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Resumo
Sistemas de controle de velocidade são utilizados em vários países para fiscalizar o cumpri-
mento dos limites de velocidade, prevenindo assim acidentes de trânsito. Muitos desses
sistemas são baseados em tecnologias intrusivas que requerem processos de instalação e
manutenção complexos, geralmente atrapalhando o trânsito. Neste projeto, propõe-se um sis-
tema não intrusivo para estimativa da velocidade de veículos baseado em vídeo. O sistema
proposto detecta veículos em movimento utilizando um detector de movimento otimizado.
Aplicou-se um detector de texto especializado para localizar a placa dos veículos, a qual foi
utilizada para seleção e rastreamento de pontos estáveis. Os pontos rastreados são então filtra-
dos e retificados para remoção do efeito da perspectiva. A velocidade dos veículos é estimada
comparando-se a trajetória dos pontos rastreados com dimensões conhecidas no mundo. Para os
testes, utilizou-se aproximadamente cinco horas de vídeos em diferentes condições, capturados
por uma câmera de baixo custo posicionada a 5,5 metros de altura. Os vídeos capturados con-
tém mais de 8.000 veículos distribuídos em três pistas diferentes, com as velocidades reais para
cada veículo obtidas a partir de um detector por laço indutivo. O detector de placas proposto
foi comparado com três outros métodos no estado da arte e obteve os melhores resultados de
performance para os nossos vídeos, com precisão (precision) de 0,93 e coeficiente de revocação
(recall) de 0,87. A estimativa de velocidade dos veículos apresentou erro médio de -0,5 km/h,
permanecendo dentro da margem de +2/-3 km/h, determinada por agências reguladoras em
vários países, em 96,0% dos casos.

Palavras-chave: medição de velocidade de veículos, detecção de placa, rastreamento de carac-
terísticas.
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Abstract
Speed control systems are used in most countries to enforce speed limits and, consequently,
to prevent accidents. Most of such systems are based on intrusive technologies which require
complex installation and maintenance, usually causing traffic disturbance. In this work, we
propose a non-intrusive video-based system for vehicle speed estimation. The proposed system
detects moving vehicles using an optimized motion detector. We apply a specialized text detec-
tor to locate the vehicle’s license plate region, in which stable features are selected for tracking.
The tracked features are then filtered and rectified for perspective distortion. Vehicle speed is
estimated by comparing the trajectory of the tracked features to known real world measures.
For our tests, we used almost five hours of videos in different conditions, captured by a single
low-cost camera positioned at 5.5 meters height. The recorded videos contain more than 8,000
vehicles, in three different road lanes, with associated ground truth speeds obtained from an
inductive loop detector. We compared our license plate detector with three other state-of-the-art
text detectors, and our approach has shown the best performance for our dataset, attaining a
precision of 0.93 and a recall of 0.87. Vehicle speeds were estimated with an average error of
-0.5 km/h, staying inside the +2/-3 km/h limit determined by regulatory authorities in several
countries in over 96.0% of the cases.

Keywords: vehicle speed measurement, license plate detection, feature tracking.
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Chapter 1

Introduction

Speed control systems are used in most countries to enforce speed limits and, con-
sequently, to prevent accidents. Most of such systems use specialized sensors to detect and to
measure the vehicle’s speed, and cameras to take photographs or to record videos when speed
limit violations occur. Data produced by these systems may also be used by traffic control
systems to determine the traffic intensity, length of vehicle queues, average speed, etc.

As described by Mathew [1], systems for vehicle detection and speed measurement
are based on intrusive or non-intrusive technologies. Intrusive systems, usually based on induc-
tive loop detector, are cheap, but have some application disadvantages, such as high installation
cost, traffic disturbance during installation, and damage caused by wear and tear or asphalt
maintenance. Non-intrusive sensors have been increasingly used for acquisition of traffic flow
data, representing an emergent field of research, especially image based sensors, due to their
capability to extract more information than other kinds of sensors. The advantages and disad-
vantages of some technologies are described below.

The main intrusive sensors are passive magnetometers, pneumatic tubes, inductive
loop detectors, and piezoelectric sensors. Passive magnetometers are permanently mounted
within holes in the road and can detect the variation of the Earth’s magnetic field by the presence
of a passing metal object. However, it cannot detect stopped vehicles. Pneumatic tubes are
usually installed perpendicular to the traffic flow and produce an electrical signal generated by
a switch triggered by air pressure. However, they are very fragile and can be easily damaged.
Inductive loop detectors are coils buried in grooves in the road surface connected to an electronic
oscillator circuit. The metal part of a moving vehicle changes the electrical properties of the
circuit, triggering an event. It is the most common kind of sensor, but it can be damaged by
street maintenance or humidity infiltration, and it is not suitable for metallic bridges and brick
streets. Lastly, piezoelectric sensors detect a change in voltage caused by pressure exerted on the
sensor. They can be used to detect weight-in-motion, but are less accurate than the previously
presented sensors, and should be replaced once every three years.

Non-intrusive technologies are based on video image detection, passive or active in-
frared sensors, LASER detectors, ultrasonic Doppler meters or aerial photography. Such sen-
sors can be roadside mounted, installed underside a gantry or a bridge, or can stay at ground
level pointing perpendicular to the road. The advantage of video image detection is the pos-
sibility to extract a lot of information from vehicles, such as color, model, size, direction of
motion, speed, and license plate identification. However, video image detectors are susceptible

1
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to occlusions, as any other non-intrusive technology, and may suffer with bad weather condi-
tions or low light environments. Infrared and LASER detectors work measuring the time of the
light reflection. These systems can be used to count vehicles and estimate speed both in day
and night conditions, as long as there is no haze or smoke. However, their cost is relatively
high if compared with other non-intrusive solutions. Ultrasonic Doppler-based systems use the
frequency shift of acoustic waves to calculate the speed of moving objects. The speed measure-
ment is very accurate, but they cannot detect stationary vehicles, and are sensitive to spurious
returns from adjacent objects [1].

1.1 Motivation
In many speed control systems, some specialized sensors (e.g. loop detectors, ultra-

sonic Doppler, etc.) are used to trigger a video camera to record the license plates of vehicles
that exceed the speed limit. However, we can simplify these systems by extracting the speed
information from the already available video frames. Thus, we can obtain a non-intrusive sys-
tem with significantly reduced costs. As a byproduct of the uninterrupted video recording, in
a future work, it will be possible to identify the license plates of the passing vehicles and to
estimate the road flow volume and average speed.

1.2 Statement of the problem
The input data for the license plate detection and speed estimation problem is a digital

video V, which is defined as a sequence of n images (frames) V(0),V(1), . . . ,V(n−1) with a
common domain D, equally spaced in time. The video is captured by a fixed overhead camera,
which was installed at a position to properly record the rear license plates in three adjacent
lanes. The experimental setup is shown in Figure 1.1. A sample image from this setup is shown
in Figure 1.2.

Figure 1.1: Experimental setup.

The outputs are: a set of license plate candidate regions, the tracked trajectories of
these regions in successive frames, and the speed estimation for each vehicle.
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(a) (b)

Figure 1.2: Sample images from our experimental setup: in (a) a picture of our camera and in
(b) a sample image captured.

Some assumptions are made about the scene and the problem domain: each lane lies
on a plane; the vehicles, in the region of speed measurement, move at a constant speed and with
a straight trajectory from the lower to the upper part of the image; and the license plates have
similar dimensions and are assumed to be roughly at the same distance from the ground.

In order to evaluate the system performance, a ground truth dataset was collected
from a high precision speed meter based on inductive loop detectors, properly calibrated and
approved by the Brazilian national metrology agency (Inmetro).

We assume that a digital image is a 2D array of color values (pixels). For monochro-
matic images, we assume that each pixel is a real number between 0 and 1, proportional to the
light that falls on the corresponding sensor. For color images, a pixel consists of a separate mea-
surement for each color channel (spectral band), e.g. red (R), green (G) and blue (B) channels.
It may be convenient to convert RGB color images to monochromatic ones. For this purpose
we use the CIE 601-1 luminance formula 0.299 R+0.587 G+0.114 B.

The domain of an image I with N columns and M rows is the axis-aligned rectangle
with upper left corner at (0,0) and lower right corner at (N,M). The frame (or image) coordi-
nates (x,y) specify the position of points in the image domain. Note that the Y axis points down
in the normal image view. For the sake of simplicity, we use I(u) and I(~u) to refer to the pixel
indexed by a two-dimensional point u = (x,y) and vector~u = (x,y), respectively.

1.3 System overview
The proposed method is divided into five main parts, as shown in Figure 1.3. The

first step is an optimized motion detection algorithm that identifies and labels each region of
interest, which supposedly contains a vehicle license plate. These regions are then fed to a
license plate detector, which returns a set of axis-aligned rectangular sub-images. Features
are then extracted from each rectangular sub-image [2], and tracked using the Kanade-Lucas-
Tomasi (KLT) algorithm [3, 4]. To cope with large displacements, e.g. motion of a high-speed
vehicle, we used for the initial motion estimation the Scale-Invariant Feature Transform [5]
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algorithm. Finally, the vehicle speed is estimated by comparing the trajectory of the tracked
features to known real world measures.

Video
Motion detection

License place detection

Motion prediction (SIFT)

Feature tracking (KLT)

Speed estimation

Figure 1.3: Overview of the proposed system.

1.4 Publication
A preliminary version of the system described in this thesis was presented at the In-

ternational Conference on Acoustics, Speech and Signal Processing - ICASSP:

• Vehicle speed estimation by license plate detection and tracking
Diogo C. Luvizon, Bogdan T. Nassu and Rodrigo Minetto.
IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2014.

1.5 Structure of the thesis
This master thesis is divided as follows. In Chapter 2, we discuss previous work

on vehicle speed estimation and license plate detection. In Chapters 3, 4 and 5 we present
our motion detection, license plate detection and vehicle tracking methods, respectively. The
speed estimation method is presented in Chapter 6. The experimental evaluation and results
are reported in Chapter 7. Finally, Chapter 8 concludes this document and gives directions for
future work.



Chapter 2

Related work

There is an extensive literature on vehicle speed estimation [6–24]. Most approaches
are based on specialized speed sensors [6], or are dedicated to specific contexts, such as speed
estimation from vehicle’s headlight in night scenes [7, 8], speed estimation using the signal
from mobile telecommunication network [9], or speed estimation from a car-mounted camera
to avoid collisions [10]. However, an exhaustive review of such methods is far beyond the scope
of this thesis.

Comparatively little has been published about vehicle speed estimation from a digital
video recorded by a ground fixed overhead camera (our primary interest in this master thesis).
Such related approaches are reviewed in Section 2.1. Furthermore, as our system needs a vehicle
license plate detector, we review some state-of-the-art methods in this context in Section 2.2.

2.1 Vehicle speed estimation

Vehicle speed estimation problem in digital videos is closely related to vehicle detec-
tion and tracking problems. However, solving the latter problems, in an outdoor scene context,
is a challenging task. The reasons may include strong background cluttering, difficult illumi-
nation conditions, cast and cloud shadows, rainfall, poor image resolution, image noise and
changes in weather conditions. Thus, we describe the methods in this section based on how
they solve the stated problems.

In 2000, Dailey et al. [11] claimed that exact calibration is not necessary to estimate
time-average traffic speed, once we have the geometric relationships inherently available in
the images. Initially, the regions of interest are detected by using a simple frame difference
and the Sobel operator to obtain an edge image with the object motion. This edge image is
then enhanced by a morphological closing operation and fed to a convex hull algorithm [25]
to create image blobs. These blobs are then tracked by enforcing collinearity between their
centroids. The algorithm assumes that all vehicles have roughly the same length, thus the
average dimension is used as a real world reference to compute the speed. For each blob at
a given position, the algorithm compute the speed by dividing the mean inter-frame distance
travelled by blobs by the frame interval. Similarly, Madasu and Hanmandlu [12] proposed a
method to estimate speed of vehicles using uncalibrated camera based on the assumption that
vehicles have roughly the same length. Differently from Dailey et al., Madasu and Hanmandlu

5
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proposed the use of the KLT algorithm [3,4] to track features selected by the criteria of Shi and
Tomasi [2]. The disadvantage of both methods relies on the assumption of a constant length
for all vehicles. For example, in our dataset, we have a wide range of vehicles with different
lengths, like motorcycles, buses, trucks and other kinds of ordinary vehicles.

In 2001, Garibotto et al. [13] proposed to use high level features, such as clusters of
matched license plate characters, to compute the instantaneous speed of vehicles. First, they
recovered the 3D distance between two positions of the license plates in real world from the
projected distance vector measured in the image plane. An OCR is then used to detect and
to recognize the license plate characters in both images. The speed is estimated by using the
distance between the center of mass of each cluster of recognized characters, the time interval
between two consecutive frames and a mapping from the camera parameter system to the object
coordinate system. As reported by the authors, the main drawback of this approach is the need
of an extremely effective license plate recognition system.

In 2007, Zhiwei et al. [14] noted that the image background can be computed by a
median filter applied in each image pixel across a sequence of images, but this process is space
and time consuming. The authors suggested a background updating model that approximates
a median filter by increasing or decreasing each image pixel by a constant value for each new
frame. They employed a pinhole camera model to project the road plane into a rectified image,
enabling the computation of vehicle displacements in real world and consequently the speed
estimation. Similarly, in 2008, Maduro et al. [15] proposed a vehicle speed estimation method
based on image rectification using two vanishing points. Vehicles are identified by background
subtraction and the bounded blobs are tracked by using a Kalman filter. The speed is estimated
by considering the displacement of the bottom margin of blobs. Due to their straightforward de-
tection approaches, both methods are susceptible to bad weather or lighting change conditions.

In 2009, Palaio et al. [16] proposed to track vehicles using particle filtering. The ve-
hicles are selected by a foreground/background segmentation process and are then represented
by a descriptor based on window location, window color components, horizontal and verti-
cal derivatives, and the Laplacian of the grey image. The region descriptors are then used to
track vehicles using a particle filtering. Finally, the vehicle’s positions are projected to a rec-
tified image for speed estimation. The authors use the same rectification process employed by
Maduro et al. [15].

In 2008, Lin et al. [17] noticed that for any fixed time interval, the displacement be-
tween vehicles in images is proportional to the amount of blur caused by the imaging process.
Thus, if the parameters of the motion blur (e.g. , the motion length and the orientation), and
the relative position between the camera and the object can be identified, the speed of vehicles
can be estimated according to the imaging geometry. To compute the blur length in the hori-
zontal direction, a subimage enclosing the detected vehicle is manually extracted, or obtained
by a background subtraction, from the original motion blurred image taken by a side view sta-
tionary camera. Edge detection is then applied on this subimage to find the left and right blur
regions. Ideally, there will be two ramps in the edge image with the same width. Thus, the blur
length can be obtained by taking the average of those ramp widths. As reported by the authors,
the major limitation of their method is the assumption that there are detectable sharp edges in
the motion deblurred image. That is, the speed detection algorithm might not perform well if
the environmental lighting is not sufficient (e.g., for sunset or rainy days) or if the shadow of
vehicles is significant.
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In 2010, Dogan et al. [18] proposed a speed estimation method for side view images
taken by a single stationary uncalibrated camera. The authors first used image subtraction and
thresholding to eliminate the static background. Then, distinctives features were selected within
the vehicle region with the Lucas-Tomasi algorithm [4] and tracked with the Lucas-Kanade
optical flow algorithm [3]. The speed estimation was computed by using the motion vectors
obtained from tracking, the time interval between two consecutive frames, and a mapping from
the video image coordinate system to the object coordinate system. A drawback of this approach
is that all the motion vectors are supposed to belong to the same vehicle, thus, it can handle only
a single vehicle at a time.

In 2010, Czajewski and Iwanowski [19] proposed a speed measurement method based
on license plate recognition. They used an elementary license plate recognition algorithm based
on an adaptive threshold of the input image, followed by a contour extraction and a character
grouping step. If the license plate is detected and recognized in two consecutive frames, the
method estimates the vehicle position for these two frames in real world and compute the speed
by using the travelled distance in a frame interval. Similar to the approach presented by Gari-
botto et al. [13], the efficiency of this method relies on the effectiveness of the license plate
recognition method.

There are also several other approaches to estimate the speed of vehicles in high-
ways [20–24]. They assume that the camera is positioned far enough from vehicles, generating
images with a wide range of view, so that it is easier to identify the entire vehicle. Thus, they are
based on background subtraction and blob detection techniques, with the speed being estimated
from the displacement of blobs (considering the centroid or part of the contour). However, in
our experimental setup, the camera is closer to the vehicles. That makes blob analysis very
sensitive to lighting variations and shadows. On the other hand, the closer view allows to detect
and track distinctive features inside the license plate region. These differences make difficult a
direct comparison between our system and the above mentioned work. Although, we tested a
particle filter blob tracking algorithm in order to evaluate its performance in such a scenario.

2.2 License plate detection

License plate detection is an active field of research with many algorithms and ex-
tensive literature. The surveys of Anagnostopoulos et al. [26] and Du et al. [27] review state-
of-the-art systems up to 2013. The difficulties in license plate detection mainly come from
poor maintenance, occlusion, orientation and scale variations, complexity of the background,
irregular illumination, low contrast, low image resolution, and motion blur.

According to Du et al. [27], most license plate detection algorithms can be catego-
rized based on the type of feature extracted from the image: boundary or edge, texture, color,
shape, and geometry. In this section, we review three state-of-the-art algorithms based on edges,
texture, shape and geometry attributes. We consider the Zheng et al. algorithm [28], which was
specifically designed for license plate detection, as well as the Stroke Width Transform [29]
and SnooperText [30] algorithms, which were developed for urban scene text detection. These
algorithms are compared in Chapter 7.

In 2005, Zheng et al. [28] proposed an algorithm for license plate detection based on
edge detection. They first use a local pre-processing step to enhance image gradients in order
to boost up the license plate region in low contrast scenarios. Then, they detect vertical edges
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using the Sobel operator, and filter out edges that are too short, which probably correspond to
noise, or too long, which probably correspond to the background or to some part of the vehicle.
Finally, the authors use a sliding rectangular window with dimensions similar to those of a
license plate, in order to identify regions with high edge density, which probably indicates the
presence of a license plate.

In 2010, Epshtein et al. [29] proposed an algorithm, called Stroke Width Transform
(SWT), to detect characters in images. They use the orientations of the gradients over edge
pixels to determine a “local stroke width”, and group pixels with similar stroke widths into
candidate characters. The candidates are filtered based on the stroke variance and aspect ra-
tio within the region. The remaining regions are then grouped into text regions. The Canny
detector [31] is used to obtain image edges.

In 2014, Minetto et al. [30] proposed an algorithm, called SnooperText, which locates
candidate characters by using morphological image segmentation and character/non-character
classification based on shape descriptors. Candidate characters are grouped to form either candi-
date words or candidate text lines. These candidate regions are then validated by a text/non-text
classifier called T-HOG [32], a HOG-based descriptor specifically tuned for single-line text re-
gions. The algorithm is applied at multiple image scales in order to suppress irrelevant detail in
character shapes and to avoid the use of overly large kernels in the segmentation.

The color attribute is also used by some authors for detection [33, 34]. This make
sense when the license plates follow a distinctive color scheme. However, as stated by Anag-
nostopoulos et al. [26], color information is unstable when the lighting conditions change and
are country-specific.

As described in Chapter 4, texture attributes, derived from the transition between
the characters and the background — e.g. extracted from Gabor filters [35], Wavelet Trans-
form [36], Histogram of Oriented Gradients (HOG) [32] and Scale Invariant Feature Transform
(SIFT) [37] — are also important sources of information for license plate detection.



Chapter 3

Motion detection

In this chapter, we describe a fast algorithm for motion detection. The goal here is to
efficiently narrow down the locations of the scene where motion is taking place (see Figure 3.1).

Video frames

Motion
detection

License
plate

detection

Figure 3.1: Motion detection: the input video frames are reduced to regions of interest that
bound the moving vehicles.

The developed motion detector uses a sequence of successive frames to compute a
binary image, where the foreground regions, in white color, represent moving vehicles, and the
background region, in black color, represents the static scene. A key aspect to save time is the
use of a regular sparse grid to compute the binary image. The foreground regions are then used
to estimate the vehicles boundaries. These boundaries are essential to reduce the computational
effort spent on the license plate detection, which is the most time-consuming part of our system.

The motion detector output is a set of regions of interest that ideally should contain
the entire vehicle license plate. The following sections provide a detailed description of these
steps.

9
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3.1 Motion history and motion energy images

The Motion History Image (MHI) is a scalar-valued image where intensity is a func-
tion of recency of motion (Bobick and Davis [38]), that is, it represents the object silhouette as
a grayscale image, where brighter pixels symbolize more recent changes. This straightforward
technique is robust to represent motion, being used in applications related to activity recog-
nition [39, 40]. Figure 3.2(a) shows an example of a MHI silhouette from a moving vehicle.

(a) (b)

Figure 3.2: The motion history image (MHI) (a) and the motion energy image (MEI) (b) from
a moving vehicle, using a frame interval of ∆t = 1, ξ = 0.17, and a sequence of τ = 6 frames.

In order to build the MHI, we first compute the frame difference of two frames (not
necessarily consecutive) by

D(x,y, t) =
{

1 if |I(x,y, t)− I(x,y, t−∆t)| ≥ ξ

0 otherwise. (3.1)

where the fixed parameters ∆t and ξ are chosen to fit constraints of period of time and sensibil-
ity. The MHI silhouette H is then given by

H(x,y, t) =
{

τ if D(x,y, t) = 1
max(0, H(x,y, t−∆t)−1) otherwise. (3.2)

where τ is a fixed parameter that represents the duration of the expected motion in frame units.
Note that each pixel is a function of the temporal motion history at that point.

For simplicity, we build an image E(x,y, t) where the non-zero pixels of H(x,y, t) are
set as foreground. This image, also known as motion energy image (MEI) [38], is given by the
equation

E(x,y, t) =
{

1 if H(x,y, t)> 0
0 otherwise. (3.3)
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Although the MEI is simpler than the MHI, it is an useful binary representation of the motion in
a frame sequence, as shown in Figure 3.2(b), and in addition, it can be used as a building block
for more complex algorithms for motion detection.

3.2 Motion intensity by vertical projection profile

In the domain of our problem, the vehicles enter in the frames gradually in the lower
part of the image. The detection becomes easier when the license plate is closer to the image
bottom. For that purpose, we define a rectangular event area (EA), bounded by x1 (left), y1
(top), x2 (right) and y2 (bottom), as shown in Figure 3.3.

MEI

EA

x1 x2

y1

y2

Figure 3.3: Event area for motion detection.

The binary MEI cannot be used by itself to exactly bound each moving vehicle. Holes,
shadow or noise in the vehicle’s silhouette may cause over or super segmentation. The spatial
configuration of the motion intensity is then recovered by a technique known as vertical pro-
jection profile [41]. Specifically, let χ be the sum of all foreground pixels in a given row of the
motion energy image (MEI) E bounded by the EA, that is

χ(x, t) =
y2

∑
y=y1

E(x,y, t) (3.4)

where x ranges from [x1,x2]. The vertical projection profile is given by

Ψ(x, t) = ϕ(χ(x, t),η ,κ) (3.5)

where ϕ is a conventional rolling mean smoothing function, η is the size of the smoothing
window, and κ is the number of iterations.

The smoothed curve Ψ is the projection onto an horizontal straight line of the scene
motion. It provides important information about the number of vehicles aligned along the pro-
jection direction. This curve changes over time at each new frame. Figure 3.4 shows a sample
video frame, its respective MEI and the vertical projection profile.
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(a) (b)

(c) (d)

Figure 3.4: Vertical projection profile: (a) a sample frame; (b) the binary motion energy image
(MEI); (c) the vertical projection profile before smoothing; and (d) the vertical projection profile
after smoothing.

3.3 Regions of interest

At this step, we aim to bound each region of interest as a rectangle Ri = (l,r,u,d),
where the vertical projection profile is used to determine the left (l) and right (r) vehicle sides
and the binary MEI is used to determine the up (u) and down (d) vehicle limits.

The algorithm to determine the left and right vehicle sides is outlined as Algorithm 1.
It receives the vertical projection profile Ψ, and a threshold ρ that defines the minimum per-
centage of inclination. It returns a pair of lists {A,D}, such that each list element represents a
slope ascending and descending border, respectively. For the sake of simplicity, in the following
descriptions, we will omit the t argument of Ψ.

Algorithm 1 Routine to find slopes and borders in Ψ.
1: function FIND-SLOPES (Ψ[1, . . . ,n], ρ)
2: {R,F}← FIND-INCLINATION (Ψ, ρ);
3: Sa← SLOPE-ASCENDING (R, F);
4: Sd ← SLOPE-DESCENDING (R, F);
5: A←{ }; D←{ }; . set initialization
6: for each x ∈ {1, . . . ,n−1} do
7: if (Sa[x] = 0) and (Sa[x+1] = 1) then
8: A← A∪ x; . slope ascending
9: if (Sd[x] = 1) and (Sd[x+1] = 0) then

10: D← D∪ x; . slope descending
11: end for
12: return {A,D};
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In step 2 of Algorithm 1, we call the routine FIND-INCLINATION, outlined as Algo-
rithm 2. The purpose of this routine is to determine the rising and falling phases of the vertical
projection profile Ψ (see Figure 3.5(a)). The threshold ρ ∈ {0.0, . . . ,1.0} was meant to prevent
against false phases. For instance, if we are using ρ = 0.1 and the projection profile curve
changes from 4.0 to 5.0, that is, a change of 20%, at some point x, then we set R[x] = 1, to
state for a rising point. Although, if it changes from 400.0 to 410.0, nothing will happen, then
we have R[x] = 0. Since the vehicle regions in the vertical projection profile are represented by
high values, we aim with this step to prevent against accidental vehicles cut off.

Algorithm 2 Routine to find rising and falling phases in Ψ.
1: function FIND-INCLINATION (Ψ[1, . . . ,n], ρ)
2: for each x ∈ {1, . . . ,n} do
3: R[x]← F [x]← 0; . array initialization
4: end for
5: for each x ∈ {1, . . . ,n−1} do
6: δ ← (1− (Ψ[x]/Ψ[x+1]));
7: if δ > ρ then
8: R[x]← 1; . rising phase
9: if δ <−ρ then

10: F [x]← 1; . falling phase
11: end for
12: return {R,F};

In step 3 of Algorithm 1, we call the SLOPE-ASCENDING routine, outlined as Al-
gorithm 3. This function scans the R and F arrays looking for ascending regions. Ascending
regions in R, that is transitions from 0 to 1, are flagged (set to 1) while a rising in F is set to 0. It
means that an ascending region starts at the first rising phase and ends at the first falling phase.
In regions without transition, we keep the last value. The SLOPE-DESCENDING routine, out-
lined as Algorithm 4, works in the same way, but with the order of the array elements reversed.
In Figure 3.5(b,c), we shown the values for these functions over a sample projection profile.

Algorithm 3 Routine to compute the array of ascending slopes.
1: function SLOPE-ASCENDING (R[1, . . . ,n], F [1, . . . ,n])
2: for each x ∈ {1, . . . ,n} do
3: Sa[x]← 0; . array initialization
4: end for
5: for each x ∈ {2, . . . ,n−1} do
6: if (R[x] = 0) and (R[x+1] = 1) then
7: Sa[x]← 1;
8: else if (F [x] = 0) and (F [x+1] = 1) then
9: Sa[x]← 0;

10: else
11: Sa[x]← Sa[x−1];
12: end for
13: return Sa;
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Algorithm 4 Routine to compute the array of descending slopes.
1: function SLOPE-DESCENDING (R[1, . . . ,n], F [1, . . . ,n])
2: for each x ∈ {1, . . . ,n} do
3: Sd[x]← 0; . array initialization
4: end for
5: for each x ∈ {n−1, . . . ,2} do
6: if (F [x] = 0) and (F [x−1] = 1) then
7: Sd[x]← 1;
8: else if (R[x] = 0) and (R[x−1] = 1) then
9: Sd[x]← 0;

10: else
11: Sd[x]← Sd[x+1];
12: end for
13: return Sd;

In steps 6-11 of Algorithm 1, we compare two consecutive samples of Sa and Sd
to locate rising and falling borders, respectively, which indicates the left (l) and the right (r)
boundary of a slope (see Figure 3.5(d)).

Finally, the procedure COMPUTE-ROI delimit each vehicle boundary. It requires the
ascending (A) and descending (D) points and the binary motion energy image E. It outputs the
regions of interest as a set R. Note that this procedure scans for each slope i — delimited by the

Algorithm 5 Routine to define the regions of interest.
1: function COMPUTE-ROI (A, D, E)
2: R←{ }; . set initialization
3: for i ∈ {A,D} do
4: {l,r,u,d}← {A[i],D[i],+∞,−∞}; . vehicle boundary initialization
5: for x ∈ {l, . . . ,r} do
6: for y ∈ {y1, . . . ,y2} do . y1,y2 are used to define the EA
7: if E(x,y) = 1 then
8: u←min(u,y);
9: d←max(u,y);

10: end for
11: end for
12: R←R ∪{l,r,u,d};
13: end for
14: return R;

ascending A[i] and descending D[i] interval — and for the minimum and maximum coordinates
of E flagged as a foreground pixel.

An overview of the motion detection steps is shown in Figure 3.6.
When vehicles are gradually entering in the EA, it may occur that the license plate is

not completely visible inside the ROI. To avoid an unnecessary license plate detection in such
cases, we only consider regions of interest with the lower border (d) not coincident with the
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Figure 3.5: Internal steps of Algorithm 1: rising and falling phases according to a given
threshold ρ (a), ascending slopes (b), descending slopes (c), and three slope regions delimited
by the rising edge of ascending slopes and the falling edge of descending slopes (d).

lower event area limit (y2), i.e. the rule d < y2 must be satisfied to avoid an unnecessary license
plate detection.
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Figure 3.6: Detection of regions of interest.

3.4 Performance optimization by pixel subsampling
The regions of interest need not be accurately estimated, it is sufficient, that the vehicle

license plate be entirely within each region. Based on this observation, we use a grid for pixel
subsampling in order to speed up the search process.

Specifically, we subsample the MHI pixels, and as a consequence the MEI pixels,
at specific coordinates determined by a regular sparsely grid, spanning the whole MHI (see
Figure 3.7). Therefore, we significantly reduce the time spent updating the MHI by processing
the image pixels according to a subsampling ratio of 1/s for each row and column. For example,
by using a subsampling ratio of s = 4, only 1 pixel will be processed for every 16 pixels. To
keep a constant magnitude of the projection profile for different pixel subsampling values, we
changed Equation 3.4 by multiplying each position by s.

Note that this strategy may cause an error in region boundaries. However, the vehicle
license plates are usually located far enough from the borders. This discussion is detailed in the
experiments, in Section 7.3.2.
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Pixel subsampling for motion detection: the motion energy image (MEI) and the
regions of interest using a sparse grid with factor s = 4 (a,d); using s = 8 (b,e); and using s = 16
(c,f).
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Chapter 4

License Plate Detection

The structure of the license plate detector is outlined in Figure 4.1. The input data for
this problem is a cropped image I⊂ V(i) for a given frame i, which is delimited by a region of
interest Ri as described in the motion detection Chapter 3. The output data is an axis-aligned
rectangle, which is an approximate bounding box of the license plate region.

This detector follow the hypothesis generation and validation paradigm [30, 42].
Namely, in the hypothesis generation phase we use the edge extraction, edge filtering, mor-
phological dilation, and region grouping modules to provide coarse candidate regions based on
the edge attribute that make up the license plate. At this phase, we aim to isolate the license
plate region and to prevent any true region loss, even at the cost of several false positives.

In the hypothesis validation phase, we use a region classification module to refine
the candidates. For this classification we use the Text HOG (T-HOG) descriptor [32], which is
based on the observation that a particular texture — the license plate textual information — can
often be characterized by the distribution of the directions of the image gradients.

REGION OF INTEREST
LICENSE PLATE

RECTANGLE

Edge extraction

Edge filtering

Morphological dilation

Region grouping

Region classification

Figure 4.1: License plate detection scheme

The following sections provide a detailed description of each module.
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4.1 Edge extraction

Zheng et al. [28] observed that background areas around the license plate region often
have large horizontal edges and small random noise. Therefore, they proposed to extract only
the vertical image edges in an attempt to isolate the license plate. The authors claimed that
although some horizontal edges that delimit the license plate are lost, this information is not
essential for license plate location. Thus, they use the Sobel operator to extract the vertical
image edges. Specifically, the approximate derivative of image I in the x direction is given by

Gx =

 −1 0 +1
−2 0 +2
−1 0 +1

∗ I (4.1)

where the 3×3 matrix kernel denotes the Sobel operator and ∗ the two-dimensional convolution
operation.

The mean µ over the absolute gradient values of Gx is given by

µ =

M

∑
x=0

N

∑
y=0
|Gx(x,y)|

MN
(4.2)

The edge image E is then defined by

E(x,y) =
{

1 if |Gx(x,y)|> µγ

0 otherwise (4.3)

for some value γ . An example of edge extraction is shown in Figure 4.2.

(a) (b)

Figure 4.2: Edge extraction: (a) region of interest as given by the motion detection module;
and (b) extracted edges with a threshold γ = 2.
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As shown in Figure 4.3, the advantage of this approach is that it is invariant to distinc-
tive license plate color schemes — transitions between light and dark regions or vice versa —
since in equation (4.3) it is considered only the gradient magnitude.

(a) (b)

Figure 4.3: Edge extraction, by using a threshold γ = 2, for a vehicle with white letters on dark
background. In our dataset, this is the official color pattern of transportation vehicles like buses
and taxis.

4.2 Edge filtering
The edge image E is then screened to identify plausible characters. For that purpose,

we determine the 8-connected edge components by using a standard labeling algorithm. Then,
we remove small components, or too tall or wide, i.e. those that do not satisfy the following
constraints:

hmin ≤ h ≤ hmax

wmin ≤ w ≤ wmax (4.4)

where w and h are the width and height of the bounding box enclosing each labeled component
in the edge image E, and hmin, hmax, rmin and rmax are fixed parameters. An example of edge
filtering is shown in Figure 4.4.

4.3 Region grouping

The remaining vertical edges of image E are merged by a morphological dilation

S= E⊕b (4.5)

where b is a centered structuring element designed to join vertical neighboring edges in the
x-direction into license plate candidates. See Figure 4.5.
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(a) (b)

Figure 4.4: Edge filtering: (a) edges detected by the Sobel operator; and (b) edges filtered by the
geometric constraint rules of equation (4.4), with hmin =wmin = 4 pixels and hmax =wmax = 120
pixels.

Figure 4.5: Horizontal morphological dilation with a centered 1×7 structuring element.

In order to avoid license plate super-segmentation we then group candidate regions
according to the geometric criteria defined by Retornaz and Marcotegui [43]. These criteria
take into account the heights h1,h2 and widths w1,w2 of two bounding boxes b1 and b2, as
well as the coordinates (x1,y1) and (x2,y2) of their centers. Specifically, let h = min(h1,h2),
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dx = |x1− x2|− (w1 +w2)/2 and dy = |y1− y2|. Then b1 and b2 are said to be compatible —
that is, assumed to belong to the same object — if and only if

|h1−h2| < t1 h
dx < t2 h (4.6)
dy < t3 h

where t1, t2 and t3 are fixed user parameters.
These criteria are applied to each isolated region by using the UNION-FIND data

structure [25]. Specifically, the beginning of each region is a disjoint set created by the MAKE-
SET routine, outlined in Algorithm 6. The output of this operation is shown in Figure 4.6 (a,b).
The algorithm then tries to group all the compatible candidate regions by using the UNION-
FIND routines, outlined in Algorithms 7 and 8. The output of this operation is shown in Fig-
ure 4.6 (c).

Algorithm 6 MAKE-SET routine (Cormen et al. [25]).
1: function MAKE-SET (b)
2: father[b] = b;

Algorithm 7 UNION routine (Cormen et al. [25]).
1: function UNION (b1, b2)
2: f1← FIND-SET(b1); . f1 is the father of b1
3: f2← FIND-SET(b2); . f2 is the father of b2
4: if ( f1 , f2) then
5: if COMPATIBLE (b1,b2) (see equation 4.6) then
6: father[ f2]← f1;

Algorithm 8 FIND-SET routine (Cormen et al. [25]).
1: function FIND-SET (b)
2: if (father[b] = b) then
3: return b;
4: else
5: return FIND-SET (father[b]);

The regions found by the grouping step (see Figure 4.7(a)) are then filtered using the
geometric criteria defined in equation (4.4). However, we set the parameters hmin, hmax, rmin
and rmax to get rid of regions — as opposed to characters as described in Section 4.2 — with
dimensions not compatible with license plates, see Figure 4.7(b).

4.4 Region classification

The region classification is essential to discard those regions that do not seem to con-
tain any textual information but have dimensions and texture attributes similar to those of license
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(a) (b)

(c)

Figure 4.6: Region grouping: (a) region bounding boxes of a sample license plate image;
(b) MAKE-SET routine applied to all regions, the arrows indicate the node parent; (c) result of
UNION(w,7). Figure adapted from Cormen et al. [25].

(a) (b)

Figure 4.7: In (a) the region grouping and in (b) the region filtering with the geometric criteria
defined in equation (4.4) (hmin = 10 pixels, wmin = 32 pixels and with h < w).

plates. We use for this task the T-HOG text descriptor [32] which is a texture classifier special-
ized to capture the gradient distribution characteristic of character strokes in occidental-like
scripts.

The T-HOG classification is the most time consuming step of the detection. In order
to prevent nearby classifications that will consume to much time to produce a similar outcome,
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we sampled at a regular interval specific point locations within a candidate region. More specif-
ically, we compute the column center of each candidate image region on image S (dilated image
after region filtering) by using the region baselines — the coordinates of the ‘top’ and ‘bottom’
region column, see Figure 4.8(b). This approximate center line, see Figure 4.8(c), is then used
to guide the classification. Namely, we centered a fixed-size window at some point locations
over that center line, see Figure 4.8(d,e), computed the T-HOG descriptor and fed it to an SVM
classifier, whose output is thresholded to give a binary text/non-text (positive/negative) region
classification. The positive classifications (text regions) are shown in Figure 4.8(f,g).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.8: Region baselines for T-HOG/SVM classification: (a) the candidate region; (b) the
region baselines in white color; (c) the region center line in white color; (d) sampled points
to guide the classification in white color (step of 4 pixels); (e) windows selected for textual
classification; (f,g) regions classified as text; (h) the text region bounding box.

The region most likely to have a license plate is that one with at least υ positive text
region classification. Note that vehicles with textual advertisements may have several regions
that respect this condition. However, the direction of the vehicle flow in our video dataset is
from the lower to the upper part of the image. Therefore, if we have more than one candidate
respecting the above condition, we keep the one closest to the image bottom. The approximate
license plate bounding box is an axis-aligned rectangle that encloses all positives text region
classification, see Figure 4.8(h). The T-HOG/SVM classifications for the whole image is shown
in Figure 4.9.

4.5 Discussion

In our dataset, the license plates of motorcycles differ from other vehicles, see Fig-
ure 4.10(a). They are nearly squared with two closer lines, the top line with three letters and the
bottom with four numbers. The strategy to detect this kind of license plate remains the same,
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(a) (b)

(c) (d)

Figure 4.9: T-HOG/SVM classification: (a) the windows selected for textual classification;
(b,c) the regions classified as text; (d) the license plate bounding box.

however some thresholds must be set up accordingly to take into account the new dimensions.
Moreover, we did not compute the center line of each candidate region, as described in Sec-
tion 4.4, because the edges of the letters (on top) and numbers (at bottom) are usually merged
by the edge extraction module (see Figure 4.10(b)). Instead, we simply use T-HOG/SVM classi-
fication within each region returned by the grouping module. As an example, a detection output
is shown in Figure 4.10(c).

Finally, the selection of distinctive features for tracking does not require that the de-
tected bounding box rectangle be accurately adjusted to the license plate dimensions, since these
features will probably be those that make up the letters of the license plate or the plate corners,
as discussed in Chapter 5.
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(a) (b) (c)

Figure 4.10: Motorcycle license plate detection: (a) the region of interest as given by the
motion detection module; (b) the edge extraction by using a threshold γ = 4; and (c) the license
plate bounding box.
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Chapter 5

Feature Selection and Tracking

The selection and tracking of a set of distinctive features - such as corners, contours
and texture - from the license plate region is the basis of our vehicle speed estimation scheme.
The input data of this module are a license plate region, detected at video frame V(i) (see
Chapter 4), and a sequence of f consecutive frames, V(i), V(i+1),. . . ,V(i+ f −1), starting
from index i, so that f is the last frame where the features being tracked are visible. The output
is a list of motion vectors for each tracked feature in a pair of consecutive video frames.

The structure of our tracking scheme is outlined in Figure 5.1. We select distinctive
features, only once for each vehicle, according to the criteria suggested by Shi and Tomasi [2].
The selected features are tracked along the video frames using the Kanade-Lucas-Tomasi
(KLT) [3, 4] algorithm. To cope with large feature displacements, e.g. from a vehicle moving
at a high speed, the movement is initially estimated by matching SIFT (Scale-Invariant Feature
Transform) [5] features extracted from the first two frames in the sequence. Incorrect motion
vectors obtained by KLT and the SIFT matching are filtered out by an outlier rejection routine.

5.1 Feature selection

Tomasi and Kanade [4] observed that it is hard or even impossible to track a single
pixel. The reason is simple: the value of that pixel may change in each frame due to noise or
small distortions, or be confused with another adjacent pixel with similar properties. As a con-
sequence, feature selection and tracking are usually done by using a window of pixels, here rep-
resented by the symbol Ω, with dimension (2ω +1)× (2ω +1). Unfortunately, even a window
of pixels may not contain sufficient information to be correctly matched to its corresponding
window in the next video frame. This ambiguity is known as the aperture problem [44] (see
Figure 5.2).

As an attempt to avoid the aperture problem, some authors proposed to use different
criteria to select trackable windows: regions containing zero crossings of the Laplacian of the
image intensity [45]; image corners [46]; or high spacial frequency [47]. However, most of these
methods assume that good features can be selected independently of the tracking algorithm.

29
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Frame i Frame i+ 1 Frame i+ 2

. . .

Frame i+ f − 1

License plate

Feature
selection

Motion
prediction

Outlier
rejection

Feature
tracking

Outlier
rejection

Motion vectors

Figure 5.1: Overview of the proposed feature tracking method.

Figure 5.2: Aperture problem: if a moving object is viewed through a minimal window, or if
the window does not contain sufficient information, the direction of motion of a local feature
may be ambiguous.

Shi and Tomasi [2] proposed a selection criterion that is optimal by construction: “a
good window is one that can be tracked well”, that is, the notion of a good window is based on
the method used for tracking. Namely, let

∇I= [Ix Iy] =

[
∂ I

∂x
∂ I

∂y

]
(5.1)
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be the image derivatives in the x and y directions of a given image I, and let

Z = ∑
Ω

[
Ix

2 IxIy
IxIy Iy

2

]
(5.2)

be the 2× 2 gradient matrix in a given window Ω. According to Shi and Tomasi, if λ1 and λ2
are the two eigenvalues of Z, then Ω is selected as a trackable window if

min(λ1,λ2)> λ (5.3)

for some predefined threshold λ . Precisely, a good feature is a region with high intensity vari-
ation in more than one direction, such as corners and highly textured regions. We shown in
Figure 5.3, the eigenvalues for five windows selected on different locations of a license plate
region.

λ1 = 8
λ2 = 0

λ1 = 20952
λ2 = 37

λ1 = 14298
λ2 = 20

λ1 = 4388
λ2 = 1996

λ1 = 5445
λ2 = 2498

Figure 5.3: Tracking confidence: from left to right, five selected windows with their respective
eigenvalues.

5.2 Feature tracking
The computation of 2D image velocities, or optical flow, is based on the fact that the

intensities of pixels in a small region in two consecutive frames remain constant but the position
may change, that is

I(u, t)≈ J(u+ ~d, t +∆t) (5.4)

where ~d = (xd,yd) denotes the displacement of a point u = (xu,yu), and ∆t is the time interval
to the next frame in sequence. In this context, the goal of the Lucas-Kanade algorithm [3] is to
minimize the sum of the squared error between these two images, for a small image region Ω,
that is

E = ∑
Ω

[
I(u)− J(u+ ~d)

]2
(5.5)
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where E is the residual error to be minimized. Note that the parameter t was removed from I
and J for simplicity.

A simple method to find the correct displacement vector ~d is to perform an exhaustive
search for all possible values of ~d in the domainDJ, but this is an expensive brute force approach
that requires high computational effort. To optimize the expression in Equation (5.5), the Lucas-
Kanade algorithm assumes that a current estimate of ~d is known and then iteractively solves for
increments ~∆d, namely

E = ∑
Ω

[
I(u)− J(u+(~d + ~∆d))

]2
(5.6)

updating the parameter ~d at each iteration

~d = ~d + ~∆d. (5.7)

These steps are interacted, with subpixel accuracy, until the convergence of parameter ~d. The
derivation of the Lucas-Kanade algorithm is out of the scope of this dissertation, but it uses
the image derivatives of I, as shown in Equation 5.2, the difference of images I and J, and an
iterative solution of a Newton-Raphson procedure to find a good match.

An assumption of the LK algorithm is that the motion is small (order of one pixel
between the two images). To overcome this limitation, Bouguet [48] described a pyramidal
feature tracking, also known as KLT. More precisely, let I0, I1, . . . , I` be a multi-scale image
pyramid. The base I0 of the pyramid is the highest resolution image I, and each subsequent
image (level) Ik is a copy of the preceding one Ik−1, reduced in width and height by a constant
factor, usually of 1/2. Therefore level Ik has 1/22k as many pixels as level I0. The maximum
level ` depends on the size of the original image and on the maximum allowed displacement.

The optical flow is computed at the deepest pyramid level I`. The result of that com-
putation is propagated to the upper level I`−1 in the form of a guess for the pixel displacement.
Then, the refined optical flow is computed at level I`−1, and the result is propagated to level
I`−2, and so on up to level 0 (the original image).

As depicted in Figure 5.4, in our system the KLT algorithm is used to align a set of n
template regions T{1,...,n} ∈ I, over the license plate region, to an input image J, where the point
ui is the center of the image template Ti.

5.3 Motion prediction
As observed by Bouguet [48], the maximum pixel displacement d that the pyramidal

KLT algorithm can handle is given by d = (2`+1− 1)δ , where ` is the maximum number of
pyramid levels and δ is the pixel motion allowed by elementary optical flow computation. That
is, for ` = 3 the maximum displacement allowed is about 15 pixels. Increasing the number
of levels may allow for larger displacements, but the window Ω at a higher pyramid level will
include data from a larger neighborhood of I, making the similarity property of Equation 5.4
harder to hold, and the system more susceptible to incorrect matches.

As the KLT algorithm can use a point’s previous motion to estimate its position in
the next frame, it can handle large displacements well, as long as the previous results were
fairly accurate. However, for the first frame in a sequence (i.e. the moment a license plate is
detected), there is no known motion. Let I = V(i) be the image where the license plate was
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Image I

Image J

ui

~di

Image I

Image J

ui

~di

Figure 5.4: Template region alignment: the displacement vector ~di should be determined to
minimize the difference between the image template, e.g. the window Ω centered at I(ui), and
the window Ω centered at J(ui + ~di).

detected, and J = V(i+1) be the next image from video sequence. If a vehicle is moving
fast, the displacement of the tracked points between I and J may be too large for us to use the
common assumption that ~d = (0,0) in Equation 5.6 when the displacement is unknown.

To overcome the limitation described above, an initial value for ~d is estimated by using
a different method for matching features extracted from I and J. We have used SIFT (Scale-
Invariant Feature Transform) features, which were proposed by Lowe [5]. SIFT is a popular
method for detecting and describing image keypoints, being invariant to scale and rotation, as
well as robust to illumination variations, and to affine and perspective distortions up to a certain
extent. SIFT was chosen for our system mostly because it is a popular and tested method, with
implementations readily available. Other similar descriptors might have been used for the same
purpose, such as SURF [49] or GLOH [50]. Internal details of SIFT are outside the scope of
this thesis, and can be found in [5].

We define two windows Ω1 ∈ I and Ω2 ∈ J, which are obtained by expanding the
license plate boundaries respectively by γ1 and γ2 pixels. Here, γ1 is a constant used only to
allow SIFT features to be properly extracted from the license plate region, since SIFT discards
regions too close to the image borders. The value of γ2 was selected so that the license plate still
appears inside Ω2, even for fast moving vehicles. SIFT features extracted from Ω1 are matched
to features extracted from Ω2, as shown in Figure 5.5. We have used the “nearest neighbor
distance ratio” matching strategy described by Mikolajczyk [50], in which a match occurs if the
ration between the distance from a feature to its nearest neighbor and the distance to its second
nearest neighbor is below a given threshold (0.6, in our experiments).

The obtained feature matches can be used to compute the displacement of each SIFT
feature between frames I and J. The average feature displacement is used as the initial value for
~d in Equation 5.6. Note that this process occurs only once for each detected license plate —
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(a) (b)

Figure 5.5: Sample images of SIFT keypoints matching. The lower two images correspond to
samples of window Ω1 and the upper two images correspond to samples of window Ω2.

after the motion is roughly predicted, the system relies on the KLT algorithm, which allows for
a faster and more accurate computation for the optical flow.

5.4 Outlier rejection
In statistics, an outlier is a data point which appears to be inconsistent with the rest

of the data [51]. For our system, an outlier is a motion vector that differs significantly from
the other computed motion vectors, due to a mismatch. This kind of mismatch, in our system,
may compromise the initial guess, resulting in a tracking failure, or may compromise the speed
estimation. To prevent against such failures, we used an outlier rejection routine, which is
applied for the motion vectors obtained by the KLT algorithm, as well as those obtained by
matching SIFT features.

The motion vectors ~di = (xi,yi) are initially estimated by the motion prediction mod-
ule (see Section 5.3) and refined with sub-pixel accuracy by the KLT feature tracking module
(see Section 5.2), where i = {1,2, . . . ,n} is the index of a set of individual features tracked or
keypoints matched. In order to discard outliers, we compute the mean (Equation 5.8) and the
standard deviation (Equation 5.9) of the displacements in the x and y axes. Namely,

µx =
∑

n
i=1 di(x)

n
µy =

∑
n
i=1 di(y)

n
(5.8)

σx =
∑

n
i=1(di(x)−µx)

2

n−1
σy =

∑
n
i=1(di(y)−µy)

2

n−1
(5.9)
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Then, we discard the motion vectors outside the three-sigma deviation in any direction. This
procedure is repeated until the standard deviation in both x and y axes become smaller than 0.5
pixel.

The outlier rejection step applied to KLT tracked features and to SIFT keypoint
matches is exemplified in Figures 5.6 and 5.7, respectively. In our experiments, the KLT track-
ing was extremely consistent, rarely requiring more than one iteration, even in situations with
rain or for noisy images.

Iteration
0

Iteration
1

Iteration
2

Figure 5.6: Outlier rejection for KLT tracked features: image samples with all motion vectors
(iteration zero), and first and second iterations of the outlier rejection step.
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Figure 5.7: Outlier rejection for SIFT keypoints matches: the image on the left show all
matching keypoints and the image on the right show the remaining keypoints after the outlier
removal step. For this sample, 3 iterations were required.



Chapter 6

Speed Measurement

Our system estimates vehicle speed based on the motion vectors obtained by the fea-
ture selection and tracking method (see Chapter 5). Each motion vector ~di can be associated
with a measurement of a vehicle’s instantaneous speed in the image plane at a particular time,
given in pixels per frame. To estimate the vehicle speed, these measurements are averaged and
converted to meters per second (m/s) or kilometers per hour (km/h), in the ground plane. To
convert the displacements from pixels to meters, we employ a perspective rectification method
based on known real-world distances, which produces a displacement ~vi in the ground plane
from each motion vector ~di (see Figure 6.1). To convert the time unit from frames to seconds,
we use the camera frame rate, which is supposed to be constant. These steps are detailed in the
following sections.

Image plane

Road plane

~di

~vi

Figure 6.1: Vehicle speed estimation scheme.
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6.1 Camera model

pw = (xw,yw,zw)

pi = (xi,yi)

~xc

~yc

~zc

~xw

~yw

~zw

Figure 6.2: The pinhole camera model (adapted from Bradski and Kaehler [52]).

A camera model describes the mapping between points in a 3D space and pixels in the
2D image plane. The pinhole camera, depicted in Figure 6.2 is the simplest model, and provides
a good approximation to the behavior of most real cameras [53]. In the pinhole camera model,
light reflected or emitted from a point pw = (xw,yw,zw)

T in the world enters the camera through
an infinitely small aperture (the center of projection), being projected into an image plane inside
the camera. Let pc = (xc,yc,zc)

T be a point in the camera coordinate system — a coordinate
system where the x and y axes are aligned to the image plane, and the origin is located at the
center of projection. According to the pinhole projection model, point pc projects in the image
plane at image coordinates pi = (xi,yi)

T, given by

xi =
f · xc

zc
+ cx yi =

f · yc

zc
+ cy (6.1)

where f is the camera’s focal length, or the distance between the image plane and the center of
projection; and (cx,cy) are the coordinates of the principal point (in pixels, e.g. cx = N/2 and
cy = M/2 indicate the principal point is at the center of the image). For the sake of simplicity,
we consider a single value f , in pixels, for the focal length — in practice, the value is converted
from physical units to pixels, and if the pixels are rectangular rather than square, different values
are used for the x and y axes. Equation 6.1 can be expressed using homogeneous coordinates,
with the transformation being given by a 3×3 camera intrinsic matrix, that is xi

yi
1

=

 zc · xi
zc · yi

zc

=

 f 0 cx
0 f cy
0 0 1

 xc
yc
zc

 (6.2)
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In the equations above, point pc = (xc,yc,zc)
T is given in the camera coordinate system. To

relate points in the world coordinate system to the camera coordinate system, a 4×4 extrinsic
matrix is used: 

xc
yc
zc
1

=


rxx rxy rxz tx
ryx ryy ryz ty
rzx rzy rzz tz
0 0 0 1




xw
yw
zw
1

 (6.3)

The upper right 3×3 sub-matrix of the extrinsic matrix is the orthonormal (rotation)
matrix, that determines the orientation of the camera axes relative to the scene axes. The column
vector T = (tx, ty, tz)T contains the camera coordinates of the world system’s origin.

Equations 6.2 and 6.3 can be combined into a single linear equation by

 xi
yi
1

=

 zc · xi
zc · yi

zc

=

 f 0 cx
0 f cy
0 0 1

 rxx rxy rxz tx
ryx ryy rxz ty
rzx rzy rxz tz




xw
yw
zw
1

 (6.4)

A particular case of the above transformation occurs when all the 3D points lie on the
same plane. In that case, we can set zw = 0, simplifying Equation 6.4 to xi

yi
1

=

 zc · xi
zc · yi

zc

=

 f 0 cx
0 f cy
0 0 1

 rxx rxy tx
ryx ryy ty
rzx rzy tz

 xw
yw
1

 (6.5)

The intrinsic and extrinsic matrices can be joined in a single 3×3 matrix H, that is

H =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

=

 f 0 cx
0 f cy
0 0 1

 rxx rxy tx
ryx ryy ty
rzx rzy tz

 (6.6)

Equation 6.6 shows that, when all the 3D points lie on the same plane, the camera
model is completely specified once the 3× 3 matrix H is specified [54]. That means points in
the same world plane can be mapped to the image plane by a homography — a plane-to-plane
projective transformation. Our system benefits from this property by assuming that each street
lane lies on a plane. That allows us to obtain (plane) world coordinates from image coordinates
based on a single view of the scene, a process sometimes referred to as inverse perspective
mapping [55]. Section 6.2 details the perspective rectification procedure.

A final note about the considered camera model is that it is an approximation that will
produce incorrect results if there is a significant amount of radial distortion or sensor inclina-
tion. Initial tests performed using a camera calibration algorithm [52] showed that the camera
used in our experiments had negligible sensor inclination and radial distortion, especially in the
measurement area. For that reason, we opted for a simpler scheme, which does not attempt to
explicitly recover camera and distortion parameters. That makes the camera calibration proce-
dure simpler, and less prone to errors introduced by noisy measurements.
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6.2 Perspective rectification

The purpose of perspective rectification is obtaining the coordinates of a point p̂w =
(xw,yw,1)T in the world plane from its position pi in the image. The homography is an invertible
transformation [56], and the inverse transformation is also a homography, namely

pi = H p̂w (6.7)

p̂w = H−1 pi (6.8)

The homography matrix H (or its inverse, H−1) may be obtained by associating points
in the image to known coordinates in the world plane. Suppose image point pi = (xi,yi)

T is as-
sociated with a known position p̂w = (xw,yw,1)T in the world plane. From Equations (6.5), (6.6)
and (6.7) this correspondence provides

xi =
h11 · xw +h12 · yw +h13

h31 · xw +h32 · yw +h33
(6.9)

yi =
h21 · xw +h22 · yw +h23

h31 · xw +h32 · yw +h33
(6.10)

These equations can be rearranged, resulting in

h11 · xw +h12 · yw +h13 = h31 · xw · xi +h32 · yw · xi +h33 · xi (6.11)

h21 · xw +h22 · yw +h23 = h31 · xw · yi +h32 · yw · yi +h33 · yi (6.12)

Suppose we have 4 image points p0
i , p1

i , p2
i , p3

i , as well as their respective know coor-
dinates in the world plane p̂0

w, p̂1
w, p̂2

w, p̂3
w. Assuming no three points are collinear and they all

lie on the same world plane, we have 9 unknowns and 8 equations. We usually set h33 to 1, and
arrange all the 8 equations as a linear system:

x0
w y0

w 1 0 0 0 −x0
w · x0

i −y0
w · x0

i

x1
w y1

w 1 0 0 0 −x1
w · x1

i −y1
w · x1

i

x2
w y2

w 1 0 0 0 −x2
w · x2

i −y2
w · x2

i

x3
w y3

w 1 0 0 0 −x3
w · x3

i −y3
w · x3

i

0 0 0 x0
w y0

w 1 −x0
w · y0

i −y0
w · y0

i

0 0 0 x1
w y1

w 1 −x1
w · y1

i −y1
w · y1

i

0 0 0 x2
w y2

w 1 −x2
w · y2

i −y2
w · y2

i

0 0 0 x3
w y3

w 1 −x3
w · y3

i −y3
w · y3

i



·



h11

h12

h13

h21

h22

h23

h31

h32



=



x0
i

x1
i

x2
i

x3
i

y0
i

y1
i

y2
i

y3
i



(6.13)

By solving Equation (6.13), we may obtain the homography matrix H. Note that the
same approach may be used to obtain H−1, which is also a homography matrix.
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Figure 6.3: Perspective rectification. The input frame is rectified for illustrative purposes only,
the actual system manipulates a sparse set of points.

To solve Equation 6.13, we need four image points, as well as their coordinates in the
world plane. A common choice is selecting four points that form a quadrilateral in the image
and a rectangle with size Rw×Rh meters in the world plane, as shown in Figure 6.3. Based on
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the size of the rectangle, we may establish a direct relation between meters and pixels. If we set
p̂0

w as the world plane origin, we have

p̂0
w = (0,0) (6.14)

p̂1
w = (Rw,0) (6.15)

p̂2
w = (0,Rh) (6.16)

p̂3
w = (Rw,Rh) (6.17)

The procedure to obtain the homography matrix H then consists in selecting p̂0
w, p̂1

w,
p̂2

w and p̂3
w, finding correspondences for these points in an image captured by the camera, and

solving Equation 6.13. The rectangle is usually obtained by placing a known planar object on
the desired plane (one of the road lanes, for our problem). For our system, we have used as
references the markings left on the asphalt by the inductive loop detectors. A different homog-
raphy matrix was obtained for each road lane, i.e. instead of a single ground plane, we assume
each lane lies on a different plane. Note that there are more sophisticated methods, such as
RANSAC [52], which obtain the homography based on more than 4 correspondences, but these
methods rely on combining results produced by the same reasoning discussed above.

6.3 Vehicle speed estimation

The feature selection and tracking method (see Chapter 5) produces, for each vehicle
and each pair of frames, a set of motion vectors ~di = ui(t)−ui(t−∆t), where ui(t) is the feature
position in the current video frame, ui(t − ∆t) is the feature position in the previous video
frame, ∆t is the frame interval, and i = {1,2, . . . ,n} is a sequence of tracked features. In order
to estimate the vehicle speed, we need to compute the feature displacements in the real world,
denoted by ~vi (see Figure 6.1). Assuming that all the motion vectors for a vehicle lie on the
same plane, we may use the perspective rectification approach to obtain ~vi from Equation 6.8,
namely

~vi = H−1ui(t)−H−1ui(t−∆t) (6.18)

The displacement in meters between frames t−∆t and t for a motion vector ~ui can
be obtained by the Euclidean norm of~vi, i.e. ‖~vi‖. Each displacement vector can be associated
with a measurement of the vehicle’s instantaneous speed, given by

si =
‖~vi‖
∆t

(6.19)

where ∆t is the time, in seconds, between two frames. This time is supposed to be constant,
and is the inverse of the frame rate — e.g. for a frame rate of 30 frames per second, ∆t = 1/30.
The instantaneous vehicle speed is estimated by averaging the values of si for a set of tracked
features, namely

s =

n

∑
i=1

si

n
(6.20)
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where n is the number of tracked motion vectors.
The assumption that all the motion vectors for a vehicle lie on the same plane is a

simplification, used so that the actual 3D position of the tracked features does not have to be
discovered. As the actual license plates are always higher than the road level, the computed
speeds will be greater than the actual vehicle speeds. To mitigate the effects of these erro-
neous measurements we multiply each vehicle’s measured speed by a constant factor c, which
is smaller than 1, namely

s′ = s · c (6.21)

where s′ is the instantaneous speed in m/s, computed for each interval of frames.
As shown in Chapter 7, the use of the c factor is simple but effective, as long as the

tracked features have approximately the same distance from the ground.
In order to provide a fair comparison between the estimated speed and the ground

truth speed, we define a speed measurement region close to the ground truth loop detectors, as
shown in Figure 6.4. We average the instantaneous speed s′ across frames for a given vehicle
while it is located in the speed measurement region, resulting in the final speed S f .

Figure 6.4: Speed measurement region.
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Chapter 7

Experiments and Results

In this chapter, we present the experiments performed to evaluate our system, and a
discussion about the obtained results. We first describe the dataset created for this purpose, as
well as the considered metrics. We then present the parameters selected for the tested methods.
Finally, we evaluate our system and compare it with other approaches.

7.1 Dataset

For our tests, we used 20 videos divided in 5 subsets according to weather and record-
ing conditions, with frame resolution of 1920× 1080 pixels and recorded at 30.15 frames per
second. They are summarized in Table 7.1. In addition, we created for each video a ground
truth file, in a simple XML format, containing the bounding boxes with the first license plate
occurrence of each vehicle, and the corresponding ground truth speed. The ground truth for the
vehicle license plates was obtained by human inspection of the images. The ground truth speeds
were obtained from a high precision speed meter based on inductive loop detectors, properly
calibrated and approved by the Brazilian national metrology agency (Inmetro).

Subset Duration
[min]

No. videos No. vehicles No. plates No. speed No. valid Quality

01 34 4 1,146 1,128 1,033 1,019 [h]

02 169 11 4,829 4,713 4,345 4,241 [l]

03 26 2 960 936 876 855 [n]

04 41 2 1,045 1,034 928 917 [n,r]

05 20 1 869 800 795 734 [l,b]

Total 291 20 8,849 8,611 7,977 7,766

Table 7.1: Characteristics of the videos in our dataset. The quality options are: [h] high-
quality, [n] frames affected by natural or artificial noise, [l] frames affected by severe lighting
conditions, [b] motion blur, and [r] rain.

45
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The Venn diagram in Figure 7.1 shows the relation between the sets “vehicles” (No.
vehicles), “vehicles with license plate” (No. plates), “vehicles with speed ground truth” (No.
speed) and “vehicles with license plate and speed ground truth” (No. valid).

SET OF VEHICLES IN DATABASE

NO. PLATES

NO. SPEED

NO. VALID

Figure 7.1: Set of vehicles considered for each problem: the rectangle depicts the set of vehicles
used to evaluate the motion detection module; the left circle depicts the set of vehicles used to
evaluate the license plate detection module; and the dashed area depicts the set of vehicles used
to evaluate the entire system, that is, vehicles with license plates and with ground truth speed.

The histograms of vehicles per lane and vehicles per speed range, considering the
entire dataset, are shown in Figures 7.2 and 7.3. Note, there is a concentration of vehicles in the
[40-59] km/h speed range, this is due to the speed limit of this roadway, which is 60 km/h.
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Figure 7.2: Vehicles per lane.

In our manual ground truth annotation, we include a flag for motorcycles and non-
motorcycles (ordinary vehicles). From that information, we noted that only 4.5% of the total
number of vehicles are motorcycles. We also noted that the inductive loop detector was able
to measure the speed of 43% of all motorcycles and 92% of all ordinary vehicles. Indeed, the
motorcycles represent only 2.1% of the No. valid dataset.
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Figure 7.3: Vehicles speed histogram.

7.2 Metrics
To evaluate the motion detection performance, we used a metric to compare two rect-

angles r and s, which takes into account the disproportional size between a region of interest,
which bounds the whole vehicle, and a license plate region. This metric is defined as

m(r,s) =

{
1 if area(r∩ s)

min(area(r),area(s)) > λ

0 otherwise
(7.1)

for some threshold λ .
To evaluate the license plate detection performance, we used a metric to compare two

rectangles r and s — which are supposedly to have nearly the same size — defined by the
PASCAL Visual Object Detection Challenge (VOC) [57], defined as

m(r,s) =

{
1 if area(r∩ s)

area(r∪ s) > 0.5

0 otherwise
(7.2)

The threshold of 0.5 (50%), used in the PASCAL/VOC challenge, was meant to account for
inaccuracies in the ground truth bounding boxes.

The extension of both metrics m to a set of rectangles S = {s1,s2, . . . ,s|S|} is given by
the formula

m(r,S) = max
i={0,...,|S|}

m(r,si) (7.3)

The precision p and recall r scores, as described by Wolf et al. [58], are given by

p =

|D|

∑
i=1

m(di,G)

|D|
r =

|G|

∑
i=1

m(gi,D)

|G|
(7.4)

where G = {g1,g2, . . . ,g|G|} is the set of ground truth license plate regions, and D =
{d1,d2, . . . ,d|D|} is the set of license plates reported by the detector. For ranking purposes,



48

the ICDAR 2005 committee used the f measure [59] which is the harmonic mean of precision
and recall,

f =
2

1/p+1/r
. (7.5)

7.3 Settings
In this section we describe the parameter selection for the compared methods and for

the experimental setup. In order to properly select the fixed parameters of each method we built
a “training set” with 5 videos (25% of the original dataset size), one from each different subset.

7.3.1 Camera settings
In our tests, we used a 5-megapixel CMOS image sensor, connected to a single-board

computer called Raspberry PI for video compression and storage. The sensor was configured
to capture images with 1920× 1080 pixels at 30.15 frames per seconds, using a fixed shutter
(time of exposure for each frame) of 1.8 milliseconds (except for subset 05, in which was used
a shutter of 3.2 milliseconds). The videos were compressed with the standard H.264/AVC,
configured with high-level quality options, in order to reduce the artifacts caused by video
compression. The video camera was installed at 5.5 meters high. The videos were recorded
during the day due to the lack of artificial illumination, and due to the low-cost sensor and lens
of our camera, which has low light sensibility.

7.3.2 Motion detection settings

Since vehicles usually appear in the video sequence with relative high speed, we con-
figure our binary energy image (MEI) to show fast movements, setting the pixel threshold to
ξ = 0.17, and the expected motion to τ = 1 frame interval (see Equations 3.1 and 3.2).

We optimize the motion detection by using a subsampling factor of s = 4, chosen
according to our tests presented in Section 7.4.1. The pixel subsampling factor is described in
Section 3.4. The vertical projection profile parameters of Equation 3.5 were configured with the
smoothing window size to η = 67/s+1 (i.e. η = 17), and the number of iterations to κ = 3.

The event area (EA) — see Figure 3.3 — was selected as a rectangle mainly at the
bottom of the image, using x1= 24, x2= 1896, y1= 280, and y2= 1056 (in pixels coordinates).

7.3.3 License plate detection settings
The geometric parameters for the license plate detectors were chosen based on the

manually annotated license plate dimensions in the ground truth (see Figure 7.4).
In the evaluation Section 7.4, we compare the proposed license plate detector to the

following algorithms: the SnooperText [30], the Zheng et al. [28] algorithm, and the Stroke
Width Transform (SWT) [29]. The geometric parameters were chosen according to the mean
license plate width and height for our database. In order to choose the best non-geometric
parameters for each evaluated method, we plotted figures containing the precision-recall and
the f-measure, varying each parameter individually, as follows.
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Figure 7.4: The license plate width and height histogram for the whole database. The mean
width and height were 107 pixels and 30 pixels respectively.

Proposed license plate detector

The threshold value used to compute the vertical edges (see Section 4.1) for ordinary
vehicles was chosen as γ = 2, as shown in Figure 7.5. The license plate of motorcycles was
treated as a special case, and we find that γ = 4 is the best value for this kind of vehicles. The
edge filtering stage (see Section 4.2) was configured with wmin = 4, hmin = 4, wmax = 300, and
hmax = 120. In the region grouping process, we find that a structuring element b = 1×7 is the
best option for our training dataset, as shown in Figure 7.6. The minimum number of positive
region classifications by T-HOG (see Section 4.4) was set up to υ = 8, according to Figure 7.7.
As described by Minetto et al. [30], the region grouping module parameters t1 (max relative
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Figure 7.5: Performance of the proposed detector according to the edge threshold value γ .
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Figure 7.6: Performance of the proposed detector according to the structuring element size b.

height), t2 (maximum relative letter spacing) and t3 (max relative y offset) in Equation 4.6 of
Section 4.3 were set up as 0.7, 1.1, and 0.4, respectively.

SnooperText

The fixed parameters of the SnooperText algorithm were set up as follows: we se-
lected a window size of 19× 19 pixels, as shown in Figure 7.8, for the toggle segmentation
(ms parameter); a minimum contrast (cm = 18), see Figure 7.9; and the percentage of fore-
ground/background classification (p f b = 86), see Figure 7.10. These parameters are described
in details in Minetto et al. [30]

Zheng et al. algorithm

In order to find the optimal values for the Zheng et al. algorithm, we vary the following
parameters: the edge strength (es), the parameters Tshort and Tlong, to filter image edges that are
too short or too long, and the percentage of license plate edges inside a rectangular region Tplate.
These parameters are described in details in Zheng et al. [28]. As shown in Figures 7.11-7.13,
the best values were found to be es = 3, Tshort = 14, Tlong = 76 and Tplate = 0.25.

Stroke Width Transform (SWT)

For the SWT detector, we vary the low and high threshold values of the Canny edge
detector (Tlow and Thigh), as shown in Figure 7.14. Among those tested, we found that Tlow = 75
and Thigh = 150 were the best parameters.
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Figure 7.9: Performance of SnooperText according to the contrast parameter cm.
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Figure 7.11: Performance of the Zheng et al. algorithm according to the edge strength param-
eter es.
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Figure 7.13: Performance of the Zheng et al. algorithm for the edge filtering parameters Tshort
and Tlong.
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7.3.4 Speed estimation settings

The perspective rectification (see Section 6.2) was applied to each road lane individ-
ually. For each lane, four points were picked manually from the ground, near to the corners of
the inductive loop detector. The rectified reference points are the vertices of a world rectangle
with 2 meters wide and 4.8 meters high (see Figure 6.3).

The values used for perspective rectification and speed estimation for all road lanes are
shown in Table 7.2. The resulting homography transformation matrices (H{1,2,3}) are presented
in Equation 7.6 — the values were truncated to four decimal places.

Road lane (x0
i ,y

0
i ) (x1

i ,y
1
i ) (x2

i ,y
2
i ) (x3

i ,y
3
i ) Rw Rh c

Lane 1 (278, 52) (525, 44) (180, 293) (494, 272) 2.00 4.80 0.972

Lane 2 (649, 43) (896, 37) (650, 266) (954, 254) 2.00 4.80 0.933

Lane 3 (1020, 39) (1266, 43) (1108, 250) (1406, 251) 2.00 4.80 0.901

Table 7.2: Perspective rectification and speed estimation setup for each road lane.

H1 =

 0.4575 0.4551 95.8097
0.0402 1.6626 −5.5362
−0.0001 0.0011 1.0000

 ,
H2 =

 0.4589 0.7075 337.2005
0.0358 1.7245 −7.7187
−0.0000 0.0011 1.0000

 ,
H3 =

 0.3720 0.9234 589.9877
−0.0363 1.7035 54.5783
−0.0001 0.0011 1.0000


(7.6)

The feature tracker was configured to select 10 features without replacement, i.e. the features
are selected only in the first frame where the license plate was detected.

7.4 Evaluation

In this section we used the full dataset (training-set + testing-set) for evaluation. The
tests were carried out on an Intel Core i7 machine (2.2 GHz) with 12 GB of RAM running
Linux and C++. In the next sections we evaluate each part of our system individually and, at
the end of Section 7.4.3, we present the overall performance for the proposed system with all
modules together.
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7.4.1 Motion detection evaluation

The motion detection module uses a regular sparse grid for pixel sub-sampling —
spanning the whole motion history image — in order to speed up the search process for vehicle
motion. Note, however, that this time optimization may cause a super segmentation (region
splitting) or loss in some parts of the object (regions without a license plate).

The sub-sampling ratio parameter was defined as 1/s for each row and column (see
Section 3.4). For the sake of simplicity, let s× s be the image sub-sampling step for rows and
columns, respectively. The trade-off between running time and precision-recall for several s
values is shown in Table 7.3.

The performance was evaluated by using the precision and recall metrics of Equa-
tion 7.4, with the metric m of Equation 7.1. We performed tests with two different thresholds
λ = 1.0 and λ = 0.5. The former consider only those license plates fully within some region of
interest, while the latter consider those with at least 50% inside some region of interest.

Subsampling 1×1 2×2 4×4 8×8 16×16 32×32

p r p r p r p r p r p r

λ = 1.0 0.86 0.99 0.86 0.99 0.86 0.99 0.81 0.99 0.69 0.99 0.58 0.99

λ = 0.5 0.87 0.99 0.88 0.99 0.87 1.00 0.84 1.00 0.74 1.00 0.65 1.00

Average time [ms] 21.50 7.97 3.54 1.36 0.61 0.20

Table 7.3: ROI (with license plates) detection performance: the precision p, recall r and
average time (in milliseconds, for each frame) for seven subsampling configurations and two
overlapping thresholds.

Note that, the higher is the subsampling factor, the lower is the processing time. How-
ever, the number of ROIs without any license plate was also increased, as can be verified by the
precision parameter, resulting in many unnecessary license plate detection calls. We chose a
subsampling factor of 4×4 in our system.

7.4.2 License plate detection evaluation

We compared our license plate detector against three text and license plate detectors
described in the literature (see Section 2.2). Specifically, we compared it with SnooperText [30],
the Zheng et al. [28] algorithm, and the Stroke Width Transform (SWT) [29]. The results
for each one of the five video subsets are shown in Table 7.4. As we can see, our detector
significantly outperformed the other approaches in all tests.

Samples of license plate detection from the proposed method are shown in Fig-
ure 7.15. Note that the license plates were identified correctly even in situations with severe
image noise or motion blur.
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PROPOSED

DETECTOR
SNOOPERTEXT ZHENG et al. SWT

p r f p r f p r f p r f

Subset01 0.96 0.94 0.95 0.81 0.88 0.84 0.92 0.88 0.90 0.76 0.61 0.68

Subset02 0.92 0.84 0.88 0.86 0.81 0.83 0.45 0.29 0.35 0.28 0.23 0.25

Subset03 0.94 0.94 0.94 0.56 0.79 0.66 0.87 0.90 0.88 0.66 0.62 0.64

Subset04 0.94 0.92 0.93 0.44 0.71 0.54 0.91 0.88 0.89 0.79 0.58 0.67

Subset05 0.88 0.82 0.85 0.76 0.72 0.74 0.48 0.48 0.48 0.15 0.15 0.15

Total 0.93 0.87 0.90 0.73 0.80 0.76 0.65 0.52 0.58 0.44 0.37 0.40

Table 7.4: License plate detection performance evaluation, where p means precision, r recall
and f is the harmonic mean of precision and recall. The boldface values are the maxima in each
row among the proposed detector, SnooperText, Zheng et al., and SWT.

The detection errors were caused mainly in the hypothesis generation phase, where
true license plate regions were eliminated by some filtering criteria due to the fact of being
connected with a background region. Samples of detection errors are shown in Figure 7.16.

The average execution time to process each region of interest (ROI) was: 58 millisec-
onds for SnooperText; 918 milliseconds for Zheng et al.; 402 milliseconds for SWT; and 195
milliseconds for our detector. In Figure 7.17 are shown examples of images from the segmen-
tation step from each evaluated license plate detector.

7.4.3 Vehicle speed estimation evaluation

The speed performance was determined by comparing the estimated speed, returned
by a given system, with the available ground truth speed, obtained from the inductive loop
detector. According to the standard adopted in the USA [60], an acceptable estimative of speed
must be within the [−3 km/h, +2 km/h] error interval. These limits are more restrictive than
those adopted in Brazil (of [−3 km/h, +3 km/h]) [61]. Therefore, we adopted in this section
the USA standard, however some results for the Brazilian standard are shown in Table 7.5.

The speed error distribution for our complete system, considering the No. valid ve-
hicles set, is shown in Figure 7.18. The maximum nominal speed error values for the whole
dataset were −4.68 km/h and +6.00 km/h, with a standard deviation of 1.36 km/h.

Examples of vehicle speed estimation using the complete system are shown in Fig-
ures 7.19 and 7.20. The feature tracker, set up to select the best 10 features in the license plate
region, achieved a percentage of 99.2% of vehicles being correctly tracked from the bottom part
of the images until the region of measurement. The averaged number of features tracked with
success, until the region of measurement, was of 5.7. On average, our tracking module spent
49.8 milliseconds per frame.

In order to verify the assumption that distinctive features from a license plate region
are good features to track and to estimate the vehicle speed, we compared our system against a
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Subset 01

Subset 02

Subset 03

Subset 04

Subset 05

Figure 7.15: Examples of license plate detection, returned by our system, for representative
samples of each subset.

similar approach but allowing “a free feature selection”, that is, a feature selection spread over
the whole vehicle region. The results are shown in Figure 7.21. For the same number of tracked
features, 10 in both experiments, our system achieved 96.0% of vehicles inside the speed limit,
while with a free selection of features only 73.4% were inside that limit. The averaged number
of features tracked with success, until the region of measurement, was of 4.6.

We also tested our system with an ideal license plate detector. That is, we used the
manually annotated license plate regions to verify the speed performance of our system in the
presence of very poor license plate regions, hard to be identified even by an human observer.
See Figure 7.22. As shown in Table 7.5, we achieved in this scenario 96.1% of vehicles inside
the speed limit.
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Figure 7.16: Samples of license plate detection errors returned by our system.

We also compared our system against a blob-based tracker. In this experiment, we
used a particle filter algorithm [62, 63] to track a region of interest, which was found by our
motion detection module and through an extensive set of experiments to determine the best
filter parameters and the ROI dimension. However, this approach was found to be unstable
for our application. We suspect that the reason is that our camera is installed very close to the
vehicles, in a way that the probabilistic search cannot precisely define the position of the vehicle
in all frames. The speed estimation by using this approach is shown in Figure 7.23.

PROPOSED

SYSTEM
PARTICLE

FILTER

IDEAL

DETECTOR

FREE FEATURE

SELECTION

Low Ideal High Low Ideal High Low Ideal High Low Ideal High

USA standard
[−3/+2 km/h]

1.1% 96.0% 2.8% 20.3% 22.1% 57.6% 0.9% 96.1% 3.0% 11.3% 73.4% 15.3%

Brazilian stan-
dard [±3 km/h]

1.1% 98.2% 0.7% 20.3% 30.9% 48.8% 0.9% 98.5% 0.6% 11.3% 79.9% 8.8%

Table 7.5: Speed estimation results considering four scenarios: the proposed system, the parti-
cle filter, the ideal detector (using the license plates from the ground truth), and the free selection
of features in the vehicle. The columns “Low”, “Ideal”, and “High” represent speed errors be-
low, above and within the acceptable limits, respectively.

Finally, we suspect that the assumption that all the vehicle license plates are located
nearly at the same height from the ground is the main cause of speed estimation errors. We
show in Figure 7.24(a) a sample from a negative error, where the license plate seems to be close
to the road plane, and in Figure 7.24(b) a sample from a positive error, where the license plate
is located above the expected height for a plate in an ordinary vehicle.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.17: Examples of images from the segmentation step for all detectors. In (a) the
original image. In (b), the segmentation of the proposed detector and (c) the license plate
detected, followed by the segmentation image of (d) SnooperText, (e) the Zheng et al. algorithm,
and (f) SWT.
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Figure 7.18: Speed error distribution for the whole database using the proposed approach to
track features inside the license plate.
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(a) 33.8 km/h (real 35.0 km/h) (b) 48.0 km/h (real 47.5 km/h) (c) 54.7 km/h (real 54.6 km/h)

(d) 45.7 km/h (real 46.1 km/h) (e) 46.2 km/h (real 47.7 km/h) (f) 45.5 km/h — real 48.0 km/h

Figure 7.19: Examples of vehicle speed estimation for those license plates shown in Fig-
ure 7.15. Samples from subset 01 (a,b,c) and subset 02 (d,e,f).
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(a) 47.9 km/h (real 49.4 km/h) (b) 27.2 km/h (real 28.8 km/h) (c) 48.5 km/h (real 47.4 km/h)

(d) 43.1 km/h (real 43.0 km/h) (e) 48.2 km/h (real 46.3 km/h) (f) 39.9 km/h — real 41.2 km/h

(g) 36.1 km/h (real 37.7 km/h) (h) 42.7 km/h (real 43.7 km/h) (i) 43.5 km/h (real 44.6 km/h)

Figure 7.20: Examples of vehicle speed estimation for those license plates shown in Fig-
ure 7.15. Samples from subset 03 (a,b,c), subset 04 (d,e,f) and subset 05 (g,h,i).
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Figure 7.21: Speed error distribution for free feature selection (feature selection spread over
the whole vehicle region): 73.4% of samples (light grey region) were inside the error interval
of +2/-3 km/h (maximum speed error allowed by USA regulatory authorities).

Figure 7.22: Examples of manually annotated license plates in poor conditions.
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Figure 7.23: Speed error distribution for a particle filter tracker: only 22.1% of samples (light
grey region) were inside the error interval of +2/-3 km/h (maximum speed error allowed by
USA regulatory authorities).

(a) 67.3 km/h (real 72.0 km/h) (b) 61.8 km/h (real 56.1 km/h)

Figure 7.24: Samples of speed estimation errors returned by our system.
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Chapter 8

Conclusions

In this master thesis, we were primarily concerned with the vehicle speed estimation
problem. For that purpose, we collected almost five hours of full-hd quality videos (in a total
of 36 gigabytes), with associated ground truth speed (obtained from a high precision inductive
loop detector). The videos, with more than 8,000 vehicles from three different road lanes, were
recorded with a low cost camera, from a urban roadway of Curitiba, a city of Brazil, under
different weather and daylight conditions.

The proposed system is based on the selection and tracking of distinctive features
within each vehicle for speed estimation. Therefore, in order to reduce the complexity in han-
dling such amount of data, we developed a motion detection method, with a real-time response,
to efficiently narrow down the regions of the scene with vehicle motion. Then, we suppose that
distinctive features from the license plate region, such as letters corners, were good candidates
to estimate the speed, since they are in accordance with well-established criteria used to select
good features to track and are nearly at the same height from the ground.

We tested a well-known license plate detector and two state-of-the-art urban scene text
detectors for the task of license plate detection. However, they performed poorly in our problem
domain. To overcome this limitation, we proposed a novel license plate detector which uses
a texture classifier specialized to capture the gradient distribution characteristics of character
strokes that make the license plate letters. Then, to evaluate the performance of this part we
compiled from our videos, a set of ground truth files, in a simple XML format, containing
the bounding boxes of the license plate occurrences for each vehicle. We have shown that
our license plate detector achieved a 93% of precision and 87% of recall on this benchmark,
outperforming the other approaches.

We also have shown that the selective extraction of distinctive features from the li-
cense plate region outperformed an approach based on a free feature selection spread over the
whole vehicle, and also outperformed a particle feature tracking approach. In our experiments,
the speed estimation had an average error of -0.5 km/h, staying inside the +2/-3 km/h limit,
determined by the regulatory authorities in several countries, in over 96.0% of the cases.

As future work, we intend to verify if the distance of the license plate to the ground
can improve the speed estimation and we aim to apply an OCR on the detected license plates in
order to create a traffic speed control system with integrated surveillance tools, e.g. to compute
the traffic flow, to identify stolen vehicles or that have not paid the taxes, etc.

67



68



Bibliography

[1] Tom V. Mathew. Intrusive and Non-Intrusive Technologies. Technical report, 2014.

[2] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 593–600, 1994.

[3] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with an
Application to Stereo Vision. Joint Conference on Artificial Intelligence, pages 674–679,
1981.

[4] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Technical
report, 1991.

[5] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[6] C. Sun and S. Ritchie. Individual vehicle speed estimation using single loop inductive
waveforms. Journal of Transportation Engineering, 125(6):531–538, 1999.

[7] I. Sina, A. Wibisono, A. Nurhadiyatna, B. Hardjono, W. Jatmiko, and P. Mursanto. Vehicle
counting and speed measurement using headlight detection. In International Conference
on Advanced Computer Science and Information Systems (ICACSIS), pages 149–154, Sept
2013.

[8] Wei Zhang, Q.M.J. Wu, Guanghui Wang, and Xinge You. Tracking and pairing vehi-
cle headlight in night scenes. IEEE Transactions on Intelligent Transportation Systems,
13(1):140–153, March 2012.

[9] Ren-Huang Liou, Yi-Bing Lin, Yu-Long Chang, and Ming-Feng Chang. Deriving the
vehicle speeds from mobile telecommunications network. In International Conference on
ITS Telecommunications (ITST), pages 429–432, Nov 2012.

[10] K. Osamura, A. Yumoto, and O. Nakayama. Vehicle speed estimation using video data and
acceleration information of a drive recorder. In International Conference on ITS Telecom-
munications (ITST), pages 157–162, Nov 2013.

[11] D.J. Dailey, F.W. Cathey, and S. Pumrin. An algorithm to estimate mean traffic speed
using uncalibrated cameras. IEEE Transactions on Intelligent Transportation Systems,
1(2):98–107, Jun 2000.

69



70

[12] V.K. Madasu and M. Hanmandlu. Estimation of vehicle speed by motion tracking on
image sequences. In IEEE Intelligent Vehicles Symposium (IV), pages 185–190, June
2010.

[13] G. Garibotto, P. Castello, E. Del Ninno, P. Pedrazzi, and G. Zan. Speed-vision: speed
measurement by license plate reading and tracking. In IEEE Intelligent Transportation
System, pages 585–590, 2001.

[14] H. Zhiwei, L. Yuanyuan, and Y. Xueyi. Models of Vehicle Speeds Measurement with
a Single Camera. International Conference on Computational Intelligence and Security
Workshops (CISW), pages 283–286, 2007.

[15] C. Maduro, K. Batista, P. Peixoto, and J. Batista. Estimation of Vehicle Velocity and Traf-
fic Intensity Using Rectified Images. IEEE International Conference on Image Processing
(ICIP), pages 777–780, 2008.

[16] H. Palaio, C. Maduro, K. Batista, and J. Batista. Ground plane velocity estimation embed-
ding rectification on a particle filter multi-target tracking. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 825–830, May 2009.

[17] Huei-Yung Lin, Kun-Jhih Li, and Chia-Hong Chang. Vehicle speed detection from a single
motion blurred image. Image and Vision Computing (IVC) - Elsevier, 26(10):1327–1337,
2008.

[18] Sedat Dogan, Mahir Serhan Temiz, and Sitki Kulur. Real time speed estimation of moving
vehicles from side view images from an uncalibrated video camera. Sensors, 10(5):4805–
4824, 2010.

[19] Witold Czajewski and Marcin Iwanowski. Vision-based vehicle speed measurement
method. In International Conference on Computer Vision and Graphics: Part I (ICCVG),
10, pages 308–315, 2010.

[20] C. H. Xiao and N. H. C. Yung. A Novel Algorithm for Estimating Vehicle Speed from
Two Consecutive Images. IEEE Workshop on Applications of Computer Vision (WACV),
page 12, 2007.

[21] H. A. Rahim, U. U. Sheikh, R. B. Ahman, and A. S. M. Zain. Vehicle Velocity Estimation
for Traffic Survillance System. World Academy of Science, Engineering and Technology
(WASET), page 772, 2010.

[22] T.N. Schoepflin and D.J. Dailey. Dynamic Camera Calibration of Roadside Traffic Man-
agement Cameras for Vehicle Speed Estimation. Intelligent Transportation Systems (ITS),
2003.

[23] L. Grammatikopoulos, G. Karras, and E. Petsa. Automatic Estimation of Vehicle Speed
from Uncalibrated Video Sequences. Modern Technologies, Education and Professional
Practice in Geodesy and Related Fields, pages 332–338, 2005.

[24] Ilkwang Lee, Hanseok Ko, and D. K. Han. Multiple Vehicle Tracking Based on Re-
gional Estimation in Nighttime CCD Images. IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), 4:IV–3712–IV–3715, 2002.



71

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[26] Christos-Nikolaos E. Anagnostopoulos, Ioannis E. Anagnostopoulos, Ioannis D.
Psoroulas, Vassili Loumos, and Eleftherios Kayafas. License plate recognition from still
images and video sequences: A survey. IEEE Transactions on Intelligent Transportation
Systems, 9(3):377–391, 2008.

[27] Shan Du, Mahmoud Ibrahim, Mohamed Shehata, and Wael Badawy. Automatic license
plate recognition (ALPR): A state-of-the-art review. IEEE Transactions on Circuits and
Systems for Video Technology, 23(2):311–325, 2013.

[28] Danian Zheng, Yannan Zhao, and Jiaxin Wang. An efficient method of license plate loca-
tion. Pattern Recognition Letters (PRL), 26(15):2431–2438, 2005.

[29] Boris Epshtein, Eyal Ofek, and Yonatan Wexler. Detecting text in natural scenes with
stroke width transform. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 886–893. IEEE Computer Society, 2010.

[30] Rodrigo Minetto, Nicolas Thome, Matthieu Cord, Neucimar J. Leite, and Jorge Stolfi.
SnooperText: A text detection system for automatic indexing of urban scenes. Computer
Vision and Image Understanding, 122(0):92–104, 2014.

[31] John Canny. A Computational Approach to Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), PAMI-8(6):679–698, 1986.

[32] Rodrigo Minetto, Nicolas Thome, Matthieu Cord, Neucimar J. Leite, and Jorge Stolfi. T-
HOG: An effective gradient-based descriptor for single line text regions. Pattern Recog-
nition (PR), Elsevier,, 46(3):1078–1090, 2013.

[33] K. Deb and Kang-Hyun Jo. HSI color based vehicle license plate detection. In Inter-
national Conference on Control, Automation and Systems (ICCAS), pages 687–691, Oct
2008.

[34] Vahid Abolghasemi and Alireza Ahmadyfard. An edge-based color-aided method for
license plate detection. Image and Vision Computing (IVC) - Elsevier, 27(8):1134–1142,
2009.

[35] J. Ilonen, J.-K. Kamarainen, P. Paalanen, M. Hamouz, J. Kittler, and H. Kalviainen. Image
feature localization by multiple hypothesis testing of gabor features. IEEE Transactions
on Image Processing, 17(3):311–325, March 2008.

[36] Huiping Li, David Doermann, and Omid Kia. Automatic text detection and tracking in
digital video. IEEE Transactions on Image Processing (TIP), 9(1):147–156, 2000.

[37] W. Zhou, Houqiang Li, Yijuan Lu, and Qi Tian. Principal visual word discovery for auto-
matic license plate detection. IEEE Transactions on Image Processing (TIP), 21(9):4269–
4279, Sept 2012.



72

[38] A.F. Bobick and J.W. Davis. The recognition of human movement using temporal
templates. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
23(3):257–267, Mar 2001.

[39] R. Venkatesh Babu and K. R. Ramakrishnan. Recognition of human actions using motion
history information extracted from the compressed video. Image Vision Computing (IVC)
- Elsevier, 22(8):597–607, 2004.

[40] Md. Atiqur Rahman Ahad, J. K. Tan, H. Kim, and S. Ishikawa. Motion History Image:
Its Variants and Applications. Machine Vision Applications (MVA) - Springer, 23(2):255–
281, Mar 2012.

[41] Jaekyu Ha, R.M. Haralick, and I.T. Phillips. Document page decomposition by the
bounding-box project. In International Conference on Document Analysis and Recog-
nition (ICDAR), volume 2, pages 1119–1122 vol.2, Aug 1995.

[42] Rodrigo Minetto, Nicolas Thome, Matthieu Cord, Jonathan Fabrizio, and Beatrice Mar-
cotegui. Snoopertext: A multiresolution system for text detection in complex visual
scenes. In IEEE International Conference on Image Processing (ICIP), pages 3861–3864,
2010.

[43] Thomas Retornaz and Beatriz Marcotegui. Scene text localization based on the ultimate
opening. In International Symposium on Mathematical Morphology (ISMM), volume 1,
pages 177–188, 2007.

[44] Barton L. Anderson and Pawan Sinha. Reciprocal interactions between occlusion and
motion computations. In Proceedings of the National Academy of Sciences (1997), vol-
ume 94, pages 3477–3480, Apr 1997.

[45] David Marr, Tomaso Poggio, and Shimon Ullman. Bandpass channels, zero-crossings, and
early visual information processing. Journal of the Optical Society of America, 69(6):914–
916, 1979.

[46] Les Kitchen and Azriel Rosenfeld. Gray-level corner detection. Pattern Recognition
Letters (PRL) - Elsevier, 1(2):95–102, 1982.

[47] Hans Moravec. Obstacle avoidance and navigation in the real world by a seeing robot
rover. In Technical report CMU-RI-TR-80-03, Carnegie Mellon University, number CMU-
RI-TR-80-03. September 1980.

[48] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker.
Intel Corporation, Microprocessor Research Labs, 2000.

[49] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In
European Conference on Computer Vision (ECCV), pages 404–417, 2006.

[50] Krystian Mikolajczyk and Cordelia Schmid. A Performance Evaluation of Local De-
scriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
27(10):1615–1630, 2005.



73

[51] F. E. Grubbs. Procedures for detecting outlying observations in samples. Technometrics,
11:1–21, 1969.

[52] Dr. Gary Rost Bradski and Adrian Kaehler. Learning OpenCV, - 1st Edition. O’Reilly
Media, Inc., first edition, 2008.

[53] George Vogiatzis, Philip H. S. Torr, Steven M. Seitz, and Roberto Cipolla. Reconstructing
relief surfaces. Image and Vision Computing (IVC) - Elsevier, 26(3):397–404, 2008.

[54] Antonio Criminisi, Ian Reid, and Andrew Zisserman. A plane measuring device. 1997.

[55] Hua Li, Mingyue Feng, and Xiao Wang. Inverse perspective mapping based urban road
markings detection. In IEEE International Conference on Cloud Computing and Intelli-
gent Systems (CCIS), volume 03, Oct 2012.

[56] Guanghui Wang, Zhanyi Hu, Fuchao Wu, and Hung-Tat Tsui. Single view metrology from
scene constraints. Image and Vision Computing (IVC) - Elsevier, 23(9):831–840, 2005.

[57] Mark Everingham, Luc Van Gool, C. K. I. Williams, J. Winn, and Andrew Zisserman. The
PASCAL Visual Object Classes (VOC) challenge, 2009.

[58] C. Wolf and J.-M. Jolion. Object count/area graphs for the evaluation of object detection
and segmentation algorithms. International Journal on Document Analysis and Recogni-
tion (IJAR), 8(4):280–296, 2006.

[59] S.M. Lucas. Icdar 2005 text locating competition results. In International Conference on
Document Analysis and Recognition (ICDAR), pages 80–84 Vol. 1, Aug 2005.

[60] U.S. Departament of Transportation. Speed-measuring Device Performance Specifica-
tions: Across-the Road Radar Module, 2007.

[61] Portaria Inmetro n 544, de 12 de dezembro de 2014. http://www.inmetro.gov.
br/legislacao/rtac/pdf/RTAC002192.pdf. Accessed: 2015-07-16.

[62] P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-based probabilistic tracking. In
European Conference on Computer Vision (ECCV), pages 661–675, 2002.

[63] Particle Filter Object Tracking. https://web.engr.oregonstate.edu/
~hess/downloads/track.tar.gz. Accessed: 2015-07-16.

http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC002192.pdf
http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC002192.pdf
https://web.engr.oregonstate.edu/~hess/downloads/track.tar.gz
https://web.engr.oregonstate.edu/~hess/downloads/track.tar.gz

	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Motivation
	Statement of the problem
	System overview
	Publication
	Structure of the thesis

	Related work
	Vehicle speed estimation
	License plate detection

	Motion detection
	Motion history and motion energy images
	Motion intensity by vertical projection profile
	Regions of interest
	Performance optimization by pixel subsampling

	License Plate Detection
	Edge extraction
	Edge filtering
	Region grouping
	Region classification
	Discussion

	Feature Selection and Tracking
	Feature selection
	Feature tracking
	Motion prediction
	Outlier rejection

	Speed Measurement
	Camera model
	Perspective rectification
	Vehicle speed estimation

	Experiments and Results
	Dataset
	Metrics
	Settings
	Camera settings
	Motion detection settings
	License plate detection settings
	Speed estimation settings

	Evaluation
	Motion detection evaluation
	License plate detection evaluation
	Vehicle speed estimation evaluation


	Conclusions

