and Huilgol et al. (2019) only matched for very small Bn/G∗ ratios. It is unclear which one is

more accurate.

This problem was solved by the presently proposed viscoplastic LB scheme with regularization of

ghost moments and D2Q9 lattice. The halfway bounce-back (HWBB) boundary condition was imposed

on the stationary walls, and periodic condition on inlet/outlet. The spatial grid had 256 nodes in the

normal direction in all simulations. The relaxation time at the plastic viscosity was approximately 0.65.

The flow field was initialized according to the procedure of Section 3.1.2, with velocity and stress equal

to zero. A constant force term was imposed from the beginning, determined such that the target steady-

state average velocity U was 0.1.

Transient velocity profiles are shown in Figures 4.17 to 4.20 for various Bn/G∗ ratios. The non-

dimensional velocity was defined by u∗(y, t) = u(y, t)/
√
σy/ρ, and the non-dimensional vertical co-

ordinate was defined by y∗ = y/h. Since the approximate solutions presented above are only valid for
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very short times, a time t09 was defined by how long the yield surface took to be at δ = 0.9. The time to

reach steady-state was denominated tf . It can be seen from the figures that, in general, the numerical re-

sults were very regular. A plug region is clearly distinguishable from the profiles. Moreover, the correct

steady-state solution was reached in all cases. For very small Bn/G∗ ratios, both approximate solutions

agree with the numerical results, as seen from Figure 4.17. However, in Figure 4.18, only Huilgol et al.

(2019) gives a good match with the simulations, while the plug velocity approximation of Safronchik

(1959) deviates from the numerical results as time advances.

Figure 4.17 – Velocity profile evolution of startup flow in parallel plates for Bn/G∗ = 0.001. Markers are the
numerical results from the present work. Time advances from lighter to darker blue. (a) Profiles at
ten different times equally spaced up to t09. The solid lines are approximate solutions of Safronchik
(1959) in the plug region, and Huilgol et al. (2019) in the yielded region. (b) Profiles at ten different
times with equal intervals up to tf . The dashed line is the exact steady-state solution.
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The observation to be done in this case is that, with increasing Bn/G∗, the solutions of Safronchik

(1959) and Huilgol et al. (2019) increase their discrepancies. In Figure 4.19, the solution of Huilgol et

al. (2019) is still very well matched by the simulations. On the other hand, the solution of Safronchik

(1959) does not match neither. It could be that Safronchik (1959) solution is good, while both Huilgol et

al. (2019) and the present results are not. This can only be verified by another numerical method, such

as ALM. Nevertheless, the smoothness of the profiles is generally a good sign in numerical methods.

For the computationally stiff case of Bn/G∗ = 0.8, shown in Figure 4.20, neither approximate solutions

agree with the numerical results.

In Figure 4.19 it is seen that the velocity profile in the plug region is nor perfectly flat. Ideally, the

unyielded region would be found in post-processing by checking for nodes with ω = 0. It turns out that

the ratio σy/|T | in Equation 3.21 is subject to inevitable numerical errors present in the populations that

compose the tensor component Tαβ . The most significant of these errors are those due to time-space

discretization. Even the slightest error will prompt Equation 3.21 to attribute a finite value for ω in a

unyielded node. The numerical values that the relaxation frequency assumes in unyielded nodes were

verified to be order-of-magnitude below typical ω values in yielded nodes. This inconvenience does not

jeopardize the velocity field, as can be inferred from the quality of the transient profiles, and the accuracy

of the steady-state profiles. However, the delimitation of the yield surface is not straightforward.
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Figure 4.18 – Velocity profile evolution of startup flow in parallel plates for Bn/G∗ = 0.01. Markers are the
numerical results from the present work. Time advances from lighter to darker blue. (a) Profiles at
ten different times equally spaced up to t09. The solid lines are approximate solutions of Safronchik
(1959) in the plug region, and Huilgol et al. (2019) in the yielded region. (b) Profiles at ten different
times with equal intervals up to tf . The dashed line is the exact steady-state solution.
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Source: the author.

Figure 4.19 – Velocity profile evolution of startup flow in parallel plates for Bn/G∗ = 0.1. Markers are the
numerical results from the present work. Time advances from lighter to darker blue. (a) Profiles at
ten different times equally spaced up to t09. The solid lines are approximate solutions of Safronchik
(1959) in the plug region, and Huilgol et al. (2019) in the yielded region. (b) Profiles at ten different
times with equal intervals up to tf . The dashed line is the exact steady-state solution.
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Source: the author.

Figure 4.20 – Velocity profile evolution of startup flow in parallel plates for Bn/G∗ = 0.8. Markers are the
numerical results from the present work. Time advances from lighter to darker blue. (a) Profiles at
ten different times equally spaced up to t09. The solid lines are approximate solutions of Safronchik
(1959) in the plug region, and Huilgol et al. (2019) in the yielded region. (b) Profiles at ten different
times with equal intervals up to tf . The dashed line is the exact steady-state solution.
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A few alternatives were tested for the definition of a cut-off value for the relaxation frequency. What

worked best was the idea that, in steady-state, the node located at y∗ = δ + ∆y∗ must be yielded (∆y∗

is the vertical grid spacing). So, the analytical solution for the viscosity profile provides a solution for

η(δ + ∆y∗), which is considered to be the cut-off value:

ηcut−off > ηp

(
1 +

Bn/G∗

∆y∗

)
(4.11)

Thus, ωcut−off comes from inputting η− = 1/ηcut−off in Equation 3.14.

Figure 4.21 – Temporal evolution of plug velocity (blue) and yield surface location (magenta). Markers are the
numerical results from the present work. The solid lines are approximate solutions of Safronchik
(1959), while dashed lines are the exact steady-state solutions. Insets show numerical and theoretical
behavior at very short times. (a) Bn/G∗ = 0.001. (b) Bn/G∗ = 0.01. (c) Bn/G∗ = 0.1. (d)
Bn/G∗ = 0.8.
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The temporal evolution of plug velocity and yield surface location is shown in Figure 4.21, and a

comparison is made against the approximate solution of Safronchik (1959). At very short times, the

numerical results behave very much alike the approximate solutions, except for Bn/G∗ = 0.8. The

quantitative agreement varies for differentBn/G∗ ratios and time ranges. It is interesting to note that the

time to reach steady-state was approximately t∗ = 2 forBn/G∗ up to 0.1, while forBn/G∗ = 0.8 it was

about 1. Even though there was no good agreement with Safronchik’s solution for the case Bn/G∗ =

0.8, it is unclear whether his solution is valid for such a high ratio. In the work of Huilgol et al. (2019),

the authors make it clear that their solution only matches Safronchik’s for very small Bn/G∗ ratios. The
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numerical solutions obtained with the proposed viscoplastic LB scheme approach the steady-state quite

smoothly, and do not show any worrisome irregularity.

4.2.2 Stopping Flow in Parallel Plates

When a Newtonian fluid undergoing steady motion in a pipe of arbitrary cross-section has its driving

force suddenly removed, the flow velocity approaches zero as t→∞. A fundamental difference between

a Newtonian and a Bingham fluid is that the Bingham fluid comes to a halt in a finite amount of time. This

theoretical prediction was obtained by Glowinski (1984) using variational inequality of kinetic energy,

and it was later refined by Huilgol et al. (2002). In this section the stopping flow of a Bingham fluid

between parallel plates is numerically investigated. The problem definition is as follows. A Bingham

fluid is initially flowing with steady-state properties, as given in Section 4.1.1. At an instant t = 0 the

driving force is suddenly removed, causing the viscoplastic fluid to decelerate towards rest state. The

same geometrical considerations and coordinates of the startup flow case are assumed (Sec. 4.2.1). The

theoretical upper-bound for the stopping time (Tf ), normalized by the time scale ρh2/ηp, is (HUILGOL

et al., 2002)

Tf ≤
4

π2
ln

[
1 +

π2

4

‖u(y, 0)‖/U
Bn

]
(4.12)

where Bn = σyh/ηpU , U is the average steady-state velocity, and

‖u(y, 0)‖ =

[
1

h

∫ h

0
u2(y, 0)dy

]1/2

(4.13)

This problem was solved by the presently proposed viscoplastic LB scheme with regularization of

ghost moments and D2Q9 lattice. The halfway bounce-back (HWBB) boundary condition was imposed

on the stationary walls, and periodic condition on inlet/outlet. The spatial grid had 256 nodes in the

normal direction in all simulations. The relaxation time at the plastic viscosity was approximately 0.65.

The flow field was initialized according to the procedure of Section 3.1.2, with velocity profile from

Equations 4.4 and 4.5 with U = 0.1, and linear shear stress profile from the centerline to the wall.

The evolution of the volumetric flow rate Q is shown in Figure 4.22a. The Newtonian decay was

constant up to the machine error level (Q ≥ 10−15). The viscoplastic material behaved differently.

Their initial decay was Newtonian-like, but at some point it transitioned to a steep decrease, which

characterizes the finite stopping time. Shorter transition times are seen for higher Bn, corresponding to

higher yield stress. The viscoplastic curves in Figure 4.22a are truncated because the velocity values did

not reach the machine error level. Instead, the velocities changed the signal at a residual value, due to

some numerical artifact related to the periodic boundary condition. The numerical stopping time Tf was

defined at the moment that the velocity had its signal changed. It is important to mention that, when this

happened, ω was already zero throughout the entire domain.
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Figure 4.22 – Numerical results for the influence ofBn on the finite stopping time. (a) Evolution of the volumetric
flow rate normalized by 2hU . The markers are ALM solutions of Muravleva et al. (2010), while the
lines are LBM results from the present work. The black line is Bn = 0 (Newtonian). (b) Computed
stopping time versus theoretical prediction.
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Figure 4.23 – Velocity profile evolution of stopping flow in parallel plates (u∗ = u/U ). Markers are the numerical
results from the present work and the lines are initial (steady-state) profiles. Time advances from
lighter to darker blue. The numerical results are shown for three different times: one iteration,
Tf/10, and Tf/2. (a) Bn = 0.001. (b) Bn = 0.1. (c) Bn = 5.
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The stopping times are plotted in Figure Figure 4.22b. The stopping times computed with the pro-

posed viscoplastic LB scheme were always shorter than the theoretical upper-bound of Equation 4.12. A
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very good agreement with ALM solutions of Muravleva et al. (2010) is verified. It is curious to note that,

not only do the numerical stopping times obey the theoretical upper-bound, but they also conform to the

shape of Equation 4.12. In Figure 4.23 the evolution of the velocity profiles is shown. There is no visible

irregularity or unexpected behavior. It can be seen that a plug region develops and its size increases with

time.

The evolution of the yield surface location δ was also relatively smooth, as seen in Figure 4.24. The

yield surface delimitation criteria was the same as in the startup case, Equation 4.11. Initially, δ has

its steady-state value. It increases slightly in the beginning. Then, when it is about 0.8, the expansion

towards the wall is quite sudden. Numerical results of ALM are compared with the present LB scheme,

for Bn = 5 and Bn = 20. The ALM is known to be a very accurate method for capturing yield

surface location. The agreement with LBM was excellent, which indicates that the choice for ηcut−off

was appropriate.

Figure 4.24 – Evolution of yield surface location of stopping flow in parallel plates. The markers are ALM solu-
tions of Muravleva et al. (2010), while the lines are LBM results from the present work.
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4.3 Conclusions

In this chapter, the proposed viscoplastic LB scheme was put to the test in steady and transient flows

of Bingham fluid. With respect to accuracy, the second-order error decay was verified, indicating that

the discretization order of the standard LBM is sustained. A thorough comparison with ALM was not

the scope of the present investigations. Nevertheless, for the cases solved, it is safe to say that the quality

of the yield surfaces obtained was comparable with ALM. A cut-off viscosity value was defined in order

to find the yield surfaces, which proved to perform well in the transient cases simulated. The viscosity

treatment for the transient flows resulted in smooth velocity profiles. The theoretical predictions for

transient flows were well represented.

The present method has excellent stability characteristics, thanks to the regularization of ghost mo-

ments. As far as computational efficiency is concerned, the most important characteristics of the standard

LBM were kept. The locality of the method is respected, including in the stress tensor evaluation, which

is obtained from moments of the non-equilibrium populations. As a consequence, the implementation in

GPU resulted in a performance of around 400 million lattices updates per second. The three-dimensional
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simulations of the square duct Poiseuille flow were typically executed in 90 minutes, for a computational

domain of over two million nodes.

It is unlikely that the present viscoplastic LB scheme will outperform ALM in terms of yield surface

location accuracy, because of its intrinsic formulation. However, the results presented in this chapter give

many reasons to believe it can be a valuable engineering tool in the industry of viscoplastic materials.

Further work is recommended to quantify and compare the numerical results of ALM and LBM in a set

of benchmark Bingham flows.
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5 TURBULENT CHANNEL FLOW

The LB scheme for viscoplastic fluid flow described in Chapter 3 and validated in Chapter 4, is now

employed in direct numerical simulations (DNS) of turbulent flow in a channel filled with a Bingham

fluid. As illustrated in Figure 5.1, the channel dimensions are 2δ × 2δ × 16δ in the spanwise, normal

and streamwise directions, respectively. The walls are separated by a distance 2δ, where δ is the channel

half-height, and are represented by the halfway bounce-back boundary condition. The flow in the stream

and spanwise directions is considered homogeneous in a fully turbulent flow. Hence, periodicity is

imposed as boundary condition. The flow is driven by a constant body force density Fz (N/m 3). The

instantaneous and the time-averaged equations of the Bingham fluid turbulent flow have been given in

Section 2.5.1.1.

Figure 5.1 – Channel’s dimensions and coordinates. The flow is driven in the z direction (streamwise). The x
direction is transversal (spanwise) and the normal direction is y.

x
y

z

flow
direction 2δ

2δ
16δ

Source: the author.

5.1 Simulation Setup

In internal turbulent flows, it is conventional to use as non-dimensional parameter the friction Reynolds

number, defined as Re∗ = ρu∗δ/µ, where u∗ is the friction velocity (KIM et al., 1987; EGGELS et al.,

1994; JIMENEZ and HOYAS, 2008). The friction velocity is representative of the mean wall shear stress

σw:

u∗ =

√
σw

ρ
(5.1)

However, the Newtonian viscosity µ has no place in this case study. In this work, the friction

Reynolds number is defined with the plastic viscosity

Re∗ =
ρu∗δ

ηp
(5.2)

A bulk Reynolds number Reb = 2ρUbδ/ηp can also be defined, where Ub = (1/2δ)
∫ 2δ

0 uz dy, but it

is not known a priori. Some authors have defined Re∗ with the mean wall viscosity ηw (SINGH et al.,

2017a). In contrast, the decision to use ηp allows the friction Reynolds number to be independent of the

yield stress σy. In the present work, Re∗ is fixed at 180. Since Re∗ = 180 and ρ = 1 are determined,

two of the three quantities in the right-hand side of Equation 5.2 are free to be set.
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For the flow to stay in an incompressible regime, the Mach number Ma = U/cs must be low. A

typical limit used in aerodynamics simulations is 0.3 (Anderson JR, 2010). In turbulent channel flow the

highest velocity, on average, takes place at the centerline. For a Newtonian fluid at Re∗ = 180, the mean

centerline velocity Uc/u∗ is approximately 18.2 (KIM et al., 1987). It is expected that the centerline

velocity for a viscoplastic fluid will be a little higher (ROSTI et al., 2018). Hence, a possible centerline

velocity Uc/u∗ of 19 is considered. Velocity magnitudes higher than 0.2 (in lattice units, l.u.) must be

avoided in LBM, due to its velocity space discretization. In the present work, the friction velocity is

designed for a mean centerline velocity of 0.11 (l.u.), which gives Ma = 0.11/(1/
√

3) = 0.19 and

u∗ = 0.11/19 = 0.00579 (l.u.).

The smallest length scale in a turbulent flow is given by the Kolmogorov microscale l+ ∼ (ε+)
−1/4,

where ε is the dissipation rate of the turbulent kinetic energy and the superscript "+" refers to the New-

tonian wall scales for velocity (u+ = u/u∗) and space (y+ = y/(µ/ρu∗)). It is expected that the

viscoplastic fluid will have a lower ε than the Newtonian. Therefore, the spatial resolution is going to

be designed as if the viscoplastic fluid was a Newtonian with µ = ηp. This decision will be analyzed

a posteriori. In Newtonian turbulent channel flow, the maximum dissipation rate ε+ takes place at the

walls and has an approximate value of 0.2 (KIM et al., 1987). Consequently, the grid size must be of the

order l+ ∼ 1.5. Previous DNS of turbulent channel flows suggest that three grid nodes inside the viscous

sublayer (y+ ≤ 8) give a sufficient spatial resolution (EGGELS et al., 1994; LAMMERS et al., 2006),

which corresponds to ∆y+ ≈ 2.3. The spatial resolution in wall units ∆y+ = ρu∗∆y/µ is, according

to the friction Reynolds number definition, equal to Re∗∆y/δ. It must be noticed that in LBM ∆y = 1.

Thus, 2δ is equal to the number of grid nodes in the normal direction, so δ is an integer. In the present

work δ is set to 98, which corresponds to ∆y+ ≈ 1.8. With the halfway bounce-back boundary condition

for the walls, the first grid node after the wall is at ∆y/2 (see Fig. 3.2). This grid sizing provides five

grid nodes within y+ ≤ 8.2.

An integral force balance in the domain gives

Fz =
σw

δ
(5.3)

Therefore, since both u∗ and δ are constant, the driving force is also constant. Throughout the different

cases investigated the fluid has the same plastic viscosity, determined by Equation 5.2, and only the yield

stress is varied. The Bingham number is defined as

Bn =
σy
σw

(5.4)

The Bn values investigated are 0 (Newtonian), 0.05, 0.10 and 0.15. A simulation with Bn = 0.20

was performed but it re-laminarized after a short time. It was then removed from the present discussion.

5.1.1 Computational Aspects

Regarding numerical stability, the broad spectrum that the relaxation frequency can assume in this

viscoplastic turbulent flow was the most challenging aspect. The relaxation frequency was allowed to

vary from 0 (unyielded material) to 1.9629 (τp = 1/1.9629 = 0.5095). Fortunately, the implementation

of regularization of ghost moments has proved effective in allowing stable simulations in all attempted
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cases. The Courant–Friedrichs–Lewy number CFL = ∆t(ux + uy + uz)/∆x is naturally low in LBM,

because the velocity components are of order 10−1 and ∆x/∆t is unitary.

A Newtonian turbulent flow was initialized with the laminar solution (parabola) with Uc = 0.11,

superposed with random perturbations in all components. Gaussian random values were generated with

mean 0 and standard deviation 1, and then multiplied by 10% of the nominal bulk velocity, before being

added to the velocity components. After approximately 40 eddy turn-over times (ETT = δ/u∗) the flow

became statistically fully developed. A different strategy was used to initialize the viscoplastic cases.

The initial field of Bn = 0.05 was a fully developed field from Bn = 0, the initial field of Bn = 0.10

was a fully developed field from Bn = 0.05, and so on. The viscoplastic flow field became statistically

fully developed in a similar period.

The numerical time-step corresponded to ETT/16927. In terms of flow-through time (FTT = 16δ/Ub),

the time-step was FTT/17411. In order to avoid massive data storage requirements, volume averages

were taken during the simulation, at each 1000 time-steps. The volume averages were taken along the x

and z directions, during additional 40ETTs. Then, in post-processing, the time averages were computed,

resulting in the expected ensemble averages.

The large domain size required 24Gb of GPU memory. This is far beyond capacity of popular GPUs.

The simulations presented in this chapter were executed in a NVIDIA Tesla V100 32Gb, through a cloud

computing service. The efficiency of the LBM implementation in this GPU was 1500 MLUPs (million

nodes updated per second). The execution time for a single case, considering flow development plus

fully developed phases, was 15 hours.

5.2 Instantaneous Fields

This section is dedicated to the presentation and interpretation of instantaneous flow variables. Figure

5.2 shows instantaneous streamwise velocity in the z–x (top view) and x–y planes. The z–x plane is

located at the buffer layer, where the highest velocity fluctuations are expected. Increasing Bn elongates

the low speed streaks in the streamwise direction and reduces the amount of high speed regions. From

the x–y visualization, it seems that the low speed streaks were able to reach the same vertical extent,

independently of the yield stress value. Clearly, for higher Bn the core region of the flow is more

uniform with a high velocity. Small unyielded spots are seen for Bn = 0.05 and 0.10, and a large one

for Bn = 0.15. In the z–x plane located at the buffer layer, no unyielded spots are observable.

Instantaneous viscosity contours are exhibited in Figure 5.3. The viscosity values were calculated

by Equation 2.36. The z–x plane is located at the centerline, where the highest viscosity values are

expected. The size of the unyielded regions increases significantly with Bn. For Bn = 0.15, there is a

large unyielded region that takes up the entire x direction. The unyielded spots are always surrounded

by a high viscosity volume. It can be noticed from the x–y planes that there is a thin layer near the wall

in which those high viscosity volumes do not penetrate.

Figure 5.4 shows contours of instantaneous vorticity. Unlike the previous figures, the panels on

the left show z–y planes (side view). For Bn = 0 the classical Newtonian turbulent vorticity field is

recognized. Vorticity is very high near the walls. Streaky structures lean and stretch towards the core,

where diffusion dampens them down. The yield stress has an effect of elongating the vortical structures.

Since the dissipation of vorticity takes place in the core region, where the viscoplastic fluid’s viscosity
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is considerably high, the amount and intensity of vortical structures in this region are suppressed. It is

worth noting that inside the unyielded spots the material experiences a rigid-body motion (γ̇αβ = 0),

what does not necessarily imply zero vorticity.

Figure 5.2 – Contours of instantaneous streamwise velocity uz . Magnitude increases from dark purple to light
yellow. Left: z–x plane located at y+ ≈ 10 with uz ranging from 2u∗ to 16u∗. Right: x–y plane
with uz ranging from 0 to 20u∗. From top to bottom: Bn = 0, 0.05, 0.10 and 0.15. Black spots are
unyielded regions.

Source: the author.

Figure 5.3 – Contours of instantaneous viscosity η ranging from 1ηw to 5ηw. Magnitude increases from cyan to
magenta. Left: z–x plane located at the centerline. Right: x–y plane. From top to bottom: Bn = 0,
0.05, 0.10 and 0.15. Black spots are unyielded regions.

Source: the author.

The unyielded spots shown so far reveals that they are mostly disconnected and are positioned around

the centerline. Three-dimensional views of the instantaneous yield surfaces are shown in Figure 5.5. The
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unyielded spots are tiny and fragmented for Bn = 0.05. As the yield stress increases, these structures

grow in size and elongate in the streamwise direction. Even though Bn varies, they seem to be con-

fined to the same vertical extent. It has been argued in fundamental and experimental studies that the

stress level in a viscoplastic turbulent flow was always higher than the yield stress, and any instantaneous

appearance of a spot with |σ| < σy would not allow enough time for microstructural cross-link forma-

tion and true unyielding (FRIGAARD et al., 1994; GÜZEL et al., 2009). However, the present results

show otherwise. The unyielded spots do not disappear quickly, but rather have a significant life-time.

These structures are advected with the mean flow, change in shape and size, split or merge with others.

Animations are available in a YouTube playlist at https://bit.ly/3mHrWrK.

Figure 5.4 – Contours of instantaneous vorticity ranging from−5Ub/δ to +5Ub/δ. Magnitude increases from blue
to red. Left: spanwise vorticity in the z–y plane. Right: streamwise vorticity in the x–y plane. From
top to bottom: Bn = 0, 0.05, 0.10 and 0.15. Black spots are unyielded regions.

Source: the author.

Figure 5.5 – Isosurfaces of instantaneous viscosity η at the cutoff value ηcut−off , representing the yield surfaces.
The flow is from front to back of the frames. From left to right: Bn = 0.05, 0.10 and 0.15.

Source: the author.

5.3 Means

Some significant mean quantities obtained by DNS are summarized in Table 5.1. The actual friction

Reynolds number Re∗actual was calculated from the mean velocity gradient at the wall. Interestingly, the
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bulk Reynolds number Reb increased with Bn. This caused a drag reduction evidenced by the Fanning

friction factor, defined as f = σw/0.5ρU
2
b = 8(Re∗/Reb)

2. The same yield stress trend has been

observed in other DNS studies (SINGH et al., 2017a; ROSTI et al., 2018). The mean wall viscosity ηw

increased with Bn in a higher proportion than any other quantity of interest.

An absolute wall scaling could be defined with the plastic viscosity, because it would not depend on

the yield stress value. The wall units u⊕ = u/u∗ and y⊕ = ρu∗y/ηp are used in the mean streamwise

(u⊕z ) profiles of Figure 5.6a. It can be noticed that near the wall u⊕z is lower for a higher Bn fluid, which

was apparent from Figure 5.2. This behavior turns over at y⊕ ≈ 25. Curiously, the turn over location

appears to be the same for all fluids. The portion where a higher Bn fluid has a higher mean streamwise

velocity corresponds to 86% of the cross section area. This explains the considerable increase in bulk

Reynolds number.

Table 5.1 – Summary of mean quantities of interest obtained by DNS.

Bn Re∗actual Reb f × 103 Uc/u
∗ ηw/ηp

0 178 5628 8.010 18.452 1.000
0.05 179 5752 7.764 18.858 1.059
0.10 179 5862 7.510 19.241 1.124
0.15 180 6068 7.038 20.064 1.198

Source: the author.

A more appropriate wall scaling would use the actual wall viscosity. In Figure 5.6b, the wall units

u+ = u/u∗ and y+ = ρu∗y/ηw are used in the mean streamwise (u+
z ) profiles. The law-of-the-wall

u+ = y+ is nicely recovered. Comparing with the absolute wall scaling of Figure 5.6a, the curves in

Figure 5.6b have been shifted to the left. Even though a sense of actual location is impaired, the new

scaling makes more justice to the concept of wall scaling. The viscous sublayer (y+ ≤ 5) is better

distinguished, as well as the beginning of a log-law region (y+ > 30). As a drawback, this scaling does

not make a good delimiter for the core region, since the various Bn curves depart from the log-law at

different y+.

Figure 5.6 – Profiles of mean streamwise velocity. The KMM curve is the DNS result of Kim et al. (1987). The
dotted lines correspond to the law-of-the-wall and log-law. (a) Absolute wall units u⊕ and y⊕, in
which the law-of-the-wall is u⊕z = y⊕ and log-law is u⊕z = 2.5log(y⊕) + 5.5. (b) Actual wall units
u+ and y+, in which the law-of-the-wall is u+

z = y+ and log-law is u+
z = 2.5log(y+) + 5.5.
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The log-law region, also known as inertial sublayer, is predicted by scale arguments in a range where

y is too large in wall units (y+ � 1), but too small in integral units (y/δ � 1). Even though it is

called log-"law", the solution u+
z = Alog(y+) +B is an approximation (DAVIDSON, 2015). A log-law

indicator function is exhibited in Figure 5.7a. The indicator function is constant in a proper logarithmic

region. It can be seen that the possible range for a log-law is too narrow, and the coefficient A has

a strong Bn dependency. The existence of a power-law u+
z = B (y+)

A in the inertial sublayer has

been defended (BUSCHMANN and GAD-EL-HAK, 2003). The power-law indicator function, which

is constant in a proper power region, is exhibited in Figure 5.7b. In terms of the extent of a power-law

region, it seems moderately superior to the log-law, except for Bn = 0.15. However, the power-law

coefficient is practically independent of Bn, with a value A ≈ 0.15.

Figure 5.7 – Indicator functions for log- and power-law fitness. (a) Log-law indicator function for u+
z =

Alog(y+) +B. (b) Power-law indicator function for u+
z = B (y+)
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Figure 5.8 – Profiles of (a) mean streamwise velocity gradient and (b) mean smoothed viscosity. Results are pre-
sented in absolute wall units in order to be distinguished in the viscous sublayer. If displayed in actual
wall units, the curves would collapse in this region.
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Figure 5.8a shows the mean streamwise velocity gradient in absolute wall units. The yield stress

has a significant effect on ∂u⊕z /∂y
⊕ inside the viscous sublayer and in the lower part of the buffer layer

(5 < y+ < 30). This is a compensation for the increased mean wall viscosity caused by the yield stress

(see Table 5.1). Regarding the definition of mean viscosity (Eq. 2.44), the procedure for calculating it



Chapter 5. Turbulent Channel Flow 85

could not use the time-average of the inverse rate-of-strain (γ̇
−1

). This average is subject to instanta-

neous unyielded spots, where the instantaneous viscosity tends to infinity, so the average viscosity would

become indeterminate. Instead, a smoothed mean viscosity can be calculated by ignoring those unyielded

spots, i.e., not computing them whenever they appear. The result is a smooth quantity that corresponds

to the real mean viscosity in the viscous and buffer layers, because no unyielded spot appearance in these

locations have been registered, but which is artificially low in the core region. From this point on, the

symbol η will be used for the smoothed mean viscosity. Figure 5.8b shows η profile in absolute wall

units. In the upper part of the buffer layer η⊕ starts to grow, reaching its maximum at the centerline. For

reference, in a DNS of Bingham turbulent flow in a pipe with Re∗ = 323, Singh et al. (2017a) obtained

ηc/ηw = 2.5 for Bn = 0.05, ηc/ηw = 5.5 for Bn = 0.10 and ηc/ηw ≈ 15 for Bn = 0.20.

The mean streamwise velocity gradient shown in Figure 5.8a reveals a wide range for γ̇. In the

core region γ̇ can be zero. This switches a real fluid’s dynamic response and provokes microstructural

consequences for a thixotropic material. On the other end of the spectrum, ∂u⊕z /∂y
⊕ ≈ 0.85 for Bn =

0.15. What this means for rheometry is that a very high shear rate measurement must be made if one is

to calibrate a constitutive equation for DNS. For example, considering the non-dimensional parameters

of the present work, a water-based solution, and a channel gap of 20 cm, the mean shear rate at the wall

should be:

γ̇yz,w =

(
∂u⊕z
∂y⊕

)
ρ(u∗)2

ηw

= 0.85ρηp

(
ηp
ηw

)(
Re∗

δ

)2

= 3.25× 106 s−1 (5.5)

The unyielding probability was calculated as the fraction of time a certain y-location was unyielded,

considering the entire channel volume. The profiles are shown in Figure 5.9. The unyielded spots emerge

in locations with high viscosity, and are most frequent in the core region. Nonetheless, a non-zero un-

yielding probability was calculated in the upper part of the inertial subrange. In the specialized literature,

there is controversy on whether unyielded spots exist in viscoplastic turbulent flow. For instance, in the

DNS study of Singh et al. (2017a) no such feature was identified, while in the work of Rosti et al. (2018)

there was plenty. It must be pointed out that the present work is the only one employing the exact Bing-

ham model. The unyielded spots found by the present work are abundant, but they are definitely more

moderate than in Rosti et al. (2018). For reference, Rosti et al. (2018) obtained at the centerline 13% for

Bn = 0.025, 59% for Bn = 0.064 and 91% for Bn = 0.135.

Figure 5.9 – Unyielding probability as an ensemble average. (a) In wall scale. (b) In integral scale.
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5.3.1 Friction Factor

The decrease in the friction factor f revealed in Table 5.1 is a minor drag reduction. The most popular

form of non-Newtonian drag reduction is the one caused by dilute polymer solutions. In such cases, the

turbulent drag reduction relative to the solvent can be as high as 70% (LI et al., 2006; OWOLABI et al.,

2017). In the present work, the fluid has no elasticity, and the drag reduction was caused by yield stress

alone. For Bn = 0.15 the drag reduction was approximately 12% relative to Bn = 0 (solvent). Hence,

the choice to call it a "minor" drag reduction.

An experimental study equivalent to the present DNS would require isolating the yield stress effect.

This is practically impossible because real fluids combine many other rheological characteristics, such

as elasticity and thixotropy. Therefore, the friction factor obtained by the present work is compared with

another DNS in Figure 5.10. The present results have a good agreement with the DNS of Rosti et al.

(2018), which was expected since they implemented an elastoviscoplastic fluid with low elasticity. For

Newtonian fluid the relative difference with the experimental correlation of Dean (1978) was 4.9%. The

theoretical correlation of Anbarlooei et al. (2018) is also shown for comparison. It is common in many

theories of high-Re viscoplastic turbulent flow to suppose the various Bn will approach the Newtonian

curve asymptotically. If this asymptotic approximation does happen, the Bn curves will approach the

Newtonian curve from below, unlike the correlation shows. In this sense, Wilson and Thomas (1985)

correlation (Fig. 1.4) seems more truthful.

Figure 5.10 – Friction factor f as a function of bulk Reynolds number Reb. The filled circles are from the present
work. Empty circles are from Rosti et al. (2018). The empty square is from the experimental
correlation of Dean (1978) taken at Reb = 5636. The lines are from the theoretical correlation
of Anbarlooei et al. (2018).

���� 	��� 
��� ���� ���� �����
Reb

����	�

����
�

����
�

������

������

f

Bn= ��

Bn= ������

Bn= ����	�

Bn= ������

�����������������������
������������������
�����������
Bn= ��
Bn= �����
Bn= �����
Bn= �����

Source: the author.



Chapter 5. Turbulent Channel Flow 87

5.4 Second-Order Statistics

A deeper understanding of the turbulent flow can be achieved with statistical correlations. The

velocity correlation function is defined as (DAVIDSON, 2015)

Rii (r) = u′i (x)u′i (x+ r) (5.6)

where r is a position vector. Rii represents how much a velocity component ui is auto-correlated within

a distance r in a given direction. Figure 5.11 shows velocity correlations taken in the spanwise direction.

By standard, velocity correlation functions are normalized by Rii(0). Only half the spanwise length

is depicted, because Rii is symmetrical. When the velocity components are completely uncorrelated

within the domain confines, it is considered that the computational boundaries do not have a significant

influence on the large eddy dynamics. This seems to be the case for the spanwise and normal velocity

components in Figure 5.11, because the correlations dropped to near zero. Judging from their values at

rx/δ = 1, the streamwise velocity correlations are not so satisfactory. The general Bn effect is to extend

the correlations’ reach.

Figure 5.11 – Normalized spanwise velocity correlations in selected normal positions. From left to right: viscous
sublayer, buffer layer and inertial sublayer. The dashed black lines are DNS results by Kim et al.
(1987), shown here for reference. (a) Rxx. (b) Ryy. (c) Rzz .
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Figure 5.12 shows the velocity correlations taken in the streamwise direction. Spanwise and normal

velocity components are practically uncorrelated at rz = 3, in any y location. However, the streamwise
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velocity component is correlated for much further. This is a consequence of more elongated flow struc-

tures, such as the low speed and vortical streaks observed in Figures 5.2 and 5.4, respectively. The case

Bn = 0.15 was the most difficult to reach Rzz = 0. Even though a wider and longer channel would

be desirable to mitigate boundary effects as much as possible, it is unlikely that the flow structures and

long-time averages presented here would be significantly changed. Overall, the velocity correlations of

the present work agree well with the DNS of Kim et al. (1987), who used a spanwise length of 2πδ.

Figure 5.12 – Normalized streamwise velocity correlations in selected normal positions. From left to right: viscous
sublayer, buffer layer and inertial sublayer. The dashed black lines are DNS results by Kim et al.
(1987), shown here for reference. (a) Rxx. (b) Ryy. (c) Rzz .
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A measure of the length scale of the turbulent structures can be obtained by

L =

∫ ∞
0

Rii(r)

Rii(0)
dr (5.7)

The integral length scales calculated from the velocity correlations presented above are exhibited in

Figure 5.13. In the spanwise direction, the correlations drop to zero in a short distance, so Lx is quite

small. On the other hand, the streamwise length scale is large. Notice that in the viscous sublayer and

buffer layer Lz achieves its highest values. It is also essential to observe that Lz was increased from 1δ

to 2.5δ with increasing the yield stress.
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Figure 5.13 – Integral length scale calculated from (a) spanwise and (b) streamwise velocity correlations. In both
cases Equation 5.7 was calculated with uz correlation.
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Figure 5.14 – Profile of stress components in wall units. The black lines are DNS results by Kim et al. (1987). (a)
Normal stresses. The dashed lines are normal Reynolds stress, the dotted lines are pressure, and the
solid lines are the sum of both components. (b) Shear stresses. The dashed lines are Reynolds stress,
the dash-dot lines are the mean viscous stress and the dotted lines are turbulent viscous stress.
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The mean flow equations have been presented in Section 2.5.1.1. From Equation 2.43, the momen-

tum balance equation in the normal direction is

0 = ∂y
(
p− ρu′yu′y

)
(5.8)

The viscous stress component σyy has been verified to be negligible with respect to the terms above.

Equation 5.8 implies that the sum of pressure and the yy component of the Reynolds stress must be a

constant. Figure 5.14a present a verification of the mean normal stress balance. The pressure is high

in the viscous sublayer, while the normal Reynolds stress is zero. However, in the inertial sublayer the

normal Reynolds stress is dominant.

In the z coordinate, Equation 2.43 becomes

0 = ∂y
(
ηγ̇yz + η′γ̇′yz − ρu′yu′z

)
+ Fz (5.9)

The terms inside the divergent are, in order of appearance, mean viscous stress, turbulent viscous stress

and Reynolds stress. The mean shear stress profile is shown in Figure 5.14b. According to Equation
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5.9, the sum of shear stress terms must be a linear function of y. This sum is not shown in the figure for

clarity. The mean viscous stress is dominant in the viscous sublayer, while the Reynolds stress dominates

in the inertial sublayer and above it. However, the dominance of the Reynolds shear stress is not so great

when Bn is elevated. At y+ = 32, where −ρu′yu′z peaks, the Reynolds shear stress of Bn = 0.15 is

140% higher than the mean viscous stress, while for the Newtonian fluid this superiority is 650%. The

turbulent viscous stress is very low near the wall, but it can be significant in the core region if the yield

stress is high. At y+ = 120, its ratio to the total mean shear stress is 4% for Bn = 0.05, 12% for

Bn = 0.10 and 28% for Bn = 0.15. This has implications for turbulence modeling of viscoplastic

fluids. At a first look, neglecting η′γ̇′yz will not jeopardize the near-wall dynamics. On the other hand,

many important flow features take place in the core region.

Figure 5.15 – Root mean squares of turbulent fluctuations in wall units. The dashed black lines are DNS results
by Kim et al. (1987). (a) Spanwise velocity. (b) Normal velocity. (c) Streamwise velocity. (d)
Smoothed viscosity.
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A measure of the statistical dispersion of turbulent variables is obtained by the root mean square

(rms):

ui,rms =

√
u′iu
′
i (5.10)

The rms quantities are commonly refereed to as turbulent intensities. Figure 5.15 shows root mean

squares of the velocity components and viscosity. The maximum locations are not significantly changed

with Bn, but their values are. The spanwise and normal turbulent intensities are decreased with Bn,
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while the streawise intensity is increased. Thus, the yield stress has an effect of increasing turbulence

anisotropy. The variations of the turbulent intensities with Bn are relevant from the buffer layer and

above. In the core region, all rms velocity components are decreased with Bn. The smoothed viscosity’s

rms are shown in Figure 5.15d. The viscosity fluctuations start to be important from y+ = 10. It

indicates that the viscosity remains exceptionally stable inside the viscous sublayer, even though there is

considerable velocity fluctuation.

5.4.1 Budgets of Turbulent Kinetic Energy

The turbulent kinetic energy is defined by k =
(
u′xu

′
x + u′yu

′
y + u′zu

′
z

)
/2. Interpreting its budgets

is an effective way to understand turbulent flows. By subtracting the mean flow momentum balance

equation (Eq. 2.43) from its instantaneous counterpart (Eq. 2.42), one gets an equation for the fluctuating

parcel u′α:

ρ∂tu
′
α + ρuβ∂βu

′
α + ρu′β∂βuα + ρu′β∂βu

′
α = −∂αp′ + ∂βσ

′
αβ + ρ∂β

(
u′αu

′
β

)
(5.11)

where the mean and turbulent viscous stress components were replaced by the total viscous stress σ,

for convenience. Equation 5.11 can be used to write expressions for u′α and u′β . By summing both

expressions and then making α = β, the following turbulent kinetic energy equation is obtained

ρuβ∂βk = ∂β

(
−1

2
ρu′αu

′
αu
′
β − u′βp′ + u′ασ

′
αβ

)
+

1

2
σRαβ γ̇αβ −

1

2
σ′αβ γ̇

′
αβ (5.12)

where σRαβ = −ρu′αu′β is the Reynolds stress. On the account of homogeneity and null mean normal

velocity, the term on the left-hand side is zero. The first term on the right-hand side represents diffusive

transport (T ). The second term, generation (G), transfers energy from the mean flow to the turbulence

(DAVIDSON, 2015). The last one is dissipation (ε), which removes energy from the turbulence and turns

it into internal energy.

The k profile is shown in Figure 5.16a and its budgets are seen in Figure 5.16b. The turbulent kinetic

energy is unaltered by the yield stress in the viscous sublayer, because dissipation is balanced out by

transport. In the buffer layer the viscoplastic fluid has more turbulent kinetic energy than the Newtonian.

At y+ = 45 there is a switch. The viscoplastic fluid has progressively less k than the Newtonian, as y

increases. The reason for it is that the dissipation profile also switched. In the lower part of the inertial

sublayer the viscoplastic fluid’s dissipation becomes slightly higher than the Newtonian’s, and the region

above it corresponds to the vast majority of the channel cross section area. Hence, in the core region the

viscoplastic fluid flow is significantly less turbulent than the Newtonian. It may seem counter intuitive

that, even though the viscosity of a yield stress fluid is higher in the viscous sublayer, the turbulence

dissipation is lower. The reason is likely to be the less intense mean shear rate ∂uz/∂y in the region (Fig.

5.8a).

The location where the mean streamwise velocity of the viscoplastic fluid begins to surpass the

Newtonian coincides with the peak generation at y+ ≈ 10. The term G takes kinetic energy away

from the mean flow, and converts it to turbulent fluctuations. The lower k-generation of a yield stress

fluid is a plausible explanation for the higher bulk velocity. Even though the yield stress causes an

increased turbulent activity in the buffer layer, the anisotropy of the velocity fluctuations has a net effect
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of decreasing the main contribution term −ρu′yu′z (see Fig. 5.14b). In the buffer layer, the generation

takes place in a relatively short area, but with much higher intensity than in the core region.

It is interesting to make a posteriori analysis of the numerical resolution. It has been considered that

the dissipation in the viscous sublayer was ε+ = 0.2. Indeed, this is very close to the value obtained

in the present work. The low dissipation of the viscoplastic fluid indicates that a grid designed with a

proper resolution for a Newtonian fluid is naturally adequate for a Bingham fluid with ηp = µ.

Figure 5.16 – Turbulent kinetic energy profile (a) and budgets (b). The solid lines are dissipation, the dashed lines
are generation and the dotted lines are transport components.

��� ��� ���

y +

�

�

�

�

�

�

k+

Bn= ��
Bn= �����
Bn= �����
Bn= �����

	�

��� ��� ���

y +


���


���

���

���

���

���

���

T
+
,G

+
,ε

+

εn= ��
εn= �����
εn= �����
εn= �����

	�

T + G +

ε +

Source: the author.

5.5 Chapter Summary

In this Chapter, the viscoplastic LB scheme developed in the present work has been applied in a case

study of viscoplastic turbulent flow. A turbulent channel flow with a Bingham fluid has been solved by

direct numerical simulations. The friction Reynolds number was fixed at 180, while the Bingham number

varied from 0 to 0.15. The non-dimensional parameter choice was such that the driving force and the

plastic viscosity were the same in all cases investigated. Surprisingly, increasing the yield stress caused

an increase in the bulk velocity, resulting in a minor drag reduction. It was shown that unyielded spots

are present in the upper inertial sublayer and core region of the flow. Contrary to some widespread ideas,

these unyielded spots do not disappear quickly, i.e., they move along with the mean flow and interact

with each other for a significant amount of time.

Another yield stress effect in this turbulent flow is to increase anisotropy of the velocity fluctuations.

A net outcome of that is a considerable decrease in the Reynolds shear stress. In the buffer layer, where

the most intense turbulent activity happens, the low Reynolds shear stress keeps the mean kinetic energy

elevated. In the present author’s opinion, this is a plausible explanation for the increased bulk velocity of

the viscoplastic fluid. This effect has nothing to do with the unyielded spots, because they only appear

in locations further away from the wall.

As a final note, it is worth to remember that the continuum fluid mechanics is valid only when

the Kolmogorov scale l⊕ ∼ (ε⊕)
−1/4 is at least an order of magnitude larger than the microstructural

particles that compose a real viscoplastic solution. Considering the non-dimensional parameters of the

present work, a water-based solution and a channel gap of 20 cm, the Kolmogorov scale is l ∼ 850 µm.
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This is much larger than bentonite or Carbopol particles (BAUDONNET et al., 2004; MESBOUA et al.,

2018), which compose some model fluids. Nevertheless, a continuum validity check must be carried out

when comparing DNS and experimental results.



94

6 FINAL REMARKS

This thesis document was opened with a literature review of viscoplastic turbulent flows. This topic

has been subject of studies for decades. Yet, technical difficulties amount and there are still many open

questions and debates. The development of a direct numerical simulation (DNS) tool was defined as

the main objective, with the hope it could provide meaningful physical insights. The lattice Boltzmann

method (LBM) was adopted due to its remarkable efficiency in parallel computation. However, the

existing numerical schemes in LBM for viscoplastic fluid flows had many limitations. Before diving into

viscoplastic turbulent flow, it was necessary to develop a particular scheme for the numerical treatment

of yield stress fluids.

The viscoplastic LB scheme had a very simple proposition. In LBM, the relaxation frequency has an

inverse proportionality with the viscosity, and setting it to zero would not lead to any indetermination.

Some of the most popular viscoplastic models, such as the Bingham constitutive equation, have a singu-

larity (η → ∞) in the unyielded portion of material. Thus, setting a null relaxation frequency in these

portions would represent the exact viscoplastic model without resorting to a viscosity regularization. The

method was made numerically stable with the regularization of ghost moments. Successful simulations

were carried out with a wide range of relaxation frequencies.

Validation was pursued by solving some benchmark viscoplastic laminar flows. In the steady-state

parallel plates Poiseuille problem, the error decay was observed to follow the second-order with the

spatial grid refinement. Overall, the steady-state laminar cases resulted in excellent agreements with

conventional numerical methods, such as finite volume and augmented Lagrangian methods. Usually,

the coupling between rate-of-strain and stress for a Bingham fluid has to be solved with inner-iterations,

because they have an implicit relationship. Fortunately, an exact solution for this relationship was found

for the Bingham fluid, due to the nature of how the stress tensor is evaluated in LBM. This feature

improved the simulations’ stability and accuracy even further. Startup and stopping viscoplastic flows

were solved to provide an assessment of the transient behavior. These case studies resulted in excellent

agreement with theoretical solutions available.

Finally, a case of viscoplastic turbulent flow was solved with direct numerical simulations. The

classical turbulent channel flow was chosen for this task. The viscoplastic LB scheme behave well under

the challenging circumstances of this type of problem. Some expected results were confirmed, such as

the minor drag reduction and the increased turbulence anisotropy caused by the yield stress. Some other

results tip the balance towards an idea that has been less in vogue, namely, the presence of unyielded spots

in the turbulent flow is possible. As an indication of that, unyielded spots were observed in the core region

of the flow in vast quantities and with significant life-times. Moreover, the yield stress had a significant

impact in the turbulent intensities, meaning that conventional Reynolds-averaged Navier-Stokes (RANS)

models have to be modified for this type of material. The numerical data revealed interesting implications

for rheometry and experimentation with viscoplastic turbulent flows. The mean wall shear rate exceeds

the range of common rheometers and viscometers. The Kolmogorov scale, which represents the smallest

turbulent eddies, was estimated for a prototypical flow. Clearly, for Reynolds numbers higher than the

one used in the present work, the microstructural particle size of real suspensions will be of the same
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order of the Kolmogorov scale, and the continuum approach will fail.

6.1 Pondering on Goals and Challenges

During the final sprint of this work the world was hit by the COVID-19 pandemic. Unfortunately, this

crisis had a direct impact on one of this thesis’ original goals. Viscoplastic turbulent flow in a pipe was

also intended to be solved by DNS. A GPU server was purchased in December 2019. It was supposed to

have arrived in April 2020. However, a series of factors made this impossible. The way around it was

to rent a cloud computing service for the direct numerical simulations, so it was done for the turbulent

channel flow case. The feeling of the present author and his advisors is that the channel flow case was

successful in the mission of substantiating this thesis and demonstrating the qualities of the proposed

numerical scheme.

During the project elaboration, a third goal was desired. At the time it seemed possible to work on

the development of closure models for the turbulent viscous stress in large eddy simulations, besides the

already mentioned goals. Indeed, as pointed out by one of the examiners, the amount of time needed for

this was underestimated, so it was left out. This decision was made even before the pandemic. Cutting

it out seemed to have made the thesis pursuit even stronger, because there was more time available to

dedicate on careful implementation and physical assessments (validation).

6.2 Future Work

In this section, some suggestions for future work are given. The DNS of turbulent viscoplastic

flow in a pipe is strongly recommended for future investigations, because there is greater availability

of experimental data. Even so, the formulation of model viscoplastic fluids and the visualization of

unyielded spots will continue to be challenging tasks in the experimental area in the next years. It would

be important to solve viscoplastic turbulent flows at higher Reynolds number to see if the yield stress

effects are suppressed. There are many other ways to take advantage of direct numerical simulations that,

due to time restrictions, were not done in the present work. Higher-order statistics, such as skewness and

flatness factors, could quantify asymmetry and intermittency, respectively. Moreover, the methodology

presented in this thesis would be an excellent tool for a deeper investigation of coherent structures and

how they are changed by yield stress.

The availability of DNS data of viscoplastic turbulent flows might prompt the development of turbu-

lence models for Reynolds-averaged Navier-Stokes (RANS) and large eddy simulations (LES). One of

the things to deal with is the turbulent viscous stress. In the present work, it was shown that this stress

has a negligible magnitude in the viscous and buffer layers, although it might be relevant in the core

region. It seems that the real challenge is related to the turbulence anisotropy caused by the viscoplastic

fluid, and the related decrease in the turbulent kinetic energy in the core region. In RANS, the turbulence

is considered isotropic, so a workaround might be damping the Reynolds stresses. In LES, turbulence

is considered isotropic only in the dissipative scales. However, a LES grid is typically truncated in a

length scale lying in the inertial sublayer. So, the challenge is to develop a sub-grid stress that correctly

produces the excess generation of turbulent kinetic energy caused by the viscoplastic fluid.
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It has been discussed throughout this work that the LBM grid uniformity was the most limiting aspect

of the method. The same statistical outcome presented in Chapter 5 could have been obtained with ten

times fewer grid nodes if a non-uniform grid was employed. The consequences would be tremendous.

A typical turbulent channel flow simulation could be solved in 90 minutes with a NVIDIA Tesla V100

(flow development plus fully developed phases). With a NVIDIA Tesla K20x, which is approximately

ten times cheaper, this case would take around 6 hours. The rectangular lattice that can make this possible

is illustrated in Figure 6.1. It looks as if a cubic lattice was stretched in one direction, and then, in another

direction. In the present author’s opinion, an aspect ratio of 5 would make this feature very appealing and

a game changer for computational fluid dynamics. Logically, this idealized rectangular lattice should be

free from numerical issues such as artificial dissipation and instability.

Figure 6.1 – Illustration of a rectangular lattice.

Source: the author.

6.3 Publications, Patents and Derivations

During the course of this thesis, journal articles, conference papers and software copyright have

been produced. The steady-state laminar results from Section 4.1 were published in the Journal of Non-

Newtonian Fluid Mechanics (LUGARINI et al., 2020). The present author had the opportunity to speak

in relevant international conferences, such as the VPF8 Viscoplastic Fluids: from Theory to Application

(VPF8 2019, Cambridge, UK) and the 18th International Congress on Rheology (ICR 2020, Rio de

Janeiro). Encouraging feedback has been received from the scientific community.

The contents of this work have been applied in other research projects being executed in the Research

Center for Rheology and Non-Newtonian Fluids of the Federal University of Technology – Paraná. The

regularization of ghost moments for the forcing LBM was used in a paper on particle settling, which

is currently under review in the Computers & Fluids journal. Two other papers using the viscoplastic

LB scheme in particle settling investigations are being prepared for submission. The exact solution for

the stress/rate-of-strain coupling and the DNS results for the viscoplastic turbulent channel flow are also

being prepared for submission.

A software copyright was obtained by the working group responsible for the GPU implementation,

of which the present author was part of. It was registered in the Brazilian Institute of Intellectual Property

under the number BR512020000669-8. A new version of this software is under way for particle-laden

turbulent flows.
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