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RESUMO

ROMANUS, Rodrigo Saldanha. Simulação Numérica Direta de Partícula Esferoidal
Sedimentando em Fluido Viscoplástico Utilizando Método Lattice Boltzmann. 2020. 119 f.
Dissertação (Mestrado em Engenharia Mecânica) – Universidade Tecnológica Federal do Paraná.
Curitiba, 2020.

Neste documento, é apresentado um estudo numérico da sedimentação de uma partícula elipsoidal
em fluido quiescente Newtoniano e viscoplástico. A pesquisa é motivada por seus aspectos
teóricos e aplicações industriais, tais como o transporte de sedimentos no setor de exploração de
petróleo. Para números de Reynolds moderados a altos, um objeto sob a ação da gravidade requer
uma distancia considerável para atingir um regime periódico ou estatisticamente permanente, o
que implica em restrições do tamanho máximo do domínio em simulações numéricas diretas
(DNS) para essa classe de escoamento, devido a limitações de memória. Algumas alternativas,
tais como técnicas de reposicionamento do domínio, permitem simulações em domínios sem
fronteiras e são encontradas em métodos espectrais e de diferenças finitas. Por questões de
localidade, a utilização do método lattice Boltzmann (LBM) para DNS tem se popularizado
cada vez mais. O presente trabalho apresenta uma metodologia de realocação de fronteiras
desenvolvida para o LBM que permite simular uma partícula se deslocando em um meio
virtualmente infinito. O principio do método consiste no truncamento do domínio do escoamento
e realocação das fronteiras, transferindo-as para nós exteriores ao domínio de simulação. O
método da fronteira imersa (IBM) é adotado para descrição da interação sólido-líquido. Ao
longo do texto, a metodologia para confecção de malhas elipsoidais é detalhada e uma releitura
da estratégia de Suzuki e Inamuro (2011) para compensação da massa interna de fluido é
desenvolvida. O modelo do fluido de Bingham é então adaptado para o LBM com a adequação
apropriada do método de relocação das fronteiras. O algoritmo é então avaliado sequencialmente
para cada um de seus recursos, apresentando boa concordância com soluções analíticas e
resultados disponíveis na literatura. Também são evidenciadas melhorias nos resultados de
acordo com a resolução adotada para o domínio computacional. Foi então realizada investigação
da sedimentação de esferoides oblatos em fluido Newtoniano, sendo identificados diversos
padrões de movimento. Por fim, foi conduzida uma analise da sedimentação de elipsoides em
fluido viscoplástico, na qual foram identificadas influencias de forma e que, para um elipsoide
inclinado, o aumento do número de Bingham pode levar à constrição e até mesmo à inversão do
sentido de rotação da partícula.

Palavras-chave: domínio sem fronteira. método da fronteira imersa. método lattice Boltzmann.
sedimentação em meio viscoplástico. partícula elipsoidal.



ABSTRACT

ROMANUS, Rodrigo Saldanha. Direct Numerical Simulation of Spheroidal Particle
Settling in Viscoplastic Fluid Using Lattice Boltzmann Method. 2020. 119 p. Dissertation
(Master’s Degree in Mechanical Engineering) – Federal University of Technology. Curitiba,
2020.

A numerical study of ellipsoidal particle settling in quiescent Newtonian and viscoplastic fluid is
presented motivated by theoretical aspects and industrial applications, such as cuttings transport
in oil drilling. As particle settling at moderate to high Reynolds numbers takes considerable
distance to reach periodical or statistically steady regime, memory limitations in direct numerical
simulations (DNS) constrain the maximum domain size for this class of flow. In spectral and
finite difference methods, some workarounds that allow simulation in unbounded vertical extents
are available, such as domain transferring schemes. Due to the locality in most of its algorithm,
the lattice Boltzmann method (LBM) is increasingly popular for DNS studies. In present work, a
boundary relocation approach is presented, enabling LBM simulations of particle motion in a
virtually infinite domain. The scheme consists basically of the truncation of flow domain with
the relocation of boundaries to nodes kept outside simulation confines. The immersed boundary
method (IBM) is implemented for the liquid-fluid interaction. A thorough mesh generation for
ellipsoidal particles is disclosed, as well as an extension of the internal mass compensation
strategy of Suzuki and Inamuro (2011). The Bingham model is implemented with a proper
adaptation of the boundary relocation approach. The numerical model is assessed sequentially
for each of its features, showing good agreement with analytical solutions and results available in
the literature. The possibility of improvement through an increase in resolution is also evidenced.
Simulations were then performed for oblate spheroids in quiescent Newtonian fluid, in which a
variety of motion patterns was delineated. Then, an investigation of ellipsoidal particles settling in
viscoplastic fluid was conducted, analyzing shape influence on the motion of a solid-body. It was
also shown that for an inclined ellipsoid, the increase of Bingham number leads to constriction
and even an inversion in the direction of particle rotation.

Keywords: unbounded domain. immersed boundary method. lattice Boltzmann method. vis-
coplastic settling. ellipsoidal particle.
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1 INTRODUCTION

The underlying motivation of the present work arises from its application in the oil

industry, in which the cuttings stemming from the drilling process must be kept suspended during

an operational stop. Viscoplastic or yield-stress fluids are capable of holding rigid particles

statically since they only flow when a certain stress value is exceeded. It must be noticed that

the presence of solid particles can affect flow properties. Thereby mathematical modeling of

fluid-structure interaction problems requires a multiphysics coupling between fluid dynamics

and rigid body motion laws, leading to non-linear systems with no analytical solution.

1.1 CONTEXT AND MOTIVATION

The rotary drilling method was introduced at the beginning of the 20th century by

Anthony Lucas, showing how effective a rotating bit with continuous mud injection is. In this

technique, a downward vertical force is applied to the drill bit while it rotates around its axis.

This movement crushes the rock creating sediments that are transported to the surface by the

drilling mud (NGUYEN, 1996). As depicted in Figure 1, there are two ways to perform the

hole cleaning. In direct circulation, the fluid flows down, passing over the drill bit and returning

through the annular region. Whereas in reverse circulation, the drilling mud travels oppositely,

flowing down over the annular region and returning through the drill pipe.

Figure 1 – Example of direct (a) and reverse (b) circulation in rotary drilling. The
fluid returning from well bore carries the cuttings that will be filtered off
as drilling fluid is pumped back to the well bore.

Source: Own elaboration.
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In the oil industry, drilling muds are non-Newtonian fluids that can perform numerous

roles, such as, cooling the drill bit; lessening drill pipe friction; providing geological information;

consolidating the well bore wall; hindering influx of fluids and gas into the well bore; transporting

the cuttings and suspending them during drill stop (NGUYEN, 1996). The drilling fluid is usually

a colloidal dispersion, in which a solid is dispersed in a liquid; or an emulsion, attained by

spreading different liquids (OMLAND, 2009). Such complex materials are best described as

thixo-elasto-viscoplastic, that is, it presents elastic, viscoplastic and time-dependent behavior

(EWOLDT; MCKINLEY, 2017).

During drilling, the cuttings are carried by the circulating fluid. However for some

processes, like well bore cementation, an operational stop is necessary. That way, the drilling

mud stops circulating and cuttings begin to settle. To avoid imprisonment of the drill bit,

the drilling fluids are designed to assume a gel state when they are not under shear. As this

behavior is presented by viscoplastic fluids, this project was designed to put forward a reliable

yet computationally efficient algorithm for the fully-resolved simulation of particle motion in

viscoplastic fluid by describing the flow evolution with lattice Boltzmann method (LBM).

1.2 LITERATURE REVIEW

This section brings a review of the pertinent literature on single-particle settling, starting

with the earlier analytical developments of a sphere moving in Newtonian fluid at creeping flow

regime, proceeding with the numerical developments and experimental findings such as, the

diversified motion patterns observed at intermediate Reynolds numbers, and concluding with

relevant studies of rigid body motion in viscoplastic fluid.

1.2.1 Early Studies

The interest in the behavior of flows with particles drove a considerable scientific effort

over the years. Stokes (1851) made a substantial contribution by calculating the steady-state

creeping flow (Re < 0.01) around a sphere undergoing uniform translation. He also postulated

that at creeping flow, there is no non-trivial steady state solution for the Newtonian flow past

an infinitely long cylinder, which became known as Stokes paradox. Addressing the same

phenomenon, Whitehead (1889) proposed an iterative procedure, using low-order approximations

to calculate inertial terms. However, this scheme was not able to satisfy the boundary conditions
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at the infinity. Both Stokes and Whitehead’s issues were successfully solved by Oseen (1910)

when he observed that if the velocity field is spatially invariant at the infinity, then friction is

negligible, and inertia holds the strongest influence on the flow dynamics. With a perturbation

method that partially included convective acceleration, Oseen (1913) developed an expression of

the sphere drag coefficient. Oseen’s study inspired several relevant works (GOLDSTEIN, 1929;

TOMOTIKA; AOI, 1950; STEWARTSON, 1956), and his expression for the drag coefficient

was validated by Maxworthy (1965) to produce accurate results up to Re = 0.45. Higher-order

approximations were obtained by Proudman and Pearson (1957) with the method of asymptotic

expansions. Despite all development achieved over the years, analytical solutions for particle

settling still cannot be attained for solids of complex geometries or for intermediate to high

Reynolds number.

1.2.2 Motion Patterns at Intermediate Reynolds

Though axial symmetry may be expected for the ideal situation of uniform flow past a

stationary sphere, for Re ≥ 203 (CHRUST et al., 2013b), the resulting downstream wake can be

fully three-dimensional and capable of admitting complex vortical structures, as registered by

Magarvey and MacLatchy (1965) in an excellent series of photographs showing the characteristic

structure of the wakes behind a sphere for Reynolds numbers extending from 200 to 500. An

illustration of the vortex loops for 300 < Re < 420 is shown in Figure 2.

Figure 2 – Upper and side views of vortex loops in the downstream wake of flow over
a stationary sphere for 300 < Re < 420.

Source: Gushchin and Matyushin (2006)

For the gravity-driven motion of a sphere, the onset of wake instabilities causes the

particle to travel oscillatory or chaotic paths. In their study, Horowitz and Williamson (2010)

performed particle settling investigations at terminal Reynolds numbers ranging from an order of

102 to 104. They used spheres with the diameter 𝑑 varying between 0.2 and 3.8 cm, moving in two
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large containers of dimensions 0.4×0.4×1.5 m and 0.2×0.2×0.9 m. Among many observations,

they registered that the sphere traveled a zigzaggy path when the particle-fluid density ratio

(𝑚* = 𝜌𝑝/𝜌) was lower than 0.36 and the terminal Reynolds number higher than 260. To

minimize wall effects and approximate an unbounded domain situation, they designed tanks

with sizes much larger than particle’s diameter. This level of particle-tank scale ratio is highly

challenging to reproduce in DNS, especially for three-dimensional cases. Ardekani et al. (2016)

studied the settling of prolate and oblate spheroids using 480×480×4000 grid nodes (almost 1

billion) and were able to represent a rather small tank, of dimensions 15𝑑× 15𝑑× 125𝑑. Such a

high amount of grid nodes can produce overwhelming computational cost.

1.2.3 Fluid-Structure Interaction

In numerical methods, the no-slip boundary condition around an immersed object can

be achieved by either body-conformal or fixed grid techniques. Despite the good accuracy

that is provided by body-conformal methods, their implementation can be rather cumbersome,

especially in problems with moving particles, where the necessity to rebuild the computational

grid at each time step is a major computational bottleneck. Hence, many resorts to fixed grid

methods, such as distributed Lagrange multiplier/fictitious domain (DLM/FD) and immersed

boundary (IBM) methods.

The DLM/FD was initially introduced by Glowinski et al. (1994) for stationary rigid

bodies and later extended for moving particles (GLOWINSKI et al., 2000). In this methodology, a

geometrically complex domain is embedded in a larger simple-shaped domain, and the interaction

between fluid and solid-body is modeled through variational principles. It results in a weak

formulation for fluid-particle motion, with rigidity constraint enforced using distributed Lagrange

multiplier. IBM was developed by Peskin (1972) to study flow patterns around heart valves and

evolved to a handy tool for studying fluid-structure interaction problems. This methodology uses

an interpolative scheme in which a Lagrangian mesh delineates particle’s surface and the given,

or calculated, boundary condition is assured with the distribution of force terms in the Eulerian

domain. For a more meticulous analysis of body conformal and fixed grid schemes, the reader

may refer to (HAERI; SHRIMPTON, 2012).

In 1994, Ladd pioneered the studies of liquid-solid flows with LBM (LADD, 1994a;

LADD, 1994b) and since then, many strategies have been employed for LBM simulations of

fluid-structure interaction problems. Bouzidi et al. (2001) proposed the second-order accurate
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interpolated bounce-back approach for curved boundaries and, Lallemand and Luo (2003)

extended the method to simulate moving boundaries. As the LBM approach is based on Cartesian

grids, it is convenient to use fixed grid techniques. The implementation of LBM with DLM/FD

and IBM was introduced by Shi and Phan-Thien (2005) and Feng and Michaelides (2009),

respectively.

1.2.4 Infinite Domain Approximations

As previously mentioned, it is not a trivial task to numerically represent particle settling

in an unbounded domain. Jenny and Dušek (2004) proposed an implicit scheme of spectral

Fourier decomposition in the azimuthal direction and performed DNS of falling and ascending

spherical particles (JENNY et al., 2004). They designed a vertical cylindrical domain translating

with the sphere. The cylinder’s depth was of 37𝑑 and radius of 8𝑑. Jenny and Dušek (2004) found

a variety of motion patterns, such as vertical, oblique, zigzaggy, time-periodic oscillatory, helical

and chaotic, by varying the particle-fluid density and the Galileo number, calculated by:

Ga =

√︀
|𝑚* − 1| 𝑔𝑑3

𝜈
, (1)

in which, 𝑔 is the gravitational acceleration and 𝜈 is the kinematic viscosity for a Newtonian

fluid. The Galileo number (or alternatively the Archimedes number Ar = Ga2) measures the

ratio between gravitational and viscous forces acting on the immersed particle and it determines

the terminal velocity that the solid-body will reach. In more recent work, Zhou and Dušek

(2015) extended and improved the parametric study from (JENNY; DUŠEK, 2004) assessing

the different modes of falling and ascending spheres. Zhou et al. (2017) used basically the

same approach and added decomposition of the cylindrical vertical domain into a spherical

subdomain rotating with the solid-body. By doing so, they investigated some motion regimes

from oblate spheroids settling in quiescent fluid. Huang et al. (2014) employed a superposition

of fine and coarse grids in LBM and studied the behavior of an ellipsoidal particle under action

of gravity. Their results agreed well with arbitrary-Lagrangian-Eulerian (ALE) simulations from

Swaminathan et al. (2006). The domain strategy they implemented consisted of a fine grid

traveling with the particle, with its top and bottom layers being added or removed from the

coarser grid. Their coupling between grids was essentially identical to the multi-block scheme

(FILIPPOVA; HÄNEL, 1998). This strategy resulted in a very long yet finite tube.



23

In a DLM/FD study, Yu et al. (2002) approximated the case of a sphere settling in an

infinitely long channel by transferring the simulation domain vertically following the particle.

Rahmani and Wachs (2014) produced results for spherical and angular particles with a stretched

192×192×248 mesh with a length-width ratio around 3. They followed the same domain

transferring approach but adopted lateral periodicity. Good agreement with experimental drag

coefficient data from Haider and Levenspiel (1989) was achieved. Mougin and Magnaudet (2002)

demonstrated how the generalized Kirchhoff equations allow solving the velocity field from the

disturbance flow produced by a moving body in infinite viscous media. Auguste and Magnaudet

(2018) employed this procedure using spherical grids of 94 and 86 cells in the radial direction, 64

in polar, and 128 in azimuthal. They examined the path oscillations of spheres rising in quiescent

fluid. The same technique with a cylindrical domain was adopted by Shenoy and Kleinstreuer

(2010), in an investigation of the influence of the aspect ratio of a circular disk settling dynamics,

and by Auguste et al. (2013) that performed several simulations for thin disks, producing a

phase diagram of trajectory regimes. Their computational grid was 20𝑑 long with 100×80×32

grid nodes, and their results yielded a reasonable qualitative agreement with spectral Fourier

decomposition from Chrust et al. (2013a). While there are alternatives for DNS of particle

motion in infinite media by spectral or finite element methods, no LB scheme for unbounded

domain fully-resolved simulation has been provided in the literature up to this date.

1.2.5 Particle Motion in Yield-Stress Fluid

Yield-stress fluids are those with a viscoplastic behavior, they flow only if their yield-

stress 𝜎𝑦 is surpassed, otherwise, they act as a plastic material. A dimensionless parameter

commonly used to characterize viscoplastic flows is the Bingham number, which gives the ratio

between yield and viscous stresses, for a single-particle flow:

Bi =
𝜎𝑦𝑙

𝜂0𝑢0

, (2)

where 𝜂0 is fluid’s plastic viscosity, 𝑢0 the reference velocity, which for particle motion problems

is usually the solid-body terminal velocity, and 𝑙 the reference length of the flow.

Volarovich and Gutkin (1953) presented the earliest investigations of particle motion

in this category of fluid, in which they found that the particle will move within a bounded

subset, considering that sufficiently far from particle stress falls below 𝜎𝑦. The yielded fluid
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region was envisioned as a ’sphere of influence’ by Andres (1960). In meantime, Boardman

and Whitmore (1960) performed experiments with a cube falling in yield-stress fluid and, by

changing solid-body orientation and measuring limiting forces, verifying that the stress does not

act uniformly at the object’s surface. As an answer to Boardman and Whitmore (1960) study, Rae

(1962) proposed assertively that there would be unsheared material adhering to certain portions

of the particle’s surface, stagnant zones. In experimental research, Valentik and Whitmore (1965)

measured the terminal velocity of a sphere falling in viscoplastic fluid and tried to establish an

expression for the drag force. Ansley and Smith (1967) borrowed concepts from the slip-line

field theory, whose fundamentals can be found in "The mathematical theory of plasticity" by Hill

(1998). Though their postulated shape of a torus centered at sphere equator for the yielded region

was not accurate, they revealed the usefulness of plasticity theory when analyzing this kind of

problem and proposed an drag coefficient expression as a function of a dynamical dimensionless

parameter 𝑄.

Using flow visualization techniques, Brookes and Whitmore (1969) confirmed stagnant

zones for cylinder, plate, and wedge-shaped particles moving in yield-stress fluid. Adachi and

Yoshioka developed a variational scheme to calculate lower and upper-bounds of drag force

for creeping viscoplastic flow past spherical (YOSHIOKA et al., 1971) and 2D cylindrical

(ADACHI; YOSHIOKA, 1973) particles. Their flow profile was later proven to be different from

the actual solution, that was uncovered in finite-element numerical work from Beris et al. (1985),

which extended the plastic boundary-layer analysis from Oldroyd (1947) to an axisymmetric

flow around the sphere. The evolution of predictions for the unsheared region that moves along

with a spherical particle settling in viscoplastic fluid is shown in Figure 3.

Figure 3 – Shape of the sheared envelope surrounding a sphere in creeping motion in
viscoplastic fluids: (a) Ansley and Smith (1967); (b) Yoshioka et al. (1971);
(c) Beris et al. (1985).

Source: Adapted from Chhabra (2006)

In their study, Beris et al. (1985) calculated the critical limit 𝑌crit of a yield-stress

dimensionless parameter 𝑌𝑔, formed from the ratio of yield-stress to external forces. A particle
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left from rest will move only if 𝑌𝑔 < 𝑌crit, otherwise it will be kept suspended. Atapattu et al.

(1990) experimentally investigated wall effects for spheres falling slowly under gravity in a tube

filled viscoplastic fluid and, by varying the sphere-to-tube diameter ratio 𝑑/𝐷, they verified the

existence of a critical value (𝑑/𝐷)crit, correlated to 𝑌𝑔, to which no wall effect is discernible.

In a later publication, Atapattu et al. (1995) verified that at a fixed confinement ratio, a higher

Bingham number increases drag exerted on particle. The wall effect on the creeping motion of a

sphere moving inside tubes filled with viscoplastic fluid was also investigated in the numerical

study from Blackery and Mitsoulis (1997), with the fluid represented by the Bingham constitutive

equation with Papanastasiou (1987) modification. By analyzing the geometry from the yielded

zone, they verified that tight gaps tend to press and deform the yielded region.

Jossic and Magnin (2001) covered a subject that was explored very little on experimental

grounds until then, estimating the drag coefficient of sphere, disk, cylinder, cube, and cone-shape

particles in non-thixotropic viscoplastic fluids at a very low velocity quasi-static domain. Using

carefully prepared aqueous solutions of Carbopol ETD 2050, Tabuteau et al. (2007) calculated

the drag coefficient for a spherical particle, obtaining results that agreed well with theoretical

predictions from Beaulne and Mitsoulis (1997). Putz et al. (2008) experimentally investigated the

flow fields around a spherical object falling freely in a viscoplastic fluid for Re < 1. Numerical

studies from Wachs and Frigaard (2016) and Chaparian and Frigaard (2017a) analyzed the

influence of the particle geometry on the sheared region and the yield parameter 𝑌crit for a 2D

configuration (CHAPARIAN; FRIGAARD, 2017b).

1.2.6 Gaps and Open Issues

Despite the aforementioned development, several knowledge gaps persist when it comes

to the sedimentation of particles in viscoplastic fluids, for experimental results still have not

covered a very extensive range of parameters and most of the existent numerical studies are

limited to steady-state 2D cases and spherical particles. One issue from the Bingham constitutive

equation is that its discontinuity causes the numerical implementation to be rather cumbersome.

As a consequence, many opt to use regularized models (LIU et al., 2002; FRIGAARD; NOUAR,

2005; TOKPAVI et al., 2008), such as Papanastasiou’s, which are not fit for representing a perfect

plasticity below yield-stress.

These limitations, reduce the range of analyses available for the motion of a solid-body

in yield-stress fluids. In addition to require up-dated methods of analysis, we think that the study
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of viscoplastic settling of particles with arbitrary shapes or, at least, with aspect ratios different

from 1 is of great scientific interest.

1.3 OBJECTIVES AND DOCUMENT OUTLINE

Present work addresses the three-dimensional study of a ellipsoidal particle settling in

Newtonian and Bingham fluids. The numerical formulation combines lattice Boltzmann and

immersed boundary methods in an IB-LBM scheme. This approach fully describes the transient

phenomenon of a solid-body settling from a rest position. The general objective was partitioned

in sequential steps that served as milestones for the project execution, those were:

i) Implementation of LBM for a 3D Newtonian flow, verified for a Poiseuille flow in rectan-

gular cross-section channel;

ii) Implementation of IBM for an ellipsoidal particle, verified by a series of simulations

including the uniform flow over a stationary sphere, a particle settling in a closed tank, and

an ellipsoid centered in a Couette flow;

iii) Development of a viable approximation for particle motion in an unbounded domain,

which is verified for a Stokes flow and experimental data of a sphere ascending at a Galileo

number of 173;

iv) Extension of LBM to the simulation of a Bingham fluid, initially validated for a Poiseuille

flow between parallel plates and then for a creeping flow sphere settling in viscoplastic

fluid.

iv) Simulations of an oblate spheroid settling in Newtonian fluid, with Galileo numbers

ranging from 100 to 250, delineating the variety of presented motion patterns.

v) Investigation of shape influences on the dynamics of an ellipsoidal particle settling in

viscoplastic fluid for Bingham and Reynolds numbers ranging from 0 to 400 and 0.1 to

100, respectively.

This work is divided in six chapters. Chapter 2 provides the fundamentals of IBM and

LBM, including some insights for its application in non-Newtonian flows. Chapter 3 details the

numerical methodology developed throughout the study. Verification with analytical solutions

and literature data is presented in Chapter 4. Simulations of oblate spheroids at intermediate and
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high Reynolds numbers in Newtonian fluid and analyses of shape and orientation influence in

viscoplastic settling are presented in Chapter 5. Finally, a summary of the conducted work, the

conclusions drawn and recommendations for future research are given in Chapter 6.
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2 THEORETICAL BACKGROUND

This chapter overviews fundamental concepts from the methods used as the basis on the

formulation of a numerical model, detailed in Chapter 3. Section 2.1 covers the ideas behind the

immersed boundary method (IBM). Section 2.5 brings a brief discussion of flow representation

at microscopic, mesoscopic and macroscopic scales. Section 2.3 proceeds with the Kinetic

Theory overview, followed by a comprehensive review of the lattice Boltzmann method (LBM)

with external force term in Section 2.4. The correlation between macroscopic and mesoscopic

variables through Chapman-Enskog expansion is examined in Section 2.5 and implementation of

LBM for generalized Newtonian fluids (GNF) is briefly discussed in Section 2.6.

2.1 IMMERSED BOUNDARY METHOD

The immersed boundary method was developed by Peskin (1972) to study flow patterns

around heart valves, later evolving into a very useful tool for fluid-structure interaction problems.

Its formulation comes from the consideration of an elastic incompressible solid filling a three-

dimensional space. IBM uses a Lagrangian approach to track the set of elastic fibers whose

position is 𝑋 (𝑞,𝑟,𝑠,𝑡), and describes the fluid domain with velocity field 𝑢 in an Eulerian fashion

(PESKIN, 2002).

Let (𝑞,𝑟,𝑠) be the curvilinear coordinates attached to the surface of material and

𝑋 (𝑞,𝑟,𝑠,𝑡), the position vector in Cartesian coordinates of the material point whose label

is (𝑞,𝑟,𝑠) at time 𝑡. By assuming that all part of elastic material immersed in fluid is confined in a

surface, only two Lagrangian parameters (𝑟,𝑠) will be required to its description, as illustrated by

Figure 4, in which 𝑀 represents the Lagrangian surface mass density and the integral of 𝜌 over

any finite volume is the sum of fluid and elastic boundary masses contained within that volume.

For this description, the no-slip boundary condition at a solid-body surface is written as:

𝜕𝑋

𝜕𝑡
(𝑟,𝑠,𝑡) = 𝑢 (𝑋 (𝑟,𝑠,𝑡) ,𝑡) . (3)

The Lagrangian points from elastic boundary create a discontinuity in the Eulerian

domain. Being 𝑥 the position vector and 𝛿 (𝑥) the three-dimensional Dirac delta, Equation 3 can



29

Figure 4 – Example of immersed boundary method description for a solid-body de-
scribed by its external surface. The mass of a dV element is the summation
of fluid and elastic boundary masses inside this volume.

Source: Own elaboration.

be rewritten in terms of an integral over the Eulerian domain with 𝑢 multiplied by 𝛿 (𝑥−𝑋):

𝜕𝑋

𝜕𝑡
=

∫︁
𝑢(𝑥,𝑡)𝛿(𝑥−𝑋(𝑟,𝑠,𝑡))d𝑥. (4)

In Equation 4, the Dirac delta is the singular pulse function that expresses the disconti-

nuity at 𝑥 = 𝑋 , in an analogous manner but integrating over a Lagrangian domain, the force

and mass densities are written as (PESKIN, 2002):

𝜌(𝑥,𝑡) =

∫︁
𝑀(𝑟,𝑠)𝛿(𝑥−𝑋(𝑟,𝑠,𝑡))d𝑟d𝑠; (5a)

𝑓(𝑥,𝑡) =

∫︁
𝐹 (𝑟,𝑠,𝑡)𝛿(𝑥−𝑋(𝑟,𝑠,𝑡))d𝑟d𝑠. (5b)

Here, 𝐹 (𝑟,𝑠,𝑡) and 𝑓(𝑥,𝑡) are the Lagrangian and Eulerian densities of elastic force,

respectively. Equation 5b assures that 𝑓(𝑥,𝑡) is zero at all space points lying in fluid regions at

time 𝑡 and that the integral of 𝑓(𝑥,𝑡) over a finite volume is the total force applied to the fluid

by the part of the immersed boundary contained within this volume. It should be noticed that,

despite delta 𝛿(𝑥) being three-dimensional, there are only two integrals d𝑟d𝑠. As a result, 𝜌(𝑥,𝑡)

and 𝑓(𝑥,𝑡) are each singulars like a one-dimensional delta function, with this singularity being

supported on the immersed elastic boundary. However, their integrals will be finite over any

limited volume, since Dirac delta works as a pulse function (PESKIN, 2002).
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The function 𝐹 (𝑟,𝑠,𝑡) arises from an assumed perturbation 𝛿𝑋 at the Lagrangian

domain configuration 𝑋 and, using the principle of virtual work, is given by the Fréchet

derivative of the elastic energy 𝐸 evaluated at configuration 𝑋 (PESKIN, 2002):

𝐹 = − 𝛿𝐸

𝛿𝑋
, (6)

which is the derivative of a single-variable function to a vector, if 𝑋 = (𝑋1,𝑋2,𝑋2):

𝐹 = −
(︂

𝛿𝐸

𝛿𝑋1

,
𝛿𝐸

𝛿𝑋2

,
𝛿𝐸

𝛿𝑋3

)︂
, (7)

where 𝛿 represents a virtual infinitesimal variation and is used to represent a derivative.

By extending those concepts to a numerical scheme, the IBM originates from a spatial

and temporal discretization of fluid-structure equations. A discrete form of the Dirac delta

function 𝐷ℎ, whose development comes from identities satisfied by the spatially discretized

scheme, is also necessary (PESKIN, 2002).

The spatial discretization of IBM employs two independent mesh and grid, one for

the Lagrangian and other for the Eulerian variables. The Eulerian grid, denoted 𝐸ℎ, is uniform

with a distance ℎ between nodes, the Lagrangian mesh, denoted 𝐿ℎ is the set (𝑞,𝑟,𝑠) of form

(𝑘𝑞∆𝑞,𝑘𝑟∆𝑟,𝑘𝑠∆𝑠), where 𝑘 = (𝑘𝑞,𝑘𝑟,𝑘𝑠) has integer components. Figure 5 illustrates IBM

applied for a stationary boundary also exemplifying a no-slip condition described in this scheme.

Figure 5 – Example of a discretized IBM scheme with a static particle, in which ve-
locity field is modeled through force terms and velocity at the boundary is
assumed as the interpolation of near Eulerian nodes.

Source: Own elaboration.

The velocity at each Lagrangian node is obtained from interpolation of velocity field

𝑢 (𝑥,𝑡) from nearest Eulerian locations, this domain transference can be written by a discrete

form of Equation 4 as (PESKIN, 2002):

d𝑋(𝑞,𝑟,𝑠,𝑡)

d𝑡
=
∑︁
𝑥∈𝐸ℎ

𝑢(𝑥,𝑡)𝐷ℎ(𝑥−𝑋(𝑞,𝑟,𝑠,𝑡))ℎ3, (8)
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in which 𝐷ℎ works as weighting function and can be seen as a discrete equivalent of the three-

dimensional Dirac delta that is assumed as being a product of one-variable functions scaling

with mesh-width ℎ hence (PESKIN, 2002):

𝐷ℎ(𝑦) =
1

ℎ3
𝜑
(︁𝑦1
ℎ

)︁
𝜑
(︁𝑦2
ℎ

)︁
𝜑
(︁𝑦3
ℎ

)︁
, (9)

where 𝑦1, 𝑦2, and 𝑦3 are the components of a three-dimensional 𝑦 vector and 𝜑 is the one-

dimensional discrete delta function. An in-depth analysis of different functional forms for 𝜑 can

be found in (YANG et al., 2009). The four-point piecewise version of this function is given by:

𝜑(𝑟) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
8

(︁
3 − 2|𝑟| +

√︀
1 + 4|𝑟| − 4|𝑟|2

)︁
, 0 ≤ |𝑟| ≤ 1;

1
8

(︁
5 − 2|𝑟| −

√︀
−7 + 12|𝑟| − 4|𝑟|2

)︁
, 1 ≤ |𝑟| ≤ 2;

0 , |𝑟| ≥ 2.

(10)

This function is developed under a sequence of postulates meant to assure that 𝐷ℎ → 𝛿

as ℎ → 0. In its definition, the continuous Dirac delta function is zero everywhere except at 𝛿(0)

and the integral of 𝛿(𝑥) over the entire real line equals one, this results in the following properties

∫︁ ∞

−∞
𝛿(𝑥)d𝑥 = 1; (11a)∫︁ ∞

−∞
𝑥𝛿(𝑥)d𝑥 = 0. (11b)

At Equation 11b, by multiplying 𝛿(𝑥) by its argument, the integral over entire real

line becomes zero. Similarly, the summation of discrete Dirac delta over the entire Eulerian

domain must equal one and the summation of 𝐷ℎ multiplied by its argument has to be zero thus

(PESKIN, 2002):

∑︁
𝑥∈𝐸ℎ

𝐷ℎ(𝑥−𝑋)ℎ3 = 1; (12a)

∑︁
𝑥∈𝐸ℎ

(𝑥−𝑋)𝐷ℎ(𝑥−𝑋)ℎ3 = 0. (12b)

A thorough description of 𝜑 formulation are outside the scope of present work and can

be found in (PESKIN, 2002). By substituting 𝐷ℎ at fluid-structure equations (Equations 5b and
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5a) and replacing the integrals by finite sums, as done for the velocity equation, the discrete

fluid-structure equations are:

𝜌(𝑥,𝑡) =
∑︁

(𝑞,𝑟,𝑠)∈𝐿ℎ

𝑀(𝑞,𝑟,𝑠)𝐷ℎ(𝑥−𝑋(𝑞,𝑟,𝑠,𝑡))∆𝑞∆𝑟∆𝑠; (13a)

𝑓(𝑥,𝑡) =
∑︁

(𝑞,𝑟,𝑠)∈𝐿ℎ

𝐹 (𝑞,𝑟,𝑠,𝑡)𝐷ℎ(𝑥−𝑋(𝑞,𝑟,𝑠,𝑡))∆𝑞∆𝑟∆𝑠. (13b)

In practice, Equations 13a and 13b spread Lagrangian variables into the Eulerian domain

while the operation in Equation 8 is best described as an interpolation, since it averages the

Eulerian velocities into a Lagrangian material point (PESKIN, 2002). The discrete Dirac delta

𝐷ℎ works as a pulse function, whose weight is valued by the proximity between Eulerian and

Lagrangian points |𝑥−𝑋(𝑞,𝑟,𝑠,𝑡)|.

If the points from 𝐿ℎ are too spaced in comparison to 𝐸ℎ, there will be discrete points

from Eulerian mesh "passing through" immersed boundary. Peskin (2002) estabilished the

following restrictions to avoid leaks:

|𝑋(𝑞 + ∆𝑞,𝑟,𝑠,𝑡) −𝑋(𝑞,𝑟,𝑠,𝑡)| < ℎ

2
; (14a)

|𝑋(𝑞,𝑟 + ∆𝑟,𝑠,𝑡) −𝑋(𝑞,𝑟,𝑠,𝑡)| < ℎ

2
; (14b)

|𝑋(𝑞,𝑟,𝑠 + ∆𝑠,𝑡) −𝑋(𝑞,𝑟,𝑠,𝑡)| < ℎ

2
. (14c)

However, Pinelli et al. (2010) showed an increase of interpolation error as the distance

between Lagrangian markers become smaller than Eulerian mesh spacing, with optimal values

for a distancing of approximately ℎ.

2.2 RELEVANT SCALES

Before engaging in the equations of lattice Boltzmann method (LBM), a topic of relevant

scales seems worth discussing. When analyzed on a microscopic scale, fluids are composed

of molecules in constant motion undergoing collision with each other (KUNDU et al., 2012).

However, usual mathematical descriptions of fluid dynamics rely on the concept of continuum,

an idealization in which fluids have a continuous distribution of mass, without gaps.
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The continuum assumption operates at time and length scales sufficiently large such

that the atomistic picture of the fluid can be taken out (GREENKORN, 2018) and properties, like

density or velocity, are given for fixed places in space. A microscopic scale works at length scales

of the mean free path of fluid atom or molecule 𝑙mfp and, as it tracks individual particles and all

their degrees of freedom, flow simulations described in the microscopic scale are computationally

expensive.

An alternative lying in-between these two descriptions is the mesoscale, in which

clusters of molecules are represented by a probabilistic distribution. Figure 6 presents a hierarchy

schematic of the mentioned length scales.

Figure 6 – Hierarchy of length and time scales in fluid dynamics problems.

Source: Krüger et al. (2017).

The ratio of the mean free path 𝑙mfp to the representative physical length scale 𝑙, is

known as Knudsen number (Kn = 𝑙mfp/𝑙) which is helpful on delineating whether a microscopic

treatment of the phenomenon is necessary or not (KRÜGER et al., 2017). If 𝑙mfp is sufficiently

large in comparison to 𝑙, collisions occur very rarely between particles and they move indepen-

dently of each other, thus, the flow requires a microscopic treatment. The transition between flow

regimes for different Kn is (HALWIDL, 2016):
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• Kn > 1 – Molecular flow;

• 0.01 < Kn < 1 – Transition flow;

• Kn ≤ 0.01 – Macroscopic flow.

The Mach number Ma defines the ratio of acoustic to advective time scales (KRÜGER

et al., 2017), determining how fast pressure waves propagate through the fluid and providing a

good measurement whether or not a flow can be treated as incompressible. This dimensionless

parameter is given by:

Ma =
𝑡sound

𝑡conv
=

𝑢0

𝑐𝑠
, (15)

where 𝑐𝑠 is the speed of sound, which for an ideal gas is given by (JEANS, 1940):

𝑐𝑠 =

√︂
𝛾
𝑘𝑇

𝑚
, (16)

in which, 𝑇 is the temperature in Kelvin, 𝑚 is the particle mass, 𝛾 the adiabatic index, whose value

varies from 1.3 to 1.67, and 𝑘 is the Boltzmann constant (𝑘 = 1.3×1023J K−1), a proportionality

factor that relates a gas average relative kinetic energy with its thermodynamic temperature

(FEYNMAN, 1970). In practice, a flow can be assumed as incompressible when Ma ≤ 0.1

(BALACHANDRAN, 2006). Dividing the Mach number by Reynolds number Re = 𝜌𝑢0𝑙/𝜇

Ma
Re

=
𝑢0/𝑐𝑠
𝜌𝑢0𝑙/𝜇

=
𝜇

𝜌𝑙

√︂
𝑚

𝛾𝑘𝑇
, (17)

and given that for an ideal gas, the mean free path 𝑙mfp is given by (DAI et al., 2017)

𝑙mfp =
𝜇

𝜌

√︂
𝜋𝑚

2𝑘𝑇
, (18)

the multiplication of Eq 17 by
√︀

𝛾𝜋/2 yields the Knudsen number Kn, hence the Reynolds,

Mach and Knudsen numbers are related by:

Kn =
Ma
Re

√︂
𝛾𝜋

2
, (19)

which is known as von Kármán relation (WEISSTEIN, 2009).
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2.3 KINETIC THEORY

The mesoscopic kinetic theory is the cornerstone of LBM and describes gas media as a

distribution of particles, evolving on timescales about the mean collision time 𝑡mfp (MOHAMAD,

2011). In 1872, Boltzmann published a long memoir named "Further Investigations on the

Thermal Equilibrium of Gas Molecules", in which he poses that: "whatever the state of the

gas have may be initially, it must always approach the limiting distribution found by Maxwell"

(BOLTZMANN, 1872). Based on what he called "exact consideration of the collision process",

Boltzmann provided a fundamental basis for further developments in kinetic theory.

The particle distribution function 𝑓 , a fundamental variable in kinetic theory and LBM,

can be seen as a generalization of density 𝜌, which also takes the microscopic particle velocity

into account. Thus, instead of a deterministic approach, where 𝜌(𝑥,𝑡) represents the density

of particles in position 𝑥 at time 𝑡, the fluid flow is described in a probabilistic fashion. The

distribution function 𝑓(𝑥,𝜉,𝑡) can be seen as the expected number of particles to be found at

position coordinates in each small volume element (𝑥,𝑥 + d𝑥) with velocities lying in the

interval (𝜉,𝜉 + d𝜉) at time 𝑡 (BOLTZMANN, 1877).

2.3.1 Continuous Boltzmann Equation

The particles are constantly changing their velocity direction as they collide, as shown

in Figure 7, where, for an infinitesimal time interval ∆𝑡, the distribution function 𝑓 evolves from:

𝑓 (𝑥,𝜉,𝑡) → 𝑓 (𝑥 + ∆𝑥,𝜉 + ∆𝜉,𝑡 + ∆𝑡)

Physically, this can be understood as many molecules in a portion of space traveling

at certain speed intervals. Due to collisions, particle velocities 𝜉 are constantly changing and,

consequently, the distribution 𝑓 . This phenomenon can be described by the total derivative in

time of the distribution function:

d𝑓
d𝑡

= lim
Δ𝑡→0

𝑓 (𝑥 + ∆𝑥, 𝜉 + ∆𝜉, 𝑡 + ∆𝑡) − 𝑓 (𝑥, 𝜉, 𝑡)

∆𝑡
. (20)

It is convenient to adopt Einstein notation for subsequent LBM formulations. In this

convention, a repeated index implies summation over a set of indexed terms. The Taylor series
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Figure 7 – Schematic of particle distribution evolution due to collision. The parti-
cles are constantly moving, colliding and changing their directions, conse-
quently 𝑓 .

Source: Own elaboration.

expansion of Equation 20 until second-order is then written as:

d𝑓
d𝑡

=

(︂
𝜕𝑓

𝜕𝑡

)︂
d𝑡
d𝑡

+

(︂
𝜕𝑓

𝜕𝑥𝛼

)︂
d𝑥𝛼

d𝑡
+

(︂
𝜕𝑓

𝜕𝜉𝛼

)︂
d𝜉𝛼
d𝑡

. (21)

The total derivative d𝑓/d𝑡 is replaced by collision operator Ω(𝑓) (BEENAKKER et

al., 1973). Being (d𝑥𝛼/d𝑡) = 𝜉𝛼 and (d𝜉𝛼/d𝑡) = 𝐹𝛼/𝑛 (specific body force), Equation 21 is

rewritten as

Ω(𝑓) =
𝜕𝑓

𝜕𝑡
+ 𝜉𝛼

𝜕𝑓

𝜕𝑥𝛼

+
𝐹𝛼

𝑛

𝜕𝑓

𝜕𝜉𝛼
, (22)

in which 𝑛 represents the density of molecules. Equation 22 is known as the Boltzmann equation

and can be seen as a type of advection equation, with the two first RHS terms representing the

distribution function being advected with velocity 𝜉𝛼, and the third RHS term, the forces affecting

velocity 𝜉𝛼 (CHAPMAN et al., 1990). This description returns the macroscopic moments up to

the second-order. Mass 𝑛, momentum 𝑛𝑢𝛼 and energy densities 𝑛𝑒 can be written, respectively,

as:

𝑛 =

∫︁
𝑓d𝜉𝛼; (23a)

𝑛𝑢𝛼 =

∫︁
𝜉𝛼𝑓d𝜉𝛼; (23b)

𝑛𝑒 =
1

2

∫︁
𝑣𝛼𝑣𝛼𝑓d𝜉𝛼. (23c)
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here, 𝑒 represents the macroscopic internal energy density and 𝑣𝛼 = 𝜉𝛼 − 𝑢𝛼 the relative velocity,

which is the deviation of the microscopic particle’s velocity from macroscopic local velocity.

An important variable in Kinetic Theory is the equilibrium function 𝑓 eq which consists

of an expansion of Maxwell-Boltzmann distribution function for low Mach number, given by

(MAXWELL, 1867):

𝑓 eq = 𝑛
(︁ 𝑚

2𝜋𝑘𝑇

)︁𝐷/2

𝑒−
𝑚

2𝑘𝑇
𝑣𝛼𝑣𝛼 , (24)

where 𝐷 the dimension of considered description. This result was first derived in 1860, by

James C. Maxwell, on heuristic grounds and later, in the 1870s, by Ludwig E. Boltzmann, who

performed significant investigations through a statistical mechanical approach into the physical

origins of this distribution. The equilibrium function 𝑓 eq is a key element when solving LBM

problems.

2.3.2 BGK Collision Operator

Boltzmann original collision operator considers all possible outcomes of two-particle

collisions for any choice of intermolecular forces which results in (BOLTZMANN, 1896, 1898):

Ω(𝑓) =

∫︁ ∫︁
[𝑓(𝑥, 𝜉*,𝑡)𝑓1(𝑥, 𝜉

*
1,𝑡) − 𝑓(𝑥, 𝜉,𝑡)𝑓1(𝑥, 𝜉1,𝑡] 𝛽 |𝜉1𝛼 − 𝜉𝛼| dΩd𝜉1𝛼, (25)

where the subscript 1 denotes a bullet particle, |𝜉1𝛼 − 𝜉𝛼| is the relative velocity between target

and bullet, 𝛽 is the impact parameter, which is the distance of closest approach between two

particles, and the superscript * is given for post-collision variables. Therefore, Eq 25 describes

the net change of distribution function due to collisions between material points. A particle will

change its velocity from 𝜉𝛼 to 𝜉*𝛼 after a collision, causing the bullet particle to change its velocity

from 𝜉1𝛼 to 𝜉*1𝛼. The integral of all possibilities in collision space
∫︀

dΩ determine the distribution

function change for an infinitesimal time interval d𝑓/d𝑡.

Collisions conserve quantities of mass, momentum and translational energy (for

monatomic case) (CHAPMAN et al., 1990), thereby those constraints are represented as moments
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of Ω(𝑓):

mass conservation:
∫︁

Ω(𝑓)d𝜉𝛼 = 0; (26a)

momentum conservation:
∫︁

𝜉𝛼Ω(𝑓)d𝜉𝛼 = 0; (26b)

total energy conservation:
∫︁

𝑣𝛼𝑣𝛼Ω(𝑓)d𝜉𝛼 = 0. (26c)

Boltzmann collision operator results in a burdensome integral over velocity space and

can be highly non-linear. To avoid such complications, Bhatnagar et al. (1954) introduced a

much simpler operator:

Ω𝐵𝐺𝐾(𝑓) = −1

𝜏
(𝑓 − 𝑓 eq) . (27)

Named after its inventors, Bhatnagar, Gross and Krook, the BGK collision operator uses

a mean free-path treatment and expresses the fact that collisions tend to relax the distribution

function towards an equilibrium value 𝑓 eq (BHATNAGAR et al., 1954). The constant 𝜏 , known

as relaxation time, represents some suitable average collision time.

An appropriate collision operator has to respect the equalities expressed in Equation

26 and ensure that the distribution function 𝑓 evolves towards its equilibrium 𝑓 eq. Within these

constraints, the BGK-operator is the simplest collision operator available. Since 𝜏 is the only time

parameter, the BGK-operator is often referred to as single-relaxation-time (SRT) (SUCCI, 2001).

The BGK-operator is very robust for single-phase fluids and its stability can be tremendously

improved through regularization (MATTILA et al., 2017).

The BGK-Boltzmann equation is written by substituting Ω𝐵𝐺𝐾 in Eq 22, which gives:

𝜕𝑓

𝜕𝑡
+ 𝜉𝛼

𝜕𝑓

𝜕𝑥𝛼

+
𝐹𝛼

𝑛

𝜕𝑓

𝜕𝜉𝛼
= −1

𝜏
(𝑓 − 𝑓 eq) . (28)

This equation is the most popular kinetic model and can be used to replace the equation

of motion in fluid dynamics problems. The sum of effects caused by advection of the distribution

function (two first LHS terms) and application of external forces (third LHS term) is represented

by 𝑓 evolution approaching equilibrium for a relaxation time 𝜏 .
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2.4 LATTICE BOLTZMANN METHOD

The lattice Boltzmann method was introduced by McNamara and Zanetti (1988) and

differs from traditional computational fluid dynamics methods because is formulated on the

mesoscopic scale and, instead of solving the equations of mass, momentum and energy, it

numerically solves Boltzmann equation. The LBM development for a fluid flow occurs through

the discretization of: physical space, velocities domain, and time (HE; LUO, 1997; PHILIPPI et

al., 2006). Figure 8 exemplifies this continuous-discrete transition for a two-dimensional space.

As illustrated, the discrete set of velocities {𝜉𝑖} must be built such that the distribution function

is shifted between neighboring points.

Figure 8 – Discretization example of Boltzmann equations through the creation of a
velocity set with 9 directions, 𝜉0 = 0 included.

Source: Own elaboration.

This restriction for the discretization of mesoscopic velocity is described by the Courant-

Friedrichs-Lewy (CFL) condition, which states that the distance traveled by any information

during the time-step must be lower than the distance between two mesh points (LANEY, 1998).

The CFL number will then be given by the following equation:

CFL =
|∆𝑥|
|𝜉| 𝛿𝑡

. (29)

The CFL condition relates time-step, interval lengths of each spatial coordinate and the

maximum speed which information can travel at the physical space (COURANT et al., 1967).
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The discretization of the velocity space results in a discrete set of the distribution

function {𝑓𝑖(𝑥,𝑡)}, whose elements are also referred as populations. Substituting in Equation 28

𝜕𝑓𝑖
𝜕𝑡

+ 𝜉𝑖𝛼
𝜕𝑓𝑖
𝜕𝑥𝛼

+
𝐹𝑖𝛼

𝑛

𝜕𝑓𝑖
𝜕𝜉𝑖𝛼

= −1

𝜏
(𝑓𝑖 − 𝑓 eq

𝑖 ) , (30)

where 𝑓 eq
𝑖 is the equilibrium function discretized for the velocity space. The Taylor series

expansion of 𝑓𝑖 up to second-order for a time interval 𝛿𝑡, is written as:

𝑓𝑖(𝑥 + ∆𝑥, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝑥,𝑡) + 𝛿𝑡

(︂
𝜕𝑓𝑖
𝜕𝑡

+
∆𝑥𝑖𝛼

𝛿𝑡

𝜕𝑓𝑖
𝜕𝑥𝛼

)︂
+ 𝑂(𝛿2𝑡 ) + 𝑂(|∆𝑥|2). (31)

Neglecting the second-order or above terms and being ∆𝑥𝑖𝛼/𝛿𝑡 = 𝜉𝑖𝛼, Equations 30

and 31 can be combined into:

𝑓𝑖(𝑥 + ∆𝑥, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝑥,𝑡) −
[𝑓𝑖(𝑥,𝑡) − 𝑓 𝑒𝑞

𝑖 (𝑥,𝑡)]

𝜏
− 𝛿𝑡

𝐹𝑖𝛼

𝑛

𝜕𝑓𝑖
𝜕𝜉𝑖𝛼

(𝑥,𝑡), (32)

where the bar symbol (e.g 𝜏 = 𝜏/𝛿𝑡) is used to distinguish dimensionless terms. It is common

practice in LBM to work using variables with no physical dimension often referred to as lattice

variables.

The value of a non-dimensional variable is completely independent of the measuring

units, therefore, it can be advantageous to work using dimensionless quantities in fluid dynamics

problems, as they do not involve human-invented scales (m, kg, K...). Nondimensionalization is

achieved by dividing a dimensional quantity by a chosen reference value of the same dimension.

For the considered LBM development, the characteristic set of reference parameters is:

• ℎ[m] - the constant distance between neighbor nodes;

• 𝛿𝑡[s] - the physical value of a time interval under which 𝑓𝑖 was expanded in a Taylor series;

• ⟨|𝜉|⟩[m/s] - the average molecule speed in an ideal gas;

• 𝑛0[particles/m3] - the reference density of molecules, it is common to adopt dimensionless

reference density as 𝜌0 = 1 in LBM simulations;

• 𝑢0[m/s] - the reference flow velocity. To operate in the quasi-incompressible limit, all

simulated velocities have to be significantly smaller than sound speed 𝑢0 ≪ 𝑐𝑠.
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Kinetic theory shows that the average particle speed in an ideal gas is (JEANS, 1940):

⟨|𝜉|⟩ =

√︂
𝑘𝑇

𝑚
. (33)

Therefore, for ideal gases, particles travel at an average velocity close to the speed of

sound, as 𝑐𝑠 =
√︀

𝛾𝑘𝑇/𝑚. In LBM, the dimensionless speed of sound 𝑐𝑠 is given by:

𝑐𝑠 =
𝛿𝑡
ℎ
⟨|𝜉|⟩, (34)

where the ratio ℎ/𝛿𝑡 is commonly referred to as lattice speed 𝑐. Using those parameters, the

dimensionless lattice-variables in a 𝐷-dimensional representation are:

∆�̄� =
∆𝑥

ℎ
; ∆𝑡 =

∆𝑡

𝛿𝑡
; 𝜌 =

𝑛

𝑛0

; �̄� =
𝑢

𝑐
; 𝑓𝑖 =

⟨|𝜉|⟩𝐷

𝑛0

𝑓𝑖; 𝜉𝑖 =
𝜉𝑖

⟨|𝜉|⟩
; 𝑒𝑖 =

𝜉𝑖
𝑐

.

Which also implies 𝑒𝑖 = 𝑐𝑠𝜉𝑖. The non-dimensional form of Equation 32, or lattice

Boltzmann equation (LBE) is given by:

𝑓𝑖(�̄� + ∆�̄�, 𝑡 + ∆𝑡) = 𝑓𝑖(�̄�,𝑡) −
[︀
𝑓𝑖(�̄�,𝑡) − 𝑓 eq

𝑖 (�̄�,𝑡)
]︀

𝜏
+ 𝑆𝑖(�̄�,𝑡), (35)

in which 𝑆𝑖 is a source term that represents the discretization of third RHS term from Equation

32. The Hermite expansion of 𝑆𝑖 from body force in Boltzmann equation is shown in (SHAN et

al., 2006). Guo et al. (2002) approximates 𝑆𝑖 with a power series written as:

𝑆𝑖 =

(︂
1 − 1

2𝜏

)︂
𝑤𝑖

(︂
𝑒𝑖𝛼
𝑐2𝑠

+
(𝑒𝑖𝛼𝑒𝑖𝛽 − 𝑐2𝑠𝛿𝛼𝛽) �̄�𝛽

𝑐4𝑠

)︂
𝐹𝛼, (36)

where 𝑤𝑖 are the weighting factors and 𝐹𝛼 is the dimensionless macroscopic force density. The

first three velocity moments of source term 𝑆𝑖 are (KRÜGER et al., 2017):

∑︁
𝑖

𝑆𝑖 = 0; (37a)

∑︁
𝑖

𝑆𝑖𝑒𝑖𝛼 =

(︂
1 − 1

2𝜏

)︂
𝐹𝛼; (37b)

∑︁
𝑖

𝑆𝑖𝑒𝑖𝛼𝑒𝑖𝛽 =

(︂
1 − 1

2𝜏

)︂(︀
𝐹𝛼�̄�𝛽 + �̄�𝛼𝐹𝛽

)︀
. (37c)
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The equilibrium function 𝑓 eq
𝑖 for discretized velocity space can be obtained through a

Hermite expansion up to second-order (PHILIPPI et al., 2006), which gives:

𝑓 eq
𝑖 = 𝑤𝑖𝜌

[︂
1 +

(𝑒𝑖𝛼�̄�𝛼)

𝑐2𝑠
+

�̄�𝛼�̄�𝛽 (𝑒𝑖𝛼𝑒𝑖𝛽 − 𝑐2𝑠𝛿𝛼𝛽)

2𝑐4𝑠

]︂
. (38)

With the three first velocity moments of 𝑓 eq
𝑖 given by (KRÜGER et al., 2017):

∑︁
𝑖

𝑓 eq
𝑖 = 𝜌; (39a)

∑︁
𝑖

𝑓 eq
𝑖 𝑒𝑖𝛼 = 𝜌�̄�𝛼; (39b)

∑︁
𝑖

𝑓 eq
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽 = 𝜌𝑐2𝑠𝛿𝛼𝛽 + 𝜌�̄�𝛼�̄�𝛽 = Π̄eq

𝛼𝛽; (39c)

∑︁
𝑖

𝑓 eq
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽𝑒𝑖𝛾 = 𝜌𝑐2𝑠 (�̄�𝛼𝛿𝛽𝛾 + �̄�𝛽𝛿𝛼𝛾 + �̄�𝛾𝛿𝛼𝛽) = Π̄eq

𝛼𝛽𝛾 . (39d)

The values for 𝑤𝑖 are given according to the defined lattice arrangement. For the sake

of simplicity, the bar notation for dimensionless variables will be dropped from this point on.

2.4.1 Lattice Arrangements

The lattice arrangements also referred to as velocity sets, are named according to the

number of its spatial dimensions and discrete velocities, hence a D3Q19 velocity set, represents a

3-dimensional space with velocity discretized for 19 directions (QIAN et al., 1992). The velocity

sets can be modeled from Boltzmann equation through Gauss-Hermite quadrature. The reader

may refer to (PHILIPPI et al., 2006) for a detailed discussion over this procedure.

A velocity set for a LBM algorithm is fully described by two arrays of defined variables:

the velocities {𝑒𝑖} and their corresponding weights {𝑤𝑖}. Those variables have to obey some

general conditions. Apart from conservation of mass and momentum, a preeminent requirement

is the rotational isotropy of the lattice, achieved when all moments of weight 𝑤𝑖 up to fifth-order
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are isotropic, this leads to (KRÜGER et al., 2017):

∑︁
𝑖

𝑤𝑖 = 1; (40a)

∑︁
𝑖

𝑤𝑖𝑒𝑖𝛼 = 0; (40b)

∑︁
𝑖

𝑤𝑖𝑒𝑖𝛼𝑒𝑖𝛽 = 𝑐2𝑠𝛿𝛼𝛽; (40c)

∑︁
𝑖

𝑤𝑖𝑒𝑖𝛼𝑒𝑖𝛽𝑒𝑖𝛾 = 0; (40d)

∑︁
𝑖

𝑤𝑖𝑒𝑖𝛼𝑒𝑖𝛽𝑒𝑖𝛾𝑒𝑖𝜇 = 𝑐4𝑠 (𝛿𝛼𝛽𝛿𝛾𝜇 + 𝛿𝛼𝛾𝛿𝛽𝜇 + 𝛿𝛼𝜇𝛿𝛽𝛾) ; (40e)

∑︁
𝑖

𝑤𝑖𝑒𝑖𝛼𝑒𝑖𝛽𝑒𝑖𝛾𝑒𝑖𝜇𝑒𝑖𝜈 = 0. (40f)

Additionally, all weights 𝑤𝑖 have to be non-negative. Some of the most usual lattice

arrangements employed in LBM flow simulation can be seen in Figure 9.

Figure 9 – D1Q3, D2Q9 and D3Q19 velocity sets. The square and cube denoted by solid lines have an edge
length 2∆𝑥.

Source: Adapted from Krüger et al. (2017).

As velocities vectors 𝑒𝑖 direct connect the lattice sites, for lattices separated by a

constant distance ∆𝑥 and time step ∆𝑡, the velocity vectors are multipliers of ∆𝑥/∆𝑡. It is very

common to set the dimensionless parameters ∆𝑥 and ∆𝑡 to the unity, and 𝑐𝑠 to 1/
√

3 (KRÜGER

et al., 2017). Table 1 summarizes some usual velocity sets.
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Table 1 – Properties of usual dimensionless velocity sets for LBM simulation. The
speed of sound for those is taken as 𝑐𝑠 = 1/

√
3.

Notation Velocities 𝑒𝑖 Number Length
|𝑒𝑖|

Weight 𝑤𝑖

D1Q3 (0) 1 0 2/3
(±1) 2 1 1/6

D2Q9
(0,0) 1 0 2/3

(±1,0),(0,± 1) 4 1 4/9
(±1,± 1) 4

√
2 1/36

D3Q19
(0,0,0) 1 0 1/3

(±1,0,0),(0,± 1,0), (0,0,± 1) 6 1 1/18
(±1,±1,0),(±1,0,±1),(0,±1,±1) 12

√
2 1/36

Source: Krüger et al. (2017).

2.5 FROM MESOSCOPIC TO MACROSCOPIC

In flow simulations one is mostly interested in the macroscopic behavior, therefore it is

important to understand how LBM mesoscopic variables can return the macroscopic quantities

from the equations of change. As the continuous distribution function 𝑓 , LBM variables preserve

macroscopic moments through summation of 𝑓𝑖, 𝑒𝑖𝛼 and 𝑆𝑖 (SILVA; SEMIAO, 2012):

𝜌 =
∑︁
𝑖

𝑓𝑖; (41a)

𝜌𝑢𝛼 =
∑︁
𝑖

𝑓𝑖𝑒𝑖𝛼 +
∆𝑡

2
𝐹𝛼; (41b)

Π𝛼𝛽 =

(︂
1 − ∆𝑡

2𝜏

)︂∑︁
𝑖

𝑓𝑖𝑒𝑖𝛼𝑒𝑖𝛽 +
∆𝑡

2

∑︁
𝑖

𝑆𝑖𝑒𝑖𝛼𝑒𝑖𝛽 , (41c)

where Π𝛼𝛽 is related to inertial and viscous forces. The first and second velocity moments of the

non-equilibrium populations 𝑓 neq
𝑖 = 𝑓𝑖 − 𝑓 eq

𝑖 can be deduced from Equations 39a, 39b, 41a and

41b as being:

∑︁
𝑖

𝑓 neq
𝑖 = 0; (42a)

∑︁
𝑖

𝑓 neq
𝑖 𝑒𝑖𝛼 = −∆𝑡

2
𝐹𝛼. (42b)

The Navier-Stokes equations (NSE) are a macroscopic description of momentum bal-

ance for a Newtonian fluid and can be related with LBE through Chapman-Enskog analysis,
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a procedure named after Sydney Chapman and David Enskog, who independently developed

analogous methods to obtain NSE from the Boltzmann equation.

The core of Chapman-Enskog analysis resides on observing that since Boltzmann

equation returns Euler momentum equation when 𝑓 ≃ 𝑓 eq, the viscous forces are connected

to a non-equilibrium part of distribution function 𝑓 neq = 𝑓 − 𝑓 eq. Through a perturbation

expansion of 𝑓𝑖 around 𝑓 eq
𝑖 with the Knudsen number as expansion parameter 𝐾𝑛 = 𝜖, such that

𝑓 neq
𝑖 = 𝜖𝑓

(1)
𝑖 + 𝜖2𝑓

(2)
𝑖 .... The populations 𝑓𝑖 are written as (CHAPMAN et al., 1990):

𝑓𝑖 = 𝑓 eq
𝑖 + 𝜖𝑓

(1)
𝑖 + 𝜖2𝑓

(2)
𝑖 + ... (43)

By the ansatz that only the two lowest-orders in 𝐾𝑛 are sufficient to return NSE,

𝑓 neq
𝑖 = 𝜖𝑓

(1)
𝑖 + 𝜖2𝑓

(2)
𝑖 . Writing 𝑓𝑖 in a Taylor expansion up to second-order:

𝑓𝑖 (𝑥 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖 (𝑥, 𝑡) = ∆𝑡 (𝜕𝑡 + 𝑒𝑖𝛼𝜕𝛼) 𝑓𝑖 +
∆𝑡2

2
(𝜕𝑡 + 𝑒𝑖𝛼𝜕𝛼)2 𝑓𝑖, (44)

where the contracted derivative notation is adopted, 𝜕𝛼 () = 𝜕 () /𝜕𝑥𝛼 and 𝜕𝑡 () = 𝜕 () /𝜕𝑡. The

LHS of Equation 44 can be combined with Equation 35 resulting in:

− [𝑓𝑖 − 𝑓 eq
𝑖 ]

𝜏
+ 𝑆𝑖 = ∆𝑡 (𝜕𝑡 + 𝑒𝑖𝛼𝜕𝛼) 𝑓𝑖 +

∆𝑡2

2
(𝜕𝑡 + 𝑒𝑖𝛼𝜕𝛼)2 𝑓𝑖. (45)

The second-order terms are eliminated by subtraction of (∆𝑡/2) (𝜕𝑡 + 𝑒𝑖𝛼𝜕𝛼) applied

to Equation 45 itself, which after simplifications results in:

−1

𝜏
(𝑓𝑖 − 𝑓 eq

𝑖 ) + 𝑆𝑖 = (𝜕𝑡 + 𝑒𝑖𝛼𝜕𝛼)

[︂
𝑓𝑖 −

∆𝑡

2𝜏
(𝑓𝑖 − 𝑓 eq

𝑖 ) +
∆𝑡

2
𝑆𝑖

]︂
. (46)

Time derivative is rewritten as a multiple scale expansion 𝜕𝑡 = 𝜖𝜕
(1)
𝑡 + 𝜖2𝜕

(2)
𝑡 and space

derivative labeled as 𝜕𝛼 = 𝜖𝜕
(1)
𝛼 . An ansatz that the order 𝑂(𝜖) is sufficient for the representation

of source term 𝑆𝑖 = 𝜖𝑆
(1)
𝑖 (BUICK; GREATED, 2000) is also employed. Applying the expansions

to 𝑓𝑖, 𝑆𝑖, and the derivatives in Equation 46, and separating the terms by their Knudsen order

gives:

𝑂 (𝜖) :
(︁
𝜕
(1)
𝑡 + 𝑒𝑖𝛼𝜕

(1)
𝛼

)︁
𝑓 eq
𝑖 − 𝑆

(1)
𝑖 = −𝑓

(1)
𝑖

𝜏
; (47a)

𝑂
(︀
𝜖2
)︀

: 𝜕
(2)
𝑡 𝑓 eq

𝑖 +
(︁
𝜕
(1)
𝑡 + 𝑒𝑖𝛼𝜕

(1)
𝛼

)︁[︂(︂
1 − ∆𝑡

2𝜏

)︂
𝑓
(1)
𝑖 +

∆𝑡

2
𝑆
(1)
𝑖

]︂
= −𝑓

(2)
𝑖

𝜏
. (47b)



46

Through the multiplication of Equation 47 by 1, 𝑒𝑖𝛼 and 𝑒𝑖𝛼𝑒𝑖𝛽 followed by summation

over index 𝑖, the velocity moments for 𝑂(𝜖) are:

𝜕
(1)
𝑡 𝜌 + 𝜕(1)

𝛼 (𝜌𝑢𝛼) = 0; (48a)(︂
1 − ∆𝑡

2𝜏

)︂[︁
𝜕
(1)
𝑡 (𝜌𝑢𝛼) + 𝜕(1)

𝛼 Πeq
𝛼𝛽

]︁
=
∑︁
𝑖

𝑆
(1)
𝑖 𝑒𝑖𝛼; (48b)

−𝜏

[︃(︂
1 − ∆𝑡

2𝜏

)︂(︁
𝜕
(1)
𝑡 Πeq

𝛼𝛽 + 𝜕(1)
𝛾 Πeq

𝛼𝛽𝛾

)︁
−
∑︁
𝑖

𝑆
(1)
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽

]︃
= Π

(1)
𝛼𝛽 . (48c)

and the two first velocity moments for 𝑂(𝜖2) are:

𝜕
(2)
𝑡 𝜌 = 0; (49a)

𝜕
(2)
𝑡 (𝜌𝑢𝛼) + 𝜕

(1)
𝛽 Π

(1)
𝛼𝛽 = 0. (49b)

Combining Equations 48a and 49a gives:

𝜕𝑡𝜌 + 𝜕𝛼 (𝜌𝑢𝛼) = 0, (50)

which is the equation of continuity obtained through the continuum approach, stating that mass

is conserved in the system (PANTON, 2013). Analogously, the assembly of Equations 48b and

49b should yield the macroscopic momentum balance:

𝜕𝑡 (𝜌𝑢𝛼) + 𝜕𝛽

(︁
Πeq

𝛼𝛽 + 𝜖Π
(1)
𝛼𝛽

)︁
= 𝐹𝛼. (51)

An explicit expression for Π
(1)
𝛼𝛽 can be obtained from Equation 48c. Substituting the

values from Equations 39c and 39d, the derivatives 𝜕(1)
𝑡 Πeq

𝛼𝛽 , 𝜕(1)
𝛽 Πeq

𝛼𝛽 and 𝜕
(1)
𝛾 Πeq

𝛼𝛽𝛾 are:

𝜕
(1)
𝑡 Πeq

𝛼𝛽 = 𝜕
(1)
𝑡

(︀
𝜌𝑐2𝑠𝛿𝛼𝛽

)︀
+ 𝜕

(1)
𝑡 (𝜌𝑢𝛼𝑢𝛽) ; (52a)

𝜕
(1)
𝛽 Πeq

𝛼𝛽 = 𝜕
(1)
𝛽

(︀
𝜌𝑐2𝑠𝛿𝛼𝛽

)︀
+ 𝜕

(1)
𝛽 (𝜌𝑢𝛼𝑢𝛽) ; (52b)

𝜕(1)
𝛾 Πeq

𝛼𝛽𝛾 = 𝑐2𝑠

[︁
𝜕
(1)
𝛽 (𝜌𝑢𝛼) + 𝜕(1)

𝛼 (𝜌𝑢𝛽) + 𝛿𝛼𝛽𝜕
(1)
𝛾 (𝜌𝑢𝛾)

]︁
. (52c)
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The product rule is then applied for (𝜌𝑢𝛼𝑢𝛽) terms and 𝜕
(1)
𝑡 (𝜌𝑢𝛼) is obtained from

Equation 48b. After some simplifications, 𝜖Π(1)
𝛼𝛽 is reduced to:

𝜖Π
(1)
𝛼𝛽 = −

(︂
𝜏 − ∆𝑡

2

)︂
𝜌𝑐2𝑠 (𝜕𝛼𝑢𝛽 + 𝛿𝛽𝑢𝛼) . (53)

By defining an apparent viscosity 𝜂

𝜂 = 𝜌𝑐2𝑠

(︂
𝜏 − ∆𝑡

2

)︂
, (54)

and being the thermodynamic pressure 𝑝 = 𝜌𝑐2𝑠, Equation 51 is rewritten as:

𝜕𝑡 (𝜌𝑢𝛼) + 𝜕𝛽 (𝜌𝑢𝛼𝑢𝛽) = −𝜕𝛼𝑝 + 𝜕𝛽 [𝜂 (𝜕𝛼𝑢𝛽 + 𝜕𝛽𝑢𝛼)] + 𝐹𝛼, (55)

which is the momentum conservation equation for a Generalized Newtonian fluid (BIRD et al.,

1987). From Equation 54 it can be found 𝜏 ≥ 0.5∆𝑡 as a necessary condition for LBM stability

(KRÜGER et al., 2017).

2.6 GENERALIZED NEWTONIAN FLUID

Firstly proposed by Isaac Newton in his famous "Principia Mathematica" and subse-

quently, in 1845, expanded by Stokes for three-dimensional mathematical form, the viscous

stress of a incompressible Newtonian fluid can be written as (MACOSKO, 1994):

𝜏 = 𝜂2𝐷, (56)

where 𝜂 is a material function called fluid dynamic viscosity and is a measure of its resistance to

deformation by shear stress. For a Newtonian fluid this value is independent of shear stress and

shear rate, being a function only of some properties like pressure and temperature (BIRD et al.,

1987). The factor 2𝐷 (also written as �̇�) is the rate-of-strain tensor and is defined as:

2𝐷 = �̇� = ∇𝑢 + ∇(𝑢)𝑇 , (57)

in which, ∇(𝑢)𝑇 represents the transpose of ∇𝑢.

By incorporating the idea of a shear-dependent viscosity one can describe some non-

Newtonian effects like shear-thinning, where the fluid apparent viscosity decreases with increas-

ing shear rate, and shear-thickening, where the apparent viscosity rises with increasing shear rate.
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The Generalized Newtonian fluid (GNF) results from a minor modification of the Newtonian

fluid constitutive equation (BIRD et al., 1987):

𝜏 = 𝜂(𝐼2𝐷, 𝐼𝐼2𝐷, 𝐼𝐼𝐼2𝐷)2𝐷, (58)

where 𝐼2𝐷, 𝐼𝐼2𝐷 and 𝐼𝐼𝐼2𝐷 are the first, second, and third shear rate tensor invariants, respectively.

They can be written as (MACOSKO, 1994):

𝐼2𝐷 = tr2𝐷; (59a)

𝐼𝐼2𝐷 =
1

2

(︀
(tr2𝐷)2 − tr (2𝐷)2

)︀
; (59b)

𝐼𝐼𝐼2𝐷 = det2𝐷. (59c)

where tr is the matrix trace. For an incompressible fluid, the first invariant will be zero since

𝐼2𝐷 = ∇ · 𝑢, also for simple shear flows, 𝐼𝐼𝐼2𝐷 = 0, and the above equation is simplified to:

𝜏 = 𝜂(𝐼𝐼2𝐷)2𝐷. (60)

The GNF still cannot describe normal stresses or time-dependent elastic effects (BIRD

et al., 1987), however, under the basis of a 𝜂(𝐼𝐼2𝐷), some constitutive equations were developed

to describe other non-Newtonian phenomena. Some of the most widely employed are the Power-

Law, that can be used to describe some pseudoplastic and dilatant fluids, and the Bingham

constitutive equation, that targets the representation of viscoplastic fluids.

The three described behaviors are qualitatively represented in Figure 10. In which

is shown that the pseudoplastic fluid exhibits shear-thinning behavior, its apparent viscosity

decreases with stress application while a dilatant fluid has the opposite response, shear-thickening.

Present work focuses on viscoplasticity, to which the fluid only flows for stresses above a critical

value.

2.6.1 Viscoplastic Fluid

A Viscoplastic fluid presents both plastic and viscous behavior. Plastic material is one

that shows little or no deformation up to a certain level of stress. Above this yield-stress, the
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Figure 10 – Comparative curve of non-Newtonian viscoplastic, dilatant and pseudo-
plastic fluids behavior with Newtonian fluid shear rate response over ap-
plied stress.

Source: Own elaboration.

material flows readily. House paint, margarine and ketchup are examples of viscoplastic materials

(MACOSKO, 1994).

For ideal elastic materials, shear stress is proportional to the imposed strain as stated by

an empirical, scalar, rule much like Newton’s law of viscosity called Hooke’s law, given by:

𝜏 = 𝐺𝛾, (61)

where 𝛾 is the strain tensor and 𝐺 is the elastic modulus. This equation may be used to describe

a material operating below its yield stress.

A material that is completely rigid until a certain yield-stress 𝜎𝑦, and that flows after

this value is surpassed can be modeled by allowing no motion below the yield stress

�̇� = 0

𝜏 = 𝜂0�̇� + 𝜎𝑦

for |𝜏 | < 𝜎𝑦;

for |𝜏 | ≥ 𝜎𝑦.
(62)

This one-dimensional form is the one Bingham used in his original paper and was named

after him as Bingham constitutive equation. To extend Equation 62 to the three-dimensional

form it is necessary to replace one-dimensional yield criterion with some scalar function of the

invariants of 𝜏 (MACOSKO, 1994), that way:

2𝐷 = 0 for |𝐼𝐼𝜏 | < 𝜎2
𝑦;

𝜏 =

(︃
𝜂0 +

𝜎𝑦

|𝐼𝐼2𝐷|1/2

)︃
2𝐷 for |𝐼𝐼𝜏 | ≥ 𝜎2

𝑦 ,
(63)
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where 𝜂0 is the zero shear viscosity. The Bingham fluid presents a linear shear rate dependence

for stresses above yield-stress. The value of 𝜎𝑦 for a specific fluid found through experimental

data can strongly vary for different �̇� ranges, especially in the lower shear rate range. As a

consequence, picking the wrong shear rate range to fit the Bingham fluid can result in large 𝜎𝑦

errors (MACOSKO, 1994).

To avoid the discontinuity in the flow curve due to incorporation of a yield criterion,

Papanastasiou (1987) proposed a modification to the Bingham equation by incorporating an

exponential term that allowed the use of one equation for the entire flow curve, before and

after yield. A Bingham fluid with the Papanastasiou modification can then be expressed as

(PAPANASTASIOU, 1987):

𝜏 =

⎧⎨⎩𝜂0 +
𝜎𝑦

[︁
1 − 𝑒(−𝑎|𝐼𝐼2𝐷 |1/2)

]︁
|𝐼𝐼2𝐷|1/2

⎫⎬⎭ 2𝐷. (64)

This is a regularization method widely employed in numerical simulations of viscoplas-

tic fluids flows, as it facilitates implementation by eliminating the singularity in the Bingham

equation. However, its dependence on a non-rheological parameter 𝑎, which controls the expo-

nential growth of the yield-stress term of the classical Bingham fluid in regions subjected to

very small strain-rates, can be pointed as a disadvantage of this constitutive equation (SOTO et

al., 2010). Besides, it is harder to delineate yield surfaces, since the regularization of apparent

viscosity replaces the solid behavior by a very viscous fluid.

2.6.2 LBM for non-Newtonian Fluids

As there are advantages of working with LBM for Newtonian flow simulations, it is

highly desirable to extend this methodology for non-Newtonian analysis. Most approaches use

the fact that relaxation time from LBM does not have to be obligatory constant and, since it is

possible to correlate the relaxation time with apparent viscosity of a GNF, some formulations of

non-Newtonian fluids are possible by using a variable relaxation time 𝜏 = 𝜏(𝜂). Nardi (2018)

used this kind of approach in LBM for a 2D numerical study of a spherical particle settling in

Power-Law fluid.
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2.7 CHAPTER SUMMARY

This chapter provided some of the fundamental concepts that are used in the develop-

ment of DNS algorithm. IBM and its formulation are introduced as an alternative of implementa-

tion in the Cartesian LBM grid for the representation of a particle immersed in fluid. The LBM

was also discussed, from its roots at continuous Boltzmann equation until the establishment of

a relationship with the macroscopic momentum equations. The chapter concluded with a brief

discussion over generalized Newtonian fluids, focusing on the viscoplastic fluid and concluding

with insight over the implementation of non-Newtonian constitutive equations in LBM.
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3 NUMERICAL METHODOLOGY

This excerpt of the document is directed towards the interpretation of the gravity-driven

motion of a particle in quiescent fluid and the numerical techniques used on the discretization

of the problem proposed. Starting with IBM formulation, where meshing methodology and

description of solid-body motion are detailed, proceeding with LBM regularization, boundary

conditions implementation, the boundary relocation scheme and modification of relaxation time

for a representation of the Bingham model. The Chapter is concluded with a summary of the

proposed IB-LBM algorithm.

3.1 RIGID BODY MOTION IN IBM

To attain a specified boundary condition at particle’s coordinates, the IBM considers a

force density 𝑓(𝑋) at the Lagrangian points denoting the force exerted on fluid by the particle.

This vector 𝑓(𝑋) is spread into Eulerian nodes defining a force field 𝐹 (𝑥) that assures that

the interpolated velocity at the particle’s surface respects a determined or calculated boundary

condition. The described procedure is illustrated in Figure 11.

Figure 11 – Illustration of the spreading process of IBM. The forces calculated for La-
grangian nodes are distributed into Eulerian nodes, so that the interpo-
lated velocities at the particle’s surface respect a given or calculated bound-
ary conditions.

Source: Own elaboration.

The product ∆𝑞∆𝑟∆𝑠 from Equation 13b is rewritten as a relative volume element

∆𝑏∆𝐴, with ∆𝑏 = 1 being the assumed thickness of particle shell and ∆𝐴 the surface area of a

single node. That way, spreading is performed through:

𝐹 (𝑥) =
∑︁
𝑋∈𝐿ℎ

𝑓 (𝑋)𝐷ℎ (𝑥−𝑋) ∆𝑏∆𝐴. (65)
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The force spreading is carried using a velocity correction term 𝛿𝑢, which is the differ-

ence between calculated and interpolated velocities 𝛿𝑢 = 𝑢calc − 𝑢interp. From Equation 41b it is

possible to establish an iterative scheme for the force density at Lagrangian nodes to satisfy a

no-slip boundary condition, this is written as (DASH et al., 2014):

𝑓 (𝑛+1) (𝑋) = 𝑓 (𝑛) (𝑋) + 2
𝜌 (𝑋)

∆𝑡
𝛿𝑢(𝑛) (𝑋) , (66)

where 𝜌 (𝑋) is obtained from:

𝜌 (𝑋) =
∑︁
𝑥∈𝐸ℎ

𝜌 (𝑥)𝐷ℎ (𝑥−𝑋) ∆𝑥3. (67)

The velocity field is then recalculated and spreading is repeated until a criterion error

𝐿1 =
∑︀

||𝛿𝑢||/
∑︀

||𝑢calc|| is attained or a predetermined amount of iterations is reached.

Assuming a constant ∆𝐴 = 𝐴𝑠/𝑁 for a solid-body of surface area 𝐴𝑠 and 𝑁 Lagrangian nodes,

it is desirable to design an IBM mesh of equally spaced points.

3.1.1 Meshing

The employed meshing technique can produce spherical and ellipsoidal meshes and

consists of three main steps. The first step is to draw the vertices of an icosahedron and then

make use of a hierarchical triangular mesh method (KUNSZT et al., 2001). Each face of the

regular polyhedron is regularly split into smaller triangles, as illustrated in Figure 12. This

recursive decomposition is applied to each facet of the original icosahedron according to a

desired refinement degree 𝑛𝑟.

Figure 12 – Representation of hierarchical triangular mesh. A triangular plane is sub-
divided in more triangular faces for each refinement degree 𝑛𝑟.

Source: Own elaboration.

Subsequently, the generated nodes are projected into a circumscribed sphere, as shown

in Figure 13, building a spherical mesh of almost equally distributed points.
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Figure 13 – Schematic of the meshing process for sphere: (a) the circumscribed regular
icosahedron with vertices at sphere surface, (b) has each of its faces divided
in 4 equal triangles, and (c) the new vertices are normalized and extended
to sphere surface creating 80 faces circumscribed polyhedron.

Source: Own elaboration.

In the second main step, all the constructed vector points are normalized to 𝑋(0), and

this unitary radius sphere is distorted through directional scaling, resulting in an ellipsoidal

surface with 𝐴, 𝐵, and 𝐶 as its principal axes. The new positions 𝑋(1) of Lagrangian nodes are

given by:

𝑋(1) = [𝐴 𝐵 𝐶]𝑋(0). (68)

When the axes are unequal, the distortion differences in linear transformation leads to

irregular distances between 𝑋(1) points, and to overcome this issue the third step of the meshing

procedure uses an iterative refinement process that considers vector positions 𝑋 as particles that

repel each other but are only allowed to move on the ellipsoidal surface. First the average force

𝑅𝐴 (𝑋𝑖) inversely proportional to the square of distances between nodes is calculated. that way

for a position 𝑋𝑖:

𝑅𝐴 (𝑋𝑖) =
1

𝑁

𝑁∑︁
𝑗=1

𝑋𝑖 −𝑋𝑗

||𝑋𝑖 −𝑋𝑗||3
, 𝑗 ̸= 𝑖. (69)

By decomposing 𝑅𝐴 in its normal and tangential forces 𝑅𝐴 = 𝑅𝑛 + 𝑅𝑡, the normal

component of repulsive force 𝑅𝑛 is given by:

𝑅𝑛 (𝑋𝑖) = [𝑅𝐴 (𝑋𝑖) · 𝑛 (𝑋𝑖)]𝑛 (𝑋𝑖) , (70)

where the unitary normal of a quadric surface 𝛼(𝑥,𝑦,𝑧) is 𝑛 = ∇𝛼/||∇𝛼||. Tangential force is

obtained by the subtraction 𝑅𝑡 = 𝑅𝐴 −𝑅𝑛 and, taking this force component, the nodes are

dislocated tangentially to the their surface. The vector 𝑅𝑡 will give the displacement of mesh
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points so that the mid-process positions are given by:

𝑋
(𝑛+ 1

2
)

𝑖 = 𝑋
(𝑛)
𝑖 +

∆𝐴

𝜋
𝑅𝑡

(︁
𝑋

(𝑛)
𝑖

)︁
, (71)

where ∆𝐴/𝜋 is a factor used to scale with 1/||𝑋𝑖 − 𝑋𝑗||2 from Equation 69 and prevent an

exaggerated displacement. The post-iteration position 𝑋
(𝑛+1)
𝑖 is determined by the position in

which the line coming from ellipsoid’s center 𝑋𝑐 towards 𝑋(𝑛+1/2)
𝑖 crosses the function defining

the quadric surface 𝛼 (𝑥,𝑦,𝑧). This procedure is illustrated in Figure 14.

Figure 14 – Refinement procedure in which a point moves tangentially to ellipsoid’s
surface with resultant direction calculated from the total repulsive force
exerted by other nodes. After dislocation, the mesh points are projected
into ellipsoid geometry.

Source: Own elaboration.

In present work, a total of 200,000 iterations were adopted in each mesh generation,

creating meshes of fair regularity , as shown in a summary of the three meshing steps in Figure

15. This mesh generation procedure only takes place once in pre-processing, and the resulting

mesh can be reused in other simulations.

Figure 15 – Summary of the meshing process. At the end of step 1 we obtain a geodesic
dome mesh, this geometry is distorted in an ellipsoidal shape at step 2.
In an iterative process, mesh refinement is performed for more regular
distances between points at step 3.

Source: Own elaboration.
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The Lagrangian mesh at its final state contains almost equally distributed nodes and is

suitable for IBM. The surface area of an ellipsoid is calculated using the approximation from

Knud Thomsen1:

𝐴𝑠 = 4𝜋
𝑝

√︂
𝐴𝑝𝐵𝑝 + 𝐴𝑝𝐶𝑝 + 𝐵𝑝𝐶𝑝

3
, (72)

in which 𝑝 = 1.6075. A thorough discussion on area approximations of n-dimensional ellipsoids

can be found in (KLAMKIN, 1971; KLAMKIN, 1976)

3.1.2 Gravity-Driven Motion

It must be noticed that, ultimately, IBM only creates a control volume with an imposed

boundary velocity. The modeling of a gravity-driven particle must take into account the effects

of the fluid inside Lagrangian mesh in particle motion equations. We highlight the difference

between an IBM numerical model and a homogeneous solid material of mass 𝑚 in Figure 16. The

particle surface boundary is shown as 𝜕𝑆 and interior of convex geometry as 𝜕V. In IBM, there

will be fluid "imprisoned" inside Lagrangian mesh, as a water balloon, while the homogeneous

material moves with no relative movement in its interior.

Figure 16 – Comparison of (a) IBM control volume and (b) a homogeneous solid parti-
cle. In (a) the fluid remains "imprisoned" inside the Lagrangian mesh and
its movement has to be compensated from the particle motion equations.

Source: Own elaboration.

Newton’s second law dictates the translational motion of a homogeneous particle under
1 http://www.numericana.com/answer/ellipsoid.htm#thomsen; This approximation has been discussed in sci.math

newsgroup by Sigma Xi mathematician David W. Cantrell.
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action of gravity represented in Fig 16b for a rigid body as

∮︁
𝜕𝑆

𝜎 · d𝑆 + 𝑚𝑔 + 𝐹𝐵 = 𝑚
d𝑈𝑐

d𝑡
, (73)

where 𝑈𝑐 is the velocity from mass center 𝑋𝑐, gravity acceleration is denoted by 𝑔 and 𝐹𝐵 is

the buoyant force. The integral from Equation 73 represents the total force exerted by the stress

tensor 𝜎 on solid-body surface 𝜕𝑆. The particle angular movement can be described by Euler’s

rotation equation.

∮︁
𝜕𝑆

(𝑋 −𝑋𝑐) × (𝜎 · d𝑆) = 𝐼
dΩ
d𝑡

+ Ω× (𝐼Ω) , (74)

where Ω is particle’s angular velocity and 𝐼 the diagonal inertia matrix relative to solid-body

principal axes. Present work simulations of a rigid body using IBM considers that the opposite

forces (−𝑓∆𝑏∆𝐴), in conjunction with the change of momentum from the fluid contained in

𝜕V, must account for the first term in Equation 73, so

∮︁
𝜕𝑆

𝜎 · d𝑆 = −
∑︁
𝐿ℎ

𝑓∆𝑏∆𝐴 +
d
d𝑡

∮︁
𝜕V

d𝑃 , (75)

where 𝑃 is the linear momentum inside 𝜕V and, d𝑃 = 𝜌𝑢dV. Similarly, for the angular

momentum of internal fluid 𝐿, the first term from Euler’s equation is written as:

∮︁
𝜕𝑆

(𝑋 −𝑋𝑐) × (𝜎 · d𝑆) =
∑︁
𝐿ℎ

𝑀 +
d
d𝑡

∮︁
𝜕V

d𝐿. (76)

In this equation, 𝑀 = (𝑋 −𝑋𝑐) × (−𝑓∆𝑏∆𝐴) and d𝐿 = (𝑋 −𝑋𝑐) × (𝜌𝑢dV).

Suzuki and Inamuro (2011) proposed the treatment of internal momentum terms through the use

of discrete Lagrangian points 𝑋int inside IBM mesh:

d
d𝑡

∮︁
𝜕V

d𝑃 =
d
d𝑡

∑︁
𝜕V

[𝜌 (𝑋int)𝑢 (𝑋int) ∆V (𝑋int)] ; (77a)

d
d𝑡

∮︁
𝜕V

d𝐿 =
d
d𝑡

∑︁
𝜕V

[𝑋int −𝑋𝑐] × [𝜌 (𝑋int)𝑢 (𝑋int) ∆V (𝑋int)] . (77b)

In Equations 77a and 77b, ∆V(𝑋int) is the volume associated with each internal node

and whose summation must be 𝜕V. The density and velocity are both calculated through the
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same IBM interpolative process with 𝐷ℎ:

𝜌 (𝑋int) =
∑︁
𝑥∈𝐸ℎ

𝜌 (𝑥)𝐷ℎ (𝑥−𝑋int) ∆𝑥3; (78a)

𝑢 (𝑋int) =
∑︁
𝑥∈𝐸ℎ

𝑢 (𝑥)𝐷ℎ (𝑥−𝑋int) ∆𝑥3. (78b)

The identification of these internal points in three-dimensional convex geometry and

association of a ∆V for each position is achieved by tracing divisions inside IBM mesh. Each

vector 𝑋𝑖 −𝑋𝑐 is associated with a oblique pyramid of base area ∆𝐴 with height given by dot

product 𝐻 = (𝑋𝑖 −𝑋𝑐) · 𝑛 (𝑋𝑖 −𝑋𝑐), with 𝑛 being the vector normal to surface, calculated

when building the mesh and adjusted after any rotation. The internal points are drawn by dividing

each vector (𝑋𝑖 −𝑋𝑐) in 𝑘 equally spaced segments cutting planes on pyramidal geometry

perpendicular to 𝑛, as illustrated in Figure 17. Under the assumption that each portion of the

vector (𝑋𝑖 −𝑋𝑐) can be associated with a ∆V(𝑋int) corresponding to a clipped pyramid, or

frustum, of height ∆ℎ = 𝐻/𝑘, as in a finite volumes technique, the summation of these ∆V(𝑋int)

from all mesh vectors (𝑋𝑖 −𝑋𝑐) returns total mesh volume.

Figure 17 – Consideration of a convex volume as being a composition of pyramids. The vectors indicating
geometry surface are divided, and a frustum is associated with each segment.

Source: Own elaboration.

The values for ∆V(𝑋int) are defined as the region occupied by the original pyramid,

minus the volume of the sliced apex. This reasoning is illustrated in Figure 18.

If the 0th internal point is placed at the center of the convex geometry and the 𝑘th ones

placed on its surface. For any point in-between, ∆V(𝑖+1) can be written as

∆V(𝑖+1) =
1

3

[︀
∆𝐴(𝑖+1) (ℎ + ∆ℎ) − ∆𝐴(𝑖)ℎ

]︀
, (79)
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Figure 18 – Example of a volume element of a generic point 𝑖 + 1 from a single mesh
vector associated with a pyramidal geometry.

Source: Own elaboration.

where the areas of cross-section and the base are proportional to the squares of their heights

(KISELEV, 2008), thus

∆𝐴(𝑖+1)

∆𝐴(𝑘)
=

(︂
ℎ + ∆ℎ

𝐻

)︂2

;
∆𝐴(𝑖)

∆𝐴(𝑘)
=

(︂
ℎ

𝐻

)︂2

Since ∆𝐴(𝑘) = ∆𝐴, ℎ = 𝑖∆ℎ and ∆ℎ = 𝐻/𝑘, an expression for the 𝑖𝑡ℎ volume ∆V(𝑖),

with 0 ≤ 𝑖 ≤ 𝑘, can be found by rearranging Equation 79:

∆V(𝑖) =
𝐻∆𝐴

3𝑘3

(︀
3𝑖2 − 3𝑖 + 1

)︀
. (80)

This procedure used to compensate for the internal fluid influence does not require

storing the positions of internal points at each time-step, since they are drawn from mesh vectors

(𝑋𝑖 −𝑋𝑐). The equations describing particle motion are discretized for a time interval ∆𝑡 using

a finite-difference scheme with a Crank-Nicholson method for all terms except the internal

mass compensation, which is discretized only up to first-order in a backward Euler scheme. The

evolution of translational and rotational velocities is given by:

𝑈 (𝑡+1)
𝑐 = 𝑈 (𝑡)

𝑐 − ∆𝑡

2𝑚

∑︁
𝐿ℎ

(︀
𝑓 (𝑡+1) + 𝑓 (𝑡)

)︀
∆𝑏∆𝐴 +

𝑃
(𝑡)
int − 𝑃

(𝑡−1)
int

𝑚
+ 𝑔∆𝑡 +

𝐹𝐵∆𝑡

𝑚
; (81a)

Ω(𝑡+1) = Ω(𝑡) + 𝐼−1

{︃∑︁
𝐿ℎ

(︀
𝑀 (𝑡+1) + 𝑀 𝑡

)︀
2

+
𝐿

(𝑡)
int −𝐿

(𝑡−1)
int

∆𝑡

−1

4

[︀(︀
Ω(𝑡+1) + Ω(𝑡)

)︀
× 𝐼

(︀
Ω(𝑡+1) + Ω(𝑡)

)︀]︀}︂
∆𝑡,

(81b)
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where 𝑃int and 𝐿int are the linear and angular momenta of internal fluid, respectively. The

central mesh position and its angular displacement ∆𝜃(𝑡+1) are calculated using second-order

Crank-Nicholson method:

𝑋(𝑡+1)
𝑐 = 𝑋(𝑡)

𝑐 +
∆𝑡

2

(︀
𝑈 (𝑡+1)

𝑐 + 𝑈 (𝑡)
𝑐

)︀
; (82a)

∆𝜃(𝑡+1) =
∆𝑡

2

⃦⃦
Ω(𝑡+1) + Ω(𝑡)

⃦⃦
. (82b)

Knowing the values for 𝑋(𝑡+1)
𝑐 and ∆𝜃(𝑡+1), all mesh nodes are updated with rotation

being computed using quaternion operation:

𝑋
(𝑡+1)
𝑖 = 𝑋(𝑡+1)

𝑐 + 𝑞
(︁
𝑋

(𝑡)
𝑖 −𝑋(𝑡)

𝑐

)︁
𝑞′. (83)

Introduced by William R. Hamilton in 1843, the quaternion is a hypercomplex number

that can be represented in R4 as the sum of a scalar and vector parts, this is written as (KUIPERS,

1999):

𝑞 = 𝑞0 + 𝑞, (84)

where 𝑞0 corresponds to a real number and 𝑞 = (𝑞0,𝑞1,𝑞2) is the vector part from the quaternion.

This category of numbers forms a non-commutative ring, meaning that non-commutativity

of division the only property differing from a field (KUIPERS, 1999). The product of two

quaternions 𝑞 and 𝑝 is given by:

𝑝𝑞 = 𝑝0𝑞0 − 𝑝 · 𝑞 + 𝑝0𝑞 + 𝑞0𝑝 + 𝑝× 𝑞. (85)

Defining the conjugate of a quaternion as 𝑞′ = 𝑞0−𝑞 and as a vector 𝑣 ∈ R3 can simply

be treated as a quaternion 𝑞 ∈ R4 whose real part is 𝑞0 = 0, a pure quaternion (KUIPERS, 1999),

it can be shown that for a pure quaternion 𝑣 = 0 + 𝑣 the operation 𝑞𝑣𝑞′ returns a 𝑤 that will be a

pure quaternion. This is illustrated in Figure 19.

For a quaternion whose norm |𝑞|2 = 𝑞20 + 𝑞21 + 𝑞22 + 𝑞23 = 1, in an operation 𝑤 = 𝑞𝑣𝑞′,

||𝑤|| = ||𝑣||. If 𝑤 ̸= 𝑣, the initial vector went through a rotation, it can be shown that the

operation with unitary quaternion

𝑞 = cos
(︂

∆𝜃

2

)︂
+ sin

(︂
∆𝜃

2

)︂
𝑚, (86)
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Figure 19 – Schematic of operation between pure quaternions and its conjugate that
can describe the rotation of a pure quaternion.

Source: Own elaboration.

implies that 𝑤 will be the resulting vector of a ∆𝜃 rotation of 𝑣 around the unitary vector 𝑚

axis (KUIPERS, 1999). That way, the quaternion 𝑞 from Equation 83 is:

𝑞0 = cos
(︂

∆𝜃(𝑡+1)

2

)︂
; 𝑞 =

Ω(𝑡+1) + Ω(𝑡)

||Ω(𝑡+1) + Ω(𝑡)||
sin
(︂

∆𝜃(𝑡+1)

2

)︂
The operation 𝑞𝑣𝑞′ can be written in a matrix-vector multiplication 𝑄𝑣, in which

𝑄 =

⎡⎢⎢⎢⎣
2𝑞20 − 1 + 2𝑞21 2𝑞1𝑞2 − 2𝑞0𝑞3 2𝑞1𝑞3 + 2𝑞0𝑞2

2𝑞1𝑞2 + 2𝑞0𝑞3 2𝑞20 − 1 + 2𝑞22 2𝑞2𝑞3 − 2𝑞0𝑞1

2𝑞1𝑞3 − 2𝑞0𝑞2 2𝑞2𝑞3 + 2𝑞0𝑞1 2𝑞20 − 1 + 2𝑞23

⎤⎥⎥⎥⎦
One of the main advantages to work with quaternions rather than Euler angles is that it

prevents gimbal lock, the loss of one degree of freedom, which degenerates the three-dimensional

rotation system in a two-dimensional space (KOZAK; FRIEDRICH, 2009).

3.2 REGULARIZATION OF COLLISION OPERATOR

Despite the BGK collision operator being very computationally efficient, as 𝜏 ap-

proaches 0.5, higher-order "ghost" moments arising from an insufficient Hermitian representation

can introduce spurious currents into the LBM calculations (MATTILA et al., 2017). Although

these higher-order moments have small magnitude, they do spoil the numerical stability. There are

many ways around this problem. Present work adopts LB regularization, a procedure developed

by Latt and Chopard (2006). It is important to not mistake this technique for the regularization

of viscoplastic viscosity in models such as Papanastasiou.

In LBM the flow evolution is described by two major processes. First, is the collision,

an event that represents the variations of populations due to collisions and, for the BGK collision
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operator, is written from LBE as

𝑓 *
𝑖 = 𝑓𝑖 −

[𝑓𝑖 − 𝑓 eq
𝑖 ]

𝜏
+ 𝑆𝑖, (87)

and second is the streaming, or propagation, in which post-collision populations 𝑓 *
𝑖 migrate to a

neighbor lattice according to their velocity direction

𝑓𝑖(𝑥 + ∆𝑥, 𝑡 + ∆𝑡) = 𝑓 *
𝑖 (𝑥,𝑡). (88)

By rewriting collision equation in terms of equilibrium and non-equilibrium populations

𝑓 *
𝑖 = 𝑓 eq

𝑖 +

(︂
1 − 1

𝜏

)︂
𝑓 neq
𝑖 + 𝑆𝑖, (89)

it can be identified 𝑓 neq
𝑖 as the source of the mentioned "ghost" moments. To find an expression

for 𝑓 neq
𝑖 = 𝑓𝑖− 𝑓 eq

𝑖 , such that it recovers the proper hydrodynamic moments, the non-equilibrium

function is written as a Hermite polynomial expansion up to second-order:

𝑓 neq(𝜉) = 𝜔(𝜉)
2∑︁

𝑛=0

𝑎(𝑛),neq ·𝐻(𝑛)(𝜉)

𝑛!
, (90)

where 𝑎(𝑛),neq are the coefficients of the expansion and 𝐻(𝑛) is the Hermite polynomial of order

𝑛, which is given by (KRÜGER et al., 2017)

𝐻(𝑛) (𝜉) = (−1)(𝑛)
1

𝜔 (𝜉)
∇(𝑛)𝜔 (𝜉) , (91)

with 𝜔(𝜉) = exp(−||𝜉||2/2)/(2𝜋)3/2 being the weight function. The values of Hermite polyno-

mials up to second-order are (MATTILA et al., 2017):

𝐻(0) = 1; 𝐻
(1)
𝛼𝛽 = 𝜉𝛼; 𝐻(2) = 𝜉𝛼𝜉𝛽 − 𝛿𝛼𝛽

As one of the features of Hermite polynomials is their orthogonality, the coefficients

𝑎(𝑛),neq can be obtained from:

𝑎(𝑛),neq =

∫︁
𝑓 neq𝐻(𝑛)𝑑𝜉. (92)
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Since the moments of discrete non-equilibrium populations must return the continuous

approach:

𝑎(0),neq =

∫︁
𝑓 neq𝑑𝜉𝛼 =

∑︁
𝑖

𝑓 neq
𝑖 = 0; (93a)

𝑎(1),neq =

∫︁
𝑓 neq𝜉𝛼𝑑𝜉𝛼 =

∑︁
𝑖

𝑓 neq
𝑖 𝜉𝑖𝛼 =

1

𝑐𝑠

∑︁
𝑖

𝑓 neq
𝑖 𝑒𝑖𝛼 = −∆𝑡

2𝑐𝑠
𝐹𝛼; (93b)

𝑎(2),neq =

∫︁
𝑓 neq (𝜉𝛼𝜉𝛽 − 𝛿𝛼𝛽) 𝑑𝜉𝛼 =

∑︁
𝑖

𝑓 neq
𝑖 𝜉𝑖𝛼𝜉𝑖𝛽 =

1

𝑐2𝑠

∑︁
𝑖

𝑓 neq
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽. (93c)

Substituting those and the Hermite polynomials values in Equation 90:

𝑓 neq = 𝜔 (𝜉)

[︃
−∆𝑡

2𝑐𝑠
𝐹𝛼𝜉𝛼 +

1

2𝑐2𝑠

∑︁
𝑖

𝑓 neq
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽 (𝜉𝛼𝜉𝛽 − 𝛿𝛼𝛽)

]︃
, (94)

since 𝑐𝑠𝜉𝑖 = 𝑒𝑖. From Gauss-Hermite quadrature rule:

∫︁ +∞

−∞
𝜔 (𝜉) 𝑓 neq (𝜉) 𝑑𝜉 =

𝑛∑︁
𝑖=1

𝑤𝑖𝑓
neq (𝜉𝑖) . (95)

The regularized non-equilibrium populations 𝑓 reg
𝑖 are then written as:

𝑓 reg
𝑖 =

𝑤𝑖

2𝑐4𝑠

[︃∑︁
𝑖

𝑓 neq
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽

(︀
𝑒𝑖𝛼𝑒𝑖𝛽 − 𝑐2𝑠𝛿𝛼𝛽

)︀
− 𝑐2𝑠∆𝑡𝐹𝛼𝑒𝑖𝛼

]︃
. (96)

Substituting in Equation 89, the collision equation is rewritten as:

𝑓 *
𝑖 = 𝑓 eq

𝑖 +

(︂
1 − 1

𝜏

)︂
𝑓 reg
𝑖 + 𝑆𝑖. (97)

Applying this formulation results in a considerable increase of numerical stability of

BGK collision operator (MATTILA et al., 2017), allowing the use of 𝜏 values nearer 0.5.

3.3 BOUNDARY CONDITIONS

Boundary conditions are fundamental in fluid dynamics, as they assure unique solutions

for partial differential equations. They are a mathematical description of an observed phenomenon

and "their number in the direction of each independent variable of a problem is equal to the

order of the highest derivative of the governing differential equation in the same direction"

(ARPACI, 1966). As LBM describes a fluid flow in terms of populations in a domain also
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discretized for velocity space, boundary conditions have to be defined both in space location

and velocity direction 𝑖. This is well illustrated in Figure 20, where the dotted lines represent

unknown populations at boundaries during streaming.

Figure 20 – Unknown populations (represented by dotted arrows at boundaries for a
generic domain during streaming.

Source: Own elaboration.

This section focus on how to achieve a macroscopically-defined boundary condition in

LBM by attributing the proper values to the unknown populations.

3.3.1 Periodic Boundary Condition

Periodic boundary conditions apply to a situation in which is desirable to isolate a

repeating flow pattern within a cyclic flow system. This can be attained by assuring that the

fluid leaving domain at one boundary simultaneously re-enter the opposite side, as illustrated in

Figure 21.

Figure 21 – Example of periodic boundary condition, in which populations leaving one
of extremities from computational domain are streamed to the opposite
side, attributing values for the unknown populations.

Source: Own elaboration.

As a consequence, periodic boundary conditions conserve mass and momentum at all
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times (KRÜGER et al., 2017). For the situation depicted in Fig 21, the unknown populations at

(𝑥1,𝑦𝑖) can be written as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑓3 (𝑥1,𝑦𝑖,𝑡 + ∆𝑡) = 𝑓 *

3 (𝑥𝑁 ,𝑦𝑖,𝑡) ;

𝑓5 (𝑥1,𝑦𝑖,𝑡 + ∆𝑡) = 𝑓 *
5 (𝑥𝑁 ,𝑦𝑖−1,𝑡) ;

𝑓7 (𝑥1,𝑦𝑖,𝑡 + ∆𝑡) = 𝑓 *
7 (𝑥𝑁 ,𝑦𝑖+1,𝑡) .

(98)

Analogously, the unknown populations at 𝑥𝑁 are obtained from 𝑥1. In short, the principle

of periodic condition is to connect opposite boundaries as if the domain is folded onto itself.

3.3.2 Dirichlet Boundary Condition - Halfway Bounce-Back

As many problems in fluid dynamics deal with no-slip boundary conditions, it is

important to find an expression for the unknown populations at boundary 𝑥𝑏 that will assure

a 𝑢(𝑥𝑏) = 0. An alternative is the use of the bounce-back method, whose principle is that

populations hitting a wall during streaming are reflected back to their original position (LADD,

1994a), as illustrated in Figure 22.

Figure 22 – Representation of the Halfway Bounce-Back method for no-slip boundary
condition. The populations hitting the wall are reflected returning to the
same node they left but with opposite velocity, accounting for unknown
populations.

Source: Own elaboration.

In this representation, the wall is located in a 0.5∆𝑥 distance from the boundary

node and inversion of velocity occurs at the streaming process, hence unknown populations at

propagation are given by (LADD, 1994a):

𝑓−𝑖(𝑥𝑏,𝑡 + ∆𝑡) = 𝑓 *
𝑖 (𝑥𝑏,𝑡), (99)
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where −𝑖 stands for the direction opposite to 𝑖. This approach implies no flux across the boundary

and is known as halfway bounce-back, which is formally second-order accurate (KRÜGER et

al., 2017).

The extension to moving walls requires a small correction in Equation 99. Since the

populations are no longer hitting a wall at rest, they have to gain or lose an amount of momentum

so that the outcome respects Galilean invariance. For a Dirichlet boundary condition of velocity

𝑢wall, the unknown populations will be given by:

𝑓−𝑖(𝑥𝑏,𝑡 + ∆𝑡) = 𝑓 *
𝑖 (𝑥𝑏,𝑡) − 2𝑤𝑖𝜌wall

𝑒𝑖 · 𝑢wall

𝑐2𝑠
, (100)

in which 𝜌wall is estimated as the local fluid density at boundary 𝜌(𝑥𝑏).

3.3.3 Neumann Boundary Condition

As the present work requires outflow considerations in many simulations, a Neumann

boundary condition was also implemented. Though there are better ways to represent outflow

boundaries (ABBASSI et al., 2002), the Neumann boundary condition 𝜕𝑢/𝜕𝑛 = 0 has a rela-

tively easy implementation in LBM. Through a second-order central difference approximation:

𝜕𝑢

𝜕𝑛𝑏

(𝑥𝑏) =
𝑢 (𝑥𝑏 + 𝑛𝑏∆𝑥) − 𝑢 (𝑥𝑏 − 𝑛𝑏∆𝑥)

2∆𝑥
= 0. (101)

This can be achieved by assuming 𝑓 *
𝑖 (𝑥𝑏 + 𝑛𝑏∆𝑥) = 𝑓 *

𝑖 (𝑥𝑏 − 𝑛𝑏∆𝑥). As 𝑥𝑏 +𝑛𝑏∆𝑥

goes beyond the computational domain, ghost nodes are employed (JUNK; YANG, 2008), as

illustrated in Figure 23.

Figure 23 – Illustration of ghost nodes used for the application of Neumann boundary
condition.

Source: Own elaboration.

By copying the nodes from boundary neighborhood the normal derivative equals zero is

assured during streaming, which is performed normally with the ghost nodes.
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3.4 BOUNDARY RELOCATION SCHEME

To represent the particle moving in an unbounded domain, the boundaries are dislocated

altogether with particle to prevent approach. For a gravity-driven motion, the object may be

falling or ascending. The boundary to which particle is traveling towards has zero velocity,

and remaining planes have no variation of velocity at normal direction outside the domain.

The configurations that can be assumed for both ascending and falling particle situations are

illustrated in Figure 24, in which 𝑑𝑧1 is the distance between the centroid of solid-body and the

upwind boundary.

Figure 24 – Schematic of boundary conditions in the computational domain for a
particle falling or ascending in quiescent fluid. At the upwind boundary,
zero velocity Dirichlet BC is assumed, while Neumann BC is adopted at
the remaining boundaries. The solid-body is usually positioned such that
𝑑𝑧1 < 0.5𝑁𝑧 , therefore the simulation domain is mostly dedicated to com-
pute the downstream of the particle’s wake.

Source: Own elaboration.

The boundary conditions are satisfied through the already described methods. For a

DNS limited for a 𝑁𝑥×𝑁𝑦×𝑁𝑧 domain, it is employed a periodic (𝑁𝑥+1)×(𝑁𝑦+1)×(𝑁𝑧 +1)

computational grid. The three extra planes are positioned between the boundaries, separating

them. The populations streaming from their nodes do not take part in the simulation, as their

values are replaced during the application of the BCs. Figure 25 exemplifies the setup of the

computational domain with each block representing a lattice. As illustrated, with the combination
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of periodicity and relocation of boundaries, the domain relative to particle’s position keeps

virtually unaltered.

Figure 25 – Configuration of the computational grid for a boundary relocation scheme.
(a) The extra rows outside the simulation domain, shown in light gray, sep-
arate the boundaries, represented in dark gray. (b) The boundaries are
kept at an almost constant distance from particle’s center during the sim-
ulation (c) as boundary displacement can only be either zero or ∆𝑥.

Source: Own elaboration.

When a boundary is relocated in the fixed computational grid, the before inactive nodes

from the extra plane are added into simulation confines. The values for populations in these

separation planes are copied from the boundaries that particle is moving towards for 𝑥-, 𝑦-, and

𝑧-direction. Velocity and pressure field variations at regions beyond object trajectory are much

smaller than they are at downstream and could be disregarded for a sufficiently large domain.

Hence, sphere position has to be designed to minimize bottom effects, while keeping a sufficient

distance from the outlet. This truncation of the numerical domain is represented in Figure 26,

showing how the values at inactive nodes are defined according to the particle’s direction of

movement. This approach is implemented for 𝑥-, 𝑦-, and 𝑧-direction and edges are also replicated

diagonally, in case of oblique displacement of boundaries.

For a square cross-section domain (𝑁𝑥 = 𝑁𝑦), the distance between the particle’s center

and the lateral simulation limits is kept at a value between 0.5(𝑁𝑥 − ∆𝑥) and 0.5(𝑁𝑥 + ∆𝑥). In

the vertical direction, the object position 𝑑𝑧1 might be turned to an appropriate value, depending

on the Reynolds number from the simulation. As downstream wake develops for longer distances

when Reynolds number increases, it is usually set 𝑑𝑧1 < 0.5𝑁𝑧.
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Figure 26 – Representation of procedure to define the values of populations at the in-
active nodes. When the particle’s horizontal velocity is positive (Case 1),
the inactive nodes replicate the population values from 𝑥𝑏1. For a negative
horizontal velocity (Case 2), the population values at the inactive nodes are
copied from 𝑥𝑏2. It is assumed 𝑁𝑥 = 𝑁𝑦 , 𝑑𝑥 = 0.5𝑁𝑥, and 𝑑𝑧1 ≤ 0.5𝑁𝑧 .

Source: Own elaboration.

3.5 VISCOPLASTIC FLOW IN LBM

As previously suggested, the relaxation time in the LBGK equation does not have to be

necessarily constant, which allows for some GNF models to be reproduced in LBM. For those

developments, it is convenient to work with LBE in terms of the collision frequency 𝜔 = 1/𝜏 . In

a GNF model, the apparent viscosity 𝜂 is a function of both shear rate �̇�𝛼𝛽 and viscous stress 𝜏𝛼𝛽 ,

therefore it is necessary to obtain these variables from the mesoscopic populations. As shown

through Chapman-Enskog expansion 𝜖Π
(1)
𝛼𝛽 = 𝜏𝛼𝛽 . Assuming that only the first-order terms in 𝜖

are responsible for the second velocity moment of 𝑓 neq
𝑖 , 𝜖Π(1)

𝛼𝛽 ≈ Πneq
𝛼𝛽 . By rearranging Equation

41c to

Π𝛼𝛽 =

(︂
1 − ∆𝑡

2𝜏

)︂∑︁
𝑖

𝑓𝑖𝑒𝑖𝛼𝛽 +
∆𝑡

2𝜏

∑︁
𝑖

𝑓 eq
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽 +

∆𝑡

2

(︂
1 − ∆𝑡

2𝜏

)︂
(𝐹𝛼𝑢𝛽 + 𝐹𝛽𝑢𝛼) , (102)

and subtracting Πeq
𝛼𝛽 gives the stress tensor 𝜎𝛼𝛽 as:

𝜏𝛼𝛽 = Πneq
𝛼𝛽 =

(︂
1 − ∆𝑡

2𝜏

)︂[︃∑︁
𝑖

𝑓 neq
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽 +

∆𝑡

2
(𝐹𝛼𝑢𝛽 + 𝐹𝛽𝑢𝛼)

]︃
. (103)

The regularization of ghost moments is also performed for the stress by using 𝑓 reg
𝑖

instead of 𝑓 neq
𝑖 in Equation 103 (LUGARINI et al., 2020). The shear rate is obtained dividing
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𝜎𝛼𝛽 by the fluid apparent viscosity 𝜂 from Equation 54, which gives:

�̇�𝛼𝛽 =
𝜔

𝜌𝑐2𝑠

[︃∑︁
𝑖

𝑓 reg
𝑖 𝑒𝑖𝛼𝑒𝑖𝛽 +

∆𝑡

2
(𝐹𝛼𝑢𝛽 + 𝐹𝛽𝑢𝛼)

]︃
. (104)

For the representation of the Bingham model with LBM, Lugarini et al. (2020) proposed

to define the collision frequency operator 𝜔 as:

𝜔 =

⎧⎪⎨⎪⎩ 0

𝜌𝑐2𝑠/
[︁
Δ𝑡
2
𝜌𝑐2𝑠 +

(︁
𝜂0 + 𝜎𝑦

|�̇�|

)︁]︁ |𝐼𝐼𝜏 | ≤ 𝜎2
𝑦;

|𝐼𝐼𝜏 | > 𝜎2
𝑦 .

(105)

For situations in which �̇� = 0, the value calculated for 𝜔 will also be 0, which causes the

shear rate in Equation 104 to be zero even if |𝐼𝐼𝜏 | > 𝜎𝑦. Therefore, when 𝜔 = 0 and |𝐼𝐼𝜏 | > 𝜎2
𝑦 ,

the shear rate is computed from a central finite-difference scheme of �̇� = ∇𝑢 + ∇(𝑢)𝑇 , hence:

�̇� =

⎡⎢⎢⎢⎣
𝑢(𝑥+𝑖Δ𝑥)−𝑢(𝑥−𝑖Δ𝑥)

Δ𝑥
... ...

𝑣(𝑥+𝑖Δ𝑥)−𝑣(𝑥−𝑖Δ𝑥)
2Δ𝑥

+ 𝑢(𝑥+𝑗Δ𝑥)−𝑢(𝑥−𝑗Δ𝑥)
2Δ𝑥

... ...

𝑤(𝑥+𝑖Δ𝑥)−𝑤(𝑥−𝑖Δ𝑥)
2Δ𝑥

+ 𝑢(𝑥+𝑘Δ𝑥)−𝑢(𝑥−𝑘Δ𝑥)
2Δ𝑥

... ...

⎤⎥⎥⎥⎦ , (106)

where 𝑖, 𝑗, 𝑘 are the unit vectors in the 𝑥-, 𝑦- and 𝑧-directions, respectively. As viscoplasticity

is expected to solve the Stokes paradox (HEWITT; BALMFORTH, 2018), it seems more

appropriate to adopt the zero velocity bounce-back BC at all boundaries for the representation of

particle motion instead of applying Neumann BC at the downwind and lateral boundaries.

3.6 ALGORITHM SUMMARY

The first part of the algorithm consists in the design of IBM mesh from the determined

parameters and positioning of the particle and boundaries. In the Eulerian grid populations are

initially assumed to be equal 𝑓 eq
𝑖 for a uniform quiescent fluid (𝑢 = 0 and 𝜌 = 1). Linear and

angular velocities from the particle are also assumed to be null at the initial instant. At each

time step, it is first calculated the values of 𝑡, 𝑃 (𝑡)
int , and 𝐿

(𝑡)
int . Then, an iterative process with

interpolation of velocity field into Lagrangian mesh and spreading of forces in Eulerian grid is

conducted. After 6 iterations, which was found to be sufficient for a velocity deviation 𝐿1 < 10−3,

the values of 𝑈
(𝑡+1)
𝑐 and Ω

(𝑡+1)
𝑐 are obtained. Afterward, collision/streaming from LBM is

executed, boundary nodes are copied to inactive planes. At the end, particle and boundaries
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positions are updated and simulation advances to the next time step. A summary of the formulated

algorithm is shown in a flowchart at Flowchart 1.

Flowchart 1 – Developed algorithm for the simulation of a single-particle settling in an unbounded domain
filled with viscoplastic fluid.

Source: Own elaboration.

The code was written in C/C++ programing language and the processing of simulations

was done in parallel with CUDA platform in a GeForce RTX 2070 GPU, 8 GB RAM, allowing

for computational domains containing a maximum of approximately 19,360,000 elements for

Newtonian and 16,000,000 for viscoplastic settling. When using the whole GPU memory, the

typical execution time of a standard settling simulation was around 32 hours for 500,000-

time steps, corresponding to 80 million lattice updates per second (MLUPS). It was observed

that the implementation of the boundary relocation scheme caused the MLUPS to decrease

by approximately 0.92%. The post-processing tool for the rendering of simulation data was

ParaView.
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3.7 CHAPTER CLOSURE

This chapter detailed the implementation of IBM and LBM for a three-dimensional

case of a particle settling in quiescent media. It also presents a meshing technique for generation

of ellipsoidal meshes along with the procedure used for the compensation of internal fluid mass

for gravity-driven motion in IBM. LBM stability for the evolution of flow is improved with

regularization of non-equilibrium populations. A method for calculating the collision frequency

that allows for LBM simulations of viscoplastic flow was presented. A boundary relocation

scheme, whose purpose is to depict a single particle settling in infinite media, was also introduced.

In the next chapter, the proposed scheme is validated for a series of cases.
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4 VALIDATION AND VERIFICATION TESTS

This Chapter presents the validation of the numerical methodology, which was con-

ducted by systematically testing the implemented tools. First, LBM D3Q19 velocity set is

verified with the simulation of a laminar Hagen-Poiseuille flow in a rectangular cross-section

channel (Section 4.1), then, IBM as no-slip boundary condition is validated for uniform flow

over a spherical obstacle (Section 4.2). Simulations of a sphere settling in a closed tank and

comparison with experimental data are used as validation for translation dynamics of solid-body.

The accuracy of rotation dynamics is verified using the analytical solution of an ellipsoidal

particle centered at a Couette flow (Section 4.4). At Section 4.5, the boundary relocation scheme

for the representation of an unbounded domain is tested for a creeping flow. A sphere rising at

Galileo number of 173 is simulated and results are compared with experimental data (Section

4.6). The non-Newtonian Bingham model is first validated for a Poiseuille flow (Section 4.7) and

its implementation in viscoplastic settling is verified for a spherical particle (Section 4.8).

4.1 POISEUILLE FLOW IN RECTANGULAR CROSS-SECTION CHANNEL

Boussinesq (1868) derived the solution for the velocity profile of a Hagen-Poiseuille

laminar Newtonian flow in a rectangular cross-section channel which is illustrated in Figure 27.

Figure 27 – Illustration of Hagen-Poiseuille flow for a pressure gradient d𝑝/d𝑥 in 𝐻 ×
𝑊 rectangular cross-section channel.

Source: Own elaboration.

For 0 ≤ 𝑦 ≤ 𝐻 and 0 ≤ 𝑧 ≤ 𝑊 , a Newtonian fluid of viscosity 𝜇 under a constant

pressure gradient −d𝑝/d𝑥 will have its velocity field 𝑢(𝑦,𝑧) only at 𝑥-direction and given by:

𝑢(𝑦,𝑧) = −𝑦(𝐻 − 𝑦)

2𝜇

d𝑝
d𝑥

+
4𝐻2

𝜇𝜋3

d𝑝
d𝑥

∞∑︁
𝑛=1

sin(𝛼𝑛𝑦)

(2𝑛− 1)3
sinh(𝛼𝑛𝑧) + sinh(𝛼𝑛(𝑊 − 𝑧))

sinh(𝛼𝑛𝑧𝑊 )
, (107)



74

in which, 𝛼𝑛 = (2𝑛 − 1)𝜋/𝐻 . For this configuration, the flow average velocity 𝑢0 is used for

scaling and is given by:

𝑢0 =
1

𝑊𝐻

[︃
−𝐻3𝑊

12𝜇

d𝑝
d𝑥

+
16𝐻4

𝜋5𝜇

d𝑝
d𝑥

∞∑︁
𝑛=1

1

(2𝑛− 1)5
cosh(𝛼𝑛𝑊 ) − 1

sinh(𝛼𝑛𝑊 )

]︃
. (108)

The simulations were set assuming periodicity at 𝑥-direction and no-slip boundary

conditions at the remaining boundaries, the pressure gradient is taken into account from the force

density 𝐹 = 𝑖(−d𝑝/d𝑥). Simulations are performed for 𝑊/𝐻 = 1 and 𝑊/𝐻 = 0.5, using four

grid resolutions for each aspect ratio. The deviation from the analytical solution is evaluated

through the quadratic error norm 𝐿2:

𝐿2 =

√︃∑︀
(𝑞num − 𝑞ref)

2∑︀
(𝑞ref)

2 , (109)

where 𝑞num is the DNS value that will be compared with a reference value 𝑞ref. The comparison

of 𝐿2 parameter with the analytical solution helps in determining the truncation error order of

the numerical model. The domain length is fixed 𝑁𝑥 = 1. For 𝑊/𝐻 = 1/1, 𝑁𝑦 and 𝑁𝑧 were

varied to 32, 64, 128, and 256. For 𝑊/𝐻 = 1/2, the grid sizes 𝑁𝑦 ×𝑁𝑧 were 32 × 16, 64 × 32,

128 × 64, and 256 × 128. The relaxation time was set 𝜏 = 3.5 and d𝑝/d𝑥 adjusted to maintain

𝑢0 = 0.01. The values for 𝐿2 are shown in Graph 1.

Graph 1 – Error decay under grid refinement for two different aspect ratios.

Source: Own elaboration.

A 1.65th-order of accuracy was obtained. The normalized velocity contours of both

configurations are shown in Figure 28. After verifying the flow representation with D3Q19

velocity set, validation proceeded to IBM implementation.
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Figure 28 – Velocity contours of laminar flow at the rectangular cross-section for (a) 𝐻/𝑊 = 1 and (b)
𝐻/𝑊 = 2.

Source: Own elaboration.

4.2 UNIFORM FLOW PAST STATIONARY SPHERE

The IBM is first employed to describe a uniform flow past a spherical object, as

illustrated in Figure 29. The fluid leaves inlet with uniform velocity and collides with a stationary

rigid sphere.

Figure 29 – Numerical modeling of uniform flow past a spherical object.

Source: Own elaboration.

The uniform velocity condition at the inlet is attained through Equation 100, at all

the other boundaries the Neumann BC is implemented using the ghost nodes technique. A

sphere with diameter occupying 30 lattices is positioned at the center of domain, the size of the

simulation domain is fixed 180 × 180 × 540 and the simulations were performed for Reynolds

numbers of 9.15, 25.5, 37.7 and 118. Frames 1 and 2 compare the pathlines and streamlines of

present work with the photographs from Taneda (1956).
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Frame 1 – Comparison of present work profiles for wake behind sphere with experimental work
from Taneda (1956) at Reynolds numbers of 9.15 and 25.5.

Source: Own elaboration.

Frame 2 – Comparison of present work profiles for wake behind sphere with experimental work
from Taneda (1956) at Reynolds numbers of 37.7 and 118.

Source: Own elaboration.

Good reproduction of the flow profile from IB-LBM algorithm is seen, its accuracy is

also evaluated through measurement of the drag coefficient 𝐶𝐷, calculated taking the summation

of Lagrangian forces and internal fluid mass compensation, which gives:

𝐶𝐷 =
8

𝜌0(𝑢0𝑑)2

(︃
−
∑︁
𝐿ℎ

𝑓∆𝑏∆𝐴 +
d
d𝑡

∮︁
𝜕V

d𝑃

)︃
. (110)

The values of 𝐶𝐷 from present work are compared with both Schiller and Naumann
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(1935) empirical correlation

𝐶𝐷 =
24

𝑅𝑒

(︀
1 + 0.15𝑅𝑒0.687

)︀
, (111)

valid for Re ≤ 1000, and with Concha and Almendra (1979) correlation, which was devel-

oped combining boundary-layer theory and experimental data for pressure distribution and the

boundary-layer thickness and is given by:

𝐶𝐷 = 0.28

(︂
1 +

9.06

𝑅𝑒1/2

)︂2

. (112)

This correlation produces reliable results of 𝐶𝐷 for 0.1 < Re < 104. A fifth case with

Re = 420 is also examined, the results for the drag coefficient are shown in Table 2.

Table 2 – Drag coefficients obtained for different Reynolds numbers.

Reynolds number 9.15 25.5 37.7 118 420
Present work 4.973 2.446 1.889 1.067 0.593
Schiller and Naumann (1935) 4.423 2.248 1.792 1.012 0.601
Concha and Almendra (1979) 4.469 2.186 1.716 0.942 0.582
% Deviation 12.4 / 11.3 8.8 / 11.9 5.4 / 10.1 5.4 / 13.3 1.3 / 1.9

Source: Own elaboration.

Good agreement is also shown for drag coefficient results, at Re = 420, there is

instability at the downstream wake, shown by the vorticity surfaces of the flow in Figure 30. It

can be seen that the flow still keeps a symmetry plane and generates vortex rings at the wake

with an aspect that resembles Figure 2.

Figure 30 – Vorticity surfaces for Re = 420, (a) side view and (b) top view.

Source: Own elaboration.
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After the implementation of IBM as boundary condition, particle translational motion

is validated.

4.3 SPHERICAL PARTICLE SETTLING IN CLOSED TANK

For validation of the particle gravity-driven motion, the setup from Cate et al. (2002)

experiment of a sphere settling in a tank with square cross-section filled with Newtonian fluid is

reproduced. The density of the sphere of diameter 𝑑 = 15 mm was 𝜌𝑝 = 1120 kg/m3. The fluid’s

density 𝜌 and viscosity 𝜇 were varied as shown in Table 3.

Table 3 – Fluid density and viscosity ranges used in the experiment from Cate et al.
(2002).

Case 1 2 3 4
𝜌(kg/m3) 970 965 962 960
𝜇(Ns/m2) 0.353 0.212 0.113 0.058

Source: Cate et al. (2002).

The dimensions of container were 𝑑𝑒𝑝𝑡ℎ×𝑤𝑖𝑑𝑡ℎ×𝑤𝑖𝑑𝑡ℎ = 100× 100× 160 mm and

the particle’s lower part was positioned 120 mm from the tank bottom, as illustrated in Figure 31.

Figure 31 – Representation of experiment configuration in terms of grid size variables.

Source: Own elaboration.

No-slip boundary condition is adopted at all boundaries, a Lagrangian mesh of 𝑑 = 30 in

a 200×200×320 computational domain was employed. Being 𝑚* = 𝜌𝑝/𝜌, the LBM parameters

were set by fixing a reference velocity 𝑢0 =
√︀

(𝑚* − 1)𝑑𝑔 of 0.03 and according to the Galileo

number of the experimental setup. A comparison of particle velocity between the present work

simulations and the experimental results is shown in Graph 2.
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Graph 2 – Comparison of the present work results of vertical velocity obtained for
given configurations with experimental data from Cate et al. (2002).

Source: Own elaboration.

Where 𝑔eff = |𝑚* − 1| 𝑔 is named effective gravity. As shown, there is good consistency

of translation dynamics described by the numerical model, the next section proceeds with the

validation of solid-body rotation.

4.4 ROTATION OF AN ELLIPSOIDAL PARTICLE IN A COUETTE FLOW

Jeffery (1922) developed a solution for the rotation of an ellipsoidal particle positioned

in the center of a creeping Couette flow, as illustrated in Figure 32.

Figure 32 – Ellipsoidal particle centered at 𝑧 = 0.5(𝑁𝑧 − 1) of a Couette flow. For this
configuration an analytical solution can be developed under the considera-
tion of a creeping flow.

Source: Own elaboration.

For the given situation, Jeffery (1922) solved analytically the periodic rotation Ω(𝜃,𝜑)

of spheroids (𝐴 = 𝐵), where 𝜃 and 𝜑 are the polar and azimuthal angles, respectively. For 𝜑 = 0

the rotation occurs only around 𝑦-axis such that Ω𝑦 = Ω𝑦(𝜃). That way, the solid-body’s angular
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velocity is given by:

Ω𝑦 = − 𝜁

𝐴2 + 𝐶2

(︀
𝐴2sin2𝜃 + 𝐶2cos2𝜃

)︀
, (113)

where 𝜁 is the angular coefficient of the Couette velocity profile. It is then assumed velocities

of the same magnitude 𝑢wall but opposite direction at top and bottom planes of the domain,

and periodicity at the remaining boundaries. The aspect ratio 𝜒 = 𝐶/𝐴 was fixed 2/3 and

the relaxation time 𝜏 = 9.5. The adopted Eulerian grid and Lagrangian mesh parameters are

specified in Table 4.

Table 4 – Grid and mesh parameters used on the evaluation of error decay under grid
refinement.

Simulation 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝐴×𝐵 × 𝐶 𝑢wall

S1 60 × 60 × 60 6 × 6 × 4 0.05
S2 120 × 120 × 120 12 × 12 × 8 0.025
S3 240 × 240 × 240 24 × 24 × 16 0.0125

Source: Own elaboration.

With simulations set at equivalent Reynolds numbers, the quadratic error norm is

measured in the periodic regime through the normalized angular velocity Ω𝑦/Ω𝑦,max of numerical

and analytical solutions for one period, Graph 3 shows obtained values for 𝐿2. An 𝑂(∆𝑥)

truncation order approximately was obtained, agreeing with the reports of some available IBM

studies (CAIAZZO; MADDU, 2009; ZHU et al., 2011; PENG et al., 2019).

Graph 3 – Quadratic error norm 𝐿2 varying grid resolution. The dashed line shows
the first-order truncation error.

Source: Own elaboration.

Even though high 𝜏 values are possible to solve thanks to the regularization of ghost

moments (LUGARINI et al., 2020), more accurate results are achieved using small 𝜏 . For an
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ellipsoid of 𝜒 = 1/3 and 𝐴 = 24 in a 180 × 180 × 180 grid, 𝜏 = 2.6 and 𝑢wall = 0.02 were set,

obtaining a 𝐿2 = 1.19 × 10−2. The flow profile and evolution of angular velocity can be seen in

Graph 4, in which an excellent agreement with the analytical solution is noted.

Graph 4 – (a) Angular velocity evolution for 𝜒 = 1/3 and (b) instantaneous velocity field.

Source: Own elaboration.

Subsequently, 𝜏 = 1.4 and 𝑢wall = 0.01 were set in a 120 × 120 × 120 grid for an

ellipsoidal particle of 𝜒 = 2 and 𝐴 = 8. The quadratic error norm was 𝐿2 = 6.96 × 10−3, which

results in an angular velocity profile very close to the analytical solution, as shown in Graph 5.

Graph 5 – (a) Angular velocity evolution for 𝜒 = 2 and (b) instantaneous velocity field.

Source: Own elaboration.

With the simulations indicating an adequate representation of solid-body rotation of our

algorithm, the present work proceeded with the validation of the boundary relocation scheme.
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4.5 SPHERE SETTLING IN CREEPING FLOW

The first assessment of the boundary relocation scheme consists of an investigation of a

sphere settling at a creeping flow. For a sufficiently small terminal Reynolds number, an exact

solution is possible (DEY et al., 2019). Considering the terminal velocity 𝑈𝑇 as the velocity

scale in the Reynolds number Re = 𝜌𝑈𝑇𝑑/𝜇, the exact solution predicts Re𝑇 = Ga2/18.

The Galileo number is fixed Ga = 0.4, as it gives Re𝑇 = 8.89 × 10−3 and assures the

creeping flow assumption. A relaxation time 𝜏 = 6.0 and a density ratio 𝑚* = 10 are fixed,

with gravity acceleration term adjusted to each scale through the Galileo number. The particle

is positioned at the center of the computational domain with the boundary conditions set for a

falling sphere, as illustrated in Figure 33.

Figure 33 – Schematic of the numerical description of a sphere settling at creeping
flow. The particle is kept at the center of the domain by the relocation of
boundaries and 𝑁𝑥 = 𝑁𝑦 .

Source: Own elaboration.

The proximity of lateral boundaries in the numerical model carries an associated error.

Nevertheless, it is expected that small ratios 𝑑/𝑁𝑥 to provide good accuracy for an unbounded

domain. A boundary factor 𝑓𝑏(𝑑/𝑁𝑥) = 𝑈𝑇,num/𝑈𝑇,theo is defined. This parameter is analogous to

the wall factor 𝑓wall(𝑑/𝐷) = 𝑈𝑊/𝑈𝑇 that compares the terminal velocity of a particle settling in

a circular tube of diameter 𝐷 (denoted by 𝑈𝑊 ) with Stokes solution 𝑈𝑇 . An analytical expression

of good acceptance for the wall factor 𝑓wall(𝑑/𝐷) at creeping flow was given by Haberman and
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Sayre (1958):

𝑓wall

(︂
𝑑

𝐷

)︂
=

1 − 2.105(𝑑/𝐷) + 2.0865(𝑑/𝐷)3 − 1.7068(𝑑/𝐷)5 + 0.72603(𝑑/𝐷)6

1 − 0.75857(𝑑/𝐷)5
. (114)

The parameters 𝑁𝑧 = 500, 𝑁𝑥 = 𝑁𝑦, 𝑑 = 12 and 𝑑𝑧1 = 0.5𝑁𝑧 were fixed. The

domain’s width was set to 24, 48, 96 and 192, to compare the numerical boundary parameter

𝑓𝑏(𝑑/𝑁𝑥) with the wall factor for a tube circumscribing the computational domain (𝐷 =
√

2𝑁𝑥).

Their comparison is shown in Graph 6a as a function of 𝑁𝑥. The results show that the Neumann

boundary condition at lateral boundaries leads to terminal velocities closer to the exact solution

than those using a cylindrical wall. The boundary factor converges with grid refinement, verified

with simulations varying the Lagrangian mesh diameter to 6, 12 and 24 in a 9 × 9 × 17𝑑 domain.

The convergence of the 𝑓𝑏 is shown in Graph 6b.

Graph 6 – (a) Comparative chart of wall and boundary factors. By employing Neumann boundary condi-
tion, good approximation of the analytical solution is possible without necessity of a vast domain
width. (b) Boundary factor behavior with grid refinement. The theoretical wall factor for the
same 𝑁𝑥 is shown for reference.

Source: Own elaboration.

The shear stress profile also approaches analytical solution with the increase of reso-

lution, as shown in Graph 7. It is observable that the stress points deviating the furthest from

the analytical solution are located at the laterals. Part of the error can be attributed to the lateral

boundaries proximity. The analytical solution for the shear stress around the sphere surface for

Stokes flow is known to be 𝜏𝑟𝜃 = 3𝜌𝜈𝑑−1𝑈𝑇 sin𝜃 (BIRD et al., 1987).

The 𝐿2 values obtained for 𝑑 = 6 and 𝑑 = 24 were 0.364 and 0.126, respectively. As

particle motion was purely vertical, the boundary relocation was performed only for 𝑧-direction



84

Graph 7 – 𝜏𝑟𝜃 stress profile for resolutions of 𝑑 = 6 and 𝑑 = 24.

Source: Own elaboration.

each time particle center dislocated a lattice unit. Next case investigates the boundary relocation

applied also to the horizontal direction.

4.6 RISING SPHERE

A simulation of a rising sphere with a high Galileo number was performed. Comparisons

were made with the experiment of Jenny and Dušek (2004) with 𝑚* = 0.89 and Ga = 173. In

this case, the sphere travels a diagonal trajectory with horizontal velocity behaving as a damped

sinusoidal wave centered at its final value. A schematic of employed domain configuration is

shown in Figure 34.

Figure 34 – Schematic of the domain for simulation of a particle ascending in a quies-
cent fluid.

Source: Own elaboration.
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A Lagrangian mesh with diameter of 48 lattice units in a 212 × 212 × 430 grid was

employed for 𝜏 = 0.53 and 𝑑𝑧1 = 0.4𝑁𝑧. The particle trajectory and its horizontal velocity are

shown in Graph 8, in which a good agreement with experimental data is shown despite the small

computational domain relative to sphere diameter (4.4 × 4.4 × 9𝑑).

Graph 8 – Plots of particle trajectory (a) horizontal velocity (a) for a Lagrangian mesh with a diameter of
48 lattice units, 𝑟 =

√︀
𝑥2 + 𝑦2 is the horizontal distance. The present work results are compared

with validation experiment from Jenny and Dušek (2004), taking into consideration the time
interval in which the particle starts its horizontal motion.

Source: Own elaboration.

This deviation from the vertical trajectory also results in oblique vorticity contours as

depicted in Figure 35. The relocation of boundaries is also represented, being noticeable that

part of the information regarding downstream wake is lost as the boundaries are relocated, which

could be one of the causes for the more dissipative results obtained in the present work. For a

total of 200,000-time steps, the boundaries were relocated 426, 136, and 9,507 times at 𝑥-, 𝑦-,

and 𝑧-direction, respectively.

Figure 35 – Vorticity contours obtained in the present work at (a) 𝑡/
√︀
𝑑/𝑔eff = 112.63, (b) 𝑡/

√︀
𝑑/𝑔eff =

120.14 and (c) 𝑡/
√︀

𝑑/𝑔eff = 127.65. With time given in lattice-units, the darkened planes repre-
sent the boundaries that are relocated during particle motion.

Source: Own elaboration.
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4.7 POISEUILLE BINGHAM FLOW BETWEEN PARALLEL PLATES

The implementation of the non-Newtonian Bingham model is validated for a laminar

Poiseuille flow between parallel plates distanced by 𝐿 with a pressure gradient 𝜕𝑝/𝜕𝑥, as depicted

in Figure 36. As shown, for −0.5𝑦0 ≤ 𝑦 ≤ 0.5𝑦0 the shear stress is lower than 𝜎𝑦 and the fluid

move as a rigid plastic material in a region named plug zone. The analytical solution for this flow

can be found in (BIRD et al., 1987).

Figure 36 – Representation of a Poiseuille flow with Bingham fluid between parallel
plates separated by a 𝐿 distance. 𝑦0 is the size of plug region.

Source: Own elaboration.

Being 𝜂0 the plastic viscosity, two non-dimensional groups are used on the flow descrip-

tion, the Reynolds number Re = 𝜌𝑢0𝐿𝜂
−1
0 and the Bingham number, given by:

Bi =
𝜎𝑦

𝐿𝐹𝑥

, (115)

in which 𝐹𝑥 = −𝜕𝑝/𝜕𝑥 is the macroscopic force at 𝑥-direction, equivalent to the pressure drop

necessary to maintain am average velocity 𝑢0, and is given by:

𝐹𝑥 =
12𝜂0𝑢0

𝐿2
(︀
1 − 3Bi + 4Bi3

)︀ . (116)

The size of the unyielded region is given by 𝑦0 = 2Bi𝐿, which implies on the absence

of a plug region at Bi = 0, and no flow at Bi = 0.5, as the whole cross-section behaves as a plug.

The normalized velocity at the plug region is

𝑢

𝑢0

=
3

2

(2Bi − 1)2(︀
1 − 3Bi + 4Bi3

)︀ , (117)
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and normalized velocity at the yielded region is

𝑢

𝑢0

=
1(︀

1 − 3Bi + 4Bi3
)︀ {︃3

2

[︃
1 −

(︂
2

⃒⃒⃒⃒
1

2
− 𝑦

𝐿

⃒⃒⃒⃒)︂2
]︃
− 6Bi

[︂
1 − 2

⃒⃒⃒⃒
1

2
− 𝑦

𝐿

⃒⃒⃒⃒]︂}︃
. (118)

For the simulation of given flow, periodicity was assumed at both 𝑥- and 𝑧-direction,

and 𝑁𝑧 = 𝑁𝑥 = 1 was fixed. Halfway bounce-back was applied at 𝑦-direction boundaries. The

value 𝜂0 = 0.5 was chosen and 𝐹𝑥 was set such that 𝑢0 = 0.01. The quadratic norm error 𝐿2 was

measured for Bi = 0, 0.2, and 0.4, and the results are shown in Graph 9

Graph 9 – (a) Error decay under grid refinement for Bi = 0, 0.2 and 0.4. (b) Velocity profile with simulation
grid of 𝑁𝑦 = 256. The solid lines are the analytical solution.

Source: Own elaboration.

It is confirmed that the implementation of the Bingham model does not affect the

convergence order of LBM.

4.8 VISCOPLASTIC SETTLING OF SPHERICAL PARTICLE

During the settling of a particle in quiescent viscoplastic fluid, the flow is characterized

by a yielded fluid portion that moves with the body and is surrounded by plastic material.

To evaluate the plastic effect on the shape of the yielded region and on the motion of the

particle, simulations were conducted for a rigid sphere settling at a creeping flow regime. The

configuration of the computational domain is illustrated in Figure 37. For simulations with a

Bingham fluid, the particle is positioned at the center and halfway bounce-back is applied at all

boundaries.
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Figure 37 – Computational domain schematic for simulation of viscoplastic settling.

Source: Own elaboration.

The non-dimensional groups used on the flow definition were, the Reynolds number

of equivalent Stokes flow Re𝑆 = 𝜌𝑈𝑆𝑑𝜂
−1
0 , where 𝑈𝑆 = (𝜂0Ga2)/(18𝜌𝑑) is the creeping flow

terminal velocity of a particle settling in Newtonian fluid of viscosity 𝜂0, and the Bingham

number with 𝑈𝑆 as the reference velocity

Bi𝑆 =
𝜎𝑦𝑑

𝜂0𝑈𝑆

. (119)

The Reynolds number is fixed Re𝑆 = 1 to match the setup from (BLACKERY; MIT-

SOULIS, 1997; BERIS et al., 1985; YU; WACHS, 2007; DERKSEN, 2011). The mass ratio

𝑚* = 1.1 was chosen to match the parameters of DLM/FD numerical work from Yu and Wachs

(2007). The Lagrangian mesh had a diameter of 32 lattice units in a 4𝑑×4𝑑×6𝑑 (𝑁𝑥×𝑁𝑦×𝑁𝑧)

domain, same proportion adopted by (DERKSEN, 2011). The plastic viscosity was fixed 𝜂0 = 0.5

and Bi𝑆 was varied to 0.05, 0.21, 0.36, 0.53, 0.60, 0.66, 0.72 and 0.81. Another dimensionless pa-

rameter widely adopted is the yield parameter 𝑌𝑔, which measures the ratio between yield-stress

and external forces (BERIS et al., 1985):

𝑌𝑔 =
3𝜎𝑦

𝜌𝑑𝑔eff
. (120)

For a critical value 𝑌𝑔 = 𝑌crit, there will be no flow and particle will be kept suspended.

The value of 𝑌crit for a sphere is usually found to be around 0.14. Being 𝑈𝑇 the particle terminal

velocity, the non-dimensional groups measured at the simulations were the Stokes drag coefficient
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𝐶𝑆 = 𝑈𝑆/𝑈𝑇 and the terminal Bingham number Bi𝑇

Bi𝑇 =
𝜎𝑦𝑑

𝜂0𝑈𝑇

. (121)

The values obtained for 𝐶𝑆 are compared with results available in the literature and are

presented in Graph 10, in which the plots are built as a function of Bi𝑇 and Bi𝑆 . It can be seen

good agreement with, the experimental results from Ansley and Smith (1967), the variational

upper and lower limits calculations from (YOSHIOKA et al., 1971) and the numerical models

from Beris et al. (1985), Blackery and Mitsoulis (1997), Yu and Wachs (2007) and Derksen

(2011).

Graph 10 – Comparison of dimensionless parameters obtained in present work with data available in liter-
ature.

Source: Own elaboration.

For the same time interval, the particle displacement at higher Bingham numbers was

much smaller. In Figure 38 the contours of shear rate divided by
√︀

𝑔/𝑑 are shown for plane 𝑥𝑧 at

𝑡/
√︀

𝑑/𝑔 = 130.02. At that instant, the particle is almost completing a lap in the computational

domain for Bi𝑆 = 0.05, while it barely moved for Bi𝑆 = 0.53.

The yielded region also is reduced as the Bingham number increases, and the shapes ob-

tained for the envelopes in the present work were very similar to the predictions from (DERKSEN,

2011), which are shown in Figure 39.

Having a good agreement with literature data at the analyses performed for both

Newtonian and viscoplastic cases, the study proceeded with the settling of ellipsoidal particles.
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Figure 38 – Envelope shapes at 𝑡/
√︀
𝑑/𝑔 = 130.02 for (a) Bi𝑆 = 0.05, (b) Bi𝑆 = 0.21, (c) Bi𝑆 = 0.36 and (d)

Bi𝑆 = 0.53.

Source: Own elaboration.

Figure 39 – Envelope shapes at different Bi𝑆 .

Source: Adapted from Derksen (2011)

4.9 REMARKS ON THE METHODOLOGY

The validation of the algorithm was performed in steps. Good agreement with the

analytical solution was shown for a Hagen-Poiseuille Newtonian flow in rectangular cross-

section channel. For a uniform flow over a spherical surface, present work results agreed very

well with pertinent literature data. The translational motion of solid-body was verified through

comparison with experimental results of a sphere settling in a closed tank, to which the performed

simulations had a good agreement. The proximity of obtained results with the analytical solution

for an ellipsoidal particle in a Couette flow indicated a satisfactory description of solid-body

rotation.

The boundary relocation scheme was verified for a Stokes flow, in which it was shown
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the domain’s width influence on the particle terminal velocity. For the case of an ascending sphere

at intermediate Reynolds number, present work had good agreement with experimental data. The

Bingham constitutive equation for LBM was successfully implemented without depreciation of

the accuracy order, as shown in the solution of a Poiseuille flow between parallel plates. For a

particle settling in a viscoplastic fluid, good agreement with pertinent literature data was obtained

with an accurate representation of the yielded region.

In summary, the developed scheme can be advantageous over some of the existing

methodologies since it has no restrictions of solid-body geometry and has excellent stability.

Despite particle motion being implicitly described, flow evolution is fully explicit and can be

efficiently parallelized. As the method dismisses viscosity regularization, it achieves great yield

surface representation.
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5 RESULTS AND DISCUSSION

This Chapter presents the simulations of a oblate spheroid settling at different Galileo

numbers (Section 5.1) and the simulations of an ellipsoidal particle settling in Bingham fluid

with different configurations (Section 5.2 and Section 5.3).

5.1 SETTLING OF OBLATE SPHEROIDS IN NEWTONIAN FLUID

The domain setup from present work is schematized in Figure 40. The ellipsoid was

positioned without inclination and 𝑑𝑧1 was fixed 0.3𝑁𝑧.

Figure 40 – Domain configuration adopted on simulations of oblate spheroid settling.

Source: Own elaboration.

The settling of oblate spheroids is performed for aspect ratios 𝜒 = 1/3, to which

expected trajectories at different Galileo numbers are exemplified in (ARDEKANI et al., 2016).

In their work, they made use of large computational domains to approximate solutions in a

quiescent Newtonian medium. Though they also used IBM for the representation of solid-fluid

interaction, some differences in the outcome are expected because, in addition to our boundary

relocation treatment, the internal mass compensation was also performed distinctly. Ardekani et

al. (2016) considered the fluid had the same velocity and rotation as the solid-body for inertia

compensation, as proposed by Uhlmann (2005). The fluid phase was solved with an explicit low-

storage three-step Runge-Kutta method of Wray (SPALART et al., 1991) in a 480 × 480 × 4000

grid. Simulations were performed for an oblate spheroid with 𝜒 = 1/3, 𝑚* = 1.14 and Galileo
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numbers of 100, 170, 210 and 250. The Galileo number for an oblate spheroid is calculated from

Equation 1 by replacing 𝑑 with 𝑑eq, which is the equivalent diameter of a sphere that has the

same volume of ellipsoidal particle.

In their work, Ardekani et al. (2016) used a Lagrangian mesh of equivalent diameter of

32∆𝑥. Same value was adopted in present work in a 224 × 224 × 386 computational grid. For

Ga = 100, 𝜏 was set to 0.52 and 𝑔 was adjusted accordingly. The ellipsoid followed a straight

line in our simulation, as well as the example trajectory depicted by Ardekani et al. (2016).

Graph 11 shows the particle’s trajectory.

Graph 11 – Trajectory for oblate spheroid at Ga = 100. (a) Ardekani et al. (2016) and (b) present work.

Source: Own elaboration.

At remaining simulations, 𝜏 = 0.51 was adopted. The particle travels a periodic

pendulum movement when Ga = 170, as shown in Graph 12. Qualitative agreement with

Ardekani et al. (2016) was obtained with almost the same period, despite present work simulations

predicting a lateral motion of slightly higher amplitude. As the computational domain has a

length of only 12𝑑eq, this deviation of the results is possibly due to the information that is

lost beyond the simulation domain, which may include the formation of vortexes that could

decelerate the horizontal movement from particle, reducing the amplitude of its periodic motion.

The differences in the results are expected to be more evident with higher Galileo numbers.
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Graph 12 – Trajectory for oblate spheroid at Ga = 170. (a) Ardekani et al. (2016) and (b) present work.

Source: Own elaboration.

With Ga = 210, the particle displayed an oscillating oblique motion, as Graph 13 shows.

Despite the qualitative agreement with (ARDEKANI et al., 2016), the motion amplitude and

inclination show a higher discrepancy than the results with Ga = 170.

Graph 13 – Trajectory for oblate spheroid at Ga = 210. (a) Ardekani et al. (2016) and (b) present work.

Source: Own elaboration.

The particle displayed chaotic motion with Ga = 250 and has its trajectory presented in

Graph 14 along with the path exemplified by (ARDEKANI et al., 2016).
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Graph 14 – Trajectory for oblate spheroid at Ga = 250. (a) Ardekani et al. (2016) and (b) present work.

Source: Own elaboration.

The terminal Reynolds numbers Re𝑇 = 𝑈𝑇𝑑eq/𝜈 shown in Graph 15, have great

proximity with those from Ardekani et al. (2016). At both studies Re𝑇 increases almost linearly

with Ga.

Graph 15 – Terminal Reynolds number vs Galileo number. The dashed line represent
a proper curve fit.

Source: Own elaboration.

The next figures give more details of the particle’s motion and vorticity field. The

evolution of vertical velocity at each Galileo number is shown in Graph 16.
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Graph 16 – Evolution of vertical velocity at (a) Ga = 100, (b) Ga = 170, (c) Ga = 210, (d) Ga = 250.

Source: Own elaboration.

With Ga = 100, the particle reaches its terminal velocity and assumes a steady motion,

demanding the use of boundary relocation scheme only for the vertical direction, as depicted in

Figure 41.

Figure 41 – Vorticity contours obtained in the present work with Ga = 100 at (a) 𝑡/
√︀
𝑑eq/𝑔eff = 52.08, (b)

𝑡/
√︀

𝑑eq/𝑔eff = 58.59, and (c) 𝑡/
√︀
𝑑eq/𝑔eff = 65.10.

Source: Own elaboration.

With Ga = 170, the particle accelerates vertically up to a maximum velocity that
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reduces as solid-body starts its lateral motion. The horizontal and angular velocities of the

ellipsoid are shown in Graph 17.

Graph 17 – (a) Horizontal and (b) angular velocities obtained in the present work with Ga = 170.

Source: Own elaboration.

The particle exhibits a periodic motion at 𝑦-direction and amplitude lower than unity,

and therefore, the relocation of boundaries is only required at 𝑥-, and 𝑧-direction, as illustrated

in Figure 42.

Figure 42 – Vorticity contours obtained in the present work with Ga = 170 at (a) 𝑡/
√︀
𝑑eq/𝑔eff = 83.01, (b)

𝑡/
√︀

𝑑eq/𝑔eff = 88.54, and (c) 𝑡/
√︀
𝑑eq/𝑔eff = 94.08.

Source: Own elaboration.

When Ga = 210, the particle experiences accentuated deceleration as it starts moving

laterally, eventually reaching a periodic state, as shown by the plots of angular and horizontal

velocities in Graph 18.
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Graph 18 – (a) Horizontal and (b) angular velocities obtained in the present work with Ga = 210.

Source: Own elaboration.

In this simulation, the periodic motion at 𝑦 also has amplitude lower than unity, and

boundary relocation is only used at 𝑥- and 𝑧-direction. The vorticity contours and positions of

boundaries at different instants are depicted in Figure 43.

Figure 43 – Vorticity contours obtained in the present work with Ga = 210 at (a) 𝑡/
√︀
𝑑eq/𝑔eff = 68.36, (b)

𝑡/
√︀

𝑑eq/𝑔eff = 75.20, and (c) 𝑡/
√︀
𝑑eq/𝑔eff = 82.03.

Source: Own elaboration.

As shown in the plots in Graph 19, when Ga = 250, the particle experiences a chaotic

motion with its 𝑥 and 𝑦 velocities presenting almost the same magnitude and with the angular

velocities in phase.
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Graph 19 – (a) Horizontal and (b) angular velocities obtained in the present work with Ga = 250.

Source: Own elaboration.

Though the movement can be delineated in a single plane, the boundary relocation is

applied at all directions, as illustrated in Figure 44.

Figure 44 – Vorticity contours obtained in the present work with Ga = 250 at (a) 𝑡/
√︀
𝑑eq/𝑔eff = 48.83, (b)

𝑡/
√︀

𝑑eq/𝑔eff = 56.97, and (c) 𝑡/
√︀
𝑑eq/𝑔eff = 65.10.

Source: Own elaboration.

It is easy to notice that the onset of particle horizontal motion occurs earlier as the

Galileo number increases. The boundary relocation scheme has not caused any apparent deteri-

oration of algorithm stability. With Ga = 250, the technique was evoked for the negative and

positive directions of 𝑥- and 𝑦-axes, since the particle inverts its horizontal motion direction,

accounting for both cases illustrated in Figure 26.
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5.2 SETTLING OF SPHEROIDS IN VISCOPLASTIC FLUID

To investigate shape influences on viscoplastic settling, an spheroidal particle with

𝑑eq = 32 and 𝑚* = 1.1 was simulated for the same Bi𝑆 adopted previously for the sphere

(Section 4.8), but varying the aspect ratio 𝜒 and orientation 𝜃0 of the solid-body. The domain

configuration is schematized in Figure 45.

Figure 45 – Domain configuration adopted in the simulations of spheroid settling in
viscoplastic fluid.

Source: Own elaboration.

Simulations were conducted for oblate and prolate spheroids of aspect ratio 𝜒 = 1/3

and 𝜒 = 3 respectively. The ellipsoids were then analyzed for initial inclinations 𝜃0 of 0 and

90∘. Simulation parameters were set for a 𝑑eq = 32 in a 256 × 256 × 256 computational grid

for all cases except for the prolate spheroid with 𝜃0 = 0, to which a 224 × 224 × 320 grid was

adopted. The values obtained for 𝐶𝑆 are shown in Graph 20. The prolate and oblate spheroids

with 𝜃0 = 90∘ and 𝜃0 = 0, respectively, presented higher values of 𝐶𝑆 than the sphere. This

can be attributed to a larger cross-sectional area, which also results in smaller values of 𝐶𝑆 for

prolate and oblate particles with 𝜃0 = 0 and 𝜃0 = 90∘, respectively.
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Graph 20 – Values obtained for Stokes drag coefficient in ellipsoid settling simulations for (a) prolate and
(b) oblate spheroids. Dashed lines represent a exponential curve fit.

Source: Own elaboration.

For the prolate spheroid with 𝜃0 = 90∘ and Bi ≥ 0.6, the vertical velocity oscillated

around zero, indicating that there is a shape influence on the value of critical yield 𝑌crit. The

yielded region for the prolate spheroid with Bi𝑆 = 0.36 at both orientations is shown in Figure

46 with shear rate scale normalized dividing it by
√︀

𝑔/𝑑eq.

Figure 46 – Shape of the yielded region for (a) sphere, and (b) prolate spheroids with (b) 𝜃0 = 90∘ and (c)
𝜃0 = 0 at Bi𝑆 = 0.36.

Source: Own elaboration.

Though the prolate spheroid reaches higher shear rate values, the size of its yielded

region is smaller than for a sphere of the same volume. This is also true for the oblate spheroid,

as shown in Figure 47, in which it is easily noticeable the reduced size of the yielded region for

an oblate particle settling, especially for 𝜃0 = 90∘.

After the initial verification of shape influences on particle settling in viscoplastic

fluid, the present work proceeds with an investigation of an inclined prolate spheroid settling at

moderate Reynolds number.
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Figure 47 – Shape of the yielded region for (a) sphere, and (b) oblate spheroids with (b) 𝜃0 = 90∘ and (c)
𝜃0 = 0 at Bi𝑆 = 0.36.

Source: Own elaboration.

5.3 INCLINED PROLATE SPHEROID IN VISCOPLASTIC FLUID

At moderate to high Reynolds numbers, it is more appropriate to work with a velocity

scaling 𝑈𝐼 given by (YU et al., 2004):

𝑈𝐼 =

√︂
4

3
(𝑚* − 1) 𝑑eq𝑔. (122)

The Reynolds and Bingham numbers can then be defined from 𝑈𝐼 . A series of sub-

sequent simulations is then set for Re𝐼 = 100 with 𝜂0 = 0.01 and Bi𝐼 of 0.01, 0.1, 1 and 2.

The aspect ratio of the ellipsoid is fixed 𝜒 = 2 and the equivalent diameter 𝑑eq = 24 in a

168 × 168 × 360 computational grid. The particle initial inclination was set 𝜃0 = 45∘. As the

Bingham number increases, vertical velocity reduces and solid-body travels larger horizontal

paths before assuming a steady motion, as shown in Graph 21.

Graph 21 – Plots of paths traveled by the particle at different Bi𝐼 for 𝑡/
√︀

(𝑑eq/𝑔) = 190.18 in (a) reduced
and (b) larger scales.

Source: Own elaboration.
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The normalized shear rate contours at 𝑡/
√︀

(𝑑eq/𝑔) = 190.18 are shown in the same

scale for all simulations in Figure 48, in which the reduction of the yielded region is clearly

evidenced. At the end of simulations, the particle presented an angular displacement of almost

45∘ counterclockwise, except for Bi𝐼 = 2, in which the solid-body had an angular displacement

of approximately −3.40∘ clockwise.

Figure 48 – Normalized shear rate for (a) Bi𝐼 = 0.01, (b) Bi𝐼 = 0.1, (c) Bi𝐼 = 1 and (d) Bi𝐼 = 2.

Source: Own elaboration.

This constraint in rotation can be partially explained by the reduction of the yielded

region, while the change in direction of rotation when Bi𝐼 = 2 can be due to the formation of

a plastic torus encompassing the ellipsoidal particle. This is shown in Figure 49 using a more

detailed scale for the normalized shear rate.

Figure 49 – Yielded region surrounding the particle with Bi𝐼 = 2 and at 𝑡/
√︀

(𝑑eq/𝑔) = 9.51, showing the
plastic torus formed around the particle.

Source: Own elaboration.
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The plastic torus surrounding the ellipsoid can impose a binary moment due to reaction

forces resulting from an initial tendency of particle to assume a counterclockwise rotation, as

illustrated in Figure 50.

Figure 50 – Schematic of reaction forces and direction of velocity for an inclined ellip-
soidal particle settling in viscoplastic fluid at high Bingham number.

Source: Own elaboration.

As the increase of Bingham number also constrains the rotation, it takes a longer time for

the particle to reach a vertical equilibrium position, resulting in a larger horizontal displacement.

The trajectory traveled by the inclined particle at Bi𝐼 = 2 for 600,000-time steps is shown in

Graph 22, in which a much more accentuated horizontal motion is perceived.

Graph 22 – Trajectory of a prolate spheroid with an initial inclination of 45∘ and Bi𝐼 =
2. The 𝑥 : 𝑦 scale from the plot is 1:10.

Source: Own elaboration.

This series of analyses confirms the ability of the developed algorithm to simulate an

ellipsoidal particle settling in viscoplastic fluid.
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5.4 CHAPTER CLOSURE

Simulations in Newtonian fluid predicted a variety of motion patterns for oblate

spheroids that change as the Galileo number is increased. At smaller values of Ga the solid-body

travels a straight path, going to periodic, oblique periodic and reaching chaotic regime at the

highest Ga simulated. Present work simulations reported a good agreement with the results from

Ardekani et al. (2016) for both qualitative aspects of motions and terminal values of Reynolds

numbers.

The analyses with ellipsoidal particles in viscoplastic fluid showed the influence of

shape on Stokes drag coefficient, it was also shown that the orientation of the particle can affect

its terminal velocity. At simulations with an inclined ellipsoid, the capability of algorithm on

simulating settling in viscoplastic fluid at high Reynolds number was put to test. It was also

demonstrated how the shape of the yielded region can impact on the motion of the particle. For

an elevated Bingham number, there is the formation of a plastic torus that can be responsible for

a change in the direction of solid-body rotation.
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6 SUMMARY AND CONCLUSIONS

In this project, an scheme for the lattice Boltzmann method (LBM) to perform fully-

resolved simulations of an ellipsoidal particle settling in unbounded Newtonian and Bingham

fluids-domain was developed. A practical consequence of the proposed scheme is the ability to

solve particle settling for longer trajectories or reducing by order of magnitude the number of

grid nodes required to solve an immersed particle flow. With the increasing popularity of LBM,

motivated by its high parallel efficiency, it is desired that the use of the boundary relocation

scheme can help on reducing the severe memory demands of the method.

The particle-fluid coupling was treated with the well-established immersed boundary

method (IBM), to which a proper compensation of internal fluid mass based on the strategy

from Suzuki and Inamuro (2011) was developed. A detailed description of a mesh generation

procedure for ellipsoidal particles was provided. The numerical stability of the combined IB-

LBM methods was assured by the regularization of ghost moments (LATT; CHOPARD, 2006;

MATTILA et al., 2017). The implementation of the boundary relocation scheme decreased

the numerical efficiency of the plain IB-LB methods by only 0.92%. An apparent viscosity

treatment with the approach developed from Lugarini et al. (2020) allowed for simulations using

the Bingham model. As viscoplastic fluids present a yield-stress, they are capable of keeping

particles suspended if the appropriate conditions are met. This characteristic is of great interest

in the oil industry, as it is necessary for the drilling mud to hold cuttings of most varied shapes

still during an operational stop.

The accuracy of the particle dynamics description was confirmed through comparison

with analytical, experimental, and DNS solutions. It was observed that the proximity of lateral

boundaries might have a significant effect on the object velocity, which means the numerical

domain has to be designed such that the velocity field has a variation close to zero before

reaching the lateral boundaries. For a sphere ascending with Ga = 173, present work simulation

reproduced very well the trajectory depicted in experimental data. The Bingham model was

successfully implemented, with present work results showing good agreement with available

data of a sphere settling in viscoplastic fluid at creeping flow.

For the settling of an oblate spheroid, good agreement with the DNS results from

Ardekani et al. (2016) was shown, both in terms of flow regimes and terminal Reynolds numbers.

However, it was employed nearly 50 times fewer grid nodes with the boundary relocation scheme.



107

The current numerical approach was capable of yielding good representation for all the four test

cases investigated. For simulations in viscoplastic fluid, in which the aspect ratio of the spheroids

was changed, it was observed that the shape of a solid-body can have significant impact on

the particle’s vertical velocity and the yielded region. When analyzing the sedimentation of an

inclined prolate spheroid, it was shown that the increase of yield-stress of viscoplastic fluid not

only reduces vertical velocity but also restrains and can even change the direction of ellipsoid

rotation. It was then suggested that this shift may occur due to the reaction forces from plastic

torus that is formed around the particle at high Bingham numbers. The constrain of rotation also

results in longer periods before the solid-body reaches a vertical inclination, as a consequence,

the particle travels larger horizontal paths before switching to a purely vertical motion.

6.1 RECOMMENDATIONS

Present work aimed to put forward an efficient numerical method for the simulation of

single-particle settling in quiescent Newtonian and viscoplastic fluid. Through LBM, the flow

evolution is solved explicitly, allowing for parallelization of collision and streaming operations.

Further parametric studies can yet be conducted, as the herein validated method is applicable to

a high variety of ellipsoidal geometries in Newtonian and Bingham fluid flows.

Computational limitations regarding maximum domain size emphasize that there is

plenty of room for improvement, as it is possible to implement the developed algorithm in a

multi-GPU system. Though boundary relocation scheme has no restrictions regarding particle

geometry, this project restricted only on the study of spheroidal particles and future studies could

include assessments with solid bodies of more complex shapes. The boundary relocation scheme

can yet be highly profitable for aerodynamics analyses with a virtually infinite domain.

It is also employed IBM in its most general form which is testified to reach a first-order

error decay. Thus, a more sophisticated description of fluid-structure interaction could bring

improvement to the developed scheme. As the underlying motivation of this project resides on

its application in the study of cuttings transport in oil industry, where the drilling muds are fluids

of high complexity, it is highly desirable to extend the numerical method to cover for other

non-Newtonian behaviors, such as elasticity and thixotropy. The extension for multiple particles

is highly desirable, as it could be used for hindered settling analyses, however the scheme’s

suitability is yet to be addressed. The boundary relocation scheme would require modifications

or a different approach to operate in configurations with multiple particles.
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