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ABSTRACT

PERLIN, HUGO ALBERTO. A CONTRIBUTION TO SEMANTIC DESCRIPTION OF
IMAGES AND VIDEOS: AN APPLICATION OF SOFT BIOMETRICS. 110 f. Doctoral
Thesis – Graduate Program in Electrical and Computer Engineering, Federal University of
Technology - Paraná. Curitiba, 2015.

Humans have a high ability to extract information from visual data acquired by sight. Trough
a learning process, which starts at birth and continues throughout life, image interpretation
happens almost instinctively. At a glance, one can easily describe a scene with reasonable
accuracy, naming its main components. Usually, this is done by extracting low-level features
such as edges, shapes and textures, and associating them to high level meanings. In this way,
a semantic description of the scene is done. An example of this is, the human ability to
recognize and describe other people’s physical and behavioural characteristics, or biometrics.
Soft-biometrics also represents inherent characteristics of human body and behaviour, but they
do not allow unique person identification. The computer vision area aims to develop methods
able to performing visual interpretation with human similar performance. This thesis aims to
propose computer vision methods which allows high level information extraction from images
and videos in the form of soft biometrics. This problem is approached in two ways, trough
unsupervised and supervised learning methods. The first way, is intended to group images
via an automatic feature extraction learning, using both convolution techniques, evolutionary
computing and clustering. In the 1st approach the images used contain faces and people. The
second approach employs convolutional neural networks, which have the ability to operate
directly on raw images, learning both feature extraction and classification processes. Here,
images are classified according to gender and clothes, divided into upper and lower parts of
the human body. The first approach, when tested with different image datasets obtained an
accuracy of approximately 80% for faces and non-faces and 70% for people and non-people.
The second approach, which was tested using images and videos, have obtained an accuracy
of about 70% for gender, 80% for the upper clothes and 90% for lower clothes. The results of
these case studies show that the proposed methods are promising, allowing the realization of
automatic annotation of high level image information. This opens possibilities for development
of applications in diverse areas such as content-based image and video search and automatic
video surveillance, reducing human effort in the task of manual annotation and monitoring.

Keywords: COMPUTER VISION, MACHINE LEARNING, DEEP LEARNING,
SEMANTIC DESCRIPTION, SOFT BIOMETRICS



RESUMO

PERLIN, HUGO ALBERTO. UMA CONTRIBUIÇÃO PARA DESCRIÇÃO SEMÂNTICA
DE IMAGENS E VÍDEOS: UMA APLICAÇÃO DE BIOMETRIAS FRACAS. 110 f. Tese
de doutorado – Programa de Pós-graduação em Engenharia Elétrica e Informática Industrial,
Universidade Tecnológica Federal do Paraná. Curitiba, 2015.

Os seres humanos possuem uma alta capacidade de extrair informações de dados visuais,
adquiridos por meio da visão. Através de um processo de aprendizado, que se inicia ao nascer
e continua ao longo da vida, a interpretação de imagens passa a ser feita de maneira quase
instintiva. Em um relance, uma pessoa consegue facilmente descrever com certa precisão os
componentes principais que compõem uma determinada cena. De maneira geral, isto é feito
extraindo-se caracterı́sticas de baixo nı́vel, como arestas, texturas e formas, e associando-as
com significados de alto nı́vel. Ou seja, realiza-se uma descrição semântica da cena. Um
exemplo disto é a capacidade de reconhecer pessoas e descrever suas caracterı́sticas fı́sicas e
comportamentais. A área de visão computacional tem como principal objetivo desenvolver
métodos capazes de realizar uma interpretação visual com desempenho similar aos humanos.
Estes métodos englobam conhecimentos de aprendizado de máquina e processamento de
imagens. Esta tese tem como objetivo propor métodos de visão computacional que permitam
a extração de informações de alto nı́vel na forma de biometrias fracas. Estas biometrias
representam caracterı́sticas inerentes ao corpo e ao comportamento humano. Porém, não
permitem a identificação unı́voca de uma pessoa. Para tanto, este problema foi abordado
de duas formas, utilizando aprendizado não-supervisionado e supervisionado. A primeira
busca agrupar as imagens através de um processo de aprendizado automático de extração de
caracterı́sticas, empregando técnicas de convoluçãos, computação evolucionária e agrupamento.
Nesta abordagem as imagens utilizadas contêm faces e pessoas. A segunda abordagem emprega
redes neurais convolucionais, que possuem a capacidade de operar diretamente sobre imagens
cruas, aprendendo tanto o processo de extração de caracterı́sticas quanto a classificação. Aqui as
imagens são classificadas de acordo com gênero e roupas, divididas em parte superior e inferior
do corpo humano. A primeira abordagem, quando testada com diferentes bancos de imagens,
obteve uma acurácia de aproximadamente 80% para faces e não-faces e 70% para pessoas e
não-pessoas. A segunda, testada utilizando imagens e vı́deos, obteve uma acurácia de cerca de
70% para gênero, 80% para roupas da parte superior e 90% para a parte inferior. Os resultados
destes estudos de casos, mostram que os métodos propostos são promissores, permitindo a
realização de anotação automática de informações de alto nı́vel. Isto abre possibilidades para o
desenvolvimento de aplicações em diversas áreas, como busca de imagens e vı́deos baseada em
conteúdo e segurança por vı́deo, reduzindo o esforço humano nas tarefas de anotação manual e
monitoramento.

Palavras-chave: VISÃO COMPUTACIONAL, APRENDIZADO DE MÁQUINA,
APRENDIZADO PROFUNDO, DESCRIÇÃO SEMÂNTICA, BIOMETRIAS FRACAS
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1 INTRODUCTION

Human vision is a complex and incredible sense that allows us to interact with the

surrounding world in an effortless way. Evolved throughout millions of years, our eyes and

brain work together to process and extract information from data received in the form of light.

With a blink of an eye, we are able to locate ourselves into a 3D world, recognize objects,

identify other people and even their emotions. All this is done almost unconsciously.

Vision is one the most important human senses, constituting the main data interface

for a seeing person. A clue to its importance can be checked in our cities, society

and entertainments, which are mainly thought and designed for seeing people. A better

understanding of the human visual system has drawn attention from various knowledge areas,

such as biology, neurology and computer science.

Although it seems that our visual capabilities are innate, we are continuously

improving our visual comprehension mechanisms. Since birth, we develop our visual

comprehension abilities by using both supervised and unsupervised methods. This process

builts a virtual model, which is later used as part or the recognition process (MILNER;

GOODALE, 1995).

As stated before, we receive huge amounts of data through our vision. That is known

as low-level data, such as dots, edges, shapes, color and textures. Our brain is responsible of

merging and analysing these data, seeking to associate with a semantic meaning or definition.

Based on this, we can make decisions and take actions. Here, semantic meaning or high level

interpretation is defined as the results of how humans can describe their surroundings by using

concepts and definitions determined by their culture and society. In this way, two different

people could achieve very different interpretations about the same image. In other words, this

process is sometimes ambiguous and it does not have a correct answer.

Since vision is our main information gathering interface, an interesting choice would

be to replicate this capability using digital computers. This has been the research field of

several teams all around the world, and it is known as computer vision. This area can be
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viewed as the combination of machine learning and image processing areas, enabling visual

comprehension to computers. Developing methods that could allow computers to extract high

level information similarly as we do, could allow a lot of applications in areas such as security,

health, entertainment and others.

An example of this use could be search in image or video databases looking for a

specific content. Nowadays, to achieve such capacity, a huge human effort is requested for a

systematic annotation. Since the size of those databases increases rapidly, this seems to be an

intractable problem. Developing automatic computer methods to insert appropriate annotations

could help humans to have a better use of such data.

Therefore, the main focus of this work is related to exploration and development of

methods that allow computers to receive, process and deliver high level interpretation on images

and videos.

1.1 PROBLEM DEFINITION

The problem addressed in this work consists in, given a set of images or videos that

contains people, perform their description using high level concepts, such as soft biometrics.

Some attributes that can be used to describe humans, but cannot be used to

unequivocally determine their identities are known as soft biometrics. Gender, hair, gait,

ethnicity, height, weight, clothes, are all examples of soft biometrics. A main motivation factor

to explore this kind of information is the requirement of little or no cooperation of individuals.

More specifically, in this work the focus is to classify people according to three

different attributes: upper clothes, lower clothes and gender. More precisely, given the image

of a person, we aim to identify the type of upper and lower clothes he/she is using, as well as

his/her gender. Additionally, we are interested in other kind of biometrics, such as those ones

that define a person’s face and a person’s body. In general words, this is a pattern recognition

problem.

A motivation for the development of methods to deal this problem is to allow content-

based image and video retrieval. Such methods could enable, for instance, to search a video

database using high level queries, such as “Find all men with blue t-shirt and black pants”.

Hence, this type of system could save many hours of human effort to analyse and classify those

images.

Although it seems very easy for a human to describe a person’s clothes or gender,
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when approached by a computer, this problem becomes very complex. The main cause for this

complexity remains on the need for performing high level semantic interpretation based on the

input data, images and videos, composed by luminosity values captured from the environment.

The distance between the input data and the high level information is known as the semantic

gap, which is present in most computer vision problems (SNOEK; SMEULDERS, 2010).

A possible way to reduce the semantic gap and, consequently, to find appropriate

solutions for the soft biometric extraction problem, is to improve and employ machine learning

methods. The basic idea is to mimic the human learning capacity and to allow computers to

learn.

In general, approaches to the pattern recognition problem are based on two parts, a

feature extraction operation, followed by a machine learning method. The main objective of

feature extraction is to transform the input data, into a more informative representation, allowing

a better performance of the classifier/clustering method. Several techniques are available in the

literature. Finding an appropriate feature extractor is a complex problem which requires a solid

knowledge of both method and application.

Machine learning techniques can be roughly divided into three types, supervised,

unsupervised and semi-supervised. In the first one, a series of annotated examples are presented

to a given classifier, which should find a way to associate each example to the class that it

belongs to. Consequently, humans have to create the example set, which consists in the manual

classification of each example according to specific purposes. Classification performance of

supervised machine learning methods are directly related to the quality, diversity and quantity of

the provided examples. In unsupervised learning, an unlabelled dataset is given to the algorithm,

which seeks to discover some internal structure within the data, allowing the creation of a virtual

data model. Here, almost no human effort is needed, since it is not necessary to classify the data

previously. The third category is based on both types mentioned, by using a small set of labelled

samples, semi-supervised methods try to learn a classification model and extend this model to

unlabelled data.

In this work, we explore both supervised and unsupervised methods, trying to learn

features directly from the input data, therefore leading to the desired classification. A supervised

method was chosen to achieve the extraction of high level information in the form of soft

biometrics, by using the human knowledge embedded into labelled examples.

Since the image annotation process requires human effort, and unlabelled images

are largely available with a low cost, approaches seeking to a better use of this kind of data

are desired. During the research process a question came up: is it possible to separate raw
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unlabelled images into classes? To verify this possibility, we propose an unsupervised feature

learning method. It was constructed to learn a feature extractor method based on the raw

unlabelled input images. The feature vectors should allow to separate images into classes,

showing that the images bring some information about its semantics together with the low level

data.

In an overview, both research topics developed in this work are concerned to deal with

the extraction of high level information from images and videos.

1.2 OBJECTIVE

The objective of this work is to propose a method for high level semantic interpretation,

in the form of soft biometrics, for images and videos.

1.3 SPECIFIC OBJECTIVES

The objective is subdivided into some specific objectives to clarify our approaches and

contributions:

• to propose a method for unsupervised feature learning for raw image separation;

• to verify if it is possible to separate raw images based only on input data, achieving class

information;

• to propose a method based on Convolutional Neural Networks for the extraction of soft

biometric information from images and videos;

• to verify the classification performance of the methods using different image datasets;

1.4 STRUCTURE OF THE THESIS

This work is structured as follows. The background concepts necessary to the

understanding of the proposed methods, as well as a review of the related literature is done

in Chapter 2. Chapter 3 discusses the proposed methods for both unsupervised feature learning

and extraction of soft biometrics from images and videos. Chapter 4 shows the experiments,

results obtained and their discussion. Finally, considerations about the work and the results,

general conclusions, proposals for future work, and contributions are shown in Chapter 5.
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2 BACKGROUND AND RELATED WORK

This chapter is aimed at bringing to reader the basic concepts used in the work,

enabling the comprehension of the proposed methods.

2.1 COMPUTER VISION AND IMAGE UNDERSTANDING

Vision is the human sense responsible for the major amount of information received

from the external world. It allows us to interact with the components of the world in an effortless

way. A large part of our brain is devoted to process the visual data, allowing the extraction of

information and the consequent decision making. When we are observing the surrounding

world, visual stimulus are received by our eyes, converted to electrical signals and processed by

our brain. In essence, the result of this process is a set of descriptions, each one in respect to

the components of the scene. In this way, image understanding is the process of extracting high

level information from visual input data (XIE et al., 2011).

Analysis of image contents is a complex process. Studies in the neuroscience field try

to understand better how a human being is capable of comprehending the surrounding world by

means of the images received by the eyes. Eyes and brain work together, and based on previous

knowledge, objects, people, places and landscapes are recognized and identified (HOFFMAN;

LOGOTHETIS, 2009). This kind of information, obtained through the human interpretation

capability, is defined in this work as ”high level information”.

An image is a composition of low-level artifacts, such as edges, shapes, gradients,

which are less informative when analysed separately. Usually, we are interested in high-level

information such as the concepts inside an image. A concept is a description about the scene

contents, done by a specific human under a specific point-of-view. In this way, two humans

could describe the same image using totally different concepts. Making direct link between

some set of low-level content and a high-level concept is a hard task, even when made by

humans.
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Between the low-level data and high level interpretation there is a well know gap. It is

called semantic gap, imposed by the difficulty in finding a direct correspondence between these

two extremes. In a broad sense, a work in computer vision seeks to narrow this gap, and achieve

visual information extraction automatically.

Since childhood, we are trained to look at the surrounding world and to try to make

sense from it through visual information. This training process is continuously done by the

exposition to examples, from which we construct models and store them for future comparisons

and references. This learning process is extremely complex and, at the same time, constructive.

The brain takes care of doing the work, based on an extensive visual experience, built along life,

since our visual interpretation capacity is not an innate process (HOFFMAN; LOGOTHETIS,

2009).

The way the human brain performs this process can be divided into two parts:

discrimination and generalization. The first one deals with which types of features relating

to a particular object are extracted and stored for a later classification. In other words,

this is the actual learning process. The second role is as important as learning, because

even with major changes in the visual appearance of an object, such as the presence of

occlusion, change of brightness, or even a certain level of distortion, the recognition ability

remains high. Our brain has a high capacity to generalize and associate characteristics during

visual information extraction. This phenomenon is essential to improve our visual capacity

(HOFFMAN; LOGOTHETIS, 2009).

Developing methods and software which allow an automatic comprehension of the

world by computers is, essentially, the main objective of computer vision. In the last decades,

the advances in the area have produced great results, but there is still a long journey to achieve

something comparable to the human vision capacity.

Computer vision is a research field with many open problems. One of these is pattern

recognition in digital images, where a specific pattern should be discovered by computer

algorithms and used, for instance, for the classification into categories (BISHOP, 2006). This

pattern can be an object, face or person, for example. There are several applications in which

pattern recognition is a fundamental step, such as person recognition, video surveillance, scene

description, autonomous location and navigation.

The number of possible applications of computer vision methods is big, mainly

nowadays where the number of image capturing devices has increased exponentially and are

spread in many places. These leads to enormous images and video databases, which are

complex to manage, specially when someone wants to search for a specific kind of visual
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content. A central step in visual interpretation is the ability to find and extract patterns, which

is discussed in the next section.

2.1.1 PATTERN RECOGNITION

The definition of a pattern is subtle and broad in the sense that it depends on the

context. However, in general terms, a pattern is a certain regularity found in data that tends

to be repeated at different times/locations (BISHOP, 2006). In general, complex patterns

are composed of some primitive structures and have a semantic meaning associated to them,

concerning classification problems. The great difficulty in automatic pattern recognition is to

find the correct relationship between these basic structures (edges, shapes, area, color) and the

semantic meaning, which is commonly known as a semantic gap (SNOEK; SMEULDERS,

2010).

In an attempt to narrow the semantic gap, several methods have been employed by

researchers. Most of them are based on transformations of the input data, known as feature

extraction. Instead of dealing directly with pixel intensity, a better way is to employ methods

to transform the images into a more informative representation. An example, would be extract

gradient information from image, since it would give a better description of edges than the hole

image itself.

Using the extracted features, the next step is to find a decision boundary that can

split the input data into the desired classes. Usually, the feature vector that represents the

images requires a non-linear boundary for a precise separation. This implies in the use of

classifiers capable of finding a non-linear separation model. A vast collection of classifiers is

available in the literature, covering different types of applications and needs. The most common

include Artificial Neural Networks ( ANN), Support Vector Machines ( SVM), decision trees

and random forests. Each one has its pros and cons, regarding application, type of input data,

performance, and other specifications. Choosing the most suitable classifier requires a greater

amount of expertise by the researcher or an empirical trial-and-error procedure.

Many papers produced by the computer vision and machine learning community,

related to image classification, are based on three steps: pre-processing, feature extraction and

classification, as shown in the block diagram in Figure 1. Some authors merge pre-processing

and feature extraction into a single step (DUDA et al., 2001; BISHOP, 2006).

The pre-processing step seeks to reduce the variability of the input data, as well as

avoiding noise, where a series of image processing techniques are employed. These operations
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Pre-processing Feature
Extraction Classifier

Image Classification

Input Data Class

Figure 1: Steps of a traditional image classification process.

include several types of filtering, normalization, contrast and brightness adjustments and

segmentation. A discussion of pre-processing methods lies outside the scope of this work.

For readers who wish more information on this topic, the work of (GONZALEZ; WOODS,

2006) is recommended.

2.1.2 FEATURE EXTRACTORS

Even with a pre-processed image, dealing directly with the pixel intensities usually

tends to produce poor results in the classification. The common approach here is to apply a

transformation in the input image, seeking to make it more informative, in other words, easier

to be classified. Engineering methods to find useful features that have high discriminatory

information and are fast to compute have received considerable attention in the computer vision

community. The design should take care not to discard important data during the transformation

(DUDA et al., 2001).

Usually, feature extraction methods are based on a hand-designed process, where a

field expert analyses the problem and attempts to find an interesting way to extract or transform

the input data. This can be done by extracting: visual features (such as edges, textures

and contours); statistical features (histograms and statistical moments); transform coefficients

(Fourier descriptors); and other algebraic features, using algebraic operations as a way of

transforming the data (TUYTELAARS; MIKOLAJCZYK, 2008; PENATTI et al., 2012).

Several feature extraction methods are available in the literature, and these should

be chosen depending on the context of the application. The most popular include the

Scale-Invariant Feature Transform ( SIFT) (LOWE, 2004), Gradient Location and Orientation

Histogram ( GLOH) (MIKOLAJCZYK et al., 2005), Binary Robust Invariant Scalable

Keypoints ( BRISK) (LEUTENEGGER et al., 2011), Binary Robust Independent Elementary

Features ( BRIEF) (CALONDER et al., 2012), and many others. A discussion of these

features and their application are beyond the scope of this work. The reader is referred to

(TUYTELAARS; MIKOLAJCZYK, 2008; PENATTI et al., 2012). In this work, three methods

were chosen to be used during the experimentation process. These methods were picked since



24

they can extracted complementary features from images.

One of the most popular image descriptor, specially for person detection, is the

Histogram of Oriented Gradient Histogram of Oriented Gradient ( HOG). Proposed by Dalal

e Triggs (2005), it works dividing the input image into small overlapped sub-images, called

cells. Within each cell, an histogram of the orientation of the gradients is accumulated. Then,

each histogram contributes to the formation of a global histogram, which is used as the feature

vector to describe the image. This method allows capturing gradient structure, that is very

characteristic of local shape. Also it is relatively invariant to local geometric transformations,

such as small rotations and translations.

When dealing with image matching, in general, local invariant features are used to

provide a efficient representation. Bay et al. (2008) proposed the Speeded Up Robust Features (

SURF), which can be viewed as an extension/improvement of the SIFT method. The algorithm

works by find image interest points using the determinant of Hessian matrix. The major interest

points in scale space are selected based on a non-maximal suppression. The feature direction is

also computed using Haar transformations, seeking to generate rotationally invariant features.

Finally, the features vectors are computed using a square descriptor window centered on each

interest point.

Local Binary Pattern ( LBP) is a very simple but efficient texture descriptor proposed

by (OJALA et al., 2002). It works by dividing the input image into cells. Each pixel inside a

cell is compared against its eight neighbours, composing a 8-d binary code. Value 0 indicates

that the center pixel is greater than the neighbour, and value 1 indicates otherwise. Over the

cell, a histogram of codes is computed. Finally, all histograms are concatenated forming the

image descriptor.

The existence of so many descriptors can be realized trough the complexity of

extracting and analysing the contents of an image, requiring many operations to be performed

with the maximum efficiency. The choice of the right feature extractor depends on the user’s

knowledge of both application and extractor properties. Therefore, it would be interesting if the

feature extraction process did not depend on a previously projected extractor, but rather built

based on the input data. In this work, this is the approach employed as a possible solution.

2.1.3 LEARNING

The main objective of feature extraction is to transform input data into a more

separable space, making easier to obtain an accurate classification performance. This process
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of classification, in general, employs a learning procedure. Three common types of learning

strategies can be found in literature: supervised, semi-supervised and unsupervised. All three

types are concerned in separating the input data according to some relationship.

Let X = (~x1,~x2, ...,~xn) be a set of n data samples or points in Rd . Typically, it is

assumed that the points are independently and identically distributed by a common distribution.

In unsupervised learning, nothing else is known about the data, and its goal is to find some

kind of interesting structure from data. In general, this structure could be defined in terms of a

density estimation about the distribution, or other kind of metrics, such as Euclidean distance,

in the case of clustering algorithms. Another interesting application of unsupervised learning

is related to dimensionality reduction, where it is wanted to find a compact and meaningful

version of the original data. Methods such as Principal Component Analysis ( PCA) and Liner

Discriminant Analysis ( LDA) are two examples of dimensionality reduction procedures. The

main advantage of unsupervised learning is its capability to deal with unlabelled data, which

are cheap and largely available (DUDA et al., 2001; BISHOP, 2006).

If the input data is presented in the form of a pair (xi,yi), where yi ∈Y and Y is a set of

predefined labels, there is an initial knowledge about the data. The goal of the learning method

is to use this information and find a mapping function fw(x) = ŷ, namely classify x according to

a set of classes, where ŷ represents the predicted class. This is the case of supervised learning.

Usually, the input dataset X is divided into two subsets, one for training and another for testing.

A given algorithm should be adjusted using the training set and, later, check its prediction

performance using the test set. This is the usual method for determining the generalization

power of the model found by the learning algorithm. Several methods could be used to adjust

this function, such as ANN, Convolutional Neural Networks ( CNN), SVM, decision trees,

random forests, and others (DUDA et al., 2001; BISHOP, 2006).

Between supervised and unsupervised learning, there is semi-supervised learning,

where just a portion of the input data is given with supervision, i.e., with defined labels, and

the remaining is unlabelled. The goal here is to learn from the labelled data and extend the

knowledge to the unlabelled data. Discussion related to semi-supervised learning is beyond

the scope of this work. Interested readers should see (CHAPELLE et al., 2010) for further

information.
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2.2 CONTENT-BASED VIDEO RETRIEVAL

An application of computer vision and pattern recognition can be the content-based

retrieval, which deals with search of multimedia artifacts using their attributes, which can be

extracted automatically or semi-automatically. The search terms could be low-level features

(histograms, edges, shape, textures) and/or high-level concepts (person, car, children, dog,

sunset). Content-based video retrieval (CBVR) derives naturally from content-based image

retrieval (CBIR). Both seek to filter the image/video databases in order to respond to the user

queries (SHANDILYA; SINGHAI, 2010; PATEL; MESHRAM, 2012).

In general, textual descriptions attached to videos (metadata) are used as the main keys

for searching. This seems to be a natural way to do the search, since written/spoken language

is the main form of human communication. A major drawback related to this method is the

requirement of manual annotation, which is a tedious and inefficient work. Besides, different

people could diverge about the concepts of a scene, leading to ambiguous annotations. Another

related problem is that, after a certain time, the user may not remember which terms were used

to describe images or videos.

Seeking to alleviate the burden of manual annotation, which demands humans to

analyse and describe the contents of each video, computational methods were developed.

These methods should analyze the video contents in an automatic way, doing recognition and

annotation. This demands intelligent methods capable of interpreting the visual contents of a

video as close as possible to humans. Recently, many research teams across the world have

devoted efforts to improve the quality of automatic video analysis.

Among the methods reported in the literature, to deal with content-based retrieval,

there are: ontology construction (ZHA et al., 2012; BAI et al., 2011; EROZEL et al., 2008);

graph and partial differential equations (TANG et al., 2009); hidden Markov chains (ZHANG

et al., 2009); extreme learning machines (LU et al., 2013); self-organizing maps (KOSKELA

et al., 2009); and others. It is important to notice that these methods are developed for specific

domains.

2.3 SOFT BIOMETRICS

A possible application of a CBVR system is related to video surveillance, where video

cameras are used to monitor any relevant area. The key content of such videos is the people

who could appear. In other words, the system is used to monitor people activity. With effect, a
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person could be seen as a set of highly defined features, called biometrics.

Biometrics are commonly used by humans to identify other known individuals (JAIN

et al., 2000). The acquisition and recognition of biometrics are done naturally and effortless

by humans. Inspired by that, it would be interesting and useful to develop an automatic system

able of extracting and identifying human biometrics and find them in a monitored environment.

A biometric recognition system ( BRS) associates unequivocally an individual to a

known identity using his/her body features or his/her behaviour. This kind of system could

be understood as a pattern recognition system based on predetermined body and/or behavioral

features (DELAC; GRGIC, 2004).

There are several types of biometrics varying, for instance, from physiological (such as

fingerprint, DNA, retina) to behavioral (such as voice and gait). In most cases, the acquisition of

such kind of biometrics requires the cooperation of the target person (KIM et al., 2012). On the

other hand, another kind of biometric data that can be extracted from images/videos are the soft

biometrics. This kind of information is related to human attributes, such as clothing, gender,

and ethnicity, for example. By using these attributes, it is not possible to identify a person

unambiguously. However, it is possible to reduce the range of possibilities when searching for

a specific individual. The advantage of the soft biometrics is that the cooperation of the subject

is not needed for data acquisition (REID et al., 2013), such that it fits perfectly surveillance

purposes.

This is a very hard problem in several ways. There is a high variance in the way

that people are dressed; people can be in many different poses. They also can be partially

occluded by other objects or other individuals. Finally, the background which contain the target

subject can be complex and different from scene to scene, imposing more difficulties to the

identification of a person.

An example of describing an image of a person using soft biometrics is shown in

Figure 2. In that image, attributes such as gender, upper clothes and lower clothes are used to

obtain a high level person description. It is important to notice that, although is relatively easy

to a human achieve this kind of interpretation, it is very complex to be done automatically by

computers.

2.4 CONVOLUTIONAL NEURAL NETWORKS

As mentioned before, traditional pattern recognition methods are based on two main

steps, feature extraction and classification. According to Section 2.1.1, feature extraction is
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Figure 2: Example of describing an image of a person using soft biometric attributes.

the transformation of the input data into a more meaningful representation, helping to improve

the classification performance. Finding a suitable representation demands human labour, who

should deeply analyse the data and the application domain, trying to devise that transformation.

An alternative to this process would be to learn better representations automatically

from the input data. CNN is a method that has the capability of learning both the feature

extractor and the classifier during its training procedure. This section review both conventional

and convolutional neural networks.

2.4.1 FEED-FORWARD NEURAL NETWORKS

A neural network, as the name suggests, attempts to mimic in a very simplified form

the dynamics of the human brain, using a set of processing units called neurons, and their

interconnections, called synapses (BISHOP, 2006).

The simplest neural network is composed by just one unit, known as step neuron. It

has a series of inputs (x0,x1, ...,xd), where x0 represents a bias, whose value is assumed to be

always 1, and one output in the form of y = ϕ(z). For each input a connection weight wi is

defined. The function ϕ is a nonlinear activation function, usually the step function, sigmoid

(Equation 1) or the hyperbolic tangent (Equation 2), and z is a weighted linear combination of

its inputs. A general schematic of a neuron is shown in Figure 3.

sigm(z) =
1

1+ ez (1)

tanh(z) =
ez− e−z

ez + ez (2)
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Figure 3: Example of a neuron, showing the inputs, the weighted sum, the activation function and
the output.

Given a dataset X in the form of (xi,yi), where x is the input data and y is the label.

Notice that the superscripts denotes each sample in X . The neuron is aimed at finding a

nonlinear function f (x), which maps the input xi to its label yi, for all data samples. Since f (x)

is parametrized by the weigths, i.e., f (x,w), the mapping is done by adjusting the connection

weights by an iterative learning process. The computation capacity of a single neuron is limited,

being capable of dealing only with small and simple problems.

The solution to real problems requires a more powerful method to find a map, able

to deal with non-linearities. This could be achieved with something like a human brain,

gathering several single neurons into a well defined multilayer structured architecture. It can

be represented as a directed graph of neurons, organized into layers, as shown in Figure 4. The

left-most layer is called input layer, where the input data are introduced into the network. In this

example, the data are represented as a 4-dimensional vector, but the size may vary according to

the application and, especially, to the feature extraction method. The layers in the middle are

denoted as hidden, in the sense that they do not have external inputs or outputs, and all their

neurons are connected to the neurons in the previous layer. The number of neurons in each

layer is a design choice and may vary, especially in accordance with the complexity of the input

data. The right-most layer is the output layer, which is responsible for producing the network

results; and the number of units is related to the expected output (e.g. number of classes). The

architecture details, such as the number of neurons in each layer and the number of layers should

be determined concerning the application.

Formally, the ith neuron within layer l has the form as shown in Equation 3, where i

represents the unit. All units in all layers, except the input layer, operate using this formulation.

This process is called feed-forward, since the data flow is propagated forward throughout the

network.
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Figure 4: Example of an multilayer network.

yi,l = ϕ(
d

∑
i=1

wi,l−1xi,l−1),∀l ∈ L,∀y ∈ l (3)

Figure 4 associated to Equation 3, shows that the output of the first hidden layer of an

ANN will be a new representation of the input data concerning to the linear combination with

the connection weights. The weight between x1 and h1 is w1 (solid line). All the remaining

weights (dashed lines) are omitted for better visualization. The outputs of the next layers will

lead to a higher representation of the input data. The output of the last layer will be the mapping

between the input data and the desired classes.

Choosing appropriate weight values enables to find arbitrary decisions boundaries,

leading to the desired classification. Theoretically, a three layer neural network could

approximate any function, given the necessary input samples and sufficient hidden units

(BISHOP, 2006).

The common procedure for adjusting the weights of the network is by an interactive

process, where an example is forwarded through the network until an output is obtained. A

cost function Q is used to calculate the difference between the network output and the expected

result. In general, Q is defined as Equation 4, and is called mean squared error.

Q(x,w) =
1

2n ∑
x
( f (x,w)− y)2 (4)

Here, N represents the total number of training samples, f (x,w) is the output of the

network and y is the desired response. It is possible to see, that the output of the network

depends directly on x and w. When the network output becomes close to the desired output, the
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value of Q(x,w) must become close to 0. In this way, the weights must be adjusted to minimize

the value of Q(x,w).

A common way to proceed this minimization process is to use the gradient descent

algorithm ( GD). It is based on the partial derivative ∂Q
∂w of the cost function with respect to

the weights in the network. This derivative allows to understand how the cost function changes

when the connection weights are changed. Based on this, GD makes small steps in the opposite

direction of the gradient, leading to the consequent minimization of Q. Equation 5 shows how

to update the weights using GD (BISHOP, 2006).

wt = wt−1−η
∂Q
∂w

, (5)

where t represents an iteration in the training process, called epoch, η represents the

size of the GD step, and is commonly named as learning rate. Choosing the appropriate value

for the learning rate is essential to GD convergence.

It is important to notice that the derivatives must be calculated for every training

sample, and then be averaged before the weight update. This is known as batch gradient descent.

When the training set is big, this process can take a long time, and the learning procedure could

be slow.

Instead of looking at the whole training set, a modification in the procedure updates the

weights after random sampling. This is done using the entire dataset. This is called stochastic

gradient descent. The calculation in this case is faster than the GD, but the convergence to the

minimum is somewhat random.

Between both there is the mini-batch stochastic gradient descent, in which a small

group of training samples are randomly selected and used to update the weights. Again, the

entire dataset is employed. In general, the size of a mini-batch is approximate 100 samples.

This approach is a common choice in the literature.

The process of using the derivative to adjust the weights is called delta learning rule.

A detailed discussion of the backpropagation algorithm can be found in (DUDA et al., 2001;

BISHOP, 2006).

2.4.2 CONVOLUTIONAL NEURAL NETWORKS

The common process for automatic classification, as stated above, is mainly based on

two stages: a feature extractor and a classifier. Both are chosen when modelling the solution for
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the classification problem. A hand-designed feature extractor requires the presence of a human

expert to find the most suitable data manipulation for achieving good classification performance.

To overcome this, the features could be automatically learnt from the input data. Therefore, the

extractor is adjusted to fit the requirements for a given classification task automatically.

A method conceived to address these characteristics is the CNN, which is a special

type of feed-forward neural network, in whose architecture various hidden layers are employed,

developed to deal with 2D input data, such as images (LECUN et al., 1998).

The main characteristic of this method is the ability to learn a hierarchy of features,

allowing a more abstract representation of the input data. Thus, raw images can be introduced

into the network without any kind of preprocessing or feature extraction. Therefore a trained

CNN is an end-to-end classifier. Another advantage is that the feature extractors are constructed

based on the data used for training, the network learns to manipulate the input data as a way of

performing the classification (LECUN et al., 2010). The architecture of a CNN is designed to

incorporate two modules, as shown in Figure 5: the feature extractor and the classifier.

Figure 5: An example of a CNN architecture. The dashed rectangle denotes the feature extractor
layers. The continuous rectangle denotes the classifier layers. The (I) layer represents the raw input
image. The (C) layers represent convolution operations. The (S) denotes sub-sampling operations.
The linear layers are represented by (L), and (O) represents the output layer.

The feature extractor module is composed by multiple stages, and its inputs and outputs

are called feature maps. Each stage has three different layers: convolution, non-linear filtering

and sub-sampling.

The convolution layer is responsible for storing the trainable weights, which allows

the customization of the feature extractor. The input of a convolution layer is a two-dimension

array for gray level images, or a three-dimensional array for color images, with m 2D feature

maps of size w×h. Each feature map is denoted by ml
i , where l denotes the layer and i the map

at that layer. A k1× k2 trainable convolution kernel is used to connect the input feature maps
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ml−1 to the output feature map ml
i . This connection is performed by a 2D discrete convolution

operator using the kernel as the convolution mask.

The trainable kernel is called a receptive field, and the idea is to restrict connections

from a given neuron to a small neighbourhood in the immediately preceding layer, thus forming

a tiny filter for feature extraction. This restriction was inspired by the complex arrangement

of cells within the visual cortex, described by (FUKUSHIMA, 1980). The use of a 2D kernel

allows capturing the spacial relation between adjacent pixels in images.

Since a common feature may be located at different positions in the input image, it

is worth performing the extraction in the entire image. A weight sharing mechanism allows

neurons of the same feature map to have the same weights associated to different receptive

fields. This allows the extraction of features irrespective of the position and reduces the number

of parameters to be trained (LECUN et al., 2010).

The non-linear filtering consists in the application of a non-linear activation function

to all components of each feature map. The reason for that is, as the same as for a regular

neural network, force the network to learn a better representation for the input data, since some

information is lost during the filtering process. The most common choice is the hyperbolic

tangent function tanh(ml
i) (LECUN et al., 2010).

The sub-sampling mechanism involves the reduction of a feature map by a constant

factor, providing the network robustness to small distortions and translations. This reduction

is performed over a f1× f2 neighbourhood from the previous layer using a certain operation,

such as addition, average and maximum, commonly called maxpooling. For example, if an

input feature map has 28× 28 components, and the neighbourhood size is 4× 4, the output

feature map will have 7×7 components, being reduced by a factor of 4 (LECUN et al., 1998;

BOUREAU et al., 2010).

Some architectures use a manoeuvre to give the network some translation invariance

and reduce the computation effort. Instead of applying a convolution kernel or sub-sampling

operation to every possible location on the input map, leading to an overlapping region, a stride

is used. This means that a step, in both horizontal and vertical directions, is used.

The last module of a CNN consists in the classifier itself. Its inputs are the outputs

from the last feature maps. In general, a common linear feed-forward classifier is employed.

The amount of input neurons, hidden layers and output neurons is problem-dependent.

To adjust the weights of the network, a variation of the backpropagation learning

algorithm proposed by (LECUN et al., 1998) is used. Thus, the layers are trained in a supervised
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way, seeking to reduce the error between the predicted and the expected results, generally using

the stochastic gradient descent ( SGD) algorithm.

2.4.3 LENET – 5

The concepts discussed above were first applied to document recognition, more

specifically, to handwritten character recognition (LECUN et al., 1998). In that paper, an

architecture for a CNN, called LeNet-5, was proposed and tested. This network became the

ground basis for further research about CNN.

The network, as shown in Figure 6, comprises 7 layers, not including the input. The

input to the CNN is a 32× 32 black and white image. Layer C1 is a convolutional layer with

6×28×28 feature maps generated by a 5×5 trainable kernel. Layer S2 reduces the C1 feature

maps to 6× 14× 14, using a 2× 2 neighbourhood. The four inputs to a unit in S2 are added,

then multiplied by a trainable coefficient, and added to a trainable bias. The result is squashed

by a sigmoid function. Layer C3 is a convolutional layer with 16 feature maps of size 10×10,

generated by 5×5 trainable kernels. Unlike C1, the C3 layer has a special form of connection

between its feature maps and the S2 maps. This was proposed to reduce the number of network

parameters and increase its capacity. Layer S4 reduces the 16 feature maps from C3 to 5× 5,

using the same operation as S2. Layer C5 processes the 16 feature maps from S4 using 5× 5

trainable kernels. Because the S4 maps have a size of 5× 5, the output of C5 is 120 feature

maps of size 1×1. The next layer, F6, is a linear, or fully-connected layer, and acts as a layer in

an MLP network, computing the linear combination of its inputs with trainable weights. Output

layer F7 is composed of Euclidean Radial Basis Function units (RBF), one for each class, with

84 inputs each. The whole LeNet-5 has a total number of 14,000 trainable parameters (LECUN

et al., 1998).

Figure 6: LeNet-5 network architecture, which was proposed to classify handwritten digits.

Source: (LECUN et al., 1998)
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The network was trained and tested using the MNIST handwritten digits database.

The training procedure used 60,000 samples while the test set was composed of 10,000 images.

After 20 passes through the training database, the network achieved an error of 0.95% on the test

set. When an expanded version of the training database was employed, the test error dropped

to 0.8%. The expansion was created using distortions in the images, such as horizontal and

vertical translations, scaling, squeezing and horizontal shearing.

2.4.4 USAGE OF CNN

Despite the fact that the first CNN was proposed a long time ago, it attracted much

attention in recent years. The community claims that two major facts reactivated research on this

topic: the popularization of the use of powerful Graphical Processing Units ( GPUs), along with

the tools to develop algorithms using this technology, such as the Nvidia’s CUDA framework;

and the availability of huge annotated image databases, such as the ImageNET (DENG et

al., 2009). This has led to numerous methodological proposals for different issues related to

CNN, including the use of unsupervised pre-training, activation units, training procedures and

architectures.

(KRIZHEVSKY et al., 2012) proposed a CNN architecture as a solution to the

ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC2010), where 1.2 million

high-resolution images had to be classified into 1000 different classes. The network was

composed of eight learned layers: five convolutional and three fully-connected, as shown in

Figure 7. The first layer transforms a 224×244 RGB image into 96 feature maps using kernels

with 11× 11× 3 components and a 4-pixel distance (stride) between the receptive fields. The

second layer expands the output of layer one to 256 feature maps, where the kernel has 5×5×48

components. The third layer has 384 feature maps generated by kernels of size 3×3×256. The

fourth layer has 384 maps generated by kernels with a size of 3× 3× 192. The fifth layer has

384 maps generated by kernels of size 3× 3× 192. The fully-connected layers have 4096

units each. The max-pooling and a local normalization operation are employed only after the

first and second layer. This architecture has 650,000 processing units and 60 million trainable

parameters.

The training process of such a large network demands high computation power. A

multi-GPU scheme was employed to adjust the network parameters in between five and six

days. This optimization scheme unveils an affordable platform for training large CNNs.

During the training phase, the units in the fully-connected hidden layers of the CNN

learn to detect certain regularities that enable it to make correct predictions with respect to a
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Figure 7: CNN architecture proposed by (KRIZHEVSKY et al., 2012) as solution to ILSVRC2010.

Source: Adapted from (KRIZHEVSKY et al., 2012)

given input. If the number of hidden units is large, the units can learn very well how to classify

the entire training data set. But when the network is used to predict the class of new input data,

the results may be worst. This phenomenon is called overfitting. A possible way of reducing

the overfitting, as proposed by (SRIVASTAVA et al., 2014), is to randomly turn off hidden units

with a probability of 1/2 during the training phase.

The algorithm consists in, for each training example and training epoch, randomly

chosen hidden units are selected and temporary deleted. The other remaining weights are

normally trained using backpropagation (BALDI; SADOWSKI, 2014). Figure 2.4.4 shows a

representation for this process, where light circles and dashed lines represent turned off units.

This procedure is called dropout learning.

Figure 8: Representation of how dropout works.

Source: Adapted from (BALDI; SADOWSKI, 2014)

This procedure can produce two main advantages in the neural network behaviour.

First, it prevents the co-adaptation of units, where the units rely on the presence of others
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to make the prediction. Second, multiple different networks are trained at the same time,

enabling model averaging. The use of the dropout strategy has become a standard in recent

CNN architectures, and it has been reported as helpful to improve the network performance

(SRIVASTAVA et al., 2014).

Different types of non-linearity can be used in the CNN architecture. The model

proposed by (LECUN et al., 1988) was based on the hyperbolic tangent (tanh). Also,

(JARRETT et al., 2009) found that the use of a non-linearity in the form of relu(x) = max(0,x),

called Rectified Linear Units (ReLU), produces better results. In (KRIZHEVSKY et al., 2012),

it was stated that convolutional neural networks with ReLU are several times faster than those

with tanh, achieving similar error rates with less training epochs. Since then, the majority of

papers have used the ReLU as the non-linearity.

Great progress has been made in recent years in the field of pattern recognition, with

problems like character recognition, achieving highly correct classification rates. But achieving

similar visual capacity of a human using a computer poses a great challenge to the machine

learning and computer vision community.

Several researchers agree that CNN has showed to be the way to achieve the desired

visual capacity. Many information technology companies are investing a great deal to develop

solutions for pattern recognition problems using CNN.

The results of these methods are promising, but some doubts remains as to how they

are obtained. Therefore, in the coming years, a great deal of research will be conducted in an

attempt to comprehend the learning mechanisms of CNN.

As discussed above, the learning process of CNN requires both large amounts of

labelled data and computation power. The latter seems not to be such a big problem, since the

use of GPU and large computer clusters enables the achievement of computation demanded.

Annotated data is still the bottleneck of this method. Therefore, an important issue, also

addressed in this work, is the use of unsupervised learning strategies for facilitate the annotation

process of large image datasets.

2.5 DIFFERENTIAL EVOLUTION

As a neural network is inspired by human brain functionality, other areas of computing

were inspired by nature to develop computer science methods for solving problems. This

paradigm for the development of algorithms is called natural computing, or biologically inspired

computing.
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Bio-inspired methods can be roughly broken down into two basic lines of approach:

computing inspired by nature and simulation or emulation of natural phenomena. In the

first category, there are methods based on the observation of the behaviour of organisms and

communities, thus generating inspiration for the development of systems aimed at solving

complex problems. Evolutionary Algorithms ( AE), neurocomputation, artificial immune

systems and swarm intelligence fall into this class . The second line is the simulation of

processes and events that occur in nature virtually trying to recreate the behaviour of organisms,

thereby allowing better understanding of nature. One result of this second line is artificial

creatures and life systems, that is, systems that mimic life as humans know. (CHEN, 2007).

In this work, we focus our attention to evolutionary computation as an efficient tool to solve a

complex problem.

In this work, the Differential Evolution (DE) proposed by (STORN; PRICE, 1997)

was chosen as the optimization method, since it is robustness to solve complex problems.

DE was originally designed for the optimization of continuous multidimensional mathematical

functions. An important feature of DE is its independence of the function gradient, i.e.,

the function being optimized does not need to be differentiable. This feature allows the

use of DE in a vast set of problems, from bioinformatics (KALEGARI; LOPES, 2010),

combinatorial problems (KRAUSE; LOPES, 2013) to computer vision (CUEVAS et al., 2013).

A survey of DE details and applications can be found in (NERI; TIRRONEN, 2010) and (DAS;

SUGANTHAN, 2011).

DE is a population based approach in which a population of NP d-dimensional

vectors (~x(G)
i , i = 1,2, ...,NP), referred as individuals, are manipulated during a number of

iterations (denoted by G). The initial values for each candidate solution (individual) are

chosen randomly and should sample the entire solutions space. Similarly to other evolutionary

computation approaches, DE uses three basic mechanisms during the search: mutation,

crossover (recombination) and selection (PRICE et al., 2005).

Mutation generates small perturbations in each individual, by means of a weighted

difference between two vectors to a third one. Equation 6 shows the mutation operation, where

~v(G+1)
i is the ith mutant vector for the next iteration (G+1). Indices r1,r2,r3 ∈ 1,2, ...,NP, are

mutually different random integers, i.e., i 6= r1 6= r2 6= r3, such that always different individuals

of the population are chosen for the operation. F ∈ (0,2] is a constant factor that controls the

influence of the difference.

~v(G+1)
i =~x(G)

r1 +F · (~x(G)
r2 −~x

(G)
r3 ) (6)
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Seeking to increase the population diversity, a crossover (recombination) operator is

used. Trial individuals are generated using the rule described by Equation (7), where randb( j)∈
[0,1] is the jth uniform random number generated; CR ∈ [0,1] is the crossover probability;

rnbr(i) ∈ 1,2, ...,d is a randomly chosen index, which ensures that at least one parameter of the

new individual came from the mutant vector.

u(G+1)
ji =

v(G+1)
ji if (randb( j)≤CR)) or j = rnbr(i)

x(G)
ji if (randb( j)>CR)) and j 6= rnbr(i)

j = 1,2, ...,d (7)

After the crossover, the just-created individual can be selected or not to be used in the

next iteration. The selection mechanism compares the quality of u(G+1)
i against xG

i , using a

simple greedy criterion, as shown in Equation(8).

~x(G+1)
i =

~u(G+1)
i if ( f (~u(G+1)

i )< f (~x(G)
i )))

~x(G)
i otherwise

(8)

The application of the two operators, mutation and crossover, followed by the selection

procedure, is probabilistically done for all elements of the population, and the whole procedure

is repeated for several iterations until a stopping criterion is met. For most cases, this criteria is

the maximum number of iterations is reached or, else, a predefined achieved error level. Another

criterion could be the mean fitness of the population, since if it is close to the minimum fitness

means that the individuals have converged to a local minimum. Algorithm 1 shows a simplified

pseudocode for the standard DE (PRICE et al., 2005).

The result of execution of DE is a vector with the fittest solution found during the

search process. As stated, there is no guarantee that this is the optimal solution to the problem.

A great advantage in choosing DE as optimization strategy is its ability to find better

solutions than other evolutionary strategies. Additionally, it is relatively easy to implement and

apply to a variety of real valued problems (DAS; SUGANTHAN, 2011).

2.6 CLUSTERING

The analysis and classification of large amounts of data can be performed by means

of three approaches: supervised, semi-supervised and unsupervised. The main difference

between these methods is related to the previous knowledge that the user has about the data.
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Input:d,NP,F,CR Output:Best~xi G=0;

Generate initial population~x(G)
i i = 1,2, ...,NP;

Evaluate the cost function f (~x(G)
i ) i = 1,2, ...,NP;

while not stopping criterion do
// Execute mutation
for i=1 to NP do

~viG+1 = Mutation(~x(G)
i ) // Following Equation(6)

end
// Execute crossover, generating the trial vectors
for i=1 to NP do

~uG+1
i = Crossover(~x(G)

i ,v(G+1)
i ) // Following Equation(7)

end
// Execute selection, using the result of the cost

function
for i=1 to NP do

if f itness(~u(G+1)
i )< f itness(~x(G)

i ) then
~x(G+1)

i =~u(G+1)
i

else
~x(G+1)

i =~x(G)
i

end
end
G=G+1

end
Algorithm 1: Pseudocode of the standard Differential Evolution algorithm.

By definition, supervised learning is a machine learning task in which a mapping function is

inferred by repeatedly examining annotated training data (MOHRI et al., 2012). Annotated

data (or labelled data) are those in which each sample is associated to a well-defined class label.

Semi-supervised methods need that the training data be partially labelled, and they try to extend

the known knowledge to the unlabelled data. The unsupervised methods do not require any

previous information about the data (DUDA et al., 2001).

For the particular case of image and video, annotated data implies a previous human

classification of the semantic contents. Due to the high cost and complexity of this procedure

the amount of unlabelled data is many times larger than the labelled one. This fact motivates

the development of unsupervised methods in this area.

The main idea behind unsupervised methods is to analyse and group the input data

based on one or more features inherent to the data, without any assumption about how it is

partitioned or its nature. This means that methods will explore the data aiming at finding some

kind of pattern that allow the formation of two or more distinct clusters. Clustering is, therefore,

a basic and widely used method for unsupervised learning that allows to discover some structure
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in unlabelled data.

A well-known method for clustering data is known as k-means or Lloyd’s algorithm

(LLOYD, 1982). This algorithm is very popular, since it is simple to implement, runs fast, and

it has just one parameter to be set: the number of clusters. Notwithstanding, this is the main

drawback of the method, since the user may not know, a priori, the number of clusters that the

data is naturally grouped into.

The goal of k-means is to partition a set of n d-dimensional samples, ~xi ∈ Rd, i =

1,2, ...n, into k groups, based in some similarity present in the data. This is a centroid-based

method for clustering. Therefore, it is intended to find a set of centroids ~C j ∈ Rd, j = 1, ...,k

and a designation set Ai, i = 1,2, ...,n for each input sample~xi, in such a way that the distance

between each sample and its centroid should be the smallest. Formally, C and A are found

by minimizing Equation (9). The similarity metric used for computing the distance between

centroids and data points is the usual Euclidean distance in the d-dimensional space.

minimize
C,A

n

∑
i

√
d

∑C(A(xi)
)− xi (9)

The minimization process can be split into two sub-processes, shown by Equations

(10) and (11), which are sequentially repeated until convergence. The stopping criterion could

be a maximum number of iterations, error threshold or stabilization of ~C, in other words, no

changes on centroids.

Ai := argmin
k
|C(k)− xi|2,∀i, i = 1...n (10)

Ck :=
∑
|Ak|
j=1 x j

|Ak|
, (11)

where |Ak| is the number of samples assigned to cluster k. Notice that a centroid Ck

is obtained by computing the mean of all elements assigned to cluster k. At the end of the k-

means execution, the centroids can be interpreted as a compact representation of the input data.

A pseudo-code of k-means is shown in Algorithm 2.
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Input:set of~x,k Output:c1, ...,ck create a randomly set of k vectors~ci repeat

foreach~xi do

assign~xi to nearest~c;

end

foreach~ci do

recompute~ci as the means of assigned~xi;

end

until stopping criterion;
Algorithm 2: k-means pseudocode.

Two metrics for accessing the cluster quality are important here. The intra-cluster

variability, called cohesion, should be as small as possible. This means that all the elements (for

instance, images) assigned to a given cluster are the most similar each other as possible. The

inter-cluster distance, called separation, should be the maximum, meaning that the elements of

different clusters have quite different features and are well separated in the feature space. A

2D example of these two metrics is shown in Figure 9, where the area of the dashed ellipses

represents the intra-cluster metric, and the dashed line between the two centroids represents the

inter-cluster distance. Notice that such example is an ideal case, where the 2-D feature vector

was able to capture the discriminatory characteristics of each class of objects. Usually, this is

not the case in real world problems.

Figure 9: A hypothetical good clustering result, where similar objects are close together and there
is a distance between the groups.

A method which makes a relationship between intra and inter cluster measures is called

Silhouette Coefficient ( SC). As stated by Tan et al. (2005), SC can be obtained by three steps:

1. For the~xi vector, calculate its average distance to all other vectors in its cluster. Call this
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value ai.

2. For the~xi vector and any cluster not containing the vector, calculate the vector’s average

distance to all the vectors in the given cluster. Find the minimum of such values with

respect to all clusters; call this value bi.

3. For the~xi vector, the SC is si = (bi−ai)/max(ai,bi).

The value of SC varies between -1 and 1, where -1 represents the worst configuration

and 1 the best cluster formation.

Derived from the original k-means, some improvements were proposed seeking to

improve its efficiency in clustering complex data. The fuzzy k-means is a modification in

the rule of assignment. Instead of restricting a sample assigned exclusively to one cluster,

it is allowed to have samples assigned to several or all clusters, but with diverse degrees of

membership to them.

Due to the iterative procedure of the algorithm, it is known that the clustering obtained

by k-means is strongly dependent of the initialization of the centroids. To overcome this issue,

(ARTHUR; VASSILVITSKII, 2007) proposed k-means++ that has an improved initialization.

Basically, this k-means variant chooses the first centroid randomly from the data points. The

remaining centroids are located in other data points, but they are chosen with a probability

proportional to the square of the Euclidean distance from the current point to the nearest centroid

already set. This simple modification leads to a speeds-up of two times compared with the basic

algorithm and, mainly, a great improvement in error (compared with the optimal clustering)

2.7 RELATED WORK

In this section papers found in the recent literature related to our work are presented.

They were divided into two subsections, one related to unsupervised feature learning and other

to human classification by means of soft biometrics. This format was chosen to help the reader

to understand which were the foundations and inspirations to construct this work.

2.7.1 UNSUPERVISED FEATURE LEARNING LITERATURE

The possibility to take advantage from unlabelled data in machine learning tasks has

caught attention of several research groups. Different unsupervised learning methods were

proposed for different tasks. The focus here was works that are concerned in employing such

techniques to deal with visual problems.
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Most of unsupervised learning methods proposed are based on learning a dictionary

of codes, usually based on techniques such as sparse-coding, Restricted Boltzman Machines

(RBM) and clustering algorithms.

The algorithm proposed by (SERMANET et al., 2013) consists in finding a dictionary

learnt by sparse-coding that allows linear reconstruction of an input sample based on the

combination of codes. This combination should use as little code as possible. Also, (HE et

al., 2014) proposed an unsupervised feature learning framework that was constructed based on

the ideas of the bag-of-visual-words, sparse coding and spatial pooling. The framework learns

a hierarchy of features from a set of Scale Invariant Feature Transform (SIFT) descriptors.

Cai et al. (2010) prosed an approach called Multi-Cluster Feature Selection for

selecting relevant features in an unsupervised fashion. The method tries to select features in

a way that the multi-cluster structure of the data can be preserved. This is done by identifying

the cluster structure from the original data, and subsequently measuring the importance of each

feature for the differentiation of each cluster.

The role of single-layer networks in unsupervised feature learning is addressed by

(COATES et al., 2011), where several different unsupervised learning algorithms are employed

to discover features from unlabelled data. These features are then used to train a linear classifier.

An important result of that paper concerns to the performance of the k-means algorithm.

Lee et al. (2011) proposed a method from learning invariant spatio-temporal features

based on Independent Subspace Analysis which, in turn, is an extension of Independent

Component Analysis. The proposed framework learn a hierarchy of features, taking advantage

of two common operations of CNNs: convolution and stacking.

The unsupervised feature learning method proposed by (COATES et al., 2012) relies

on two modules. The first uses the k-means algorithm to learn selective features, and the second

uses a max-pooling strategy to combine those features. The algorithm was used in a dataset

composed by 57 million 32-by-32 pixel patches.

To deal with aerial image classification, (CHERIYADAT, 2014) proposed an

unsupervised feature learning technique. The main idea of the method is to generate a feature

representation for each image patch. This is done by learning a set of normalized basis

functions, which is computed by a variant of sparse coding, from extracted features (raw pixels,

oriented filter responses and SIFT-based descriptors). Then, the features are encoded using the

basis functions, and a soft threshold activation function is applied to generate sparse features.

Our proposed approach takes advantage of several pieces, which are known to be
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successful, such as CNN mechanisms, clustering and global optimization to construct a new

framework for unsupervised feature learning. Differently from other approaches which learn

features from small image patches, here we use the full image. The motivation for this approach

is the idea of learning features that could be useful for the classification of high-level objects,

such as faces and people.

2.7.2 SOFT BIOMETRICS LITERATURE

Some soft biometrics methods for extracting semantic information from people were

developed in the last years. Different methodologies are available taking advantage of certain

properties of the problem.

The work of (HANSEN et al., 2007) focused on annotating human features in

surveillance videos. A person is described using the primary color of the hair, upper and

lower body clothing, as well as his/her height. However, no clothes classification was done.

The proposed methodology includes a background subtraction algorithm, a color descriptor

based on the Hue-Saturation-Value (HSV) color model, a height estimator, and a head direction

evaluator. The authors reported that the tests to clothes color description highlights difficulties

when a person is wearing shirt and pants of the same color. Another problem occurred when

people are wearing skin-colored clothes.

Zhang et al. (2008) proposed a methodology for clothes recognition, but restricted to

t-shirts. They present a survey to evaluate which kind of detail/pattern is the most relevant

for classifying t-shirts. Based on this survey, some methods were proposed to evaluate the

sleeve length, recognize collar and placket, color analysis, texture recognition and shirt style

recognition. More specifically, sleeve length recognition is based on face and skin detector,

then, color segmentation and a one-level decision tree classifier. The images used for training

and testing were collected in a controlled environment, with a constant background and people

at almost on same pose. For sleeve length, they achieved almost 89% of correct classification.

They reported that the errors were mainly caused by wrong skin detection.

The development of a robust color detection framework able to identify the colors

of clothing in video under real illumination conditions was proposed by (D’ANGELO;

DUGELAY, 2010). The objective was the identification of hooligans and the prevention of

clashes in soccer matches. The proposed algorithm included stages of color constancy, color-

space transformation and color matching. As classifier tem used a fuzzy k-nearest neighbours (

KNN). The results showed that the proposed methodology was efficient for the specific purpose,

achieving at most 94% of correct classification.
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Bourdev et al. (2011) proposed a system to describe clothes of people using nine binary

attributes. The detection and classification process relies on the Poselet detector, which uses a

fully annotated training set and a complicated train scheme. Besides Poselets, a strategy for skin

detection and segmentation was also employed. For classification a SVM with quadratic kernel

was trained. The tests reported, show a mean average precision of 65.18%. Using a similar

method, (WEBER et al., 2011) proposed a clothing segmentation approach. In this case, the

H3D dataset was employed to construct a segmentation mask based on the Poselets detection,

for later person retrieval based on their clothes appearance. They achieved reasonable good

performance. It is important to notice that they were not classifying people clothes.

Bo e Fowlkes (2011) proposed a methodology for pedestrian image segmentation

based on hierarchical composition of parts and sub-parts of image segments. The candidate

parts and sub-parts were derived from a superpixels segmentation code. For each candidate

segment a score was calculated to determine wheather it is part of a pedestrian or not. To do

this, authors used a shape descriptor as well as color and texture histograms. Results suggested

a promising methodology, but with some drawbacks. The concept of superpixels was also used

by (YAMAGUCHI et al., 2012) for clothes labeling, based on pose estimation.

Chen et al. (2012) presented a fully automatic system capable of learning 23 binary

and three multi-class attributes for human clothing. Human pose estimation was performed to

find the location of upper torso and arms. Then, 40 features were extracted and quantized. This

set of features was used to train an SVM classifier for each desired attribute. A Conditional

Random Field (CRF) was calculated to extract the mutuality between attributes.

Employing the well-known Viola-Jones face detector, a modification of the GrabCut

segmentation algorithm, the MPEG-7 color descriptor, the HOG shape descriptor and skin color

detection, (CUSHEN; NIXON, 2013) presented a methodology for segmenting the upper body

clothes in a mobile platform. They reported a F-score of 0.87, leading to a reasonable good

performance.

In (DONG et al., 2013) authors define Parselets as a group of semantic images obtained

by low-level over-segmentation, having strong and consistent semantic meaning. With this

representation, a deformable mixture parsing model was proposed, based on a set of hand-

designed feature descriptors and using a Gaussian Mixture Model ( GMM) as a classifier. Using

this method the authors managed to parse a human image, obtained by pixel segmentation, with

a reasonable good performance.

A fully automated clothing suggestion approach was proposed by (KALANTIDIS et

al., 2013). Authors used segmentation and hash process to extract and classify the clothes from
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a digital image. They used color quantization and LBP as descriptors, and claimed that the

proposed method was scalable and very time-efficient.

Sharma et al. (2013) proposed a model for recognizing human attributes and actions.

The model was based on a bag-of-words representation and SIFT features at multiple scales.

The results related to human attributes was evaluated as good, but have shown that this problem

is far from being solved.

Seeking to help the reader to comprehend the literature review, Table 1 consolidate the

discussed papers based on the method main objective, pre-processing methods used, image

descriptors, classification methods. It is possible to notice that most of the above-cited

methodologies are based on the classical approach: some kind of segmentation method and/or

hand-designed feature extractors followed by a classifier (e.g. SVM). But is not clear how to

choose the suitable combination of pre-processing, feature extractor and classifier, leading to a

complex solution definition. In this work we leverage the CNN capacity to learn both feature

Table 1: Literature consolidation for Soft Biometrics.
Authors Objective Pre-processing Features Classifier
Hansen et al.
(2007)

Clothes color
description

background
removal

HSV color space K-means

Zhang et al. (2008) T-shirt recognition skin detector and
segmentation

texture descriptor SVM

D’Angelo e
Dugelay (2010)

Clothes color
description

illumination
normalization

RGB color space Fuzzy k-
NN

Bourdev et al.
(2011)

Attributes
classification

skin detection and
segmentation

Poselet descriptor SVM

Weber et al. (2011) Clothes
segmentation

skin detection and
segmentation

Poselet descriptor SVM

Bo e Fowlkes
(2011)

Clothes
segmentation

- Superpixel
segmentation

SVM

Chen et al. (2012) Attributes
classification

Human pose
estimation

40 different
features

SVM

Cushen e Nixon
(2013)

Clothes
segmentation

Face detection +
image semantation

MPEG-7 color
descriptor + HOG

K-means

Dong et al. (2013) Human parsing - SIFT + HOG +
color moment

GMM

Kalantidis et al.
(2013)

Clothes
segmentation

segmentation color quantization
+ LBP

Hashing

Sharma et al.
(2013)

Human attributes - SIFT + Bag of
Words

SVM

extraction and classification to propose a end-to-end soft biometrics classification framework.
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Therefore, raw images can be used as input for the classifier, reducing the complexity of the

model and computation effort. Besides that, the extraction of soft biometrics is based on the

whole input image, thus the CNN must learn which part of the image is important and necessary

to achieve the desired classification. The proposed method for soft biometric classification, for

both image and videos, is detailed in Sections 3.2 and 3.3.
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3 PROPOSED METHODS

In this section we focus our attention and discussion on proposed methods to describe

visual data, images and videos, with high level information. As discussed in Section 2.1.1, a key

step in pattern recognition is feature extraction. This can be done in three ways: hand-designed

by an expert, unsupervised or supervised feature learning. Since one of the objectives of this

work is to learn how to extract good quality features directly from data, we selected the last two

lines of approach.

The first section of this chapter is dedicated to deal with unsupervised feature learning.

The main objective is to learn a feature extractor which can separate images into classes, without

using label information during the learning process. In essence, we are trying to verify if the

low-level information contained in images is sufficient for class separation.

The second part of this chapter is dedicated to extract high level information by means

of soft biometrics. Here the supervised option is selected, employing a CNN to learn an end-

to-end soft biometrics classifier. In essence, we want to obtain a detailed description from

raw images containing people. This part of research was published (PERLIN; LOPES, 2015).

In addition to images as input, the proposed method is extended to deal with soft biometrics

extraction from video frames.

3.1 METHOD FOR UNSUPERVISED FEATURE LEARNING

3.1.1 INTRODUCTION

Extracting semantic information from visual data, such as images and videos, is still an

open problem in both computer vision and machine learning areas. The main idea is to develop

computational methods capable of collecting, extracting and analysing data from images and

videos, seeking to comprehend the visual information similarly as humans usually do.

A key point for the success of such methods is data representation, that is, the way

data represents an image. Such representation is closely related to how images are manipulated
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and prepared (preprocessing operations and data transformations) for further use, usually a

classification procedure. The representation can be considered at different levels and, after

each transformation, the original data tends to be more condensed and more meaningful. This

manipulation is called feature extraction, as it was discussed in Section 2.1.2. Choosing the

appropriate representation level may help to improve the performance of the classification

method.

Formally, feature extraction is a mapping function from Rn→Rd , where n is the length

of the original data vector and d is the length of the transformed vector. It is important to notice

that, sometimes, feature extraction also leads to dimensionality reduction. But this is not always

true.

The main drawback of this process is that the design of such mapping functions is a

labor-intensive task. It demands a human expert to devise the suitable data transformations

necessary to achieve a satisfactory efficiency of learning algorithms. Such dependence on

the human capacity, exposes weakness of learning algorithms in computer vision, which are

not able to manipulate image data for achieving satisfactory performance in an automatic way

(BENGIO et al., 2013).

In recent years, deep learning methods have attracted the attention of the scientific

community, since it has shown that it is useful for many visual recognition tasks. One of the

well-known methods that uses deep learning concepts is the Convolutional Neural Network

(CNN) (LECUN et al., 2010). The basic idea of deep learning is the mapping of (complex)

input data throughout several layers of increasing abstraction and decreasing complexity. The

major advantage of this method is its capacity to learn automatically a hierarchy of features from

raw data, including images, streaming videos and sound. Since CNN is a supervised learning

method, it requires labelled data during the training procedure. As a matter of fact, recent results

of CNN were achieved thanks to the availability of annotated data. However, this is really

laborious to obtain, since it depends on a human effort to classify data previously, according to

his/her visual analysis and pattern recognition abilities. Of course, this is an important drawback

of this method, constraining its application to the availability of large amounts of high-quality

annotated data.

The amount of unlabelled (no tagging or annotation) visual data increases everywhere,

and so the need for automatic methods that can learn how to extract useful features from such

data. Some examples of unsupervised feature learning methods are clustering (k-means and

Gaussian mixture model), matrix factorization (PCA, ICA and sparse coding), and non-linear

embedding (Laplacian Eigenmaps, restricted Boltzman machines, etc) (LEE, 2010).
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Pursuing the goal to advance in the use of unlabelled data during the process of image

pattern recognition, we propose a feature extractor based on concepts of CNN, clustering and

global optimization. Taking into account the ability of a CNN to learn a hierarchy of features,

our starting point is the question: is it possible to adjust the weights of a CNN in an unsupervised

way? The results shown in Section 4.3 suggest that this is possible. Basically, we view the

training procedure of a neural network (in this case, a part of CNN) as an iterative optimization

process, and we use an evolutionary computation-based method with a clustering procedure to

create a cost function, so as to avoid the need of a previously annotated set of examples.

3.1.2 THE PROPOSED METHOD

In this section the proposed method for learning a feature extractor from data is

presented. Seeking to help the reader to take a general view of the proposition, a block diagram

is shown in Figure 10. There are three main blocks: differential evolution, convolution network

and clustering. Connections are labelled with the kind of data passed between each block. The

input for the process is a set of unlabelled images.

Differential
Evolution

Convolution
Network

Sillouete
Coefficient

Weights

Feature
Vectors

Fitness

Image
Dataset

Control
Parameters

Clustering

Figure 10: Block diagram representing the main steps for the proposed unsupervised feature
learning framework.

As shown in Section 2.4, the CNN architecture could be divided into two modules,

the feature extractor and the classifier. The output of the feature extractor module is a feature

vector learnt directly from the input data. This vector is the input for the classifier. Both modules
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have trainable weights that determine the classification results. These weights are adjusted in a

supervised way, using the well known back-propagation learning algorithm.

Formally, a CNN can be viewed as a parametrized function in the form of y′ = g(x,w),

where y′ is network prediction, x is an Rn input vector and w is the weight vector. During the

training procedure, w is modified seeking to reduce the difference between y′ and y (expected

result) over the entire training set.

Since we are looking for the CNN composed by two parts, we split w into two parts

w f and wc, which are, respectively, the weights associated to the feature extractor and to the

classifier.

The main idea is to take apart the feature extractor module from a CNN and adjust

their parameters in an unsupervised way. In this way, this can be formally written Equation

12, where f e ∈ Rd is the extracted feature vector. Since the label associated to a xi sample

is assumed not to be available, to find the components of w f turns out to be a difficult task.

However, considering the parameter adjustment procedure as an optimization problem, allow

us to use an optimization heuristic for this task, in this case DE, as mentioned.

f e = g(x,w f ) (12)

As discussed in Section 2.5, DE is based on a population of d-dimensional individuals,

where each one represents a candidate solution. In the proposed method, each individual is

a vector grouping all adjustable parameters of the feature extractor. In this way, during the

algorithm execution, many different feature extractors will be tested.

A key point for the execution of the DE is the evaluation of a candidate solution, and

this is accomplished by specifying a fitness function. Here, the quality of the solution implies in

evaluating how good are the feature vectors generated by the extractor. A natural choice should

be to verify the performance of a supervised classifier based on the feature vectors. But this is

not possible since it is assumed that input data is unlabelled.

The main reason to use the output of a feature extractor as the input to a classifier,

instead of using the original raw data, is because the former is supposedly much more

informative than the latter. Since the idea of a classifier is to find a separation boundary between

the desired classes, the more separable are the input data, the easier will be to determine that

boundary.

This fact gives us a clue to evaluate the quality of a candidate solution generated by
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DE. The feature extractor could be adjusted so as to produce vectors which are similar when

the input data are similar, and very different when input data are different. In other words,

feature vectors generated from images with similar semantics should form a compact cluster

and far from semantically different clusters. Basically, this is the same definition of a clustering

algorithm, as stated in Section2.6. In this way, the fitness function for a candidate solution,

is the clustering quality obtained by grouping the feature vectors generated by the adjustable

feature extractor.

The quality of a feature extractor will be directly related to the quality of the clusters

obtained by the clustering algorithm. Feature vectors assigned to the same cluster should

represent similar input data. The distance between the generated clusters should be maximum,

meaning that the feature vectors from different inputs are dissimilar.

In this work, we employed k-means as clustering technique since it is fast enough to

be inserted into the training loop, and it yields solutions of satisfactory quality. Additionally, an

assumption to k-means functionality is the presence of cluster with cohesion and separation, the

same result which is expect here. After executing k-means, an assignment vector is obtained,

indicating to which cluster each vector belongs, which allows us to obtain a clustering quality

metric.

Most clustering metrics, such as Mutual Information (VINH et al., 2010), Adjusted

Rand Index (HUBERT; ARABIE, 1985) and V-Measures (ROSENBERG; HIRSCHBERG,

2007), are based in the ground truth data, that is, the label of annotated data. Since this is not

available, the Silhouette Coefficient (SC), as detailed in Section 2.6, was chosen alternatively

(B; RAWI, 2008).

Basically, the proposed method consists in the execution of the DE algorithm seeking

to find a suitable set of parameters for the feature extractor. Each individual of the DE

population is a d-dimensional vector, where d is the total number of adjustable parameters from

the extractor. Each individual should be randomly initialized using an uniform distribution over

the feature space. For each individual, its fitness should be calculated. Next, mutant vectors

are generated according to Eq. 6, and they are combined with the original one using Eq. 7,

thus generating the trial vectors. The fitness of each trial vector is calculated and it it used in

the selection step, according to Eq. 8. Mutation, recombination, evaluation and selection are

repeated until the stopping criterion is reached. At the end of the execution, the individual with

minimum fitness is the solution, i.e., the set of parameters for the feature extractor. A flowchart

to illustrate the framework execution is shown in Figure 11.

As stated, the input dataset for the proposed method is composed by M images with
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Create DE population Evaluate the fitness
of each individual Generate mutant vectors

Generate trial vectors
using crossover

Evaluate the fitness
of each trial vector

Execute the selection
between trial and original vectors

Stopping Criterion
Reached? No

Provide the minimun
fitness indivual as

the solution

Fitness Evaluation Procedure

Forward the images
trought the extractor

Execute K-means
with the feature matrix

With the assigment vector
calculate SC

Assignt SC as the
fitness of the individual

Yes

Figure 11: Flowchart showing the proposed method. Dashed lines indicates a sub-process.

C×W ×H pixels, where C is the number of channels, and W is width and H is height.

The key step of the proposed method is the fitness evaluation. To evaluate the quality

of an individual, the extractor is initialized with candidate solution values. All the images must

be forwarded thought the feature extractor. For each image set, a d-dimensional feature vector

will be generated. The d value depends upon the image size and the architecture of the extractor.

At the end, an M×d matrix is generated. The k-means algorithm is then feeded with the matrix

and, after its execution, an assignment vector is obtained. With this assignment vector, the SC

metrics can be calculated to determine the fitness of the individual.

The extractor architecture, which is the definition of its layers, is an important piece of

information, since the architecture chosen will influence directly the DE performance. Recall

that the size of an individual is the total number of adjustable parameters of the feature extractor.

Finally, the number of clusters that the k-means should find is a crucial parameter, and must be

manually set. Since that, we assumed this action as a simplification of the proposed method.

3.1.2.1 FEATURE EXTRACTOR MODELS

Since we seek to develop a feature extractor relying on some CNN concepts, the

architecture of the layers is something very important. The details of each layer has direct
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impact in both, the DE execution, and the produced feature vectors. The more feature maps and

their kernels, the larger will be the search space for DE and, thus, the harder it will be to find a

good solution at each training cycle.

Therefore, two different models were tested. The major differences between each

models are the number of feature maps per convolution layers and the number of layers. The

models have a 3D input, which receives the RGB/YUV image. Each convolution stage uses

rectified linear units (ReLU) and Max-pooling, using a 2×2 neighborhood. The output of the

last pooling layer is reshaped into a vector, and each component is filtered by a sigmoid function.

These specifications are both based, on the available literature and empirically defined.

The first model, identified as Model #0, has two convolution stages, and each one

generates 10 feature maps, using a 5× 5 kernel. This model has a total of 3250 adjustable

parameters. The second, Model #1, has three convolution stages, each one generates 10 feature

maps, using a 5×5 kernel. It contains a total of 5750 adjustable parameters.

3.1.3 COMPARISON WITH OTHER FEATURE EXTRACTORS

The main objective of a feature extractor method is to transform the input data into a

meaningful form, seeking to facilitate the training of a classifier method. As discussed before,

there are available several different feature extractor methods in the literature.

In order to compare the proposed method, two different feature extractors were

selected. The first one is HOG, since it was first designed as a solution for the people

detection problem (DALAL; TRIGGS, 2005). Later it was applied to different problems,

always producing good solutions. It is important to notice that HOG is a hand-designed feature

extractor. Therefore, a field expert had to design it.

The second choice was PCA, which is an orthogonal transformation which generally

maps a higher dimensional vector into a lower dimensional space. This mapping process is

based on the eigenvalues of the dataset covariance matrix. This method is commonly employed

to generate feature vectors for face detection problems. Most importantly, it is an unsupervised

method.

Since the idea is to compare the feature extractor methods, a common classifier was

chosen. The SVM was used to train a classifier using the three different feature vectors. Two

different types of SVM were employed, linear and radial basis function.

The proposed method is validated by a series of experiments discussed in Sec 4.3.
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3.2 METHOD FOR SOFT BIOMETRICS EXTRACTION USING CNN

3.2.1 INTRODUCTION

In this part of the work we aim at extracting and classifying automatically soft

biometric information from images containing a person. By now, we assume that the extractor

will operate after a people detector module, that is, a bounding box containing a person will be

the input for the method.

The extraction includes gender, as well as the upper and lower clothes worn by the

individual, based on their appearance. In other words, we are proposing to extract this kind of

high level semantic concept based on the whole image. For the upper clothes (UC) there are

two possible classes: short and long sleeves, and for the lower clothes (LC), pants and shorts.

We are also interested in a more difficult task: determining the gender of the subject into two

classes (male and female), based on the full body appearance.

3.2.2 THE METHOD

The extractor will consist in a supervised trained CNN classifier. We propose two

different operation modes (OM) for training and applying the extractor. The first one (OM

#1) consists of three independently trained sub-classifiers, each one dealing with a different

classification problem: an UC classifier, a LC classifier, and a gender classifier. The output

of each classifier is a vector with two units, and a winner-takes-all strategy is used to indicate

which is the class of the image for each soft biometric.

The second operation mode (OM #2) deals with the three soft biometrics at the same

time, describing each sample based on the answer of just one classifier. In this way, the classifier

is trained to take into account all the semantic aspects within the input image. Here, the output

of the classifier is a three continuous unit vector, where each unit represents a soft biometric

with values in the range [−1..+1]. Therefore, the output of the classifier is a multilabel answer,

allowing three different attributes to be evaluated at the same time. This is not usual for CNNs,

since, in most cases, just a single class would be expected for each image.

Since the CNN allows the construction of an end-to-end classifier, the proposed

approach for the semantic description of a person is based only on the raw input image, without

any preprocessing. Table2 shows some details of the CNN architecture used in this work, which

is the same for both OM #1 and OM #2. The difference is only in the number of outputs.

The architecture parameters were adjusted based on the current literature (LECUN et al., 2010;
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KRIZHEVSKY et al., 2012; SRIVASTAVA et al., 2014), as well as by preliminary experiments.

Table 2: Description of the architecture of the CNNs used in this work. Each column represents a
layer. * For OM#1, the number of outputs is 2 for each classifier. In OM#2 the number of outputs
is 3.

Conv1 MaxPool1 Conv2 MaxPool2 Conv3 MaxPool3 Linear1 Linear2
Input Maps 3 32 32 64 64 128 1152 768
Input Size 128×128 60×60 30×30 24×24 12×12 6×6 - -
Output Maps 32 32 64 64 128 128 768 *
Output Size 60×60 30×30 24×24 12×12 6×6 3×3 - -
Kernel Size 10×10 2×2 7×7 2×2 7×7 2×2 - -
Stride 2×2 2×2 1×1 2×2 1×1 2×2 - -

The input for the networks is a 3D array with 3× 128× 128 elements, defining a

128×128 RGB image.

The first convolution layer has 32 feature maps obtained by a set of 10×10 convolution

kernels, using 2×2 strides. After the application of the ReLU squashing function, the next step

is the sub-sampling, accomplished by maxpooling. The neighbourhood size used was 2× 2.

These three steps compose the first stage of the network.

The second stage is composed by a convolution layer with 64 feature maps and a 7×7

kernel. Again, after the convolution, both the ReLU function and the maxpooling operation

were applied.

The third stage and the last part of the so-called feature extractor is another convolution

step, which generates 128 feature maps using 7× 7 kernels. Following, the convolution the

ReLU and the maxpooling operation were applied.

The output generated by the last sub-sampling operation is 128 × 3 × 3 large,

rearranged as a 1152 unidimensional vector. This is the input to the linear stage. It is

possible to observe that the convolution and sub-sampling layers work together for reducing

dimensionality.

The linear stage is composed by the input layers, followed by a hidden layer containing

768 neurons. The output layer has 2 neurons for OM #1 and 3 neurons for OM #2. The number

of neurons in the hidden layer was determined using the relationship 2/3 of the size of the

preceding layer. For OM #1, a winner-takes-all strategy was used to determine the classifier

output. For OM #2, each output was evaluated separately

The output of the model is filtered by a softmax, or normalized exponential, function
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σ(y). This operation, denoted by Eq. 13, squashes a continuous n-dimensional vector y, in the

range (0,1), in such way that ∑
n
i=1(y

i) = 1 (BISHOP, 2006).

σ(yi) =
exp(yi)

1+∑
n
j=1(exp(y j))

(13)

.

During the training process, the network neurons tend to co-adapt their weights

based on the neighbourhood elements. This phenomenon can lead the network to lose its

generalization capability. To prevent this phenomenon, some randomly chosen neurons are

omitted from the network, with probability 0.5, so the elements cannot rely on other units.

Basically, this is the dropout strategy proposed by (HINTON et al., 2012).

The adjustment of the network’s weights was carried out by the backpropagation of

the error using the mean squared error as loss metric and the SGD algorithm as the optimization

strategy. The learning rate starts at 0.005 and decreases by half every 30 training epochs. The

momentum was set to 0.9 so as to help the convergence of the method. The SGD optimization

process was executed for a maximum of 1000 epochs. Definition of these parameters are

empirically based on the available literature.

The CNN training process is very time consuming, not only because the network has

many layers and neurons but, also, because many computations are required at each step of

the training. Considering the algorithmic issues and the high level parallelism of the operations

involved, an interesting strategy is the use of GPU as the horse power to reduce the total training

time. In order to obtain efficiency from the GPU, a mini-batch scheme may be used. Here, the

size of mini-batch was set to 128 as suggested by (KRIZHEVSKY et al., 2012).

3.2.3 HAND-DESIGNED IMAGE FEATURE EXTRACTOR AND CLASSIFIER

A CNN approach does not require the definition of a feature extractor or a classifier

before being used. Therefore, we created a hand-designed feature extractor and classifier, shown

in Figure 12, for comparing its performance with the CNN.

The first part of the diagram is the feature extractor that uses the raw image (supposedly

containing the image of a person with clothes) to compute a 4200-long feature vector. This

vector is composed by three groups of elements extracted from the image: 3780 features using

HOG; 320 features from the top-5 interest points (each one produces a 64 float-point vector)

using SURF; and 100 features using LBP.
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Figure 12: Hand-designed feature extraction and classification process.

HOG is a very popular method that, for years, was considered the state-of-art people

detector (DALAL; TRIGGS, 2005). SURF is also a popular method (BAY et al., 2008),

very efficient for many applications, from object recognition to face detection and recognition

(CHIDAMBARAM et al., 2014). LBP (OJALA et al., 2002) is a simple but robust texture

descriptor, and it was successfully applied to face recognition problems (AHONEN et al., 2006)

and pedestrian detection (GAN; CHENG, 2011). The LBP descriptor is a histogram of the

detected binary patterns in an image, such as texture. The histogram size was defined as 100

bins. As can be seen, the three chosen descriptors are complementary, in the sense of extracted

images features.

Before concatenating the three feature vectors into a single one, all elements of

each vector were locally normalized in the interval [0,1]. This was done using the min-max

normalization, as shown in Equation 14.

minmaxNorm(xi) =
xi−Xmax

Xmax−Xmin
(14)

where, Xmax is the maximum component of the vector, Xmin is the minimum component

of the vector and xi is a single component.

Next, the predictive power of each feature regarding the class is accessed by applying

some well-known statistical methods: Information Gain ( IG), Spearman’s rank correlation

coefficient R, and the Kruskal-Wallis score ( KW).

IG, also known as Mutual Information in some domains, is an entropy-based measure
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that evaluates the gain of information with respect to the class when a specific feature is chosen.

Given the entropies of two features, H(X) and H(Y ), IG(X ,Y ) is given by IG(X ,Y ) = H(X)−
H(X |Y ), where the last term is the conditional entropy of X given Y . Considering X as the

values of a feature for the several image samples, and Y as the corresponding classes to which

they belong to, therefore IG(X ,Y ) gives a measure of how predictable a class is considering

only that feature. This is the rationale for using IG for feature selection (LEE; LEE, 2006).

Spearman’s rank correlation coefficient R is a nonparametric measure between two

variables (BLUMAN, 2009), and it is defined by Equation 15. This measure of correlation can

be used for both continuous or discrete variables and it does not require that data has normal

distribution. If one of the variables is a feature and its values, and the other the classes, R can

be used as a method for ranking sets of features according to their predictability.

R = 1− 6∑d2
i

n(n2−1)
(15)

where, di = xi− yi and, xi and yi are samples of the two variables being evaluated.

The KW score (also known as H test) is a nonparametric statistic frequently used for

comparing means of more than two populations when they are not normally distributed and

their variances are not equal (CORDER; FOREMAN, 2014). Data values are transformed into

ranks and considered as a whole and separated by classes of samples. If the samples of a class

differ significantly from those of other classes, this statistic will give a high value and, if the

differences are small, so it is the result of the test. When applied to feature selection, the higher

the value of the score, the better. For features extracted from image data, this means that a given

feature has quite different values for a given class.

The result of the feature ranker are three 4200-long vectors whose elements are ranked

according to the values computed by IG, R and KW, as described above.

Next, a threshold is applied to limit the length of the ranked feature vector. Three

values, empirically chosen, were used for selecting the top features: 10, 100 and 200. This was

done to eliminate possible noise and improve performance of the classifiers (next block).

Finally, the top-n features (n=10, 100 or 200) were applied to three different classifiers:

C4.5, SVM and MLP. C4.5 is a well-known tree-based classifier based on IG that has been used

for years as the baseline for comparison of classification methods (QUINLAN, 1993). SVM

(CORTES; VAPNIK, 1995) is one of the most used classifiers not only in computer vision

but, also, in pattern recognition and data mining. MLP is a feed-forward neural network with

multiple hidden layers that is frequently used in general classification tasks, including images
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(VENKATESH, 2003). The main parameters of the classifiers used are shown in Table 3. To

determine SVM parameters a grid search was performed, following (HSU et al., 2003).

Table 3: Main parameters of the hand-designed classifiers.
C4.5

Confidence factor 0.25
Minimum # objects per leaf 10
Pruning true

MLP
Auto build/connect hidden layers true
Number of hidden layers (#classes+# f eatures)/2
Learning rate 0.3
Momentum 0.2
Training epochs 500

The proposed method is validated by a series of experiments presented in Section4.4.

3.3 METHOD FOR SOFT BIOMETRICS APPLIED TO VIDEO

Both static images and videos are used as an extension of our memory, allowing us to

store relevant data. As discussed above, at the low level, an image is just a set of some primitive

artifacts such as dots, edges, gradients and shapes. In general, we are interested in the high level

information contained in the image or video.

In this way, the method described in Section 3.2 was extended to deal with videos,

allowing the description of a frame sequence containing a person, using the same three kinds

of soft biometrics used before: gender, upper and lower clothes. In essence, the method for

extraction of such soft biometrics remains similar, being employed three different supervised

trained CNN to deal with each of those concepts. Based on the available literature and mainly

in the results from Section 4.4, for the extraction of soft biometrics in video frames, some

modifications in the CNN model architecture were proposed.

The first one is related to the input size, instead of using 128× 128, we employed

128× 64. The main reason for this is that during the experimentation process, a framework

upgrade allowed to deal with non-squared images and kernel. This opened the possibility to use

the original images during the training, reducing the size of the model and the training time. As

will be shown in Section 4.5, this modification did not degrade the extraction performance.

Second, as discussed before, feature extraction plays a major role in pattern

recognition. Seeking to observe the influence of feature vector size in CNN performance,

different configurations were proposed. Structurally, they are similar to that one employed in
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Section 3.2, containing convolution layers, followed by the application of the ReLU squashing

function and, finally, subsampled by a maxpooling operation. To modify feature vector size, the

number of feature maps are modified, leading to four models, called Small, Medium, Large and

VeryLarge. They are described in Tables 4, 5, 6 and 7.

Table 4: Description of the architecture of the Small model. Each column represents a layer.

Conv1 MaxPool1 Conv2 MaxPool2 Conv3 Conv4 Linear1 Linear2
Input Maps 3 16 16 32 32 64 64 42
Input Size 128×64 125×60 41×20 38×16 12×5 9×1 - -
Output Maps 16 16 32 32 64 64 42 2
Output Size 125×60 41×20 38×16 12×5 9×1 1×1 - -
Kernel Size 5×4 3×3 5×4 3×3 5×4 1×9 - -
Stride 1×1 3×3 1×1 3×3 1×1 1×1 - -

Table 5: Description of the architecture of the Medium model. Each column represents a layer.

Conv1 MaxPool1 Conv2 MaxPool2 Conv3 Conv4 Linear1 Linear2
Input Maps 3 32 32 64 64 128 128 85
Input Size 128×64 125×60 41×20 38×16 12×5 9×1 - -
Output Maps 32 32 64 64 128 128 85 2
Output Size 125×60 41×20 38×16 12×5 9×1 1×1 - -
Kernel Size 5×4 3×3 5×4 3×3 5×4 1×9 - -
Stride 1×1 3×3 1×1 3×3 1×1 1×1 - -

Table 6: Description of the architecture of the Large model. Each column represents a layer.

Conv1 MaxPool1 Conv2 MaxPool2 Conv3 Linear1 Linear2
Input Maps 3 16 16 32 32 576 384
Input Size 128×64 125×60 41×20 38×16 12×5 - -
Output Maps 16 16 32 32 64 384 2
Output Size 125×60 41×20 38×16 12×5 9×1 - -
Kernel Size 5×4 3×3 5×4 3×3 5×4 - -
Stride 1×1 3×3 1×1 3×3 1×1 - -

Analysing those tables it is possible to notice that the four models are very similar to

each other. The differences are small changes in the number of feature maps. That is, the size

of the feature vector produced by the convolution and subsampling layers. The Small model

produces a 64-d feature vector, Medium produces a 128-d feature vector, Large produces a 576-

d feature vector and VeryLarge produces a 1152-d feature vector. The output of all models is a

2-d vector, where each dimension is used to identify the classes for each soft-biometric.
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Table 7: Description of the architecture of the VeryLarge model. Each column represents a layer.

Conv1 MaxPool1 Conv2 MaxPool2 Conv3 Linear1 Linear2
Input Maps 3 32 32 64 64 1152 768
Input Size 128×64 125×60 41×20 38×16 12×5 - -
Output Maps 32 32 64 64 128 768 2
Output Size 125×60 41×20 38×16 12×5 9×1 - -
Kernel Size 5×4 3×3 5×4 3×3 5×4 - -
Stride 1×1 3×3 1×1 3×3 1×1 - -

Since we are dealing with videos, which are a sequence of static images shown at a

certain rate, we take advantage of the time dimension to verify and correct the output of the

extractor. This is done by employing a sliding window to filter the output, based on the mean

of a number of previous frames. The filtering operation is defined by Equation 16, where W

represents the window size, t the time instant, and y the classifier output.

ȳt =
1

W

W−1

∑
i=0

(y(t−i)) (16)

This approach turned out to be necessary since some changes between each frame, such

as pose, partial occlusion, illumination, and other effects, can influence the classifier output. If

a filter is used, the output can be smoothed, thus leading to better results. An example of

application of this filter using different window sizes over a random variable is shown in Figure

13.

In this example a hypothetical classifier output, varying in the interval [0,1], is

represented. The target output is denoted by a solid black line and, in this case it is set to

1.0. A threshold of 0.5 is set, implying that values higher than 0.5 are considered correct, and

less than 0.5 incorrect prediction. Three different window sizes were applied (5,10,15) leading

to three new outputs. It is possible to see that a small window size has a lower influence on the

actual time step. Whereas larger windows can produce smoother outputs.

This filter operation can be interpreted as a temporal supervisor, which allows the

correction of the output in time step t, based on some previous outputs. Analysing Figure 13,

depending on the window size applied, the desired correction could not be achieved. In this

way, finding the appropriate window width requires experimentation.
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Figure 13: Example of mean filtering of an output. The blue line is the original signal, and other
lines represent the signal filtered by different window sizes. The solid black line is the target, and
the dashed line represents a threshold.



65

4 EXPERIMENTS, RESULTS AND DISCUSSION

A series of experiments were performed to test the proposed methods. Here they are

presented along with discussions.

4.1 EVALUATION PROTOCOL

Since all experiments use a similar evaluation protocol, the metrics and tools employed

to evaluation are here presented. When dealing with binary classifiers, one class will be the

positive and the other negative. Therefore, four different measures can be computed using the

outcomes of a classifier for a set of instances, in this case, input images:

• true positive (tp): number of positive instances that were correctly classified as positive;

• true negative (tn): number of negative instances that were correctly classified as negative;

• false positive (fp): number of negative instances that were wrongly classified as positive;

• false negative (fn): number of positive instances that were wrongly classified as negative;

Three metrics to evaluate the performance of the method were employed: accuracy

(ACC), sensitivity (Se) or true-positive rate, and specificity (Sp) or true-negative rate, defined

in Eq. 17. These metrics are based on a classifier output. Considering a two-class problem,

true positive (tp) outcome is a correctly identified pattern; false positive (fp) is a incorrectly

identified sample; true negative (tn) is a correctly rejected sample; and false negative (fn) is a

incorrectly rejected sample.

ACC =
(t p+ tn)

(t p+ tn+ f p+ f n)
Se =

t p
(t p+ f n)

Sp =
tn

(tn+ f p)
(17)
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A graphical aid to visualize the performance of the classifiers used in this work is

the Receiver Operating Characteristics ( ROC) chart, which relates both true-positive and true-

negative rates for a certain classifier (FAWCETT, 2006).

The ROC chart can be produced in two ways. If the output of a classifier is a continuous

score, than a variation in the discrimination threshold, will produce different points in the space,

leading to a curve. When the classifier produce a label, a single point in the space is obtained.

Points of a ROC chart represent the trade-off between true-positive and true-negative

rates. Therefore, when plotting the performance of a classifier, the best operation point would be

that at the top-left corner, representing the optimal ability of the classifier to separate classes. As

the points get closer to the ascending diagonal, which represents random guessing, that indicates

that the classifier has a poor ability to separate classes. Using this method, the quantitative

evaluation of a classifier is given by the Area Under the Curve (AUC), which is the area in the

ROC space covered by the classifier curve. The AUC varies from [0..1], where 1 indicates the

best possible performance.

To generate the evaluation results two different strategies were used. To experiments

reported in Sections 4.3 and 4.5, the learning process was evaluated using a set of images

for training and another set for testing. Just for clarify, both image sets are disjoint. To the

experiments reported in Section 4.4, the classifiers were trained using a 10-fold cross-validation

strategy. The procedure consists in splitting the dataset into 10 parts. Nine parts are selected

to the train the model and one part is reserved to testing. Therefore, the model is trained/tested

with 10 different datasets.

4.2 IMAGE DATASETS

In this section we detail the image datasets used during the experiments.

4.2.1 FACES DATASET

The Faces Dataset 1, is composed by images of faces (positive class) and random

patches representing non-face images (negative class). The size of each sample was set to

32× 32 pixels, encoded as a YUV image. The training set had 5000 images for both classes,

and the testing set contained 1200 images. Some samples of this dataset are shown in Fig 14.

1Available at http://data.neuflow.org/data/faces cut yuv 32x32.tar.gz
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Figure 14: Samples from the Faces Dataset. The three first rows show examples for the Face class,
while the last three for the Background class.

4.2.2 PEDESTRIAN DATASET

The Pedestrian Dataset, was composed by images from people (positive class) and

background (negative class). It was built using selected images from three different datasets:

H3D(BOURDEV; MALIK, 2009), ViPer (GRAY et al., 2007) and MIT Pedestrian2. A total of

3000 images were used for training the feature extractor and other 1000 for validation. Images

were resized from 128×64 to 64×32 pixels. Some samples of this composite dataset are shown

in Fig 15.

4.2.3 SOFT BIOMETRICS DATASET

Three datasets were used for training and evaluating the soft biometrics classifiers. The

image set was composed by a mix of the H3D dataset, provided by (BOURDEV et al., 2011), the

ViPer dataset created by (GRAY; TAO, 2008), and the HATdb made available by (SHARMA;

JURIE, 2011). The idea behind using a mix of different image datasets is to indirectly improve

the generality of the proposed method for real-world images.

The H3D includes a large variety of people, wearing different clothes, standing in

different poses, sometimes subject to occlusion and cluttered background. Therefore, this

dataset is challenging for pattern recognition methods. The original dataset contains 4013

images annotated with 9 binary attributes (male/female, long hair, glasses, hat, t-shirt, long

sleeves, shorts, jeans, long pants). From this dataset we selected only those images with people

standing up, thus remaining 1252 images. This was done by adjusting bounding boxes around

a person with an aspect ratio larger than 2. Then, all examples were normalized in size to

fit a frame of 128× 64 pixels. Seeking to use just representative examples, a careful manual

2Available at http://cbcl.mit.edu/software-datasets/PedestrianData.html
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Figure 15: Samples from the Pedestrian Dataset. The three first rows show examples for the Person
class, while the last three for the Background class.

selection and annotation were done.

The ViPer dataset is composed by 1188 images of 128× 48 pixels taken from people

walking in various places. Each subject has two different images taken from different positions.

Both images were used to create the training set. This dataset does not have the desired labels

to be used during the network training. Consequently, a manual annotation was necessary.

The original HATdb dataset is composed by 9344 images, annotated with 27 attributes.

We selected a subset (at most 2615 images), only using images classified as standing people,

and it is used the bounding box information to crop the person and resize it to 128×64 pixels.

We also performed an additional revision of the annotation provided.

Considering that the classifiers were designed to deal with 128×128 images, the size

of all the images were standardized by padding with 0’s to achieve the desired dimensions. The

distribution of images per class in each dataset is shown in Table 8. It is important to notice that

we selected only images that have a good representation of the desired class. Additionally, we

intended to maintain the class balance, so the total number of images used per attribute may be

different.
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Table 8: Number of original images per class used in the experiments.
Gender Lower Clothes Upper Clothes

Male Female Long Short Long Short
H3D 656 596 169 282 326 447
ViPer 564 624 291 178 574 453
HATdb 2615 2615 492 492 771 771
Total 3835 3835 952 952 1671 1671

Since the number of images available was small for effectively training the CNN, we

expanded the dataset by using random transformations, such as translations (up to ±10 pixels

for x and y), scaling (from 0.98 to 1.1), rotation (up to ±10o ) and horizontal flip.

This data augmentation strategy is applied in an on-line way, i.e., for each epoch in

the CNN training, random transformations are applied for each training sample. This is done

in such a way that the total number of examples shown to the CNN at each epoch is around to

10,000 samples per class.

Similarly, the same data augmentation procedure was used for the other classifiers,

reaching the same number of 10,000 samples per class.

4.2.4 VIDEO DATASET

This dataset is composed by frames taken from the SAIVT dataset (BIALKOWSKI et

al., 2012), which is a set of surveillance videos recorded from 8 different camera positions. Just

frames of a single camera were used in the evaluation process, since its installation position

allows recording people with poses similar to those used in the training procedure. Some

examples of frames used are shown in Figure 16.

There are annotation details available for 124 people who walked trough the monitored

area, leading to a total of 4540 samples. The distribution among classes is detailed in Table 9.

It is important to notice that, for the testing set, a total of 1000 samples were randomly selected

from all subjects for each class. As validation set, all samples for each subject were used.

Table 9: Distribution images per class from SAIVT Dataset.
Gender Lower Clothes Upper Clothes

Male Female Long Short Long Short
SAIVT 2686 1854 3099 1441 1055 3485
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Figure 16: Examples of frames used as evaluation dataset. Annotation bounding boxes were used
to extract patches with people from each frame.

4.3 UNSUPERVISED FEATURE LEARNING

In this section we present the experiments conducted to evaluate the unsupervised

feature learning method for image separation as discussed in Section 3.1. The main objective

of this section is to evaluate the performance of the proposed hybrid method to learn features

directly from raw input images in an unsupervised way.

4.3.1 IMPLEMENTATION DETAILS

The framework described in Section 3.1 was implemented using the Python language,

taking advantage of the flexibility and efficiency of existing packages, such as numpy and scipy.

The last one provided the implementation for the k-means and the calculation of the SC metrics.

DE was implemented using the Inspyred3 library, which was also built using Python.

3Available for download at https://pypi.python.org/pypi/inspyred
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To model the CNN feature extractor, the Caffe (JIA et al., 2014) library was used. It

is an efficient library, whose core is implemented in C++ programming language, but there is a

Python API that allows a quick and flexible development and integration with other packages

and codes.

4.3.2 PARAMETERS ADJUSTMENT

Since the proposed method is based on the execution of two main algorithms, some

parameters need to be defined. For DE we used a population of 50 individuals, the crossover

rate was set to 0.9 and the mutation scaling factor (F) was set to 0.5. The stopping criterion was

set as a maximum of 100 iterations.

The second algorithm is the k-means that is used for the fitness calculation. The

initialization of the centroids was done using the k-means++ strategy. For each DE individual,

the k-means algorithm was executed for 300 iterations, which demonstrated to be necessary to

the convergence.

4.3.3 RESULTS

Two different dataset, Face and Pedestrian, were used to verify the method

performance. For each dataset, two models mentioned were used to train the feature extractors.

Considering that DE is an stochastic optimization algorithm, multiple runs were necessary to

verify the repeatability. Therefore, for each dataset and each model, 10 independent runs were

performed. Results are shown with the average and standard deviation for all runs.

The results obtained for the Faces dataset are shown in Figure 17. It is observed that

both models achieved a reasonably good performance, but Model #0 can be considered better,

since it produced a point in the ROC graph closest to the top-left corner. Regarding accuracy,

Model #0 achieved 84.83%±1.30 of correct classification, while Model #1 achieved 78.40%±
3.57. The results obtained for this dataset can be considered good, considering that the proposed

approach is unsupervised, such that it learnt to find discriminating features capable of separating

input images in adequate classes.

For the Pedestrian dataset, the results are shown in Figure 18. It is possible to notice

that Model #0 achieved a better performance, since it near to the top-left corner of the graph.

Regarding accuracy, model #0 achieved 69.67%±5.34 and model #1 64.25%±3.94 of correct

classification.

It is noticeable that, when comparing the results between Faces and Pedestrian datasets,
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Figure 17: ROC graph comparing the performance of the two different models trained using the
Face dataset.

Figure 18: ROC graph comparing the performance of the two different models trained using the
Pedestrian dataset.

the classification performance of both models have decreased. This can explained by the higher

level of difficulty encompassed in the Pedestrian dataset when compared to the Faces dataset,

since the variability of the input data is much larger, related to people appearance (clothing,

accessories), poses and background. Seeking to find a quantitative explanation to support that

assertion, we calculated the entropy, in the information theory sense, for a random sample of

2000 images of each class for both datasets, and the results are shown in Table 10.

Entropy can give some clues about the complexity of images, and we noticed that there

is a difference of approximately 20% in the entropy obtained for both datasets, similar to the

difference in the performance of the method.
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Table 10: Mean and standard deviation entropy for samples of Faces and Pedestrian datasets,
considering both classes (Foreground – object and Background – no object).

Pedestrian Faces
Foreground Background Foreground Background

Mean±Std.dev. 8.84±0.42 7.57±1.29 7.12±0.34 5.93±1.15

We also performed a comparison between our method and two other feature extractors,

to verify if the learned features could influence the performance of a supervised classifier. For

both faces and pedestrian datasets, Model #0 was chosen to represent the proposed method

against other feature extractors.

Since PCA is capable of producing a feature vector of arbitrary length, we decided to

use the same size used for the proposed method. The vectorized images were used as input

for PCA. Therefore, for the face dataset, each sample was transformed into a feature vector

with 250 components. While, for pedestrian dataset, each sample is a 650 dimensional feature

vector.

The parameters available in the literature were used to extract the HOG features.

Therefore, we use a histogram with 9 bins to accumulate the gradients calculated using blocks

with 4 cells and cells with 8×8 pixels. This generated a feature vector of 144 components for

each sample of the face dataset and 720 components for the pedestrian dataset.

The feature vector generated by each extractor (our, HOG and PCA) were used as input

to train two different classifiers, a linear SVM an a RBF SVM. Since there are some parameters

to adjust in both kinds of SVM, a grid search strategy was used to find the suitable configuration.

In this way, all combinations of feature extractor and classifiers had the same conditions during

the training. Since SVM is a deterministic method, it always produce the same results given the

same input. In this way, the training procedure was performed only once.

For face dataset the accuracy achieved for all six combinations of feature extractors

and classifiers are shown in Table 11.

Table 11: Accuracy for face dataset in the comparison of feature extractors and classifiers.
Acc(%)

HOG+SVM RBF 99.0
HOG+SVM LINEAR 98.15
OUR+SVM RBF 96.55
OUR+SVM Linear 94.0
PCA+SVM RBF 93.6
PCA+SVM LINEAR 88.5
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For pedestrian dataset the accuracy achieved for all six combinations of feature

extractors and classifiers are shown in Table 12.

Table 12: Accuracy for pedestrian dataset in the comparison of feature extractors and classifiers.
Acc(%)

HOG+SVM RBF 90.4
OUR+SVM RBF 86.05
HOG+SVM LINEAR 81.22
OUR+SVM LINEAR 78.27
PCA+SVM RBF 72.32
PCA+SVM LINEAR 63.68

The ROC curves and the areas under the curves for face and pedestrian datasets, are

shown in Figures 19 and 20, respectively.

Figure 19: ROC curves and the area under the curve values for each combination of feature
extractors and SVM classifiers for Faces dataset.

We also performed experiments using the soft biometric dataset, a more complex set

of images. Similarly to Faces and Pedestrian dataset, we executed the unsupervised learning

method using the two different models. Therefore, for each attribute (gender, upper clothes and

lower clothes), two different models were learnt. For all three attributes the results obtained

had a poor performance. Looking to the label associated with each sample and the separation

achieved by the method, the accuracy was around 50%. This means that, for this kind of input
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Figure 20: ROC curves and the area under the curve values for each combination of feature
extractors and SVM classifiers for Pedestrian dataset.

image, the method was unable to learn good features capable to allow a good separation that

could meet the human interpretation given to the images.

4.3.4 DISCUSSION

Engineering how to transform the data into a meaningful form is a complex but very

important task. Automatic methods capable of extracting interesting features from input data

are desired. Even more interesting, if these methods could deal with unlabelled data.

The proposed method here is based on three different pieces: an adjustable convolution

network, a clustering technique and an optimization strategy. These components altogether

allowed the construction of an unsupervised feature learning method. As results showed, for

two datasets (Faces and Pedestrian), the method could produce promising results, achieving a

reasonable performance of separation.

When compared to other feature extractors, the proposed method almost achieved the

same performance of the HOG method. This is an interesting result, since our method is purely

based on the raw input data. More important, the features were learned automatically by the

computer. In this way, it is possible to say that the proposed method is capable of learning

features in a way to facilitate the training of a classifier. It is important to notice that, since the
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proposed method is unsupervised, looking directly to the learned features could not make sense

in the human point of view. Additional investigations should be conducted in the way to analyse

and verify the learnt features.

Looking to the results of soft biometric dataset, the capability of the method were

unsatisfactory. The main reason for this is related to the complexity of the separation task, and

therefore to the semantic gap. It seems that extract details from images, such as gender and

clothes types, demands a level of supervision, seeking to bridging the distance of low level data

and higher level information.

4.4 SOFT BIOMETRICS EXTRACTION USING CNN

In this section we summarize the experiments used to validate the proposed method

for person description based on soft biometrics, as discussed in Section 3.2.

4.4.1 IMPLEMENTATION

The CNNs were implemented using the Torch7 library (COLLOBERT et al., 2012)

that is a very flexible and efficient package for implementing neural networks and machine

learning algorithms. An important feature of this library is its capability for using General-

Purpose computation on Graphics Processing Units ( GPGPU). It provides an easy and almost

transparent way to switch between Central Processing Unit ( CPU) and GPGPU environments,

allowing a significant reduction of development and training time of a CNN-based solution.

The hand-designed image descriptor was implemented using the OpenCV computer

vision library, version 2.4.9.

Other classifiers mentioned in Section 3.2.3 were trained and tested using the Waikato

Environment for Knowledge Analysis ( WEKA) software, version 3.6.11 (HALL et al., 2009).

The running environment was a Linux-based desktop computer equipped with an Intel

i7 quad-core processor, 32 GBytes of RAM and a Nvidia GTX 660 GPU board running CUDA

6.0. The CNN training process exhaustively used the GPGPU power, and the other classifiers

took advantage of parallel processing by means of multi-threading.

4.4.2 HAND-DESIGNED IMAGE CLASSIFIER

Considering the methodology of the hand-designed image classifier described in

Section 3.2.3, a factorial experiment was done for each classification problem: feature
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rankers (IG, R, KW) × number of features (10, 100, 200) × classifiers (C4.5, SVM, MLP).

Considering the three problems: gender, top and bottom clothes, we performed 3× 3× 3× 3

experiments. For each combination of options, a 10-fold cross-validation procedure was

performed. Therefore, a total of 810 different runs were done. For the SVM classifier, a

parameter grid search was conducted seeking to find a suitable parameter configuration. The

mean accuracy and the standard deviation for gender, upper clothes and lower attributes are

shown in Figures 21, 22 and 23.

Figure 21: Comparison of hand-designed classifiers according to ranking methods and number of
top features, for the Gender attribute.

It is noticed that the length of the feature vector has an important influence in

the performance of the classifiers. As the number of features used increases, the overall

performance also increases. For all the three classification problems, using only 10 features,

results are close to random guess (∼ 50%). On the other hand, the best results were achieved

using the subset of 200 features. Analyzing the results from the point of view of the feature

ranking methods, it is possible to see that the top features ranked by the KW method leaded to

the best results. Also, the best-performing classifier was the standard MLP.

Therefore, we selected the configuration of top-200 features selected by KW classified
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Figure 22: Comparison of hand-designed classifiers according to ranking methods and number of
top features, for the Upper Clothes attribute.

by MLP to report the results in details, shown which are shown in Table 13.

4.4.3 CLASSIFICATION RESULTS FOR OPERATION MODE #1 (OM#1)

In order to visualize the evolution of the CNN’s learning along the training process of

the three different CNN classifiers, the average Acc in the 10-fold cross-validation process was

plotted, for both, the training and the testing steps. The curves for gender, upper clothes and

lower clothes attributes are shown in Figures 24, 25 and 26, respectively.

Observing these curves, it is noticed that the CNN has an interesting learning ability,

since it was able to achieve a good classification performance. The usage of the image

augmentation strategy at each training epoch introduces a challenge to the classifier, since it

rarely will face the same training example multiple times. This seems to influence the behaviour

of the classifier in a good manner, preventing it from overfitting. This fact can be seen since

both learning curves are growing together most number of training epochs.

The final predictive mean accuracy achieved in the test by the three OM #1 CNN



79

Figure 23: Comparison of hand-designed classifiers according to ranking methods and number of
top features, for the Lower Clothes attribute.

classifiers is reported in Table 13. Observing the values shown, it is not clear to say which

was the most suitable method for each attribute classified. Therefore, a statistical analysis was

conducted.

Table 13: Mean Classification accuracy for the OM #1 and #2 CNNs and Hand-designed classifiers.
CNN OM #1 CNN OM #2 Hand-Designed
Acc(%) ± std Acc(%) ± std Acc(%) ± std

Gender 69.80 ± 1.16 61.04 ± 1.49 66.9 ± 1.50
Upper Clothes 80.65 ± 2.20 80.12 ± 0.63 65.87 ± 1.92
Lower Clothes 88.59 ± 1.34 85.82 ± 1.68 69.95 ± 1.71

For each method, the analysed distribution is composed by the accuracy of the 10-

folds runs. In fist place, all distributions were tested to verify if they are a normal distribution.

This was done by the Shapiro-Wilk test, using alpha level 5%. According to the results, all

distributions were considered normal. This allows the use of the t-Student test to verify if the

methods are statistically similar, using a confidence level of 5%. For each attribute classified, a

paired comparison was performed.
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Figure 24: Accuracy curve during OM #1 CNN training for the Gender Clothes attribute.

For gender attribute and confidence level of 5%, the null hypothesis is rejected. Hence,

there are differences between all three methods. To provide a visual analysis Figure 27, shows

a box-plot chart of the three methods.

For upper clothes attribute and confidence level of 5% both CNN Model #1 and CNN

Model #2 were considered statistically similar. To provide a visual analysis Figure 28, shows a

box-plot chart of the three methods.

For lower clothes attribute and confidence level of 5%, all three methods were

considered statistically different. To provide a visual analysis Figure 29, shows a box-plot

chart of the three methods.

The top-10 highest output values for the best CNN trained for each class are shown

in Figure 30. It is noticed that, in all classes a high variability is present in the images (poses,

clothes appearance, background, etc). However, it is also noticed that the main characteristic of

the classes is present. For instance, for clothes classification, gender information is not taken

into account, since there are male and female individuals in the images. Another interesting

detail is related to the results for short upper clothes. Among the results, three individuals are

wearing long pants and short sleeves. This indicates that the CNN spotted the right information

to make the decision.
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Figure 25: Accuracy curve during OM #1 CNN training for the Upper Clothes attribute.

Intend to complement the CNN performance analysis, the top-10 wrong classifications

were taken and are shown in Figure 31. The first two rows shows the gender classification,

been the first row men classified as women, and the second row women classified as men. It

is difficult to find a common pattern that could explain the wrong results. A possible clue

for woman classified as man, is that most of the individuals have short or covered hair. For

clothes attributes most of the incorrect classifications are related to occlusion and changes in

illumination. Additional analysis should be conducted seeking to a better understanding to the

causes of incorrect classification.

The CNN classifiers were compared with other classifiers using the hand designed

descriptors mentioned in Section 3.2.3. Observing the AUC values from the ROC curves of

Figures 32, 33 and 34, it was found that CNN achieved better performance than the other

classifiers, for the three different attributes.

Based on the values of AUC, the gender, as expected, seems to be the most difficult soft

biometric to be classified, since, actually, it is also difficult in the real-world. All the classifiers

tested produced poor results, even so, CNN was better than the other classifiers.
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Figure 26: Accuracy curve during OM #1 CNN training for the Lower Clothes attribute.

4.4.4 CLASSIFICATION RESULTS FOR OPERATION MODE #2 (OM #2)

In OM #2, for each image instance presented, a single CNN should give values

representing the classification for all three attributes (upper clothes, lower clothes and gender)

at the same time. This is significantly more difficult than the previous case in OM #1 with

three independent classifiers. In this experiment we seek to compare the performance of the

two operation modes.

Similarly as before, the classifier was trained using a 10-fold cross-validation scheme.

The results obtained, represented by the mean accuracy and the standard deviation for each

attribute are shown in Table 13. We also plotted the ROC curves for each attribute obtained by

both OMs in Figures 32, 33 and 34. These plots show that the results for both OMs are similar,

for upper and lower clothes, suggesting that the CNN was able to learn how separate the classes

simultaneously. The performance of OM#2 with gender attribute is worse than OM#1, which is

an intriguing fact, and will be addressed in depth in the future.

4.4.5 DISCUSSION

Overall, the results of experiments show that the proposed CNN approach provided

promising results, achieving a reasonable accuracy. For clothes classification performance,
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Figure 27: Box-plot chart showing the distribution of the three methods for the gender attribute.

the CNN approaches can be considered good. Notwithstanding, for gender, which is a very

challenging problem, even for humans, there is still the need for further improvement.

It is impressive the CNN capacity to learn how to classify images, leading to extraction

of high level semantics, based on raw images. Although it is a supervised method, and relies

on the quality of the annotated data, it is able to process the data and reduce the semantic gap

in the experiments performed. A possible explanation for this fact is related to the way that

CNN operates. Its learning processing is based on input data and backpropagation, a relatively

simple but very robust weight update rule. This data driven process allows the method to explore

different possibilities and achieve better results.

Another interesting result is related to the performance of the CNN when trained in

two different operation modes. Although, the final performance of both modes were similar for

clothes classification, the computation effort demanded by OM#2 was smaller than by OM#1,

since the classifier was trained to deal with three attributes at the same time.
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Figure 28: Box-plot chart showing the distribution of the three methods for the upper clothes
attribute.

4.5 DESCRIBING VIDEOS USING SOFT BIOMETRICS

This part of the experiments is related to the description of videos contents using soft

biometrics, in other words, describing people along a video using these attributes. The main

objective of these experiments is to verify the performance of the proposed CNNs described

in Section 3.3 to classify person attributes correctly in a sequence of frames. It is important to

notice that is is assumed a pre-detected person, so person tracking was not done. To overcome

this, bounding boxes provided manually in the dataset were employed.

An important aspect in this experiment is related to the CNN generalization capacity.

This is done by training the CNN with a complete different dataset than that used for testing

and evaluation. The soft biometric dataset was used as training set. The same procedure of data

augmentation, using small random transformation in the images was applied seeking to increase

the CNN learning capacity. For testing and validation the video dataset was employed.
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Figure 29: Box-plot chart showing the distribution of the three methods for the lower clothes
attribute.

A possible way to improve results reported in Section 4.4 is to look at input data with

a different perspective. Since the input data are images, this change is related to colorspace.

In those experiments, images were coded using the RGB colorspace. But, color information is

not an essential data piece to allow gender or clothes identification. For these experiments, all

images were transformed from RGB to the YUV space.

The evaluation protocol is similar to that employed in Section 4.4, where ACC, ROC

curves and AUC were used to verify the model performance.

4.5.1 RESULTS

The results obtained are reported in three different parts. The Subsection 4.5.1.1 shows

the ROC curves and AUC given during the training procedure. Based on these plots, the models

with higher AUC for each soft biometric were selected to be used in the validation procedure,

reported in the Subsection 4.5.1.2. Results for temporal correction are shown in Subsection
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Figure 30: The top-10 OM #1 CNN results for each class. First and Second Rows: samples classified
as Long and Short for Upper Clothes. Third and Fourth Rows: samples classified as Long and Short
for Lower Clothes. Fifth and Sixth Rows: samples classified as Female and Male for Gender.

4.5.1.3.

4.5.1.1 TRAINING PROCESS

As mentioned in Section 3.3, four different models were proposed as possible classifier

for each soft biometrics. For the training process, the same parameters detailed in Section 4.4

were used. Results, regarding the accuracy and standard deviation, for the testing set for each

model per soft biometric are showed in Table 14.

Table 14: Mean Classification accuracy for the four different models.
Small Medium Large Very Large

Acc(%) ± std Acc(%) ± std Acc(%) ± std Acc(%) ± std
Gender 73.61 ± 2.02 75.48 ± 1.04 72.70 ± 3.15 76.09 ± 1.39
Upper Clothes 70.96 ± 4.38 72.04 ± 2.90 73.95 ± 2.80 70.87 ± 4.04
Lower Clothes 85.67 ± 0.73 85.58 ± 0.78 86.60 ± 0.77 85.39 ± 0.81

A statistical analysis were performed seeking to verify if there significant similarity
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Figure 31: The top-10 OM #1 CNN wrong results for each class. First and Second Rows: samples
classified as Female and Male for Gender. Third and Fourth Rows: samples classified as Long and
Short for Upper Clothes. Fifth and Sixth Rows: samples classified as Long and Short for Lower
Clothes.

or differences between each model per attribute. The achieved accuracies were used in these

tests. The Shapiro-Wilk test, using alpha level 5% was used to test the distributions normality.

Accordingly to the results, all distributions were considered normal. This allows the use of t-

Student test to verify if the methods are statistically similar, using a confidence level of 5%. For

each attribute classified, a paired comparison between each model was performed. Based on the

results, all methods for both gender and lower clothes attributes were considered statistically

similar. For upper clothes attributes, models Small and Large were considered statistically

different, while other combinations were considered similar. For a graphical aid, the boxplot

graphics for gender, upper clothes and lower clothes attributes, are presented in Figures 35, 36

and 37, respectively.

The results were also consolidated into ROC curves, seeking to analyse their

performance. For gender extraction, the curves obtained are shown in Figure 38. Analysing

the ROC curves and the AUC values it is possible to infer that the VeryLarge model produced

the best results, using a feature vector of 1152 components. This is a coherent result, suggesting

that for this instance of the problem, a larger feature vector leads to better classification.
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Figure 32: ROC plot comparing the OM #1 CNN, OM #2 CNN and the best Hand-designed
classifier for the Gender attribute.

Figure 33: ROC plot comparing the OM #1 CNN, OM #2 CNN and the best Hand-designed
classifier for the Upper Clothes attribute.
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Figure 34: ROC plot comparing the OM #1 CNN, OM #2 CNN and the best Hand-designed
classifier for the Lower Clothes attribute.

Performance classification for both lower and upper clothes, respectively, are shown

in Figs.39 and 40. Analysing both graphs it is possible to see that, differently from gender,

the size of feature vector do not seems to influence the classification results. A possible

explanation for this behaviour could be related to the complexity of the problem. Classifying

clothes information based on the appearance can be considered less hard than classifying gender

and requires a small feature vector. A better comprehension of this behaviour requires further

investigation.

4.5.1.2 VALIDATION PROCESS

Based on the ROC curves obtained during the training process, the models with the

highest AUC values were chosen as classifiers for the validation process. Furthermore, ROC

curves were used to choose an adequate threshold value for each soft biometric. This was done

by selecting the curve point closest to the left upper corner, or point (0,1.0). Table 15 shows

the thresholds chosen for each attribute. These values were used in the validation process.

All frames of each 124 subjects from SAIVT dataset were classified by the three

models, one for each soft biometric. To help visualization and analysis of the validation process,

accuracy for each subject per attribute were grouped into a single bar chart. A line, representing
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Figure 35: Boxplot graph regarding comparation of four different CNN models for gender
attribute.

Table 15: Threshold values for each soft biometric.
Soft Biometric Threshold
Gender 0.498
Lower Clothes 0.539
Upper Clothes 0.496

the mean accuracy for all subjects, also appears in each chart of Figures 41, 43 and 45.

Observing the classification results for gender attribute in Figure 41, the mean accuracy

was 80.701%± 31.891. Is possible to notice that for most cases, the model predicted its

gender with an accuracy higher than the mean. This can be considered a satisfactory for gender

classification. In Figure 42 shows individuals where the model was unable to correctly classify.

It is possible to notice that most people is facing against the camera and have short hair. This

two fact could be a possible reason to the model failure.

For upper clothes, the results obtained are shown in Figure 43. For this attribute, the

classifier produced a mean accuracy of 75.529%±37.181. Analysing the histogram, again, the

overall performance is considered satisfactory. When comparing with the other two attributes,

it is clearly seen that this was the worst soft biometric classified. A possible reason could
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Figure 36: Boxplot graph regarding comparation of four different CNN models for upper clothes
attribute.

be related to the camera position, which has a direct influence in how subject’s appearance is

captured. This fact can be observed in Figure 44, where samples of individuals where the model

had zero accuracy. It is possible to see that most people is heading opposed to camera, which

also could be a fact that influence negatively the model classification capacity. Another fact is

the presence of self occlusion, which also could influence negatively.

When dealing with lower clothes, the model produced a mean accuracy rate of

87.544%± 27.289, as shown in Figure 45. The overall performance of this model can be also

considered satisfactory. In Figure 46 shows selected individuals for which the model failed to

produce a correct classification. A possible reason for that is the presence of self occlusion,

leading to losing information and consequently influence negatively the model capacity.

4.5.1.3 TEMPORAL CORRECTION

Dealing with classification in videos allows exploiting the temporal dimension as a way

to correct classification errors. There can be changes in pose, illumination or partial occlusion,

leading to a temporary incorrect response by the classifier.
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Figure 37: Boxplot graph regarding comparation of four different CNN models for lower clothes
attribute.

As proposed in Section 3.3, mean filtering could be a possible solution to improve

results. This is done by looking back in time, using previous outcomes to smooth the actual

output. The filter is controlled by a window size, which determines how many previous times

steps are used. Here, windows with (5,10,15) time steps were used. A drawback of this

operation is that it requires the storage of a buffer before applying the filter. This is needed

because of the window size, since it is only possible to calculate the mean before a given number

of frames.

Some experiments were done to verify if the application of the mean filtering could

lead to better classification results. After the filter outputs for each subject frame sequence,

a new mean accuracy for each soft biometric was calculated. These new values, along the

standard deviation, are presented in Table 16. Each column represents the mean achieved

using a different window size. The mean accuracy achieved without filtering is presented in

the column identified as 0.
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Figure 38: ROC curves and AUC values for each model proposed for gender classification.

Figure 39: ROC curves and AUC values for each model proposed for lower clothes classification.

4.5.2 DISCUSSION

Describing images and videos seems to be a complex and important problem to be

approached. Achieving this goal using automatic methods that can learn directly from data is
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Figure 40: ROC curves and AUC values for each model proposed for upper clothes classification.

Table 16: Mean accuracy values and standard deviation for temporal mean filtering for each soft
biometric.

Window Size
Soft Biometric 0 5 10 15
Gender 80.701±31.891 80.423±32.508 80.631±32.953 80.964±33.075
Lower Clothes 87.544±27.289 87.832±27.923 88.089±28.690 88.400±28.816
Upper Clothes 75.529±37.181 75.420±38.158 76.209±38.450 76.365±38.406

even better. In this set of experiments, CNNs were used as end-to-end classifiers to describe

people extracted from video frames. Analysing the results, it is possible to say that the method

provides a reasonably good performance. It was able to insert correctly into raw images, soft

biometric information, with an accuracy over 70%.

When looking at the learning process the results are even more impressive. This is

because training and testing data were taken from complete different sources. Training data

was composed by images from three different datasets available, while testing data was taken

from another available video surveillance dataset. This fact indicates that CNN has an good

generalisation capability, dealing with different data distributions. When analysing the results

visually, is possible to infer that the method has some limitations regarding to self occlusion and

head direction. These limitations could be alleviated by using a more representative training

dataset, which contains examples under such transformations.
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Figure 41: Accuracy per subject for gender attribute predicted by VeryLarge model. Red line
represents mean accuracy among all subjects.

Temporal dimension was less explored in these experiments. The main reason for this,

is that, in our opinion, temporal data is not essential to allow the description of the desired

information. A tentative to use information over time leaded to insignificant improvement of

the performance. A possible way to take advantage of the temporal component is to develop

a better method for analysing and correcting past prediction results based on the accumulated

knowledge.

As stated, the proposed method was developed using an extracted video patch

containing a person. In this way, another improvement is to expand the proposed method to

be able to insert soft biometric information while performing detection and tracking of people

in a video.
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Figure 42: Individuals where the classifier produce an incorrect result for the gender attribute.
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Figure 43: Accuracy per subject for upper clothes attribute by Large model. Red line represents
mean accuracy among all subjects.
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Figure 44: Individuals where the classifier produce an incorrect result for the upper clothes
attribute.
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Figure 45: Accuracy per subject for lower clothes attribute predicted by Large model. Red line
represents mean accuracy among all subjects.

Figure 46: Individuals where the classifier produce an incorrect result for the lower clothes
attribute.
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5 CONCLUSION

Visual information could be seen as the main way that humans receive information

from the surrounding world. As a famous saying states ”An image is worth a thousand word“.

To choose an image to represent a sentence or to choose a sentence to describe an image, both

can be cumbersome tasks. Frequently, an image can have different meanings to different people

who observe it. And, a sentence can be interpreted differently by different readers.

Consequently, developing computational methods capable of describing an image

similarly as humans do is a rather complex task. In the computer vision area, the automatic

association of high-level information with visual data remains a challenge, since no method

has yet reputed as a gold standard for most problems. Developing such methods could open

new frontiers related to the usage of images and videos, both stored or processed in real time.

Safety and surveillance are applications that could take great advantage of automatic high-level

interpretation.

The big challenge to be tackled is to find a correspondence between low level image

components and high level semantic meaning, reducing the so called semantic gap. Humans are

very efficient to extract low-level information from images, such as borders, texture, color and

shapes, and combine them into higher level elements, such as patterns, and finally, give meaning

to these elements. Such automatic procedure, easily accomplished by humans, is clearly

dependent on our capability to learn, categorize, store and retrieve information. However,

there is still much to research on how humans interpret an image and extract meaning from it.

This is particularly true from the point of view of Computer Science, since the computational

methods currently in use are too shallow to emulate accurately the human behaviour in some

tasks. Aiming at contributing to the development of such methods, this thesis took two different

approaches.

In the first study, seeking to learn feature extraction from input data using an

unsupervised way, the method proposed in this work takes the advantage of three components:

an adjustable feature extractor, provided by the CNN; a feature vector quality metric,



101

accomplished by the k-means clustering algorithm; and the global optimization to adjust the

weights of the feature extractor, here performed by the Differential Evolution algorithm. The

framework was designed to automatically discover semantic patterns from raw input images

without label information, and so, it could be seen as a step towards an automatic annotation

system for images.

Summarizing, what is expected from the framework is “to learn how to separate image

data into classes just looking at the data, without any other external information”. Once this is

done, an important issue could raise: is all the information (edges, textures, shapes and higher

level abstractions) required to perform the separation self-contained in the images? The results

shown in Section 4.3 for the two datasets tested (Faces and Pedestrian) suggest that those images

really convey the underlying information that is sufficient for separating them. The framework

was able to adjust a feature extractor, which generates feature vectors that allow the separation

of the images into classes coherent with the natural meaning to humans. It is important to

notice that the method was able to separate the images, but not classify them, since classification

requires a previously defined label, which is related to the human meaning to a set of images.

Indeed, this is an important fact to be analysed. Since the method does not have any information

about the semantics related to the images, it may find a separation not clearly meaningful for

humans. The results of the above-mentioned experiments indicate that the relationship between

the low-level information contained in images and its high-level interpretation is still an open

issue. Additional investigations shall be done seeking to keep reducing the semantic gap.

The second study of this thesis was focused on supervised learning, designed to extract

soft biometric information from human images. A sort of human-centred data is soft biometrics,

which is related to the appearance and attributes of a person. The development of methods to

extract and classify this type of data allows a better usage of the vast amount of stored images

and videos, making it possible to search by the contents of the image. This kind of information

is very difficult to be correctly annotated and classified, not only due to its large variability, but

also, due to its multiple semantic meaning.

In recent years, several methods were proposed in the literature using many

preprocessing tools, feature extraction and classifiers. Choosing the right combination of these

methods and the correct tuning of parameters is a hard task, and it is usually done by a trial-

and-error process. This procedure demands intensive computation and the ability of experts to

adjust the parameters of the system, as we showed in Chapter 4. On the other hand, results of

our experiments suggest that CNN is adequate do classify soft biometrics. The performance of

a CNN to build an end-to-end classifier, in a data-driven way was very interesting. Basically, it
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learns how to extract features from the raw images, so that they can be useful for the subsequent

classification of the images. There is no need for preprocessing, meaning that the raw images

can be used directly as inputs. This capability of the CNN allows the construction of soft

biometric classifiers with a reduced complexity.

In the third study of this thesis, we also extended the CNN to deal with a stream of

video frames. This provides a method to describe detected people in each frame. The results

for this test case suggest that the CNN has a great generalization capability, since it was trained

and tested with different datasets. In this work, three different attributes were approached:

gender, upper clothes and lower clothes. This decision was based on the relatively large amount

of labelled data required to train the CNN. However, it would be possible to classify other

attributes if annotated data is available. Training additional classifiers to deal with other type

of attributes, such as glasses, hat, or other clothes details, could allow a better description of a

person in the images. Therefore, this refined information could be used to further improve the

results of a content-based image/video retrieval system.

The results of this experiment were very promising, suggesting that further

improvements can lead to a system capable of automatically annotating interesting human

attributes in video streams, especially in surveillance videos. Based on these annotations, a

content-based video search framework could be constructed, allowing a better usage of such

data. Overall, the methods developed in this thesis, applied to real-world image/video datasets,

leaded to results that strongly encourages further research in the area.

5.1 CONTRIBUTIONS

The research conducted during the construction of this thesis leaded, in our opinion, to

the following contributions:

• Enhancement of computer vision and machine learning areas through the proposed

methods and results;

• Proposition and development of an unsupervised feature learning method, capable of

image separation into high level classes;

• Proposition and development of a method to describe images of people using soft

biometrics;

• Proposition of the basis to the construction of a content-based image/video search system

capable of dealing with high-level information, in the form of soft biometrics.
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5.2 FUTURE WORK

As discussed before, there is still plenty of work to be done in the computer vision

field. Therefore, we propose some possible extensions of this work.

Future work should focus on extending the proposed unsupervised framework to

handle several classes simultaneously. In addition, other clustering methods could be tested,

such as fuzzy k-means, Self Organizing Maps, Growing When Required Neural Networks, and

others. Some effort should be done to eliminate a many control parameters needed as possible,

thus increasing the level of independence of the proposed method.

Regarding the soft biometrics, we intend to improve the results using other image

datasets, as well as to study the tuning of the CNN parameters. Since the proposed method uses

the annotated raw data as input, it could be easily extended to other soft biometrics. Therefore,

it is intended to obtain detailed information about people in images using other attributes.

Concerning the videos, it would be important to better explout the temporal

information to improve the CNN performance. A clue to this could be the use of Hidden Mark

Models or other method capable of dealing with temporal data. Incorporating the capacity of

detecting and tracking people in video frames along with their description using soft biometrics

is a desired objective. This could allow even more the simplification of a system to automatically

annotate data of interest in videos, more specifically surveillance videos.
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