UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE QUÍMICA E BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

BRUNO RAMOS DE LIMA

PREPARAÇÃO E CARACTERIZAÇÃO DE COMPLEXOS TRINUCLEARES DE FERRO(III) E COBALTO(II) COMO POTENCIAIS PRECURSORES DE ESTRUTURAS INORGÂNICAS ESTENDIDAS E COMPONENTES ANTIBACTERIANOS

DISSERTAÇÃO DE MESTRADO

CURITIBA 2020 **BRUNO RAMOS DE LIMA**

PREPARAÇÃO E CARACTERIZAÇÃO DE COMPLEXOS TRINUCLEARES DE FERRO(III) E COBALTO(II) COMO POTENCIAIS PRECURSORES DE ESTRUTURAS INORGÂNICAS ESTENDIDAS E COMPONENTES ANTIBACTERIANOS

Preparation and characterization of trinuclear complexes of iron(III) and cobalt(II) as potential precursors of extended inorganic structures and antibacterial components

Dissertação apresentada ao Programa de Pós-Graduação em Química da Universidade Tecnológica Federal do Paraná, Departamento Acadêmico de Química e Biologia – DAQBi – como requisito parcial para obtenção do título de Mestre em Química – Área de Concentração: Química Inorgânica.

Orientadora: Prof^a. Dr^a. Dayane Mey Reis.

Esta licença permite que outros remixem, adaptem e criem a partir do trabalho para fins não comerciais, desde que atribuam o devido crédito e que licenciem as novas criações sob termos idênticos. Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

< https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt >

CURITIBA 2020

Dados Internacionais de Catalogação na Publicação

Lima, Bruno Ramos de Preparação e caracterização de complexos trinucleares de ferro(III) e cobalto(II) como potenciais precursores de estruturas inorgânicas estendidas e componentes antibacterianos [recurso eletrônico] / Bruno Ramos de Lima. -- 2020. 1 arquivo texto (213 f.): PDF; 37,5 MB. Modo de acesso: World Wide Web. Título extraído da tela de título (visualizado em 05 nov. 2020). Texto em português com resumo em inglês. Dissertação (Mestrado) - Universidade Tecnológica Federal do Paraná. Programa de Pós-Graduação em Química, Curitiba, 2020. Bibliografia: f. 163-189. 1. Química - Dissertações. 2. Polímeros. 3. Química inorgânica. 4. Metais de transição. 5. Raman, Espectroscopia de. 6. Espectroscopia ultravioleta-visível (UV/VIS). 7. Espectroscopia de infravermelho. I. Reis, Dayane Mey, orient. II. Universidade Tecnológica Federal do Paraná - Programa de Pós-Graduação em Química, inst. III. Título. CDD: Ed. 23 -- 540 Biblioteca Ecoville da UTFPR, Câmpus Curitiba

Bibliotecária: Lucia Ferreira Littiere - CRB 9/1271 Aluna de Biblioteconomia: Josiane Mangueira

Ministério da Educação Universidade Tecnológica Federal do Paraná Diretoria de Pesquisa e Pós-Graduação

TERMO DE APROVAÇÃO DE DISSERTAÇÃO Nº 23

A Dissertação de Mestrado intitulada "**Preparação e Caracterização de Complexos Trinucleares de Ferro(III) e Cobalto(II) como Potenciais Precursores de Estruturas Inorgânicas Estendidas e Componentes Antibacterianos**", defendida em sessão pública pelo candidato **Bruno Ramos de Lima**, no dia 30 de setembro de 2020, foi julgada para a obtenção do título de Mestre em Química, área de concentração Química Inorgânica, linha de pesquisa Química de Coordenação, e aprovada em sua forma final, pelo Programa de Pós-Graduação em Química.

BANCA EXAMINADORA:

Profa. Dra. Dayane Mey Reis - Presidente - UTFPR Profa. Dra. Tatiana Renata Gomes Simões - UFPR Profa. Dra. Giselle Maria Maciel - UTFPR

A via original deste documento encontra-se arquivada na Secretaria do Programa, contendo a assinatura da Coordenação após a entrega da versão corrigida do trabalho.

Curitiba, 30 de setembro de 2020.

Carimbo e Assinatura do(a) Coordenador(a) do Programa

À minha mãe, Marilda.

Por me proteger e me impulsionar ao longo da vida. Por sempre acreditar em meus esforços, fazendo de tudo para me garantir a melhor educação possível.

AGRADECIMENTOS

Meus sinceros agradecimentos à minha orientadora, Prof^a. Dr^a. Dayane Mey Reis, por quem eu adquiri enorme respeito e carinho ao longo de toda a minha caminhada no ambiente de pesquisa. Obrigado pelos ensinamentos, pela confiança, por toda disposição em me orientar e pela oportunidade de integrar o Grupo de Química Inorgânica Sintética (GQuIS).

À Prof^a. Dr^a. Giselle Maria Maciel por sua valiosa contribuição neste trabalho; agradeço por toda disposição e paciência em me auxiliar com os testes antibacterianos. À Dr^a. Tatiane Brugnari e à Camila Souza, dos laboratórios de Biotecnologia e Microbiologia da UTFPR, pela assistência com a leitora de microplacas.

Agradeço à Prof^a. Dr^a. Renata Danielle Adati por acompanhar o meu trabalho desde o período de graduação e sempre contribuir com sugestões e correções no mestrado.

À Prof^a. Dr^a. Giovana Gioppo Nunes e à Prof^a. Dr^a. Jaísa Fernandes Soares, do Departamento de Química da UFPR, por concederem acesso aos equipamentos da UFPR, os quais foram indispensáveis na caracterização dos produtos sintetizados em laboratório. Agradeço em especial ao Me. Gabriel Barros Baptistella que frequentemente dispôs de seu tempo para poder me acompanhar nas análises de DRXP e espectroscopia Raman.

Agradeço enormemente à Ma. Francielli Sousa Santana, do Departamento de Química da UFPR, por me acompanhar desde o início com os trabalhos em laboratório e contribuir significativamente na resolução das estruturas cristalinas a partir da técnica de Difração de Raios X por Monocristal.

À Ma. Grazielli da Rocha pelas contribuições com técnica de DRXM e por auxiliar com as análises de Infravermelho que foram realizadas no departamento de Química da UFPR.

Ao Dr. Siddhartha Om Kumar Giese, pela assistência com as análises de Ressonância Paramagnética Eletrônica (RPE) e DRXP no Departamento de Química da UFPR.

À Ma. Rubia Camila Ronqui Bottini por sempre me ajudar com as análises de Infravermelho, UV/Vis e FAAS realizadas no Departamento Acadêmico de Química e Biologia (DAQBi) da UTFPR.

Aos técnicos responsáveis do Centro de Microscopia Eletrônica (CME) da UFPR.

À Prof^a. Dr^a. Paula Cristina Rodrigues, coordenadora do Programa de Pós-Graduação em Química da UTFPR.

Não posso deixar de agradecer aos meus queridos colegas do Grupo de Química Inorgânica Sintética (GQuIS): Bruno José Stoeberl, Eduardo Mariano Iwaya e Avany Judith Ferraro Moirim.

Agradeço à minha mãe, por quem eu tenho um amor incondicional; por toda educação e carinho, por sempre apoiar as minhas decisões e sempre me dar suporte quando precisei.

Ao Christian Gomes Fontoura Martins por todo companheirismo, atenção e paciência.

À CAPES pela concessão da bolsa de estudos.

Ao CNPq pelos investimentos no projeto.

A todos que direta ou indiretamente contribuíram para a realização deste trabalho.

"Je suis de ceux qui pensent que la Science a une grande beauté. Un savant dans son laboratoire n'est pas seulement un technicien: c'est aussi un enfant placé en face de phénomènes naturels qui l'impressionnent comme un conte de fées."

(Marie Curie)

"Eu estou entre aqueles que acreditam que a ciência tem grande beleza. Um cientista em seu laboratório não é apenas um técnico; é também uma criança colocada frente a fenômenos naturais que a impressionam como um conto de fadas."

(Marie Curie)

RESUMO

LIMA, B. R. Preparação e caracterização de complexos trinucleares de ferro(III) e cobalto(II) como potenciais precursores de estruturas inorgânicas estendidas e componentes antibacterianos. Dissertação (Mestrado em Química Inorgânica) - Programa de Pós-Graduação em Química, Universidade Tecnológica Federal do Paraná. Curitiba, 2020.

Constantemente a química inorgânica sintética desempenha um importante papel na obtenção de materiais de alto desempenho que apresentem comportamentos cada vez mais específicos. Uma classe muito versátil de estruturas inorgânicas que continuamente ganha destague em trabalhos acadêmicos é a dos denominados complexos "trinucleares que se apresentam na forma de triângulos oxocentrados". Esses arcabouços, em razão de sua rigidez estrutural intrínseca, comumente são explorados em procedimentos sintéticos que visam sua incorporação em materiais poliméricos como, por exemplo, na síntese de redes metalorgânicas (Metal-Organic Frameworks - MOFs). As estruturas inorgânicas estendidas, tanto poliméricas quanto supramoleculares, são de grande interesse em estudos relacionados à catálise de reações, sorção e separação de moléculas e desenvolvimento de BioMOFs para liberação de fármacos. As unidades de formação primária dos complexos trinucleares, por outro lado, por si só também abrangem uma série de propriedades de incontestável relevância, destacando-se neste trabalho o estudo de propriedades antibacterianas. Dessa forma, discorre-se, aqui, os resultados com relação a síntese e caracterização de guatro produtos: um polímero de coordenação unidimensional, {[Co(µ-bzc)(H₂O)₂](bzc)·H₂O}_n (A), utilizado como material de partida para a obtenção do oxocomplexo trinuclear heterometálico, $[Fe_2Co(\mu_3-O)(\mu-bzc)_6(H_2O)_3]$ (B); um complexo trinuclear homometálico, [Fe3(µ3-O)(µ-hbzc)6(OH2)2(OHCH3)]Cl·3H2O·3pyz(C) e um complexo trinuclear linear, $[Co_3(4,4'-bip)_4(trim)_2(H_2O)_{10}]\cdot(4,4'-bip)\cdot 8(H_2O)$ (D). Os produtos que resultaram na formação de oxocomplexos trinucleares (B e C) nunca foram previamente reportados pela literatura. As quatro estruturas foram caracterizadas com o auxílio da técnica de difração de raios X por monocristal (DRXM), observando-se uma boa correlação entre os modelos estruturais propostos e os mapas experimentais de distribuição de densidade eletrônica das células unitárias a partir dos índices R e Goodness-of-fit sobre F². O estudo das interações intermoleculares dos produtos baseouse na análise da superfície de *Hirshfeld* em *d_{norm.}* A pureza dos materiais foi confirmada por análises elementares para os teores de metais, C, H, N e pela técnica de difração de raios X por pó (DRXP). A análise térmica para A, B e C foi feita a partir de curvas TGA-DTG, as quais indicaram maior estabilidade para o produto (B) que inicia o processo de decomposição em temperaturas superiores a 110 °C. Todos os dados de análises espectroscópicas (IV, Raman, RPE e UV/Vis) corroboram com as particularidades inerentes a cada uma das estruturas. Os testes de atividade antibacteriana foram feitos para os oxocomplexos B e C frente a cepas de E. coli (Gram-negativa) e S. aureus (Grampositiva). O estudo se baseou no método de microdiluição em caldo para a determinação da CIM e CBM, obtendo-se resultados mais promissores, acerca da CIM, para a análise do produto B com relação a cepas de *E. coli*. Em termos de eficácia, verificou-se que a S. aureus apresentou sensibilidade similar entre os testes com o homometálico e o heterometálico.

Palavras-chave: Oxocomplexos trinucleares. Atividade antibacteriana. Estruturas inorgânicas estendidas.

ABSTRACT

LIMA, B. R. Preparation and characterization of trinuclear complexes of iron(III) and cobalt(II) as potential precursors of extended inorganic structures and antibacterial components. Dissertation (Master's degree in Inorganic Chemistry) - Programa de Pós-Graduação em Química, Universidade Tecnológica Federal do Paraná. Curitiba, 2020.

Frequently, synthetic inorganic chemistry performs a significant role in obtaining highperformance materials that exhibit increasingly specific behaviours. A highly versatile class of inorganic structures that continually gains prominence in academic works is the so-called "oxo-centred triangle structures". These clusters, due to their intrinsic structural rigidity, are commonly explored in synthetic procedures which aim for their incorporation in polymeric materials such as, for instance, in the synthesis of Metal-Organic Frameworks (MOFs). The extended inorganic structures, both polymeric and supramolecular, are of great interest in studies related to the catalysis of reactions, sorption and separation of molecules, and the development of BioMOFs for release of drugs. The trinuclear units, on the other hand, by themselves, encompass a series of properties of indisputable relevance, highlighting in this work the study of antibacterial properties. Therefore, this work brings results regarding the synthesis and characterisation of four products: a one-dimensional coordination polymer, $\{[Co(\mu-bzc)(H_2O)_2](bzc) H_2O\}_n$ (A), utilized as a starting material for obtaining the heterometallic trinuclear oxo-complex, $[Fe_2Co(\mu_3-O)(\mu-bzc)_6(H_2O)_3]$ (B); a trinuclear homometallic complex, $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$ (C) and a linear trinuclear complex, $[Co_3(4, 4'-bip)_4(trim)_2(H_2O)_{10}] \cdot (4, 4'-bip) \cdot 8(H_2O)$ (D). Products that resulted in the formation of trinuclear oxo complexes (B and C) are unprecedented. The four structures were characterised by Single-crystal X-ray Diffraction (SCXRD) technique, revealing an excellent correlation between the proposed structural models and the experimental maps of the electronic density distribution of the unit cells from the R and Goodness-of-fit on F² indexes. The study of intermolecular interactions of the products was based on analysis of *Hirshfeld* surface in *d_{norm}*. The purity of the materials was confirmed by elemental analysis for the content of metals, C, H, N and by the Powder X-ray Diffraction (PXRD) technique. The thermal analysis for A, B and C products was based on TGA-DTG curves, that indicated better stability for the product (B), which starts the decomposition process at temperatures above 110 °C. All spectroscopic analysis data (IR, Raman, EPR and UV/Vis) corroborate with the particularities inherent to each structure. Antibacterial activity tests were performed for oxo-complexes B and C against strains of E. coli (Gram-negative) and S. aureus (Gram-positive). This study was based on the broth microdilution method for the determination of MIC and MBC, obtaining more promising results of MIC for the analysis of product B concerning strains of E. coli. In terms of effectiveness, it was found that S. aureus showed similar sensitivity between the tests with homometallic and heterometallic.

Keywords: Trinuclear oxo-complexes. Antibacterial activity. Extended inorganic structures.

LISTA DE ILUSTRAÇÕES

Figura 1 – Representação geral de uma unidade trinuclear do tipo $[M_3(\mu_3-O)(\mu-OOCR)_6(L_2)_3]^n$, com ponte central μ_3 -oxo. M representa os íons metálicos (iguais ou distintos entre si) e L ₂ os ligantes terminais (iguais ou distintos entre si) 29
Figura 2 – Disposição e simetria dos orbitais atômicos na formação de um triângulo oxo-centrado
Figura 3 – SBUs orgânicas baseadas em carboxilatos, SBUs inorgânicas e suas representações geométricas
Figura 4 – Exemplo de uma <i>SBU</i> trinuclear isotrópica
Figura 5 – Exemplo de uma <i>SBU</i> trinuclear anisotrópica
Figura 6 – SBUs homometálicas homovalentes e heterovalentes
Figura 7 – SBUs heterometálicas homovalentes e heterovalentes
Figura 8 – Interações π e os respectivos mapas de potencial eletrostático. A região em vermelho possui densidade eletrônica negativa e em azul, positiva. (a) interação π face a face, (b) interação π face-aresta e (c) interação π face a face com deslocamento
Figura 9 – Sistema de cristalização por evaporação lenta44
Figura 10 – Reator comumente utilizado em sínteses hidrotérmica/solvotérmicas45
Figura 11 – Representação da parede celular e membrana plasmática de bactérias Gram-positivas 50
Figura 12 – (a) Representação da parede celular e membrana plasmática de bactérias Gram-negativas. (b) Lipopolissacarídeo constituído pelo Polissacarídeo O-específico, Polissacarídeo Cerne (Glu-Nac = N-acetilglicosamina, Glu = glicose, Gal = galactose, Hep = heptulose, P = fosfato, KDO = ácido cetodesoxioctanoico) e Lipídeo A (GlcN = glicosamina)

Figura 13 – Representação ORTEP com o esquema de numeração dos átomos de porção da estrutura polimérica formadora de {[Co(μ-*bzc*)(H₂O)₂](*bzc*)·H₂O}_n, produto A......**75**

Figura 15 – Superfície de Hirshfeld para $\{[Co(\mu-bzc)(H_2O)_2](bzc)\cdot H_2O\}_n$, produto A, evidenciando os *red spots*, destacados por setas verdes. A imagem foi gerada sobre o contraíon e a molécula de água de cristalização utilizando o *software CrystalExplorer17.5*.....**79**

Figura 16 – *Fingerprints* para a superfície gerada sobre o contraíon e molécula de água de cristalização do produto A. (a) Porcentagens de contribuições individuais de cada tipo de interação na composição da superfície de HF. (b) *Fingerprint* total e (c) *fingerprints* resultantes da decomposição do *fingerprint* total**80**

Figura 17 – (a) Representações esquemáticas das ligações de hidrogênio "a", "b" e "c" presentes em { $[Co(\mu-bzc)(H_2O)_2](bzc)\cdot H_2O$ }_n, produto A, e (b) representação das interações "a" e "b" com cadeias poliméricas adjacentes e interações "c" existentes entre os contraíons e moléculas de água de cristalização. A imagem foi gerada pelo *software* Mercury[®] a partir do arquivo CIF de dados para a estrutura......**82**

Figura 19 – Curvas TGA e DTG para o produto A, {[Co(µ-bzc)(H₂O)₂](bzc)·H₂O}_n..85

Figura 20 – Correlação do difratograma experimental do sólido obtido pela calcinação do produto A à 900 °C com os difratogramas simulados para os óxidos Co₃O₄ e CoO.**87**

 Figura 25 – Representação ORTEP com esquema de numeração dos átomos da estrutura molecular do complexo [Fe₂Co(µ₃-O)(µ-*bzc*)₆(H₂O)₃], produto B**94**

Figura 27 – Superfície de Hirshfeld para [Fe₂Co(μ₃-O)(μ-*bzc*)₆(OH₂)₃], produto B. Os *red spots* estão destacados pelas setas verdes. A imagem foi gerada sobre um arcabouço trinuclear utilizando o *software CrystalExplorer*17.5......**98**

Figura 31 – Empilhamento π face-aresta entre o centroide (C16, C17, C18, C19, C20, C21) e o átomo de hidrogênio H39. A linha em verde mostra a distância d(C-H). Imagem gerada pelo *software* Mercury[®] a partir do arquivo CIF de dados para a estrutura**101**

Figura 32 – Comparação entre os difratogramas simulado (gerado pelo *software* Mercury[®]) e experimental para [Fe₂Co(µ₃-O)(µ-*bzc*)₆(OH₂)₃], produto B......**102**

Figura 33 – Curvas TGA e DTG para o produto B, [Fe₂Co(µ₃-O)(µ-bzc)₆(OH₂)₃]...103

Figura 34 – Correlação do difratograma experimental do sólido obtido pela calcinação do produto B à 900 °C com o difratograma simulado de CoFe₂O₄.....**105**

Figura 35 – Espectros de absorção na região do infravermelho registrados para o produto B e para o material de partida empregado na síntese, o produto A**106**

Figura	36 -	Espectro	de	espalhamento	Raman	para	$[Fe_2Co(\mu_3-O)(\mu-bzc)_6(OH_2)_3],$
produte	в						

Figura 37 – Espectros de UV/Vis registrados em diferentes concentrações para o produto B......110

Figura 38 – Deconvolução do espectro de UV/Vis registrado para B na concentração de 2,200x10⁻⁴ mol L⁻¹.....**110**

Figura 40 – Representação ORTEP com o esquema de numeração dos átomos da estrutura molecular de [Fe₃(μ₃-O)(μ-*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*, produto C. Os átomos de hidrogênio e moléculas de água de cristalização foram omitidos para maior clareza.....**113**

Figura 41 – Arranjo espacial das unidades trinucleares homometálicas em [Fe₃(μ₃-O)(μ-*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*, produto C. A direção do eixo *c* da célula unitária encontra-se perpendicular ao plano da figura. As moléculas de pirazina, água de cristalização e os átomos de hidrogênio foram omitidos para maior clareza. Imagem gerada pelo *software* Mercury[®] a partir do arquivo CIF de dados para a estrutura......**117**

Figura 42–Superfície de Hirshfeld para [Fe₃(μ₃-O)(μ-*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*, produto C. Os *red spots* estão destacados pelas setas verdes. A imagem foi gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do complexo C utilizando o *software CrystalExplorer17.5*.....**117**

Figura 43 – *Fingerprints* para a superfície gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do complexo C. (a) Porcentagens de contribuições individuais de cada tipo de interação na composição da superfície de HF. (b) *Fingerprint* total e (c) *fingerprints* resultantes da decomposição do *fingerprint* total**118**

Figura 44 – Comparação entre os difratogramas simulado (gerado pelo software Mercury[®]) e experimental para $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]Cl \cdot 3H_2O \cdot 3pyz$, produto C......120 45 Curvas TGA Figura DTG C, _ е para produto 0 [Fe₃(µ₃-O)(µ-hbzc)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3pyz.....**121** Figura 46 – Correlação do drifratograma do produto C calcinado com o difratograma

Figura 47 – Espectros de absorção na região do infravermelho registrados em pastilhas de KBr para [Fe₃(μ_3 -O)(μ -*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*, produto C, e para os materiais de partida, ácido 4-hidroxibenzoico e pirazia**123**

Figura 48 – Espectro de espalhamento Raman para $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 2H_2O\cdot 3pyz$, produto C.....**125**

Figura 49 – Espectros de UV/Vis registrados em diferentes concentrações para o produto C......127

Figura 50 – Deconvolução do espectro de UV/Vis registrado para C na concentração de 1.00x10⁻⁵ mol L⁻¹.....**127**

Figura 52 – Representação ORTEP do complexo trinuclear baseado em cobalto(II), $[Co_3(4,4'-bip)_4(trim)_2(H_2O)_{10}] \cdot (4,4'-bip) \cdot 8(H_2O)$, produto D. As moléculas de cristalização foram omitidas para maior clareza.....**130** **Figura 53** – Superfície de Hirshfeld para $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D. Os *red spots* estão destacados pelas setas verdes. A imagem foi gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do complexo com o uso do *software CrystalExplorer17.5*......**133**

Figura 54 – *Fingerprints* para a superfície gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do produto D. (a) Porcentagens de contribuições individuais de cada tipo de interação na composição da superfície de HF. (b) *Fingerprint* total e (c) *fingerprints* resultantes da decomposição do *fingerprint* total**134**

Figura 56 – Empilhamento π face-face dos anéis aromáticos das moléculas de 4,4'-bipiridina coordenadas ao Co3 e as moléculas de 4,4'-bipiridina de cristalização......**137**

Figura 57 – Empilhamento π face-face dos anéis aromáticos das moléculas de 4,4'bipiridina terminais, coordenadas à Co1 ou Co1ⁱ, de unidades trinucleares adjacentes**138**

Figura 58 – Comprimento da unidade trinuclear, produto D138

Figura 59 – Espectros de absorção na região do infravermelho registrados em pastilhas de KBr para $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D, e para os materiais de partida, ácido trimésico e 4,4'-bipiridina**139**

Figura 60 – Espectro de espalhamento Raman para $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D......**141**

LISTA DE ESQUEMAS

Esquema 4 – Visualização simplificada da metodologia sintética conduzida na reação entre FeCl₃·6H₂O, ácido 4-hidroxibenzoico (*Hhbzc*) e pirazina (*pyz*) para a preparação do produto C.....**143**

Esquema 5 – Visualização simplificada da metodologia sintética conduzida na reação entre CoCl₂·6H₂O e benzoato de potássio (*Kbzc*) para a preparação do produto A ... **145**

Esquema 6 – Visualização simplificada da metodologia sintética conduzida na reação entre CoCl₂·6H₂O, ácido trimésico (*H*₃*trim*), 4,4'-bipiridina (*4,4'-bip*) e KOH para a preparação do produto D**145**

Esquema 7 – Reação de conversão da resazurina à resorufina......151

LISTA DE QUADROS E FLUXOGRAMAS

Quadro 2 – Análise de atividade antibacteriana para trinucleares na forma de triângulos oxocentrados (PhCO₂ = benzoato; MeOH = metanol; α -*fur* = furoato; 3Cl-*py*= 3-cloropiridina). Estreptomicina, Isoniazida e Rifampicina constituem os antibióticos de referência......**56**

Quadro 3 – Estudo comparativo do comprimento de ligação da unidade assimétrica (UAs) para diferentes polímeros de coordenação de cobalto **147 / 148 / 149 / 150**

Fluxograma 3 – Rota sintética empregada para a obtenção do oxocomplexo trinuclear $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$, produto C, visualização da morfologia BFDH e coloração dos seus cristais**67**

LISTA DE TABELAS

Tabela 1 – Intensidade das ligações de hidrogênio e parâmetros geométricos41
Tabela 2 – Mecanismos de ação antibacteriana associada aos íons de metais detransição
Tabela 3 – Relação de reagentes e solventes 62
Tabela 4 – Concentrações das soluções entoque para os produtos B e C e seusrespectivos reagentes de partida
Tabela 5 – Informações sobre a coleta de dados usados na determinação erefinamento da estrutura polimérica { $[Co(\mu-bzc)(OH_2)_2](bzc) \cdot H_2O]_n$, produto A76
Tabela 6 – Parâmetros geométricos selecionados para { $[Co(\mu-bzc)(H_2O)_2](bzc) \cdot H_2O]_n$,produto A. Os valores de <i>e.s.ds</i> para comprimentos e ângulos de ligações encontram-se entre parênteses
Tabela 7 – Valores de comprimentos e ângulos de ligação de hidrogênio para {[Co(μ - bzc)(H ₂ O) ₂](bzc)·H ₂ O} _n , produto A
Tabela 8 – Comparação entre as porcentagens teórica e experimental de carbono ehidrogênio para a espécie polimérica { $[Co(\mu-bzc)(H_2O)_2](bzc)\cdot H_2O]_n$, produto A83
Tabela 9 – Dados térmicos para o produto A com relação a cada faixa detemperatura85
Tabela 10 – Atribuições tentativas das bandas de absorção características na regiãodo infravermelho (cm ⁻¹) registradas para o produto A, para o ácido benzoico, <i>Hbzc</i> , epara o benzoato de potássio, <i>Kbzc</i> 90
Tabela 11 – Atribuições tentativas das bandas de espalhamento Raman registradaspara o produto A91
Tabela 12 – Informações sobre a coleta de dados usados na determinação e refinamento da estrutura do complexo [EeoCo(us O)(u bzo)c(OHc)a] produto P

Tabela 15 – Comparação entre as porcentagens teórica e experimental de ferro, cobalto, carbono e hidrogênio para [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃], produto B**102**

Tabela 16 – Dados térmicos para o produto B com relação a cada faixa detemperatura103

Tabela 19 – Parâmetros energéticos e atribuições tentativas para as bandas de absorção deconvoluídas a partir do espectro eletrônico registrado para B......**111**

Tabela 20 – Informações sobre a coleta de dados usados na determinação erefinamentodaestruturamoleculardocomplexo $[Fe_3(\mu_3-O)(\mu - hbzc)_6(OH_2)_2(OHCH_3)]CI·3H_2O·3pyz$, produto C.**114**

Tabela 21 – Parâmetros geométricos selecionados para o oxocomplexo $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]Cl\cdot 3H_2O\cdot 3pyz$, produto C. Os valores de *e.s.ds* para comprimentos e ângulos de ligações encontram-se entre parênteses**115**

Tabela 22 – Comparação entre as porcentagens teórica e experimental de ferro,carbono, hidrogênio e nitrogênio para [Fe₃(μ₃-O)(μ-hbzc)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*, produto C119

 Tabela 23 – Dados térmicos para o produto C com relação a cada faixa de temperatura

 121

Tabela 25 – Atribuições tentativas das bandas de espalhamento Raman registradaspara o produto C**126**

Tabela 26 – Informações sobre a coleta de dados usados na determinação e refinamento da estrutura $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D......**131**

Tabela 27 – Parâmetros geométricos selecionados para o complexo $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D. Os valores de *e.s.ds* para comprimentos e ângulos de ligações encontram-se entre parênteses......**132**

 Tabela 28 – Parâmetros geométricos para as ligações de hidrogênio observadas no produto D.

 135 / 136

Tabela 29 – Atribuições tentativas das bandas de absorção características na região do infravermelho (cm⁻¹) registradas para o produto D, para o ácido trimésico, H_3 trim, e para a 4,4'-bipiridina, 4,4'-bip.....**140**

Tabela 30 – Atribuições tentativas das bandas de espalhamento Raman registradaspara o produto D141

Tabela 31 – Valores de CIM e CBM encontrados para o produto B frente a cepas de
E. coli e S. aureus
Tabela 32 – Valores de CIM e CBM encontrados para o produto C frente a cepas de
E. coli e S. aureus

LISTA DE ABREVIATURAS, SIGLAS E ACRÔNIMOS

1,3,5-BTC	1,3,5- benzenotricarboxilato
2-stp	Ácido 2-sulfotereftálico
3CI-py	3-cloropiridina
4,4'-bip	4,4'-bipiridina
ATCC	American Type Culture Collection
ΑΤΡ	Adenosine triphosphate
BioMOFs	Metal-Organic Frameworks for Biological and Medical Applications
BFDH	Bravais, Friedel, Donnay e Harker
boaba	3,5-bis(carboximetoxi)benzoato
bzc	Benzoato
СВМ	Concentração Bactericida Mínima
CC	Controle de Crescimento
CE	Controle de Esterilidade
CIF	Crystallographic Information File
CIM	Concentração Inibitória Mínima
COD	Crystallography Open Database
CSD	Cambridge Structural Database
DBM	Dibenzoilmetanato
DMSO	Dimetilsulfóxido
DNA	Deoxyribonucleic acid
DO	Densidade Óptica
dpp	1,3-di(4-piridil)propano
DRXM	Difratometria de Raios X por Monocristal
DRXP	Difratometria de Raios X por Pó
DTG	Derivative Thermogravimetry
e.s.ds	Estimated Standard Deviations (desvios-padrão estimados)
EPR	Electron Paramagnetic Resonance
ERO	Espécies Reativas de Oxigênio
Gal	Galactose
GIcN	Glicosamina
Glu	Glicose
Glu-Nac	N-acetilglicosamina
GQuIS	Grupo de Química Inorgânica Sintética
H ₃ trim	Acido trimésico
Hbzc	Acido benzoico
hbzc	4-hidroxibenzoato
Нер	Heptulose
Hhbzc	Acido 4-hidroxibenzoico
IR	Intrared Absorption Spectroscopy
IV	Espectroscopia de Absorção na Região do Infravermelho

Kbzc	Benzoato de potássio
KDO	Ácido cetodesoxioctanoico
LH	Ligação de hidrogênio
LHAC	Ligação de Hidrogênio Assistida por Carga
LPS	Lipopolissacarídeos
MBC	Minimal Bactericidal Concentration
MeOH	Metanol
MIC	Minimal Inhibitory Concentration
MOF	Metal-Organic Framework
ORTEP	Oak Ridge Thermal-Ellipsoid Plot
PCs	Polímeros de Coordenação
PhCO ₂	Benzoato
PTFE	Politetrafluoretileno
pTS	4-metilbenzenosulfonato
PXRD	Powder X-ray Diffraction
ру	Piridina
pyterpy	4'-(4'''-piridil)-2,2':6'2''-terpiridina
руz	Pirazina
qox	Quinoxalina
RPE	Ressonância Paramagnética Eletrônica
SBUs	Secondary Building Units
SCXRD	Single Crystal X-Ray Diffraction
stp	2-sulfotereftalato
ΤϹΙϒ	Transferência de Carga de Intervalência
TCLM	Transferência de Carga do Ligante para o Metal
ТСММ	Transferência de Carga Metal-Metal
TGA	Thermogravimetric Analysis
trim	Trimesato
UFPR	Universidade Federal do Paraná
UTFPR	Universidade Tecnológica Federal do Paraná
UV/Vis	Espectroscopia de Absorção na Região do Ultravioleta-Visível
XRD	X-Ray Diffraction
α-fur	Furoato

LISTA DE SÍMBOLOS

Å	Angstrom / ångström – 1 Å = 10 ⁻¹⁰ m
a, b, c	Comprimentos das arestas da célula unitária
d(CC)	Distância centroide-centroide
d(CH)	Distância centroide-hidrogênio
de	Distância da superfície de Hirshfeld ao átomo externo mais próximo
di	Distância da superfície de Hirshfeld ao átomo interno mais próximo
d _{norm}	Distância de contato normalizada
F(<i>hkl</i>)	Fator de estrutura
g	Constante de acoplamento giromagnético
hkl	Índices de Miller
R	Índice de discordância entre o modelo estrutural proposto e o
	mapa experimental de distribuição de densidade eletrônica de
	célula unitária
Z	Número de fórmulas por célula unitária
α, β e γ	Ângulos entre as arestas da célula unitária
δ	Deformação angular no plano
θ	Ângulo de deflexão
λ	Comprimento de onda da radiação
μ	Coeficiente de absorção
μ	Simbologia utilizada na nomenclatura de complexos para
	indicar um grupo que une dois ou mais centros de coordenação
π	Deformação angular fora do plano
ε	Absortividade molar
Vas	Estiramento antissimétrico
Vs	Estiramento simétrico

SUMÁRIO

1 INTRODUÇÃO	.25
2 OBJETIVOS	.28
2.1 OBJETIVO GERAL	.28
2.2 OBJETIVOS ESPECÍFICOS	.28
3 REVISÃO BIBLIOGRÁFICA	.29
3.1 TRINUCLEARES NA FORMA DE TRIÂNGULOS OXOCENTRADOS	.29
3.1.1 Estudos Pioneiros	.29
3.1.2 Oxocomplexos	31
3.1.3 Estruturas Inorgânicas Estendidas: Polímeros de Coordenação	35
3.1.4 Estruturas Inorgânicas Estendidas: Compostos Supramoleculares	.40
3.1.4.1 Ligações de Hidrogênio	41
3.1.4.2 Interações Dipolo-dipolo Íon-dipolo e Íon-íon	42
3.1.4.3 Interações π	.42
3.2 MÉTODOS DE CRISTALIZAÇÃO	.44
3.3 APLICAÇÕES	.46
3.3.1 Aplicações gerais	46
3.3.2 Atividade antibacteriana	.48
3.3.2.1 Permeabilidade da parede celular bacteriana	.49
3.3.2.2 Mecanismos de ação	.52
3.3.2.3 Atividade antibacteriana de complexos trinucleares na forma de triângu	los
oxocentrados	56
4 METODOLOGIA	.58
4.1 EQUIPAMENTOS E CARACTERIZAÇÕES	.58
4.1.1 Difratometria de Raios X por Monocristal (DRXM)	.58
4.1.2 Difratometria de Raios X por Pó (DRXP)	.59
4.1.3 Espectroscopia de Absorção na Região do Infravermelho (IV)	.59
4.1.4 Espectroscopia Vibracional de Espalhamento Raman	59
4.1.5 Espectroscopia de Ressonância Paramagnética Eletrônica (RPE)	.60
4.1.6 Espectroscopia de absorção da região do ultravioleta-visível (UV/Vis)	.60
4.1.7 Análise Elementar – Dosagem dos teores de metais, carbono, hidrogêni	o e
nitrogênio	60
4.1.8 Análise Termogravimétrica (TGA-DTG)	.61

4.1.9 Leitura de microplacas61
4.2 SOLVENTES E REAGENTES62
4.3 PROCEDIMENTOS SINTÉTICOS63
4.3.1 Obtenção de um polímero de coordenação contendo cobalto(II)
– Produto A63
4.3.2 Obtenção de um oxocomplexo trinuclear heterometálico baseado em
ferro(III) e cobalto(II) – Produto B64
4.3.3 Obtenção de um oxocomplexo trinuclear homometálico baseado em
ferro(III) – Produto C
4.3.4 Preparação do complexo trinuclear [Co ₃ (4,4'-bip) ₄ (trim) ₂ (H ₂ O) ₁₀]·(4,4'-
<i>bip</i>)·8(H₂O) – Produto D67
4.4 ESTUDO DE PROPRIEDADES ANTIBACTERIANAS69
4.4.1 Preparo dos materiais e meios de cultura69
4.4.2 Preparo das soluções estoque70
4.4.3 Procedimentos
5 RESULTADOS E DISCUSSÃO
5.1 CARACTERIZAÇÃO DO PRODUTO A74
5.1.1 Difratometria de Raios X por Monocristal (DRXM)74
5.1.2 Análise Elementar e Difratometria de Raios X por Pó (DRXP)83
5.1.3 Análise Termogravimétrica (TGA-DTG)84
5.1.4 Espectroscopia Vibracional de Absorção na Região do Infravermelho
(IV)
5.1.5 Espectroscopia Vibracional de Espalhamento Raman90
5.1.6 Espectroscopia de Ressonância Paramagnética Eletrônica (RPE)92
5.2 CARACTERIZAÇÃO DO PRODUTO B94
5.2.1 Difratometria de Raios X por Monocristal (DRXM)94
5.2.2 Análise Elementar e Difratometria de Raios X por Pó (DRXP)102
5.2.3 Análise Termogravimétrica (TGA-DTG)103
5.2.4 Espectroscopia Vibracional de Absorção na Região do Infravermelho
(IV)
5.2.5 Espectroscopia Vibracional de Espalhamento Raman
5.2.6 Espectroscopia de absorção da região do ultravioleta-visível (UV/Vis)109
5.2.7 Espectroscopia de Ressonância Paramagnética Eletrônica (RPE)112
5.3 CARACTERIZAÇÃO DO PRODUTO C113

5.3.1 Difratometria de Raios X por Monocristal (DRXM)	113
5.3.2 Análise Elementar e Difratometria de Raios X por Pó (DRXP)	119
5.3.3 Análise Termogravimétrica (TGA-DTG)	120
5.3.4 Espectroscopia Vibracional de Absorção na Região do Infraverm	ielho
(IV)	123
5.3.5 Espectroscopia Vibracional de Espalhamento Raman	125
5.3.6 Espectroscopia de absorção da região do ultravioleta-visível (UV/Vis)) 126
5.3.7 Espectroscopia de Ressonância Paramagnética Eletrônica (RPE)	128
5.4 CARACTERIZAÇÃO DO PRODUTO D	130
5.4.1 Difratometria de Raios X por Monocristal (DRXM)	130
5.4.2 Espectroscopia Vibracional de Absorção na Região do Infraverm	ielho
(IV)	139
5.4.3 Espectroscopia Vibracional de Espalhamento Raman	141
5.5 CORRELAÇÕES ENTRE SÍNTESE E ESTRUTURA NOS SISTE	EMAS
ESTUDADOS	142
5.6 ANÁLISE DE ATIVIDADE ANTIBACTERIANA	151
5.6.1 Análise de atividade antibacteriana do produto B	152
5.6.2 Análise de atividade antibacteriana do produto C	156
6 CONSIDERAÇÕES FINAIS E PERSPECTIVAS FUTURAS	159
REFERÊNCIAS	163
ANEXOS	190

1 INTRODUÇÃO

A química inorgânica sintética está em constante sintonia com as necessidades e demandas tecnológicas do mundo atual. A habilidade de manipular as características de materiais inorgânicos, para que estes exibam propriedades profícuas, promovem a imponência desta área de pesquisa. Os crescentes estudos relacionados à química de coordenação e à engenharia de cristais é resultado da grande versatilidade destes compostos inorgânicos, os quais podem vir de encontro com a química de materiais.¹⁻⁸

Um importante grupo de estruturas inorgânicas que vêm sendo extensivamente exploradas no âmbito sintético são os denominados "oxocomplexos trinucleares", ou, mais acuradamente, trinucleares que se apresentam na forma de oxocentrados.9 triângulos Estes complexos possuem fórmula genérica $[M_3(\mu_3-O)(\mu-L_1)_6(L_2)_3]^n$, onde: M = metal de transição; L₁ = ligante carboxilato em ponte, L_2 = ligante terminal; n = carga do arcabouço. Tais complexos apresentam uma ponte µ3-oxo central que se coordena aos três íons metálicos com um ângulo aproximado de 120° entre as ligações. Os centros metálicos, que podem ter naturezas distintas, encontram-se em ambiente octaédrico no qual uma ligação é feita com o grupo oxo, as quatro ligações perpendiculares à esta envolvem grupos carboxilatos que fazem ponte entre dois centros metálicos e a sexta ligação, diretamente oposta à ligação com a ponte oxo, é realizada com um ligante terminal.^{10; 11}

Os estudos desses complexos vêm de longa data e são justificados, principalmente, pela possibilidade de modulação das propriedades destas estruturas que pode ser feita a partir de diferentes combinações metal-ligante no arranjo triangular.¹¹ Sucintamente, as pesquisas são fundamentadas tanto no ordenamento e extensão no estado sólido, seja na forma polimérica ou a partir de interações não covalentes, quanto nos níveis estruturais discretos, no qual o escopo dos estudos independem do grau de organização, crescimento ou estado de agregação dos complexos.¹²⁻¹⁴

Embora seja inquestionável o grande número de trabalhos que envolvam trinucleares com ponte central μ_3 -oxo, é importante destacar a amplitude dos estudos de características e propriedades quando se engloba, ademais, complexos "não-*oxo*", tais como os "trinucleares lineares". De forma geral, o interesse por essas estruturas

provém da possibilidade de utilizá-las como blocos construtores e espaçadores rígidos na construção de estruturas inorgânicas estendidas.¹⁵⁻¹⁷

A obtenção dos denominados "compostos supramoleculares" e "polímeros de coordenação" (PCs) a partir de blocos construtores, despertam grande interesse da comunidade científica, isso porque esses compostos, além de atrelarem as particularidades dos íons metálicos e das moléculas orgânicas, têm como resultado um sistema organizado e, muitas vezes, robusto, que abre caminho para uma série de estudos concernentes às respectivas características estruturais, tais como a porosidade e rigidez estrutural.¹⁸⁻²⁰

Nos compostos supramoleculares, os arcabouços se estendem tridimensionalmente a partir de interações intermoleculares não covalentes, como: interações dipolo-dipolo, íon-dipolo, π stacking, ligações de hidrogênio, ligações de hidrogênio assistidas por carga ou a cooperatividade entre essas interações.²¹⁻²³ No caso de PCs, entretanto, os compostos trinucleares desempenham a função de blocos construtores que favorecem as extensões uni-, bi- ou tridimensionais a partir de ligações covalentes entre os arcabouços e interconectores orgânicos divergentes. Neste caso, a rigidez do bloco construtor vinculada à característica de direcionamento do crescimento polimérico confere à essa estrutura a denominação de "Secondary Building Unit" (SBU).^{18; 19; 24; 25} Para essas estruturas supramoleculares e poliméricas que apresentam porosidade intrínseca é possível destacar, dentre outros, os estudos relacionados ao armazenamento de gás, sorção e separação de moléculas e ao desenvolvimento de BioMOFs como matriz para a liberação controlada de fármacos.^{20; 26; 27}

Os triângulos oxocentrados em unidades discretas, entretanto, por si só abarcam uma série de pesquisas de incontestável relevância científica e tecnológica. É possível citar desde a utilização dessas estruturas em estudos de catálise homogênea, como na redução de nitrocompostos e oxidação de lipídeos insaturados, até, mais recentemente, no estudo de propriedades biológicas; destacando-se, aqui, a análise de atividade antibacteriana frente a um amplo espectro de microrganismos. ²⁸⁻³³

Estudos relacionados ao desenvolvimento de novas moléculas e complexos capazes de inibir o crescimento bacteriano se mostram cada vez mais cruciais na medida em que se constata crescente o problema de resistência bacteriana aos antibióticos. Os mecanismos de ação, neste caso, são numerosos e podem estar associados, por exemplo, à destruição da parede celular bacteriana, inibição de

mecanismos de transporte ou, ainda, pode se basear em uma intervenção multifatorial.³⁴

Uma vez explícitas as possibilidades de pesquisas em torno desses compostos, o presente trabalho está estruturado na seguinte linha: 1) síntese de polímero de coordenação e de blocos construtores trinucleares, 2) caracterizações dos materiais sintetizados a partir de técnicas espectroscópicas, difratométricas e termogravimétricas, atentando para as interações intermoleculares dos compostos e destacando as possibilidades acerca da obtenção de polímeros de coordenação a partir da incorporação desses blocos construtores e 3) análise de atividade antibacteriana a partir de unidades discretas de trinucleares, homo- e heterometálicos, que se apresentam na forma de triângulos oxocentrados, utilizando-se da metodologia de microdiluição em caldo para a determinação das concentrações inibitórias mínimas dos complexos.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Contribuir para o desenvolvimento de novos compostos de ferro(III) e de cobalto(II) contendo ligantes orgânicos *N*- e/ou *O*-doadores e avaliar uma potencial ação antibacteriana frente a bactérias Gram-positivas e Gram-negativas.

2.2 OBJETIVOS ESPECÍFICOS

- Sintetizar novos complexos homo- ou heterometálicos contendo ferro(III) e/ou cobalto(II) com ligantes orgânicos comerciais *N* e/ou *O*-doadores;
- Caracterizar os compostos obtidos no estado sólido e em solução por técnicas espectroscópicas (infravermelho, Raman, espectroscopia eletrônica e RPE), termogravimétricas e difração de raios X por pó e por monocristal;
- Avaliar, comparativamente, a sensibilidade e determinar os valores de CIM e CBM de cepas de *E. coli* (Gram-negativa) e *S. aureus* (Gram-positiva) com relação aos compostos mais promissores e aos seus respectivos materiais de partida.

3 REVISÃO BIBLIOGRÁFICA

3.1 TRINUCLEARES NA FORMA DE TRIÂNGULOS OXOCENTRADOS

Arcabouços que se apresentam na forma de triângulos oxocentrados, genericamente representados na Figura 1, constituem um importante grupo de estruturas inorgânicas polinucleares no âmbito da química sintética. Embora o arranjo triangular possa parecer simples, questões que envolvem estereoquímica, transferência de carga e demais particularidades desses compostos já renderam discussões veemente complexas ao longo da história.¹¹

Figura 1 – Representação geral de uma unidade trinuclear do tipo $[M_3(\mu_3-O)(\mu-OOCR)_6(L_2)_3]^n$, com ponte central μ_3 -oxo. M representa os íons metálicos (iguais ou distintos entre si) e L₂ os ligantes terminais (iguais ou distintos entre si).⁹

Fonte: Adaptado de SEO, J. S. et al. (2000).9

3.1.1 Estudos Pioneiros

Os primeiros estudos expressivos acerca de espécies trinucleares que apresentam proporções características de 3 espécies metálicas para 6 ligantes carboxilatos datam de 1908. Nesta época, os trabalhos de Alfred Werner e Rudolf Friedrich Weinland, publicados independentemente, relatavam procedimentos sintéticos para obtenção de carboxilatos de cromo.^{35; 36} Um ano depois, em 1909, dando seguimento à essa linha de pesquisa, R. F. Weinland e Ernst Gussmann publicaram conjuntamente outro trabalho acerca da síntese de carboxilatos de cromo

e ferro. Os procedimentos experimentais realizados até então evidenciaram grande estabilidade da composição trinuclear frente à uma série de reações.³⁷

Uma vez que ainda não havia técnicas de caracterizações estruturais poderosas e sofisticadas como as que existem hodiernamente, as geometrias dessas estruturas eram puramente especulativas. Para que houvesse concordância em termos elementares e de balanço de carga, sugeria-se que a composição de uma unidade trinuclear teria o que seria equivalente à dois íons hidróxido, de modo que a fórmula empírica mais comumente representada era, genericamente, [M₃(OH)₂(OOCR)₆]^{n+.11}

Ao contrário de outros pesquisadores, Werner preferiu se abster de propor um modelo estrutural para este complexo. Muitos dos modelos que foram propostos, como os apresentados no Esquema 1, conflitavam com a teoria de coordenação octaédrica, especialmente quando se tratava de complexos baseados em cromo(III) e ferro(III). Werner ressaltou que para a formulação que se tornara padrão, existiriam mais posições de coordenação disponíveis.¹¹ Nesse sentido, foram desenvolvidos trabalhos, como os de Von Hans Reihlen, tratando da importância espacial do número de coordenação para compostos de maior nuclearidade.^{38; 39}

Esquema 1 – Proposições estruturais lineares para compostos trinucleares na forma [M₃(OH)₂(OOCR)₆]ⁿ⁺.

Fonte: Adaptado de REIHLEN, H. (1920, 1924).38; 39

A disposição triangular das espécies metálicas foi proposta pioneiramente pelo físico Lars A. Welo, em 1928, a partir de dados magnéticos. Tal proposta estrutural, entretanto, não foi prontamente aceita pelos químicos e considerava, ainda, a presença de dois íons OH⁻ na composição.⁴⁰

Apenas em 1960, com os trabalhos de Leslie Eleazer Orgel, mostrou-se como o arranjo trigonal poderia ser construído a partir da presença de uma ponte oxo (O²⁻) central em vez de dois hidróxidos, como especulado previamente. Orgel considerou cada íon metálico como tendo geometria octaédrica, retomou os resultados de interação magnética feitos por Welo em 1928 e fez uma analogia dessa "nova estrutura" com outras que apresentavam ponte oxo central, como o "acetato básico de berílio" e "dióxido de titânio".⁴¹

Por fim, corroborando com a proposição estrutural de Orgel, o trabalho de B. N. Figgis e G. B. Robertson, publicado na *Nature* em 1965, revelou a estrutura trinuclear tal qual como é conhecida hoje a partir de investigações por difração por raios X.⁴² Em 1985, a partir dos estudos de Blake e colaboradores, a técnica também mostrou-se imprescindível na comprovação da constituição do primeiro complexo trinuclear contendo espécies metálicas distintas entre si no qual o procedimento experimental fora reportado em 1928 nos trabalhos de Weinland e Holtmeier.^{43; 44}

3.1.2 Oxocomplexos

Os denominados "oxocomplexos" são estruturas inorgânicas caracterizadas por apresentar um ou mais grupos O²⁻ coordenados à uma ou mais espécies metálicas.^{45; 46}

Comumente, a formação destas espécies envolve a abstração de dois prótons (H⁺) de uma molécula de água que se encontra inicialmente coordenada ao íon metálico. As condições químicas e físicas do meio (como pH, concentração das espécies, natureza do íon metálico, temperatura) poder conduzir a formação de uma grande variedade de oxocomplexos com número de ligações e geometrias distintas, como pode-se verificar no Esquema 2.⁴⁵⁻⁴⁷

Esquema 2 – Algumas possibilidades de ligações e geometrias de oxocomplexos. (a) geometria angular, (b) dupla pote simétrica, (c) dupla pote assimétrica, (d) pontes lineares, (e) triângulos oxocentrados, (f) geometria piramidal, (g) geometria tetraédrica, (h) quadrado oxocentrado, (i) geometria em gangorra, (j) geometria bipirâmide trigonal, (k) geometria octaédrica, (l e m) geometria linear de ligações múltiplas, (n) geometria angular de ligações múltiplas, (o, p e q) oxocomplexos com ligações simples e múltiplas.^{45; 48; 49}

Fonte: Adaptado de COTTON, F. A. et al. (1999).45

Dentre a grande variedade estrutural desses compostos inorgânicos, os denominados "triângulos oxocentrados", Esquema 2e, compõem um dos grupos mais estudados não apenas no âmbito da química inorgânica sintética, mas também nas áreas de química bioinorgânica, química teórica e de materiais como será mais bem explanado nas seções seguintes.

Nas espécies químicas onde o átomo de oxigênio possui hibridização sp^3 , a geometria observada é a piramidal como, por exemplo, no caso do íon hidroxônio. No caso dos compostos denominados "triângulos oxocentrados", entretanto, o ligante oxo, que está contido no eixo de simetria C₃, apresenta geometria trigonal plana, indicando a hibridização sp^2 do átomo de oxigênio. Desta forma, o orbital p_z do ligante oxo, perpendicular ao plano das ligações com as espécies metálicas (Figura 2), possui
simetria apropriada para se combinar com os orbitais *d* dos íons metálicos num mecanismo análogo ao de retrodoação.^{12; 50; 51}

Figura 2 – Disposição e simetria dos orbitais atômicos na formação de um triângulo oxocentrado.

Fonte: Adaptado de BACA, S. G. et al. (2008).51

Uma grande variedade de metais pode levar a formação de triângulos oxocentrados, sendo os mais comuns os compostos trinucleares baseados em Fe, Co, Ni, Mn, Cr, Cu, Ru e V. As condições reacionais para a formação dos destas espécies não é padrão. Um dos mecanismos de formação da ponte oxo em espécies que envolvem o íon ferro(III), entretanto, pode ser exemplificado pelas etapas descritas a seguir:^{45; 47}

1°) Quando o pH se encontra abaixo de 1, no meio aquoso existirá predominantemente os complexos de hexaaquaferro(III), [Fe(H₂O)₆]³⁺.⁴⁷

2°) O pH, quando encontra-se acima de 1 e abaixo de 4, faz com que ocorra a hidrólise de um dos ligantes *aqua*, como apresentado na Equação (1):⁴⁵

$$[Fe(H_2O)_6]^{3+}_{(aq)} \rightleftharpoons [Fe(OH)(H_2O)_5]^{2+}_{(aq)} + H^+_{(aq)}$$
(1)

3°) As espécies [Fe(OH)(H₂O)₅]²⁺ condicionam, então, a formação do dímero μ-oxo, como mostrado na Equação (2):^{45; 48}

$$2 \left[Fe(0H)(H_20)_5 \right]_{(aq)}^{2+} \rightleftharpoons \left[(H_20)_5 Fe0Fe(H_20)_5 \right]_{(aq)}^{4+} + H_2O_{(l)}$$
(2)

4°) A partir do dímero formado, agora representado simplificadamente como [Fe₂O]⁴⁺, pode haver a ocorrência de reações não sistemáticas que conduzem à formação de novos oxocomplexos, como os apresentados nas Equações (3) e (4):⁴⁷

5°) As condições de pH, concentração de espécies, temperatura, presença e natureza de espécies químicas capazes de realizar ligações em ponte entre os centros metálicos, podem favorecer a formação dos triângulos oxocentrados apresentados na Equação (3).^{45; 47}

Os triângulos oxocentrados podem gerar um grupo ainda mais específico de oxocomplexos denominados "carboxilatos trinucleares". Nesses sistemas, o íon metálico hexacoordenado, em geometria octaédrica, realiza quatro ligações em ponte com as outras duas espécies metálicas da unidade M₃O a partir de ânions carboxilatos.^{11; 47}

Já há algum tempo, esse grupo de oxocomplexos vem despertando grande interesse em diversas áreas de estudos. Destaca-se aqueles relacionados à transferência de carga mediada pelas pontes oxo e carboxilato e estudos de sistemas biomiméticos de metaloproteínas (como da ferritina). Também de grande relevância são os estudos da aplicação destas espécies trinucleares como componentes precursores na síntese de compostos inorgânicos de estrutura estendida (os polímeros de coordenação) e, ainda, em estudos concernentes à síntese de novos materiais que apresentem propriedades magnéticas.^{33; 52-54}

3.1.3 Estruturas Inorgânicas Estendidas: Polímeros de Coordenação

De forma recorrente, diferentes tipos de arcabouços polinucleares, como as estruturas trinucleares, vêm sendo explorados em estratégias sintéticas na modelagem de estruturas inorgânicas poliméricas, constituindo os denominados "Polímeros de Coordenação" (PCs). Quando as estruturas estendidas apresentam rigidez estrutural e porosidade em potencial, os PCs recebem a denominação específica de "Redes Metalorgânicas" (*MOFs - Metal Organic Frameworks*).⁵⁵ A incorporação de arcabouços trinucleares na arquitetura do polímero rende estabilidade e robustez suficientes para a demanda em estudos que focam as mais diversas aplicações.⁵⁶⁻⁵⁸

Uma vez que essas estruturas apresentem rigidez intrínseca e funcionem como blocos construtores na formação dos denominados "Polímeros de Coordenação", elas recebem a denominação particular de "*Secondary Building Units*". Essas unidades direcionam o crescimento do polímero na medida em que são capazes de controlar o ambiente de coordenação entre os íons metálicos e os interconectores orgânicos, possibilitando, assim, inferir sobre a topologia final do polímero a partir dos seus pontos de coordenação, tornando o procedimento sintético mais racionalizado.⁵⁹⁻⁶¹

A Figura 3 apresenta algumas *SBUs* orgânicas baseadas em carboxilatos, *SBUs* inorgânicas e suas respectivas representações geométricas. As representações geométricas dadas às *SBUs* orgânicas dão ênfase ao número de pontos de coordenação gerados a partir dos grupos carboxilatos. Para as *SBUs* inorgânicas, particularmente, a representação geométrica não indica necessariamente a direção de crescimento do polímero, visto que existe uma infinidade de possibilidades de crescimento da cadeia polimérica a partir dos pontos de coordenação que não envolvem grupos carboxilatos. Em termos estruturais, a extensão de *SBUs* inorgânicas a partir dos conferiria maior robustez ao polímero devido à existência de ligações mais fortes entre as suas entidades formadoras.^{62; 63}

Figura 3 – *SBUs* orgânicas baseadas em carboxilatos, *SBUs* inorgânicas e suas representações geométricas.⁶³

Fonte: Adaptado de YAGHI, O. M.; et al. (2003).63

A topologia, ou seja, o estudo da forma e disposição física no espaço dos elementos formadores do polímero, é altamente dependente das formas geométricas das *SBUs*.^{64; 65} Para espécies inorgânicas, em específico, existe uma pluralidade de estruturas geométricas que podem variar tanto com relação ao número de centros metálicos quanto com relação à direcionalidade de automontagem da rede polimérica. Em termos topológicos, estas estruturas podem se classificar em isotrópicas ou anisotrópicas. *SBUs* isotrópicas proporcionam o crescimento dos polímeros de coordenação a partir de um tipo de ligante apenas e esses ligantes encontram-se em ambientes químicos análogos (Figura 4).⁶⁶

Figura 4 – Exemplo de uma SBU trinuclear isotrópica.67

Fonte: Adaptado de ZHENG, Y.-Z.; et al. (2007).67

As *SBUs* anisotrópicas, em contrapartida, são caracterizadas por condicionarem o crescimento polimérico a partir de ambientes químicos distintos, gerando PCs com maior nível de complexidade e direcionalidade de automontagem. A Figura 5 exemplifica essa situação. As esferas, representadas em azul, amarelo e vermelho explicitam a existência de uma rede polimérica com porosidades distintas, identificadas, na figura, pelo diâmetro de cada esfera.⁶⁶

Figura 5 – Exemplo de uma SBU trinuclear anisotrópica.68

Fonte: Adaptado de REN, G.; et al. (2012).68

Alguns arcabouços podem ser constituídos por íons metálicos diferentes. Neste segmento, é possível classificar esses blocos construtores quanto à valência dos íons (estruturas homovalentes ou heterovalentes) e quanto a natureza dos íons que formam os arcabouços (espécies homometálicas ou heterometálicas). A Figura 6 representa essas possíveis possibilidades para trinucleares hometálicos e a Figura 7 para heterometálicos.^{10; 69; 70} Figura 6 – SBUs homometálicas homovalentes e heterovalentes.

HOMOMETÁLICAS

Fonte: Adaptado de SEO, J. S.; et al. (2000).9

Figura 7 – SBUs heterometálicas homovalentes e heterovalentes.

HETEROMETÁLICAS

Fonte: Adaptado de SEO, J. S.; et al. (2000).9

Embora a Figura 7 apresente complexos trinucleares bimetálicos (caso mais comum), existem estruturas já relatadas na literatura em que a unidade trinuclear é composta por três íons metálicos distintos. O oxocomplexo trinuclear [CrFeNi(μ_3 -O)(O₂CCH₃)₆(py)₃] obtido por *Blake* e colaboradores, é um destes exemplos.⁷¹

A existência da ponte central µ₃-oxo pode provocar o aparecimento de algumas propriedades marcantes. Para um oxocomplexo trinuclear heterovalente, por exemplo, a intervalência é uma das características mais notáveis. Isso porque a deslocalização eletrônica provocada pela existência da ponte central e dos grupos carboxilato não permite precisar qual o estado de oxidação individual de cada íon.^{50; 52; 72; 73}

Para *SBUs* trinucleares isotrópicas que se polimerizam a partir da substituição de ligantes terminais (L₂), o que comumente encontra-se na literatura são: *(i)* Polímeros de coordenação com interconectores *O*-doadores para trinucleares homovalentes;^{67; 74} *(ii)* Polímeros de coordenação com interconectores *N*-doadores para trinucleares heterovalentes.^{13; 70; 75}

3.1.4 Estruturas Inorgânicas Estendidas: Compostos Supramoleculares

As interações intermoleculares e a organização das entidades estruturais no retículo cristalino são outros aspectos também estudados nos trabalhos envolvendo os complexos trinucleares. Essas forças intermoleculares e o ordenamento dos arcabouços e demais espécies químicas presentes no retículo cristalino podem conferir a esses materiais uma nova propriedade ou funcionalidade dando nome aos denominados "Compostos Supramoleculares".^{12; 76} Neste sentido, quando o arranjo supramolecular, determinado pelas interações não covalentes como, ligações de hidrogênio, interações dipolo-dipolo, π *stacking*, entre outras, determina funções diferentes daquelas relacionadas à molécula discreta, tem-se um composto supramolecular.^{76; 77}

Inúmeros trabalhos já foram desenvolvidos visando explorar a supramolecularidade de oxocomplexos trinucleares.⁷⁸⁻⁸² O grupo de pesquisa do professor *Toma*, por exemplo, reporta estudos relacionados ao desenvolvimento de dispositivos supramoleculares, os quais abarcam complexos trinucleares baseados em rutênio.^{12; 76; 83}

Uma vez que a formação desses compostos se baseia nas interações existentes entre as espécies químicas discretas, é essencial compreender a natureza de algumas interações intermoleculares.

3.1.4.1 Ligações de Hidrogênio

A ligação de hidrogênio (LH) representa uma das interações mais elementares no âmbito da química sintética para a formação de estruturas inorgânicas estendidas. Genericamente, este tipo de interação pode ser representado por D–H···R. Neste caso, H representa um átomo de hidrogênio ligado covalentemente à D. D é uma espécie doadora de hidrogênio, de elevada eletronegatividade e que retira densidade eletrônica de H. O átomo R apresenta elevada eletronegatividade e atua como espécie receptora de hidrogênio, fornecendo densidade eletrônica requerida para a formação da ligação.⁸⁴⁻⁸⁶

A força das ligações de hidrogênio pode ser classificada entre forte, moderada e fraca, como é possível observar na Tabela 1. A magnitude da interação está associada a parâmetros geométricos, como comprimento e ângulo da ligação, e a eletronegatividade das espécies D e R.⁸⁴

	FORÇA DA LIGAÇÃO			
PROPRIEDADE	Forte	Moderada	Fraca	
Caráter da ligação	Fortemente	Altamente	Flotrootótico	
	covalente	eletrostática	Eleliostatica	
Energia da ligação (kJ⋅mol⁻¹)	60 - 120	16 - 60	< 12	
Comprimento da ligação (Å)				
H … R	1,2 - 1,5	1,5 - 2,2	2,2 - 3,2	
D … R	2,2 - 2,5	2,5 - 3,2	3,2 - 4,0	
Ângulo da ligação D – H … R (°)	175 - 180	130 - 180	90 - 150	

Tabela 1 – Intensidade das ligações de hidrogênio e parâmetros geométricos.

Fonte: Adaptado de STEED, J. et al. (2007).87

Destaca-se na literatura um tipo específico de ligação de hidrogênio denominada "Ligação de Hidrogênio Assistida por Carga" (LHAC). Esse tipo de interação é muito comum na química dos complexos e é caracterizada por apresentar espécies R, receptoras de hidrogênio, carregadas negativamente. Em geral esse tipo de ligação costuma ser mais forte em virtude do aumento do caráter eletrostático da interação.^{84; 86}

3.1.4.2 Interações Dipolo-dipolo, Íon-dipolo e Íon-íon

A orientação e o empacotamento das espécies químicas em processos de *self-assembly* também podem ser regidos por outras interações de caráter eletrostático, como é o caso das interações dipolo-dipolo, íon-dipolo e íon-íon.⁸⁴

As interações dipolo-dipolo, ou forças de dipolo permanentes, ocorrem entre moléculas polares. Quanto maior a polaridade das espécies envolvidas, maior será a força de interação. As moléculas polares apresentam carga parcial negativa para o elemento mais eletronegativo e carga parcial positiva para o menos eletronegativo. Sendo assim, em processos de automontagem, as moléculas podem se orientar de forma a interagir com as cargas parciais opostas de estruturas vizinhas.^{77; 84}

Interações do tipo íon-dipolo ocorrem em curtas distâncias, pois as moléculas polares precisam estar muito próximas a um íon para que a interação seja significativa. Neste caso, quanto maior for a densidade de carga do íon, maior será a força da interação. Assim como ocorre para as interações dipolo-dipolo, as moléculas envolvidas se alinham de forma que a interação entre as cargas (parciais ou não) seja otimizada.^{84; 87}

Comparadas com outros tipos de interações eletrostáticas, a interação do tipo íon-íon é a de maior intensidade. A interação é caracterizada por ser não direcional e envolver íons de cargas opostas, desempenhando importante papel em termos de empacotamento e orientação de subunidades no retículo cristalino.⁸⁴

3.1.4.3 Interações π

As interações de empilhamento π (π stacking) são resultantes da atração entre a nuvem eletrônica carregada negativamente de um anel aromático com a carga parcial positiva de outro anel, como mostrado na Figura 8.^{23; 84} **Figura 8** – Interações π e os respectivos mapas de potencial eletrostático. A região em vermelho possui densidade eletrônica negativa e em azul, positiva. (a) interação π face a face, (b) interação π face-aresta e (c) interação π face a face com deslocamento.

Fonte: Adaptado de MATTHEWS, R. P. et al. (2014).23

Nesse sentido, é possível distinguir três tipos de empilhamento π mais comuns: *i*) empilhamento π face a face, no qual as nuvens eletrônicas negativas e positivas estão diretamente sobrepostas, Figura 8a, *ii*) empilhamento π face-aresta (conformação-T), que envolve um dos átomos de hidrogênio de um anel aromático com a face, de densidade eletrônica negativa, de outro anel aromático, Figura 8b, e *iii*) empilhamento π face a face com deslocamento, no qual a carga parcial positiva dos hidrogênios dos anéis aromáticos interagem de forma recíproca com as regiões dos anéis aromáticos com densidade de carga negativa, Figura 8c.⁸⁸ A orientação dessas interações é regida por forças de *Van der Waals* e efeitos eletrostáticos dos anéis aromáticos envolvidos.^{84; 87}

Tipicamente, o empilhamento π , com planos moleculares aproximadamente paralelos, apresenta distâncias dos centroides dos anéis aromáticos entre as faixas de 3,3 a 3,8 Å. Em situações onde há o deslocamento entre as faces do anel, o valor do ângulo entre os centroides e a reta perpendicular aos planos moleculares é de aproximadamente 20°.^{84; 89}

3.2 MÉTODOS DE CRISTALIZAÇÃO

Um dos grandes desafios, em especial no âmbito da química sintética, na obtenção de novos complexos é a obtenção de monocristais apropriados para a análise por Difratometria de Raios X por Monocristal (DRXM). A confiabilidade dos resultados é dada pelos menores valores possíveis para o índice R, o qual indica a correlação entre o modelo estrutural proposto e os dados experimentais de distribuição de densidade eletrônica da célula unitária.⁹⁰

Objetivando a obtenção de monocristais com o mínimo de defeitos possíveis para a caracterização por DRXM, foram desenvolvidas inúmeras técnicas de cristalização. Tais técnicas baseiam-se em formas diferentes de proporcionar a nucleação e consequente crescimento do cristal.^{91; 92} Dentre os métodos mais comuns, destacam-se os métodos de cristalização por evaporação lenta e cristalização a partir de reações solvo- ou hidrotérmicas.

A cristalização por evaporação lenta, consiste em uma das técnicas mais simples de cristalização no qual as soluções de reagentes são diretamente misturadas, gerando uma solução que será deixada em repouso para evaporação. Na medida em que o solvente evapora, a solução vai ficando cada vez mais saturada, direcionando a ocorrência da nucleação e crescimento do cristal. O inconveniente desta técnica é que ela facilmente pode levar à obtenção de cristais intercrescidos.^{93; 94}

Uma forma muito conveniente de realizar cristalização por evaporação é dispor os frascos de evaporação de forma inclinada dentro de outro recipiente. Essa inclinação favorece o crescimento de cristais na lateral do frasco, evitando que cristais recém-formados caiam diretamente no fundo da solução, possibilitando maior facilidade na hora de isolá-los sem danificá-los (Figura 9).⁹⁵

Figura 9 – Sistema de cristalização por evaporação lenta.95

Técnicas que envolvem gradientes térmicos podem proporcionar a obtenção de cristais de ótima qualidade. Esses métodos envolvem o arrefecimento lento de soluções seladas ou soluções saturadas em refluxo. A utilização de técnicas hidrotérmicas/solvotérmicas com reatores de Teflon[®] são atualmente os métodos mais populares para a obtenção de monocristais (Figura 10).^{96; 97}

A partir do momento em que se obtêm os cristais é extremamente recomendável que não se remova a solução mãe, principalmente porque muitos desses materiais são sensíveis à exposição ao ar. A remoção do solvente expõe os cristais, fazendo com que moléculas de solventes que fazem parte do retículo cristalino possam evaporar, deixando espaços vazios que comprometem a estrutura e a cristalinidade do material.⁹⁷

Fonte: Adaptado de < https://www.hindawi.com/journals/ijp/2014/518156/fig6/ >.98

3.3 APLICAÇÕES

3.3.1 Aplicações gerais

A diversidade químico-estrutural dos oxocomplexos trinucleares conferem a esses materiais uma ampla variedade de aplicações que podem ser exploradas a fim de contribuir para o avanço de inúmeras vertentes tecnológicas.⁹⁹⁻¹⁰²

Os estudos podem ser segmentados em duas grandes vertentes: (1) aplicações pelas quais a extensão, ordenamento e empacotamento dos oxocomplexos no reticulo cristalino são fundamentais na pesquisa, como é o caso dos polímeros de coordenação e compostos supramoleculares, e (2) aplicações pelas quais as propriedades são intrínsecas apenas às unidades discretas dos arcabouços, ou seja, à sua estrutura primária.

São infindáveis o número de trabalhos relacionados às estruturas inorgânicas estendidas, sejam elas poliméricas ou supramoleculares. Dentre as áreas mais exploradas podemos citar:

- a) Armazenamento de gás, sorção e separação de moléculas: neste caso a propriedade está intimamente relacionada à porosidade da estrutura estendida, a qual pode ser controlada a partir da utilização de ligantes orgânicos (espaçadores) de diferentes tamanhos.¹⁰³⁻¹⁰⁶
- b) Catálise heterogênea: propriedade dependente da presença de sítios ativos específicos e de poros que discriminam as moléculas (substratos) pelos seus tamanhos.^{54; 70; 107-109}
- c) Desenvolvimento de BioMOFs: estruturas baseadas em redes metalorgânicas que podem ser utilizadas como matriz para a liberação controlada de fármacos.^{106; 110-112}
- d) Desenvolvimento de dispositivos eletrônicos moleculares: alguns complexos de valência mista, como oxocomplexos trinucleares baseados em rutênio, constituem modelos naturais para o entendimento de reações de transferência eletrônica mais complexas. A forma como ocorre a interação intereletrônica destes complexos pode levar à um estudo comparativo da habilidade de determinados ligantes, poderem ou não, ser utilizados na formação de estruturas que se comportam como "fios moleculares" na

construção de polímeros de coordenação. Os fios moleculares podem ser estudados como protótipos de chaves, que são o primeiro passo para a construção de dispositivos eletrônicos moleculares. ¹¹³⁻¹¹⁷

Nos casos em que as propriedades exploradas são relacionadas apenas às particularidades de unidades discretas dos oxocomplexos trinucleares, o que se encontra majoritariamente na literatura são estudos relacionados a:

- a) Catálise homogênea: inúmeras reações podem ser catalisadas por oxocomplexos trinucleares como, por exemplo, reações que envolvem a redução de nitrocompostos, oxidação de lipídeos insaturados, hidrocarbonetos saturados, tiofenóis, *N*-acilpirrolidinas e piperidinas.²⁸⁻³¹
- b) Magnetoquímica: estudos do comportamento magnético em função de uma determinada faixa de temperatura.^{8; 14; 43; 118}
- c) Propriedades antibacterianas: análises de propriedades bactericidas ou bacteriostáticas para um grande espectro de bactérias.^{14; 32; 33}
- d) Estudos teóricos de intervalência: neste caso, a possibilidade de existência de espécies metálicas de valências distintas desperta o interesse em químicos teóricos no estudo e classificação das estruturas quanto à intervalência (classificação proposta por *Robin* e *Day*).¹¹⁹⁻¹²¹

A partir dos exemplos mencionados, são explícitas as possibilidades de pesquisas envolvendo estes compostos. A versatilidade estrutural que estes arcabouços podem ter, principalmente em decorrência do grande número de tipos de grupos carboxilato capazes de se coordenarem em ponte entre as entidades metálicas, renovam cada vez mais os estudos concernentes à essa classe de complexos.

3.3.2 Atividade antibacteriana

O estudo de propriedades biológicas a partir de compostos inorgânicos vêm despertando o interesse de inúmeros grupos de pesquisa. Quando se trata do desenvolvimento de antibióticos, por exemplo, um dos fatores que impulsiona os estudos é o crescente problema de resistência bacteriana aos antibióticos, caracterizado pelo uso excessivo e indevido do medicamento.¹²² As análises que envolvem compostos inorgânicos biologicamente ativos são sustentadas por dados da literatura que reportam a obtenção de complexos com atividades antibacterianas superiores às moléculas orgânicas livres.¹²³

São inúmeras as metodologias que podem ser utilizadas para este fim, uma metodologia pode ser mais adequada do que a outra, dependendo das condições do sistema estudado, podendo abranger tanto compostos inorgânicos quanto orgânicos. Os procedimentos mais empregados baseiam-se nos métodos de difusão em ágar e microdiluição em caldo.¹²⁴

Sucintamente, o teste de difusão em ágar é realizado em placas com meio de cultivo sólido (ou semissólido) no qual a resposta relacionada à maior ou menor sensibilidade dos microrganismos frente à substância biologicamente ativa é associada à zona, ou halo, de inibição de crescimento das bactérias. Este procedimento é comumente utilizado em decorrência de sua simplicidade de execução e custo relativamente baixo.¹²⁴⁻¹²⁶

O método de microdiluição, em contrapartida, baseia-se em um meio de cultivo líquido no qual a substância biologicamente ativa é preparada em uma sequência de diluições em uma microplaca estéril de 96 poços. Após a inoculação de microrganismos padronizados nos poços e encubação da placa por cerca de 24 h, é possível obter resultados quantitativos a partir da análise da densidade de turbidez provocada pelo crescimento bacteriano, determinando, assim a Concentração Inibitória Mínima (CIM) que inibe total ou parcialmente o crescimento das bactérias.^{124; 125} Alternativamente, a CIM pode ser determinada a partir de procedimentos colorimétricos com a utilização de resazurina (alamarBlue™).^{127; 128} A técnica de microdiluição tem destaque principalmente em virtude de ser uma técnica de grande sensibilidade e que utiliza pouca quantidade de reagentes; tais fatores levam à resultados mais confiáveis na medida em que se torna possível realizar um maior número de replicatas.¹²⁴

Em geral, análises inerentes às interações estruturais e dinâmicas de complexos frente às bactérias buscam tanto elucidar o mecanismo de ação do complexo quanto à extensão em que pode ocorrer inibição de crescimento ou morte celular. Esses resultados, acompanhados de ensaios de citotoxicidade, são fundamentais para o direcionamento de pesquisas subsequentes, visando, por exemplo, o desenvolvimento de medicamentos, produtos para desinfecção de materiais e desenvolvimento de embalagens antimicrobianas para armazenamento de alimentos.^{26; 129-132}

3.3.2.1 Permeabilidade da parede celular bacteriana

Uma vez que a atividade das moléculas e dos complexos pode estar, direta ou indiretamente, associada à permeabilidade e composição do envoltório celular bacteriano, é importante ressaltar alguns aspectos da citologia desses microrganismos.^{133; 134}

Assim como nas células eucarióticas, as bactérias também possuem membrana plasmática constituída por uma bicamada fosfolipídica e por proteínas com as funções de proteção celular e permeabilidade seletiva. Neste caso, entretanto, as células procarióticas não apresentam esteróis na composição, o que muda aspectos relacionados à fluidez e transporte de substâncias da membrana.¹³⁵

Outra estrutura que difere as células de bactérias em termos de permeabilidade é a presença de paredes celulares, responsáveis por conferirem rigidez, proteção, mediar a troca de substâncias e diferenciar as bactérias em dois grupos básicos: bactérias Gram-positivas ou Gram-negativas.^{136; 137}

Bactérias Gram-positivas apresentam uma espessa parede celular constituída de peptidoglicano. Nessa estrutura se encontram incorporados os ácidos lipoteicoicos, que se encontram intimamente ancorados à fração lipídica da membrana plasmática, e os ácidos teicoicos, como representado na Figura 11.¹³⁸ Estes ácidos, além de servirem como sítios receptores de inúmeras substâncias, também constituem peças fundamentais na regulação e homeostase de cátions na célula. Sabe-se que a composição de ácidos e cátions na camada de peptidoglicano influenciam profundamente na rigidez e porosidade da parede celular, afetando, consequentemente, as interações das bactérias com outras moléculas.^{135; 139}

Figura 11 – Representação da parede celular e membrana plasmática de bactérias Gram-positivas.

Fonte: Adaptado de WILLEY, J. M. et al. (2008).137

Bactérias Gram-negativas, em contrapartida, não apresentam os ácidos teicoicos e lipoteicoicos incorporados ao peptidoglicano. A parede celular, além de ser mais fina, quando comparada àquela das bactérias Gram-positivas, é envolta por uma bicamada fosfolipídica externa. A membrana externa é caracterizada por apresentar estruturas como lipopolissacarídeos (LPS, também denominados de endotoxinas), lipoproteínas e proteínas transmembranares, como as porinas, que funcionam como um canal iônico que permite a difusão passiva de pequenas moléculas hidrofílicas, como apresentado na Figura 12a.^{135; 140; 141}

As moléculas de LPS representam uma das principais estruturas ancoradas à membra externa de bactérias Gram-negativas e são constituídas por 3 partes principais, como é possível observar na Figura 12b: *(i)* a "Cadeia Lateral O" ou "Polissacarídeo O-específico" no qual unidades de repetição podem ser compostas por tri-, tetra- ou pentassacarídeos variáveis para cada espécie de bactéria; *(ii)* o "polissacarídeo de Cerne" que é comum às bactérias Gram-negativas e é constituído por dois açúcares característicos, além do ácido cetodesoxioctanoico e uma heptose; *(iii)* por fim, na parte mais interna do LPS, encontra-se o denominado "lipídeo A", baseado em unidades dissacarídicas de glicosamina (GlcN) fosforiladas ligadas à ácidos graxos de cadeia longa.¹³⁵⁻¹³⁷

Figura 12 – (a) Representação da parede celular e membrana plasmática de bactérias Gram-negativas.
(b) Lipopolissacarídeo constituído pelo Polissacarídeo O-específico, Polissacarídeo Cerne (Glu-Nac = N-acetilglicosamina, Glu = glicose, Gal = galactose, Hep = heptulose, P = fosfato, KDO = ácido cetodesoxioctanoico) e Lipídeo A (GlcN = glicosamina).

Fonte: (a) Adaptado de WILLEY, J. M. et al. (2008).¹³⁷ (b) Adaptado de MADIGAN, M. T. et al. (2019).¹³⁶

Os lipopolissacarídeos são fundamentais na integridade estrutural das bactérias. Os grupos fosfatos, negativamente carregados, interagem de forma não covalente com cátions, tais como os íons Ca²⁺ e Mg²⁺, formando uma barreira muito eficaz para moléculas hidrofóbicas. Caso haja remoção desses cátions divalentes na membrana, seja pela utilização de moléculas quelantes ou pelo deslocamento com a utilização de compostos policatiônicos, a membrana externa se torna mais susceptível à permeabilidade por moléculas hidrofóbicas.^{135; 140}

Com relação às proteínas transmembranares, é importante ressaltar que o canal iônico constitui uma estrutura altamente seletiva e a exclusão por peso molecular é típica para cada organismo.¹⁴¹ A membrana externa da *Escherichia coli*,

por exemplo, permite a passagem de espécies químicas hidrofílicas que podem variar de 600 a 800 Daltons (equivalente em g·mol⁻¹) enquanto para a *Pseudomonas aeruginosa* esse valor pode ultrapassar 3000 Daltons. Em decorrência da limitação imposta por canais iônicos, considera-se que moléculas mais volumosas acabam sendo assimiladas por transporte ativo.^{139; 142; 143}

A característica de exclusão de moléculas a partir de seus tamanhos é típica de bactérias Gram-negativas. No caso de bactérias Gram-positivas a parede celular, constituída de peptidoglicano e ácidos teicoicos e lipoteicoicos, é muito porosa, possibilitando a passagem de moléculas com valores superiores à 100000 Daltons, havendo, portanto, um elevado limite de exclusão molecular. Em outras palavras, é possível dizer que embora a peptideoglicana contribua na rigidez e proteção da célula, ela exerce ínfima limitação quanto à assimilação de moléculas.^{122; 144}

Embora as porinas ainda constituam uma das principais estruturas da membrana externa com a função de exclusão e permeabilidade celular para componentes hidrofílicos, inúmeras espécies químicas, até mesmo as mais volumosas, podem perfeitamente atravessar a membrana sem acessar os canais iônicos. Neste caso, entretanto, são favorecidas as passagens de substâncias mais apolares e hidrofóbicas, dada a natureza lipídica da membrana celular.^{135; 145}

3.3.2.2 Mecanismos de ação

Uma vez apresentadas algumas das características citológicas de bactérias Gram-positivas e Gram-negativas, é possível discorrer sobre como pode ocorrer o mecanismo de ação antibacteriana frente aos microrganismos estudados.¹⁴⁶

Como mencionado anteriormente, muitas substâncias polares ou iônicas necessitam de proteínas transportadoras para serem assimiladas pelas células bacterianas. No entanto, quando se trata da utilização de compostos inorgânicos no estudo de propriedades antibacterianas, a assimilação de complexos mais volumosos, muitas vezes com unidades de massa superiores à 1000 Daltons, pode ser alcançada a partir da utilização de ligantes quelantes que confiram maior lipossolubilidade ao composto. Tais resultados comumente são associados à denominada "*Teoria de Quelação de Tweed*" que relaciona a atividade antibacteriana à maior lipossolubilidade do complexo.¹⁴⁷ A teoria diz que a polaridade do íon metálico é reduzida em maior

grau devido à sobreposição dos orbitais do ligante e ao compartilhamento parcial da carga positiva do íon metálico com os grupos doadores. Assim, a deslocalização de elétrons π sobre o quelato é aumentada, levando ao aumento da lipossolubilidade dos complexos nos microrganismos. Esta teoria vem de encontro com o conceito de "*Overton*" (sobre permeabilidade celular) que diz que a membrana lipídica que envolve a célula favorece a passagem de materiais lipossolúveis. Os complexos, ao passarem pela membrana lipídica podem, então, perturbar o mecanismo de respiração, bloquear sítios ativos de enzimas, bloquear a síntese de proteínas, interferir no desenvolvimento da parede celular e, consequentemente, restringir ou impedir o desenvolvimento do organismo.^{147; 148}

Muitas vezes a atividade antibacteriana está associada apenas à natureza do íon metálico e, neste caso, o complexo funciona como carreador destes íons. Inúmeros complexos baseados em prata(I), por exemplo, ao serem incorporados pelas bactérias, liberam o íon Ag⁺ que é capaz de se ligar em superfícies da estrutura celular e interagir com proteínas envolvidas na síntese da parede celular.^{122; 149; 150}

É fato que muitas células necessitam de íons metálicos para suprirem suas funções metabólicas e fisiológicas.¹⁵¹ A exposição a altas concentrações, entretanto, pode ser devastadora. O ferro(II/III), por exemplo, constitui um elemento essencial em processos de replicação do DNA, metabolismo central e respiração.¹⁵²⁻¹⁵⁴ Neste caso, portanto, o microrganismo necessita de um controle rigoroso da homeostase de espécies baseadas em ferro(II/III) para que não haja perturbação em nenhum desses processos.^{122; 155; 156}

Segundo os trabalhos desenvolvidos por *Lemire* e colaboradores, os mecanismos de ação de íons metálicos frente à bactérias podem ser categorizados em 5 tipos, os quais estão sumarizados na Tabela 2.¹⁵⁷ Os autores ressaltam que tais mecanismos apresentados podem não ser exclusivos para uma determinada espécie metálica e, em algumas situações, a ação antibacteriana pode ser resultado de uma combinação de diferentes mecanismos, ou seja, pode se basear em uma intervenção multifatorial.^{122; 157}

Tabela 2 – Mecanismos de ação antibacteriana associada aos íons de metais de transição.

MECANISMO	DESCRIÇÃO		
Espécies reativas de oxigênio e depleção de antioxidantes	Alguns íons, como Fe ²⁺ /Fe ³⁺ e Cu ⁺ /Cu ²⁺ , podem induzir ao estresse oxidativo da célula com o aumento de Espécies Reativas de Oxigênio (ERO): A respiração aeróbica gera espécies reduzidas a partir do oxigênio molecular, tais como o H ₂ O ₂ , e O ₂ ··. Essas espécies, por sua vez, podem participar de reações <i>Fenton</i> e <i>Haber-Weiss</i> que, quando catalisadas por íons Fe ²⁺ e Cu ⁺ , geram radicais HO·, altamente deletérios. O ciclo redox de metais durante esse processo pode consumir antioxidantes celulares fazendo com que, indiretamente, acumule-se ainda mais as ERO. ^{158; 159} <i>Reação de Fenton</i> : Fe ²⁺ /Cu ⁺ + H ₂ O ₂ \rightarrow HO· + OH ⁻ + Fe ³⁺ /Cu ²⁺		
	Reação de Haber-Weiss: $H_2O_2 + O_2 \stackrel{Fe/Cu}{\rightarrow} HO + OH^- + O_2$		
	Esses radicais podem causar danos no DNA, estruturas lipídicas e proteínas, acarretando perdas de atividade enzimática, dificuldades em realizar determinados tipos de transportes pela membrana levando, assim, à morte celular. ^{122; 149; 157}		
Disfunção proteica e perda de atividade enzimática	 Neste caso, os íons metálicos podem levar a perda de atividade enzimática a partir de um desses fatores:¹⁵⁷ Indiretamente, a introdução de espécies metálicas pode levar à oxidação de cadeias laterais de aminoácidos nos sítios ativos de enzimas, inibindo, assim, sua função. Inviabilização de metaloenzimas de maior nuclearidade como aqueles que apresentam sítios ativos contendo <i>clusters</i> de Fe-S. Troca de espécies metálicas que participam diretamente de processos catalíticos ou que participam da composição estrutural de metaloenzimas por outros íons que comprometem o arranjo estrutural da metaloenzima ou que não desempenham a atividade catalítica necessária. 		
Comprometimento das funções da membrana	A integridade da membrana fica seriamente comprometida com a exposição a doses "tóxicas" de determinados íons, como Ag ⁺ e Al ³⁺ . Algumas evidências sugerem que a prata, em especial, pode perturbar a atividade da cadeia transportadora de elétrons e interagir com estruturas relacionadas à síntese da parede celular. ^{149; 150}		
Interferência na assimilação de nutrientes	A toxicidade de alguns metais pode estar ligada à inibição de captação de nutrientes. O Cr ⁶⁺ , por exemplo, pode inibir a captação de sulfato e outras fontes de enxofre, uma vez que este íon possui grande afinidade por moléculas transportadoras desses nutrientes. ¹⁵⁷		
Genotoxicidade	A genotoxicidade é um termo utilizado quando ocorre o comprometimento da molécula de DNA. Inúmeras linhas de pesquisa indicam, por exemplo, que o DNA pode ser severamente comprometido a partir dos produtos gerados em reações <i>Fenton</i> . Outros ensaios de genotoxicidade sugerem que íons Co ²⁺ , Mn ²⁺ , Cr ⁶⁺ , Cd ²⁺ e Mo ⁴⁺ apresentam atividade mutagênica em bactérias. Diferentemente dos íons Ni ²⁺ , Cu ²⁺ , Ag ⁺ e Al ³⁺ , os quais não foram associados a nenhum aumento da taxa de mutação. ^{122; 157; 160}		

<u>Fonte</u>: Adaptado de VIGANON, L. *et al.* (2017);¹²² KURTJAK, M. *et al.* (2017);¹⁴⁹ SLAVIN, Y. N. *et al.* (2017);¹⁵⁰ LEMIRE, J. A. *et al.* (2013);¹⁵⁷ BARBOSA, K. B. F. *et al.* (2010);¹⁵⁸ FERREIRA, A. L. A. *et al.* (1997);¹⁵⁹ RAKHSHANI, S. *et al.* (2019).¹⁶⁰

É natural que muitas moléculas orgânicas empregadas como pré-ligantes na síntese de complexos por si só também apresentem atividade biológica que comprometa o desenvolvimento de bactérias. De fato, a maioria dos antibióticos utilizados atualmente baseiam-se nesta classe de compostos químicos.¹⁶¹ Nesse

sentido, muitas vezes se faz necessário considerar os efeitos sinérgicos resultantes da combinação do íon metálico com o ligante.^{34; 123} O Quadro 1 traz de forma sucinta alguns exemplos de moléculas orgânicas e seus respectivos mecanismos de ação frente à algumas espécies bacterianas.

Quadro 1 – Moléculas que apresentam atividade antibacteriana, os organismos para os quais foram feitos os estudos e o mecanismo de ação.

MOLÉCULA	ORGANISMOS	MECANISMO
Ácido benzoico	Escherichia coli Listeria monocytogenes Staphylococcus aureus Pseudomonas aeruginosa Salmonella enterica Campylobacter jejuni	O caráter lipofílico do ácido benzoico facilita a entrada de moléculas na membrana. Dependendo do tipo de microrganismo, vários modos de atividade podem estar envolvidos, incluindo a interrupção da força motriz de prótons e inibição de enzimas. ¹⁶²⁻¹⁶⁴
Ácido 4-hidroxibenzoico	Escherichia coli Bacillus aureus Staphylococcus aureus Pseudomonas aeruginosa Lactobacillus paraplantarum Listeria monocytogenes	Um possível mecanismo para explicar a ação do ácido 4-hidroxibenzoico pode ser relacionado à hiperacidificação da superfície celular. A hiperacidificação afeta o processo de produção de ATP e altera o potencial da membrana, tornando-a mais permeável. ^{162; 165; 166}
Ácido p-cumárico	Streptococcus pneumoniae Staphylococcus aureus Bacillus subtilis Escherichia coli Shigella dysenteriae,	O ácido <i>p</i> -cumárico pode provocar alterações irreversíveis na permeabilidade da membrana celular, fazendo com que as células percam a capacidade de manter íons e macromoléculas do citoplasma. O ácido pode, ainda, interagir com moléculas de DNA de forma a inibir funções celulares. ^{34; 167}
Ácido ferúlico	Pseudomonas aeruginosa Escherichia coli Staphylococcus aureus Listeria monocytogenes Cronobacter sakazakii	O ácido ferúlico compromete a integridade da membrana. Ocorrem mudanças significativas na hidrofobicidade da superfície celular, no potencial de membrana e no pH intracelular. ^{34; 168}
Ácido gálico	Pseudomonas aeruginosa Escherichia coli Staphylococcus aureus Listeria monocytogenes	O ácido gálico apresenta mecanismos de ação similares aos do ácido ferúlico. Os efeitos são, entretanto, mais pronunciados em termos de integridade e potencial zeta. Pode ocorrer ruptura local ou formação de poros nas membranas, acarretando o efluxo de componentes celulares. Essas moléculas podem, ainda, formar quelatos com íons Mg ²⁺ que estabilizam os grupos fosfatos dos lipopolissacarídeos, comprometendo seriamente a permeabilidade da membrana. ^{34; 168; 169}

<u>Fonte</u>: Adaptado de REMPE, C. S. *et al.* (2017);³⁴ CUEVA, C. *et al.* (2010);¹⁶² DAMODARAN, S. *et al.* (2017); ¹⁶³ FRIEDMAN, M. *et al.* (2003);¹⁶⁴ CHO, J. -Y. *et al.* (1998);¹⁶⁵ MANUJA, R. *et al.* (2013);¹⁶⁶ LOU, Z. *et al.* (2012);¹⁶⁷ BORGES, A. *et al.* (2013);¹⁶⁸ NOHYNEK, L. *et al.* (2006).¹⁶⁹

3.3.2.3 Atividade antibacteriana de complexos trinucleares na forma de triângulos oxocentrados

Embora a síntese de oxocomplexos trinucleares já seja conhecida de longa data, o interesse em estudá-los visando aplicá-los como compostos que apresentem atividade antibacteriana vem se desenvolvendo mais contemporaneamente.

Tendo em vista as várias possibilidades de combinação entre pré-ligantes e íons metálicos, ainda é possível planejar e sintetizar inúmeras estruturas análogas às desenvolvidas por *Pathak* e colaboradores e *Melnic* e colaboradores, apresentadas no Quadro 2,^{32; 33} que mostra as metodologias utilizadas para a avaliação da atividade antibacteriana e os resultados obtidos para cada microrganismo.

Quadro 2 – Análise de atividade antibacteriana para complexos trinucleares na forma de triângulos oxocentrados (PhCO₂ = benzoato; MeOH = metanol; α -fur = furoato; 3Cl-py= 3-cloropiridina). Estreptomicina, Isoniazida e Rifampicina constituem os antibióticos de referência.

COMPLEXO	MÉTODO	ORGANISMOS	RESULTADO
Pathak	Difusão em ágar	Bacillus cereus	Zona de inibição Trinuclear = 23 mm Estreptomicina = 26,5 mm
		Staphylococcus epidermidis	Zona de inibição Trinuclear = 16 mm Estreptomicina = 27,5 mm
		Salmonella typhimurium	Zona de inibição Trinuclear = 12 mm Estreptomicina = 28 mm
[Fe ₃ O(PhCO ₂) ₆ (MeOH) ₃](NO ₃)(MeOH) ₂]		Escherichia coli	Zona de inibição Trinuclear = 0 mm Estreptomicina = 27 mm
Melnic	Microdiluição	Mycobacterium tuberculosis	CIM Trinuclear = 3,344 mg/L Isoniazida < 0,05 mg/L Rifampicina < 0,125 mg/L
[<mark>Fe₂CoO(</mark> α-fur)₀(3Cl-Py)₃]			

<u>Fonte</u>: Figuras construídas com o *software* Mercury[®] a partir do arquivo CIF de código CSD: HEDROX02 de PATHAK, S. *et al.* (2017) e BUVLIO de MELNIC, S. *et al.* (2010).^{32; 33}

Uma vez que o interesse em utilizar essas estruturas em estudos de atividade antibacteriana é relativamente recente, ainda não se encontram na literatura dados que reportam mecanismos específicos de ação para esses arcabouços. As interpretações, em geral, levam em consideração os efeitos de sinergismo entre íons metálicos e ligantes orgânicos. Esse sinergismo pode estar associado tanto à forma de assimilação do complexo considerando a "Teoria de Quelação de Tweed" quanto aos possíveis meios de ação considerando o arranjo estrutural do complexo e as particularidades de cada íon metálico e ligante.^{122; 123; 147; 148}

É importante ressaltar que o estudo de atividade antibacteriana também pode estar indiretamente associado aos oxocomplexos trinucleares. Como já mencionado em seções anteriores, essas estruturas podem funcionar como *SBUs* na formação de redes metalorgânicas (*MOFs*) as quais apresentam porosidade em potencial. Quando as *MOFs* são empregadas em sistemas biológicos, recebem a denominação específica de *BioMOFs*.⁸⁷ Neste caso, existem inúmeros estudos relacionados à utilização dessas estruturas estendidas como matriz para a liberação controlada de fármacos e, no âmbito de atividade antibacteriana, o fármaco incorporado aos poros da *MOF* pode ser um antibiótico.^{88; 89}

4 METODOLOGIA

4.1 EQUIPAMENTOS E CARACTERIZAÇÕES

4.1.1 Difratometria de Raios X por Monocristal (DRXM)

As análises por Difratometria de Raios X por Monocristal (DRXM) foram realizadas no Departamento de Química da UFPR, utilizando um difratômetro Bruker D8 Venture equipado com um detector Photon 100 CMOS com radiação Mo-K_{α} (λ = 0,7107 Å) e monocromador de grafite. Para a análise das amostras, um cristal (ou fragmento) foi selecionado, transferido para a ponta de um suporte MicroMountTM, montado no difratômetro. Os dados foram coletados a 300 K para os produtos A, C e D e a 240 K para o produto B com o objetivo de reduzir a agitação térmica. As determinações dos parâmetros precisos da célula unitária foram baseadas em todas as reflexões com *I* > 2 σ (*I*). Os dados foram processados empregando o programa APEX2.¹⁷⁰ As estruturas foram resolvidas por métodos diretos utilizando o programa SHELXS e refinadas pelo método dos mínimos quadrados (matriz completa) em F², utilizando todas as reflexões independes alimentadas no programa SHELXL.¹⁷¹

A análise das interações intermoleculares foi feita com o auxílio do *software CrystalExplorer17*[®] utilizando os arquivos CIFs obtidos pela análise de DRXM. Foram geradas superfícies de *Hirshfeld* mapeadas em d_e , d_i e d_{norm} de forma a obter os *Fingerprints* bidimensionais (*FPs* 2D) característicos para cada produto.¹⁷² A coloração dos *FPs* decompostos, relativos as contribuições individuais de cada tipo de interação, foi modificada com o auxílio do *software Photoshop CC v. 20.0.0* para uma melhor visualização e interpretação dos dados.¹⁷³

As citações de figuras de compostos publicados foram identificadas no texto com o código do CSD (*Cambridge Structural Database*) e foram geradas com base em seus respectivos arquivos CIFs depositados neste banco de dados.

4.1.2 Difratometria de Raios X por Pó (DRXP)

As caracterizações por Difratometria de Raios X por Pó (DRXP) foram realizadas no Departamento de Química da UFPR em um equipamento Shimadzu XRD-6000 ou no Departamento de Física da UFPR em um equipamento Shimadzu XRD-7000. Os equipamentos foram operados a 40 kV e 20 mA com radiação Cu-K α e pó de silício foi empregado como padrão interno. As coletas foram realizadas com uma velocidade de 2°/min em 20 e com a faixa de varredura variando de 3° a 50°. Os difratogramas simulados foram gerados a partir do *software* Mercury[®] a com os dados estruturais obtidos por DRX por monocristal.^{174; 175}

4.1.3 Espectroscopia de Absorção na Região do Infravermelho (IV)

Os espectros de absorção na região do infravermelho (IV) foram registrados na região entre 400 – 4000 cm⁻¹ empregando um espectrofotômetro VARIAN, modelo 640-IR, no Departamento de Química e Biologia da UTFPR ou em um equipamento BOMEN Michelson MB100 do Departamento de Química da UFPR. Os espectros foram registrados em pastilhas de KBr a partir de uma média de 16 varreduras com resolução de 4 cm⁻¹. Para o preparo das pastilhas, homogeneizou-se uma pequena quantidade da amostra com o KBr previamente seco em estufa a 115 °C e a mistura foi, então, submetida a uma pressão de 8 kbar em uma prensa axial.

4.1.4 Espectroscopia Vibracional de Espalhamento Raman

Os espectros Raman foram obtidos a partir das amostras cristalinas em lamínula empregando-se um espectrofotômetro Raman Confocal da marca WiTec, modelo alpha 300R no Departamento de Física da UFPR. A área das amostras analisadas foi de 1 μ m² com laser He-Ne (632,8 nm). A potência do laser foi mantida em 200 μ W para todos os produtos analisados.

4.1.5 Espectroscopia de Ressonância Paramagnética Eletrônica (RPE)

As análises por espectroscopia de ressonância paramagnética eletrônica (RPE) foram feitas no Departamento de Química da UFPR. Os espectros foram obtidos a partir de amostras sólidas em um equipamento Elexsys E500 da Bruker, operado em banda X (9,5 GHz) à temperatura ambiente e à 77 K.¹⁷⁶

4.1.6 Espectroscopia de absorção da região do ultravioleta-visível (UV/Vis)

Os espectros de absorção na região do ultravioleta-visível (UV/Vis) foram registrados em um espectrômetro UV/Vis VARIAN, modelo Cary[®] 50 na região de 200 – 800 nm no Departamento de Química e Biologia da UTFPR. As varreduras foram realizadas com as amostras em cubeta de quartzo de caminho óptico de 1 cm sob condições de temperatura ambiente.

Para o produto B a determinação dos coeficientes de absortividade molar, ε , foi feita a partir de soluções em *N*,*N*-dimetilformamida nas concentrações de 3,00x10⁻⁵ mol L⁻¹, 4,00x10⁻⁵ mol L⁻¹, 5,00x10⁻⁵ mol L⁻¹, 6,00x10⁻⁵ mol L⁻¹ e 8,00x10⁻⁵ mol L⁻¹ para a região abaixo de 400 nm. Para a região acima de 400 nm utilizou-se as concentrações de 1,100x10⁻⁴ mol L⁻¹, 2,200x10⁻⁴ mol L⁻¹, 3,300x10⁻⁴ mol L⁻¹, 5,000x10⁻⁴ mol L⁻¹, e 6,700x10⁻⁴ mol L⁻¹. Os espectros eletrônicos para o produto C, foram registrados para as concentrações de 5,0x10⁻⁶ mol L⁻¹, 1,00x10⁻⁵ mol L⁻¹, 2,00x10⁻⁵ mol L⁻¹ e 3,00x10⁻⁵ mol L⁻¹, utilizando-se o metanol como solvente. A obtenção dos dados de absorbância para cada concentração foi feita a partir dos picos gerados após a deconvolução dos espectros eletrônicos.

4.1.7 Análise Elementar – Dosagem dos teores de metais, carbono, hidrogênio e nitrogênio

As dosagens de metais foram feitas por espectrofotometria de absorção atômica no Departamento de Química e Biologia da UTFPR utilizando um espectrômetro GBC, modelo Avanta. Os componentes combustível e oxidante utilizados foram acetileno e ar, respectivamente. As amostras foram digeridas em soluções concentradas de ácido sulfúrico à quente (aproximadamente 90 °C). O equipamento foi operado com corrente de lâmpada de 6,0 mA e comprimento de onda de 240,7 nm para análise de cobalto e corrente de lâmpada de 7,0 mA e comprimento de onda de 248,3 nm para a análise de ferro. Todas as leituras foram feitas em duplicata.¹⁷⁷

As análises dos teores de carbono, hidrogênio e nitrogênio para os três produtos descritos neste trabalho foram realizadas em duplicata no Centro Analítico de Instrumentação no Instituto de Química da Universidade de São Paulo empregando um analisador elementar Perkin Elmer – CHN 2400 Series II.

4.1.8 Análise Termogravimétrica (TGA-DTG)

As análises termogravimétricas foram realizadas no Centro Analítico de Instrumentação no Instituto de Química da Universidade de São Paulo em um equipamento TGA Q500 V20.13 Build 39. A vazão de ar sintético no forno foi de 60 mL min⁻¹ enquanto que a de nitrogênio gasoso para proteção da balança foi de 40 mL min⁻¹. Para as análises, utilizaram-se por volta de 2 a 4 mg de amostra em um porta-amostra de platina, sendo a rampa de temperatura de 10,0 °C min⁻¹ em uma faixa de 20 até 900 °C.

4.1.9 Leitura de microplacas

A avaliação de crescimento bacteriano em microplacas de 96 poços foi realizada com uma leitora de microplacas modelo FLUOstar Omega, marca BMG Labtech no Departamento Acadêmico de Química e Biologia da UTFPR. O sistema baseou-se na leitura por espectroscopia de absorção na região do ultravioleta-visível (UV/Vis) para a determinação da densidade óptica na região de 600 nm. As análises foram conduzidas pelo *software* do equipamento, que realiza as determinações e cálculos quantitativos de forma automatizada.

4.2 SOLVENTES E REAGENTES

Os solventes e reagentes empregados nas etapas de síntese, caracterização e análise de atividade antibacteriana foram utilizados sem purificação prévia e estão listados na Tabela 3. A água empregada nas reações foi purificada a partir de uma coluna deionizadora PERMUTION modelo 1800 de resina mista que opera em uma vazão de 50 L/h com uma potência de 9 W.

Reagentes/solventes	Fórmula	Grau de pureza (%)	Fabricante
Cloreto de cobalto(II) hexahidratado	CoCl ₂ .6H ₂ O	98,0	Êxodo científica
Cloreto de ferro(III) hexahidratado	FeCl ₃ .6H ₂ O	97,0	Aldrich
Cloreto de bário dihidratado	BaCl ₂ .2H ₂ O		
Cloreto de sódio	NaCl		
Soluções padrão de ferro e cobalto			
Ácido benzoico (<i>Hbzc</i>)	C ₆ H₅COOH	99,5	Aldrich
Ácido 4-hidroxibenzoico (<i>Hhbzc</i>)	HOC ₆ H ₄ COOH	99,0	Aldrich
Ácido trimésico (<i>H₃trim</i>)	C6H3(CO2H)3	95,0	Aldrich
Pirazina (<i>pyz</i>)	$C_4H_4N_2$	99,0	Aldrich
4,4'-bipiridina (<i>4,4'bip</i>)	C10H8N2	98,0	Aldrich
Hidróxido de potássio	КОН	90,0	Aldrich
Ácido sulfúrico	H ₂ SO ₄	92,0*	QHEMIS
Acetonitrilia	CH₃CN	99,8	Vetec
Brometo de Potássio	KBr	99,0	Aldrich
N,N-dimetilformamida	C ₃ H ₇ NO	99,8	Vetec
Metanol	CH₃OH		NEON
Dimetilsulfóxido	(CH ₃) ₂ SO		NEON
Ágar nutriente			KASVI
Caldo Mueller Hinton			Aldrich
Amoxicilina			
Resazurina	C ₁₂ H ₆ NNaO ₄	80,0**	Aldrich

Tabela 3 – Relação de reagentes e solventes.

* Valor relativo à concentração do ácido.

** Valor relativo à composição de sal sódico de resazurina.

Fonte: autoria própria (2020).

4.3 PROCEDIMENTOS SINTÉTICOS

4.3.1 Obtenção do polímero de coordenação contendo cobalto(II) – Produto A

O procedimento foi baseado em uma metodologia modificada àquela descrita por Golubnichaya *et al.*¹⁷⁸ Em um béquer de 50 mL solubilizou-se 0,230 g de KOH (4,09 mmol) em 10 mL de água deionizada. Verteu-se a solução básica à um béquer de 50 mL contendo 0,500 g de ácido benzoico (*Hbzc*, 4,09 mmol). O béquer que continha a solução de KOH foi lavado duas vezes com 15 mL de água deionizada; a solução de lavagem foi também incorporada ao béquer contendo o ácido benzoico. A solução resultante foi deixada sob agitação magnética à 95 °C até a completa evaporação da água. Restando, no fundo do béquer, apenas o benzoato de potássio (*Kbzc*), que foi caracterizado por espectroscopia de absorção na região do infravermelho.

Em um béquer de 50 mL pesou-se 0,391 g de CoCl₂·6H₂O (1,64 mmol). A este sólido, incorporou-se 0,526 g do *Kbzc* (3,28 mmol) recém preparado. Os dois sólidos foram pulverizados. Aos poucos adicionou-se, gota a gota, água deionizada à mistura dos sólidos até a formação de um sólido pastoso de coloração rosa. Posteriormente, adicionou-se água deionizada ao sólido até a obtenção de um volume final de 25 mL. Depois de ser mantida sobre agitação magnética por 15 minutos obteve-se uma solução límpida de coloração rosa. Em seguida, a solução foi mantida sobre agitação e aquecimento à uma temperatura de 90 °C até que o volume da solução foi reduzido para 2/3 do volume inicial. A solução-mãe foi deixada em repouso à temperatura ambiente para evaporação lenta do solvente e cristais marrons, produto A, foram obtidos após um período de 4 a 7 dias. O rendimento de A foi de 0,272 g, 32,34 % com base no cobalto(II) para a formulação {[Co(μ-*bzc*)(OH₂)₂](*bzc*)·H₂O}n.

Os cristais marrons, produto A, não se solubilizaram completamente em nenhum dos solventes testados; verificou-se visualmente que o material foi parcialmente solúvel em acetonitrila, etanol e dimetilsulfóxido e insolúveis em água, metanol, acetona, dimetilformamida, tetraidrofurano, clorofórmio, ciclohexano e tolueno.

A Equação (5), mostra a reação proposta para a formação de A e o Fluxograma 1 resume o procedimento sintético empregado.

$CoCl_2 \cdot 6H_2O + 2 \ Kbzc \rightarrow \{ [Co(\mu - bzc)(OH_2)_2](bzc) \cdot H_2O\}_n + 2 \ KCl + 3 \ H_2O$ (5) (Produto A)

Fluxograma 1 – Rota sintética empregada para a obtenção do polímero de coordenação $\{[Co(\mu-bzc)(OH_2)_2](bzc)\cdot H_2O\}_n$, produto A, visualização da morfologia BFDH e coloração dos seus cristais.

Fonte: autoria própria (2020).

4.3.2 Obtenção do oxocomplexo trinuclear heterometálico baseado em ferro(III) e cobalto(II) – Produto B

O procedimento foi baseado em uma metodologia modificada àquela descrita por *Polunin et al.*¹³ Pulverizou-se 0,251 g (7,07x10⁻⁴ mol) do polímero de coordenação baseado em cobalto(II), {[Co(μ -*bzc*)(OH₂)₂](*bzc*)·H₂O}_n, produto A, e o sólido foi colocado em um balão de fundo redondo. Em um béquer de 50 mL, preparou-se uma solução de coloração amarela contendo 0,087 g (3,22x10⁻⁴ mol) de FeCl₃·6H₂O em 23 mL de acetonitrila, a qual foi vertida ao balão de fundo redondo contendo o produto A. O béquer foi lavado duas vezes com 10 mL de acetonitrila em cada lavagem e as soluções de lavagem foram adicionadas ao balão de fundo redondo. A mistura reacional foi deixada sob refluxo à temperatura de 70 °C por 1 hora, havendo a formação de uma suspensão, a qual foi filtrada originando uma solução límpida de coloração verde. Esta solução foi mantida em repouso à temperatura ambiente para evaporação lenta de solvente e após 4-5 dias isolou-se cristais de coloração preta, produto B. O rendimento de B foi de 0,041 g, 26,31% com base no ferro(III) para a formulação [Fe₂Co(μ₃-O)(μ-*bzc*)₆(OH₂)₃].

Os cristais pretos, produto B, mostraram-se solúveis em dimetilacetamida, dimetilformamida, tetraidrofurano, dietilamina e dimetilsulfóxido; pouco solúveis em água, metanol, etanol, acetonitrila, 1,4-dioxano e n-butanol e insolúveis em diclorometano, acetona, clorofórmio, ciclohexano e tolueno.

A reação proposta para a formação de B pode ser vista na Equação (6). Já o Fluxograma 2 traz a visualização esquemática da metodologia de síntese.

3 {[Co(µ-*bzc*)(OH₂)₂](*bzc*)·H₂O}_n + 2 FeCl₃·6H₂O → [Fe₂Co(µ₃-O)(µ-*bzc*)₆(OH₂)₃] + 2 CoCl₂ + 2 HCl + 17 H₂O (6) (Produto B)

Fluxograma 2 – Rota sintética empregada para a obtenção do oxocomplexo trinuclear $[Fe_2Co(\mu_3-O)(\mu-bzc)_6(OH_2)_3]$, produto B, visualização da morfologia BFDH e coloração dos seus cristais.

Fonte: autoria própria (2020).

4.3.3 Obtenção do oxocomplexo trinuclear homometálico baseado em ferro(III) – Produto C

Em um erlenmeyer, preparou-se uma solução de coloração amarela contendo 0,300 g de FeCl₃·6H₂O (1,11 mmol) em uma mistura de 4 mL de metanol e 4 mL de água deionizada. Posteriormente, preparou-se duas soluções incolores empregando também uma mistura de 4 mL de metanol e 4 mL de água deionizada; a primeira contendo 0,306 g de ácido 4-hidroxibenzoico (*Hhbzc*, 2,22 mmol) e, a segunda, 0,178 g de pirazina (*pyz*, 2,22 mmol). Em seguida, as soluções contendo o ácido 4-hidroxibenzoico e a pirazina foram misturadas; nenhuma mudança visual foi observada. A solução resultante foi então adicionada à solução de cloreto de ferro(III) sobre agitação magnética, o que levou à formação imediata de uma solução límpida de coloração castanha-escura. Esta solução foi deixada sobre agitação magnética por 2 h à temperatura ambiente, não havendo mais nenhuma mudança visual neste período. A solução-mãe resultante foi então deixada em repouso à temperatura ambiente para evaporação lenta de solvente e após 14-15 dias foram obtidos cristais vermelhos, produto C. O rendimento de C foi de 0,158 g, 30,48% com base no ferro(III) para a formulação [Fe₃(µ₃-O)(µ-*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*.

Os cristais vermelhos, produto C, mostraram-se solúveis em metanol, etanol, piridina, dimetilformamida e dimetilsulfóxido; parcialmente solúveis em água, acetonitrila, tetraidrofurano, 1,4-dioxano, trimetilamina e n-butanol e insolúveis em diclorometano, clorofórmio, ciclohexano, tolueno e éter dietílico.

A reação proposta para a formação de C pode ser vista na Equação (7) e o Fluxograma 3 resume a metodologia de síntese.

3 FeCl₃·6H₂O + 6 *Hhbzc* + 3 *pyz* + CH₃OH → $[Fe_{3}(\mu_{3}-O)(\mu-hbzc)_{6}(OH_{2})_{2}(OHCH_{3})]Cl \cdot 3H_{2}O \cdot 3pyz + 8 HCl + 13 H_{2}O (7)$ (Produto C) **Fluxograma 3** – Rota sintética empregada para a obtenção do oxocomplexo trinuclear $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$, produto C, visualização da morfologia BFDH e coloração dos seus cristais.

Fonte: autoria própria (2020).

4.3.4 Preparação do complexo trinuclear [Co₃(4,4'-bip)₄(trim)₂(OH₂)₁₀]·(4,4'-bip)·8H₂O – Produto D

Preparou-se, à 90 °C, 5 mL de uma solução aquosa com 0,214 g de CoCl₂·6H₂O (0,9 mmol) e 5 mL de uma solução aquosa com 0,101 g de KOH (1,8 mmol). Paralelamente, sob mesma temperatura, 0,189 g do ácido trimésico (*H*₃*trim*, 0,9 mmol) e 0,281 g de 4,4'-bipiridina (*4*,*4'-bip*, 1,8 mmol) foram solubilizados, independentemente, em 10 mL de água. As soluções de ácido trimésico, 4,4'-bipiridina e KOH foram misturadas, gerando uma solução incolor. Ainda à 90 °C, adicionou-se aos poucos sobre esta solução, a solução de CoCl₂, resultando em 30 mL de uma mistura de reação de coloração rosa com sólido em suspensão. A amostra foi deixada sob agitação a 90 °C por 30 minutos, resultando em uma mistura levemente mais homogênea e sem mudanças aparentes quanto à coloração. Posteriormente, esta mistura foi colocada em um reator de Teflon[®], de capacidade de 60 mL, o qual foi levado à estufa em uma temperatura de 160 °C por um período de 72 h. Decorrido

este período, a estufa foi arrefecida até a temperatura ambiente com o reator ainda em seu interior, onde o mesmo foi mantido em repouso por 3 dias. Em seguida, o reator foi aberto, verificando-se a formação de cristais de coloração alaranjada, produto D, misturados com precipitado de coloração cinza. Os cristais foram isolados e lavados com água deionizada. O rendimento médio de D foi de 0,139 g, 27,36% com base no cobalto(II) para a formulação $[Co_3(4,4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4,4'-bip) \cdot 8H_2O$.

A Equação 8 traz a reação proposta para a formação do complexo D e o Fluxograma 4 resume a metodologia de síntese utilizada.

3 CoCl₂·6H₂O + 2 H₃trim + 5 4,4'-bip + 6 KOH →

$$[Co_{3}(4,4'-bip)_{4}(trim)_{2}(OH_{2})_{10}]\cdot(4,4'-bip)\cdot8H_{2}O + 6 KCl + 6 H_{2}O (8)$$
(Produto D)

Fluxograma 4 – Rota sintética empregada para a obtenção do trinuclear linear $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D, visualização da morfologia BFDH e coloração dos seus cristais.

Fonte: autoria própria (2020).
4.4 ESTUDO DE PROPRIEDADES ANTIBACTERIANAS

As análises de atividade biológica para os complexos sintetizados foram realizadas no Departamento de Química e Biologia da UTFPR. Os procedimentos foram conduzidos seguindo protocolos e recomendações da *CLSI (Clinical and Laboratory Standards Institute)* e *EUCAST (European Committee on Antimicrobial Susceptibility Testing)*. O estudo baseou-se no método de microdiluição em caldo para cepas de bactérias Gram-positivas (*Staphylococcus aureus* ATCC 6538) e Gram-negativas (*Escherichia coli* ATCC 25922).¹²⁵

4.4.1 Preparo dos materiais e meios de cultura

O preparo do ágar nutriente para plaqueamento e do Caldo *Mueller Hinton (MH)* para a diluição seriada foram feitos seguindo as recomendações dos fabricantes: é preciso suspender e diluir 28 g do ágar nutriente em pó para cada litro de água e 21 g do caldo *MH* em pó para cada litro de água.

Para o procedimento de suspensão e ajuste do inóculo, preparou-se uma solução salina, 0,9% (m/v) de NaCl. Cerca de 5 mL de solução foram colocados em tubos de ensaio com tampa.¹²⁵

As vidrarias, os materiais, meios de crescimento, tubos com solução salina e erlenmeyers com água deionizada foram esterilizados a 121 °C e 1,1 kgf cm⁻² por 20 minutos em uma autoclave vertical da marca Phoenix Luferco, modelo AV-75.

O padrão de turbidez utilizado para padronizar as concentrações bacterianas foi de 0,5 *McFarland*, em escala nefelométrica. O preparo baseou-se na mistura de 0,5 mL de uma suspensão de BaCl₂·2H₂O 1,175% (m/v) com 99,5 mL de uma solução de H₂SO₄ 1% (v/v). Durante todo o período de análise de atividade antibacteriana o preparo do padrão de turbidez teve que ser refeito devido à limitação quanto à estabilidade da suspensão.¹²⁵

Para a análise colorimétrica na revelação das microplacas preparou-se uma solução de resazurina 0,02%, a partir de uma solução estoque, utilizando água deionizada previamente esterilizada.

4.4.2 Preparo das soluções estoque

Todas as soluções estoques foram preparadas em balões volumétricos de 10 mL previamente desinfetados em álcool etílico 70%. Os testes foram feitos tanto para os produtos B e C quanto para os reagentes de partida utilizados em seus respectivos procedimentos sintéticos.

O preparo das soluções dos produtos B e C baseou-se na pulverização dos cristais, pesagem, solubilização em 1,5 mL de DMSO e diluição com caldo *Mueller Hinton* previamente esterilizado na autoclave até a aferição do volume. A mesma proporção de DMSO e caldo foi utilizada para solubilização tanto dos reagentes de partida quanto do medicamento de referência (Amoxicilina).

Tomando como base a faixa de viragem da resazurina, em termos de potencial hidrogeniônico (pH), as concentrações das soluções estoques de ácido benzoico, ácido 4-hidroxibenzoico e cloreto de ferro(III) hexahidratado foram calculadas de forma que a análise colorimétrica não levasse a interpretações equivocadas.^{127; 128; 179}

Os valores de concentração das soluções-estoque estão apresentados na Tabela 4 para os produtos B e C e seus respectivos reagentes de partida.

CONCENTRAÇÕES DAS SOLUÇÕES ESTOQUE			
PRODUTO B	PRODUTO C		
[Fe₂Co(µ₃-O)(µ- <i>bzc</i>)₀(OH₂)₃]	[Fe₃(µ₃-O)(µ- <i>hbzc</i>)₀(OH₂)₂(OHCH₃)]CI·3H₂O·3 <i>pyz</i>		
0,0154 mol L ⁻¹ ≈ 14897 mg L ⁻¹	0,0154 mol L ⁻¹ ≈ 21622 mg L ⁻¹		
Ácido benzoico (<i>Hbzc</i>)	Ácido 4-hidroxibenzoico (Hhbzc)		
0,0492 mol L ⁻¹ ≈ 6008 mg L ⁻¹	0,0435 mol L ⁻¹ ≈ 6008 mg L ⁻¹		
FeCl ₃ ·6H ₂ O	Pirazina (<i>pyz</i>)		
0,0080 mol L ⁻¹ ≈ 2162 mg L ⁻¹	0,0462 mol L ⁻¹ ≈ 3700 mg L ⁻¹		
CoCl ₂ ·6H ₂ O	FeCl ₃ ·6H ₂ O		
0,0156 mol L ⁻¹ ≈ 3712 mg L ⁻¹	0,0080 mol L ⁻¹ ≈ 2162 mg L ⁻¹		

Tabela 4 – Concentrações das soluções entoque para os produtos B e C e seus respectivos reagentes de partida.

Fonte: autoria própria (2020).

A quantidade de amoxicilina pesada para o preparo de 10 mL de solução tomou como base a relação apresentada na Equação (9):

$$W = \frac{(C \times V)}{P} \tag{9}$$

No qual, W é a massa de amoxicilina em mg, C é a concentração da solução estoque em $\mu g \ mL^{-1}$, V é o volume de solução desejado em mL e P é a potência do medicamento em $\mu g \ mg^{-1}$, fornecida pelos fabricantes. Com isso, preparou-se uma solução estoque de 1280 $mg \ L^{-1} \approx 0,0035$ mol L⁻¹ de amoxicilina.

4.4.3 Procedimentos

A avaliação de atividade antibacteriana a partir de um único procedimento de microdiluição em caldo demanda um período de 4 dias:

1° dia) Realizou-se a esterilização de todos os materiais e meios de crescimento. Após o plaqueamento e solidificação do ágar nutriente nas placas de *Petri*, foi feito o cultivo de microrganismos a partir do repique das bactérias. Depois de realizar o esgotamento em estrias, as placas foram incubadas em uma estufa com temperatura controlada de 37,2 °C por um período de 24 horas.¹²⁵

2° dia) Em microplacas de 96 poços, realizou-se a diluição seriada das soluções estoque dos produtos, dos reagentes de partida, da composição de solventes e do medicamento de referência: inicialmente, toda a placa é preenchida com 50 μ L de caldo *Mueller Hinton*, com exceção da coluna 1, que não foi preenchida, e da coluna 12 que constitui a coluna de controle de esterilidade (CE) e foi preenchida com 100 μ L de caldo. A coluna 1 foi preenchida com 100 μ L das soluções estoque da seguinte forma:

- Produto B: na coluna 1, as linhas A e B foram preenchidas com a solução estoque do trinuclear heterometálico, a linha C com a solução do ácido benzoico, a linha D com a solução de FeCl₃·6H₂O, a linha E com a solução de CoCl₂, a linha F com a composição de solventes e as linhas G e H com a solução estoque de amoxicilina diluída em 10 vezes para os testes com e *E. coli* (128 mg L⁻¹) e diluída em 40 vezes para os testes com a *S. aureus* (32 mg L⁻¹).

- Produto C: as linhas A e B foram preenchidas com a solução estoque do trinuclear homometálico, a linha C com a solução do ácido 4-hidroxibenzoico, a linha D com a solução de pirazina, a linha E com a solução de FeCl₃·6H₂O, a linha F com a composição de solventes e as linhas G e H com a solução estoque de amoxicilina diluída em 10 vezes para os testes com e *E. coli* (128 mg L⁻¹) e diluída em 40 vezes para os testes com a *S. aureus* (32 mg L⁻¹).

Com o auxílio de uma micropipeta multicanal foi feita a diluição seriada entre a coluna 1 até a coluna 10: retira-se 50 μ L da coluna 1, transfere-se e homogeneíza na coluna 2, reduzindo a concentração pela metade. Realiza-se o mesmo procedimento transferindo-se 50 μ L da coluna 2 para a coluna 3 e assim sucessivamente, até a coluna 10, no qual os 50 μ L adicionais são retirados e descartados após homogeneização.

Após ter sido feita a diluição seriada, realizou-se a padronização da concentração das bactérias: com o auxílio de uma alça de platina, transferiu-se de 2 a 3 colônias que se formaram das placas de haviam sido semeadas e incubadas no dia anterior (crescimento *overnight*) para os tubos contendo solução salina, 0,9% de NaCl, previamente esterilizados. O ajuste da concentração foi feito por análise comparativa entre a turbidez da suspensão de BaCl₂·2H₂O, correspondente a 0,5 da escala *McFarland,* e o inóculo na solução salina. Para essa escala de turvação obtém-se cerca de 1x10⁸ a 2x10⁸ UFC mL⁻¹.¹²⁵

A partir do ajuste, retirou-se uma alíquota de 200 μ L da suspensão e transferiu-se para um Erlenmeyer contendo 19,8 mL de caldo *Mueller Hinton* esterilizado, perfazendo-se, assim, 20 mL de inóculo. Com uma micropipeta multicanal, foi feita a inoculação nos poços das microplacas preparadas anteriormente; adicionou-se 50 μ L de inóculo das colunas 1 até a coluna 11, sendo a coluna 11 a coluna de controle de crescimento (CC). Após a inoculação a concentração de todos os componentes avaliados (produtos B e C, reagentes, solventes e medicamento de referência) é reduzido pela metade.

Logo após o procedimento descrito, foi feito o branco dos 96 poços de cada microplaca partir da análise de UV/Vis. As placas foram, posteriormente, incubadas em uma estufa com temperatura controlada em 37,2 °C por um período de 24 horas.

3° dia) Para a avaliação do crescimento bacteriano, as placas foram novamente analisadas pela leitora de microplacas. A partir dos resultados, gerados

na hora, foi possível estipular a partir de quais colunas seria possível coletar alíquotas de 20 µL para a avaliação da Concentração Bactericida Mínima (CBM) dos produtos B e C. As alíquotas foram semeadas em placas de *Petri* com ágar nutriente e incubadas por 24 horas em uma temperatura de 37,2 °C.

Depois de retiradas as alíquotas, foi feita a análise colorimétrica complementar a partir da adição de 20 µL de resazurina 0,02% a cada poço das microplacas. As placas foram deixadas na estufa por 2 horas em 37,2 °C para verificar a mudança de coloração do indicador.

4° dia) Verificou-se o desenvolvimento, ou não, de colônias bacterianas para determinar a CBM.

5 RESULTADOS E DISCUSSÃO

Nesta seção serão discutidos os resultados de caracterização para os quatro produtos sintetizados no trabalho. Para cada um deles serão apresentados os resultados da caracterização estrutural e de pureza. Posteriormente serão apresentados os resultados de análise térmica e das caracterizações espectroscópicas, os quais serão discutidos e correlacionados com a estrutura do estado sólido. Adicionalmente, uma seção de correlações entre metodologia sintética e estrutura será apresentada com o intuito de sistematizar os resultados obtidos. Por fim, as discussões sobre os resultados de análise antibacteriana para os oxocomplexos B e C serão apresentados em seções próprias.

5.1 CARACTERIZAÇÃO DO PRODUTO A

5.1.1 Difratometria de Raios X por Monocristal (DRXM)

A reação entre cobalto(II) e o ácido benzoico na proporção de 1:2 resultou nos cristais rosas, produto A, em 32,34% de rendimento. Os cristais foram submetidos à análise por DRXM, cujos resultados mostraram a formação de um polímero unidimensional de fórmula $\{[Co(\mu-bzc)(OH_2)_2](bzc)\cdot H_2O\}_n$. A Figura 13 traz a representação de porção da estrutura polimérica formadora de A, evidenciando o ambiente de coordenação do cobalto(II). Os dados de coleta e refinamento do produto A, podem ser visualizados na Tabela 5.

Quando a coleta dos dados de difração de A foi realizada, como comum nestes procedimentos, uma pesquisa na base *Cambridge Crystallographic Data Centre* (CCDC) não mostrou resultado prévio de depósito de estrutura semelhante àquela observada para este polímero. No entanto, durante as pesquisas bibliográficas realizadas para a redação desta dissertação, foi verificado que a mesma estrutura foi publicada em 2018 por Černák e colaboradores, e com parâmetros cristalográficos semelhantes aos observados para A.¹⁸⁰ Uma vez que a coleta de dados para A foi realizada antes, há época realmente não havia relato de publicação da estrutura,

indicando que o trabalho desta dissertação e aquele do grupo de pesquisa liderado por Černák foram realizados praticamente em paralelo. O artigo publicado traz dados de síntese, caracterização por DRXM e por IV e de magnetização dependente da temperatura. Uma vez que a metodologia de síntese de A neste trabalho é diferente daquela já descrita, e que aqui também foram realizadas caracterizações estruturais e espectroscópicas distintas das já publicadas, a redação de um artigo científico com estes dados está em andamento em nosso grupo.

Figura 13 – Representação ORTEP com o esquema de numeração dos átomos de porção da estrutura polimérica formadora de {[Co(μ-*bzc*)(OH₂)₂](*bzc*)·H₂O}_n, produto A.

Fonte: autoria própria (2020).

As informações cristalográficas apresentadas na Tabela 5 indicam, a partir das figuras de mérito R₁ e wR₂, boa concordância entre o modelo estrutural proposto e o mapa experimental de distribuição de densidade eletrônica da célula unitária. A convergência para o valor unitário em *Goodness-of-fit* sobre F² reforça a confiabilidade quanto aos desvios-padrão dos parâmetros posicionais e de deslocamento dos átomos.¹⁸¹ Inclusive, estes parâmetros de refinamento são mais precisos do que aqueles relatados por Černák e colaboradores.¹⁸⁰

Fórmula unitária	$(C_7H_9C_0O_4)$ $(C_7H_5O_2)$ (H_2O)
Massa molar	355 20 g mol ⁻¹
Sistema cristalino, grupo espacial	Monoclínico 12/a
Parâmetros reticulares	$a = 6.2680(2)$ Å $\alpha = 90^{\circ}$
	$a = 0,2000(2) \land a = 50$ $b = 34,1372(16) \land a = 05,828(2) \circ$
	$p = 54, 1572(10) \times p = 55, 520(2)$
Valuma da cálula unitária	$C = 0,9599(4) \text{ A} \gamma = 90$
Volume da celula unitaria	1481,53(12) A°
Numero de formulas unitarias na celula (Z)	4
	1,592 g cm ⁻³
F(000)	732
Coeficiente de absorção (µ)	1,190 mm ⁻¹
l emperatura de coleta dos dados	300(2) K
Comprimento de onda da radiação	0,71073 Α (Μο Κα)
Forma e cor do cristal	Paralelepípedo, rosa
Tamanho do cristal	0,209 x 0,152 x 0,033 mm
Sobre o difratômetro	
Faixa de coleta de dados (ângulo θ)	3,0 a 27,2 °
Faixa de coleta de dados (índices <i>h</i> , <i>k</i> , <i>l</i>)	$-8 \le h \le 8$
	$-43 \le k \le 43$
	-8 ≤ <i>l</i> ≤ 8
Completeza dos dados coletados	99,6 %
Número de reflexões coletadas	35661
Número de reflexões independentes	1647 [R _(int) = 0,084]
Número de reflexões observadas ($I > 2\sigma_I$)	1321
Método de determinação da estrutura	Método da fase intrínseca no SHELXT
Método de refinamento	Método dos quadrados mínimos de
	matriz completa sobre F ²
N° de dados / n° de restrições / n° de	1647 / 0 /137
parâmetros	1047 / 0 / 137
Goodness-of-fit (S) sobre F ²	1,017
Parâmetros residuais máximos do mapa	
de <i>Fourier</i> após refinamento	
R observado (I > 2σ _ι)	R ₁ = 0,024, wR ₂ = 0,056
R (todos os dados)	R ₁ = 0,040; wR ₂ = 0,060

Tabela 5 – Informações sobre a coleta de dados usados na determinação e refinamento da estruturapolimérica { $[Co(\mu-bzc)(OH_2)_2](bzc) \cdot H_2O]_n$, produto A.

Fonte: autoria própria (2020).

As principais distâncias, ângulos de ligação e desvios padrão estimados (*e.s.ds*) estão apresentados na Tabela 6. O Anexo 1 contém informações complementares acerca dos dados cristalográficos coletados para o produto A.

Comprimentos de ligação (Å)		
Co–O _{bzc}	Co02	1,9817(11)
	Co–O2 ⁱ	1,9815(11)
Co–O _{aqua}	Co01	2,1509(12)
	Co–O1 ⁱ	2,1509(12)
	Co–O1 ⁱⁱ	2,1792(11)
	Co–O1 ⁱⁱⁱ	2,1792(11)
Co…Co ⁱⁱ	Co…Co ⁱⁱ	3,134*
Ângulos de ligação (°)		
O _{bzc} –Co–O _{aqua}	02 ⁱ –Co–O1	91,08(5)
	O2–Co–O1	88,92(5)
	02 ⁱ –Co–O1 ⁱ	88,93(5)
	02–Co–O1 ⁱ	91,07(5)
	02 ⁱ –Co–O1 ⁱⁱ	87,73(5)
	O2–Co–O1 ⁱⁱ	92,28(5)
	02 ⁱ –Co–O1 ⁱⁱⁱ	92,27(5)
	O2–Co–O1 [™]	87,72(5)
O _{aqua} —Co—O _{aqua}	01–Co–O1 ⁱⁱ	83,49(5)
	01 ⁱ –Co–O1 ⁱⁱ	96,51(5)
	O1–Co–O1 [™]	96,51(5)
	O1 ⁱ –Co–O1 ⁱⁱⁱ	83,49(5)
	O1 [⊪] –Co–O1 [™]	180,00(7)
C _{bzc} –O _{bzc} –Co	C102Co	130,20(11)
Co–O _{aqua} –Co	Co–O1–Co ⁱⁱ	92,73(4)
C _{bzc} -O _{bzc} -C _{bzc}	02–C1–O2 ⁱⁱ	125,3(2)

Tabela 6 – Parâmetros geométricos selecionados para { $[Co(\mu-bzc)(OH_2)_2](bzc) \cdot H_2O]_n$, produto A. Os valores de *e.s.ds* para comprimentos e ângulos de ligações encontram-se entre parênteses.

*Distância obtida a partir da estrutura gerada pelo software Mercury[®].

Operações de simetria utilizadas para gerar átomos equivalentes: (i) -x+1, -y+1, -z+1; (ii) -x+1/2, y, -z+1; (iii) x+1/2, -y+1, z; (iv) -x+1/2, y, -z+2; (vi) -x+3/2, y, -z+1.

Fonte: autoria própria (2020).

A análise dos comprimentos e ângulos de ligação mostram que os íons cobalto(II) encontram-se em geometria octaédrica distorcida. Quatro das seis posições de coordenação do íon são ocupadas por moléculas de água, no plano equatorial, tais moléculas atuam, duas a duas, como pontes entre dois íons Co²⁺. Cada uma das duas posições que se encontram no eixo axial é ocupada por átomos de oxigênio dos íons benzoato. Desse modo, a carga negativa do íon benzoato é dividida para dois íons Co²⁺ e o balanceamento de carga total para o sistema é dado pela presença de um íon benzoato presente na estrutura como contraíon, levando à proporção de um íon benzoato para cada centro de Co²⁺.

As ligações axiais entre os oxigênios dos íons benzoato e o cobalto(II) são mais curtas quando comparadas às ligações com os oxigênios dos ligantes *aqua*, nas posições equatoriais. É possível inferir, portanto, que a intensidade da força da ligação cobalto(II)–O_{benzoato} é maior que da ligação cobalto(II)–O_{aqua}. A estrutura possui ainda

uma molécula de água de cristalização para cada íon cobalto(II) na formação do polímero (Figura 13). A cadeia polimérica cresce ao longo do eixo *a* da célula unitária, a qual possui sistema cristalino monoclínico, conforme mostrado na Figura 14.

Figura 14 – Representações da estrutura polimérica 1D em {[Co(μ-*bzc*)(OH₂)₂](*bzc*)·H₂O}_n, produto A, evidenciando (a) a célula unitária e (b) o crescimento da cadeia polimérica ao longo do eixo *a*. Os átomos de hidrogênio, contraíons e moléculas de água de cristalização foram omitidos para maior clareza. As imagens foram geradas pelo *software* Mercury[®] a partir do arquivo CIF de dados para a estrutura.

<u>Legenda</u>: CINZA – Carbono / VERMELHO – Oxigênio / ROXO – Cobalto(II). <u>Fonte</u>: autoria própria (2020).

Com o intuito de elucidar a estabilização das cadeias poliméricas a partir das interações intermoleculares, gerou-se a superfície de Hirshfeld (HF) em *d_{norm}* envolvendo o contraíon benzoato e a molécula de água de cristalização. A análise foi feita utilizando o *software CrystalExplorer17.5*, possibilitando o mapeamento e a quantificação dos contatos intermoleculares com base no *fingerprint* da superfície.¹⁸²⁻¹⁸⁴

As distâncias de contatos intermoleculares normalizadas (d_{norm}) são representadas pela superfície de HF que indica tanto regiões doadoras quanto

receptoras de contatos intermoleculares. Esse padrão provém da correlação entre as distâncias $d_e e d_i$ pelos raios de van der Waals. d_e representa a distância da superfície ao núcleo do átomo externo mais próximo, enquanto d_i constitui a distância da superfície ao núcleo do átomo interno mais próximo.¹⁸⁵ Contatos intermoleculares mais curtos, cujos comprimentos são menores que a soma dos raios de van der Walls, são identificados pelos "*red spots*" observados em d_{norm} , e indicam regiões onde a interação é mais intensa. Para a escala de cores considerada, as regiões indicadas em branco na superfície indicam distâncias próximas à soma dos raios de van der Walls Waals enquanto para as regiões indicadas em azul, tem-se distâncias maiores.¹⁸²

A superfície de Hirshfeld para o produto A, mapeada em d_{norm} , revela três interações de maior intensidade, como indicado na Figura 15. As características quanto à intensidade e contribuições relativas para cada tipo de interação intermolecular podem ser avaliadas a partir do *fingerprint* do produto A, o qual é reproduzido na Figura 16.

Figura 15 – Superfície de Hirshfeld para { $[Co(\mu-bzc)(OH_2)_2](bzc) \cdot H_2O_n$, produto A, evidenciando os *red spots*, destacados por setas verdes. A imagem foi gerada sobre o contraíon e a molécula de água de cristalização utilizando o *software CrystalExplorer17.5*.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / ROXO – Cobalto(II). <u>Fonte</u>: autoria própria (2020).

A Figura 16a traz as porcentagens de contribuições individuais na composição da superfície que foi gerada. A Figura 16b corresponde ao *fingerprint* resultante da sobreposição de todas as interações consideradas, ou seja, trata-se de uma representação bidimensional da área total da superfície de HF. A decomposição do *fingerprint* para cada tipo de interação está reproduzida na Figura 16c.¹⁸³

Figura 16 – *Fingerprints* para a superfície gerada sobre o contraíon e molécula de água de cristalização do produto A. (a) Porcentagens de contribuições individuais de cada tipo de interação na composição da superfície de HF. (b) *Fingerprint* total e (c) *fingerprints* resultantes da decomposição do *fingerprint* total.

Fonte: autoria própria (2020).

Embora as interações H····H apresentem maior contribuição relativa na composição da superfície (44,30 %), a intensidade para esse tipo de interação é muito fraca. As interações O····H, em contrapartida revelam-se mais intensas e são responsáveis pelo aparecimento de pontas indicadas em roxo (*sharp spikes*), no *fingerprint* (Figura 16). Neste caso, a soma $d_i + d_e$ é de aproximadamente 2,3 Å para os menores valores indicados no *fingerprint*, o que é inferior à soma dos raios de van der Walls dos átomos envolvidos. Como resultado, tem-se o aparecimento de *red spots*, como se mostrou evidente na Figura 15.¹⁸³

Além de as interações O···H notabilizarem-se por sua intensidade, constatase que elas também se destacam por apresentar contribuição significativa na composição da superfície de HF (24,80%). Tais características revelam, portanto, o papel fundamental das ligações de hidrogênio na comunicação entre as cadeias poliméricas 1D e entre os contraíons e moléculas de água de cristalização que compõem a estrutura do produto A.

No produto A, a LH que envolve os átomos O1–H1A····O4 está indicada como sendo a interação "a", em vermelho, na Figura 17. Nessa situação, o ligante *aqua* atua como doador de hidrogênio e o oxigênio da molécula de água de cristalização atua como receptor da ligação de hidrogênio. As outras duas ligações não covalentes, vistas na Figura 17, são Ligações de Hidrogênio Assistidas por Carga (LHAC) uma vez que envolvem um átomo receptor carregado negativamente que, neste caso, é o um dos oxigênios do grupo carboxilato do contraíon benzoato.⁸⁶ Uma das LHAC envolve o ligante *aqua* como grupo doador (O1–H1B···O3, identificada por "b", em coloração verde) e a outra a molécula de água de cristalização (O4–H4O4···O3, identificada por "c", em coloração azul). O outro átomo de oxigênio do contraíon benzoato também realiza LHAC, neste caso, entretanto, essas interações ocorrem com uma cadeia polimérica vizinha como mostrado na Figura 17b.

Figura 17 – (a) Representações esquemáticas das ligações de hidrogênio "a", "b" e "c" presentes em {[Co(μ-*bzc*)(OH₂)₂](*bzc*)·H₂O}_n, produto A, e (b) representação das interações "a" e "b" com cadeias poliméricas adjacentes e interações "c" existentes entre os contraíons e moléculas de água de cristalização. A imagem foi gerada pelo *software* Mercury[®] a partir do arquivo CIF de dados para a estrutura.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / ROXO – Cobalto(II). <u>Fonte</u>: autoria própria (2020).

A classificação quanto à força e à energia das ligações são proporcionais às distâncias e aos ângulos de ligação envolvendo o átomo doador e o átomo receptor da ligação, como já discutido a partir da Tabela 1. Desta forma, analisando os dados de distâncias e ângulos de ligações de hidrogênio em A (Tabela 7), pode-se concluir que estas interações possuem força moderada.^{87; 186}

Tabela 7 – Valores de comprimentos e ângulos de ligação de hidrogênio para $\{[Co(\mu-bzc)(OH_2)_2](bzc)\cdot H_2O\}_n$, produto A.

Label	D–H…O	d(D–H) (Å)	d(H…R) (Å)	d(D…R) (Å)	< DHR (°)
а	O1–H1A⋯O4 ^{Vi}	0,81(2)	1,90(2)	2,6969(18)	170(2)
b	O1–H1B…O3	0,77(2)	1,87(2)	2,6286(17)	170(2)
С	O4–H4O4…O3 [∨]	0,85(2)	1,84(2)	2,6899(15)	174(3)

Fonte: autoria própria (2020).

5.1.2 Análise Elementar e Difratometria de Raios X por Pó (DRXP)

A dosagem de carbono e hidrogênio foi feita com o intuito de se verificar a pureza do produto A. A comparação entre os teores calculados para a formulação $\{[Co(\mu-bzc)(OH_2)_2](bzc)\cdot H_2O\}_n$, obtida através da análise por DRXM, e aquela obtida experimentalmente é mostrada na Tabela 8. Os resultados obtidos indicam excelente correlação com o esperado para a fórmula do polímero de coordenação de cobalto(II), indicando que o material é obtido em alto grau de pureza pela metodologia descrita neste trabalho.

Tabela 8 – Comparação entre as porcentagens teórica e experimental de carbono e hidrogênio para a espécie polimérica { $[Co(\mu-bzc)(OH_2)_2](bzc) \cdot H_2O_n$, produto A.

Teores (% m/m)	Со	С	Н
Calculados para {[Co(µ- <i>bzc</i>)(OH₂)₂](<i>bzc</i>)·H₂O}n	16,59	47,34	4,54
Obtidos para o produto A	16,43	47,21	4,51

Fonte: autoria própria (2020).

Comparando os difratogramas simulado, gerado pelo *software* Mercury[®] a partir do arquivo CIF de A, e experimental, verifica-se boa correlação entre os planos cristalográficos para o qual a lei de Bragg é satisfeita (Figura 18). Esse resultado corrobora a análise elementar em termos de pureza do material. Alguns dos planos estão identificados pelos índices de Miller (*hkl*) na figura.

Embora exista correspondência entre os picos de difração, é perceptível que as intensidades são distintas entre os dois difratogramas. Esse resultado possivelmente está associado à orientação preferencial dos cristalitos na preparação da amostra.^{187; 188} **Figura 18** – Comparação entre os difratogramas simulado (gerado pelo *software* Mercury[®]) e experimental para { $[Co(\mu-bzc)(OH_2)_2](bzc) \cdot H_2O_n$, produto A.

Fonte: autoria própria (2020).

5.1.3 Análise Termogravimétrica (TGA-DTG)

A análise do comportamento térmico do produto A foi feita a partir de curvas TGA-DTG utilizando uma massa inicial de 4,398 mg. O termograma e a relação de faixas de temperatura associadas às perdas de massa são apresentados, respectivamente, na Figura 19 e na Tabela 9.

Os cálculos para a perda de massa teórica foram realizados a partir das reações apresentadas na Equação (10), com relação à decomposição do polímero {[Co(µ-*bzc*)(OH₂)₂](*bzc*)·H₂O}_n, e na Equação (11), relacionada à decomposição do Co₃O₄.¹⁸⁹

$$6[[Co(\mu - C_7H_5O_2)(OH_2)_2](C_7H_5O_2)(H_2O)] + 91O_2 \rightarrow 2Co_3O_4 + 84CO_2 + 48H_2O$$
(10)

$$2 \operatorname{Co}_3 \operatorname{O}_4 \to 6 \operatorname{CoO} + \operatorname{O}_2 \tag{11}$$

Figura 19 – Curvas TGA e DTG para o produto A, {[Co(µ-bzc)(OH₂)₂](bzc)·H₂O}_n.

Fonte: autoria própria (2020).

Tabela 9 – Dados térmicos para o produto	o A com relação a	i cada faixa de ter	mperatura
--	-------------------	---------------------	-----------

Faixa de temperatura (°C)	Atribuição (estabilidade térmica ou decomposição)	Perda de massa experimental (%)	Perda de massa teórica (%)
20 – 70	Estabilidade Térmica (Produto A)	Valores Não S	Significativos
70 – 150	1 H ₂ O _(cristalização) + 2 H ₂ O _(coordenada)	16,924 (13,86 + 3,064)	15,22
150 – 430	1 <i>bzc</i> _(contraíon) + 1 <i>bzc</i> _(coordenado)	59,96 (11,97 + 47,99)	62,19
430 – 850	Estabilidade Térmica (Co ₃ O ₄)	Valores Não S	Significativos
850 - 900	1/3 Co ₃ O ₄	1,203	1,50

Fonte: autoria própria (2020).

A Tabela 9 indica que o produto A apresenta estabilidade térmica até a temperatura de 70 °C. Verifica-se forte correlação entre os dados experimentais e os valores teóricos de perda de massa, sendo todas as diferenças abaixo de 2,3 pontos percentuais. Considerando-se o erro relativo percentual dos valores obtidos com relação à perda de massa teórica verifica-se que a maior discrepância ocorre para a decomposição do Co₃O₄.

O termograma para o produto A indica três etapas principais de decomposição. A etapa que se estende até a temperatura de 150 °C indica a saída de moléculas de água de cristalização e moléculas de água coordenadas ao íon cobalto(II). A temperatura onde a velocidade de decomposição é máxima dentro desta faixa se encontra em 102,75 °C. A primeira derivada da curva de TGA com relação a temperatura (DTG), indica um platô entre 102,75 e 134,29 °C possivelmente relacionado aos diferentes comportamentos térmicos com relação a água de cristalização (não coordenada) e o ligante *aqua* (coordenado).¹⁹⁰

De forma similar, na faixa de 150 a 430 °C verifica-se, em aproximadamente 310 °C, um ombro que pode ser associado tanto à uma interface na decomposição térmica do contraíon benzoato (*bzc*⁻, não coordenado) e do ligante benzoato (*bzc*⁻, coordenado) quanto à diferentes processos de decomposição térmica e reorganização estrutural. Ao final desse estágio, é possível observar uma perda significativa da massa da amostra em função da decomposição dos ligantes e formação do espinélio Co₃O₄. Neste caso, o óxido formado é constituído por um íon Co²⁺ em geometria de coordenação tetraédrica e dois íons Co³⁺ em geometria octaédrica.¹⁹¹

A partir do termograma, é possível evidenciar que o Co₃O₄ apresenta estabilidade térmica na faixa de 430 a 850 °C. Temperaturas acima de 850 °C, entretanto, levam à decomposição do espinélio e à formação do CoO, como apresentado na Equação (11).^{189; 192}

A composição residual verificada para o produto A foi de 21,77%, valor muito próximo ao valor que seria esperado de 21,10%, considerando a decomposição completa do Co₃O₄ à CoO. A análise de DRX por pó a partir do produto calcinado à 900 °C, entretanto, indicou que em 900 °C ainda havia Co₃O₄ presente na amostra, como é possível verificar no difratograma da Figura 20.^{191; 193} O difratograma indica correlação tanto para a presença de Co₃O₄ quanto para CoO. Embora os valores experimentais e teóricos já sejam muito próximos, é de se esperar que a composição residual seja menor e mais próxima do valor teórico caso a amostra seja calcinada em temperaturas superiores a 900 °C.

Figura 20 – Correlação do difratograma experimental do sólido obtido pela calcinação do produto A à 900 °C com os difratogramas simulados para os óxidos Co₃O₄ e CoO.

<u>Fonte</u>: Difratogramas simulados gerados pelo *software* Mercury[®] a partir dos arquivos CIFs de códigos COD: 9005892 de LIU, X. e PREWITT, T. (1990); 1541662 de TOMBS, N. C. e ROOKSBY, H. P. (1950).^{191; 193} Difratograma experimental: autoria própria (2020).

5.1.4 Espectroscopia Vibracional de Absorção na Região do Infravermelho (IV)

Os cristais marrons, produto A, foram caracterizados por espectroscopia de absorção na região do infravermelho (IV) em pastilha de KBr. A técnica é frequentemente utilizada como uma análise preliminar, comparando-se os espectros dos produtos com os dos reagentes de partida. As características observadas em uma análise comparativa podem fornecer informações quanto a coordenação de um ligante à uma entidade metálica, a presença de interações intermoleculares ou a cristalização de material de partida. Nesse segmento, a Figura 21 traz uma comparação entre os espectros registrados para o produto A e para os materiais de partida: o ácido benzoico, *Hbzc*, e o benzoato de potássio, *Kbzc*.

Para a análise das bandas de absorção do espectro, é preciso levar em conta que a estrutura do produto A possui ligações não covalentes do tipo ligação de hidrogênio. A força deste tipo de ligação em A é considerada moderada e é sabido que estas interações são responsáveis por alterar a constante de força dos grupos doadores e receptores de ligação de hidrogênio. Assim, as frequências e estiramentos das bandas v(O-H), que são intensas e alargadas, são deslocadas para regiões de menor energia.¹⁹⁴ No entanto, o pré-ligante ácido benzoico possui um arranjo estrutural onde já existem ligações de hidrogênio pela formação de dímeros de ácido carboxílico (Figura 22).^{195; 196} Desta forma, a comparação entre a energia das absorções referentes ao estiramento v(O-H) em A e para o ácido benzoico mostra que não houve alterações significativas entre os dois espectros.

Figura 21 – Espectros de absorção na região do infravermelho registrados em pastilhas de KBr para o produto A, para o ácido benzoico, *Hbzc* e o benzoato de potássio *Kbzc*.

Fonte: autoria própria (2020).

Figura 22 – Representação das ligações de hidrogênio (linhas azuis) envolvidas na formação do retículo cristalino do ácido benzoico.

Fonte: Figura construída a partir do arquivo CIF de código CSD: BENZAC01 de Bruno, G. (1980).¹⁹⁷

A comparação do perfil de absorção nos três espectros confirma a incorporação do benzoato da estrutura do polímero de coordenação. Uma observação relevante quando se compara o espectro do ácido benzoico com o espectro do benzoato de potássio e do produto A é quanto ao estiramento característico da carbonila, v(C=O), que aparece em 1688 cm⁻¹ no ácido e não é evidenciada nos espectro do benzoato de potássio e do polímero de cobalto(II). Esse resultado é compatível com a presença deste ligante em ponte entre os dois centros de cobalto(II), em concordância com a análise por difratometria de raios X por monocristal. A desprotonação do ácido, quando preparou-se o benzoato de potássio, e a sua presença no modo de coordenação em ponte no complexo elimina o caráter de dupla ligação do grupamento ácido e insere um caráter de ressonância no mesmo, fazendo com que o estiramento antissimétrico do carboxilato, $v_{as}(COO)$, em 1391 cm⁻¹ para o produto A e $v_{as}(COO)$ em 1551 cm⁻¹ e $v_s(COO)$, em 1398 cm⁻¹, para o benzoato de potássio.¹⁹⁸

Um ponto importante que deve ser destacado é com relação à presença de grupos benzoato que se encontram em ambientes químicos distintos: um benzoato encontra-se coordenado em ponte com dois íons cobalto(II) e outro apresenta-se como contraíon, realizando ligações de hidrogênio com moléculas de água de cristalização e com ligantes *aqua*. Inegavelmente, as bandas de absorção associadas à cada uma dessas situações não se encontrarão em posições exatamente concordantes no espectro, o que pode explicar o padrão de estiramentos verificados na região compreendida entre 1600 e 1400 cm⁻¹ para o produto A (Figura 21).¹⁹⁸

As demais atribuições tentativas para as bandas observadas nos espectros podem ser verificadas na Tabela 10.

Tabela 10 – Atribuições tentativas das bandas de absorção características na região do infravermelho (cm⁻¹) registradas para o produto A, para o ácido benzoico, *Hbzc*, e para o benzoato de potássio, *Kbzc*.

ATRIBUIÇÕES TENTATIVAS	PRODUTO A	Hbzc	Kbzc
<i>Overton</i> e do estiramento <i>v</i> (C=O) do ácido carboxílico		3464	
u(O-H) para dímeros de COOH		2677, 2562	
ν(Ο–Η) com ligação de hidrogênio intermolecular	3104		
ν (C–H) de anel aromático	Banda encoberta	3074, 2996, 2838	3068, 2971
ν(C=O) de ácido carboxílico em conjugação com o grupamento fenila		1688	
ν _{as} (COO)	1542		1551
ν _s (COO)	1391		1398
ν(CC) de anel aromático	1592, 1498, 1437	1602, 1584, 1454, 1425	1597, outra(s) banda(s) possivelmente encoberta(s)
ν(C–O)		1326, 1293	
δ(С–Н)	1069, 1022	1073, 1027	1067, 1023
π(О–Н)	913	935	
π (C–H) para anel aromático monossubstituído	713, 685	708, 668	706, 683
π (CC) do anel aromático	539	553	515
δ(COO)	609, 505		

v = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano <u>Fonte</u>: autoria própria (2020).

5.1.5 Espectroscopia Vibracional de Espalhamento Raman

O espectro obtido para A pela técnica de espectroscopia de espalhamento Raman é apresentado na Figura 23. As atribuições tentativas para todas as bandas de espalhamento identificadas no espectro estão relacionadas na Tabela 11. Verifica-se que os resultados complementam e corroboram aqueles obtidos pela análise por IV. É possível observar o estiramento antissimétrico, ν_{as} (COO), em 1504 cm⁻¹ e o estiramento simétrico, ν_{s} (COO), em

1398 cm⁻¹. Em razão da faixa espectral da técnica, o Raman revela uma banda de espalhamento de grande relevância associada ao ν (Co–O) em 273 cm⁻¹, a qual não é possível ser identificada no espectro de IV.¹⁹⁹⁻²⁰¹

Figura 23 – Espectro de espalhamento Raman para { $[Co(\mu-bzc)(OH_2)_2](bzc) \cdot H_2O]_n$, produto A.

Fonte: autoria própria (2020).

Fabela 11 – Atribuições tentati	/as das bandas de espalhamen	ito Raman registradas para	a o produto A.
---------------------------------	------------------------------	----------------------------	----------------

ATRIBUIÇÕES TENTATIVAS	PRODUTO A
ν(CC) _{anel}	1605, 1455
vas(OCO)	1504
νs(OCO)	1398
δ(O–H) _{aqua}	1168
δ(C–H) _{anel}	1147, 1028
π (C–H), ν (CC) _{anel}	1006
$\delta(C-H)_{anel}, \delta(CC)_{anel}$	849
δ (OCO), δ (CC) _{anel}	832, 618
ν(Co–O)	273
Vibrações da rede cristalina	169, 97

v = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano. <u>Fonte</u>: autoria própria (2020).

5.1.6 Espectroscopia de Ressonância Paramagnética Eletrônica (RPE)

A literatura mostra que complexos de cobalto(II) podem exibir uma estrutura eletrônica bastante complicada quando o ambiente de coordenação tem simetria mais baixa do que a O_h. Em uma aproximação, a simetria local para o centro de cobalto(II) no produto A pode ser considerada como sendo D_{4h} (vide parâmetros geométricos listados na Tabela 6). Para estes casos, não há um consenso na literatura sobre qual seria o termo espectroscópico do estado fundamental. Uma abordagem bem aceita é a que considera o desdobramento do ⁴T_{1g} (estado fundamental em simetria O_h) nos termos ⁴A_{2g} (estado fundamental) e ${}^{4}E_{g}$ (primeiro estado excitado) em simetria D_{4h} . Assim, os espectros de RPE de compostos de cobalto(II) podem ser interpretados considerando que o termo de estado fundamental ⁴A_{2g} se desdobra nos dubletos de Kramer $M_s = \pm 1/2$ e $M_s = \pm 3/2$ devido ao acoplamento *spin*-órbita, sendo a separação entre eles a energia de desdobramento de campo zero. Nestes casos, o que se observa, é que somente o dubleto de Kramer de mais baixa energia ($M_{\rm s}$ = ± 1/2) é termicamente ocupado, fazendo com que espectros de RPE para o cobalto(II) sejam bem resolvidos somente em temperaturas abaixo de 20 K devido ao tempo de relaxação muito curto para este íon. Desta forma, os espectros observados em temperaturas mais elevadas costumam ser silenciosos ou exibir sinais pouco resolvidos e/ou ruidosos. A interação hiperfina de 8 linhas de ressonância (Co²⁺, S = 3/2, I = 7/2) dificilmente é observada em temperaturas acima de 20 K mesmo para sistemas magneticamente diluídos.202-205

Os espectros de RPE registrados para o produto A, sólido pulverizado, à temperatura ambiente e à 77 K são mostrados na Figura 24. O espectro de ressonância registrado à temperatura ambiente (Figura 24a) é bastante ruidoso e não mostrou uma resolução clara de nenhum sinal de ressonância. Já no espectro registrado à 77 K é visto um sinal, para o qual não foi possível medir o valor de g devido à sua natureza alargada e pouco definida (Figura 24b). Um comportamento semelhante é relatado para polímero de coordenação 2D Ο $[[Co_3(2-stp)_2(dpp)_4] \cdot 2H_2O]_n$, no qual: 2-stp = ácido 2-sulfotereftálico e dpp = 1,3-di(4-piridil)propano. Para este polímero, a análise do sólido pulverizado à temperatura ambiente também gerou um espectro silencioso e em 77 K registrou-se um sinal alargado de baixa resolução. Este padrão é atribuído aos fatores já discutidos e soma-se a estes o fato de que os centros paramagnéticos se comunicam através dos grupos benzoato em ponte na cadeia polimérica 1D de A, o que leva a um acoplamento ferromagnético, como observado por Černák e colaboradores,¹⁸⁰ e que deve estar correlacionado ao alargamento da linha de ressonância observado no espectro de A registrado à 77 K.^{203; 205}

Figura 24 – Espectros de RPE (banda X) registrados para o produto A. (a) sólido pulverizado, temperatura ambiente (TA); (b) sólido pulverizado, 77 K.

Fonte: autoria própria (2020).

5.2 CARACTERIZAÇÃO DO PRODUTO B

5.2.1 Difratometria de Raios X por Monocristal (DRXM)

A caracterização estrutural do produto B por DRXM revelou a formação de um oxocomplexo trinuclear heterometálico baseado em ferro(III) e cobalto(II) de fórmula molecular [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃]. A representação da estrutura pode ser vista na Figura 25.

Figura 25 – Representação ORTEP com esquema de numeração dos átomos da estrutura molecular do complexo [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃], produto B.

Fonte: autoria própria (2020).

A Tabela 12 traz os principais dados cristalográficos da determinação da estrutura e refinamento de B. Informações complementares acerca da caracterização por DRXM encontram-se no Anexo 2. O modelo estrutural proposto e o mapa experimental de distribuição de densidade eletrônica na célula unitária mostram excelente correlação, ou seja, não há densidade eletrônica residual na célula unitária que indique a presença de outras espécies químicas que não aquelas reveladas na análise.

O balanço de carga na estrutura de B está de acordo com os estados de oxidação dos íons metálicos colocados para reagir nesta síntese, ou seja, a estrutura

é heterometálica e contém dois centros de Fe³⁺ e um centro de Co²⁺. A heterovalência em oxocomplexos trinucleares geralmente leva à estruturas que exibem intervalência mediada através das pontes oxo e carboxilato.^{52; 206-209}

Tabela 12 – Informações sobre a coleta de dados usados na determinação e refinamento da estruturado complexo [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃], produto B.

Fórmula unitária	(C42H36CoFe2O16)	
Massa molar	967,34 g mol ⁻¹	
Sistema cristalino, grupo espacial	Triclínico, P-1	
Parâmetros reticulares	<i>a</i> = 12,6345(4) Å	$\alpha = 115,234(2)^{\circ}$
	<i>b</i> = 13,5901(5) Å	β = 108,509(2) °
	<i>c</i> = 15,0485(6) Å	γ = 98,077(2) °
Volume da célula unitária	2098,69(14) Å ³	
Número de fórmulas unitárias na célula (Z)	2	
Densidade calculada	1,531 g cm ⁻³	
F(000)	990	
Coeficiente de absorção (µ)	1,145 mm ⁻¹	
Temperatura de coleta dos dados	240(2) K	
Comprimento de onda da radiação	0,71073 Å (Mo Kα)	
Forma e cor do cristal	Paralelepípedo, ala	ranjado
Tamanho do cristal	0,176 x 0,176 x 0,14	46 mm
Sobre o difratômetro		
Faixa de coleta de dados (ângulo θ)	2,9 a 28,0 °	
Faixa de coleta de dados (índices h, k, l)	-16 ≤ h ≤ 16	
	-17 ≤ k ≤ 17	
	-19 ≤ I ≤ 19	
Completeza dos dados coletados	99,8 %	
, Número de reflexões coletadas	119863	
Número de reflexões independentes	$10118 [R_{(int)} = 0.084$.71
Número de reflexões observadas ($l > 2\sigma_l$)	7598	
Método de determinação da estrutura	Método da fase intrír	nseca no SHELXT
Método de refinamento	Método dos quadrad	los mínimos de
	matriz completa sob	re F ²
N° de dados / n° de restricões / n° de		
parâmetros	10118 / 0 / 680	
Goodness-of-fit (S) sobre F ²	1,043	
Parâmetros residuais máximos do mapa		
de Fourier após refinamento		
R observado (I > 2σι)	R ₁ = 0,0393, wR ₂ =	0,0849
R (todos os dados)	R1 = 0,0658; wR2 =	0,0919
Fonte: autoria própria (2020).		

Os parâmetros geométricos selecionados são apresentados na Tabela 13. A geometria octaédrica distorcida em torno dos centros de Fe³⁺ e Co²⁺ é imposta pela formação das pontes benzoato. Para cada um dos centros metálicos, os ligantes benzoato (*bzc*) em ponte ocupam as posições de coordenação equatoriais. As posições axiais, por outro lado, são ocupadas por um ligante *aqua* terminal e pelo ligante oxo central, que intermedia a comunicação entre os três centros paramagnéticos da estrutura.

Comprimentos de ligação (Å) Fe-Ooxo Fe1-01 ** Co-Obzc Co-O3 2,0270(16) 1,9201(15) Fe2-01 1,8588(14) Co--09 2,0305(16) Co-O_{oxo} 1,9026(15) Co--05 Co-01 2,0367(16) Fe-Obzc Fe1-02 2,0231(16) Co-07 2,1269(16) Fe1-010 2,0444(16) Fe-O_{aqua} Fe1-014 2,1258(17) Fe1-012 2,0801(16) Fe2-016 2,1249(17) Fe1-04 2,1033(16) Co-015 2,1337(18) Co-O_{aqua} Fe2-06 2,0069(16) Fe····Fe Fe1…Fe2 3,268* Fe2-011 2,0084(17) Fe····Co Fe1…Co 3,302* Fe2-08 2,0555(16) Fe2…Co 3,271* Fe2-013 2,0693(15) Ângulos de ligação (°) Ooxo-Fe-Obzc 01-Fe1-02 97,32(6) Ooxo-Fe-Oaqua 01-Fe1-014 177,70(7) 01-Fe1-010 93,30(7) Ooxo-Co-Oaqua O1-Co-O15 175,14(7) 01-Fe1-012 96,63(6) Obzc-Fe-Oaqua O2-Fe1-O14 82,56(7) 01-Fe1-04 90,64(7) O10-Fe1-O14 88,99(7) Ooxo-Co-Obzc O1-Co-O3 99,98(7) 012-Fe1-014 83,56(7) O1-Co-O9 96,17(6) O4-Fe1-O14 85,34(7) O1-Co-O5 O3-Co-O15 91,97(6) Obzc-Co-Oaqua 83,86(7) 01-Co-07 93,50(6) O9-Co-O15 79,87(7) Obzc-Fe-Obzc O2-Fe1-O10 87,25(7) O5-Co-O15 90,89(7) 02-Fe1-012 165,9(6) 07-Co-015 83,80(7) Fe-Ooxo-Fe Fe2-O1-Fe1 O2-Fe1-O4 119,69(8) 92,81(7) O10-Fe1-O4 174,27(7) Co-Ooxo-Fe Fe2-01-Co 120,85(8) 012-Fe1-04 87,92(7) Co-O1-Fe1 119.46(7)Obzc-Co-Obzc O3-Co-O9 163,60(7) Ooxo-Fe-Oaqua 01-Fe1-014 177,70(7)O3-Co-O5 91,55(7) Ooxo-Co-Oaqua O1-Co-O15 175,14(7) O9-Co-O5 90,75(7) O3-Co-O7 85,46(7) O9-Co-O7 90,73(7) O5-Co-O7 174,15(7)

Tabela 13 – Parâmetros geométricos selecionados para [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃], produto B. Os valores de *e.s.ds* para comprimentos e ângulos de ligações encontram-se entre parênteses.

**O átomo marcado como O1 é referente à ponte oxo-centrada

*Distância obtida a partir da estrutura gerada pelo software Mercury®

Fonte: autoria própria (2020).

A estrutura tridimensional é mantida pelas interações não covalentes do tipo ligações de hidrogênio e interações de empilhamento π face-aresta, além das interações mais fracas, de van der Waals, que são inerentes a todo sistema molecular. A combinação entre estas interações não covalentes leva à estrutura estendida do estado sólido, cuja visualização ao longo do plano *bc* da célula unitária pode ser vista na Figura 26.

Figura 26 – Representação esquemática da formação da estrutura estendida do produto B. A direção do eixo *a* da célula unitária encontra-se perpendicular ao plano da página. Imagem gerada pelo *software* Mercury[®] a partir do arquivo CIF de dados para a estrutura.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / ROXO – Cobalto(II) / ALARANJADO – Ferro(III). <u>Fonte</u>: autoria própria (2020).

A análise da superfície de Hirshfeld em d_{norm} (Figura 27) e dos *fingerprints* relativos às contribuições parciais para cada tipo de interação, bem como a representação total resultante da sobreposição dos *fingerprints* decompostos (Figura 28),¹⁸²⁻¹⁸⁴ foram utilizados para a análise mais pormenorizada das interações não covalentes na estrutura molecular de B.

Figura 27 – Superfície de Hirshfeld para [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃], produto B. Os *red spots* estão destacados pelas setas verdes. A imagem foi gerada sobre um arcabouço trinuclear utilizando o *software CrystalExplorer17.5*.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / ROXO – Cobalto(II) / ALARANJADO – Ferro(III). <u>Fonte</u>: autoria própria (2020).

Figura 28 – *Fingerprints* para a superfície gerada sobre o arcabouço trinuclear do produto B. (a) Porcentagens de contribuições individuais de cada tipo de interação na composição da superfície de HF. (b) *Fingerprint* total e (c) *fingerprints* resultantes da decomposição do *fingerprint* total.

b

Constata-se que, embora as interações H···H sejam fracas, elas compreendem cerca de 48,70% da superfície gerada. O ordenamento e a agregação dos arcabouços resultam em interações mais próximas, chegando a valores de $d_i + d_e \approx 1,85$ Å (Figura 28), que é inferior àquele observado na estrutura de A, por exemplo, onde $d_i + d_e$ é aproximadamente igual a 2,3 Å.

A análise da superfície de HF em d_{norm} indica a existência de um conjunto de quatro *red spots* próximos a cada uma das três regiões onde se encontram os ligantes terminais *aqua*, como indicado pelas setas verdes na Figura 27. Tais interações são mais intensas e são justificadas pela existência de ligações de hidrogênio (O···H) entre estruturas trinucleares adjacentes, tendo como resultado o aparecimento de *sharp spikes* na representação bidimensional da superfície de HF (Figura 28, identificado pela coloração roxa).¹⁸²⁻¹⁸⁴

As ligações de hidrogênio envolvem os ligantes *aqua* terminais (grupo doador) e os átomos de oxigênio (átomo receptor) dos grupos carboxilatos em ponte do complexo trinuclear adjacente. Com a finalidade de distinguir os grupos doadores e receptores de LH é possível mapear a superfície de Hirshfeld em d_i e em d_e , como indicado na Figura 29.¹⁸⁵

Figura 29 – Superfícies de Hirshfeld para [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃], produto B, mapeadas em (a) *d_i* com as regiões doadoras de LH destacadas e (b) *d_e* com as regiões receptoras de LH destacadas. A imagem foi gerada sobre um arcabouço trinuclear utilizando o *software CrystalExplorer17.5*.

(a)

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / ROXO – Cobalto(II) / ALARANJADO – Ferro(III). <u>Fonte</u>: autoria própria (2020).

As regiões indicadas pelas setas vermelhas na superfície mapeada em d_i (Figura 29a) indicam regiões receptoras de ligações de hidrogênio. Por outro lado, quando a superfície é mapeada em d_e , o que se verifica destacado na Figura 29b são as regiões receptoras de LH. As demais regiões que não foram destacadas nas superfícies de HF apontam outras interações intermoleculares doadoras e receptoras à exceção das interações O····H.¹⁸⁵

Uma vez que todos os ligantes *aqua* e todos os grupos carboxilato participam destas interações, a Figura 30 mostra que cada um dos arcabouços trinucleares está envolvido em 12 ligações de hidrogênio. A força das ligações de hidrogênio em B é considerada como sendo moderada, conforme os parâmetros geométricos de ligação listados na Tabela 14.^{87; 186}

Figura 30 – Representação esquemática das ligações de hidrogênio (linhas em ciano) observadas na estrutura do complexo trinuclear heterometálico $[Fe_2Co(\mu_3-O)(\mu-bzc)_6(OH_2)_3]$, produto B. Os anéis aromáticos dos grupos carboxilato foram omitidos para visualização das ligações de hidrogênio com maior clareza. Imagem gerada pelo software Mercury[®] a partir do arquivo CIF de dados para a estrutura.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / ROXO – Cobalto(II) / ALARANJADO – Ferro(III). <u>Fonte</u>: autoria própria (2020).

D–H…O	d(D–H) (Å)	d(H…R) (Å)	d(D…R) (Å)	< DHR (°)
O14–H14A…O4	0,82(4)	2,11(4)	2,909(2)	165(3)
O15–H15B…O7	0,82(4)	2,02(4)	2,818(2)	166(4)
O16–H16A…O13	0,90(5)	1,98(5)	2,800(2)	151(4)

Tabela 14 – Parâmetros geométricos para as ligações de hidrogênio observadas no produto B.

Fonte: autoria própria (2020).

O segundo tipo de ligação não covalente em B, como já comentado, é o empilhamento π face-aresta. Esta interação ocorre entre o anel aromático de um grupo *hbz*⁻ e o átomo de hidrogênio de outro grupo *hbz*⁻ de unidades trinucleares adjacentes. A Figura 31 mostra esta interação, indicando a face centroide (C16, C17, C18, C19, C20, C21) que interage com o átomo de hidrogênio H39 a uma distância de 3,369 Å. A faixa de distância de ligação não covalente centroide-hidrogênio, d(CH), considerada na literatura para a existência deste tipo de interação está entre 3,3 a 3,8 Å.^{89; 210}

Figura 31 – Empilhamento π face-aresta entre o centroide (C16, C17, C18, C19, C20, C21) e o átomo de hidrogênio H39. A linha em verde mostra a distância d(C–H). Imagem gerada pelo *software* Mercury[®] a partir do arquivo CIF de dados para a estrutura.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / ROXO – Cobalto(II) / ALARANJADO – Ferro(III). <u>Fonte</u>: autoria própria (2020).

5.2.2 Análise Elementar e Difratometria de Raios X por Pó (DRXP)

Com o intuito de verificar a pureza do produto B, fez-se a dosagem para os teores elementares para carbono, hidrogênio, ferro e cobalto. Os valores obtidos experimentalmente foram comparados com os dados teóricos para a formulação $[Fe_2Co(\mu_3-O)(\mu-bzc)_6(OH_2)_3]$ e estão apresentados na Tabela 15.

Tabela 15 – Comparação entre as porcentagens teórica e experimental de ferro, cobalto, carbono e hidrogênio para [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃], produto B.

Teores (% m/m)	Fe	Со	С	Н
Calculados para [Fe ₂ Co(µ ₃ -O)(µ- <i>bzc</i>) ₆ (OH ₂) ₃]	11,55	6,09	52,15	3,75
Obtidos para o produto B	10,32	6,75	52,03	3,82

Fonte: autoria própria (2020).

Complementarmente, o produto B foi submetido à uma análise comparativa entre os difratogramas de raios X por pó simulado, gerado a partir do arquivo CIF através do *software* Mercury[®], e experimental (Figura 32). A ótima correlação entre os difratogramas corrobora a análise elementar, evidenciando a alta pureza com que B é obtido pela via sintética descrita neste trabalho.

Figura 32 – Comparação entre os difratogramas simulado (gerado pelo *software* Mercury[®]) e experimental para [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃], produto B.

Fonte: autoria própria (2020).

5.2.3 Análise Termogravimétrica (TGA-DTG)

As curvas TGA-DTG para o produto B, $[Fe_2Co(\mu_3-O)(\mu-bzc)_6(OH_2)_3]$, estão apresentadas na Figura 33. A análise baseou-se na utilização de 2,143 mg de material. Os teores percentuais para a perda de massa em cada faixa de temperatura são apresentados na Tabela 16.

Figura 33 – Curvas TGA e DTG para o produto B, [Fe₂Co(µ₃-O)(µ-bzc)₆(OH₂)₃].

Tabela 16 – Dados térmicos para o produto B com relação a cada faixa de temperatura.

Faixa de temperatura (°C)	Atribuição (estabilidade térmica ou decomposição)	Perda de massa experimental (%)	Perda de massa teórica (%)	
20 – 110	Estabilidade Térmica (Produto B)	Valores Não Significativos		
110 – 140	$3 H_2O(coordenada)$	6,286	5,59	
140 – 400	6 <i>bzc</i> −	66,73 (47,01 + 19,72)	70,16	
400 – 900	Estabilidade Térmica (CoFe ₂ O ₄)	Valores Não Significativos		

Fonte: autoria própria (2020).

Fonte: autoria própria (2020).

O termograma e a Tabela 16 indicam maior estabilidade térmica do produto B (110 °C) quando em comparação com o produto A (70 °C), utilizado como material de partida na síntese do oxocomplexo heterometálico. A inexistência de moléculas de cristalização e a presença de um grande número de LH por unidade trinuclear certamente constituem fatores determinantes para esse comportamento.

Os valores teóricos esperados para a perda de massa foram obtidos tomando como ponto de partida a reação de decomposição apresentada na Equação (12).

$$[Fe_2Co(\mu_3 - O)(\mu - C_7H_5O_2)_6(OH_2)_3] + 45 O_2 \rightarrow CoFe_2O_4 + 42 CO_2 + 18 H_2O \quad (12)$$

A comparação da variação dos teores de massa experimentais e teóricos indica que possivelmente a decomposição do ligante benzoato inicia-se um pouco antes de 140 °C, incrementando o teor que seria esperado para a perda dos ligantes *aqua* e reduzindo os valores esperados para a decomposição dos ligantes benzoato.

O perfil de decomposição térmica para o produto B não indica a formação de platôs bem definidos, o que dificulta a interpretação quanto à degradação do oxocomplexo na faixa de 140 a 400 °C. O aumento gradual da temperatura leva ao colapso da estrutura, ocorrendo a sobreposição de processos de decomposição no termograma e consequente reordenamento estrutural em cada etapa.^{190; 211}

Destaca-se na curva DTG, em 382,62 °C, a temperatura cuja velocidade de decomposição de uma espécie intermediária é máxima. A variação de 19,72% com relação à perda de massa a partir desta etapa indica a decomposição do que seria equivalente a dois ligantes benzoato para a formação do espinélio CoFe₂O₄.²¹¹

Embora não seja o escopo deste trabalho, a decomposição térmica do trinuclear heterometálico representa uma rota alternativa na obtenção do CoFe₂O₄. O espinélio em questão possui grande relevância em estudos catalíticos, em especial em reações de oxidação de compostos orgânicos.²¹²

Com relação à composição residual, o valor obtido experimentalmente foi de 26,88%, resultado conforme com o teor de 24,25% esperado teoricamente para a formação do CoFe₂O₄.²¹² A confirmação da formação deste óxido foi feita a partir da comparação entre o difratograma simulado gerado pelo *software* Mercury[®] e o difratograma obtido experimentalmente com o sólido obtido a partir da calcinação de B à 900 °C. A correlação entre os difratogramas está apresentada na Figura 34.²¹²
Figura 34 – Correlação do difratograma experimental do sólido obtido pela calcinação do produto B à 900 °C com o difratograma simulado de CoFe₂O₄.

<u>Fonte</u>: Difratograma simulado gerado pelo *software* Mercury[®] a partir do arquivo CIF de código COD: 1533163 de FERREIRA, T. A. S. *et al.* (2003).²¹² Difratograma experimental: autoria própria (2020).

5.2.4 Espectroscopia Vibracional de Absorção na Região do Infravermelho (IV)

Os espectros IV registrados para o produto B e para o seu material de partida, o polímero de coordenação {[$Co(\mu-bzc)(OH_2)_2$](bzc)·H₂O}_n (produto A), são mostrados na Figura 35.

Assim como observado para o produto A, o espectro de B possui uma banda alargada, centrada em 3389 cm⁻¹, além de outras duas bandas em região similar (3063 e 2970 cm⁻¹), que estão relacionadas à interação não covalente do tipo ligação de hidrogênio na estrutura, de acordo com a análise por DRXM.

Para o produto B, as bandas que indicam a incorporação do ligante benzoato foram relacionadas às seguintes atribuições tentativas: $v_{as}(COO)$, em 1566 cm⁻¹ e estiramento simétrico do carboxilato, $v_s(COO)$, em 1398 cm⁻¹.¹⁹⁸

A comparação entre o espectro do produto A e do produto B mostra algumas correlações entre bandas, com destaque para aquelas relacionadas ao estiramento simétrico e antissimétrico do carboxilato, as bandas de deformação angular no plano da ligação C–H e as bandas de deformação angular fora do plano da ligação C–H para anel aromático monossubstituído.¹⁹⁸

Na região espectral de baixo número de onda, a banda associada ao estiramento antissimétrico de unidade M₃O, ν_{as} (Fe₂CoO), encontra-se em 464 cm⁻¹. As atribuições tentativas podem ser verificadas na Tabela 17.^{69; 213; 214}

Figura 35 – Espectros de absorção na região do infravermelho registrados para o produto B e para o material de partida empregado na síntese, o produto A.

Fonte: autoria própria (2020).

Tabela 17 – Atribuições tentativas das bandas de absorção registradas na região do infravermelho para o produto B, em comparação com aquelas registradas para o produto A.

ATRIBUIÇÕES TENTATIVAS	PRODUTO B	PRODUTO A
ν(O–H) com ligação de hidrogênio intermolecular	3389	3104
ν (C–H) de anel aromático	3063, 2970	Banda encoberta
vas(COO)	1566	1542
ν _s (COO)	1398 (banda possivelmente sobreposta à uma das bandas do ν (C=C) de anel aromático)	1391

v = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano. <u>Fonte</u>: autoria própria (2020).

ATRIBUIÇÕES TENTATIVAS	PRODUTO B	PRODUTO A
ν(CC) de anel aromático	1601, 1545, outra(s) banda(s) possivelmente encoberta(s)	1592, 1498, 1437
δ(C–H)	1073, 1025	1069, 1022
π(O–H)	948	913
π (C–H) para anel aromático monossubstituído	721, 673	713, 685
π (CC) do anel aromático	544	539
δ(COO)	593	609, 505
vas(Fe2CoO)	464	

Tabela 17 (continuação) – Atribuições tentativas das bandas de absorção registradas na região do infravermelho para o produto B, em comparação com aquelas registradas para o produto A.

v = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano. Fonte: autoria própria (2020).

5.2.5 Espectroscopia Vibracional de Espalhamento Raman

O espectro de espalhamento Raman registrado para o produto B é apresentado na Figura 36.

Fonte: autoria própria (2020).

Como já discutido na atribuição do espectro IV para B, o estiramento antissimétrico associado à unidade M₃O, v_{as} (Fe₂CoO), encontra-se em 464 cm⁻¹. Não se observa, entretanto, o estiramento simétrico, v_s (Fe₂CoO), na região espectral considerada. Esta banda, por outro lado, pode ser identificada a partir o espectro de espalhamento Raman, em 216 cm⁻¹ (Figura 36).^{200; 215; 216} Avaliandose as demais bandas, especialmente aquelas relacionadas aos estiramentos v_{as} (OCO) e v_s (OCO), verifica-se compatibilidade com o espectro IV de forma a corroborar com a formação e incorporação de grupos carboxilato na estrutura.

As atribuições tentativas para todas as bandas identificadas na Figura 36 são apresentadas na Tabela 18.^{69; 213; 214}

ATRIBUIÇÕES TENTATIVAS	PRODUTO B
vas(OCO)	1605
ν(CC) _{anel}	1500, 1406, 1381
ν _s (OCO)	1430
δ(C–H) _{anel}	1156
"Breathing" do anel aromático	1032, 1006
π(C−H) _{anel}	849, 823
π(ΟCΟ)	622, 604
<i>r</i> (OCO)	545
ν(CC) _{anel}	481, 352
ν _s (Fe ₂ CoO)	216
Vibrações da rede cristalina	145, 92

Tabela 18 – Atribuições tentativas das bandas de espalhamento Raman registradas para o produto B.

v = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano; r = *rocking* (balanço). <u>Fonte</u>: autoria própria (2020).

5.2.6 Espectroscopia de absorção da região do ultravioleta-visível (UV/Vis)

Compostos de valência mista podem sofrer reações de transferência de elétrons interna e um exemplo pioneiro dentro desta química é o complexo de Creutz-Taube. Em complexos deste tipo, a assimetria redox introduz uma perturbação eletrônica no sistema molecular, a partir da qual a oscilação contínua de cargas é promovida.^{217; 218}

A transferência de intervalência é um caso particular de transferência de elétrons intramolecular que se manifesta em sistemas moleculares contendo centros redox em diferentes estados de oxidação.²¹⁹ Sendo assim, o temo "intervalência" (entre valências) é dito quando um elétron é transferido de um sítio doador (menor estado de oxidação, redutor) para outro aceitador (maior estado de oxidação, oxidante). Interações desta natureza também são chamadas de Transferência de Carga de Intervalência (TCIV) ou Transferência de Carga Metal-Metal (TCMM). Este fenômeno é comum em complexos bi- ou polinucleares de valência mista.^{52; 220; 221}

Os sistemas de valência mista são classificados de acordo com a intensidade da interação eletrônica entre os centros metálicos doador e aceitador. Robin e Day propuseram três categorias de sistemas de valência mista. Os complexos que exibem intervalência estão dentro das Classes II ou III de Robin e Day.¹²¹ Oxocomplexos trinucleares de valência mista semelhantes à B geralmente são classificados como Classe II, ou seja, são considerados sistemas eletrônicos parcialmente deslocalizados.^{11; 222; 223} A interação eletrônica propaga-se através do(s) ligante(s) em ponte e uma ligação direta metal-metal não é necessária. Isto porque os elétrons *d* do íon metálico estão em orbitais $d\pi$ que podem efetivamente se recobrir aos orbitais π do(s) ligante(s) em ponte, tornando-os deslocalizados entre ambos os centros metálicos através do(s) ligante(s).⁸³

O produto B foi analisado por UV-Vis em solução com DMF em diferentes concentrações. Os espectros registrados são mostrados na Figura 37. A deconvolução do espectro registrado na concentração de 2,200x10⁻⁴ mol L⁻¹ pode ser vista na Figura 38.

Figura 37 – Espectros de UV/Vis registrados em diferentes concentrações para o produto B.

Fonte: autoria própria (2020).

Figura 38 – Deconvolução do espectro de UV/Vis registrado para B na concentração de 2,200x10⁻⁴ mol L⁻¹.

Fonte: autoria própria (2020).

Os valores de ϵ obtidos para as bandas deconvoluídas e as atribuições tentativas são listados na Tabela 19.

Comprimento de onda (nm)	Energia da absorção (cm ⁻¹)	ε (L mol ⁻¹ cm ⁻¹)	Atribuição tentativa
554,5	18050	250(±10)	$d\pi \rightarrow \pi^* \rightarrow d\pi^*$
429,4	23310	880(±50)	$d\pi \rightarrow \pi^* \rightarrow d\pi^*$
331,8	30211	5180(±80)	$\pi \rightarrow d\pi^*$

Tabela 19 – Parâmetros energéticos e atribuições tentativas para as bandas de absorção deconvoluídas a partir do espectro eletrônico registrado para B.

Fonte: autoria própria (2020).

As atribuições tentativas mostradas na Tabela 19 foram baseadas nos dados discutidos acima e também em relatos que mostram que clusters trinucleares oxocentrados semelhantes ao produto B, do tipo $[Fe^{III}_2CO^{II}]$ e $[Fe^{III}_2Mn^{II}]$, mostram bandas de intervalência em 15000 e 20000 cm⁻¹, regiões similares àquelas observadas para as bandas registradas para o produto B.¹¹ Com base na literatura, as bandas de intervalência em B devem estar relacionadas à transferência de carga que envolve o cobalto(II) como sítio doador e os dois centros de ferro(III) como sítios aceitadores. A transferência eletrônica envolve os orbitais $d\pi$ destes metais e orbitais de mesma simetria nos ligantes que fazem a comunicação eletrônica entre os três centros metálicos. Como não foi encontrada evidência na literatura para a presença de uma terceira banda de transferência eletrônica que envolvessem os dois centros metálicos para espécies trinucleares semelhantes à B, a banda de energia 30211 cm⁻¹ foi atribuída a uma transição do tipo TCLM e seu valor de absortividade molar concorda com esta atribuição.²²⁴

5.2.7 Espectroscopia de Ressonância Paramagnética Eletrônica (RPE)

O produto B foi submetido à análise por RPE no sólido pulverizado, à temperatura ambiente e à 77 K. A Figura 39 mostra o espectro registrado à temperatura ambiente, que é muito semelhante ao registrado à 77 K (não mostrado).

Fonte: autoria própria (2020).

Os resultados da análise por RPE são concordantes com aqueles obtidos pela espectroscopia eletrônica, indicando que os centros paramagnéticos de ferro(III) e de cobalto(II) se comunicam através das pontes mediadas pelos ligantes na estrutura de B, evidenciado pela banda alargada e centrada em $g \approx 2,54$. A comunicação eletrônica, como já discutido, ocorre pela sobreposição de orbitais de simetria π nos metais mediada pelos orbitais de mesma simetria nos ligantes.

5.3 CARACTERIZAÇÃO DO PRODUTO C

5.3.1 Difratometria de Raios X por Monocristal (DRXM)

A análise dos cristais vermelhos, produto C, por DRXM mostrou a formação de um oxocomplexo trinuclear homometálico baseado em ferro(III) de fórmula molecular $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$, cuja estrutura é representada na Figura 40. Os principais dados cristalográficos da determinação e refinamento de C estão listados na Tabela 20 e os ângulos e comprimentos de ligação selecionados são apresentados na Tabela 21. Informações adicionais acerca da caracterização estrutural por DRXM encontram-se no Anexo 3.

Figura 40 – Representação ORTEP com o esquema de numeração dos átomos da estrutura molecular de $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$, produto C. Os átomos de hidrogênio e moléculas de água de cristalização foram omitidos para maior clareza.

Fonte: autoria própria (2020).

Os cristais pertencem ao sistema cristalino monoclínico, grupo espacial P2/n, e os valores finais dos índices *R* e *Goodness-of-fit* (Tabela 20) indicam uma boa correlação entre o modelo estrutural proposto e o mapa experimental de distribuição de densidade eletrônica na célula unitária. A estrutura do produto C é iônica, sendo que o oxocomplexo trinuclear catiônico possui fórmula $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]^+$ e o balanço de carga é feito por um íon cloreto (Figura 40). O retículo cristalino contém ainda três moléculas de *pyz* e três moléculas de água de cristalização para cada fórmula unitária do agregado iônico.

Tabela 20 – Informações sobre a coleta de dados usados na determinação e refinamento da estruturamolecular do complexo [Fe₃(μ_3 -O)(μ -*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*, produto C.

Fórmula unitária	(C43H38Fe3O22), 3(C4	H4N2), CI, 3(H2O)
Massa molar	1404,05 g mol ⁻¹	
Sistema cristalino, grupo espacial	Monoclínico, P2/n	
Parâmetros reticulares	<i>a</i> = 16,0651(7) Å	α = 90 °
	<i>b</i> = 10,8267(5) Å	β = 96,893(2) °
	c = 17,4294(7) Å	$\gamma = 90^{\circ}$
Volume da célula unitária	3009,6(2) Å ³	
Número de fórmulas unitárias na célula (Z)	2	
Densidade calculada	1,549 g cm⁻³	
F(000)	1446	
Coeficiente de absorção (µ)	0,847 mm ⁻¹	
Temperatura de coleta dos dados	300(2) K	
Comprimento de onda da radiação	0,71073 Å (Mo Kα)	
Forma e cor do cristal	Bloco translúcido, ve	ermelho
Tamanho do cristal	0,325 x 0,316 x 0,27	5 mm
Sobre o difratômetro		
Faixa de coleta de dados (ângulo θ)	3,014 a 25,499 °	
Faixa de coleta de dados (índices <i>h</i> , <i>k</i> , <i>l</i>)	-19 ≤ h ≤ 19	
	-13 ≤ k ≤ 13	
	-21 ≤ I ≤ 21	
Completeza dos dados coletados	99,8 %	
Número de reflexões coletadas	111297	
Número de reflexões independentes	5599 [R _(int) = 0,0257]	
Número de reflexões observadas ($l > 2\sigma_l$)	5043	
Método de determinação da estrutura	Métodos diretos no S	HELXT
Método de refinamento	Método dos quadrado	os mínimos de
	matriz completa sobr	e F²
N° de dados / n° de restrições / n° de	EE00 / 0 / 442	
parâmetros	5599/8/443	
Goodness-of-fit (S) sobre F ²	1,066	
Parâmetros residuais máximos do mapa		
de <i>Fourier</i> após refinamento		
R observado (I > 2σι)	R ₁ = 0,043, wR ₂ = 0,	127
R (todos os dados)	R ₁ = 0,049; wR ₂ = 0,	132
Eantas autoria nuturia (0000)		

Fonte: autoria própria (2020).

Comprimentos de ligação (Å)		
Fe–O _{oxo}	Fe1–O1	1,8989(13)
	Fe2–O1	1,901(2)
Fe–O _{hbzc}	Fe1–07	2,014(2)
	Fe1–O9	2,017(2)
	Fe1–O6	2,0192(19)
	Fe1–O8	2,0247(19)
	Fe2–O4	1,9962(18)
	Fe2–O3	2,0317(19)
Fe–O _{aqua}	Fe1–O5	2,063(2)
Fe–O _{metanol}	Fe2–O2	2,064(3)
Fe⋯Fe	Fe1····Fe2	3,283*
	Fe1····Fe1 ⁱⁱ	3,304*
	Fe2····Fe1 [⊪]	3,283*
Ângulos de ligação (°)		
Fe–O _{oxo} –Fe	Fe1–O1–Fe1 ⁱⁱ	120,92(13)
	Fe1–O1–Fe2	119,54(6)
	Fe1 ⁱⁱ –O1–Fe2	119,54(6)
Ohbzc-Fe-Ohbzc	O7–Fe1–O9	169,97(9)
	O6–Fe1–O8	169,15(8)
	07–Fe1–O6	87,09(9)
	O9–Fe1–O6	88,33(8)
	07–Fe1–O8	92,03(9)
	O9–Fe1–O8	90,79(9)
O _{oxo} –Fe–O _{aqua}	01–Fe1–O5	177,21(10)
Ooxo-Fe-Ohbzc	01–Fe1–O8	95,20(8)
O _{hbzc} –Fe–O _{aqua}	O8–Fe1–O5	82,88(9)

Tabela21Parâmetrosgeométricosselecionadosparaooxocomplexo $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI·3H_2O·3pyz$, produto C. Os valores de *e.s.ds* para comprimentose ângulos de ligações encontram-se entre parênteses.

*Distância obtida a partir da estrutura gerada pelo software Mercury®

Operação de simetria utilizada para gerar átomos equivalentes: (ii) -x+1/2, y, -z+1/2 <u>Fonte</u>: autoria própria (2020).

Os centros de ferro(III) encontram-se em um ambiente octaédrico distorcido que é imposto pela formação das pontes com os ligantes 4-hidroxibenzoato. Estas, por sua vez, se coordenam aos centros de ferro(III) no plano equatorial de ligação, num total de quatro ligações envolvendo o ligante 4-hidroxibenzoato (*hbzc*⁻). O ligante μ_3 -oxo ocupa o quinto ponto de coordenação de cada um dos centros paramagnéticos, os quais se comunicam através desta ponte central. A esfera de coordenação é fechada por um ligante *aqua* em dois centros metálicos e o terceiro deles encontra-se coordenado a uma molécula de metanol (Figura 40).

Quando a reação entre FeCl₃·6H₂O, ácido 4-hidroxbenzoico e pirazina foi programada, esperava-se que as moléculas do pré-ligante pirazina se coordenassem ao ferro(III) nas posições em que se encontram os ligantes terminais na estrutura de

C, favorecendo, assim, o crescimento de um polímero de coordenação a partir deste ligante divergente *N*-doador. Entretanto, o pré-ligante pirazina acabou não se coordenando e foi incorporado ao retículo cristalino como moléculas de cristalização. Isto pode estar associado à acidez de Pearson do ferro(III), que é classificado como um ácido duro. Já o pré-ligante pirazina, entretanto, encontra-se na fronteira entre as bases duras e macias de Pearson e, desta forma, na competição pela coordenação ao ferro(III) no meio reacional, houve preferência pela água e pelo metanol, que são bases mais duras do que o pré-ligante pirazina.

Embora a utilização da pirazina nesta rota sintética não tenha levado à formação de um polímero de coordenação com o ferro(III), é possível elaborar metodologias sintéticas que empreguem pré-ligantes que apresentem maior afinidade com este íon, ou seja, que apresentem maior dureza. Uma possibilidade seria a utilização de ácidos dicarboxílicos ou até mesmo outros pré-ligantes com pontos de coordenação contendo átomos com maior dureza de Pearson. Caso o crescimento polimérico aconteça apenas com um tipo de interconector, a partir das três posições terminais do trinuclear, os blocos construtores são classificados como sendo isotrópicos. Nesse sentido, os arcabouços e os pré-ligantes que atuariam como interconectores condicionariam a obtenção de polímeros de coordenação com

A Figura 41 apresenta o arranjo de empacotamento espacial das unidades trinucleares com a direção do eixo *c* da célula unitária perpendicular ao plano da figura, onde as moléculas de pirazina e de água de cristalização foram omitidas para maior clareza. A análise e quantificação de interações intermoleculares existentes no produto C foi respaldada pela superfície de Hirshfeld em d_{norm} (Figura 42). A superfície, neste caso envolve uma unidade trinuclear, o contraíon cloreto, as moléculas de água e de pirazina presentes no retículo cristalino. O percentual relativo à contribuição de cada tipo de interação, o *fingerprint* total e os *fingerprints* decompostos para C, são apresentados na Figura 43.¹⁸²⁻¹⁸⁴

Figura 41 – Arranjo espacial das unidades trinucleares homometálicas em $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$, produto C. A direção do eixo *c* da célula unitária encontra-se perpendicular ao plano da figura. As moléculas de pirazina, água de cristalização e os átomos de hidrogênio foram omitidos para maior clareza. Imagem gerada pelo *software* Mercury[®] a partir do arquivo CIF de dados para a estrutura.

<u>Legenda</u>: CINZA – Carbono / VERMELHO – Oxigênio / VERDE – Cloreto / ALARANJADO – Ferro(III). <u>Fonte</u>: autoria própria (2020).

Figura 42 – Superfície de Hirshfeld para $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI·3H_2O·3pyz$, produto C. Os *red spots* estão destacados pelas setas verdes. A imagem foi gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do complexo C utilizando o *software CrystalExplorer17.5*.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / AZUL – Nitrogênio / VERDE – Cloreto / ALARANJADO – Ferro(III). <u>Fonte</u>: autoria própria (2020).

Figura 43 – *Fingerprints* para a superfície gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do complexo C. (a) Porcentagens de contribuições individuais de cada tipo de interação na composição da superfície de HF. (b) *Fingerprint* total e (c) *fingerprints* resultantes da decomposição do *fingerprint* total.

Fonte: autoria própria (2020).

Diferente do observado para A e B, a estrutura de C possui uma maior variedade de interações não covalentes sobre a superfície d_{norm} , o que é devido à

presença dos íons cloreto e das moléculas de pirazina de cristalização (Figuras 42 e 43). As interações mais intensas, que dão origem aos *red spots* apresentados na Figura 42, são aquelas que envolvem os íons cloreto e átomos de hidrogênio de grupos funcionais internos à superfície de HF (CI···H), além de interações não covalentes do tipo ligação de hidrogênio nas formas O···H e, mais evidentemente, N···H.¹⁸² Estas envolvem o grupo hidroxila do ligante 4-hidroxibenzoato como centro doador e o átomo de nitrogênio da pirazina como átomo receptor (O12–H12···N3; d = 1,927 Å). Outra ligação de hidrogênio do tipo N···H, envolve também o átomo de nitrogênio da pirazina como átomo receptor doador (O5–H5B···N2, d = 1,846 Å).

Os três tipos de interações acima mencionados levam ao aparecimento dos três pares de *sharp spikes* mostrados na Figura 43. A interação CI···H, destacada em ciano no *fingerprint*, apresenta menores valores $d_i + d_e$ em, aproximadamente, 2,3 Å. As interações O···H (em roxo) e N···H (em vermelho) apresentam os valores aproximados de 1,85 e 1,84 Å, respectivamente.¹⁸³

Apesar da estrutura do oxocomplexo trinuclear possuir o ligante 4-hidroxibenzoato, que apresenta aromático, não foi observada interação não covalente por empilhamento π nesta estrutura.

5.3.2 Análise Elementar e Difratometria de Raios X por Pó (DRXP)

A pureza de C foi verificada pela análise conjunta dos dados de composição elementar para os teores de C, H, N e Fe (Tabela 22) e difratogramas de DRXP experimental e simulado (Figura 44). A comparação foi feita entre o DRXP registrado para o produto C e o difratograma simulado gerado pelo *software* Mercury[®] a partir dos dados da estrutura refinada de [Fe₃(μ_3 -O)(μ -*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*.

Tabela 22 – Comparação entre as porcentagens teórica e experimental de ferro, carbono, hidrogênio e nitrogênio para [Fe₃(μ_3 -O)(μ -*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*, produto C.

Teores (% m/m)	Fe	С	Н	Ν
Calculados para [Fe₃(μ₃-O)(μ- <i>hbzc</i>)₀(OH₂)₂(OHCH₃)]Cl·3H₂O· <i>3pyz</i>	11,93	47,34	4,54	5,99
Obtidos para o produto C	11,80	47,21	4,51	5,31

Fonte: autoria própria (2020).

Figura 44 – Comparação entre os difratogramas simulado (gerado pelo *software* Mercury[®]) e experimental para [Fe₃(µ₃-O)(µ-*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*, produto C.

Fonte: autoria própria (2020).

A análise dos resultados obtidos mostra uma boa correlação entre o modelo teórico e os dados experimentais de difração. A relação de alguns dos planos cristalográficos para o qual a lei de Bragg é satisfeita é identificada sobre os picos do difratograma simulado através dos índices de Miller (*hkl*). A boa correlação entre os dados de análise elementar, dosagem de metal e os dados de DRXP suportam que C foi obtido em alto grau de pureza.

5.3.3 Análise Termogravimétrica (TGA-DTG)

Para a análise termogravimétrica, utilizou-se 3,575 g do produto C, $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$. O comportamento térmico, bem como as atribuições para cada etapa de decomposição estão apresentados na Figura 45 e na Tabela 23, respectivamente.

Para a determinação dos valores teóricos esperados quanto a variação da massa da amostra, utilizou-se a Equação (13), que propõe de forma genérica a decomposição do produto C para a formação do Fe₂O₃.^{225; 226}

$$2\left[\left[Fe_{3}(\mu_{3}-0)(\mu-C_{7}H_{5}O_{3})_{6}(H_{2}O)_{2}(H_{3}COH)\right]Cl\cdot 3H_{2}O\cdot 3C_{4}H_{4}N_{2}\right] + \left(\frac{235+12x}{2}\right)O_{2} \rightarrow 3Fe_{2}O_{3} + 110CO_{2} + 56H_{2}O + 12NO_{x} + Cl_{2}$$
(13)

Figura 45 – Curvas TGA e DTG para o produto C, [Fe₃(µ₃-O)(µ-hbzc)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3pyz.

Fonte: autoria própria (2020).

Tabela 23 – Dados térmicos para o produto C com relação a cada faixa de temperatura.

Faixa de	Atribuição (estabilidade	Perda de massa	Perda de massa
temperatura (°C)	térmica ou decomposição)	experimental (%)	teórica (%)
20 – 40	Estabilidade Térmica (Produto C)	Valores Não S	Significativos
40 – 100	3 H ₂ O _(cristalização) + H ₃ COH	6,007	6,13
100 – 260	2 H ₂ O _(coordenada) + 3 <i>pyz</i> + Cl ⁻	24,85	22,18
260 – 450	6 hbzc⁻	50,54 (19,52 + 31,02)	54,61
450 – 900	Estabilidade Térmica (Fe ₂ O ₃)	Valores Não S	Significativos

Fonte: autoria própria (2020).

Comparativamente aos produtos A e B, o produto C é o mais sensível à variação de temperatura, iniciando sua decomposição a partir de 40 °C, aproximadamente. Esse resultado indica que, embora este complexo evidencie uma maior heterogeneidade quanto aos tipos de interações intermoleculares, como já discutido na seção de

caracterização estrutural por DRXM, as moléculas que interagem mais fracamente iniciam o processo de decomposição em temperaturas mais baixas.

Para as atribuições propostas, observa-se relativa concordância com relação aos teores de massa teóricos e experimentais. Embora as etapas sejam mais bem definidas quando comparadas com as do produto B, o perfil das curvas TGA-DTG, principalmente entre a faixa de 100 e 450 °C, pode indicar a sobreposição de vários processos de decomposição. Não há, portanto, pontos bem definidos quanto ao início e término de uma determinada etapa.¹⁹⁰

Destaca-se na curva DTG, em 363,72 °C, a máxima velocidade de decomposição de um componente intermediário. A perda de 1,109 mg de massa (31,02%) corresponde, aproximadamente, a decomposição do que é equivalente a 3,5 ligantes 4-hidroxibenzoato por unidade trinuclear na formação do Fe₂O₃.

O valor teórico calculado para a composição residual considerando a completa formação do óxido Fe₂O₃, foi de 17,08%. O teor residual de 18,59%, obtido experimentalmente, indica boa correlação entre os dados.

A formação Fe₂O₃ para a faixa de temperatura considerada foi confirmada pela comparação entre o difratograma simulado, gerado pelo *software* Mercury[®], e o difratograma registrado para o sólido obtido da calcinação do produto C à 900 °C. A correlação entre os difratogramas está apresentada na Figura 46.²²⁷

Figura 46 – Correlação do difratograma do produto C calcinado com o difratograma simulado de Fe₂O₃.

<u>Fonte</u>: Difratograma simulado gerado pelo *software* Mercury[®] a partir do arquivo CIF de código COD: 1546383 de MENDILI, Y. E. *et al.* (2012).²²⁷ Difratograma experimental: autoria própria (2020).

5.3.4 Espectroscopia Vibracional de Absorção na Região do Infravermelho (IV)

Os espectros de absorção na região do infravermelho registrados para o produto C e para os reagentes de partida utilizados na sua síntese são mostrados na Figura 47. As atribuições tentativas podem ser vistas na Tabela 24.

No espectro do produto C observa-se uma banda intensa e alargada em 3262 cm⁻¹, característica do estiramento ν (O–H) quando em ligação de hidrogênio intermolecular. A banda observada é coerente com a análise estrutural de DRXM, que mostra a presença deste tipo de interação não covalente envolvendo o átomo de nitrogênio (receptor) de moléculas de pirazina de cristalização e o átomo de hidrogênio (doador) do ligante *aqua* ou do grupo hidroxila do ligante 4-hidroxibenzoato.¹⁹⁸

Figura 47 – Espectros de absorção na região do infravermelho registrados em pastilhas de KBr para $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$, produto C, e para os materiais de partida, ácido 4-hidroxibenzoico e pirazina..

Fonte: autoria própria (2020).

Assim como no espectro do produto A, é possível identificar em C a incorporação do ligante 4-hidroxibenzoato a partir da comparação do espectro do ácido com o espectro

do produto. Verifica-se que no espectro do ácido 4-hidroxibenzoico é bem perceptível o estiramento característico da carbonila, v(C=O), que aparece em 1683 cm⁻¹. Para ácidos carboxílicos, o estiramento da carbonila geralmente encontra-se em número de onda mais elevado. Neste caso, porém, a conjugação com a ligação C=C resulta na deslocalização dos elétrons π de ambos os grupos insaturados e a conjugação envolvendo C=O reduz o caráter de dupla ligação, resultando, portanto, na absorção em menor número de onda. Como esperado, no espectro do produto C a banda de estiramento C=O é ausente, dando lugar ao aparecimento das bandas de estiramento antissimétrico do carboxilato, v_{as} (COO), em 1560 cm⁻¹ e estiramento simétrico do carboxilato, v_s (COO), em 1400 cm^{-1.198} A comparação entre os espectros de pirazina e ácido 4-hidroxibenzoico mostra que as regiões de absorção para estes dois pré-ligantes são muito semelhantes, o que prejudicou a atribuição precisa das bandas em C que teriam contribuição das moléculas de pirazina de cristalização.

Na região espectral de baixo número de onda verifica-se o aparecimento de uma banda relacionada à formação de um agregado metálico. A atribuição desta banda está associada ao estiramento antissimétrico da unidade Fe₃O, ν_{as} (Fe₃O), e encontrase em 460 cm⁻¹.^{69; 213; 214}

ATRIBUIÇÕES TENTATIVAS	PRODUTO C	Hhbzc	руz
ν (O–H) para dímeros de COOH		3384, 2662, 2543	
ν(O–H) com ligação de hidrogênio intermolecular	3262		
v(C–H) de anel aromático	Banda encoberta	2973, 2825	3064
ν(C=O) de ácido carboxílico em conjugação com a fenila		1683	
vas(COO)	1560		
νs(COO)	1400		
ν(CC) ou ν(CN) de anel aromático	1603, 1501, outra(s) banda(s) possivelmente encoberta(s)	1608, 1594, 1509, 1447, 1422	1483,1412
ν(C–O)	1271, 1253, 1224	1317, 1290, 1240	
δ(C–H)	1171, 1125, 1101, 1039	1168, 1128, 1101, 1012	1151, 1132, 1064, 1019

Tabela 24 – Atribuições tentativas para as principais bandas de absorção (cm⁻¹) registradas nos espectros do produto C, do ácido 4-hidroxibenzoico e da pirazina na região do infravermelho.

 ν = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano. <u>Fonte</u>: autoria própria (2020).

ATRIBUIÇÕES TENTATIVAS	PRODUTO C	Hhbzc	руг
π(Ο–Η)	857	931, 855	
π(C-H)	785	769	786
π (CC) do anel aromático	618, 510	619, 547, 504	
ν(COO)	567		
v _{as} (Fe ₃ O)	460		

Tabela 24 (continuação) – Atribuições tentativas para as principais bandas de absorção (cm⁻¹) registradas nos espectros do produto C, do ácido 4-hidroxibenzoico e da pirazina na região do infravermelho.

v = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano. <u>Fonte</u>: autoria própria (2020).

5.3.5 Espectroscopia Vibracional de Espalhamento Raman

O espectro Raman para o produto C (Figura 48) é muito similar ao do produto B uma vez que as estruturas são análogas. Para este complexo, verifica-se o v_s (Fe₃O) em 211 cm⁻¹ e, como já explanado para B, o modo vibracional simétrico para a unidade M₃O não é observável em espectros de infravermelho.^{200; 215; 216}

Figura 48 – Espectro de espalhamento Raman para $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]Cl \cdot 2H_2O \cdot 3pyz$, produto C.

Fonte: autoria própria (2020).

As atribuições tentativas para as principais bandas de espalhamento Raman estão listadas na Tabela 25.

ATRIBUIÇÕES TENTATIVAS	PRODUTO C
v _{as} (OCO)	1604
v(CC) _{anel}	1524
ν _s (OCO)	1394
δ(C–H) anel	1281, 1261, 1177, 1156
"Breathing" do anel aromático	1032
π(C–H) _{anel}	863, 810
π(ΟCΟ)	645, 622
<i>r</i> (OCO)	468
ν(CC) _{anel}	305
ν _s (Fe ₃ O)	211
Vibrações da rede cristalina	174, 121

Tabela 25 - Atribuições tentativas das bandas de espalhamento Raman registradas para o produto C.

v = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano; r = *rocking* (balanço) <u>Fonte</u>: autoria própria (2020).

5.3.6 Espectroscopia de absorção da região do ultravioleta-visível (UV/Vis)

O produto C foi caracterizado por espectroscopia de absorção na região do ultravioleta-visível (UV/Vis). Os espectros obtidos para as concentrações de 5,0x10⁻⁶ mol L⁻¹, 8,0x10⁻⁶ mol L⁻¹, 1,00x10⁻⁵ mol L⁻¹, 2,00x10⁻⁵ mol L⁻¹ e 3,00x10⁻⁵ mol L⁻¹ estão apresentados na Figura 49.

A partir dos espectros registrados foi feita a deconvolução para cada concentração visando a determinação do coeficiente de absortividade molar, ε. O resultado da deconvolução gerou espectros com as posições das bandas de absorção análogas as que estão apresentadas na Figura 50, para a concentração de 1,00x10⁻⁵ mol L⁻¹.

Figura 49 – Espectros de UV/Vis registrados em diferentes concentrações para o produto C.

Fonte: autoria própria (2020).

Figura 50 – Deconvolução do espectro de UV/Vis registrado para C na concentração de 1,00x10⁻⁵ mol L⁻¹.

Fonte: autoria própria (2020).

Uma vez que a relação existente entre a absorvância e a concentração pode ser dada pela lei de *Beer-Lambert*, é possível construir uma curva que relaciona, de forma diretamente proporcional, a absorvância com a concentração da amostra.

O coeficiente angular da reta gerada para a banda 1 apresentou o valor de $(1,18\pm0,04)x10^5$, portanto a absortividade molar correspondente será $\varepsilon = (1,18\pm0,04)x10^5$ L mol⁻¹ cm⁻¹. Um valor dessa magnitude e a posição da banda de absorção muito provavelmente está relacionada a presença dos grupos cromóforos dos ligantes utilizados na síntese do trinuclear homometálico, em transições do tipo $\pi \rightarrow \pi^*$.^{224; 228}

Para banda 2 e a banda 3, obteve-se $\varepsilon = (1,62\pm0,06)x10^4$ L mol⁻¹ cm⁻¹ e $\varepsilon = (1,242\pm0,019)x10^4$ L mol⁻¹ cm⁻¹, respectivamente. Esses dois valores expressivos estão relacionados à dois tipos diferentes de transições de transferência de carga do ligante para o metal (TCLM); um pico provavelmente está associado à transição TCLM do grupo oxo para o metal, e o outro, à transição do grupo carboxilato para o metal.^{202; 229}

A coloração vermelha intensa verificada para C deve-se essencialmente à extensão de transições de TCLM até uma parte da região do visível. Embora verifiquese relativa distorção do ambiente octaédrico, fazendo com que haja quebra de degenerescência dos orbitais moleculares, espera-se transições do tipo *d-d* no visível apresentem absortividades molar na faixa de 0,001 a 1 L mol⁻¹ cm⁻¹ uma vez que o Fe³⁺ constitui uma espécie de *spin* alto com configuração *d*⁵. Neste caso, as transições *d-d* são proibidas tanto por *spin* quanto por *Laporte*. Tendo em vista a magnitude das transições de TCLM quando comparadas a transições *d-d*, a deconvolução do espectro limitou-se à identificação das transições de transferência de carga.^{202; 229}

5.3.7 Espectroscopia de Ressonância Paramagnética Eletrônica (RPE)

O espectro de RPE obtido para C no estado sólido a 77 K é apresentado na Figura 51. O resultado mostra que há interação de troca magnética entre os centros de ferro(III) em C, indicado pela banda alargada centrada em $g \approx 2,19$. Este resultado já era esperado, uma vez que na estrutura revelada por DRXM observa-se que os centros paramagnéticos são ligados uns aos outros através de pontes carboxilato e oxo no agregado trinuclear. O sinal em $g \approx 4,31$ é característico para o ferro(III) em ambiente rômbico; o que também está em concordância com os dados cristalográficos de comprimentos e ângulos de ligação obtidos para o produto C através da análise por DRXM. O espectro obtido para o sólido pulverizado à temperatura ambiente (não mostrado) é bastante semelhante àquele visto na Figura 51. Também foi feita uma tentativa de caracterização do produto C por RPE em sua solução com metanol. Porém, devido à constante dielétrica do solvente, somado ao fato de que o mesmo não foi seco previamente, inviabilizou a obtenção do espectro de ressonância.^{230; 231}

Figura 51 – Espectro de RPE registrado para $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI \cdot 3H_2O \cdot 3pyz$, produto C (sólido pulverizado, 77 K).

Fonte: autoria própria (2020).

5.4 CARACTERIZAÇÃO DO PRODUTO D

5.4.1 Difratometria de Raios X por Monocristal (DRXM)

A análise por DRXM para o produto D revelou a formação de um complexo trinuclear linear, de fórmula $[Co_3(4,4'-bip)_4(trim)_2(OH_2)_{10}]\cdot(4,4'-bip)\cdot 8H_2O$, cuja estrutura está representada na Figura 52. As informações com relação à coleta de dados cristalográficos e refinamento da estrutura encontram-se na Tabela 26. No Anexo 4, constam informações adicionais com relação aos dados cristalográficos para D.

Figura 52 – Representação ORTEP do complexo trinuclear baseado em cobalto(II), $[Co_3(4,4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4,4'-bip) \cdot 8H_2O$, produto D. As moléculas de cristalização foram omitidas para maior clareza.

Fonte: autoria própria (2020).

A partir dos parâmetros geométricos de comprimentos e ângulos de ligação, listados na Tabela 27, verifica-se que os íons Co²⁺ apresentam geometria octaédrica distorcida. A estrutura linear revela a presença de dois ambientes químicos para os íons cobalto(II): o central, identificado por Co2 na Figura 52, e os dos íons das extremidades, identificados por Co1 e por Co1ⁱ, (i) -x+1, -y+2, -z+2.

Fórmula unitária	(C ₅₈ H ₅₈ Co ₃ N ₈ O ₂₂), (C ₁₀ H ₈ N ₂), 8(H ₂ O)
Massa molar	1696,22 g mol ⁻¹
Sistema cristalino, grupo espacial	Monoclínico, P21/n
Parâmetros reticulares	<i>a</i> = 13,1764(5) Å α = 90 °
	$b = 13,9635(5)$ Å $\beta = 91,293(3)$ °
	$c = 20,1732(8) \text{ A}$ $\gamma = 90^{\circ}$
Volume da célula unitária	3710,7(2) Å ³
Número de fórmulas unitárias na célula (Z)	2
Densidade calculada	1,518 g cm ⁻³
F(000)	1762
Coeficiente de absorção (µ)	5,994 mm ⁻¹
Temperatura de coleta dos dados	300(2) K
Comprimento de onda da radiação	1,54178 Å (Cu Kα)
Forma e cor do cristal	Paralelepípedo, coloração alaranjada
Tamanho do cristal	0,198 x 0,174 x 0,098 mm
Sobre o difratômetro	
Faixa de coleta de dados (ângulo θ)	3,8 a 50,0 °
Faixa de coleta de dados (índices <i>h</i> , <i>k</i> , <i>l</i>)	-13 ≤ h ≤ 13
	$-13 \le k \le 13$
Completeza des dedes seletados	-20 ≤ 1≤ 20
Número do reflexões colotados	67570
Número de reflexões independentes	0/5/9
Numero de reflexões observadas $(l > 2\sigma)$	3009 [R(int) – 0,204] 2850
Mátodo de determinação da estrutura	Método da fase intrínseca no SHELXT
Método de refinamento	Método dos guadrados mínimos de
Melodo de remamento	matriz completa sobre F ²
N° de dados / n° de restrições / n° de	3800 / 34 / 651
parâmetros	3809/24/831
Goodness-of-fit (S) sobre F ²	1,020
Parâmetros residuais máximos do mapa	
de <i>Fourier</i> após refinamento	
R observado (I > 2σι)	R ₁ = 0,047, wR ₂ = 0,104
R (todos os dados)	R ₁ = 0,071; wR ₂ = 0,113
Fonte: autoria própria (2020).	

Tabela 26 – Informações sobre a coleta de dados usados na determinação e refinamento da estrutura $[Co_3(4,4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4,4'-bip) \cdot 8H_2O$, produto D.

Tabela 27 – Parâmetros geométricos selecionados para o complexo $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D. Os valores de *e.s.ds* para comprimentos e ângulos de ligações encontram-se entre parênteses.

Comprimentos d	e ligação (Å)				
Co–Otrim	Co1–O1	2,045(4)			
Co–O _{aqua}	Co1–O1w	2,076(4)			
	Co1–O3w	2,100(4)			
	Co1–O2w	2,122(4)			
	Co2–O4w	2,082(4)			
	Co2–O5w	2,113(4)			
Co–N4,4'-bip	Co1–N3	2,145(4)			
	Co1–N2	2,162(4)			
	Co2–N4	2,104(4)			
Ângulos de ligaç	ão (°)				
Otrim-Co-Oaqua	O1–Co1–O1w	94,89(16)	Oaqua—Co—N4,4'-bip	O1w-Co1-N3	91,70(16)
	O1–Co1–O3w	178,59(17)		O3w–Co1–N3	91,07(17)
	O1–Co1–O2w	85,75(17)		O2w-Co1-N3	87,77(16)
Oaqua-Co-Oaqua	O1w-Co1-O3w	86,47(18)		O1w-Co1- N2	89,43(16)
	O1w-Co1-O2w	179,17(18)		O3w–Co1– N2	92,21(16)
	O3w-Co1-O2w	92,90(19)		O2w-Co1- N2	91,14(16)
	O4w-Co2-O5w	91,54(18)		O4w–Co2–N4	88,68(16)
	O4w ⁱ –Co2–O5w	88,46(18)		O4w ⁱ –Co2–N4	91,32(16)
Otrim-Co-N4,4'-bip	O1–Co1–N3	89,27(16)		N4–Co2–O5w	87,93(17)
	O1-Co1-N2	87,43(14)		N4 ⁱ -Co2-O5w	92,07(17)

Operação de simetria empregada para gerar átomos equivalentes: (i) -x+1, -y+2, -z+2. <u>Fonte</u>: autoria própria (2020).

As unidades trinucleares estão ordenadas linearmente segundo o plano definido pelos eixos *c* e *b* da célula unitária. Para melhor descrição da estrutura de D, convencionamos um eixo imaginário que contém os três íons cobalto(II) e os ligantes 4,4'-bipiridina envolvidos nas ligações axiais na estrutura, fazendo as pontes que ligam os três íons metálicos e as ligações terminais em Co1 e Co1ⁱ, conforme pode ser visualizado na Figura 52.

Os planos equatoriais para cada centro de cobato(II) envolvem ligantes *O*-doadores. Em Co2, este plano contém 4 ligantes *aqua*, sendo O4wⁱ e O5wⁱ gerados pela operação de simetria (i) -x+1, -y+2, -z+2, uma vez que a estrutura possui centro de inversão em Co2. O íon Co1 também possui ligantes *O*-doadores no plano equatorial. Neste caso, entretanto, são 3 ligantes *aqua*, e um ligante trimesato que se coordena através de um dos átomos de oxigênio de um dos três grupos carboxilato. Como já mencionado, há um centro de inversão em Co2 e, então, Co1ⁱ se relaciona à Co1 através desta operação de simetria e, por isto, a discussão sobre as interações intermoleculares envolvendo estes dois centros metálicos será feita para Co1. Com relação a estrutura cristalina de D, há ainda a presença de uma molécula de 4,4'-bipiridina e 8 moléculas de água de cristalização por unidade trinuclear. A presença dessas moléculas de cristalização no retículo cristalino revela-se essencial na formação das interações intermoleculares. Tais características podem ser mais bem avaliadas a partir da superfície de Hirshfeld em d_{norm} , gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do complexo, ou seja, a unidade trinuclear e as moléculas de cristalização, sendo oito de água e uma de 4,4'-bipiridina, como mostrado na Figura 53.¹⁸²⁻¹⁸⁴

Figura 53 – Superfície de Hirshfeld para $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D. Os *red spots* estão destacados pelas setas verdes. A imagem foi gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do complexo com o uso do *software CrystalExplorer17.5*.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / AZUL – Nitrogênio / ROXO – Cobalto(II). <u>Fonte</u>: autoria própria (2020).

As contribuições relativas à cada tipo de interação frente à superfície gerada e os *fingerprints* característicos de D estão apresentados na Figura 54.¹⁸⁴

Figura 54 – *Fingerprints* para a superfície gerada sobre o conjunto de todas as espécies químicas envolvidas na fórmula do produto D. (a) Porcentagens de contribuições individuais de cada tipo de interação na composição da superfície de HF. (b) *Fingerprint* total e (c) *fingerprints* resultantes da decomposição do *fingerprint* total.

Fonte: autoria própria (2020).

A análise do *fingerprint* revela dois tipos de interações responsáveis pelo aparecimento de *red spots* na Figura 53 e *sharp spikes* na Figura 54. São elas, as interações O···H (em roxo) e N···H (em vermelho).¹⁸³ A Figura 55a indica as interações intermoleculares que envolvem os ligantes *aqua* de Co2. Estes ligantes realizam ligações

de hidrogênio com moléculas de 4,4'-bipiridina de cristalização (O5W–H5A····N5) e com o átomo de oxigênio (espécie receptora de hidrogênio) do ligante trimesato da unidade trinuclear adjacente, O5W–H5B···O3. Evidencia-se, ainda, dois ligantes *aqua* realizando ligações de hidrogênio com duas moléculas de água de cristalização (O4W–H4A···O9W e O4W–H4B···O8W). ^{87; 186}

A Figura 55b revela o importante papel do ligante trimesato na formação de ligações de hidrogênio para a formação de D, realizando um total de 11 interações: O8W–H8B···O2, O1W–H1A···O2, O8W–H8A···O3, O5W–H5B···O3 (ligação já mencionada pois envolve o ligante *aqua* do Co²⁺ central), O7W–H7B···O3, O7W– H7B···O4, O6W–H6A···O4, O7W–H7A···O6, O9W–H9A···O6, O9W–H9B···O5 e O2W–H2B···O5. Os três ligantes *aqua* também realizam ligações de hidrogênio. O primeiro deles realiza LH com o trimesato coordenado (O1W–H1A···O2, já mencionado) e com uma molécula de água de cristalização (O1W–H1B···O6W. O segundo interage com a 4,4'-bipiridina pertencente à extremidade de uma unidade trinuclear adjacente (O3W–H3B···N1) e com uma molécula de água de cristalização (O3W–H3A···O9W). Por fim, o terceiro ligante *aqua* faz LH com o trimesato de uma estrutura adjacente (O2W–H2B···O5, já mencionado) e com uma molécula de água de cristalização de uma

Todas as LH mencionadas estão identificadas em verde na Figura 55 e os parâmetros geométricos para todas as interações mencionadas são apresentados na Tabela 28.

D–H…O	d(D–H) (Å)	d(H⋯R) (Å)	d(D…R) (Å)	< DHR (°)
O1w–H1A…O2	0,81(2)	1,99(3)	2,762(6)	158(7)
O1w–H1B⋯O6w	0,81(2)	1,84(2)	2,361(7)	165(7)
O2w–H2A⋯O8w	0,81(2)	2,13(3)	2,924(6)	165(6)
O2w–H2B…O5	0,82(2)	1,90(3)	2,718(6)	169(9)
O3w–H3A⋯O9w	0,81(2)	2,02(3)	2,814(6)	165(6)
O3w–H3B…N1	0,83(2)	2,07(5)	2,826(6)	151(8)
O4w–H4A⋯O9w	0,82(2)	1,92(2)	2,735(6)	174(7)
O4w–H4B⋯O8w	0,82(2)	1,90(3)	2,712(6)	169(7)
O5w–H5A…N5	0,83(2)	2,10(2)	2,915(7)	168(5)
O5w−H5B…O3	0,84(2)	2,05(3)	2,855(6)	159(7)
O6w–H6A…O4	0,83(2)	1,96(3)	2,772(7)	168(11)
O6w–H6B…O7w	0,83(2)	1,92(3)	2,700(9)	157(7)

Tabela 28 - Parâmetros geométricos para as ligações de hidrogênio observadas no produto D.

Fonte: autoria própria (2020).

D–H…O	d(D–H) (Å)	d(H…R) (Å)	d(D…R) (Å)	< DHR (°)
O7w–H7A…O6	0,84(2)	2,22(6)	2,986(7)	153(12)
O7w–H7B…O4	0,84(2)	2,09(6)	2,860(7)	152(13)
O8w–H8A…O3	0,83(2)	1,93(3)	2,748(6)	166(8)
O8w–H8B⋯O2	0,83(2)	1,86(3)	2,675(6)	168(7)
O9w–H9A…O6	0,83(2)	1,87(2)	2,697(6)	174(8)
O9w–H9B…O5	0,84(2)	2,01(2)	2,849(6)	179(6)

Tabela 30 (continuação) - Parâmetros geométricos para as ligações de hidrogênio observadas no produto D.

Fonte: autoria própria (2020).

Figura 55 – (a) Ambiente químico para Co2 e as ligações de hidrogênio que envolvem os quatro ligantes *aqua* na posição equatorial e (b) ambiente químico para Co1 e as respectivas ligações de hidrogênio associadas aos três ligantes *aqua* e ao ligante trimesato.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / AZUL – Nitrogênio / ROXO – Cobalto(II). <u>Fonte</u>: autoria própria (2020).

Embora as interações intermoleculares do complexo já sejam justificadas pela presença das ligações de hidrogênio entre as unidades trinucleares ordenadas, esta não é a única interação não covalente existente, como já visto na Figura 54. O *fingerprint* para D revela uma contribuição significativa da interação C···C na composição da superfície de Hirshfeld, apresentando o valor de 8,9% do total da superfície. Comparativamente, o produto A apresenta a contribuição de 2,1%, o produto B, 2,0% e, o produto C, 2,8% para este tipo de interação.¹⁸³

Uma explicação para a contribuição relativa da interação C···C no produto D ser cerca de quatro vezes maior que para os outros produtos deve-se a existência de interações de empilhamento π face-face entre os anéis aromáticos heterocíclicos. De fato, ao analisar as distâncias entre os centroides, d(CC), da 4,4'-bipiridina, essas interações se mostram evidentes. A d(CC), neste caso, atende o requisito de se encontrar na faixa entre 3,3 a 3,8 Å para a existência deste tipo de interação. O empilhamento π face-face envolve os dois ligantes 4,4'-bipiridina coordenados ao cobalto(II) central e as moléculas de 4,4'-bipiridina de cristalização (d(CC) = 3,639 Å), como é possível verificar na Figura 56, e também os ligantes 4,4'-bipiridina terminais de unidades trinucleares adjacentes d(CC) = 3,577 Å), como mostra a Figura 57.^{89; 210}

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / AZUL – Nitrogênio / ROXO – Cobalto(II). Fonte: autoria própria (2020).

Figura 57 – Empilhamento π face-face dos anéis aromáticos das moléculas de 4,4'-bipiridina terminais, coordenadas à Co1 ou Co1ⁱ, de unidades trinucleares adjacentes.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / AZUL – Nitrogênio / ROXO – Cobalto(II). <u>Fonte</u>: autoria própria (2020).

Uma grande peculiaridade desta estrutura está no comprimento da unidade trinuclear, com o valor de 41,151 Å (Figura 58), o qual foi medido em relação às extremidades dos nitrogênios dos ligantes 4,4-bipiridina. Sabidamente, existem estruturas lineares análogas porém, são raros os relatos de complexos trinucleares lineares com esta magnitude de extensão. O trabalho desenvolvido por Zheng e colaboradores, acerca desta estrutura, atenta especialmente para a possibilidade de o trinuclear linear ser utilizado como bloco construtor na formação de redes metalorgânicas (*MOFs*). Nesse sentido, o fato de poder ser utilizado como um espaçador longo e com grupos *N*- e *O*- doadores instiga o interesse por este complexo.^{15; 232-235}

Figura 58 – Comprimento da unidade trinuclear, produto D.

<u>Legenda</u>: CINZA – Carbono / BRANCO – Hidrogênio / VERMELHO – Oxigênio / AZUL – Nitrogênio / ROXO – Cobalto(II). <u>Fonte</u>: autoria própria (2020).

5.4.2 Espectroscopia Vibracional de Absorção na Região do Infravermelho (IV)

O produto D foi analisado a partir dos espectros de absorção na região do infravermelho pela comparação entre seu espectro e aqueles registrados para os reagentes de partida utilizados na síntese, como apresentado na Figura 59. As atribuições tentativas para as bandas identificadas encontram-se na Tabela 29.

Figura 59 – Espectros de absorção na região do infravermelho registrados em pastilhas de KBr para $[Co_3(4,4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4,4'-bip) \cdot 8H_2O$, produto D, e para os materiais de partida, ácido trimésico e 4,4'-bipiridina.

Fonte: autoria própria (2020).

No espectro de D verifica-se uma banda alargada em 3099 cm⁻¹, a qual foi associada ao estiramento ν (O–H) quando em ligação de hidrogênio intermolecular. Este estiramento é coerente com a estrutura revelada por DRXM dado o grande número de ligações de hidrogênio.¹⁹⁸ Comparando-se o espectro do ácido trimésico com o do produto D, identifica-se a desprotonação do ácido, uma vez que é possível observar o ν (C=O) em 1718 cm⁻¹, enquanto que, para o produto D, esse

estiramento é ausente, dando lugar aos estiramentos $v_{as}(COO)$ e $v_s(COO)$ que foram atribuídos às regiões de 1564 e 1383 cm⁻¹, respectivamente.¹⁹⁸

~			
ATRIBUIÇÕES TENTATIVAS	PRODUTO D	H₃trim	4,4'-bip
ν(O–H) com ligação de hidrogênio intermolecular	3099	3087	
ν (C–H) de anel aromático	2972, 2889	3005, 2864	3041
ν (O–H) para dímeros de COOH		2659, 2549	
ν (C=O) de ácido carboxílico		1718	
ν (CC) ou ν (CN) do anel aromático	1614 e outras bandas possivelmente encobertas	1606	1599, 1531
ν _{as} (COO)	1564		
νs(COO)	1383		
ν (CC) ou ν (CC) de anel aromático + δ (C–H)	1489, 1410		1489, 1410
ν(C–C)	1439, 1350	1454, 1325	1323
Vibrações em COOH		1403, 914	
ν (C–O) + vibrações em COOH		1275, 1248	
v(CC) ou v (CN) do anel aromático + v (C–C) + δ (C–H)	1219	Banda possivelmente encoberta	1221
δ(C–H)	1163, 1107, 1088	1182, 1106	1097, 1074, 1043
π(C–H) ou π(O–H)	951, 810, 769, 719	742 e outras bandas possivelmente encobertas	995, 800, 735
π (CC) ou π (CN) do anel aromático	634, 526, 480	688, 611, 536	679, 615, 569

Tabela 29 – Atribuições tentativas das bandas de absorção características na região do infravermelho (cm⁻¹) registradas para o produto D, para o ácido trimésico, *H₃trim*, e para a 4,4'-bipiridina, *4,4'-bip*.

ν = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano. <u>Fonte</u>: autoria própria (2020).
5.4.3 Espectroscopia Vibracional de Espalhamento Raman

As bandas de espalhamento Raman (Figura 60) reforçam a incorporação de grupos carboxilato na estrutura de D, sendo possível atribuir o v_{as} (COO) à banda em 1621 cm⁻¹. ^{200; 236} É possível identificar, ainda, o v(Co–O) em 287 cm⁻¹ em região próxima àquela verificada para o polímero de cobalto, produto A, considerando o mesmo modo vibracional. ^{75; 106} As atribuições tentativas para as principais bandas de deslocamento Raman para D estão listadas na Tabela 30.

Figura 60 – Espectro de espalhamento Raman para $[Co_3(4, 4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4, 4'-bip) \cdot 8H_2O$, produto D.

Fonte: autoria própria (2020).

Tabela 30 – Atribuições tentativas das bandas de espalhamento Raman registradas para o produto D.

ATRIBUIÇÕES TENTATIVAS	PRODUTO D
ν _{as} (OCO)	1621
$\nu(CC)_{anel} \text{ ou } \nu(CN)_{anel}$	1565, 1528
ν _s (OCO)	1430
δ(C–H) _{anel}	1298, 1248
"Breathing" do anel aromático	1088, 1028, 1010
π(C–H) _{anel}	805, 779
π(ΟCΟ)	663
π (CC) ou π (CN) do anel aromático	577
ν(Co–O)	287
Vibrações da rede cristalina	371, 216, 121, 97

 ν = estiramento; δ = deformação angular no plano; π = deformação angular fora do plano Fonte: autoria própria (2020).

5.5 CORRELAÇÕES ENTRE SÍNTESE E ESTRUTURA NOS SISTEMAS ESTUDADOS

Dois sistemas discutidos neste trabalho levaram à formação de oxocomplexos trinucleares de estrutura genérica $[M_3(\mu_3-O)(\mu-L_1)_6(L_2)_3]^n$, onde L₁ = ligante carboxilato em ponte, L₂ = ligante terminal. Quando a carga positiva dos três centros metálicos foi contrabalanceada pelas cargas de L₁ e de L₂, o oxocomplexo neutro $[Fe_2Co(\mu_3-O)(\mu-bzc)_6(OH_2)_3]$, produto B, foi formado. Porém, quando isto não ocorreu, houve a formação de um oxocomplexo carregado, o cátion presente em C, $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]^+$. A formação deste tipo de arcabouço é bastante comum dentro da química de coordenação de uma variedade de metais de transição, como discutido nas seções de Introdução e de Revisão Bibliográfica.²³⁷⁻²⁴¹

A metodologia de síntese, empregada na formação do oxocomplexo B, pode ser visualizada no Esquema 3 apresentado abaixo.

Esquema 3 – Visualização simplificada da metodologia sintética conduzida na reação entre $\{[Co(\mu-bzc)(OH_2)_2](bzc)\cdot H_2O\}_n$ (produto A) e FeCl₃·6H₂O para a preparação do produto B.

Fonte: autoria própria (2020).

Cristais paralelepípedos alaranjados [Fe₂Co(μ_3 -O)(μ -*bzc*)₆(OH₂)₃]

A partir dos dados descritos no procedimento experimental na seção 4.3.2 e pelo Esquema 3, nenhum material de partida colocado na reação que gerou B continha o grupo oxo. Como discutido na seção de Revisão Bibliográfica, a presença deste ligante nestes tipos de sistemas está relacionada à condução da síntese na presença de água. A perda dos prótons da molécula de água coordenada ao centro metálico pode levar à formação de uma variedade de oxo-compostos e, dentre estes, pode ocorrer a formação de uma unidade "triangular" com o grupo oxocentrado, muito

importante, em termos estruturais, na formação dos denominados oxocomplexos trinucleares.^{45; 47}

O mesmo comportamento foi observado no sistema que levou à formação do oxocomplexo C, $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI\cdot 3H_2O\cdot 3pyz$, como pode ser observado na descrição da síntese na seção 4.3.3 e no Esquema 4 mostrado abaixo.

Esquema 4 – Visualização simplificada da metodologia sintética conduzida na reação entre FeCl₃·6H₂O, ácido 4-hidroxibenzoico (*Hhbzc*) e pirazina (*pyz*) para a preparação do produto C.

Fonte: autoria própria (2020).

Cristais em blocos vermelhos translúcidos [Fe₃(µ₃-O)(µ-*hbzc*)₆(OH₂)₂(OHCH₃)]Cl·3H₂O·3*pyz*

A fim de verificar a importância da presença de água no meio reacional, o procedimento sintético que levou à formação de C foi escolhido para que se conduzisse um estudo sobre a influência de um meio reacional não aquoso na formação do oxocomplexo. Sendo assim, um experimento foi conduzido utilizando-se apenas o metanol como solvente. Neste caso, a concentração de água no sistema reacional era baixa, visto que sua fonte provinha apenas das moléculas de água de hidratação do material de partida de ferro(III), FeCl₃·6H₂O, e das moléculas de água presentes no metanol. Ao realizar a mistura entre as soluções metanólicas de cloreto de ferro(III) e de ácido 4-hidroxibenzoico e pirazina, não foi evidenciada a mudança de coloração de amarelo para castanho, que é indicativa da ocorrência da reação que produz o complexo C. Deste modo, pode-se inferir que uma das duas situações podem ter ocorrido neste sistema reacional, sendo estas: *(i)* a concentração de água no sistema não possibilitou a formação de uma quantidade suficiente do complexo C que permitisse a observação de uma mudança visual na coloração da solução e levasse

à sua cristalização; *(ii)* a concentração de água foi insuficiente para gerar os grupos oxo no sistema, que são determinantes para a formação da estrutura trinuclear do oxocomplexo C. Neste sistema estudado, cabe ressaltar, apenas os cristais incolores do material de partida, ácido 4-hidroxibenzoico, foram cristalizados da mistura de reação.

Outro fator digno de nota, observado no sistema que leva à formação do produto C, é que apesar de não ter entrado na esfera de coordenação do ferro(III), o pré-ligante pirazina se mostrou indispensável no meio reacional para o isolamento do oxocomplexo. Acredita-se que a presença de pirazina no retículo cristalino esteja relacionada à sua estabilização através da ocupação de seus espaços vazios por estas moléculas e à realização de ligações de hidrogênio com espécies químicas que a circundam. Este efeito cooperativo entre a ocupação dos interstícios vazios e a realização das ligações não covalentes provoca uma estabilização termodinâmica adicional ao sistema, favorecendo a cristalização do produto C. Estudos feitos acerca das variáveis sintéticas que levam à formação de C mostraram que quando o meio reacional não contém pirazina, este oxocomplexo não é isolado nas condições sintéticas que foram testadas. Desta forma, estes dados suportam que uma condição essencial para o isolamento de C está diretamente relacionada à adição da pirazina, indicando sua relação com a estabilização termodinâmica da estrutura. Nestes estudos que foram conduzidos, as misturas de reação que não continham pirazina levaram somente à recristalização do material de partida, o ácido 4-hidroxibenzoico.

Os dois outros sistemas estudados neste trabalho envolvem compostos homometálicos baseados em cobalto(II). O primeiro deles levou à obtenção do polímero de coordenação, $\{[Co(\mu-bzc)(OH_2)_2](bzc)\cdot H_2O\}_n$, produto A. Já o segundo sistema à formação de trinuclear levou uma estrutura linear. [Co₃(4,4'-bip)₄(trim)₂(OH₂)₁₀]·(4,4'-bip)·8H₂O, produto D. A rota sintética que rendeu o produto A foi adaptada do procedimento descrito na literatura por Golubnichaya e colaboradores,¹⁷⁸ como citado na seção experimental (visualização simplificada no Esquema 5). A adaptação, neste caso, além de desconsiderar o processo de extração com solventes polares, consistiu também na utilização do benzoato de potássio em vez do pivalato de potássio.

Esquema 5 – Visualização simplificada da metodologia sintética conduzida na reação entre CoCl₂·6H₂O e benzoato de potássio (*Kbzc*) para a preparação do produto A.

Fonte: autoria própria (2020).

Cristais paralelepípedos rosa-claros [[Co(µ-*bzc*)(OH₂)₂](*bzc*)·H₂O]n

A metodologia que levou à obtenção do complexo D empregou condições mais energéticas em um sistema solvotérmico (visualização simplificada no Esquema 6). Estas condições podem ter sido determinantes para a formação de uma estrutura heteroléptica, com ligantes *N*- e *O*-doadores, e relativamente longa, com 41,151 Å de comprimento, incomum na literatura (ver seção 5.4.1).

Esquema 6 – Visualização simplificada da metodologia sintética conduzida na reação entre $CoCl_2 \cdot 6H_2O$, ácido trimésico (*H*₃*trim*), 4,4'-bipiridina (*4,4'-bip*) e KOH para a preparação do produto D.

Fonte: autoria própria (2020).

O isolamento desta estrutura nos levou a questionar sobre o porquê da não formação de um polímero de coordenação já que o sistema, aparentemente, continha todos os requisitos necessários. Um dos fatores que pode ter levado a este resultado pode ter sido as condições de síntese que, apesar de proporcionar bastante energia ao sistema, pode ainda não ter sido suficiente para provocar a polimerização.

Outra possibilidade seria com relação ao balanço de carga para as unidades trinucleares. A presença de três íons Co^{2+} fecha o balanço de carga com os dois trimesatos (*trim*³⁻) coordenados, o que desfavoreceria termodinamicamente a extensão e formação do polímero. Nesse caso, uma estratégia sintética que poderia ser explorada seria a desprotonação parcial do ácido trimésico nas formas $H_2 trim^{1-}$ ou $H trim^{2-}$. Um meio reacional mais ácido, portanto, poderia favorecer a coordenação do Co^{2+} em uma das extremidades contendo 4,4'-bipiridina, o que levaria a formação de unidades de repetição coordenadas e conduziria a formação de uma estrutura polimérica.

Uma constatação muito particular de D vem do fato desse complexo possuir dois ambientes de coordenação distintos para os centros de cobalto(II), o que tornaria a unidade assimétrica muito longa (comprimento de 20,575 Å) e isso poderia ser um ponto desfavorável o crescimento polimérico. Uma pesquisa cuidadosa na base de dados CCDC para estruturas poliméricas de cobalto contendo ligantes *N*- e *O*-doadores foi realizada com o intuito de se observar o comprimento das unidades assimétricas nestas estruturas. Os resultados podem ser vistos no Quadro 3, onde é possível observar que apenas uma estrutura possui o comprimento da unidade assimétrica maior do que o observado para D (Código CCDC: HIRZUD02). A outra estrutura que possui comprimento similar ao observado para D não pode ter este dado comparado diretamente, pois o crescimento da cadeia polimérica não ocorre ao longo do eixo que contém a unidade trinuclear (código CCDC: WUDJEM).

Desta forma, a pesquisa revela que as unidades assimétricas são geralmente bem menores do que a observada para D. Sendo assim, a presença de dois ambientes químicos para o cobalto(II) pode ter dificultado a alternação entre estes para a formação de uma unidade polimérica e o sistema cessou seu crescimento com somente três centros de coordenação.

Uma vez não tendo ocorrido a polimerização das longas unidades assimétricas em D, o considerável número de ligações não covalentes na estrutura que fez com que o sistema atingisse as condições necessárias para a estabilização do retículo cristalino e consequente cristalização.

Quadro 3 – Estudo comparativo do comprimento de ligação da unidade assimétrica (UAs) para diferentes polímeros de coordenação de cobalto.

Quadro 3 (continuação) - Estudo comparativo do comprimento de ligação da unidade assimétrica (UAs) para diferentes polímeros de coordenação de cobalto.

	<i>trans-</i> [Co(<i>DBM</i>)₂(<i>qox</i>)] _n ·nH₂O		
HAHVAP	UAs	14,329	246
	[Co ₃ (<i>boaba</i>) ₂ (<i>4</i> , <i>4</i> '- <i>bip</i>) ₂ (H ₂ O) ₈]		
ZESLIU		13,409*	247
	{[Co(4,4'-bip)(HCO ₂) ₂ (H ₂ O)]·4H ₂ O} _n		
FIFNUE01		9,277*	248

Quadro 3 (continuação) – Estudo comparativo do comprimento de ligação da unidade assimétrica (UAs) para diferentes polímeros de coordenação de cobalto.

149

Quadro 3 (continuação) – Estudo comparativo do comprimento de ligação da unidade assimétrica (UAs) para diferentes polímeros de coordenação de cobalto.

* Polímeros de coordenação bi- ou tridimensionais em que a medida foi realizada ao longo do eixo que contém o ligante 4,4'-bipiridina.

<u>Abreviaturas</u>: 4,4'-bip = 4,4'-bipiridina / trim = trimesato / stp = 2-sulfotereftalato / L = N-(3-Carboxilatofenilsulfonil)glicinato / pTS = 4-metilbenzenosulfonato / DBM = dibenzoilmetanato / qox = quinoxalina / boaba = 3,5-bis(carboximetoxi)benzoato / pyterpy = 4'-(4'''-piridil)-2,2':6'2''-terpiridina / 1,3,5-BTC = 1,3,5-benzenotricarboxilato.

Fonte: Adaptado de DATTA, A. *et al.* (2015);¹⁷ PRIOR, T. J. *et al.* (2011);²⁴² MA, L. -F *et al.* (2008);²⁴³ UVAROVA, M. A. *et al.* (2018);²⁴⁴ NATH, J. *et al.* (2011);²⁴⁵ STEWARD, O. W. *et al.* (2011);²⁴⁶ TONG, Y. *et al.* (2013);²⁴⁷ WANG, Y. *et al.* (2006);²⁴⁸ HAYAMI, S. *et al.* (2004);²⁴⁹ JALBOUT, A. F. *et al.* (2008).²⁵⁰

5.6 ANÁLISE DE ATIVIDADE ANTIBACTERIANA

O estudo biológico para os produtos B e C foram feitos em triplicata tanto para as cepas de *E. coli* quanto para as de *S. aureus*. Para cada microplaca foram feitas duplicatas com relação à análise antibacteriana dos produtos B e C e do medicamento de referência, a amoxicilina. Os resultados que serão apresentados baseiam-se na correlação entre as médias das densidades ópticas em 600 nm e os resultados colorimétricos das microplacas com a adição de resazurina.^{251; 252}

Embora o método colorimétrico forneça resultados visuais imediatos, a análise de turbidez das microplacas, além de viabilizar os dados quantitativos, desvia de interpretações equivocadas dos resultados em decorrência do pH do meio – a resazurina comumente é utilizada como indicador de pH com faixa de viragem compreendida entre 3,8 e 6,5 – nesse sentido é essencial que, caso o método se baseie exclusivamente a partir da análise visual colorimétrica, haja um controle de pH da composição "meio de crescimento", "solventes" e "espécie química em estudo antibacteriano".^{128; 179; 253}

O princípio do ensaio colorimétrico baseia-se na identificação de células viáveis nos poços das microplacas. Uma vez identificável o desenvolvimento celular bacteriano, a resazurina (cor azul, fracamente fluorescente) é reduzida à resorufina (cor rosa, altamente fluorescente) através de processos químicos e/ou enzimáticos dependentes da concentração de H⁺ e fontes transferidoras de elétrons (Esquema 7). Quando há inibição de crescimento bacteriano, em contrapartida, a coloração azul característica é mantida.^{127; 254-256}

Esquema 7 – Reação de conversão da resazurina à resorufina.²⁵⁴

Fonte: Adaptado de IBAÑEZ, D. et al. (2019).254

5.6.1 Análise de atividade antibacteriana do produto B

As Figuras 61 e 62 indicam a magnitude de crescimento/inibição de cepas de bactérias Gram-negativas (*E. coli*) e Gram-positivas (*S. aureus*) após um período de 24 horas de encubação em relação à concentração de cada espécie química nos testes antibacterianos. As linhas A e B constituem duplicatas da diluição seriada para o Produto B, a linha C para o ácido benzoico utilizado como pré-ligante, as linhas D e E para o FeCl₃·6H₂O e CoCl₂·6H₂O, respectivamente, utilizados como reagentes de partida, a linha F para a composição de solventes (água e DMSO) e, as linhas G e H, duplicatas para a amoxicilina.

Figura 61 – Crescimento e inibição de cepas de *E. coli* com relação ao oxocomplexo trinuclear heterometálico (Produto B). CC é a coluna de controle de crescimento e CE a de controle de esterilidade.

Fonte: autoria própria (2020).

Figura 62 – Crescimento e inibição de cepas de *S. aureus* com relação ao oxocomplexo trinuclear heterometálico (Produto B). CC é a coluna de controle de crescimento e CE a de controle de esterilidade.

Fonte: autoria própria (2020).

A fim de comparar os resultados obtidos com os dados já reportados na literatura considerou-se as menores concentrações capazes de inibir mais de 90% de crescimento bacteriano (CIM). Determinou-se, ainda a concentração bactericida mínima (CBM) para o produto B, correspondente a concentração que resulta na morte celular bacteriana.²⁵⁷⁻²⁶²

Os valores de CIM e CBM para o oxocomplexo trinuclear heterometálico estão sumarizados na Tabela 31. Verifica-se que tanto para os ensaios envolvendo *E. coli* quanto *S. aureus* a atividade antibacteriana do produto B, em termos de concentração molar, se destaca frente a íons e moléculas orgânicas livres (pré-ligante ácido benzoico e íons Fe³⁺ e Co²⁺).

	Escherichia coli		
-	CIM	CBM	
	≈ 58,2 mg L ⁻¹	≈ 1862,1 mg L ⁻¹	
	(6,02·10 ⁻⁵ mol L ⁻¹)	(1,92·10 ⁻³ mol L ⁻¹)	
PRODUTO B -	Staphylococcus aureus		
	CIM	CBM	
	CIM ≈ 465,5 mg L ⁻¹	CBM ≈ 3724,2 mg L ⁻¹	

Tabela 31 – Valores de CIM e CBM encontrados para o produto B frente a cepas de E. coli e S. aureus.

Fonte: autoria própria (2020).

No teste com a *E. coli*, a CIM do produto B foi de $6,02 \cdot 10^{-5}$ mol L⁻¹, enquanto para o pré-ligante ácido benzoico, foi de $1,23 \cdot 10^{-2}$ mol L⁻¹, para o FeCl₃·6H₂O foi $2,00 \cdot 10^{-3}$ mol L⁻¹ e, para o CoCl₂·6H₂O, $9,75 \cdot 10^{-4}$ mol L⁻¹. Para o ensaio com a *S. aureus*, os valores de CIM do pré-ligante e dos íons Fe³⁺ e Co²⁺ foram $6,15 \cdot 10^{-3}$ mol L⁻¹, $2,00 \cdot 10^{-3}$ mol L⁻¹ e $4,87 \cdot 10^{-4}$ mol L⁻¹, respectivamente, enquanto que, para o produto B, a CIM ficou em torno de $4,81 \cdot 10^{-4}$ mol L⁻¹. Tais resultados reforçam o efeito sinérgico existente entre ligantes e íons metálicos na formação do complexo.^{263; 264}

Os valores de CIM obtidos em mg L⁻¹ para o ácido benzoico frente a *E. coli* e a *S. aureus* são coerentes com dados já reportados na literatura, como os apresentados por *Cueva et al.*¹⁶² A autora e demais colaboradores reportam a inibição de aproximadamente 60% de cepas de *E. coli* para uma concentração de 1000 mg L⁻¹ de ácido benzoico em comparação com 1502 mg L⁻¹ (1,23 · 10⁻² mol L⁻¹), obtidos neste trabalho, na inibição de 90% de crescimento bacteriano.¹⁶² O trabalho indica ainda que, para a *S. aureus*, a concentração de 1000 mg L⁻¹ de ácido benzoico é capaz de inibir aproximadamente 94% das bactérias, resultado relativamente conforme com os 751 mg L⁻¹ (6,15 · 10⁻³ mol L⁻¹) deste trabalho para inibição de 90% de bactérias, considerando os desvios da média com relação a DO₆₀₀.¹⁶² Com relação ao pré-ligante, uma melhor comparação poderia ser feita caso fossem fixados os mesmos parâmetros (% de inibição ou concentração).

Vale destacar a que é evidente as sensibilidades singulares da *E. coli* (Gram-negativa) e da *S. aureus* (Gram-positiva) frente ao oxocomplexo heterometálico. A *E. coli* mostrou-se mais sensível ao complexo. Nesse sentido, é possível inferir que um dos possíveis mecanismos de ação do trinuclear pode estar

relacionado ao comprometimento da membrana externa da *E. coli*, a qual é ausente em bactérias Gram-positivas, como a *S. aureus*.^{122; 157} Considerando a unidade de massa superior à 900 Daltons e o caráter lipofílico do oxocomplexo, mais pronunciado em razão do compartilhamento parcial da carga dos íons com os ligantes ("*Teoria de Quelação de Tweed*"), possivelmente a assimilação do composto pelas bactérias não ocorre por canais iônicos na *E. coli*. ^{139; 142; 143; 147; 148} A membrana, que apresenta natureza lipídica, favorece a passagem de compostos que apresentam maior lipossolubilidade, como é o caso do oxocomplexo trinuclear contendo ligantes benzoato em ponte. Uma vez verificada a ação inibitória para a *S. aureus*, mesmo que em menores proporções do que aquela observada para a *E. coli*, um possível mecanismo que vai além da lipofilicidade do produto B e que justifica tal comportamento poderia estar relacionado à inibição enzimática ou inibição do DNA dos microrganismos.^{135; 140; 141}

Embora verifique-se que tanto a *E. coli* quanto a *S. aureus* apresentem sensibilidade ao oxocomplexo heterometálico, as CIMs ainda são menores para o medicamento de referência utilizado. Para os testes com a *Escherichia coli* ATCC 25922, a CIM encontrada com relação a amoxicilina foi de 4 mg L⁻¹ (1,09·10⁻⁵ mol L⁻¹), o que se encontra dentro da faixa compreendida entre 8 e 4 mg L⁻¹ para mesmas cepas padrão ATCC já reportadas na literatura.^{265; 266} Com relação a *Staphylococcus aureus* ATCC 6538 é possível encontrar faixas de CIM para o medicamento de referência que variam de 0,25 até 0,002 mg L⁻¹.²⁶⁷⁻²⁷⁰ A partir do procedimento utilizado neste trabalho, os resultados indicaram uma CIM de 0,12 mg L⁻¹ (3,28·10⁻⁷ mol L⁻¹) nos testes para amoxicilina, o que também encontra-se dentro da faixa esperada.

Comparando os testes, tanto com relação a *E. coli* quanto para a *S. aureus*, verifica-se pouca influência da composição de solventes na atividade antibacteriana. Esse resultado indica que a inviabilização de crescimento celular ocorre essencialmente pela presença do oxocomplexo no meio.

A partir da análise de CBM, verifica-se que os valores se encontram muito maiores do que as CIM correspondentes (cerca de 32 e 6 vezes maiores para a *E. coli* e a *S. aureus*, respectivamente). Tais resultados revelam que o Produto B possivelmente não seria o mais adequado para utilização visando fins terapêuticos ou medicinais. Os valores de CIM e CBM muito discrepantes poderiam resultar em "toxicidade fora do alvo" e produzir respostas imunológicas adversas.

5.6.2 Análise de atividade antibacteriana do produto C

As análises de atividade biológica para C foram feitas em quadruplicata para as cepas de *E. coli* e em triplicata para as de *S. aureus*, o comportamento com relação ao crescimento e inibição das cepas com relação ao trinuclear homometálico estão apresentados nas Figuras 63 e 64.

Assim como foi feito para o produto B, fez-se ensaios apenas com os reagentes de partida utilizados na síntese do produto C. Neste caso, foram utilizados os pré-ligantes ácido 4-hidroxibenzoico e pirazina, além do FeCl₃·6H₂O. Sendo assim, as linhas A e B das figuras representam duplicatas da diluição seriada para o Produto C, as linhas C e D constituem análises comparativas para o ácido 4-hidroxibenzoico e para a pirazina, respectivamente, a linha E para o FeCl₃·6H₂O, a linha F para a composição de solventes (água e DMSO) e, as linhas G e H, duplicatas para a amoxicilina.

Figura 63 – Crescimento e inibição de cepas de *E. coli* com relação ao oxocomplexo trinuclear homometálico (Produto C). CC é a coluna de controle de crescimento e CE a de controle de esterilidade.

Fonte: autoria própria (2020).

Figura 64 – Crescimento e inibição de cepas de *S. aureus* com relação ao oxocomplexo trinuclear homometálico (Produto C). CC é a coluna de controle de crescimento e CE a de controle de esterilidade.

A Tabela 32 apresenta os valores de CIM e CBM para o oxocomplexo trinuclear homometálico.

Tabela 32 – Valores de CIM e	CBM encontrados para	o produto C frente a c	epas de <i>E. coli</i> e S. aureus.

	Escherichia coli		
-	CIM	CBM	
	≈ 2702,8 mg L ⁻¹	≈ 5405,5 mg L ⁻¹	
	(1,92·10 ⁻³ mol L ⁻¹)	(3,85·10 ⁻³ mol L ⁻¹)	
FRODUTO C -	Staphylococcus aureus		
_	CIM	CBM	
	≈ 1351,4 mg L ⁻¹	≈ 5405,5 mg L ⁻¹	
	(9,62·10 ⁻⁴ mol L ⁻¹)	(3,85·10 ⁻³ mol L ⁻¹)	

Fonte: autoria própria (2020).

Fonte: autoria própria (2020).

Verifica-se, tanto para as bactérias Gram-negativas quanto para as Gram-positivas, que a atividade antibacteriana do oxocomplexo, em termos de concentração molar, é superior às moléculas orgânicas livres utilizadas no procedimento sintético. Enquanto a CIM do ácido 4-hidroxibenzoico mais se aproxima da concentração de 1,0875.10⁻² mol L⁻¹ em ambas as espécies, para a pirazina não foi observada nenhuma atividade frente à *E. coli* e a *S. aureus*. De forma análoga, para o FeCl₃·6H₂O, verifica-se uma concentração inibitória de 2,00·10⁻³ mol L⁻¹ nos testes para a *E. coli* e *S. aureus*, valores também superiores à CIM do produto C.

O comportamento de crescimento verificado com relação à pirazina (linha D) despertou interesse em realizar ensaios com concentrações dez vezes mais elevadas da molécula. Os resultados, entretanto, não indicaram inibição de crescimento bacteriano nem para a *E. coli* e nem para a *S. aureus*. De fato, verificou-se que a pirazina e seus derivados (compostos pirazínicos) constituem metabólitos naturais de muitos microrganismos. Embora o mecanismo biossintético ainda não seja muito bem esclarecido, propõe-se que possivelmente essas moléculas são geradas a partir de aminoácidos do meio intracelular.²⁷¹⁻²⁷³

Com relação às CIMs obtidas para o medicamento de referência, os dados corroboraram com os ensaios realizados para o produto B.²⁶⁵⁻²⁷⁰ Neste caso, entretanto, a atividade antibacteriana do trinuclear homometálico apresentou-se reduzida tanto com relação a *E. coli* quanto com relação a *S. aureus* quando comparada aos resultados com o heterometálico. Esses resultados indicam que a ação do complexo possivelmente foi comprometida em maior grau devido à polaridade do produto C com relação ao produto B. O produto C possui ligantes 4-hidroxibenzoatos em ponte, o que torna o complexo menos lipofílico, desfavorecendo, assim, a assimilação e transporte a partir da membrana lipídica da *E. coli* (bactéria Gram-negativa). ^{135; 145; 147} A *S. aureus*, por outro lado, não possui membrana externa (bactéria Gram-positiva) e a parede celular, constituída essencialmente de peptidoglicano, não representa uma barreira limitante na assimilação de moléculas.^{122; 144} Tais observações podem constituir "pontos-chaves" para explicar a maior sensibilidade da *S. aureus* com relação a *E. coli* frente ao oxocomplexo trinuclear homometálico.

6 CONSIDERAÇÕES FINAIS E PERSPECTIVAS FUTURAS

O desenvolvimento deste trabalho proporcionou incontestável enriquecimento acadêmico, complementando e solidificando uma série de informações e conceitos adquiridos ao longo de toda a formação científica. A pesquisa destaca-se por abarcar grandes áreas do conhecimento como a Química, a Física e a Biologia. Nesse sentido, o trabalho trouxe à tona não apenas as nuances da química inorgânica sintética, mas também alavancou um estudo de aplicação direta das estruturas trinucleares sintetizadas em nosso laboratório.

Em relação aos sistemas estudados, foram sintetizadas e caracterizadas quatro estruturas. Um sistema tratou da síntese de um polímero de coordenação unidimensional baseado em cobalto(II) de fórmula ${[Co(\mu-bzc)(OH_2)_2](bzc) \cdot H_2O]_n}$ (produto A), que apesar de descrito na literatura, aqui foi obtido por uma outra rota sintética e os dados estruturais e espectroscópicos obtidos complementam e corroboram aqueles já publicados.¹⁸⁰ O polímero foi posteriormente empregado como material de partida para a preparação do oxocomplexo trinuclear heterometálico de valência mista contendo ferro(III) e cobalto(II), $[Fe_2Co(\mu_3-O)(\mu-bzc)_6(OH_2)_3]$, (produto B). Explorou-se um sistema que envolveu a síntese e a caracterização do oxocomplexo trinuclear homometálico baseado em ferro(III), $[Fe_3(\mu_3-O)(\mu-hbzc)_6(OH_2)_2(OHCH_3)]CI \cdot 3H_2O \cdot 3pyz$ (produto C) e, por fim, um sistema que envolve a síntese de uma estrutura trinuclear linear baseada em cobalto(II), $[Co_3(4,4'-bip)_4(trim)_2(OH_2)_{10}] \cdot (4,4'-bip) \cdot 8H_2O$, produto D, obtida a partir de um procedimento sintético diferente ao previamente descrito. A correlação entre os dados das caracterizações estruturais e espectroscópicas para os quatro produtos mostra que as metodologias sintéticas utilizadas foram eficientes na obtenção de materiais puros.

Ao longo do trabalho, buscou-se atrelar o campo sintético da química inorgânica com as particularidades da microbiologia em ensaios antibacterianos. A comunicação entre essas grandes áreas seguramente elevou o patamar do trabalho e expandiu as possibilidades de pesquisa acerca das estruturas aqui reportadas.

Embora o estudo relacionado à química dos oxocomplexos trinucleares já venha de longa data, é inegável o espectro de trabalhos que ainda podem ser

desenvolvidos hodiernamente. Para os produtos B e C, por exemplo, realizou-se o estudo de apenas uma das propriedades que poderiam ser exploradas, a atividade antibacteriana frente à duas espécies de bactérias, uma Gram-positiva e outra Gram-negativa. Considerando as inúmeras possibilidades de combinações entre ligantes carboxilato e íons metálicos e fundamentando-se apenas nos estudos relacionados à atividade antibacteriana, são inumeráveis os testes ainda possíveis, haja vista a variedade de microrganismos e novos arcabouços trinucleares.

A análise de atividade antibacteriana dos produtos B e C frente às bactérias Gram-negativas (*E. coli*) e Gram-positivas (*S. aureus*) indica melhores resultados de CIM para os testes da *E. coli* em relação ao produto B, com o valor de 58,2 mg L⁻¹. Neste caso, a maior sensibilidade da *E. coli* pode estar relacionada ao comprometimento da membrana externa da bactéria e a maior afinidade da membrana lipopolissacarídica pelo trinuclear B, de maior lipofilicidade. Nessa perspectiva, visando a publicação e continuidade com trabalhos futuros, o mecanismo de ação do oxocomplexo poderia ser mais bem elucidado a partir da análise por Microscopia Eletrônica de Transmissão (MET).

Adicionalmente, outros fatores relacionados à assimilação dos oxocomplexos podem ser explorados. A obtenção de triângulos oxocentrados com ligantes em ponte menos volumosos, como o pré-ligante formiato, por exemplo, é de grande interesse. Neste caso, busca-se avaliar se o volume do arcabouço trinuclear influencia significativamente na inibição de crescimento, uma vez que o transporte e assimilação do oxocomplexo, neste caso, poderia ocorrer através de porinas caso o arcabouço apresente unidade de massa limite de 700 Da, considerando os testes relativos à *E. coli*.

Todos os testes antibacterianos resultaram, em termos de concentração molar, na maior sensibilidade das cepas bacterianas frente aos oxocomplexos quando comparados com os ensaios realizados com os pré-ligantes livres. Os resultados não foram, entretanto, melhores do que os verificados para a amoxicilina, utilizada como medicamento de referência. Não obstante, a metodologia utilizada para a determinação das CIMs mostrou-se eficiente na medida em que os resultados de CIM para a amoxicilina convergem com os dados já reportados na literatura.

Além do estudo de propriedades antibacterianas para os oxocomplexos B e C, é importante ressaltar que tanto os produtos B e C quanto a estrutura trinuclear linear, D, podem ser utilizados como blocos construtores na formação de polímeros de coordenação (PCs) em processos "*self-assembly*". A menor variabilidade estrutural

em B é um ponto favorável ao seu emprego como bloco construtor na formação de PCs. Outro fator que agrega vantagem à B quanto à esta aplicação é a sua natureza heterovalente (Fe³⁺ e Co²⁺), o que geralmente leva à uma estrutura que exibe intervalência mediada através das pontes oxo e carboxilato.52; 206; 207; 208; 209 Isto é interessante no que diz respeito à natureza dos pré-ligantes que podem ser usados como interconectores para o crescimento de cadeias poliméricas a partir de B. Nestes casos, o que a literatura mostra é que há a possibilidade do emprego de pré-ligantes com átomos doadores mais macios.^{75; 274; 275} É preciso chamar a atenção, ainda, para o processo de transferência de elétrons em B. As reações de transferência de elétrons a longa distância são importantes em muitas áreas da química, que vão desde a química bioinorgânica até a química dos dispositivos eletrônicos moleculares. Um processo de transferência de intervalência em uma molécula de valência mista é um modelo natural para o entendimento de reações de transferência eletrônica mais complexas. Além disso, a análise da interação eletrônica nesses complexos permite comparar a habilidade de determinados ligantes serem utilizados na formação de estruturas que se comportam como "fios moleculares" visando a construção de dispositivos eletrônicos moleculares.¹¹³⁻¹¹⁷ Nessa perspectiva, o emprego do produto B como SBU na construção de PCs pode seguir com um estudo sobre a habilidade do pré-ligante que será empregado como interconector das unidades trinucleares em permitir que a troca eletrônica ocorra não só dentro da SBU mas que se estenda pela rede polimérica como um todo. Neste ponto, é importante destacar as circunstâncias pelas quais este processo seria viabilizado. Embora a deslocalização eletrônica possa ser favorecida em uma determinada faixa de temperatura, a decomposição do material em estudo também constituiria um fator importante a ser levado em consideração.276-278

A partir das caracterizações estruturais por DRXM e das análises térmicas para os produtos A, B e C verificou-se que existe uma correlação entre interações intermoleculares e a estabilidade térmica para cada produto. A estabilidade térmica do produto C até a temperatura de 40 °C revela que, embora este complexo apresente uma maior variabilidade quanto aos tipos de interações intermoleculares, muitas dessas interações são fracas e acarretam a decomposição dos cristais em baixas temperaturas. O polímero de coordenação unidimensional, produto A, mostrou-se estável termicamente até a temperatura de 70 °C. Para essa estrutura verificou-se pela análise de DRXM a existência tanto de ligações de hidrogênio quanto LHAC

envolvendo moléculas de água de cristalização, a cadeia polimérica unidimensional e o contraíon benzoato. As curvas TGA-DTG para o trinuclear heterometálico, produto B, indicou maior estabilidade térmica frente as outras estruturas analisadas. Não se evidenciou a decomposição da amostra até a temperatura de 110 °C. Neste caso, cada arcabouço está envolvido em um total de 12 ligações de hidrogênio além de interações intermoleculares de empilhamento π face-aresta.

A estrutura trinuclear do produto D possui características muito interessantes, como seu longo comprimento, que instiga sua utilização como espaçadores na síntese de redes metalorgânicas,¹⁵ e a presença do ligante conjugado 4,4'-bipiridina que faz ponte entre os centros de cobalto(II) ao longo da estrutura. Assim como relatado para o produto A,¹⁸⁰ e para diversas outras estruturas baseadas em cobalto(II),^{16; 17; 279; 280} a comunicação entre centros de cobalto(II) pode levar a um comportamento magnético dependente da temperatura e este tipo de propriedade pode ser explorada para o complexo trinuclear D. Uma vez que este foi o último complexo isolado neste trabalho, já no final do período de atividades experimentais, ainda será necessário que seja dada continuidade na sua caracterização pelo nosso grupo de pesquisa.

Frente aos quatro sistemas discutidos nesta dissertação foi possível atingir os objetivos de trabalho inicialmente proposto. Todos os produtos obtidos renderam dados, estudos e discussões genuinamente profícuos. O trabalho trouxe à tona alguns aspectos relacionados as interações não covalentes em estado sólido, correlacionando os dados estruturais com o comportamento verificado em caracterizações térmicas e espectroscópicas. Embora todas caracterizações se complementem e corroborem ao realizar uma análise comparativa dos dados, a otimização das metodologias de síntese pode ser feita a fim de melhorar os rendimentos sintéticos.

É importante registrar que além dos sistemas apresentados aqui, outros também foram estudados durante o desenvolvimento da dissertação, sistemas estes que contribuíram na agregação de conhecimentos e crescimento profissional. No entanto, estes outros sistemas se mostraram mais difíceis de serem racionalizados, apesar de terem rendido materiais cristalinos. Eles vêm de encontro com a proposta inicial do projeto de sintetizar e caracterizar novos complexos supramoleculares e/ou polímeros de coordenação e seus estudos deverão ser continuados no nosso grupo de pesquisa.

REFERÊNCIAS

- ¹ CAO, L. et al. Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages. **Journal of the American Chemical Society,** v. 140, n. 22, p. 7005-7011, 2018.
- ² DU, N. et al. A Highly Stable 3D Luminescent Indium–Polycarboxylic Framework for the Turn-off Detection of UO₂²⁺, Ru³⁺, and Biomolecule Thiamines. **ACS Applied Materials & Interfaces,** v. 8, n. 42, p. 28718-28726, 2016.
- ³ HU, L. et al. A Versatile Anionic Cd(II)-Based Metal–Organic Framework for CO₂ Capture and Nitroaromatic Explosives Detection. **Crystal Growth & Design,** v. 18, n. 11, p. 7088-7093, 2018.
- ⁴ LU, S.-Q. et al. Improving Water-Stability and Porosity of Lanthanide Metal– Organic Frameworks by Stepwise Synthesis for Sensing and Removal of Heavy Metal Ions. **Crystal Growth & Design,** v. 18, n. 8, p. 4602-4610, 2018.
- ⁵ MUKHERJEE, S. et al. Green Synthesis of Self Assembled Nanospherical Dysprosium MOFs: Selective and Efficient Detection of Picric Acid in Aqueous and Gas Phase. **ACS Sustainable Chemistry & Engineering,** v. 7, n. 1, p. 819-830, 2019.
- ⁶ NASKAR, K. et al. Arylazoimidazole Coordinated and Naphthalene-Dicarboxylato Bridged Polymers of Co(II) and Photochromic Zn(II) Complexes. **Crystal Growth & Design,** v. 18, n. 5, p. 2986-2997, 2018.
- ⁷ SUN, D. T. et al. Rapid, Selective Extraction of Trace Amounts of Gold from Complex Water Mixtures with a Metal–Organic Framework (MOF)/Polymer Composite. Journal of the American Chemical Society, v. 140, n. 48, p. 16697-16703, 2018.
- ⁸ GUNTLIN, C. P. et al. Popcorn-Shaped Fe_xO (Wüstite) Nanoparticles from a Single-Source Precursor: Colloidal Synthesis and Magnetic Properties. **Chemistry of Materials,** v. 30, n. 4, p. 1249-1256, 2018.
- ⁹ SEO, J. S. et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. **Nature,** v. 404, n. 6781, p. 982-986, 2000.

- ¹⁰ DAI, J.-X. et al. Synthesis and Structures of μ₃-Oxo-centered Mixed-valent Trinuclear Iron Complexes with 1-Methyl-imidazole Ligands. **Zeitschrift für Naturforschung B,** v. 62b, n. 9, p. 1117-1122, 2007.
- ¹¹ CANNON, R. D.; WHITE, R. P. Chemical and Physical Properties of Triangular Bridged Metal Complexes. **Progress in Inorganic Chemistry** v. 36, p. 195-298, 1988.
- ¹² TOMA, H. E. Supramolecular chemistry and technology. **Anais da Academia Brasileira de Ciências,** v. 72, p. 05-26, 2000.
- ¹³ POLUNIN, R. A. et al. Coordination polymers based on trinuclear heterometallic pivalates and polypyridines: Synthesis, structure, sorption and magnetic properties **Inorganica Chimica Acta**, v. 380, p. 201-210, 2012.
- ¹⁴ CORTÉS-CORTÉS, P. et al. Magnetic Behavior and Antibacterial Activity of Iron(III) Complexes. Journal of the Chilean Chemical Society, v. 53, p. 1527-1532, 2008.
- ¹⁵ XIE, H.-Z.; LI, Z.-F.; ZHENG, Y.-Q. A new trinuclear cobalt(II) complex: deca-aqua-1κ³O,2κ⁴O,3κ³O-bis-(benzene-1,3,5-tricarboxyl-ato)-1κO,3κO-di-μ-4,4'-bipyridine-1:2κ²N:N';2:3κ2N:N'-di-4,4'-bipyridine-1κN,3κN-tricobalt(II) 4,4'bipyridine solvate octa-hydrate. **Acta Crystallographica Section C,** v. 63, n. 1, p. m30-m32, 2007.
- ¹⁶ SONG, X.-Z. et al. Employing tripodal carboxylate ligand to construct Co(ii) coordination networks modulated by N-donor ligands: syntheses, structures and magnetic properties. **Dalton Transactions,** v. 42, n. 36, p. 13231-13240, 2013.
- ¹⁷ DATTA, A. et al. Discrete and polymeric complexes formed from cobalt(ii), 4,4'bipyridine and 2-sulfoterephthalate: synthetic, crystallographic and magnetic studies. **CrystEngComm,** v. 17, n. 24, p. 4502-4511, 2015.
- ¹⁸ STOCK, N.; BISWAS, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, v. 112, n. 2, p. 933-969, 2012.
- ¹⁹ QIU, S.; ZHU, G. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. **Coordination Chemistry Reviews,** v. 253, p. 2891-2911, 2009.

- ²⁰ LIYANAGE, R. et al. A μ₃-oxo-centered mixed-valence triiron coordination polymer constructed by 5-bromonicotinato ligands. **Inorganic Chemistry Communications**, v. 92, p. 121-124, 2018.
- REDONDO-FOJ, B. et al. Effect of the Dipole–Dipole Interactions in the Molecular Dynamics of Poly(vinylpyrrolidone)-Based Copolymers. Macromolecules, v. 47, n. 15, p. 5334-5346, 2014.
- ²² SIPPEL, K. H.; QUIOCHO, F. A. Ion-dipole interactions and their functions in proteins. **Protein Science**, v. 24, n. 7, p. 1040-1046, 2015.
- ²³ MATTHEWS, R. P.; WELTON, T.; HUNT, P. A. Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids. **Physical Chemistry Chemical Physics,** v. 16, n. 7, p. 3238-3253, 2014.
- YUTKIN, M. P.; DYBTSEV, D. N.; FEDIN, V. P. Homochiral porous metalorganic coordination polymers: synthesis, structure and functional properties. **Russian Chemical Reviews,** v. 80, n. 11, p. 1009-1034, 2011.
- ²⁵ KITAGAWA, S.; KITAURA, R.; NORO, S. Functional porous coordination polymers. **Angewandte Chemie International Edition** v. 43, n. 2334-2375, 2004.
- ²⁶ HORCAJADA, P. et al. Metal-Organic Frameworks as Efficient Materials for Drug Delivery. **Angewandte Chemie International Edition**, v. 45, n. 36, p. 5974-5978, 2006.
- ²⁷ ZHANG, W.-X. et al. Metal cluster-based functional porous coordination polymers. **Coordination Chemistry Reviews**, v. 293–294, p. 263-278, 2015.
- ²⁸ MURATA, S.; MIURA, M.; NOMURA, M. Oxidation of *N*-acyl-pyrrolidines and piperidines with Iron(II)-hydrogen peroxide and an iron complex-molecular oxygen. Journal of the Chemical Society, Perkin Transactions 1, p. 1259-1262, 1987.
- ²⁹ _____. Reduction of aromatic nitro compounds with 2-mercaptoethanol and oxidation of thiophenol with molecular oxygen mediated by trinuclear iron acetate complexes. **Journal of the Chemical Society, Perkin Transactions 2**, n. 6, p. 617-621, 1989.
- ³⁰ MICCICHE, F. et al. The combination of ascorbic acid 6-palmitate and $[Fe_3^{III}(\mu_3 O)]^{7+}$ as a catalyst for the oxidation of unsaturated lipids. **Inorganica Chimica Acta**, v. 360, p. 535–545, 2007.

- ³¹ BARTON, D. H. R.; BOIVIN, J.; LE COUPANEC, P. Direct conversion of saturated hydrocarbons into phenylseleno derivatives. **Journal of the Chemical Society, Chemical Communications**, n. 18, p. 1379-1381, 1987.
- ³² MELNIC, S. et al. Synthesis and anti-tuberculosis activity of new hetero(Mn, Co, Ni)trinuclear iron(III) furoates. **European Journal of Medicinal Chemistry**, v. 45, n. 4, p. 1465-1469, 2010.
- ³³ PATHAK, S. et al. Antimicrobial activity study of a μ₃-oxo bridged [Fe₃O(PhCO₂)₆(MeOH)₃](NO₃)(MeOH)₂] cluster. Journal of Molecular Structure, v. 1147, p. 480-486, 2017.
- ³⁴ REMPE, C. S. et al. The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics. Frontiers in microbiology, v. 8, p. 422-422, 2017.
- ³⁵ WERNER, A. Zur Kenntnis der organischen Metallsalze. I. Mitteilung. Über ameisensaure und essigsaure Salze des Chroms. **Berichte der deutschen chemischen Gesellschaft,** v. 41, n. 3, p. 3447-3465, 1908.
- ³⁶ WEINLAND, R. F. Über Salze einer Acetatochrombase. **Berichte der deutschen chemischen Gesellschaft,** v. 41, n. 2, p. 3236-3245, 1908.
- ³⁷ WEINLAND, R.; DINKELACKER, P. Über Salze einer Hexaacetato(formiato)trichrombase. II. Berichte der deutschen chemischen Gesellschaft, v. 42, n. 3, p. 3881-3894, 1909.
- ³⁸ REIHLEN, H. Über die rämuliche Bedeutung der Koordinationszahl bei mehrkernigen Verbindungen. **Zeitschrift für anorganische und allgemeine Chemie,** v. 114, n. 1, p. 65-89, 1920.
- ³⁹ _____. Über die räumliche Bedeutung der Koordinationszahl bei mehrkernigen Verbindungen. II. Die Konstitution der violetten Chromiacetate. **Zeitschrift für anorganische und allgemeine Chemie,** v. 133, n. 1, p. 82-90, 1924.
- ⁴⁰ WELO, L. A. Magnetic studies on salts, with particular reference to those with complex ions. **The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,** v. 6, n. 36, p. 481-509, 1928.
- ⁴¹ ORGEL, L. E. Structure of the Trinuclear Basic Acetates. **Nature,** v. 187, n. 4736, p. 504-505, 1960.

- ⁴² FIGGIS, B. N.; ROBERTSON, G. B. Crystal-Molecular Structure and Magnetic Properties of Cr₃(CH₃COO)₆OCI.5H₂O. **Nature**, v. 205, p. 694-695, 1965.
- ⁴³ BLAKE, A. B. et al. Magnetic and spectroscopic properties of some heterotrinuclear basic acetates of chromium(III), iron(III), and divalent metal ions. **Journal of the Chemical Society, Dalton Transactions**, n. 12, p. 2509-2520, 1985.
- ⁴⁴ WEINLAND, R.; HOLTMEIER, H. Über Ferri-nickel- usw. -acetate und über ein sehr basisches kristallisiertes Ferriacetat. **Zeitschrift für anorganische und allgemeine Chemie,** v. 173, n. 1, p. 49-62, 1928.
- ⁴⁵ COTTON, F. A. et al. **Advanced Inorganic Chemistry**. New York: Wiley-Interscience: 1355 p. 1999.
- ⁴⁶ YANG, G. Y.; HUANG, D. G. Cluster Compounds. In: (Ed.). **Modern Inorganic Synthetic Chemistry**. 2nd Amsterdam: Elsevier, 2017. cap. 9, p.219-246.
- ⁴⁷ RAJ, G. **Advanced Inorganic Chemistry**. 31st Meerut: Krishna Prakashan, 2014. 1088
- ⁴⁸ KURTZ, D. M. Oxo- and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit. **Chemical Reviews,** v. 90, n. 4, p. 585-606, 1990.
- ⁴⁹ HOLM, R. H. Metal-centered oxygen atom transfer reactions. **Chemical Reviews,** v. 87, n. 6, p. 1401-1449, 1987.
- ⁵⁰ SANTOS, R. D. S.; JANNUZZI, S. A. V.; FORMIGA, A. L. B. Acetatos homo e heterotrinucleares de ferro: um experimento para o laboratório de química de coordenação. **Química Nova,** v. 33, p. 1815-1820, 2010.
- ⁵¹ BACA, S. G. et al. One-Dimensional Manganese Coordination Polymers Composed of Polynuclear Cluster Blocks and Polypyridyl Linkers: Structures and Properties. **Inorganic Chemistry**, v. 47, n. 23, p. 11108-11119, 2008.
- ⁵² D'ALESSANDRO, D. M.; KEENE, F. R. Intervalence Charge Transfer (IVCT) in Trinuclear and Tetranuclear Complexes of Iron, Ruthenium, and Osmium. **Chemical Reviews,** v. 106, n. 6, p. 2270-2298, 2006.

- ⁵⁴ FARRUSSENG, D.; AGUADO, S.; PINEL, C. Metal-Organic Frameworks: Opportunities for Catalysis. **Angewandte Chemie International Edition,** v. 48, n. 41, p. 7502-7513, 2009.
- ⁵⁵ *BATTEN, S. R.* et al. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). **Pure and Applied Chemistry,** v. 85, n. 8, p. 1715-1724, 2013.
- ⁵⁶ ZHANG, J.-W. et al. Topology-Guided Design for Sc-soc-MOFs and Their Enhanced Storage and Separation for CO₂ and C₂-Hydrocarbons. **Inorganic Chemistry**, v. 58, n. 24, p. 16792-16799, 2019.
- ⁵⁷ BARA, D. et al. Kinetic Control of Interpenetration in Fe–Biphenyl-4,4'dicarboxylate Metal–Organic Frameworks by Coordination and Oxidation Modulation. **Journal of the American Chemical Society,** v. 141, n. 20, p. 8346-8357, 2019.
- ⁵⁸ MA, D. et al. A Hydrolytically Stable V(IV)-Metal-Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. **Angewandte Chemie,** 2019.
- ⁵⁹ PERRY, J. J. T.; PERMAN JA FAU ZAWOROTKO, M. J.; ZAWOROTKO, M. J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chemical Society Reviews, v. 38, p. 1400-1417, 2009.
- ⁶⁰ SCHOEDEL, A.; ZAWOROTKO, M. [M₃(µ₃-O)(O₂CR)₆] and related trigonal prisms: Versatile molecular building blocks for crystal engineering of metal-organic material platforms. **Chemical Science**, v. 5, p. 1269-1282, 2014.
- ⁶¹ LIN, L.-D. et al. Development of a new Lindqvist-like Fe₆ cluster secondary building unit for MOFs. **Chemical Communications**, v. 55, 2019.
- ⁶² TRANCHEMONTAGNE, D. J. et al. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chemical Society Reviews, v. 38, n. 5, p. 1257-1283, 2009.

⁶⁴ FORGAN, R. S.; SAUVAGE, J.-P.; STODDART, J. F. Chemical Topology: Complex Molecular Knots, Links, and Entanglements. **Chemical Reviews,** v. 111, n. 9, p. 5434-5464, 2011.

Nature, v. 423, n. 6941, p. 705-714, 2003.

63

- ⁶⁵ CHAMBRON, J.-C.; MITCHELL, D. K. Chemical Topology: The Ins and Outs of Molecular Structure. **Journal of Chemical Education,** v. 72, n. 12, p. 1059-1064, 1995.
- ⁶⁶ ZHANG, Y.-B.; ZHANG, J.-P. Porous coordination polymers constructed from anisotropic metal–carboxylate–pyridyl clusters. **Pure and Applied Chemistry**, v. 85, n. 2, p. 405, 2012.
- ⁶⁷ ZHENG, Y.-Z. et al. A "Star" Antiferromagnet: A Polymeric Iron(III) Acetate That Exhibits Both Spin Frustration and Long-Range Magnetic Ordering.
 Angewandte Chemie International Edition, v. 46, n. 32, p. 6076-6080, 2007.
- ⁶⁸ REN, G. et al. A polyhedron-based metal-organic framework with a reo-e net. **Dalton Transactions,** v. 41, n. 38, p. 11562-11564, 2012.
- ⁶⁹ YAZDANBAKHSH, M. et al. Synthesis, Characterization and Crystal Structure of Novel Mixed Bridged Trinuclear Oxo-Centered Iron(III), Chromium(III) Complexes Containing Terminal Unsaturated Carboxylato and Acrylic Acid Dimer Anion Ligands. **Zeitschrift für anorganische und allgemeine Chemie**, v. 633, n. 8, p. 1193-1198, 2007.
- ⁷⁰ LYTVYNENKO, A. S. et al. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior. **Journal of Solid State Chemistry**, v. 223, p. 122-130, 2015.
- ⁷¹ B. BLAKE, A. et al. Oxo-centred trinuclear acetate complexes containing mixed-metal clusters. Crystal structure of a chromium(III)iron(III)nickel(II) complex and magnetic properties of a dichromium(III)magnesium(II) complex [double dagger]. Journal of the Chemical Society, Dalton Transactions, n. 1, p. 45-50, 1998.
- ⁷² PANDEY, A. K.; GUPTA, T.; BARANWAL, B. P. Trinuclear, Oxo-Bridged, Mixed-Valence Iron Mercaptocarboxylates. **Transition Metal Chemistry**, v. 29, n. 4, p. 370-375, 2004.

- ⁷³ DZIOBKOWSKI, C. T.; WROBLESKI, J. T.; BROWN, D. B. Magnetic and spectroscopic properties of Fe^{III}₂(CH₃CO₂)₆L₃, L = water or pyridine. Direct observation of the thermal barrier to electron transfer in a mixed-valance complex. **Inorganic Chemistry**, v. 20, n. 3, p. 679-684, 1981.
- ⁷⁴ YUTKIN, M. P. et al. Synthesis, structure and magnetic behavior of new 1D metal–organic coordination polymer with Fe₃O core. **Inorganica Chimica Acta**, v. 365, n. 1, p. 513-516, 2011.
- ⁷⁵ SOTNIK, S. A. et al. Heterometallic Coordination Polymers Assembled from Trigonal Trinuclear Fe₂Ni-Pivalate Blocks and Polypyridine Spacers: Topological Diversity, Sorption, and Catalytic Properties. **Inorganic Chemistry**, v. 54, n. 11, p. 5169-5181, 2015.
- ⁷⁶ ARAKI, K.; TOMA, H. E. Química de sistemas supramoleculares constituídos por porfirinas e complexos metálicos. **Química Nova,** v. 25, p. 962-975, 2002.
- ⁷⁷ ATWOOD, J. L.; STEED, J. W. **Encyclopedia of Supramolecular Chemistry**. 1st. M. Dekker, 2004. 1699
- ⁷⁸ CACITA, N. et al. Investigation of a novel trinuclear µ-oxo ruthenium complex as a potential nitric oxide releaser for biological purposes. **Inorganica Chimica Acta**, v. 429, 2015.
- ⁷⁹ PALII, S. P. et al. Mixed-terminal-ligand oxo-centered carboxylate-bridged trinuclear complexes: gas phase generation by means of electrospray ionization FT-ICR MS, condensed phase synthesis, and X-ray structure of K⁺[Cr₃O(C₆H₅COO)₆(F)₂(H₂O)]⁻·2(CH₃)₂CO. **Inorganica Chimica Acta,** v. 319, n. 1, p. 23-42, 2001.
- ⁸⁰ DUTTA, A. K.; MAJI, S. K.; DUTTA, S. A symmetric oxo-centered trinuclear chloroacetato bridged iron(III) complex: Structural, spectroscopic and electrochemical studies. **Journal of Molecular Structure,** v. 1027, p. 87-91, 2012.
- ⁸¹ DA SILVA, C. F. N. et al. Syntheses and electronic, electrochemical, and theoretical studies of a series of μ-Oxo-triruthenium carboxylates bearing orthometalated phenazines. **Dalton Transactions**, 2020.
- ⁸² CUZAN-MUNTEANU, O.; MELNIC, S.; SHOVA, S. Synthesis and X-ray Characterisation of a New Mixed-valence Trinuclear Iron Cluster. **Chemistry Journal of Moldova,** v. 13, n. 2, p. 48-55, 2018.

- ⁸³ ALEXIOU, A. D. P.; DOVIDAUSKAS, S.; TOMA, H. E. Propriedades e aplicações de clusters trinucleares de carboxilatos de rutênio. Química Nova, v. 23, p. 785-793, 2000.
- ⁸⁴ STEED , J. W.; ATWOOD, J. L. **Supramolecular Chemistry**. 2nd. John Wiley & Sons, 2009. 998
- ⁸⁵ THAKURIA, R.; SARMA, B.; NANGIA, A. Hydrogen Bonding in Molecular Crystals. In: (Ed.). **Reference Module in Chemistry, Molecular Sciences and Chemical Engineering**: Elsevier, 2016. cap. 7.03, p.25-48.
- ⁸⁶ MAHMUDOV, K. T. et al. Non-covalent interactions in the synthesis of coordination compounds: Recent advances. **Coordination Chemistry Reviews,** v. 345, p. 54-72, 2017.
- STEED, J.; TURNER, D.; WALLACE, K. Core concepts in supramolecular chemistry and nanochemistry. 1st. England: John Wiley & Sons, Ltd, 2007. 320
- ⁸⁸ JENNINGS, W. B.; FARRELL, B. M.; MALONE, J. F. Attractive Intramolecular Edge-to-Face Aromatic Interactions in Flexible Organic Molecules. **Accounts of Chemical Research,** v. 34, n. 11, p. 885-894, 2001.
- ⁸⁹ JANIAK, C. A critical account on π - π stacking in metal complexes with aromatic nitrogen-containing ligands. **Journal of the Chemical Society, Dalton Transactions**, n. 21, p. 3885-3896, 2000.
- ⁹⁰ GIACOVAZZO, C. et al. **Fundamentals of Crystallography**. Oxford University Press, 1992. 669
- ⁹¹ BOJESEN, E. D.; IVERSEN, B. B. The chemistry of nucleation. **CrystEngComm**, 2016.
- ⁹² CARLUCCI, L. et al. Crystallization Behavior of Coordination Polymers. 1. Kinetic and Thermodynamic Features of 1,3-Bis(4-pyridyl)propane/MCl₂ Systems. Crystal Growth & Design, v. 9, n. 12, p. 5024-5034, 2009.
- ⁹³ HULLIGER, J. Chemistry and Crystal Growth. **Angewandte Chemie International Edition in English,** v. 33, n. 2, p. 143-162, 1994.
- ⁹⁴ BATTEN, S. R.; NEVILLE, S. M.; TURNER, D. R. Coordination Polymers: Design, Analysis and Application 2009. 424.

- ⁹⁵ MILLAR, S. Tips and Tricks for the Lab: Growing Crystals Part 2. 2012. Disponível em: < http://www.chemistryviews.org/details/education/2538901/ Tips_and_Tricks_for_the_Lab_Growing_Crystals_Part_2.html >. Acesso em: 10/02/2020.
- ⁹⁶ DEMAZEAU, G.; LARGETEAU, A. Hydrothermal/Solvothermal Crystal Growth: an Old but Adaptable Process. **Zeitschrift für anorganische und allgemeine Chemie,** v. 641, n. 2, p. 159-163, 2015.
- ⁹⁷ XU, R.; PANG, W.; HUO, Q. **Modern Inorganic Synthetic Chemistry**. Elsevier Science, 2010. ISBN 9780444536006.
- ⁹⁸ Disponível em: < https://www.hindawi.com/journals/ijp/2014/518156/fig6/ >. Acesso em: 10/02/2020.
- ⁹⁹ FURUKAWA, H. et al. The Chemistry and Applications of Metal-Organic Frameworks. **Science,** v. 341, n. 6149, p. 974-986, 2013.
- ¹⁰⁰ SMALDONE, R. A. et al. Metal-Organic Frameworks from Edible Natural Products. **Angewandte Chemie International Edition,** v. 49, n. 46, p. 8630-8634, 2010.
- ¹⁰¹ MUELLER, U. et al. Metal-organic frameworks-prospective industrial applications. **Journal of Materials Chemistry,** v. 16, n. 7, p. 626-636, 2006.
- ¹⁰² JANIAK, C. Engineering coordination polymers towards applications. **Dalton Transactions**, n. 14, p. 2781-2804, 2003.
- ¹⁰³ CZAJA, A. U.; TRUKHAN N FAU MULLER, U.; MULLER, U. Industrial applications of metal-organic frameworks. **Chemical Society Reviews**, v. 38, p. 1284-1293, 2009.
- ¹⁰⁴ SUH, M. P. et al. Hydrogen Storage in Metal-Organic Frameworks. **Chemical Reviews,** v. 112, n. 2, p. 782-835, 2012.
- ¹⁰⁵ THOMAS, K. M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. **Dalton Transactions**, n. 9, p. 1487-1505, 2009.

- ¹⁰⁶ FREM, R. C. G. et al. The Amazing Chemistry of Metal-Organic Frameworks. In: LONGO, E. e LA PORTA, F. D. A. (Ed.). Recent Advances in Complex Functional Materials: From Design to Application. Cham: Springer International Publishing, 2017. p.339-369.
- ¹⁰⁷ ZHANG, G. et al. Nonporous homochiral copper-based coordination polymers for enantioselective recognition and electrocatalysis. **Inorganic Chemistry Communications,** v. 40, p. 31-34, 2014.
- ¹⁰⁸ HASEGAWA, S. et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. **Journal of the American Chemical Societ,** v. 129, n. 9, p. 2607–2614, 2007.
- ¹⁰⁹ SOUTO, M. et al. A highly stable and hierarchical tetrathiafulvalene-based metal–organic framework with improved performance as a solid catalyst. **Chemical Science,** v. 9, n. 9, p. 2413-2418, 2018.
- ¹¹⁰ MCKINLAY, A. C. et al. BioMOFs: Metal-Organic Frameworks for Biological and Medical Applications. **Angewandte Chemie International Edition**, v. 49, n. 36, p. 6260-6266, 2010.
- ¹¹¹ VALLET-REGÍ, M.; BALAS, F.; ARCOS, D. Mesoporous Materials for Drug Delivery. **Angewandte Chemie International Edition,** v. 46, n. 40, p. 7548-7558, 2007.
- ¹¹² MA, Z.; MOULTON, B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. **Coordination Chemistry Reviews**, v. 255, n. 15–16, p. 1623-1641, 2011.
- ¹¹³ YING, J.-W. et al. Study of small oligomers based on Ru2(DMBA)4 and metaphenylene diethynylene. **Journal of Organometallic Chemistry**, p. 1-6, 2017.
- ¹¹⁴ MAEDA, H.; SAKAMOTO, R.; NISHIHARA, H. Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. **Coordination Chemistry Reviews,** v. 346, n. Supplement C, p. 139-149, 2017.
- SAKAMOTO, R. Bottom-up Creation of Functional Low-Dimensional Materials
 Based on Metal Complexes. Bulletin of the Chemical Society of Japan, v.
 90, n. 3, p. 272-278, 2017.

- ¹¹⁷ FARRAN, R. et al. Photoelectrochemical behavior of multimetallic assemblies based on [Ru(bpy)₃]²⁺-terpyridine building block: [Ru(II)-M-Ru(II)]ⁿ⁺ in solution and [Ru(II)-M]ⁿ⁺ dyad anchored on ITO (M = Co(III), Fe(II)). **Inorganica Chimica Acta**, v. 454, p. 197-207, 2016.
- ¹¹⁸ FENG, Q. et al. Syntheses, crystal structures, spectroscopic and magnetic properties of two trinuclear iron complexes with carboxylate and oximate mixed-bridge ligands. **Transition Metal Chemistry**, v. 44, n. 1, p. 49-55, 2019.
- ¹¹⁹ STADLER, C. et al. Electron transfer in a trinuclear oxo-centred mixed-valence iron complex, in solid and solution states. **Journal of the Chemical Society, Dalton Transactions**, n. 22, p. 3373-3383, 2001.
- ¹²⁰ NAKAMOTO, T.; KATADA, M.; SANO, H. Mixed-valence states of iron longchain carboxylate complexes. **Inorganica Chimica Acta,** v. 291, n. 1, p. 127-135, 1999.
- ROBIN, M. B.; DAY, P. Mixed Valence Chemistry-A Survey and Classification.
 In: EMELÉUS, H. J. e SHARPE, A. G. (Ed.). Advances in Inorganic
 Chemistry and Radiochemistry: Academic Press, v.10, 1968. p.247-422.
- ¹²² VIGANON, L. et al. The Antibacterial Activity of Metal Complexes Containing 1,10-phenanthroline: Potential as Alternative Therapeutics in the Era of Antibiotic Resistance. **Current Topics in Medicinal Chemistry**, v. 17, p. 1280-1302, 2017.
- ¹²³ DHAHIR, S. A.; AZIZ, N. M.; BAKIR, S. R. Synthesis, Characterization and Antimicrobial Studies of complexes of Some Metal lons with 2-[2-Amino-5-(3,4,5-Trimethoxy-benzyl)-Pyrimidinyl-4-azo]-4- Bromo-Phenol. **International Journal of Basic & Applied Sciences,** v. 12, n. 6, p. 58-67, 2012.
- ¹²⁴ OSTROSKY, E. A. et al. Métodos para avaliação da atividade antimicrobiana e determinação da Concentração Mínima Inibitória (CMI) de plantas medicinais. **Revista Brasileira de Farmacognosia,** v. 18, p. 301-307, 2008.
- ¹²⁵ WIEGAND, I.; HILPERT, K.; HANCOCK, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. **Nature Protocols,** v. 3, n. 2, p. 163-175, 2008.

- ¹²⁶ BHARTY, M. K. et al. Polymeric Cd(II), trinuclear and mononuclear Ni(II) complexes of 5-methyl-4-phenyl-1,2,4-triazole-3-thione: Synthesis, structural characterization, thermal behaviour, fluorescence properties and antibacterial activity. **Journal of Molecular Structure**, v. 1130, p. 181-193, 2017.
- ¹²⁷ BORRA, R. C. et al. A simple method to measure cell viability in proliferation and cytotoxicity assays. **Brazilian Oral Research**, v. 23, p. 255-262, 2009.
- ¹²⁸ RAMPERSAD, S. N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. **Sensors** (Basel, Switzerland), v. 12, n. 9, p. 12347-12360, 2012.
- ¹²⁹ LIANG, R. et al. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. **Chemical Communications,** v. 50, n. 91, p. 14071-14081, 2014.
- ¹³⁰ HOSEINNEJAD, M.; JAFARI, S. M.; KATOUZIAN, I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. **Critical Reviews in Microbiology,** v. 44, n. 2, p. 161-181, 2018.
- ¹³¹ SINGH, S. et al. Antimicrobial seafood packaging: a review. **Journal of Food Science and Technology,** v. 53, n. 6, p. 2505-2518, 2016.
- ¹³² TONG, M. et al. Magnetic Fe₃O₄-deposited flower-like MoS₂ nanocomposites for the Fenton-like *Escherichia coli* disinfection and diclofenac degradation. **Journal of Hazardous Materials,** v. 385, p. 121604, 2020.
- EPAND, R. M. et al. Molecular mechanisms of membrane targeting antibiotics.
 Biochimica et Biophysica Acta (BBA) Biomembranes, v. 1858, n. 5, p. 980-987, 2016.
- ¹³⁴ CHITEMERERE, T. A.; MUKANGANYAMA, S. Evaluation of cell membrane integrity as a potential antimicrobial target for plant products. **BMC complementary and alternative medicine,** v. 14, p. 278-278, 2014.
- ¹³⁵ BROOKS, G. F. et al. **Microbiologia Médica de Jawetz, Melnick e Adelberg**. 26^a. Porto Alegre: AMGH Editora, 2014. 864
- ¹³⁶ MADIGAN, M. T. et al. **Brock biology of microorganisms**. 15th. New York: Pearson, 2019.

- ¹³⁷ WILLEY, J. M.; SHERWOOD, L. M.; WOOLVERTON, C. J. Prescott, Harley, and Klein's Microbiology. 7th. New York: The McGraw-Hill Companies, 2008. 1088
- ¹³⁸ SWOBODA, J. G. et al. Wall Teichoic Acid Function, Biosynthesis, and Inhibition. **ChemBioChem,** v. 11, n. 1, p. 35-45, 2010.
- ¹³⁹ SILHAVY, T. J.; KAHNE, D.; WALKER, S. The Bacterial Cell Envelope. **Cold Spring Harbor perspectives in biology,** v. 2, n. 5, p. 1-16, 2010.
- ¹⁴⁰ LAM, N.; MA, Z.; HA, B.-Y. Electrostatic modification of the lipopolysaccharide layer: Competing effects of divalent cations and polycationic or polyanionic molecules. **Soft matter,** v. 10, p. 7528–7544, 2014.
- ¹⁴¹ DIRIENZO, J. M.; NAKAMURA, K.; INOUYE, M. The Outer Membrane Proteins of Gram-Negative Bacteria: Biosynthesis, Assembly, and Functions. **Annual Review of Biochemistry,** v. 47, n. 1, p. 481-532, 1978.
- ¹⁴² ANGUS, B. L. et al. Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. **Antimicrobial agents and chemotherapy,** v. 21, n. 2, p. 299-309, 1982.
- ¹⁴³ VAN DEN BERG, B. et al. Outer-membrane translocation of bulky small molecules by passive diffusion. **Proceedings of the National Academy of Sciences**, v. 112, n. 23, p. E2991-E2999, 2015.
- ¹⁴⁴ TABER, H. W. et al. Bacterial uptake of aminoglycoside antibiotics. **Microbiological reviews,** v. 51, n. 4, p. 439-457, 1987.
- ¹⁴⁵ BENZ, R. Porin from Bacterial and Mitochondrial Outer Membrane. **Critical Reviews in Biochemistry,** v. 19, n. 2, p. 145-190, 1985.
- ¹⁴⁶ BIJELIC, A.; AURELIANO, M.; ROMPEL, A. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. **Chemical Communications,** v. 54, n. 10, p. 1153-1169, 2018.
- ¹⁴⁷ PASDAR, H. et al. Synthesis, Characterization and Antibacterial Activity of Novel 1,3-Diethyl-1,3-bis(4-nitrophenyl)urea and Its Metal(II) Complexes. *Molecules*, v. 22, n. 12, p. 2125, 2017.
- ¹⁴⁸ AL-AMIERY, A. A.; KADHUM, A. A. H.; MOHAMAD, A. B. Antifungal and antioxidant activities of pyrrolidone thiosemicarbazone complexes. **Bioinorganic chemistry and applications,** v. 2012, p. 795812-795812, 2012.
- ¹⁴⁹ KURTJAK, M.; ANICIC, N.; VUKOMANOVIC, M. Inorganic Nanoparticles: Innovative Tools for Antimicrobial Agents. In: (Ed.). **Antibacterial Agents**: IntechOpen, 2017. cap. 3, p.39-60.
- ¹⁵⁰ SLAVIN, Y. N. et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. **Journal of Nanobiotechnology,** v. 15, n. 1, p. 65, 2017.
- ¹⁵¹ MA, Z.; JACOBSEN, F. E.; GIEDROC, D. P. Coordination Chemistry of Bacterial Metal Transport and Sensing. **Chemical Reviews,** v. 109, n. 10, p. 4644-4681, 2009.
- ¹⁵² ZHANG, C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. **Protein & cell**, v. 5, n. 10, p. 750-760, 2014.
- ¹⁵³ VERKHOVTSEVA, Y. V.; FILINA, Y. Y.; PUKHOV, D. E. Evolutionary Role of Iron in Metabolism of Prokaryotes and in Biogeochemical Processes. **Journal of Evolutionary Biochemistry and Physiology,** v. 37, n. 4, p. 444-450, 2001.
- ¹⁵⁴ MESSENGER, A. J. M.; BARCLAY, R. Bacteria, iron and pathogenicity. **Biochemical Education,** v. 11, n. 2, p. 54-63, 1983.
- ¹⁵⁵ WALDRON, K. J. et al. Metalloproteins and metal sensing. **Nature**, v. 460, n. 7257, p. 823-830, 2009.
- ¹⁵⁶ BRIAT, J.-F. Iron assimilation storage in prokaryotes. **Journal of general microbiology**, v. 138, p. 2475-83, 1993.
- ¹⁵⁷ LEMIRE, J. A.; HARRISON, J. J.; TURNER, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. **Nature Reviews Microbiology**, v. 11, n. 6, p. 371-384, 2013.
- ¹⁵⁸ BARBOSA, K. B. F. et al. Estresse oxidativo: conceito, implicações e fatores modulatórios. **Revista de Nutrição**, v. 23, p. 629-643, 2010.
- ¹⁵⁹ FERREIRA, A. L. A.; MATSUBARA, L. S. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. **Revista da Associação Médica Brasileira,** v. 43, p. 61-68, 1997.

- ¹⁶¹ KONAKLIEVA, M. Addressing Antimicrobial Resistance through New Medicinal and Synthetic Chemistry Strategies. **SLAS DISCOVERY: Advancing Life Sciences R&D,** v. 24, p. 1-21, 2018.
- ¹⁶² CUEVA, C. et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. **Research in Microbiology,** v. 161, n. 5, p. 372-382, 2010.
- ¹⁶³ DAMODARAN, S.; PARKIN, K. L. **FENNEMA'S FOOD CHEMISTRY**. 5th. CRC Press, 2017. 1107
- ¹⁶⁴ FRIEDMAN, M.; HENIKA, P.; MANDRELL, R. Antibacterial Activities of Phenolic Benzaldehydes and Benzoic Acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. **Journal of food protection**, v. 66, p. 1811-1821, 2003.
- ¹⁶⁵ CHO, J.-Y. et al. Antimicrobial Activity of 4-Hydroxybenzoic Acid and trans 4-Hydroxycinnamic Acid Isolated and Identified from Rice Hull. **Bioscience**, **Biotechnology, and Biochemistry,** v. 62, n. 11, p. 2273-2276, 1998.
- ¹⁶⁶ MANUJA, R. et al. A Comprehensive Review on Biological activities of phydroxy benzoic acid and its derivatives. **International Journal of Pharmaceutical Sciences Review and Research,** v. 22, p. 109-115, 2013.
- ¹⁶⁷ LOU, Z. et al. P-Coumaric acid kills bacteria through dual damage mechanisms. **Food Control**, v. 25, p. 550–554, 2012.
- ¹⁶⁸ BORGES, A. et al. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. **Microbial drug resistance (Larchmont, N.Y.),** v. 19, p. 256-65, 2013.
- ¹⁶⁹ NOHYNEK, L. et al. Berry Phenolics: Antimicrobial Properties and Mechanisms of Action Against Severe Human Pathogens. **Nutrition and cancer,** v. 54, p. 18-32, 2006.
- ¹⁷⁰ **Program APEX2**. Bruker AXS Inc., Madison, Wisconsin, USA, 2010.

- ¹⁷¹ SHELDRICK, G. A short history of SHELX. **Acta Crystallographica Section A**, v. 64, n. 1, p. 112-122, 2008.
- ¹⁷² TURNER, M. J. et al. **CrystalExplorer17**. University of Western Australia 2017.
- ¹⁷³ KNOLL, T. et al. **Adobe Photoshop CC** 2019.
- ¹⁷⁴ MACRAE, C. et al. Mercury CSD 2.0 New features for the visualization and investigation of crystal structures. **J. Appl. Cryst.,** v. 41, p. 466-470, 2008.
- ¹⁷⁵ _____. Mercury: Visualization and analysis of crystal structures. **Journal of Applied Crystallography J APPL CRYST,** v. 39, p. 453-457, 2006.
- ¹⁷⁶ JIANG, J.; WEBER, R. T. **ELEXSYS E 500 user's manual Basic Operations**. Billerica, USA: Bruker BioSpin Corporation 2001.
- ¹⁷⁷ WELZ, B.; SPERLING, M. **Atomic Absorption Spectrometry**. 3. John Wiley & Sons, 2008.
- ¹⁷⁸ GOLUBNICHAYA, M. A. et al. New polynuclear cobalt trimethylacetate complexes: synthesis and structure. **Russian Chemical Bulletin,** v. 48, n. 9, p. 1751-1756, 1999.
- ¹⁷⁹ RAWDKUEN, S.; KAEWPRACHU, P. Valorization of Food Processing By-Products as Smart Food Packaging Materials and Its Application. In: (Ed.). Food Waste as a Resource, 2019. p.1-28.
- ¹⁸⁰ VRÁBLOVÁ, A. et al. Exceptionally slow magnetic relaxation in cobalt(II) benzoate trihydrate. **Dalton Transactions,** v. 47, 2018.
- ¹⁸¹ MÜLLER, P. et al. Crystal Structure Refinement a crystallographer's guide to SHELXL. New York: Oxford University Press, 2006. 232
- ¹⁸² SPACKMAN, M. A.; JAYATILAKA, D. Hirshfeld surface analysis. **CrystEngComm,** v. 11, n. 1, p. 19-32, 2009.
- ¹⁸³ SPACKMAN, M. A.; MCKINNON, J. J. Fingerprinting intermolecular interactions in molecular crystals. **CrystEngComm,** v. 4, n. 66, p. 378-392, 2002.

- ¹⁸⁴ MCKINNON, J. J.; JAYATILAKA, D.; SPACKMAN, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. **Chemical Communications**, n. 37, p. 3814-3816, 2007.
- ¹⁸⁵ MCKINNON, J. J.; SPACKMAN, M. A.; MITCHELL, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. **Acta Crystallographica Section B,** v. 60, n. 6, p. 627-668, 2004.
- ¹⁸⁶ STEINER, T. The Hydrogen Bond in the Solid State. **Angewandte Chemie International Edition,** v. 41, n. 1, p. 48-76, 2002.
- ¹⁸⁷ WENK, H. R.; HOUTTE, P. Texture and Anisotropy. **Reports on Progress in Physics**, v. 67, p. 1367, 2004.
- ¹⁸⁸ VON DREELE, R. B. Quantitative texture analysis by Rietveld refinement. **Journal of Applied Crystallography,** v. 30, n. 4, p. 517-525, 1997.
- ¹⁸⁹ MAKHLOUF, M.; ABU-ZIED, B.; MANSOURE, T. Direct Fabrication of Cobalt Oxide Nanoparticles Employing Sucrose as a Combustion Fuel. **Journal of Nanoparticles**, v. 2013, 2013.
- ¹⁹⁰ IONASHIRO, M. **Giolito: Fundamentos da Termogravimetria, Análise Térmica Diferencial e Calorimetria Exploratória Diferencial**. São Paulo: GIZ Editorial, 2004. 82
- ¹⁹¹ LIU, X.; PREWITT, C. T. High-temperature X-ray diffraction study of Co₃O₄: Transition from normal to disordered spinel. **Physics and Chemistry of Minerals,** v. 17, p. 168, 1990.
- ¹⁹² LIN, H.-K. et al. Synthesis, Characterization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide. **Catalysis Letters,** v. 88, p. 169-174, 2003.
- ¹⁹³ TOMBS, N.; ROOKSBY, H. Structure of Monoxides of some Transition Elements at Low Temperatures. **Nature**, v. 165, p. 442-443, 1950.
- ¹⁹⁴ STEPANIAN, S. G. et al. Infrared spectra of benzoic acid monomers and dimers in argon matrix. **Vibrational Spectroscopy**, v. 11, n. 2, p. 123-133, 1996.
- ¹⁹⁵ BERTOLUCCI, M.; HARRIS, D. Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy. New York: Dover Publications, 1989. 576

- ¹⁹⁶ TOLSTOROZHEV, G. B. et al. Infrared Spectroscopy of Hydrogen Bonds in Benzoic Acid Derivatives. **Journal of Applied Spectroscopy**, v. 81, n. 1, p. 109-117, 2014.
- ¹⁹⁷ BRUNO, G.; RANDACCIO, L. Refinement of the Benzoic Acid Structure at Room Temperature. **Acta Crystallographica section B,** v. 36, p. 1711-1712, 1980.
- ¹⁹⁸ SILVERSTEIN , R. M.; WEBSTER, F. X.; KIEMLE , D. J. **Spectrometric Identification of Organic Compounds**. 7th Wiley, 2005. 512
- ¹⁹⁹ FONSECA, D. et al. Inhibition of *C. albicans* Dimorphic Switch by Cobalt(II) Complexes with Ligands Derived from Pyrazoles and Dinitrobenzoate: Synthesis, Characterization and Biological Activity. International Journal of Molecular Sciences, v. 20, p. 3237, 2019.
- ²⁰⁰ NAKAMOTO, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 6th. New Jersey: John Wiley, 2009.
- REGULSKA, E. et al. Vibrational and NMR spectra of alkali metal salts of 3amino-, 3-hydroxy- and 3-halogenobenzoic acids. Journal of Molecular Structure, v. 744-747, p. 353-361, 2005.
- ²⁰² LEVER, A. B. P. **Inorganic Electronic Spectroscopy**. 2nd New York: Elsevier Science Publishing Company, 1984. 864
- ²⁰³ NEUMAN, N. I. et al. Magnetic Properties of Weakly Exchange-Coupled High Spin Co(II) Ions in Pseudooctahedral Coordination Evaluated by Single Crystal X-Band EPR Spectroscopy and Magnetic Measurements. Inorganic Chemistry, v. 53, n. 5, p. 2535-2544, 2014.
- ²⁰⁴ BOČA, R. Zero-field splitting in metal complexes. **Coordination Chemistry Reviews,** v. 248, n. 9, p. 757-815, 2004.
- ²⁰⁵ DATTA, A. et al. A 2-D coordination polymer incorporating cobalt(ii), 2sulfoterephthalate and the flexible bridging ligand 1,3-di(4-pyridyl)propane. **Inorganic Chemistry Frontiers,** v. 2, n. 2, p. 157-163, 2015.
- ²⁰⁶ SATO, T.; AMBE, F. An Oxo-Centered Trinuclear Cobalt(II)–Diiron(III) Acetate– Aqua Complex. **Acta Crystallographica**, v. 52, p. 3005-3007, 1996.

- ²⁰⁷ AFROJ, D.; YAMAUCHI, T.; KATADA, M. Synthesis and Mössbauer spectroscopy of oxo-centered mixed-valence trinuclear iron fumarate and iron malonate complexes. Journal of Radioanalytical and Nuclear Chemistry, v. 255, n. 3, p. 407-412, 2003.
- ²⁰⁸ GLOVER, S. D.; KUBIAK, C. P. Persistence of the Three-State Description of Mixed Valency at the Localized-to-Delocalized Transition. **Journal of the American Chemical Society,** v. 133, n. 22, p. 8721-8731, 2011.
- ²⁰⁹ OVERGAARD, J. et al. Electron Density Distributions of Redox Active Mixed Valence Carboxylate Bridged Trinuclear Iron Complexes. **Journal of the American Chemical Society,** v. 125, n. 36, p. 11088-11099, 2003.
- ²¹⁰ SHEN, M.-J. et al. Substrate-induced adjustment of "slipped" π π stacking: en route to obtain 1D sandwich chain and higher order self-assembly supramolecular structures in solid state. **Supramolecular Chemistry,** v. 29, n. 1, p. 24-31, 2017.
- ²¹¹ GORINCHOY, V. et al. Heterotrinuclear [Fe₂^{III}Ni^{II}]-µ₃-oxo-cluster Based on Salicylic Acid. Synthesis, Structure and Physico-chemical Properties. Chemistry Journal of Moldova, v. 13, p. 46-53, 2018.
- ²¹² FERREIRA, T. et al. Structural and Morphological Characterization of FeCo₂O₄ and CoFe₂O₄ Spinels Prepared by a Coprecipitation Method. **Solid State Sciences**, v. 5, p. 383–392, 2003.
- ²¹³ KIANA, S. et al. Vibrational assignment and structure of trinuclear oxo-centered of basic formate iron(III) and chromium(III) complexes: A density functional theory study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 130, n. Supplement C, p. 287-294, 2014.
- ²¹⁴ RAPTOPOULOU, C. P. et al. Salicylaldoxime (H₂salox) in iron(III) carboxylate chemistry: Synthesis, X-ray crystal structure, spectroscopic characterization and magnetic behavior of trinuclear oxo-centered complexes. **Polyhedron**, v. 24, n. 5, p. 711-721, 2005.
- ²¹⁵ JOHNSON, M. K.; POWELL, D. B.; CANNON, R. D. Vibrational spectra of carboxylato complexes—III. Trinuclear 'basic' acetates and formates of chromium(III), iron(III) and other transition metals. **Spectrochimica Acta Part A: Molecular Spectroscopy,** v. 37, n. 11, p. 995-1006, 1981.

- ²¹⁶ MEESUK, L.; JAYASOORIYA, U. A.; CANNON, R. D. Vibrational spectra of carboxylate complexes. VII. Partial valence trapping in a trinuclear mixedvalence iron(III,III,II) cluster: vibrational spectra of [Fe₃O(OOCCH₃)₆L₃] and related mixed-metal complexes. Journal of the American Chemical Society, v. 109, n. 7, p. 2009-2016, 1987.
- ²¹⁷ CREUTZ, C.; TAUBE, H. Direct approach to measuring the Franck-Condon barrier to electron transfer between metal ions. **Journal of the American Chemical Society,** v. 91, n. 14, p. 3988-3989, 1969.
- ²¹⁸ _____. Binuclear complexes of ruthenium ammines. **Journal of the American Chemical Society,** v. 95, n. 4, p. 1086-1094, 1973.
- ²¹⁹ ROCHA, R. C.; TOMA, H. E. Transferência de elétrons em sistemas inorgânicos de valência mista. **Química Nova,** v. 25, p. 624-638, 2002.
- ²²⁰ BARANWAL, B. P.; GUPTA, T. Synthesis and Physico-Chemical Studies on Iron(II,III,III) and Cobalt(II) Thiocarboxylates. **Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry,** v. 34, n. 10, p. 1737-1754, 2004.
- DOMINGO, A. et al. Electronic reorganization triggered by electron transfer: The intervalence charge transfer of a Fe³⁺/Fe²⁺ bimetallic complex. Journal of Computational Chemistry, v. 36, n. 11, p. 861-869, 2015.
- ²²² CREUTZ, C. Mixed Valence Complexes of d^5 - d^6 Metal Centers. **Progress in Inorganic Chemistry,** v. 30, p. 1-73, 1983.
- ²²³ WARD, M. D. Metal-metal interactions in binuclear complexes exhibiting mixedvalency; molecular wires and switches. Chemical Society Reviews, v. 24, p. 121-134, 1995.
- ²²⁴ FARIAS, R. F. **Química de Coordenação**. 2^a ed. Campinas: Editora Átomo, 2009.
- ²²⁵ LAURIKĖNAS, A. et al. Formation peculiarities of iron(III) acetate: potential precursor for iron metal-organic frameworks (MOFs). Lithuanian Journal of Physics, v. 56, n. 1, p. 35–41, 2016.
- SADEEK, S. Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(II), Co(II) and Fe(III) norfloxacin complexes. Journal of Molecular Structure, v. 753, p. 1-12, 2005.

- ²²⁷ EL MENDILI, Y. et al. Insights into the Mechanism Related to the Phase Transition from γ -Fe₂O₃ to α -Fe₂O₃ Nanoparticles Induced by Thermal Treatment and Laser Irradiation. **The Journal of Physical Chemistry C**, v. 116, p. 23785–23792, 2012.
- ²²⁸ PAVIA, D. L. et al. **Introduction to Spectroscopy**. 4th Belmont: Books/Cole, 2009. 752.
- ²²⁹ MIESSLER, G. L.; TARR, D. A. **Inorganic Chemistry**. 3r^d Prentice Hall, 2003. 720.
- RODRÍGUEZ, F.; MORENO, M. Characterization of FeCl₄⁻ and FeBr₄⁻ in solution by means of e.p.r. **Transition Metal Chemistry**, v. 10, n. 9, p. 351-353, 1985.
- FISHER, K.; NEWTON, W. E.; LOWE, D. J. Electron Paramagnetic Resonance Analysis of Different Azotobacter vinelandii Nitrogenase MoFe-Protein Conformations Generated during Enzyme Turnover: Evidence for S = 3/2 Spin States from Reduced MoFe-Protein Intermediates. **Biochemistry**, v. 40, n. 11, p. 3333-3339, 2001.
- ²³² SHIN, J. W. et al. Trinuclear nickel and cobalt complexes containing unsymmetrical tripodal tetradentate ligands: syntheses, structural, magnetic, and catalytic properties. **Dalton Transactions,** v. 45, n. 36, p. 14089-14100, 2016.
- ²³³ RARDIN, R. L. et al. Synthesis and characterization of novel trinuclear iron(II) and manganese(II) carboxylate complexes: structural trends in low valent iron and manganese carboxylates. Journal of the American Chemical Society, v. 114, n. 13, p. 5240-5249, 1992.
- ²³⁴ KARMAKAR, M.; ROY, S.; CHATTOPADHYAY, S. A series of trinuclear zinc(ii) complexes with reduced Schiff base ligands: turn-off fluorescent chemosensors with high selectivity for nitroaromatics. New Journal of Chemistry, v. 43, n. 25, p. 10093-10102, 2019.
- ²³⁵ TERASHIMA, S. et al. Planar trinuclear complexes with linear arrays of metal ions. **Inorganic Chemistry Frontiers,** v. 2, n. 2, p. 125-128, 2015.
- ²³⁶ RZEŹNICKA, I. I. et al. Tip-enhanced Raman spectroscopy of 4,4'-bipyridine and 4,4'-bipyridine N,N'-dioxide adsorbed on gold thin films. **Surface Science**, v. 617, p. 1-9, 2013.

- ²³⁷ SANCHEZ-LIEVANOS, K. R. et al. Heterometallic trinuclear oxo-centered clusters as single-source precursors for synthesis of stoichiometric monodisperse transition metal ferrite nanocrystals. **Dalton Transactions**, 2020.
- ²³⁸ LANG, J.; FRIES, D.; NIEDNER-SCHATTEBURG, G. Characterization of Trinuclear Oxo Bridged Cobalt Complexes in Isolation. **Zeitschrift für Physikalische Chemie,** v. 232, 2018.
- HANNA, L. et al. Spectroscopic characterization of metal ligation in trinuclear iron-µ₃-oxo-based complexes and metal-organic frameworks. The Journal of Chemical Physics, v. 150, p. 174707, 2019.
- ²⁴⁰ DULCEVSCAIA, G. M. et al. Cluster-Based Networks: 1D and 2D Coordination Polymers Based on {MnFe₂(µ₃-O)}-Type Clusters. **Inorganic Chemistry**, v. 51, n. 9, p. 5110-5117, 2012.
- ²⁴¹ CACITA, N. et al. Investigation of a novel trinuclear μ-oxo ruthenium complex as a potential nitric oxide releaser for biological purposes. **Inorganica Chimica Acta**, v. 429, p. 114-121, 2015.
- PRIOR, T. J.; YOTNOI, B.; RUJIWATRA, A. Microwave synthesis and crystal structures of two cobalt-4,4'-bipyridine-sulfate frameworks constructed from 1-D coordination polymers linked by hydrogen bonding. **Polyhedron,** v. 30, n. 2, p. 259-268, 2011.
- ²⁴³ MA, L.-F. et al. Chain, Pillar, Layer, and Different Pores: A N-[(3-Carboxyphenyl)-sulfonyl]glycine Ligand as a Versatile Building Block for the Construction of Coordination Polymers. Crystal Growth & Design, v. 8, n. 2, p. 620-628, 2008.
- ²⁴⁴ UVAROVA, M. A. et al. Coordination Polymers Formed by the Reactions between Zn(II), Co(II), and Ni(II) Cimantrenates and γ,γ'-Dipyridyl in Methanol. **Russian Journal of Inorganic Chemistry,** v. 63, n. 5, p. 618-625, 2018.
- ²⁴⁵ NATH, J.; KALITA, D.; BARUAH, J. B. Role of hydrogen peroxide in the synthesis of nitrogen heterocycle containing cobalt complexes. **Polyhedron**, v. 30, n. 15, p. 2558-2563, 2011.
- STEWARD, O. W. et al. Crystal Engineering: Synthesis and Structural Analysis of Coordination Polymers with Wavelike Properties. **Polymers**, v. 3, n. 4, p. 1662-1672, 2011.

- ²⁴⁷ TONG, Y.; JIANG, X.-R.; FENG, Y.-L. Four Coordination Polymers Constructed from 3, 5-Bis-oxy-acetate-benzoic Acid and N-donor Ligands. **Zeitschrift für anorganische und allgemeine Chemie,** v. 639, n. 3-4, p. 600-605, 2013.
- ²⁴⁸ WANG, Y. et al. Four novel porous frameworks constructed by formate ligand. **Microporous and Mesoporous Materials,** v. 91, n. 1, p. 215-220, 2006.
- ²⁴⁹ HAYAMI, S. et al. 1-D Cobalt(II) Spin Transition Compound with Strong Interchain Interaction: [Co(pyterpy)Cl₂]·X. Inorganic Chemistry, v. 43, n. 14, p. 4124-4126, 2004.
- ²⁵⁰ JALBOUT, A. F. et al. Construction of novel coordination polymers with simple ligands. **Transition Metal Chemistry**, v. 33, n. 5, p. 597-603, 2008.
- ²⁵¹ STEVENSON, K. et al. General calibration of microbial growth in microplate readers. **Scientific Reports**, v. 6, p. 38828, 2016.
- ²⁵² ELSHIKH, M. et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. **Biotechnology Letters,** v. 38, 2016.
- KONERS, U. et al. The effect of implemented pulsed electric field (PEF) treatment on the dehydrogenase activity of activated sludge. 2006. 379-388
- ²⁵⁴ IBAÑEZ, D. et al. Raman and fluorescence spectroelectrochemical monitoring of resazurin-resorufin fluorogenic system. **Dyes and Pigments**, v. 172, p. 107848, 2019.
- ²⁵⁵ UZARSKI, J. et al. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. **Biomaterials**, v. 129, 2017.
- ²⁵⁶ KNAPP, J.; GONZÁLEZ-PINZÓN, R.; HAGGERTY, R. The Resazurin-Resorufin System: Insights From a Decade of "Smart" Tracer Development for Hydrologic Applications. Water Resources Research, 2018.
- KOLAREVIC, S. et al. Optimisation of the microdilution method for detection of minimum inhibitory concentration values in selected bacteria. Botanica Serbica, v. 40, p. 29-36, 2016.

- ²⁵⁸ KRONVALL, G. et al. Epidemiological MIC cut-off values for tigecycline calculated from Etest MIC values using normalized resistance interpretation. **The Journal of antimicrobial chemotherapy,** v. 57, p. 498-505, 2006.
- ²⁵⁹ HUANG, J. et al. Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus. **Nat. Prod. Bioprospect.,** v. 2, p. 104-110, 2012.
- ²⁶⁰ MIYATA, M. et al. Comparison of resazurin microtiter assay performance and BACTEC MGIT 960 in the susceptibility testing of Brazilian clinical isolates of Mycobacterium tuberculosis to four first-line drugs. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], v. 44, p. 281-5, 2013.
- ²⁶¹ TATO, M. et al. Characterization of variables that may influence ozenoxacin in susceptibility testing, including MIC and MBC values. **Diagnostic microbiology and infectious disease,** v. 78, 2013.
- ²⁶² KUKOWSKA, M.; KUKOWSKA-KASZUBA, M.; DZIERZBICKA, K. In vitro studies of antimicrobial activity of Gly-His-Lys conjugates as potential and promising candidates for therapeutics in skin and tissue infections. **Bioorganic** & medicinal chemistry letters, v. 25, 2014.
- ²⁶³ VAHDATI, M.; MOGHADAM, T. Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. Scientific Reports, v. 10, p. 510, 2020.
- ²⁶⁴ BIERSACK, B. et al. Metal complexes of natural melophlins and their cytotoxic and antibiotic activities. **Journal of inorganic biochemistry,** v. 103, p. 72-6, 2008.
- ANDREWS, J. M. Determination of Minimum Inhibitory Concentration. **The Journal of antimicrobial chemotherapy**, v. 48 Suppl 1, p. 5-16, 2001.
- ²⁶⁶ HAYET, E. et al. Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia. World Journal of Microbiology and Biotechnology, v. 24, p. 2933-2940, 2008.
- ²⁶⁷ TURAN-ZITOUNI, G. et al. Preparation of Some Thiazolyl Hydrazone Derivatives and Evaluation of Their Antibacterial Activities. **Phosphorus**, v. Sulfur, p. 2613-2623, 2009.

- YAO, Q. et al. Amoxicillin Administration Regimen and Resistance Mechanisms of Staphylococcus aureus Established in Tissue Cage Infection ModelData_Sheet_1.docx. Frontiers in Microbiology, v. 10, 2019.
- AIYEGORO, O.; AFOLAYAN, A.; OKOH, A. In vitro antibacterial activities of crude extracts of the leaves of Helichrysum longifolium in combination with selected antibiotics. African Journal of Pharmacy and Pharmacology, v. 3, p. 293-300, 2009.
- ²⁷⁰ _____. Synergistic interaction of Helichrysum pedunculatum leaf extracts with antibiotics against wound infection associated bacteria. **Biological research**, v. 42, p. 327-38, 2009.
- ²⁷¹ RAJINI, K. et al. Microbial metabolism of pyrazines. **Critical reviews in microbiology**, v. 37, p. 99-112, 2011.
- ²⁷² SCHULZ, S.; DICKSCHAT, J. S. Bacterial volatiles: the smell of small organisms. **Natural Product Reports,** v. 24, n. 4, p. 814-842, 2007.
- ²⁷³ RATIU, I. et al. The effect of growth medium on Escherichia coli pathway mirrored into GC / MS profiles. **Journal of Breath Research,** v. 11, 2017.
- ²⁷⁴ ROBIN, A. Y.; FROMM, K. M. Coordination polymer networks with O- and Ndonors: What they are, why and how they are made. **Coordination Chemistry Reviews,** v. 250, n. 15–16, p. 2127-2157, 2006.
- POLUNIN, R. A. et al. Structural Flexibility and Sorption Properties of 2D Porous Coordination Polymers Constructed from Trinuclear Heterometallic Pivalates and 4,4'-Bipyridine. European Journal of Inorganic Chemistry, v. 2011, n. 32, p. 4985-4992, 2011.
- ²⁷⁶ BISSELL, R. A. et al. Molecular fluorescent signalling with 'fluor-spacerreceptor' systems: approaches to sensing and switching devices via supramolecular photophysics. **Chemical Society Reviews,** v. 21, n. 3, p. 187-195, 1992.
- DE COLA, L. et al. Photoinduced energy and electron transfer processes in supramolecular species, tris(bipyridine) complexes of ruthenium(II)/osmium(II), Ru(II)/Ru(III), Os(II)/Os(III), and Ru(II)/Os(III) separated by a rigid spacer. Inorganic Chemistry, v. 32, n. 23, p. 5228-5238, 1993.

- ²⁷⁸ HARRIMAN, A.; ZIESSEL, R. Building photoactive molecular-scale wires. Coordination Chemistry Reviews, v. 171, n. Supplement C, p. 331-339, 1998.
- ²⁷⁹ ZHANG, Y.-Z. et al. Linear trinuclear cobalt(II) single molecule magnet. **Dalton Trans.**, v. 44, 2014.
- ²⁸⁰ ZHANG, X.-D. et al. A binodal tfz-d network constructed from trinuclear Cobalt(II) clusters. **Inorganic Chemistry Communications**, v. 53, p. 4-6, 2015.

ANEXOS

ANEXO 1 – Dados cristalográficos complementares para o complexo $\{[Co(\mu-bzc)(H_2O)_2](bzc)\cdot H_2O\}_n$, produto A.

Tabela 1A – Coordenadas atômicas (x·10⁵) e parâmetros de deslocamento isotrópico equivalentes (Å² x 10⁴)·U_(eq) é definido como um terço do traço do tensor Uij ortogonalizado. Os valores de *e.s.ds* (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	x	У	Z	U _(eq)
Со	50000	50000	50000	160,4(10)
O(1)	27659(18)	48851(4)	70819(17)	189(2)
O(2)	42924(18)	55645(3)	51348(17)	255(3)
C(1)	25000	57338(6)	50000	185(4)
C(2)	25000	61705(6)	50000	218(5)
C(3)	43770(30)	63735(5)	55460(30)	331(4)
C(4)	43580(40)	67785(6)	55780(30)	466(5)
C(5)	25000	69778(8)	50000	500(8)
O(3)	37620(20)	42345(4)	89850(20)	393(3)
C(6)	25000	40619(7)	100000	274(5)
C(7)	25000	36237(7)	100000	277(5)
C(8)	8820(40	34177(6)	107690(30)	407(5)
C(9)	8860(50)	30111(7)	107590(40)	585(7)
C(10)	25000	28129(10)	100000	673(11)
O(4)	75000	46031(5)	100000	310(4)

Tabela 1B – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Comprimentos de	ligação (Å)		
Co-O(2)#1	1,9815(11)	C(4)-C(5)	1,373(3)
Co-O(2)	1,9817(11)	C(4)-H(4)	0,95(2)
Co-O(1)	2,1509(12)	C(5)-H(5)	0,89(3)
Co-O(1)#1	2,1509(12)	O(3)-C(6)	1,2593(16)
Co-O(1)#2	2,1792(11)	C(6)-C(7)	1,496(3)
Co-O(1)#3	2,1792(11)	C(7)-C(8)	1,386(2)
O(1)-H(1A)	0,81(2)	C(7)-C(8)#4	1,386(2)
O(1)-H(1B)	0,77(2)	C(8)-C(9)	1,388(3)
O(2)-C(1)	1,2584(14)	C(8)-H(8)	0,89(2)
C(1)-C(2)	1,491(3)	C(9)-C(10)	1,367(3)
C(2)-C(3)#2	1,385(2)	С(9)-Н(9)	0,95(3)
C(2)-C(3)	1,385(2)	С(10)-Н(10)	0,90(4)
C(3)-C(4)	1,383(3)	O(4)-H(4O4)	0,85(2)
C(3)-H(3)	0,911(19)	O(4)-H(4O4)#5	0,85(2)

Tabela 1B (continuação) – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Ângulos de ligação	(°)		
O(2)#1-Co-O(1)	91,08(5)	C(3)-C(2)-C(1)	120,02(11)
O(2)-Co-O(1)	88,92(5)	C(4)-C(3)-C(2)	119,73(19)
O(2)#1-Co-O(1)#1	88,93(5)	C(4)-C(3)-H(3)	119,8(12)
O(2)-Co-O(1)#1	91,07(5)	C(2)-C(3)-H(3)	120,4(12)
O(2)#1-Co-O(1)#2	87,73(5)	C(5)-C(4)-C(3)	119,9(2)
O(2)-Co-O(1)#2	92,28(5)	C(5)-C(4)-H(4)	120,7(15)
O(1)-Co-O(1)#2	83,49(5)	C(3)-C(4)-H(4)	119,3(15)
O(1)#1-Co-O(1)#2	96,51(5)	C(4)#2-C(5)-C(4)	120,6(3)
O(2)#1-Co-O(1)#3	92,27(5)	C(4)#2-C(5)-H(5)	119,69(13)
O(2)-Co-O(1)#3	87,72(5)	C(4)-C(5)-H(5)	119,69(14)
O(1)-Co-O(1)#3	96,51(5)	O(3)-C(6)-O(3)#4	124,2(2)
O(1)#1-Co-O(1)#3	83,49(5)	O(3)-C(6)-C(7)	117,90(12)
O(1)#2-Co-O(1)#3	180,00(7)	O(3)#4-C(6)-C(7)	117,90(12)
Co-O(1)-Co#2	92,73(4)	C(8)-C(7)-C(8)#4	119,0(3)
Co-O(1)-H(1A)	112,5(14)	C(8)-C(7)-C(6)	120,49(13)
Co#2-O(1)-H(1A)	109,7(14)	C(8)#4-C(7)-C(6)	120,49(13)
Co-O(1)-H(1B)	113,0(18)	C(7)-C(8)-C(9)	120,2(2)
Co#2-O(1)-H(1B)	121,0(18)	C(7)-C(8)-H(8)	120,3(15)
H(1A)-O(1)-H(1B)	107(2)	C(9)-C(8)-H(8)	119,5(15)
C(1)-O(2)-Co	130,20(11)	C(10)-C(9)-C(8)	119,9(2)
O(2)-C(1)-O(2)#2	125,3(2)	C(10)-C(9)-H(9)	122,8(17)
O(2)-C(1)-C(2)	117,34(10)	C(8)-C(9)-H(9)	117,3(17)
O(2)#2-C(1)-C(2)	117,35(10)	C(9)-C(10)-C(9)#4	120,7(3)
C(3)#2-C(2)-C(3)	120,0(2)	C(9)-C(10)-H(10)	119,66(16)
C(3)#2-C(2)-C(1)	120,01(11)	C(9)#4-C(10)-H(10)	119,66(16)
		H(4O4)-O(4)-H(4O4)#	118(4)

Transformações de simetria utilizadas para gerar átomos equivalentes: #1 -x+1,-y+1,-z+1; #2 -x+1/2,y,-z+1; #3 x+1/2,-y+1,z; #4 -x+1/2,y,-z+2; #5 -x+3/2,y,-z+2

Tabela 1C – Coordenadas dos átomos de hidrogênio ($x \cdot 10^4$) e parâmetros de deslocamento isotrópico (Å² x 10³). Todos os átomos de hidrogênio estavam localizados no mapa de Fourier e foram refinados livremente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	x	У	Z	U _(iso)
H(1A)	2830(30)	5047(5)	7930(30)	24(5)
H(1B)	2930(40)	4683(7)	7570(30)	55(8)
H(3)	5620(30)	6242(6)	5880(30)	31(5)
H(4)	5640(40)	6915(7)	5960(30)	58(7)
H(5)	2500	7239(10)	5000	63(10)
H(8)	-180(40)	3545(7)	11250(30)	50(7)
H(9)	-260(40)	2882(8)	11300(40)	79(9)
H(10)	2500	2550(11)	10000	65(11)
H(4O4)	8660(40)	4475(8)	10260(40)	75(9)

Tabela 1D – Ângulos de torção, em graus. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Ligações envolvidas	Ângulo de torção
Co-O(2)-C(1)-O(2)#2	4,96(6)
Co-O(2)-C(1)-C(2)	-175,04(6)
O(2)-C(1)-C(2)-C(3)#2	166,43(12)
O(2)#2-C(1)-C(2)-C(3)#2	-13,57(12)
O(2)-C(1)-C(2)-C(3)	-13,57(12)
O(2)#2-C(1)-C(2)-C(3)	166,43(12)
C(3)#2-C(2)-C(3)-C(4)	1,22(16)
C(1)-C(2)-C(3)-C(4)	-178,78(15)
C(2)-C(3)-C(4)-C(5)	-2,4(3)
C(3)-C(4)-C(5)-C(4)#2	1,23(16)
O(3)-C(6)-C(7)-C(8)	-167,31(12)
O(3)#4-C(6)-C(7)-C(8)	12,69(12)
O(3)-C(6)-C(7)-C(8)#4	12,68(12)
O(3)#4-C(6)-C(7)-C(8)#4	-167,32(12)
C(8)#4-C(7)-C(8)-C(9)	-0,21(17)
C(6)-C(7)-C(8)-C(9)	179,79(17)
C(7)-C(8)-C(9)-C(10)	0,4(3)
C(8)-C(9)-C(10)-C(9)#4	-0,21(17)
nsformações de simetria utilizadas	nara derar átomos equivalentes

Transformações de simetria utilizadas para gerar átomos equivalentes: #1 -x+1,-y+1,-z+1; #2 -x+1/2,y,-z+1; #3 x+1/2,-y+1,z; #4 -x+1/2,y,-z+2; #5 -x+3/2,y,-z+2

Tabela 1E – Ligações de hidrogênio. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

D-H…R	d(D-H)	d(H…R)	d(D…R)	< (DHR)	
O(4)-H(4O4)…O(3)#5	0,85(2)	1,84(2)	2,6899(15)	174(3)	
O(1)-H(1A)⋯O(4)#6	0,81(2)	1,90(2)	2,6969(18)	170(2)	
O(1)-H(1B)…O(3)	0,77(2)	1,87(2)	2,6286(17)	170(2)	

Transformações de simetria utilizadas para gerar átomos equivalentes: #1 -x+1,-y+1,-z+1; #2 -x+1/2,y,-z+1; #3 x+1/2,-y+1,z; #4 -x+1/2,y,-z+2; #5 -x+3/2,y,-z+2; #6 -x+1,-y+1,-z+2

ANEXO	2	—	Dados	cristalográficos	complementares	para	0	complexo
[Fe ₂ Co(µa	з - О)	(µ-b	zc)6(H2O))₃], produto B.				

Tabela 2A – Coordenadas atômicas (x·10⁵) e parâmetros de deslocamento isotrópico equivalentes (Å² x 10⁴)·U_(eq) é definido como um terço do traço do tensor Uij ortogonalizado. Os valores de *e.s.ds* (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

			_	
	X	у	Z	U(eq)
Fe(1)	57596(3)	83368(3)	39839(2)	202,7(8)
Fe(2)	57100(3)	59603(3)	40526(2)	201,5(8)
Со	45219(3)	58306(3)	17152(3)	252,5(8)
O(1)	53276(13)	66913(12)	32526(12)	212(3)
O(2)	61643(15)	85593(14)	28705(13)	309(4)
O(3)	53758(16)	68626(14)	13351(13)	326(4)
O(4)	40080(14)	82842(13)	32834(13)	288(4)
O(5)	32624(15)	66155(15)	17211(13)	348(4)
O(6)	63258(17)	49165(15)	30786(14)	357(4)
O(7)	57861(14)	49680(14)	15415(13)	280(4)
O(8)	41329(14)	46607(14)	32717(13)	286(4)
O(9)	34766(15)	44864(14)	16331(13)	312(4)
O(10)	75026(14)	85612(14)	47587(14)	325(4)
O(11)	73398(14)	70851(15)	50614(14)	331(4)
O(12)	54967(15)	85437(14)	53409(13)	300(4)
O(13)	50996(14)	68084(13)	51953(13)	256(3)
O(14)	61673(16)	101518(14)	47573(17)	288(4)
O(15)	36155(16)	47371(17)	8(14)	303(4)
O(16)	62457(17)	51147(16)	49401(16)	302(4)
C(1)	59940(20)	79099(19)	19127(18)	242(5)
C(2)	65590(20)	84190(20)	14034(19)	260(5)
C(3)	75150(20)	94020(20)	20310(20)	356(6)
C(4)	79930(30)	98930(30)	15430(30)	488(8)
C(5)	74960(30)	94050(30)	4390(30)	457(7)
C(6)	65450(30)	84210(30)	-1940(20)	378(6)
C(7)	60830(20)	79130(20)	2820(20)	293(5)
C(8)	31690(20)	74820(20)	24201(19)	261(5)
C(9)	19440(20)	75560(20)	22090(20)	317(5)
C(10)	17560(30)	86070(30)	26730(20)	389(6)
C(11)	6260(30)	86570(30)	24780(30)	545(8)
C(12)	-3140(30)	76610(40)	18400(30)	631(10)
C(13)	-1450(30)	66150(40)	13830(30)	660(10)
C(14)	9910(30)	65670(30)	15590(30)	498(8)
C(15)	64510(20)	48035(19)	22507(19)	255(5)
C(16)	74970(20)	44590(20)	21290(20)	332(6)
C(17)	75080(30)	38580(30)	11290(30)	491(8)
C(18A)	83930(80)	34830(80)	9920(70)	556(18)
C(19A)	93880(90)	38140(100)	19260(80)	740(20)
C(20A)	94400(60)	44770(70)	30620(60)	600(19)
C(18B)	87800(130)	38380(120)	12560(100)	420(30)
C(19B)	96580(120)	41920(130)	21790(120)	490(30)
C(20B)	95860(120)	47040(120)	29090(110)	560(30)

	X	у	Z	U _(eq)
C(21)	84690(30)	47840(30)	30720(30)	565(9)
C(22)	34023(19)	41835(18)	22930(18)	227(5)
C(23)	23750(20)	31690(20)	18878(19)	287(5)
C(24)	14320(20)	27730(20)	9100(20)	406(6)
C(25)	4840(30)	18280(30)	5350(30)	615(10)
C(26)	4890(30)	12870(30)	11180(30)	717(13)
C(27)	14270(40)	16680(30)	20780(30)	656(11)
C(28)	23760(30)	26080(20)	24640(20)	436(7)
C(29)	79140(20)	78748(19)	49915(18)	264(5)
C(30)	91630(20)	79590(20)	51790(20)	309(5)
C(31)	97420(20)	73980(30)	56600(30)	425(7)
C(32)	108770(30)	74330(30)	57700(30)	572(9)
C(33)	114290(30)	80140(30)	54010(30)	622(10)
C(34)	108720(30)	85740(40)	49330(30)	609(10)
C(35)	97340(20)	85540(30)	48230(30)	450(7)
C(36)	52080(19)	78662(19)	56547(18)	235(5)
C(37)	49860(20)	83640(20)	66482(19)	273(5)
C(38)	42360(30)	76890(30)	68260(20)	366(6)
C(39)	40130(30)	81880(30)	77320(20)	472(7)
C(40)	45410(30)	93330(30)	84710(20)	488(8)
C(41)	53060(30)	99960(30)	83170(20)	495(8)
C(42)	55140(30)	95240(20)	74000(20)	397(6)

Tabela 2A (continuação) – Coordenadas atômicas ($x \cdot 10^5$) e parâmetros de deslocamento isotrópico equivalentes ($Å^2 x 10^4$)·U_(eq) é definido como um terço do traço do tensor Uij ortogonalizado. Os valores de *e.s.ds* (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Tabela 2B – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Comprimentos de	ligação (Å)		
Fe(1)-O(1)	1,9201(15)	C(11)-H(11)	0,95(4)
Fe(1)-O(2)	2,0231(16)	C(12)-C(13)	1,373(5)
Fe(1)-O(10)	2,0444(16)	C(12)-H(12)	0,94(4)
Fe(1)-O(12)	2,0801(16)	C(13)-C(14)	1,391(4)
Fe(1)-O(4)	2,1033(16)	C(13)-H(13)	0,88(3)
Fe(1)-O(14)	2,1258(17)	C(14)-H(14)	0,93(3)
Fe(2)-O(1)	1,8588(14)	C(15)-C(16)	1,501(3)
Fe(2)-O(6)	2,0069(16)	C(16)-C(17)	1,378(4)
Fe(2)-O(11)	2,0084(17)	C(16)-C(21)	1,387(4)
Fe(2)-O(8)	2,0555(16)	C(17)-C(18A)	1,331(7)
Fe(2)-O(13)	2,0693(15)	C(17)-C(18B)	1,563(12)
Fe(2)-O(16)	2,1249(17)	C(17)-H(17)	0,95(3)
Co-O(1)	1,9026(15)	C(18A)-C(19A)	1,392(10)
Co-O(3)	2,0270(16)	C(19A)-C(20A)	1,529(13)
Co-O(9)	2,0305(16)	C(20A)-C(21)	1,353(7)

Tabela 2B (continuação) – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Comprimentos de ligação (Å)				
Co-O(5)	2,0367(16)	C(18B)-C(19B)	1,301(16)	
Co-O(7)	2,1269(16)	C(19B)-C(20B)	1,063(19)	
Co-O(15)	2,1337(18)	C(20B)-C(21)	1,517(14)	
O(2)-C(1)	1,252(3)	C(21)-H(21)	1,02(4)	
O(3)-C(1)	1,262(3)	C(22)-C(23)	1,495(3)	
O(4)-C(8)	1,262(3)	C(23)-C(28)	1,377(4)	
O(5)-C(8)	1,253(3)	C(23)-C(24)	1,380(4)	
O(6)-C(15)	1,253(3)	C(24)-C(25)	1,388(4)	
O(7)-C(15)	1,258(3)	C(24)-H(24)	0,90(3)	
O(8)-C(22)	1,263(3)	C(25)-C(26)	1,363(6)	
O(9)-C(22)	1,249(3)	C(25)-H(25)	0,89(4)	
O(10)-C(29)	1,250(3)	C(26)-C(27)	1,365(6)	
O(11)-C(29)	1,271(3)	C(26)-H(26)	0,95(4)	
O(12)-C(36)	1,261(3)	C(27)-C(28)	1,379(4)	
O(13)-C(36)	1,265(3)	C(27)-H(27)	0,94(4)	
O(14)-H(14A)	0,82(4)	C(28)-H(28)	0,91(3)	
O(14)-H(14B)	0,75(4)	C(29)-C(30)	1,491(3)	
O(15)-H(15A)	0,74(4)	C(30)-C(35)	1,383(4)	
O(15)-H(15B)	0,82(4)	C(30)-C(31)	1,389(4)	
O(16)-H(16A)	0,90(5)	C(31)-C(32)	1,381(4)	
O(16)-H(16B)	0,79(4)	C(31)-H(31)	0,93(3)	
C(1)-C(2)	1,496(3)	C(32)-C(33)	1,372(5)	
C(2)-C(3)	1,372(3)	C(32)-H(32)	0,90(4)	
C(2)-C(7)	1,390(3)	C(33)-C(34)	1,365(5)	
C(3)-C(4)	1,389(4)	C(33)-H(33)	0,93(4)	
C(3)-H(3)	0,93(3)	C(34)-C(35)	1,389(4)	
C(4)-C(5)	1,371(5)	C(34)-H(34)	0,91(4)	
C(4)-H(4)	0,90(3)	C(35)-H(35)	1,00(3)	
C(5)-C(6)	1,370(4)	C(36)-C(37)	1,493(3)	
C(5)-H(5)	0,94(3)	C(37)-C(42)	1,384(4)	
C(6)-C(7)	1,380(3)	C(37)-C(38)	1,392(4)	
C(6)-H(6)	1,01(3)	C(38)-C(39)	1,381(4)	
C(7)-H(7)	0,91(3)	C(38)-H(38)	0,88(3)	
C(8)-C(9)	1,505(3)	C(39)-C(40)	1,365(5)	
C(9)-C(14)	1,375(4)	С(39)-Н(39)	0,95(3)	
C(9)-C(10)	1,391(4)	C(40)-C(41)	1,370(5)	
C(10)-C(11)	1,380(4)	C(40)-H(40)	0,99(4)	
C(10)-H(10)	U,9U(3)	C(41)-C(42)	1,380(4)	
G(11)-G(12)	1,372(5)	C(41)-H(41)	0,91(3)	
Ânaulas de Bassão (0	N N	C(42)-H(42)	0,95(3)	
Angulos de ligação (°)		116 E(10)	
U(1)-Fe(1)-U(2)	91,32(0) 02.20(7)	C(9)-C(10)-H(10)	110,5(18)	
O(1)-Fe(1)- $O(10)$	93,3U(7) 97.2E(7)	C(12)-C(11)-C(10)	119,7(3)	
O(2)-Fe(1)- $O(10)$	01,20(1)	G(12)-G(11)-H(11) G(10) G(11) H(11)	119(∠) 121(2)	
O(1)-Fe(1)- $O(12)$	30,03(0) 165,00(6)	$C(10) - C(11) - \Pi(11)$	1∠1(∠) 120 6(2)	
U(Z)-Fe(1)-U(1Z)	105,99(0)	し(11)-し(12)-し(13)	120,0(3)	

Tabela 2B (continuação) – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Ângulos de ligação (°)			
O(10)-Fe(1)-O(12)	90,64(7)	C(11)-C(12)-H(12)	117(3)
O(1)-Fe(1)-O(4)	92,38(6)	C(13)-C(12)-H(12)	122(3)
O(2)-Fe(1)-O(4)	92,81(7)	C(12)-C(13)-C(14)	119,6(3)
O(10)-Fe(1)-O(4)	174,27(7)	C(12)-C(13)-H(13)	121(2)
O(12)-Fe(1)-O(4)	87.92(7)	C(14)-C(13)-H(13)	120(2)
O(1)-Fe(1)-O(14)	177.70(7)	C(9)-C(14)-C(13)	120.4(3)
O(2)-Fe(1)-O(14)	82.56(7)	C(9)-C(14)-H(14)	116(2)
O(10)-Fe(1)-O(14)	88,99(7)	C(13)-C(14)-H(14)	123(2)
O(12)-Fe(1)-O(14)	83,56(7)	O(6)-C(15)-O(7)	125 2(2)
O(4)-Fe(1)-O(14)	85 34(7)	O(6) - C(15) - C(16)	115 8(2)
$O(1) - F_{O}(2) - O(6)$	93 99(6)	O(7)- $C(15)$ - $C(16)$	118 9(2)
$O(1)_{F_{0}(2)}O(1)$	95 01(7)	C(17) - C(16) - C(21)	120.8(3)
$O(6) = F_0(2) = O(11)$	01 30(8)	C(17)-C(16)-C(15)	120,0(3)
O(0) = Ie(2) = O(11) $O(1) = E_0(2) = O(8)$	91,50(0) 08 57(7)	C(21) C(16) C(15)	122,0(3)
O(1)-Fe(2)- $O(0)$	90,57(7)	C(21)-C(10)-C(13)	117, 1(2) 102 $4(5)$
O(0)-Fe(2)- $O(0)$	09,09(7) 166 29(7)	C(16A) - C(17) - C(18)	123,4(5)
O(11)-Fe(2)-O(0)	100,20(7)	C(10) - C(17) - C(10B)	110,0(5)
O(1)-Fe(2)- $O(13)$	97,99(0)	C(18A)-C(17)-H(17)	119,4(18)
O(6)-Fe(2)- $O(13)$	167,78(6)	C(16)-C(17)-H(17)	116,6(18)
O(11)-Fe(2)-O(13)	90,03(7)	C(18B)-C(17)-H(17)	132,3(18)
O(8)-Fe(2)-O(13)	86,18(6)	C(17)-C(18A)-C(19A)	116,7(6)
O(1)-Fe(2)-O(16)	176,13(7)	C(18A)-C(19A)-C(20A)	122,7(7)
O(6)-Fe(2)-O(16)	82,80(7)	C(21)-C(20A)-C(19A)	113,6(7)
O(11)-Fe(2)-O(16)	82,92(7)	C(19B)-C(18B)-C(17)	123,8(9)
O(8)-Fe(2)-O(16)	83,63(7)	C(20B)-C(19B)-C(18B)	119,1(13)
O(13)-Fe(2)-O(16)	85,31(7)	C(19B)-C(20B)-C(21)	127,8(13)
O(1)-Co-O(3)	99,98(7)	C(20A)-C(21)-C(16)	122,4(4)
O(1)-Co-O(9)	96,17(6)	C(16)-C(21)-C(20B)	113,5(6)
O(3)-Co-O(9)	163,60(7)	C(20A)-C(21)-H(21)	118(2)
O(1)-Co-O(5)	91,97(6)	C(16)-C(21)-H(21)	119,5(19)
O(3)-Co-O(5)	91,55(7)	C(20B)-C(21)-H(21)	123(2)
O(9)-Co-O(5)	90,75(7)	O(9)-C(22)-O(8)	125,1(2)
O(1)-Co-O(7)	93,50(6)	O(9)-C(22)-C(23)	117,4(2)
O(3)-Co-O(7)	85,46(7)	O(8)-C(22)-C(23)	117,5(2)
O(9)-Co-O(7)	90,73(7)	C(28)-C(23)-C(24)	119,9(3)
O(5)-Co-O(7)	174,15(7)	C(28)-C(23)-C(22)	120,7(2)
O(1)-Co-O(15)	175,14(7)	C(24)-C(23)-C(22)	119,4(2)
O(3)-Co-O(15)	83,86(7)	C(23)-C(24)-C(25)	119,2(3)
O(9)-Co-O(15)	79,87(7)	C(23)-C(24)-H(24)	119,6(17)
O(5)-Co-O(15)	90.89(7)	C(25)-C(24)-H(24)	121.2(18)
O(7)-Co-O(15)	83.80(7)	C(26)-C(25)-C(24)	120.5(4)
Fe(2)-O(1)-Co	120.85(8)	C(26)-C(25)-H(25)	127(2)
Fe(2)-O(1)-Fe(1)	119,69(8)	C(24)-C(25)-H(25)	113(3)
Co-O(1)-Fe(1)	119.46(7)	C(25)-C(26)-C(27)	120.4(3)
C(1)-O(2)-Fe(1)	134 82(15)	C(25)-C(26)-H(26)	118(2)
$C(1) - O(3) - C_0$	129 96(15)	C(27)-C(26)-H(26)	121(2)
C(8)-O(4)-Fe(1)	128.34(14)	C(26)-C(27)-C(28)	119 9(4)
C(8) - O(5) - Co	134,35(16)	C(26) - C(27) - H(27)	123(2)
	107,00(10)	~~~~	· ~ ~ (~)

Tabela 2B (continuação) – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Ângulos de ligação (°))		
C(15)-O(6)-Fe(2)	134,03(15)	C(28)-C(27)-H(27)	117(2)
C(15)-O(7)-Co	125,43(14)	C(23)-C(28)-C(27)	120,2(3)
C(22)-O(8)-Fe(2)	127,90(14)	C(23)-C(28)-H(28)	118(2)
C(22)-O(9)-Co	135,75(15)	C(27)-C(28)-H(28)	121(2)
C(29)-O(10)-Fe(1)	126,39(15)	O(10)-C(29)-O(11)	124,9(2)
C(29)-O(11)-Fe(2)	128,87(15)	O(10)-C(29)-C(30)	118,3(2)
C(36)-O(12)-Fe(1)	134,23(15)	O(11)-C(29)-C(30)	116,7(2)
C(36)-O(13)-Fe(2)	126,98(14)	C(35)-C(30)-C(31)	119,5(2)
Fe(1)-O(14)-H(14A)	124(2)	C(35)-C(30)-C(29)	119,7(2)
Fe(1)-O(14)-H(14B)	119(3)	C(31)-C(30)-C(29)	120,7(2)
H(14A)-O(14)-H(14B)	104(4)	C(32)-C(31)-C(30)	119,7(3)
Co-O(15)-H(15A)	117(3)	C(32)-C(31)-H(31)	120,4(18)
Co-O(15)-H(15B)	124(3)	C(30)-C(31)-H(31)	119,8(19)
H(15A)-O(15)-H(15B)	104(4)	C(33)-C(32)-C(31)	120,2(3)
Fe(2)-O(16)-H(16A)	114(3)	C(33)-C(32)-H(32)	123(2)
Fe(2)-O(16)-H(16B)	121(3)	C(31)-C(32)-H(32)	117(2)
H(16A)-O(16)-H(16B)	110(4)	C(34)-C(33)-C(32)	120,6(3)
O(2)-C(1)-O(3)	125,6(2)	C(34)-C(33)-H(33)	121(2)
O(2)-C(1)-C(2)	117,4(2)	C(32)-C(33)-H(33)	118(2)
O(3)-C(1)-C(2)	117,1(2)	C(33)-C(34)-C(35)	119,9(3)
C(3)-C(2)-C(7)	119,6(2)	C(33)-C(34)-H(34)	120(2)
C(3)-C(2)-C(1)	120,8(2)	C(35)-C(34)-H(34)	120(2)
C(7)-C(2)-C(1)	119,5(2)	C(30)-C(35)-C(34)	120,0(3)
C(2)-C(3)-C(4)	119,9(3)	C(30)-C(35)-H(35)	119,1(18)
C(2)-C(3)-H(3)	117,4(16)	C(34)-C(35)-H(35)	120,8(19)
C(4)-C(3)-H(3)	122,6(16)	O(12)-C(36)-O(13)	125,0(2)
C(5)-C(4)-C(3)	120,0(3)	O(12)-C(36)-C(37)	116,9(2)
C(5)-C(4)-H(4)	122,8(19)	O(13)-C(36)-C(37)	118,17(19)
C(3)-C(4)-H(4)	117,1(19)	C(42)-C(37)-C(38)	119,0(2)
C(6)-C(5)-C(4)	120,5(3)	C(42)-C(37)-C(36)	119,7(2)
C(6)-C(5)-H(5)	121(2)	C(38)-C(37)-C(36)	121,4(2)
C(4)-C(5)-H(5)	119(2)	C(39)-C(38)-C(37)	119,8(3)
C(5)-C(6)-C(7)	119,9(3)	C(39)-C(38)-H(38)	121(2)
C(5)-C(6)-H(6)	122,0(16)	C(37)-C(38)-H(38)	119(2)
C(7)-C(6)-H(6)	118,1(16)	C(40)-C(39)-C(38)	120,8(3)
C(6)-C(7)-C(2)	120,1(2)	C(40)-C(39)-H(39)	121(2)
C(6)-C(7)-H(7)	117,6(17)	C(38)-C(39)-H(39)	118(2)
C(2)-C(7)-H(7)	122,2(17)	C(39)-C(40)-C(41)	119,8(3)
O(5)-C(8)-O(4)	125,6(2)	C(39)-C(40)-H(40)	121(2)
O(5)-C(8)-C(9)	116,6(2)	C(41)-C(40)-H(40)	119(2)
O(4)-C(8)-C(9)	117,8(2)	C(40)-C(41)-C(42)	120,5(3)
C(14)-C(9)-C(10)	119,2(2)	C(40)-C(41)-H(41)	124(2)
C(14)-C(9)-C(8)	119,5(2)	C(42)-C(41)-H(41)	116(2)
C(10)-C(9)-C(8)	121,3(2)	C(41)-C(42)-C(37)	120,2(3)
C(11)-C(10)-C(9)	120,4(3)	C(41)-C(42)-H(42)	118,3(18)
C(11)-C(10)-H(10)	123,1(18)	C(37)-C(42)-H(42)	121,4(18)

Tabela 2C – Coordenadas dos átomos de hidrogênio ($x \cdot 10^4$) e parâmetros de deslocamento isotrópico (Å² x 10³). Todos os átomos de hidrogênio estavam localizados no mapa de Fourier e foram refinados livremente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	X	У	Z	U _(iso)
H(18A)	8349	3019	298	67
H(19A)	10054	3622	1855	89
H(20A)	10086	4653	3693	72
H(18B)	8919	3554	629	50
H(19B)	10347	3997	2200	59
H(20B)	10299	5164	3528	67
H(3)	7800(20)	9720(20)	2780(20)	32(7)
H(4)	8610(30)	10540(30)	1980(20)	46(8)
H(5)	7800(30)	9770(30)	120(30)	66(10)
H(6)	6150(20)	8050(20)	-1010(20)	39(7)
H(7)	5440(20)	7270(20)	-160(20)	33(7)
H(10)	2400(30)	9240(20)	3090(20)	40(8)
H(11)	490(30)	9370(30)	2820(30)	70(11)
H(12)	-1070(40)	7730(30)	1710(30)	92(13)
H(13)	-740(30)	5980(30)	980(30)	55(10)
H(14)	1160(30)	5880(30)	1270(30)	56(9)
H(17)	6790(30)	3620(20)	510(20)	42(8)
H(21)	8480(30)	5300(30)	3800(30)	65(10)
H(24)	1440(20)	3140(20)	530(20)	32(7)
H(25)	-90(30)	1660(30)	-80(30)	72(12)
H(26)	-190(30)	670(30)	850(30)	74(11)
H(27)	1440(30)	1350(30)	2530(30)	82(12)
H(28)	3000(30)	2880(30)	3110(30)	51(9)
H(31)	9380(30)	7030(30)	5930(20)	47(8)
H(32)	11200(30)	7020(30)	6050(30)	73(12)
H(33)	12170(30)	7990(30)	5450(30)	72(11)
H(34)	11240(30)	8940(30)	4670(30)	76(12)
H(35)	9300(30)	8930(30)	4450(30)	59(9)
H(38)	3850(30)	6970(30)	6320(20)	45(9)
H(39)	3450(30)	7720(30)	7800(30)	57(9)
H(40)	4400(30)	9690(30)	9130(30)	75(11)
H(41)	5710(30)	10750(30)	8800(30)	59(10)
H(42)	6060(30)	10000(30)	7330(20)	44(8)
H(14A)	6210(30)	10550(30)	5360(30)	58(10)
H(14B)	5860(40)	10410(40)	4440(40)	91(16)
H(15A)	3590(40)	4130(40)	-220(30)	77(14)
H(15B)	3720(30)	4900(30)	-440(30)	82(13)
H(16A)	5740(40)	4410(40)	4650(40)	120(18)
H(16B)	6480(30)	5440(30)	5580(30)	61(11)

Tabela 2D – Ângulos de torção, em graus. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

l igações envolvidas	Ângulo de	l igações envolvidas	Ângulo de
	torção	Ligações envolvidas	torção
O(6)-Fe(2)-O(1)-Co	45,61(10)	C(17)-C(18B)-C(19B)-C(20B)	-15(2)
O(11)-Fe(2)-O(1)-Co	137,27(9)	C(18B)-C(19B)-C(20B)-C(21)	22(2)
O(8)-Fe(2)-O(1)-Co	-44,68(9)	C(19A)-C(20A)-C(21)-C(16)	3,8(9)
O(13)-Fe(2)-O(1)-Co	-131,99(9)	C(17)-C(16)-C(21)-C(20A)	-3,9(7)
O(6)-Fe(2)-O(1)-Fe(1)	-133,96(9)	C(15)-C(16)-C(21)-C(20A)	176,8(6)
O(11)-Fe(2)-O(1)-Fe(1)	-42,30(9)	C(17)-C(16)-C(21)-C(20B)	15,4(8)
O(8)-Fe(2)-O(1)-Fe(1)	135,75(8)	C(15)-C(16)-C(21)-C(20B)	-163,9(7)
O(13)-Fe(2)-O(1)-Fe(1)	48,44(9)	C(19B)-C(20B)-C(21)-C(16)	-23(2)
Fe(1)-O(2)-C(1)-O(3)	6,8(4)	Co-O(9)-C(22)-O(8)	-8,0(4)
Fe(1)-O(2)-C(1)-C(2)	-173,94(15)	Co-O(9)-C(22)-C(23)	172,66(15)
Co-O(3)-C(1)-O(2)	-3,5(4)	Fe(2)-O(8)-C(22)-O(9)	-5,6(3)
Co-O(3)-C(1)-C(2)	177,23(15)	Fe(2)-O(8)-C(22)-C(23)	173,67(14)
O(2)-C(1)-C(2)-C(3)	21,5(3)	O(9)-C(22)-C(23)-C(28)	163,7(2)
O(3)-C(1)-C(2)-C(3)	-159,2(2)	O(8)-C(22)-C(23)-C(28)	-15,7(3)
O(2)-C(1)-C(2)-C(7)	-156,2(2)	O(9)-C(22)-C(23)-C(24)	-14,3(3)
O(3)-C(1)-C(2)-C(7)	23,1(3)	O(8)-C(22)-C(23)-C(24)	166,3(2)
C(7)-C(2)-C(3)-C(4)	0,8(4)	C(28)-C(23)-C(24)-C(25)	1,6(4)
C(1)-C(2)-C(3)-C(4)	-176,9(2)	C(22)-C(23)-C(24)-C(25)	179,7(2)
C(2)-C(3)-C(4)-C(5)	1,1(5)	C(23)-C(24)-C(25)-C(26)	-0,9(5)
C(3)-C(4)-C(5)-C(6)	-1,4(5)	C(24)-C(25)-C(26)-C(27)	0,1(6)
C(4)-C(5)-C(6)-C(7)	-0,1(4)	C(25)-C(26)-C(27)-C(28)	0,1(6)
C(5)-C(6)-C(7)-C(2)	2,0(4)	C(24)-C(23)-C(28)-C(27)	-1,5(4)
C(3)-C(2)-C(7)-C(6)	-2,3(4)	C(22)-C(23)-C(28)-C(27)	-179,5(3)
C(1)-C(2)-C(7)-C(6)	175,4(2)	C(26)-C(27)-C(28)-C(23)	0,6(5)
Co-O(5)-C(8)-O(4)	18,6(4)	Fe(1)-O(10)-C(29)-O(11)	-20,4(3)
Co-O(5)-C(8)-C(9)	-160,79(17)	Fe(1)-O(10)-C(29)-C(30)	158,07(16)
Fe(1)-O(4)-C(8)-O(5)	-11,4(3)	Fe(2)-O(11)-C(29)-O(10)	45,0(3)
Fe(1)-O(4)-C(8)-C(9)	167,95(15)	Fe(2)-O(11)-C(29)-C(30)	-133,50(19)
O(5)-C(8)-C(9)-C(14)	25,0(4)	O(10)-C(29)-C(30)-C(35)	-17,1(4)
O(4)-C(8)-C(9)-C(14)	-154,4(3)	O(11)-C(29)-C(30)-C(35)	161,6(2)
O(5)-C(8)-C(9)-C(10)	-156,1(2)	O(10)-C(29)-C(30)-C(31)	166,2(2)
O(4)-C(8)-C(9)-C(10)	24,5(3)	O(11)-C(29)-C(30)-C(31)	-15,2(4)
C(14)-C(9)-C(10)-C(11)	-0,5(4)	C(35)-C(30)-C(31)-C(32)	-0,5(4)
C(8)-C(9)-C(10)-C(11)	-179,4(3)	C(29)-C(30)-C(31)-C(32)	176,3(3)
C(9)-C(10)-C(11)-C(12)	1,4(5)	C(30)-C(31)-C(32)-C(33)	-0,3(5)
C(10)-C(11)-C(12)-C(13)	-0,8(6)	C(31)-C(32)-C(33)-C(34)	0,7(6)
C(11)-C(12)-C(13)-C(14)	-0,8(6)	C(32)-C(33)-C(34)-C(35)	-0,3(6)
C(10)-C(9)-C(14)-C(13)	-1,1(5)	C(31)-C(30)-C(35)-C(34)	0,9(5)
C(8)-C(9)-C(14)-C(13)	177,8(3)	C(29)-C(30)-C(35)-C(34)	-175,9(3)
C(12)-C(13)-C(14)-C(9)	1,7(6)	C(33)-C(34)-C(35)-C(30)	-0,5(5)
Fe(2)-O(6)-C(15)-O(7)	-32,9(4)	Fe(1)-O(12)-C(36)-O(13)	6,9(4)
Fe(2)-O(6)-C(15)-C(16)	146,18(19)	Fe(1)-O(12)-C(36)-C(37)	-173,45(15)
Co-O(7)-C(15)-O(6)	14,6(3)	Fe(2)-O(13)-C(36)-O(12)	15,1(3)
Co-O(7)-C(15)-C(16)	-164,44(16)	Fe(2)-O(13)-C(36)-C(37)	-164,53(15)
O(6)-C(15)-C(16)-C(17)	152,6(3)	O(12)-C(36)-C(37)-C(42)	-25,0(3)
O(7)-C(15)-C(16)-C(17)	-28,2(4)	O(13)-C(36)-C(37)-C(42)	154,7(2)
O(6)-C(15)-C(16)-C(21)	-28,1(4)	O(12)-C(36)-C(37)-C(38)	153,6(2)

Ligações envolvidas	Ângulo de torção	Ligações envolvidas	Ângulo de torção
O(7)-C(15)-C(16)-C(21)	151,1(3)	O(13)-C(36)-C(37)-C(38)	-26,7(3)
C(21)-C(16)-C(17)-C(18A)	4,8(7)	C(42)-C(37)-C(38)-C(39)	1,3(4)
C(15)-C(16)-C(17)-C(18A)	-176,0(5)	C(36)-C(37)-C(38)-C(39)	-177,3(2)
C(21)-C(16)-C(17)-C(18B)	-10,8(6)	C(37)-C(38)-C(39)-C(40)	-1,5(4)
C(15)-C(16)-C(17)-C(18B)	168,5(5)	C(38)-C(39)-C(40)-C(41)	-0,4(5)
C(16)-C(17)-C(18A)-C(19A)	-5,6(8)	C(39)-C(40)-C(41)-C(42)	2,5(5)
C(17)-C(18A)-C(19A)-C(20A)	5,7(11)	C(40)-C(41)-C(42)-C(37)	-2,7(5)
C(18A)-C(19A)-C(20A)-C(21)	-4,9(11)	C(38)-C(37)-C(42)-C(41)	0,8(4)
C(16)-C(17)-C(18B)-C(19B)	9,5(12)	C(36)-C(37)-C(42)-C(41)	179,4(3)

Tabela 2D (continuação) – Ângulos de torção, em graus. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Tabela 2E – Ligações de hidrogênio. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

D-H…R	d(D-H)	d(H…R)	d(D…R)	< (DHR)
O(14)-H(14A)…O(4)#1	0,82(4)	2,11(4)	2,909(2)	165(3)
O(15)-H(15B)…O(7)#2	0,82(4)	2,02(4)	2,818(2)	166(4)
O(16)-H(16A)…O(13)#3	0,90(5)	1,98(2)	2,800(2)	151(4)

Transformações de simetria utilizadas para gerar átomos equivalentes:

#1 -x+1,-y+2,-z+1; #2 -x+1,-y+1,-z; #3 -x+1,-y+1,-z+1

ANEXO	3	-	Dados	cristalográficos	complementares	para	0	complexo
[Fe ₃ (µ ₃ -O)(µ-	hbzc	;) ₆ (OH ₂) ₂ ((OHCH ₃)]Cl·2H ₂ O	·3 <i>pyz</i> , produto C.			

Tabela 3A – Coordenadas atômicas (x·10⁵) e parâmetros de deslocamento isotrópico equivalentes (Å² x 10⁴)·U_(eq) é definido como um terço do traço do tensor Uij ortogonalizado. Os valores de *e.s.ds* (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	x	У	z	U _(eq)
Fe(1)	34115(2)	33751(3)	21506(2)	322(1)
Fe(2)	25000	59956(5)	25000	313(2)
O(1)	25000	42400(20)	25000	327(5)
O(3)	26405(12)	60770(18)	13581(11)	415(4)
O(4)	37388(11)	61824(18)	27528(12)	419(4)
O(5)	43700(15)	23570(20)	17750(13)	553(6)
O(6)	35493(12)	45323(18)	12660(11)	413(4)
O(7)	26505(13)	23630(20)	13913(12)	476(5)
O(8)	34519(13)	20333(19)	29634(12)	451(5)
O(9)	43299(12)	43146(18)	27927(12)	443(5)
O(10)	34600(30)	68410(40)	-20555(17)	1210(15)
O(11)	75153(14)	77840(30)	34383(16)	641(7)
O(12)	8404(17)	-17370(20)	-7389(13)	571(6)
C(1)	31348(16)	54590(20)	9967(15)	354(6)
C(2)	32318(18)	58380(30)	1923(16)	404(6)
C(3)	38080(20)	52850(30)	-2156(19)	558(8)
C(4)	38830(30)	56270(40)	-9680(20)	737(11)
C(5)	33650(30)	65220(40)	-13160(20)	782(13)
C(6)	27830(30)	70690(40)	-9260(20)	714(11)
C(7)	27230(20)	67500(30)	-1716(19)	531(8)
C(8)	43646(16)	54800(30)	28509(15)	359(6)
C(9)	51988(16)	60710(30)	30339(15)	368(6)
C(10)	59220(19)	53980(30)	32110(20)	550(8)
C(11)	66930(20)	59900(30)	33560(30)	649(10)
C(12)	67397(18)	72420(30)	33069(18)	485(7)
C(13)	60256(19)	79370(30)	31400(20)	512(7)
C(14)	52578(18)	73510(30)	30115(19)	477(7)
C(15)	19693(18)	18300(20)	14813(16)	381(6)
C(16)	16464(17)	8980(20)	8979(15)	368(6)
C(17)	10162(19)	830(30)	10365(17)	443(6)
C(18)	7490(20)	-8120(30)	5031(18)	477(7)
C(19)	10959(19)	-8850(30)	-1831(17)	433(6)
C(20)	17110(20)	-670(30)	-3359(17)	487(7)
C(21)	19930(20)	8100(30)	2062(17)	459(7)
0(2)	25000	79020(30)	25000	514(7)
C(22)	19480(80)	87320(110)	30000(60)	950(30)
C(34)	75000	103752(12)	20000	099(4) 997(14)
C(31)	57430(30)	79140(50)	3460(30)	007(14)
IN(Z) C(22)	33000(20) 45300(20)	01010(40) 86300(50)	-3240(20) 3220(20)	011(1U) 945(12)
C(32)	40090(00)	00300(30) 99490(60)	-3220(30) 3600(40)	040(13)
N(1)	46750(30)	86220(60)	10520(40)	1138(17)
N(1)	46750(30)	86220(60)	10520(30)	1138(17)

Tabela 3A (continuação) – Coordenadas atômicas (x·10⁵) e parâmetros de deslocamento isotrópico equivalentes (Å² x 10⁴)·U_(eq) é definido como um terço do traço do tensor Uij ortogonalizado. Os valores de *e.s.ds* (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	X	У	Z	U _(eq)
C(30)	54270(40)	81490(70)	10310(30)	1051(18)
C(34)	7200(30)	54890(50)	2160(30)	811(13)
N(3)	1580(20)	62120(30)	-1522(18)	672(9)
C(35)	5700(30)	42850(40)	3590(20)	696(10)
O(13)	35750(30)	94960(40)	20680(30)	528(11)
O(14)	45030(20)	89480(40)	-27050(20)	943(11)

Tabela 3B – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Comprimento	os de ligação (Å)				
Fe(1)-O(1)	1,8989(13)	O(9)-C(8)	1,266(3)	C(15)-C(16)	1,481(4)
Fe(1)-O(7)	2,014(2)	O(10)-C(5)	1,361(5)	C(16)-C(17)	1,386(4)
Fe(1)-O(9)	2,017(2)	O(11)-C(12)	1,372(4)	C(16)-C(21)	1,391(4)
Fe(1)-O(6)	2,0192(19)	O(11)-H(11)	0,872(19)	C(17)-C(18)	1,375(4)
Fe(1)-O(8)	2,0247(19)	O(12)-C(19)	1,365(3)	C(18)-C(19)	1,381(4)
Fe(1)-O(5)	2,063(2)	C(1)-C(2)	1,487(4)	C(19)-C(20)	1,377(4)
Fe(2)-O(1)	1,901(2)	C(2)-C(3)	1,371(4)	C(20)-C(21)	1,377(4)
Fe(2)-O(4)	1,9962(18)	C(2)-C(7)	1,385(4)	O(2)-C(22)#1	1,593(12)
Fe(2)-O(4)#1	1,9963(18)	C(3)-C(4)	1,382(5)	O(2)-C(22)	1,593(12)
Fe(2)-O(3)	2,0317(19)	C(4)-C(5)	1,370(7)	C(31)-N(2)	1,316(6)
Fe(2)-O(3)#1	2,0318(19)	C(5)-C(6)	1,356(6)	C(31)-C(30)	1,375(7)
Fe(2)-O(2)	2,064(3)	C(6)-C(7)	1,374(5)	N(2)-C(32)	1,332(6)
O(1)-Fe(1)#1	1,8989(13)	C(8)-C(9)	1,485(4)	C(32)-C(33)	1,381(7)
O(3)-C(1)	1,263(3)	C(9)-C(10)	1,375(4)	C(33)-N(1)	1,339(8)
O(4)-C(8)	1,256(3)	C(9)-C(14)	1,390(4)	N(1)-C(30)	1,316(7)
O(5)-H(5B)	0,869(19)	C(10)-C(11)	1,391(5)	C(34)-N(3)	1,304(6)
O(5)-H(5A)	0,860(19)	C(11)-C(12)	1,360(5)	C(34)-C(35)	1,355(6)
O(6)-C(1)	1,263(3)	C(12)-C(13)	1,374(4)	N(3)-C(35)#2	1,298(5)
O(7)-C(15)	1,264(3)	C(13)-C(14)	1,381(4)	C(35)-N(3)#2	1,298(5)
O(8)-C(15)#1	1,265(3)	C(15)-O(8)#1	1,265(3)	O(13)-C(22)#1	1,176(14)

Tabela 3B (continuação) – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Ângulos de ligação (°)			
O(1)-Fe(1)-O(7)	92,77(7)	C(1)-O(6)-Fe(1)	132,48(17)
O(1)-Fe(1)-O(9)	96,57(7)	C(15)-O(7)-Fe(1)	129,29(18)
O(7)-Fe(1)-O(9)	169,97(9)	C(15)#1-O(8)-Fe(1)	133,24(18)
O(1)-Fe(1)-O(6)	95,65(7)	C(8)-O(9)-Fe(1)	124,69(18)
O(7)-Fe(1)-O(6)	87,09(9)	O(6)-C(1)-O(3)	124,8(2)
O(9)-Fe(1)-O(6)	88,33(8)	O(6)-C(1)-C(2)	117,4(2)
O(1)-Fe(1)-O(8)	95,20(8)	O(3)-C(1)-C(2)	117,8(2)
O(7)-Fe(1)-O(8)	92,03(9)	C(3)-C(2)-C(7)	118,2(3)
O(9)-Fe(1)-O(8)	90,79(9)	C(3)-C(2)-C(1)	121,4(3)
O(6)-Fe(1)-O(8)	169,15(8)	C(7)-C(2)-C(1)	120,4(3)
O(1)-Fe(1)-O(5)	177,21(10)	C(2)-C(3)-C(4)	121,0(4)
O(7)-Fe(1)-O(5)	85,30(10)	C(5)-C(4)-C(3)	119,5(4)
O(9)-Fe(1)-O(5)	85,50(10)	C(6)-C(5)-O(10)	121,7(5)
O(6)-Fe(1)-O(5)	86,27(9)	C(6)-C(5)-C(4)	120,4(3)
O(8)-Fe(1)-O(5)	82,88(9)	O(10)-C(5)-C(4)	117,8(5)
O(1)-Fe(2)-O(4)	95,81(6)	C(5)-C(6)-C(7)	120,1(4)
O(1)-Fe(2)-O(4)#1	95,81(6)	C(6)-C(7)-C(2)	120,8(4)
O(4)-Fe(2)-O(4)#1	168,37(12)	O(4)-C(8)-O(9)	124,5(2)
O(1)-Fe(2)-O(3)	92,49(6)	O(4)-C(8)-C(9)	117,1(2)
O(4)-Fe(2)-O(3)	89,25(8)	O(9)-C(8)-C(9)	118,5(2)
O(4)#1-Fe(2)-O(3)	90,25(8)	C(10)-C(9)-C(14)	118,4(3)
O(1)-Fe(2)-O(3)#1	92,49(6)	C(10)-C(9)-C(8)	122,4(3)
O(4)-Fe(2)-O(3)#1	90,25(8)	C(14)-C(9)-C(8)	119,1(2)
O(4)#1-Fe(2)-O(3)#1	89,25(8)	C(9)-C(10)-C(11)	120,5(3)
O(3)-Fe(2)-O(3)#1	175,03(12)	C(12)-C(11)-C(10)	120,1(3)
O(1)-Fe(2)-O(2)	180,0	C(11)-C(12)-O(11)	118,2(3)
O(4)-Fe(2)-O(2)	84,19(6)	C(11)-C(12)-C(13)	120,6(3)
O(4)#1-Fe(2)-O(2)	84,19(6)	O(11)-C(12)-C(13)	121,3(3)
O(3)-Fe(2)-O(2)	87,51(6)	C(12)-C(13)-C(14)	119,3(3)
O(3)#1-Fe(2)-O(2)	87,51(6)	C(13)-C(14)-C(9)	121,1(3)
Fe(1)-O(1)-Fe(1)#1	120,92(13)	O(7)-C(15)-O(8)#1	124,5(3)
Fe(1)-O(1)-Fe(2)	119,54(6)	O(7)-C(15)-C(16)	117,6(2)
Fe(1)#1-O(1)-Fe(2)	119,54(6)	O(8)#1-C(15)-C(16)	117,9(2)
C(1)-O(3)-Fe(2)	128,01(17)	C(17)-C(16)-C(21)	119,0(3)
C(8)-O(4)-Fe(2)	136,82(18)	C(17)-C(16)-C(15)	121,1(3)
C(21)-C(16)-C(15)	119,9(3)	C(22)-O(2)-Fe(2)	124,3(4)
C(18)-C(17)-C(16)	120,4(3)	N(2)-C(31)-C(30)	121,3(5)
C(17)-C(18)-C(19)	120,0(3)	C(31)-N(2)-C(32)	118,0(4)
O(12)-C(19)-C(20)	117,4(3)	N(2)-C(32)-C(33)	120,1(5)
O(12)-C(19)-C(18)	122,3(3)	N(1)-C(33)-C(32)	122,0(5)
C(20)-C(19)-C(18)	120,3(3)	C(30)-N(1)-C(33)	116,4(5)
C(19)-C(20)-C(21)	119,7(3)	N(1)-C(30)-C(31)	122,1(5)
C(20)-C(21)-C(16)	120,6(3)	N(3)-C(34)-C(35)	122,7(4)
C(22)#1-O(2)-C(22)	111,3(8)	C(35)#2-N(3)-C(34)	115,8(3)
C(22)#1-O(2)-Fe(2)	124,3(4)	N(3)#2-C(35)-C(34)	121,5(4)

Tabela 3C – Coordenadas dos átomos de hidrogênio ($x \cdot 10^4$) e parâmetros de deslocamento isotrópico (Å² x 10³). Todos os átomos de hidrogênio estavam localizados no mapa de Fourier e foram refinados livremente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	x	У	Z	U _(iso)
H(5B)	4410(30)	2250(40)	1287(12)	83
H(5A)	4800(20)	2080(40)	2060(20)	83
H(10)	3122	7383	-2203	182
H(11)	7540(30)	8540(20)	3270(30)	96
H(12)	565	-2275	-555	86
H(3)	4155	4669	18	67
H(4)	4282	5254	-1237	88
H(6)	2423	7661	-1170	86
H(7)	2336	7150	98	64
H(10A)	5895	4541	3233	66
H(11A)	7178	5529	3487	78
H(13)	6059	8793	3114	61
H(14)	4773	7821	2908	57
H(17)	773	141	1493	53
H(18)	335	-1368	605	57
H(20)	1935	-106	-803	58
H(21)	2420	1348	109	55
H(2)	2820(50)	8470(60)	2370(60)	77
H(22A)	1720	9417	2695	142
H(22B)	2293	9034	3449	142
H(22C)	1500	8245	3158	142
H(42)	6276	7574	357	106
H(44)	4215	8811	-787	101
H(45)	3685	9161	360	117
H(41)	5754	7967	1494	126
H(30)	1245	5814	388	97
H(32)	997	3803	612	84
H(13A)	3730(50)	10190(40)	2210(50)	79
H(13B)	3960(40)	9330(90)	1810(40)	79
H(14A)	4020(30)	9150(60)	-2500(40)	141
H(14B)	4480(40)	9030(60)	-3237(13)	141

Ligações envolvidas		Ligações envolvidas	
O(7)-Fe(1)-O(1)-Fe(1)#1	53.25(6)	C(14)-C(9)-C(10)-C(11)	-0.6(5)
O(9)-Fe(1)-O(1)-Fe(1)#1	-130.45(6)	C(8)-C(9)-C(10)-C(11)	178.1(3)
O(6)-Fe(1)-O(1)-Fe(1)#1	140.59(6)	C(9)-C(10)-C(11)-C(12)	-1.5(6)
O(8)-Fe(1)-O(1)-Fe(1)#1	-39.05(6)	C(10)-C(11)-C(12)-O(11)	-178.6(3)
O(7)-Fe(1)-O(1)-Fe(2)	-126.76(6)	C(10)-C(11)-C(12)-C(13)	2.2(6)
O(9)-Fe(1)-O(1)-Fe(2)	49.55(6)	C(11)-C(12)-C(13)-C(14)	-0.9(5)
O(6)-Fe(1)-O(1)-Fe(2)	-39.41(6)	O(11)-C(12)-C(13)-C(14)	180.0(3)
O(8)-Fe(1)-O(1)-Fe(2)	140.95(6)	C(12)-C(13)-C(14)-C(9)	-1.2(5)
Fe(1)-O(6)-C(1)-O(3)	19.7(4)	C(10)-C(9)-C(14)-C(13)	2.0(5)
Fe(1)-O(6)-C(1)-C(2)	-159.72(19)	C(8)-C(9)-C(14)-C(13)	-176.8(3)
Fe(2)-O(3)-C(1)-O(6)	11.3(4)	Fe(1)-O(7)-C(15)-O(8)#1	14.5(4)
Fe(2)-O(3)-C(1)-C(2)	-169.30(18)	Fe(1)-O(7)-C(15)-C(16)	-165.15(19)
O(6)-C(1)-C(2)-C(3)	-6.3(4)	O(7)-C(15)-C(16)-C(17)	165.6(3)
O(3)-C(1)-C(2)-C(3)	174.3(3)	O(8)#1-C(15)-C(16)-C(17)	-14.1(4)
O(6)-C(1)-C(2)-C(7)	172.2(3)	O(7)-C(15)-C(16)-C(21)	-12.6(4)
O(3)-C(1)-C(2)-C(7)	-7.2(4)	O(8)#1-C(15)-C(16)-C(21)	167.7(3)
C(7)-C(2)-C(3)-C(4)	0.2(5)	C(21)-C(16)-C(17)-C(18)	1.1(4)
C(1)-C(2)-C(3)-C(4)	178.7(3)	C(15)-C(16)-C(17)-C(18)	-177.1(3)
C(2)-C(3)-C(4)-C(5)	-0.9(6)	C(16)-C(17)-C(18)-C(19)	-1.4(5)
C(3)-C(4)-C(5)-C(6)	0.0(7)	C(17)-C(18)-C(19)-O(12)	-178.5(3)
C(3)-C(4)-C(5)-O(10)	179.6(4)	C(17)-C(18)-C(19)-C(20)	0.2(5)
O(10)-C(5)-C(6)-C(7)	-178.0(4)	O(12)-C(19)-C(20)-C(21)	-179.8(3)
C(4)-C(5)-C(6)-C(7)	1.7(7)	C(18)-C(19)-C(20)-C(21)	1.4(5)
C(5)-C(6)-C(7)-C(2)	-2.4(6)	C(19)-C(20)-C(21)-C(16)	-1.8(5)
C(3)-C(2)-C(7)-C(6)	1.4(5)	C(17)-C(16)-C(21)-C(20)	0.5(5)
C(1)-C(2)-C(7)-C(6)	-177.1(3)	C(15)-C(16)-C(21)-C(20)	178.8(3)
Fe(2)-O(4)-C(8)-O(9)	0.8(5)	C(30)-C(31)-N(2)-C(32)	-1.0(8)
Fe(2)-O(4)-C(8)-C(9)	179.65(19)	C(31)-N(2)-C(32)-C(33	0.2(8)
Fe(1)-O(9)-C(8)-O(4)	25.4(4)	N(2)-C(32)-C(33)-N(1)	1.2(9)
Fe(1)-O(9)-C(8)-C(9)	-153.45(19)	C(32)-C(33)-N(1)-C(30)	-1.8(10)
O(4)-C(8)-C(9)-C(10)	175.0(3)	C(33)-N(1)-C(30)-C(31	1.0(10)
O(9)-C(8)-C(9)-C(10)	-6.1(4)	N(2)-C(31)-C(30)-N(1)	0.4(10)
O(4)-C(8)-C(9)-C(14)	-6.4(4)	C(35)-C(34)-N(3)-C(35)#	1.8(8)
O(9)-C(8)-C(9)-C(14)	172.6(3)	N(3)-C(34)-C(35)-N(3)#2	-1.9(8)

Tabela 3D – Ângulos de torção, em graus. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Transformações de simetria utilizadas para gerar átomos equivalentes: #1 -x+1/2,y,-z+1/2; #2 -x,-y+1,-z

ANEXO	4	_	Dados	cristalográficos	complementares	para	0	complexo
[Co ₃ (4,4'-	bip).	₄(trir	n)2(H2O)1	10]·(<i>4,4'-bip</i>)·8(H ₂ C	D), produto D.			

Tabela 4A – Coordenadas atômicas ($x \cdot 10^5$) e parâmetros de deslocamento isotrópico equivalentes (Å² $x \cdot 10^4$)·U_(eq) é definido como um terço do traço do tensor Uij ortogonalizado. Os valores de *e.s.ds* (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	x	v	Z	
Co(1)	56263(6)	33434(5)	68226(4)	
$C_0(2)$	50000	10000	100000	$\Delta \Delta 7(A)$
C(2)	66210(50)	10600(50)	38880(40)	712(18)
C(1)	65110(50)	-10090(30)	42540(<u>4</u> 0)	604(16)
C(2)	64410(40)	-2470(40)	42340(30)	519(15)
C(3)	65270(50)	-3110(40)	49390(30) 52110(40)	725(10)
C(4) C(5)	66490(60)	-12200(40)	32110(40)	723(19)
C(5)	60400(00) 60410(50)	-19930(30)	47970(40)	700(20) 607(16)
C(0)	62420(50)	22370(40)	55200(30)	671(10)
C(r)	02430(30)	F4030(40)	57690(30)	405(14)
	02000(40) 61470(50)	3470(40) 4620(40)	53060(30) 60250(20)	495(14)
C(9)	50700(50)	4020(40)	64220(20)	506(16)
C(10)	59700(50) 72970(40)	12570(40)	04220(30) 77560(20)	090(10) 492(14)
C(11)	72070(40)	20140(40)	77500(30)	403(14)
C(12)	88220(40)	20960(40)	79030(20)	443(13)
C(13)	08500(40)	207 10(40)	04120(30) 95720(20)	437(14)
C(14) C(15)	90000(40) 102150/50)	21100(30)	00260(20)	417(13) 520(15)
C(15)	103150(50)	13650(40)	90300(30)	330(13)
C(10)	104290(50)	20100(40)	02790(30)	472(14)
C(17)	100090(40)	34730(30)	76330(30)	472(14) 545(15)
C(10)	100290(50)	42370(40)	74010(30)	545(15)
C(19)	89830(40)	33880(40)	76700(30)	448(14)
C(20)	43020(30)	49000(50)	70420(30)	710(19)
C(21)	44590(60)	57030(50)	00300(30)	740(20)
C(22)	52940(40)	57070(40)	81070(20)	400(14)
C(23)	62130(30)	57970(40)	01070(30)	012(17)
C(24) C(25)	02030(50)	49000(40)	01000(30)	017(17) 521(16)
C(25)	42990(50)	03090(40) 75550(40)	91000(30)	536(16)
C(20)	43270(30)	75550(40)	07340(30) 96920(20)	330(10)
C(28)	52000(40) 60370(60)	70300(40)	00110(20)	444(13) 680(20)
C(20)	50650(50)	82500(40)	90110(30)	508(16)
C(29)	55760(60)	120520(40)	93730(30)	060(20)
C(30)	57760(60)	130330(50)	94200(40)	900(20)
C(31)	<i>40440(50)</i>	145370(40)	97400(40)	940(20) 610(16)
C(32)	49440(30)	143370(40)	96230(30)	1220(20)
C(33)	40440(70) 30610(70)	142200(00)	95510(50)	1220(30) 1230(30)
C(34) N(1)	59010(70) 66070(40)	10350(00)	92300(30)	717(15)
N(2)	59010(40)	-13330(40) 21 <u>44</u> 0(20)	61730(20)	<u>/17(13)</u> <u>/81(11)</u>
N(2)	54480(40)	21770(30) 15320(30)	7/830(20)	504(11)
N(J)	50950(40)	40020(00) 87/20(20)	0/300(20)	J04(11) /65/11)
N(5)	47120(50)	127680(40)	94300(20) 01730(30)	700(16)
O(1)	70260(20)	30880(20)	72445(18)	495(9)

	X	У	Z	U _(eq)
O(2)	67100(30)	20990(30)	80810(20)	649(11)
O(3)	101780(30)	48080(30)	70970(20)	636(11)
O(4)	115760(30)	42370(30)	75950(20)	693(11)
O(5)	97230(30)	7860(30)	92924(19)	653(11)
O(6)	112520(30)	14010(30)	91470(20)	686(11)
O(1W)	48590(30)	24360(30)	74540(19)	555(10)
O(2W)	63930(40)	42860(30)	61780(20)	564(10)
O(3W)	42060(30)	36210(30)	63690(20)	583(10)
O(4W)	35510(30)	95830(30)	102730(20)	573(10)
O(5W)	44170(30)	106990(30)	91440(20)	608(11)
O(6W)	28950(40)	26910(50)	75860(40)	1340(30)
O(7W)	25280(50)	8850(40)	79950(30)	1009(16)
O(8W)	67230(30)	2410(30)	84050(20)	582(10)
O(9W)	116600(30)	-3260(30)	96900(20)	622(11)

Tabela 4A (continuação) – Coordenadas atômicas ($x \cdot 10^5$) e parâmetros de deslocamento isotrópico equivalentes (Å² x 10⁴)·U_(eq) é definido como um terço do traço do tensor Uij ortogonalizado. Os valores de *e.s.ds* (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Tabela 4B – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Comprimentos de ligação	o (Å)		
Co(1)-O(1)	2,045(4)	C(18)-O(4)	1,264(7)
Co(1)-O(1W)	2,076(4)	C(20)-N(3)	1,320(7)
Co(1)-O(3W)	2,100(4)	C(20)-C(21)	1,385(8)
Co(1)-O(2W)	2,122(4)	C(20)-H(20)	0,92(6)
Co(1)-N(3)	2,145(4)	C(19)-H(19)	0,88(5)
Co(1)-N(2)	2,162(4)	C(21)-C(22)	1,357(8)
Co(2)-O(4W)	2,082(4)	C(21)-H(21)	0,93(6)
Co(2)-O(4W)#1	2,082(4)	C(22)-C(23)	1,371(8)
Co(2)-N(4)	2,104(4)	C(22)-C(27)	1,493(7)
Co(2)-N(4)#1	2,104(4)	C(23)-C(24)	1,380(8)
Co(2)-O(5W)	2,113(4)	C(23)-H(23)	0,93(7)
Co(2)-O(5W)#1	2,113(4)	C(24)-N(3)	1,325(7)
C(1)-N(1)	1,320(8)	C(24)-H(24)	0,97(5)
C(1)-C(2)	1,375(8)	C(25)-N(4)	1,325(7)
C(1)-H(1)	0,95(5)	C(25)-C(26)	1,380(8)
C(2)-C(3)	1,389(8)	C(25)-H(25)	0,84(5)
C(2)-H(2)	1,01(5)	C(26)-C(27)	1,358(8)
C(3)-C(4)	1,393(8)	C(26)-H(26)	0,84(4)
C(3)-C(8)	1,495(7)	C(27)-C(28)	1,366(9)
C(4)-C(5)	1,369(9)	C(28)-C(29)	1,377(8)
C(4)-H(4)	0,94(6)	C(28)-H(28)	0,77(6)
C(5)-N(1)	1,316(8)	C(29)-N(4)	1,336(7)
C(5)-H(5)	0,98(6)	C(29)-H(29)	0,93(6)
C(6)-N(2)	1,328(7)	C(30)-N(5)	1,300(9)

Tabela 4B (continuação) – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Comprimentos de ligaçã	io (Å)		
C(6)-C(7)	1,387(8)	C(30)-C(31)	1,380(9)
C(6)-H(6)	1,06(6)	N(5)-C(34)	1,295(9)
C(7)-C(8)	1,379(8)	C(31)-C(32)	1,358(8)
C(7)-H(7)	0,89(5)	C(32)-C(33)	1,367(9)
C(8)-C(9)	1,369(8)	C(32)-C(32)#2	1,480(12)
C(9)-C(10)	1,379(8)	C(33)-C(34)	1,374(10)
C(9)-H(9)	0,90(5)	O(1W)-H(1A)	0,81(2)
C(10)-N(2)	1,340(7)	O(1W)-H(1B)	0,81(2)
С(10)-Н(10)	0,97(6)	O(2W)-H(2A)	0,81(2)
C(11)-O(2)	1,244(6)	O(2W)-H(2B)	0,82(2)
C(11)-O(1)	1,266(6)	O(3W)-H(3A)	0,81(2)
C(11)-C(12)	1,501(8)	O(3W)-H(3B)	0,83(2)
C(12)-C(13)	1,377(7)	O(4W)-H(4A)	0,82(2)
C(12)-C(19)	1,386(7)	O(4W)-H(4B)	0,82(2)
C(13)-C(14)	1,387(7)	O(5W)-H(5A)	0,83(2)
C(13)-H(13)	0,88(2)	O(5W)-H(5B)	0,84(2)
C(14)-C(16)	1,381(7)	O(6W)-H(6A)	0,83(2)
C(14)-C(15)	1,507(7)	O(6W)-H(6B)	0,83(2)
C(15)-O(6)	1,250(7)	O(7W)-H(7A)	0,84(2)
C(15)-O(5)	1,262(6)	O(7W)-H(7B)	0,84(2)
C(16)-C(17)	1,390(7)	O(8W)-H(8A)	0,83(2)
C(16)-H(16)	0,90(5)	O(8W)-H(8B)	0,83(2)
C(17)-C(19)	1,389(7)	O(9W)-H(9A)	0,83(2)
C(17)-C(18)	1,529(7)	O(9W)-H(9B)	0,84(2)
C(18)-O(3)	1,253(6)		
Ângulos de ligação (°)			
O(1)-Co(1)-O(1W)	94,89(16)	O(3)-C(18)-C(17)	118,8(5)
O(1)-Co(1)-O(3W)	178,59(17)	O(4)-C(18)-C(17)	116,8(5)
O(1W)-Co(1)-O(3W)	86,47(18)	N(3)-C(20)-C(21)	123,6(6)
O(1)-Co(1)-O(2W)	85,75(17)	N(3)-C(20)-H(20)	122(4)
O(1W)-Co(1)-O(2W)	179,17(18)	C(21)-C(20)-H(20)	114(4)
O(3W)-Co(1)-O(2W)	92,90(19)	C(12)-C(19)-C(17)	121,2(5)
O(1)-Co(1)-N(3)	89,27(16)	C(12)-C(19)-H(19)	122(3)
O(1W)-Co(1)-N(3)	91,70(16)	C(17)-C(19)-H(19)	117(3)
O(3W)-Co(1)-N(3)	91,07(17)	C(22)-C(21)-C(20)	120,2(6)
O(2W)-Co(1)-N(3)	87,77(16)	C(22)-C(21)-H(21)	125(4)
O(1)-Co(1)-N(2)	87,43(14)	C(20)-C(21)-H(21)	114(4)
O(1W)-Co(1)-N(2)	89,43(16)	C(21)-C(22)-C(23)	116,4(5)
O(3W)-Co(1)-N(2)	92,21(16)	C(21)-C(22)-C(27)	121,5(5)
O(2W)-Co(1)-N(2)	91,14(16)	C(23)-C(22)-C(27)	122,1(5)
N(3)-Co(1)-N(2)	176,59(18)	C(22)-C(23)-C(24)	120,4(6)
O(4W)-Co(2)-N(4)	88,68(16)	C(22)-C(23)-H(23)	126(4)
O(4W)#1-Co(2)-N(4)	91,32(16)	C(24)-C(23)-H(23)	114(4)
O(4W)-Co(2)-N(4)#1	91,32(16)	N(3)-C(24)-C(23)	123,3(6)
O(4W)#1-Co(2)-N(4)#1	88,68(16)	N(3)-C(24)-H(24)	121(3)

Tabela 4B (continuação) – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Ângulos de ligação (°)			
N(4)-Co(2)-N(4)#1	180,0(2)	C(23)-C(24)-H(24)	116(3)
O(4W)-Co(2)-O(5W)	91,54(18)	N(4)-C(25)-C(26)	123,6(6)
O(4W)#1-Co(2)-O(5W)	88,46(18)	N(4)-C(25)-H(25)	113(3)
N(4)-Co(2)-O(5W)	87,93(17)	C(26)-C(25)-H(25)	123(3)
N(4)#1-Co(2)-O(5W)	92,07(17)	C(27)-C(26)-C(25)	120,3(6)
O(4W)-Co(2)-O(5W)#1	88,46(18)	C(27)-C(26)-H(26)	122(3)
O(4W)#1-Co(2)-O(5W)#1	91,54(18)	C(25)-C(26)-H(26)	117(3)
N(4)-Co(2)-O(5W)#1	92,07(17)	C(26)-C(27)-C(28)	116,5(6)
N(4)#1-Co(2)-O(5W)#1	87,93(17)	C(26)-C(27)-C(22)	122,8(5)
N(1)-C(1)-C(2)	124,0(7)	C(28)-C(27)-C(22)	120,8(5)
N(1)-C(1)-H(1)	118(3)	C(27)-C(28)-C(29)	120,8(7)
C(2)-C(1)-H(1)	118(3)	C(27)-C(28)-H(28)	121(5)
C(1)-C(2)-C(3)	119,4(6)	C(29)-C(28)-H(28)	118(5)
C(1)-C(2)-H(2)	115(3)	N(4)-C(29)-C(28)	122,7(6)
C(3)-C(2)-H(2)	126(3)	N(4)-C(29)-H(29)	117(4)
C(2)-C(3)-C(4)	116,4(5)	C(28)-C(29)-H(29)	119(4)
C(2)-C(3)-C(8)	122,5(5)	N(5)-C(30)-C(31)	124,5(7)
C(4)-C(3)-C(8)	121,2(5)	N(5)-C(30)-H(30)	117,7
C(5)-C(4)-C(3)	119,1(7)	C(31)-C(30)-H(30)	117,7
C(5)-C(4)-H(4)	122(4)	C(34)-N(5)-C(30)	115,5(6)
C(3)-C(4)-H(4)	119(4)	C(32)-C(31)-C(30)	120,7(7)
N(1)-C(5)-C(4)	124,7(7)	C(32)-C(31)-H(31)	119,6
N(1)-C(5)-H(5)	119(4)	C(30)-C(31)-H(31)	119,6
C(4)-C(5)-H(5)	116(4)	C(31)-C(32)-C(33)	113,9(6)
N(2)-C(6)-C(7)	122,8(6)	C(31)-C(32)-C(32)#2	123,1(8)
N(2)-C(6)-H(6)	120(3)	C(33)-C(32)-C(32)#2	123,0(7)
C(7)-C(6)-H(6)	116(3)	C(32)-C(33)-C(34)	121,6(7)
C(8)-C(7)-C(6)	120,7(6)	C(32)-C(33)-H(33)	119,2
C(8)-C(7)-H(7)	127(4)	C(34)-C(33)-H(33)	119,2
C(6)-C(7)-H(7)	112(4)	N(5)-C(34)-C(33)	123,8(8)
C(9)-C(8)-C(7)	115,9(5)	N(5)-C(34)-H(34)	118,1
C(9)-C(8)-C(3)	121,5(5)	C(33)-C(34)-H(34)	118,1
C(7)-C(8)-C(3)	122,6(5)	C(5)-N(1)-C(1)	116,4(6)
C(8)-C(9)-C(10)	121,0(6)	C(6)-N(2)-C(10)	116,7(5)
C(8)-C(9)-H(9)	122(4)	C(6)-N(2)-Co(1)	123,3(4)
С(10)-С(9)-Н(9)	117(4)	C(10)-N(2)-Co(1)	119,9(4)
N(2)-C(10)-C(9)	122,9(6)	C(20)-N(3)-C(24)	116,1(5)
N(2)-C(10)-H(10)	115(4)	C(20)-N(3)-Co(1)	124,2(4)
С(9)-С(10)-Н(10)	121(4)	C(24)-N(3)-Co(1)	119,5(4)
O(2)-C(11)-O(1)	125,0(5)	C(25)-N(4)-C(29)	116,1(5)
O(2)-C(11)-C(12)	119,6(5)	C(25)-N(4)-Co(2)	122,0(4)
O(1)-C(11)-C(12)	115,4(5)	C(29)-N(4)-Co(2)	121,9(4)
C(13)-C(12)-C(19)	119,3(5)	C(11)-O(1)-Co(1)	131,0(3)
C(13)-C(12)-C(11)	121,4(5)	Co(1)-O(1W)-H(1A)	100(6)
C(19)-C(12)-C(11)	119,3(5)	Co(1)-O(1W)-H(1B)	122(5)
C(12)-C(13)-C(14)	121,1(5)	H(1A)-O(1W)-H(1B)	121(4)
C(12)-C(13)-H(13)	120(3)	Co(1)-O(2W)-H(2A)	118(4)

Tabela 4B (continuação) – Dimensões moleculares. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Ângulos de ligação (°)			
C(14)-C(13)-H(13)	119(3)	Co(1)-O(2W)-H(2B)	117(6)
C(16)-C(14)-C(13)	118,6(5)	H(2A)-O(2W)-H(2B)	114(5)
C(16)-C(14)-C(15)	121,7(5)	Co(1)-O(3W)-H(3A)	130(5)
C(13)-C(14)-C(15)	119,6(5)	Co(1)-O(3W)-H(3B)	109(6)
O(6)-C(15)-O(5)	123,8(5)	H(3A)-O(3W)-H(3B)	113(5)
O(6)-C(15)-C(14)	119,0(5)	Co(2)-O(4W)-H(4A)	132(5)
O(5)-C(15)-C(14)	117,2(6)	Co(2)-O(4W)-H(4B)	115(5)
C(14)-C(16)-C(17)	121,8(5)	H(4A)-O(4W)-H(4B)	107(7)
C(14)-C(16)-H(16)	123(3)	Co(2)-O(5W)-H(5A)	118(4)
C(17)-C(16)-H(16)	115(3)	Co(2)-O(5W)-H(5B)	127(4)
C(19)-C(17)-C(16)	117,9(5)	H(5A)-O(5W)-H(5B)	105(4)
C(19)-C(17)-C(18)	118,5(5)	H(6A)-O(6W)-H(6B)	121(9)
C(16)-C(17)-C(18)	123,5(5)	H(7A)-O(7W)-H(7B)	109(5)
O(3)-C(18)-O(4)	124,5(5)	H(8A)-O(8W)-H(8B)	110(7)
		H(9A)-O(9W)-H(9B)	114(7)

Transformações de simetria utilizadas para gerar átomos equivalentes: #1 -x+1,-y+2,-z+2; #2 -x+1,-y+3,-z+2

Tabela 4C – Coordenadas dos átomos de hidrogênio ($x \cdot 10^4$) e parâmetros de deslocamento isotrópico (Å² x 10³). Todos os átomos de hidrogênio estavam localizados no mapa de Fourier e foram refinados livremente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	X	у	Z	U _(iso)
H(30)	6131	12647	9389	115
H(31)	6370	14076	9909	113
H(33)	3474	14617	9577	146
H(34)	3329	13178	9064	147
H(1)	6660(40)	-1000(40)	3420(30)	58(17)
H(2)	6450(40)	360(40)	3990(30)	67(17)
H(4)	6610(40)	-1290(40)	5670(30)	80(20)
H(5)	6660(50)	-2630(50)	5010(30)	90(20)
H(6)	6080(40)	2930(40)	5310(30)	78(18)
H(7)	6310(40)	1640(40)	4700(30)	61(17)
H(9)	6160(40)	-110(40)	6240(30)	66(19)
H(10)	5790(50)	1200(50)	6880(30)	100(20)
H(13)	8450(30)	1640(30)	8610(20)	54(17)
H(16)	11090(40)	2890(30)	8370(20)	45(16)
H(19)	8740(40)	3790(40)	7370(20)	45(16)
H(20)	3960(40)	4620(40)	7520(30)	68(19)
H(21)	3790(50)	5900(50)	8090(30)	90(20)
H(23)	6850(50)	6040(50)	8240(30)	100(20)
H(24)	6940(40)	4750(40)	7620(20)	55(16)
H(25)	3750(40)	8670(30)	9190(20)	42(16)
H(26)	3790(30)	7390(30)	8530(20)	21(13)

Tabela 4C (continuação) – Coordenadas dos átomos de hidrogênio ($x \cdot 10^4$) e parâmetros de deslocamento isotrópico (Å² x 10³). Todos os átomos de hidrogênio estavam localizados no mapa de Fourier e foram refinados livremente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

	X	У	Z	U _(iso)
H(28)	6540(40)	7150(40)	9030(30)	60(20)
H(29)	6520(40)	8460(40)	9640(30)	80(20)
H(1A)	5310(40)	2330(70)	7730(30)	170(40)
H(1B)	4280(20)	2540(50)	7560(30)	100(30)
H(2A)	6960(20)	4450(40)	6290(30)	70(20)
H(2B)	6050(50)	4700(40)	5990(40)	160(40)
H(3A)	4050(50)	3990(40)	6070(20)	100(30)
H(3B)	3870(60)	3120(30)	6360(40)	170(40)
H(4A)	2990(30)	9660(50)	10100(30)	100(30)
H(4B)	3470(50)	9560(50)	10672(12)	90(30)
H(5A)	4540(40)	11274(17)	9100(30)	70(20)
H(5B)	4380(50)	10480(40)	8754(15)	100(30)
H(6A)	2570(70)	3200(40)	7560(50)	190(50)
H(6B)	2610(50)	2180(30)	7690(30)	90(20)
H(7A)	2330(110)	930(100)	8390(30)	300(90)
H(7B)	2860(100)	380(60)	7960(70)	290(80)
H(8A)	6190(30)	30(50)	8230(30)	120(30)
H(8B)	6810(50)	810(20)	8300(30)	100(30)
H(9A)	11580(60)	220(30)	9530(40)	140(40)
H(9B)	11260(30)	-460(40)	9990(20)	60(20)

Tabela 4D – Ângulos de torção, em graus. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Ligações envolvidas	Ângulo de torção	Ligações envolvidas	Ângulo de torção
N(1)-C(1)-C(2)-C(3)	-2,1(10)	N(3)-C(20)-C(21)-C(22)	1,4(11)
C(1)-C(2)-C(3)-C(4)	2,3(9)	C(20)-C(21)-C(22)-C(23)	-0,8(10)
C(1)-C(2)-C(3)-C(8)	-178,0(6)	C(20)-C(21)-C(22)-C(27)	177,9(6)
C(2)-C(3)-C(4)-C(5)	-1,5(9)	C(21)-C(22)-C(23)-C(24)	-0,1(9)
C(8)-C(3)-C(4)-C(5)	178,8(6)	C(27)-C(22)-C(23)-C(24)	-178,7(5)
C(3)-C(4)-C(5)-N(1)	0,4(12)	C(22)-C(23)-C(24)-N(3)	0,5(10)
N(2)-C(6)-C(7)-C(8)	1,3(10)	N(4)-C(25)-C(26)-C(27)	-1,5(9)
C(6)-C(7)-C(8)-C(9)	-1,5(9)	C(25)-C(26)-C(27)-C(28)	0,1(8)
C(6)-C(7)-C(8)-C(3)	176,2(6)	C(25)-C(26)-C(27)-C(22)	-177,8(5)
C(2)-C(3)-C(8)-C(9)	175,1(6)	C(21)-C(22)-C(27)-C(26)	-13,4(8)
C(4)-C(3)-C(8)-C(9)	-5,2(8)	C(23)-C(22)-C(27)-C(26)	165,2(6)
C(2)-C(3)-C(8)-C(7)	-2,4(9)	C(21)-C(22)-C(27)-C(28)	168,8(6)
C(4)-C(3)-C(8)-C(7)	177,3(6)	C(23)-C(22)-C(27)-C(28)	-12,6(8)
C(7)-C(8)-C(9)-C(10)	0,1(9)	C(26)-C(27)-C(28)-C(29)	0,5(9)
C(3)-C(8)-C(9)-C(10)	-177,6(5)	C(22)-C(27)-C(28)-C(29)	178,4(6)
C(8)-C(9)-C(10)-N(2)	1,7(10)	C(27)-C(28)-C(29)-N(4)	0,2(10)
O(2)-C(11)-C(12)-C(13)	14,1(7)	C(31)-C(30)-N(5)-C(34)	-0,2(12)

Ligações envolvidas	Ângulo de torção	Ligações envolvidas	Ângulo de torção
O(1)-C(11)-C(12)-C(13)	-165,4(5)	N(5)-C(30)-C(31)-C(32)	0,9(13)
O(2)-C(11)-C(12)-C(19)	-169,4(5)	C(30)-C(31)-C(32)-C(33)	-1,3(11)
O(1)-C(11)-C(12)-C(19)	11,1(7)	C(30)-C(31)-C(32)-C(32)#2	178,7(7)
C(19)-C(12)-C(13)-C(14)	-0,1(7)	C(31)-C(32)-C(33)-C(34)	1,1(13)
C(11)-C(12)-C(13)-C(14)	176,4(5)	C(32)#2-C(32)-C(33)-C(34)	-178,8(9)
C(12)-C(13)-C(14)-C(16)	0,7(7)	C(30)-N(5)-C(34)-C(33)	0,1(14)
C(12)-C(13)-C(14)-C(15)	-176,5(5)	C(32)-C(33)-C(34)-N(5)	-0,6(16)
C(16)-C(14)-C(15)-O(6)	-1,3(8)	C(4)-C(5)-N(1)-C(1)	-0,1(11)
C(13)-C(14)-C(15)-O(6)	175,8(5)	C(2)-C(1)-N(1)-C(5)	1,0(10)
C(16)-C(14)-C(15)-O(5)	178,5(5)	C(7)-C(6)-N(2)-C(10)	0,4(9)
C(13)-C(14)-C(15)-O(5)	-4,4(7)	C(7)-C(6)-N(2)-Co(1)	178,3(5)
C(13)-C(14)-C(16)-C(17)	0,5(7)	C(9)-C(10)-N(2)-C(6)	-1,8(9)
C(15)-C(14)-C(16)-C(17)	177,6(5)	C(9)-C(10)-N(2)-Co(1)	-179,8(5)
C(14)-C(16)-C(17)-C(19)	-2,1(7)	C(21)-C(20)-N(3)-C(24)	-0,9(10)
C(14)-C(16)-C(17)-C(18)	-177,9(5)	C(21)-C(20)-N(3)-Co(1)	-176,0(5)
C(19)-C(17)-C(18)-O(3)	5,6(7)	C(23)-C(24)-N(3)-C(20)	0,0(9)
C(16)-C(17)-C(18)-O(3)	-178,6(5)	C(23)-C(24)-N(3)-Co(1)	175,3(5)
C(19)-C(17)-C(18)-O(4)	-173,6(5)	C(26)-C(25)-N(4)-C(29)	2,2(8)
C(16)-C(17)-C(18)-O(4)	2,2(8)	C(26)-C(25)-N(4)-Co(2)	-178,5(4)
C(13)-C(12)-C(19)-C(17)	-1,6(8)	C(28)-C(29)-N(4)-C(25)	-1,5(9)
C(11)-C(12)-C(19)-C(17)	-178,2(5)	C(28)-C(29)-N(4)-Co(2)	179,2(5)
C(16)-C(17)-C(19)-C(12)	2,7(7)	O(2)-C(11)-O(1)-Co(1)	8,5(8)
C(18)-C(17)-C(19)-C(12)	178,7(5)	C(12)-C(11)-O(1)-Co(1)	-172,1(3)

Tabela 4D (continuação) – Ângulos de torção, em graus. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

Transformações de simetria utilizadas para gerar átomos equivalentes: #1 -x+1,-y+2,-z+2; #2 -x+1,-y+3,-z+2
Tabela 4E – Ligações de hidrogênio. Os comprimentos e ângulos das ligações são dados em Ångstroms e em graus, respectivamente. Os valores de e.s.ds (*estimated standard deviations* – desvio padrão estimado) estão entre parênteses.

D-H…R	d(D-H)	d(H…R)	d(D…R)	< (DHR)
O(1W)-H(1A)…O(2)	0,81(2)	1,99(3)	2,762(6)	158(7)
O(1W)-H(1B)…O(6W)	0,81(2)	1,84(2)	2,631(7)	165(7)
O(2W)-H(2A)…O(8W)#3	0,81(2)	2,13(3)	2,924(6)	165(6)
O(2W)-H(2B)…O(5)#3	0,82(2)	1,90(3)	2,718(6)	169(9)
O(3W)-H(3A)…O(9W)#3	0,81(2)	2,02(3)	2,814(6)	165(6)
O(3W)-H(3B)…N(1)#4	0,83(2)	2,07(5)	2,826(6)	151(8)
O(4W)-H(4A)…O(9W)#5	0,82(2)	1,92(2)	2,735(6)	174(7)
O(4W)-H(4B)…O(8W)#6	0,82(2)	1,90(3)	2,712(6)	169(7)
O(5W)-H(5A)…N(5)	0,83(2)	2,10(2)	2,915(7)	168(5)
O(5W)-H(5B)…O(3)#3	0,84(2)	2,05(3)	2,855(6)	159(7)
O(6W)-H(6A)…O(4)#7	0,83(2)	1,96(3)	2,772(7)	168(11)
O(6W)-H(6B)…O(7W)	0,83(2)	1,92(3)	2,700(9)	157(7)
O(7W)-H(7A)…O(6)#7	0,84(2)	2,22(6)	2,986(7)	153(12)
O(7W)-H(7B)…O(4)#8	0,84(2)	2,09(6)	2,860(7)	152(13)
O(8W)-H(8A)…O(3)#8	0,83(2)	1,93(3)	2,748(6)	166(8)
O(8W)-H(8B)…O(2)	0,83(2)	1,86(3)	2,675(6)	168(7)
O(9W)-H(9A)…O(6)	0,83(2)	1,87(2)	2,697(6)	174(8)
O(9W)-H(9B)…O(5)#9	0,84(2)	2,01(2)	2,849(6)	179(6)

Transformações de simetria utilizadas para gerar átomos equivalentes: #1 -x+1,-y+2,-z+2; #2 -x+1,-y+3,-z+2; #3 -x+3/2,y+1/2,-z+3/2; #4 -x+1,-y,-z+1 #5 x-1,y+1,z; #6 -x+1,-y+1,-z+2; #7 x-1,y,z; #8 -x+3/2,y-1/2,-z+3/2; #9 -x+2,-y,-z+2