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“You can’t cross the sea merely by standing and staring at the water.”
Rabindranath Tagore

“Physics is mathematical not because we know so much about the
physical world, but because we know so little; it is only its

mathematical properties that we can discover”
Bertrand Russell
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when we created them”

Albert Einstein
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ABSTRACT

VARGAS BENÍTEZ, CÉSAR MANUEL. Contributions to the study of the Protein Fol-
ding Problem using Bioinspired Computation and Molecular Dynamics. 193 p. Docto-
ral Thesis – Graduate Program in Electrical and Computer Engineering, Federal Uni-
versity of Technology – Paraná. Curitiba, 2015.

The Protein Folding Problem (PFP) is considered one of the most important open cha-
llenges in Biology and Bioinformatics. In this thesis, a novel approach for simulating
the protein folding pathways is proposed where, instead using the three-dimensional
structure of the protein, the folding states are represented by Contact Maps (CM).
A two-dimensional Cellular Automata (2D-CA) evolver is used to simulate the fol-
ding process, where each configuration represents a folding state and it is obtained
according to its predecessor and a transition rule. Since finding transition rules for
simulating a dynamic behavior is a very difficult task, it is proposed a distributed
Gene-Expression Programming (GEP)-based approach, called pGEP-CA. Specific fit-
ness functions, based on similarity and symmetry measures, are proposed. Futher-
more, a heterogeneous parallel Ecology-inspired algorithm is proposed. This algo-
rithm, called pECO, is used for reconstructing the structures from the CMs, using the
3D-AB off-latticemodel. Moreover, to the best of our knowledge, it is presented the first
application of Molecular Dynamics (MD) to the PFP, using the same model of proteins.
Experiments were done to evaluate the adequacy of the proposed approaches. Also,
a brief analysis of the load balancing of the parallel architectures is presented. Results
show that the approaches obtained coherent results, suggesting their adequacy for the
problem. The induced transition rules by the pGEP-CA are able to generate 2D-CA
that represent CMs correctly. Concerning the pECO approach, results show that the
combination of concurrent evolutionary approaches took advantage of both the coevo-
lution effect and the different search strategies. In addition, it can be observed that the
MD approach is capable of displaying biological features such as the hydrophobic core
formation and the protein breathing motion. Furthermore, it is observed that parallel
processing was not only justified but also essential for obtaining results in reasonable
processing time. Finally, concluding remarks and several research directions for future
works are presented.

Keywords: Protein Folding, Bioinformatics, Evolutionary Computation, Parallel Com-
puting, Cellular Automata, Molecular Dynamics





RESUMO

VARGAS BENÍTEZ, CÉSAR MANUEL. CONTRIBUTIONS TO THE STUDY OF THE
PROTEIN FOLDING PROBLEM USING BIOINSPIRED COMPUTATION AND MO-
LECULAR DYNAMICS. 193 f. Tese de doutorado – Programa de Pós-graduação em
Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Pa-
raná. Curitiba, 2015.

O Problema de Dobramento de Proteínas (PDP) é considerado um dos desafios abertos
mais importantes da Biologia e Bioinformática. Nesta tese, uma nova abordagem para
simular os pathways de dobramento de proteínas é proposta onde, ao invés de utilizar
a estrutura tridimensional da proteína, os estados de dobramento são representados
por Mapas de Contatos (MC). Autômatos Celulares bidimensionais (2D-CA) são utili-
zados para simular o processo de dobramento, onde cada configuração representa um
estado de dobramento e é obtida em relação ao seu estado predecessor e uma regra
de transição. Determinar uma regra de transição para um dado comportamento dinâ-
mico representa uma tarefa complexa. Portanto, é apresentada uma abordagem dis-
tribuida baseada em Programação de Expressão Gênica, chamada pGEP-CA. Funções
de fitness específicas, baseadas em medidas de similaridade e simetria, são propostas.
Também, um algoritmo heterogêneo paralelo Ecologicamente-inspirado é proposto.
Este algoritmo, chamado pECO, é utilizado na reconstrução de estruturas a partir de
MCs, usando o modelo 3D-AB off-lattice. De acordo com o nosso conhecimento, é apre-
sentada a primeira aplicação de Dinâmica Molecular (DM) ao PFP, usando o mesmo
modelo de proteínas. Experimentos foram realizados para verificar a adequabilidade
das abordagens propostas. Além disto, uma breve análise sobre o balanceamento de
carga de processamento das arquiteturas paralelas é apresentada. Os resultados mos-
tram que as abordagens obtiveram resultados coerentes, sugerindo que são adequadas
para o problema. As regras de transição induzidas pelo pGEP-CA são capazes de gerar
2D-CA que representam MCs corretamente. Sobre a abordagem pECO, os resultados
demonstram que a combinação de abordagens evolucionárias concorrentes se benefi-
cia do efeito da coevolução e das diferentes estratégias de busca. Além disto, pode ser
observado que a abordagem de DM é capaz de levar a conformações que mimetizam
propriedades biológicas, como a formação do núcleo hidrofóbico e os movimentos de
respiração (breathing) das proteínas. Também foi observado que o processamento pa-
ralelo é essencial, permitindo a obtenção de resultados em tempos de processamento
razoáveis. Finalmente, as conclusões e diversas direções de pesquisa são apresentadas.

Palavras-chave: Dobramento de proteínas, Bioinformática, Computação Evolucioná-
ria, Computação Paralela, Autômatos Celulares, Dinâmica Molecular
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1 INTRODUCTION

“Proteins don’t have a folding problem. It’s we

humans that do.”

—Ram Samudrala

1.1 MOTIVATIONS

Nowadays, one of themost important and open challenging problems inMole-

cular Biology and Bioinformatics is to obtain a better understanding of the protein fol-

ding process. In this process, under physiological conditions, every protein folds into a

unique three-dimensional structure, that determines their specific biological function.

It is known that ill-formed proteins can be completely inactive or even harmful

to the organism. Several diseases are believed to be the result of the aggregation of ill-

formed proteins, such as Alzheimer’s disease, cystic fibrosis, Huntington’s disease and

some types of cancer (LUHESHI; DOBSON, 2009; BROADLEY;HARTL, 2009; CHENet

al., 2008). Therefore, acquiring knowledge about the tertiary structure of proteins is an

important issue, since such knowledge can lead to important medical and biochemical

advancements and even to the development of new drugs with specific functionality

(RÖTHLISBERGER et al., 2008; BROGLIA; TIANA, 2003).

Due to its great importance for Medicine and Biochemistry, researchers have

been focusing on the study of this process and, consequently, many information is

available. Thanks to the several genome sequencing projects being conducted in the

world, a large number of new proteins have been discovered. However, only a small

amount of such proteins have its 3-dimensional structure known. For instance, the

UniProtKB/TrEMBL repository 1 of protein sequences has currently around 92 million

records (as in March/2015), and the Protein Data Bank – PDB (BERMAN et al., 2000)

1Available at http://www.ebi.ac.uk/uniprot/
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has the structure of only 107,620 proteins (as in March/2015). This fact is due to the

cost and difficulty in unveiling the structure of proteins, from the biochemical point

of view. It is here that Computer Science plays an important role, developing compu-

tational models and approaches for the Protein Folding Problem (PFP). The simplest

computational model for the PFP is known as Hydrophobic-Polar (HP) model, both

in two (2D-HP) and three (3D-HP) dimensions (DILL et al., 1995). However, the com-

putational approach for searching a solution for the PFP using simple HP models was

proven to be NP-complete (ATKINS; HART, 1999).

Several methods have been developed for protein structure prediction from se-

quence. Moreover, template-based homology and threading/taxonomic methods use

information of previously solved native structures. However, ab initio methods per-

form the protein structure prediction without using any previously obtained structural

information. They are based on the principles of physics, where conformations are eva-

luated according to an energy or a scoring function. To the best of our knowledge, the

Molecular Dynamics (MD) approach (including its variations) is the only computatio-

nal methodology that really provides a time-dependent analysis of the folding process

(LIWO; KHALILI; SCHERAGA, 2005). Generally, it involves the three-dimensional

coordinates of the particles that form the protein and numerical integration of the clas-

sical equations of motion.

Despite the great advances in recent years, MD simulations have been limited

by the current computer hardware and their computationally expensive force calcula-

tion. Currently, to overcome such drawback, two solutions are to use coarse-grained

models and faster hardware (HARDER et al., 2012). For instance, there are proposed

methods that use distributed computing (i.e. Folding@home (LANE et al., 2013)) and

custom built special-purpose hardware.

An alternative way to reduce the inherent complexity of the simulations with

three-dimensional structures is to use Contact Maps (CMs), which are minimalistic

two-dimensional representations (VENDRUSCOLO;KUSSELL; DOMANY, 1997). Not-

withstanding, the use of CMs to study the protein folding have been sparsely explored.

In recent literature, methods have been developed for their prediction from sequence.

Furthermore, few research groups proposed heuristic approaches for protein structure

reconstruction from native CMs (VASSURA et al., 2011; DUARTE et al., 2010). Also,

they have been used in mining of secondary local structures (HU et al., 2002).

A particular class of computer programs for reproducing complex behaviors
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are the Cellular Automata (CA), in which a configurational state is determined accor-

ding to its predecessor and a transition rule. The two-dimensional version of the CA

(2D-CA) is suitable to model CMs. Therefore, we propose a novel approach for simu-

lating the protein folding using them, aiming at taking advantage of the previously

cited benefits of both approaches.

Despite being computationally simple, it is very hard to find a transition rule

for a given dynamic behavior. Therefore, a novel approach based on Gene Expression

Programming (GEP) for inducting transition rules of 2D-CA for simulating the protein

folding is presented in this thesis.

A reconstruction procedure of the three-dimensional structure of proteins is

need after the CM prediction, which has been proved to be NP-hard (VASSURA et al.,

2008b). Consequently, metaheuristic approaches seem to be the most reasonable algo-

rithmic choice for dealing with the problem. Regarding this issue, this thesis also pre-

sents a parallel ecological-inspired approach. It is based on Evolutionary Computation

algorithms working cooperatively, featuring the 3D-AB off-latticemodel of proteins.

1.2 OBJECTIVES

Themain objective of this thesis is to propose and apply computational methods

to the protein folding problem that can be used to reproduce folding pathways, aiming

at obtaining the three-dimensional structure of proteins, based on a coarse-grained mo-

del of proteins. The specific objectives are:

• To elaborate a study of the theoretical issues related to the Protein Folding Pro-

blem;

• To present an approach based on Cellular Automata for predicting Contact Maps

of proteins;

• To propose a Evolutionary Computation approach for finding transition rules of

Cellular Automata applied to the simulation of the protein folding process, using

Contact Maps;

• To develop a heterogeneous Bio-inspired Computation approach applied to the

reconstruction of protein structures from Contact Maps;
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• To study and develop parallel approaches in a Beowulf Cluster to speed up pro-

cessing time;

• To implement a Molecular Dynamics approach using a coarse-grained model of

proteins in order to simulate the folding process and generate the Contact Maps

that can be used for evaluating the performance of the proposed approaches;

• To present new benchmarks for the 3D-AB off-latticemodel;

1.3 OUTLINE

This thesis is divided into five chapters. Chapter 2 presents a review of the li-

terature, starting with the description of proteins. The reader will find an overview

about the protein folding problem (PFP), including descriptions of protein models

and computational methods. In addition, a thorough description of the computatio-

nal methods related to this thesis, such as Molecular dynamics, Cellular Automata,

Evolutionary Computation and Parallel Computing. Chapter 3 describes in details the

proposed methodology, starting with an overview and a detailed description of each

building block. Chapter 4 presents the experiments and results achieved in this work.

Finally, Chapter 5 presents some final considerations and future research directions.

An appendix comprising some aspects is given as well.

1.4 CONTRIBUTIONS

During the development of this thesis, several subjects were addressed. Some

of them have resulted in scientific publications with relevant contributions, that are

presented below:

Chidambaram et al. (2011) present the application of Machine Learning and

Evolutionary Computation methods to define suitable classifiers for predicting the se-

condary structure of proteins, starting from their primary structure (that is, their linear

sequence of amino acids).

Benítez et al. (2011) present Reconfigurable Hardware Computing approaches

for accelerating protein folding simulations using the Harmony Search algorithm and

the 3D-HP-SC model of proteins.

Benítez, Parpinelli and Lopes (2012) report the hybridization of the Artificial
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Bee Colony (ABC) and Genetic Algorithm (GA), in a hierarchical topology.

The application of Molecular Dynamics to the PFP using the 3D-AB off-lattice

model of proteins is presented in (BENÍTEZ; LOPES, 2013) and (BENÍTEZ; LOPES,

2012). They also offered new reference values for synthetic and globular protein se-

quences.

A heterogeneous parallel ecology-inspired algorithm (pECO) applied to search

low energy conformations for the PSP, concerning the 3D-AB off-lattice model, is pre-

sented in (BENÍTEZ; PARPINELLI; LOPES, 2013).

Scalabrin et al. (2014) present a new evolutionary algorithm based on the stan-

dard Harmony Search strategy, called population-based Harmony Search (PBHS). It

also provides a parallelization method for the proposed algorithm, using Graphical

Processing Units (GPU).

A performance comparison of Swarm Intelligence algorithms for the Protein

Structure Prediction Problem (PSP) is presented in (PARPINELLI et al., 2014).

Benítez, Weinert and Lopes (2015) present a novel distributed bio-inspired ap-

proach that uses Gene Expression Programming (GEP) to evolve transition rules for

two-dimensional Cellular Automata (2D-CA) applied to the protein Contact Map Pre-

diction.
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2 THEORETICAL BACKGROUND

“The only real wisdom is knowing you know

nothing”

— Socrates

2.1 PROTEINS

Proteins are essential for life and they have countless biological functions.

Proteins are synthesized in the ribosome of cells following a template given by the

messenger RNA (mRNA). During the synthesis, the protein folds into a unique three-

dimensional structure, known as native conformation. This process is called protein

folding. The biological function of a protein depends on its three-dimensional confor-

mation, which in turn, is a function of its primary and secondary structures.

All proteins are composed by a chain of amino acids (also called residues) that

are linked by means of peptide bonds. Each amino acid is characterized by a central

carbon atom (also known as Cα) to which are attached (as shown in Figure 1) a hydro-

gen atom, an amine group (NH2), a carboxyl group (COOH) and a side-chain that gives

to each amino acid a distinctive function (also known as radical R). Two amino acids

form a peptide bond when the carboxyl group of one molecule reacts with the amino

group of the other. This process of amino acids aggregation is known as dehydration

by releasing a water molecule (GRIFFITHS et al., 2000). All amino acids have the same

backbone and they differ from each other only by the side-chain, which can range from

just a hydrogen atom (in glycine) to a complex heterocyclic group (in tryptophan). The

side-chain defines the physical and chemical properties of the amino acids of a protein

(NELSON; COX, 2008; COOPER, 2000).

There are numerous amino acids in the nature, but only 20 are proteinogenic.

They are shown in Table 25 – Annex A. The first to be discovered was asparagine, in
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Figure 1: General structure of an α-amino acid. The side-chain (R element) attached to the
Cα defines the function of the amino acid

Source: Adapted from (NELSON; COX, 2008).

1806. The last, threonine, was identified in 1938 (NELSON; COX, 2008).

In order to understand the structures and functions of proteins, it is of fun-

damental importance to have knowledge about the properties of the amino acids, de-

fined by their side-chain. Thus, the amino acids can be grouped into five categories:

hydrophobic (also called non-polar), hydrophilic (also called polar), neutral, basic and

acid (COOPER, 2000).

2.1.1 HYDROPHOBICITY SCALES

There have been proposed several hydrophobicity scales. Some of them are

presented below:

• Kyte-Doolittle scale (KYTE; DOOLITTLE, 1982): this scale is based on a combi-

nation of statistical data on distribution of amino acids between surface-exposed

and buried locations in globular protein structures, and of water-vapor partition

coefficients for amino acid analogues.

• Wimley scale (WIMLEY; WHITE, 1996): this scale includes the contribution of

the peptide bond determined from the partitioning of two series of small model

peptides into the interfaces of neutral phospholipid membranes.

• Hessa scale (HESSA et al., 2005): this “biological” hydrophobicity scale was ob-

tained by measuring the ratio of glycosylated Lep molecules that insert into the

membrane bilayer mediated by the Sec61 translocon (SNAPP et al., 2004).

• Einsenberg scale (EISENBERG et al., 1984): this scale is a consensus scale, de-

rived from five other scales and normalized to a mean of zero and a standard

deviation of one.

• Janin scale (JANIN, 1979): this scale also provides information about the acces-

sible and buried amino acid residues of globular proteins.
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• Engelman scale (ENGELMAN; STEITZ; GOLDMAN, 1986): this scale was ob-

tained through the calculation of free transfer energies using hydrophobic terms

derived from accessible surface area calculations, and hydrophilibc terms deri-

ved from calculations of Born and H-bonding energies.

Table 1 shows the hydrophobicity scales, where positive values represent hy-

drophobic amino acids in the Kyte-Doolittle, Wimley, Eisenberg, Janin and Engelman

scales. In the Hessa scale, unlike the other scales, the more negative values reflect the

larger hydrophobicity.

Table 1: Hydrophobicity scales
Aminoacid Kyte & Doolittle Wimley Hessa Eisenberg Janin Engelman (GES)

Alanine Ala 1.8 -0.17 -0.11 0.62 0.3 1.6
Cysteine Cys 2.5 0.24 0.13 0.29 0.9 2

Aspartic acid Asp -3.5 -1.23 -3.49 -0.9 -0.6 -9.2
Glutamic acid Glu -3.5 -2.02 -2.68 -0.74 -0.7 -8.2
Phenylalanine Phe 2.8 1.13 0.32 1.19 0.5 3.7

Glycine Gly -0.4 -0.01 -0.74 0.48 0.3 1
Histidine His -3.2 -0.96 -2.06 -0.4 -0.1 -3
Isoleucine Ile 4.5 0.31 0.6 1.38 0.7 3.1
Lysine Lys -3.9 -0.99 -2.71 -1.5 -1.8 -8.8
Leucine Leu 3.8 0.56 0.55 1.06 0.5 2.8

Methionine Met 1.9 0.23 0.1 0.64 0.4 3.4
Asparagine Asn -3.5 -0.42 -2.05 -0.78 -0.5 -4.8
Proline Pro -1.6 -0.45 -2.23 0.12 -0.3 -0.2

Glutamine Gln -3.5 -0.58 -2.36 -0.85 -0.7 -4.1
Arginine Arg -4.5 -0.81 -2.58 -2.53 -1.4 -12.3
Serine Ser -0.8 -0.13 -0.84 -0.18 -0.1 0.6

Threonine Thr -0.7 -0.14 -0.52 -0.05 -0.2 1.2
Valine Val 4.2 -0.07 0.31 1.08 0.6 2.6

Tryptophan Trp -0.9 1.85 -0.3 0.81 0.3 1.9
Tyrosine Tyr -1.3 0.94 -0.68 0.26 -0.4 -0.7

Source: Adapted from (KYTE; DOOLITTLE, 1982), (WIMLEY; WHITE, 1996), (HESSA et al.,
2005), (EISENBERG et al., 1984), (JANIN, 1979) and (ENGELMAN; STEITZ; GOLDMAN,

1986).

Table 2 shows the amino acid classification according to the hydrophobicity

scales and the classification by (ALBERTS et al., 2002). In this table, the amino acids

are classified into two classes, according to their affinity to water (hydrophobicity): ’A’

(hydrophobic) and ’B’ (hydrophilic or polar).

2.1.2 STRUCTURE OF PROTEINS

From the chemical point of view, proteins are structurally complex and func-

tionally sophisticated molecules. The structural organization of proteins is commonly

described into four levels of complexity, in which the upper cover the properties of

lower: primary, secondary, tertiary and quaternary structures (LODISH et al., 2000;

GRIFFITHS et al., 2000; NELSON; COX, 2008; COOPER, 2000).
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Table 2: Amino acid classification according to the hydrophobicity scales
Amino acid Alberts Kyte & Doolittle Wimley Hessa Eisenberg Janin Engelman (GES)

Alanine Ala A A B A A A A
Cysteine Cys A A A A A A A

Aspartic acid Asp B B B B B B B
Glutamic acid Glu B B B B B B B
Phenylalanine Phe A A A A A A A

Glycine Gly A B B B A A A
Histidine His B B B A B B B
Isoleucine Ile A A A A A A A
Lysine Lys B B B B B B B
Leucine Leu A A A A A A A

Methionine Met A A A A A A A
Asparagine Asn B B B B B B B
Proline Pro A B B B A B B

Glutamine Gln B B B B B B B
Arginine Arg B B B A B B B
Serine Ser B B B B B B A

Threonine Thr B B B B B B A
Valine Val A A B A A A A

Tryptophan Trp A B A A A A A
Tyrosine Tyr B B A A A B B

Source: Own work, based on Table 1.

The primary structure is the linear sequence of amino acids. This is the sim-

plest level of organization, it represents only the peptide bonds between amino acids.

The secondary structure of a protein refers to the local conformation of some

part of a three-dimensional structure. There are, basically, three main secondary struc-

tures: α-helices (PAULING; COREY; BRANSON, 1951a), β -sheets (PAULING; COREY;

BRANSON, 1951b) and turns (LEWIS; MOMANY; SCHERAGA, 1973). In the structure

of an α-helix, the backbone is tightly turned around an imaginary helix (spiral) and the

side-chains of the amino acids protrude outwards the backbone (Figure 2(a)). The α-

helix is stabilized by hydrogen bonds between the carboxyl oxygen of the amino acid

residue at the position n in the polypeptide chain with the amide group (NH) of the

residue n+ 4 (NÖLTING, 2006). The β -sheet is formed by two or more polypeptide

segments of the same molecule, or different molecules, arranged laterally and stabili-

zed by hydrogen bonds between the NH and CO groups (Figure 2(b)). Adjacent poly-

peptides in a β -sheet can have same direction (parallel β -sheet) or opposite directions

(antiparallel β -sheet). Functionally, the antiparallel β -sheets are present in various ty-

pes of proteins, for example, enzymes, transport proteins, antibodies and cell-surface

proteins (BRANDEN; TOOZE, 1999). Hydrogen bonds between carboxyl oxygens and

amide groups of adjacent strands stabilize β -sheets (NÖLTING, 2006). Turns are com-

posed by a small number of amino acids and they are usually located in the surface of

proteins forming folds that redirect the polypeptide chain into the protein. They allow

large proteins to fold into highly compact structures. Turns are stabilized by a hydro-
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gen bond between the carboxyl oxygen of the residue at the position n with the amide

group (NH) of the residue n+3 (NÖLTING, 2006).

Secondary structures can be associated through side-chain interactions to mo-

tifs (BRANDEN; TOOZE, 1999; GRIFFITHS et al., 2000; NÖLTING, 2006). Motifs are

patterns often found in three-dimensional structures that perform specific functions.

For instance, the helix-turn-helix motif is important in DNA-protein interactions.

Different probabilities are observed for the incorporation of the amino acid

residues into different types of secondary structure (CREIGHTON, 1993; NÖLTING,

2006). Table 26 in Annex A shows the conformational preference parameters which

are based on the occurrence of a specific amino acid in a specific type of secondary

structure. For instance, alanine is considered as an α-helix former. (HARPER; ROSE,

1993) pointed that the conformational preference depends on the relative position in

the secondary structure element.

(a) (b)

Figure 2: α-helix (a) and β -sheet (b) structures.

Source: Adapted from (ALBERTS et al., 2002).

The tertiary structure represents the conformation of a polypeptide chain, i.e.

the three-dimensional arrangement of the amino acids. The tertiary structure is the fol-

ding of a polypeptide as a result of interactions between the side chains of amino acids

that are in different regions of the primary structure. Figure 3(a) shows an example of

tertiary structure, where the presence of two secondary structures: α-helix and β -sheet

can be observed.

Finally, the quaternary structure consists of the interactions between different

polypeptide chains in proteins composed of more than one polypeptide (COOPER,
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2000), as shown in Figure 3(b).

(a) (b)

Figure 3: Tertiary structure of Ribonuclease-A (a) and quaternary structure of Hemoglobin
(b).

Source: Adapted from figures that were generated using RasMol 1 from PDB files
(BERMAN et al., 2000).

Proteins can be classified into two major groups, considering higher levels of

structure (NELSON; COX, 2008): fibrous and globular proteins. Both groups are struc-

turally different: fibrous proteins consist of a single type of secondary structure; glo-

bular proteins have a nonrepetitive sequence and often contain several types of secon-

dary structures. Helices are the most abundant form of secondary structure in globular

proteins, followed by sheets, and in the third place, turns (NÖLTING, 2006).

2.2 THE PROTEIN FOLDING PROBLEM

The protein folding is the process by which polypeptide chains are transformed

into compact structures that perform biological functions. These functions include

control and regulation of essential chemical processes for the living organisms. Un-

der physiological conditions, the most stable three-dimensional structure is called the

native conformation and actually allows a protein to perform its function.

In vitro experiments carried out by Christian Anfinsen and colleagues (AN-

FINSEN, 1973) show that proteins can be denaturated by modifications in the envi-

ronment where they are. Most proteins can be denaturated by temperature and pH

variations, affecting weak interactions between residues (i.e.: hydrogen bonds). Du-

ring the denaturation process, proteins lose their native shape and, consequently, their

function. Anfinsen showed that some denatured (misfolded or unfold) proteins can
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refold into their native conformation. However, the spontaneous refolding only occurs

in single-domain proteins. Failure to fold into the intended three-dimensional confor-

mation usually leads to proteins with different properties that simply become inactive.

In the worst case, such misfolded (incorrectly folded) proteins can be harmful to the

organism.

Better understanding the protein folding process could help to: (a) accelerate

drug discovery by replacing slow, expensive structural biology experiments with fas-

ter computational simulations, and (b) infer protein function from genome sequences.

With the fast exponential growth of experimentally determined structures available in

the PDB (BERMAN et al., 2000) (see Section 2.3), protein structure prediction has be-

come as much a problem of inference and machine learning as it is of protein physics

(DILL et al., 2008).

Despite the considerable theoretical and experimental effort expended to study

the protein folding process, there is not yet a detailed description of the mechanisms

that govern the folding process.

Although the concept of the folding process arose in the field of Molecular Bi-

ology, this problem is clearly interdisciplinary, requiring support of many knowledge

areas, and it is considered to be one of the most important open challenges in Biology

and Bioinformatics (NICOSIA; STRACQUADANIO, 2008). In contemporary Compu-

tational Biology, there are two protein folding problems. The first problem, called Pro-

tein Structure Prediction (PSP), is to predict the protein structure (conformation) from

sequence (primary structure). The second one is the Protein Folding Problem (PFP). It

is to predict the protein folding pathways, which consists in determining the sequence

of folding events that leads from the primary structure of a protein (its linear sequence

of amino acids) to its native structure (LOPES, 2008).

There are many computational methods to deal with the folding problem.

However, the Molecular Dynamics (MD) approach (including all its variants) is the

only computational methodology that really provides a time-dependent analysis of a

system in Molecular Biology and, consequently, it can be employed to solve the PFP

(LIWO; KHALILI; SCHERAGA, 2005).

Several computational models have been proposed for representing protein

structures with different levels of complexity and, consequently, computational fea-

sibility. Ideally, both the protein and the solvent should be represented at atomistic

level because this approach is the closest to reality (DAY; DAGGETT, 2003). Howe-
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ver, the simulation of computational models that take into account all the atoms of a

protein is frequently unfeasible due to the dimensionality of the system (> 104 degrees

of freedom) (LIWO; KHALILI; SCHERAGA, 2005), even with the most powerful com-

putational resources (in nature, proteins can rapidly and reliably find their way into

well-defined folded configurations). Generally, atomistic simulations of real-size pro-

teins are usually limited to unfolding the native conformation of the proteins followed

by refolding (DAY; DAGGETT, 2003). The dimensionality of a system containing the

protein and the solvent can be reduced when the solvent is treated implicitly and a

reduced coarse-grained model of proteins is used. In this scenario, several reduced

(mesoscopic) models have been proposed. Although such reduced models are not re-

alistic, their simulation can show some characteristics of real proteins. Computational

studies of reduced models have provided several valuable insights into the folding

process.

The prediction of the structure of a protein is modelled as the minimization of

the corresponding free-energy, following the Anfinsen’s Thermodynamic Hypothesis

(see Section 2.2.1). It is also known that the native conformation of a protein repre-

sents the folding state with minimal free-energy. According to (PEDERSEN, 2000), a

computational model that obeys this principle must have the following features:

• a model of the protein, defined by a set of entities representing atoms and con-

nections among them;

• a set of rules defining the possible conformations of the protein;

• a computationally feasible function for evaluating the free-energy of each possi-

ble conformation.

Whereas the protein structure prediction problem (PSP) is widely acknowled-

ged as an open problem, the protein folding problem (PFP) has received little attention.

It is important to note that the ability to predict the folding pathways can improve

methods for predicting the native structure of proteins.

The total number of possible conformations of a real protein is huge and it

would take an astronomical length of time to find the native conformation by means

of exhaustive search of all conformational space (KARPLUS, 1997). Currently, it is

known that the folding process does not include mandatory steps between unfolded

and folded states, but a search of many accessible conformations (KARPLUS, 1997).
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One approach to enumerate folding pathways is to start with an unfolded protein and

consider the various possibilites for the protein to fold. The protein folds from a de-

natured conformation with a high free energy to its native conformation, following an

energy landscape (GRUEBELE, 2002).

2.2.1 THE THERMODYNAMIC HYPOTHESIS OF PROTEIN FOLDING

As commented before, it is believed that the native conformation of a protein

obeys the Thermodynamic Hypothesis, whichwas proposed byAnfinsen (1973) 2. This

theory is a postulate in Molecular Biology and it is based on the observation that the

native conformation is determined by the amino acid sequence of the protein and that,

at physiological conditions, the protein folding process occurs spontaneously, where

the protein tends to an stable and kinetically accessible three-dimensional structure

with minimal free-energy, (PEDERSEN, 2000). This structure is also known as the na-

tive conformation, and it is thermodynamically stable in the surrounding environment

where the protein is. This means that the protein stays with the same shape during an

indeterminate time in the absence of further external disturbance.

Following this theory, several discrete models (further explored in Section 2.4)

have been proposed to determine the native conformation of a protein from its primary

structure (amino acid sequence). This is accomplished from the thermodynamic point

of view, simulating the conformational space of a protein using a free-energy function

also known as the Gibbs free-energy (BOERIO-GOATES, 2000). The Gibbs free-energy

(also known as the free enthalpy), is one of the most important concepts of thermody-

namics, and defines the spontaneity of a chemical reaction according to the first and

second laws of thermodynamics (NELSON; COX, 2008). Equation 1 shows the Gibbs

free-energy function (∆G) defined by entalphy (∆H), entropy (∆S) and temperature (T ).

Entalphy represents the energy of a system, including the internal energy given by the

reactions between particles of the system. On the other hand, Entropy is an expression

of randomness or disorder of the system.

∆G= ∆H−T∆S (1)

In the context of protein structure, the variation of the Gibbs free-energy dis-

criminates between folded and unfolded proteins (NELSON; COX, 2008), where unfol-

2Nobel Prize Laureate in 1972
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ded proteins are characterized by a high level of entropy. This entropy and hydrogen-

bond interactions between amino acids and the solvent (water) tend to maintain the

unfolded state. It is also known that the chemical reactions, which stabilize the na-

tive conformation of a protein, include hydrogen bonds, Van Der Waals interactions

and hydrophobic interactions (KAUZMANN, 1959; DILL, 1990). In addition, it is

also known that the hydrophobic interactions have more influence on the protein fol-

ding process than the other kind of interactions, contributing to the formation of a

hydrophobic core inside the proteins (DILL, 1999; NELSON; COX, 2008).

2.2.2 THE LEVINTHAL PARADOX

Levinthal (1968) proposed an objection concerning the idea that the search of

the native conformation can be done using a random search approach, which, in the

worst case becomes an exhaustive search, including all possible conformations of a

given protein.

The main argument of Levinthal was based on thought experiments (gedanken

experiments), where the complexity and size of the conformational (or search) space can

be estimated from the time to find the native conformation of a protein. The time to

find the native state is given by the number of possible configurations of the protein

structure multiplied by the time required to find one configuration. For example, a

number of 1070 possible configurations (for a 100-residue protein) and 10−11s to find

one configuration lead to an astronomical folding time (about 1052 years), which is

larger than the age of the Universe (about 1.4× 1010 years). However, it is known

that proteins fold spontaneously in times ranging from milliseconds to seconds (i.e.:

small globular proteins often fold very quickly, in tens of µs (PANDE et al., 1998; EN-

GLANDER, 2000)), and this represents the Levinthal’s paradox (LEVINTHAL, 1968;

KARPLUS, 1997).

2.2.3 FUNNELS, THE ENERGY LANDSCAPE AND FOLDING PATHWAYS

The term “folding funnel” was introduced by (LEOPOLD; MONTAL; ONU-

CHIC, 1992) and consists of a a kineticmechanism for understanding the self-organizing

principle of the sequence-structure relationship, in the framework of a conceptually no-

vel suggestion that some native structures may be kinetically accessible while others

may be not.
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They studied two 27-residue sequences: one that folded into a special structure

and a random sequence. The first one was able to fold in 500,000 Monte-Carlo (MC)

iterations while the second one was not. (LEOPOLD; MONTAL; ONUCHIC, 1992)

explained this difference by the lack of kinetic accessibility for the second protein. Si-

milarly, several other researchers view folding funnel as a kinetic concept (SHAKH-

NOVICH, 2006). For instance, Ozkan, Dill and Bahar (2002) studied a simple two-

dimensional lattice Gō model (UEDA; TAKETOMI; Gō, 1978) which, in turn, was pro-

posed for the simulation of the protein folding by means of simple non-bonded inte-

ractions between amino acids. They concluded that the folding process in that model

is fast, multichannel and funnel-like in the sense that conformations start by higher

energy conformations and converge into lower energy ones.

It has been argued that new experimental observations of the existence of “hid-

den intermediates” (HIs) are not consistent with the funnel model (ENGLANDER,

2000; RUMBLEY et al., 2001), which represents a relaxation process. (OZKAN; DILL;

BAHAR, 2002) observed the existence of multiple transition states, which are the bar-

riers between the HIs. They also state that denaturants and temperature affect the time

of appearance of HIs. The main conclusion of their work is the demonstration that

increasingly structured nonnative states can contribute to two-state protein folding ki-

netics, even when not occurring along a single sequential pathway.

The folding funnel diagram, which was introduced by (WOLYNES; ONU-

CHIC; THIRUMALAI, 1995), provides a pictorial representation of how the Levinthal’s

paradox is resolved. Figure 4(a) shows a schematic representation of the funnel dia-

gram, where the energy is plotted vertically and the configurational entropy horizon-

tally. The increase in configuration entropy, which gives the diagram its funnel-like

shape, aids the protein in finding the native state. That is, the decrease in the number

of available configurations, as the native state approaches, tends to slow the folding

process. The difficulty in finding these configurations is essentially the origin of the

Levinthal paradox. To understand the folding process it must be realized that the ma-

jor determinant of the folding rate is the free-energy surface (also known as energy

landscape) of the protein, rather than the energy shown in the funnel diagram. The

free-energy considers the potential energy, that decreases towards the native state (it

represents a favorable folding contribution) and the decrease of the configurational

entropy (unfavorable contribution) (KARPLUS, 2011). The balance between the poten-

tial energy and the configurational entropy leads to an energy barrier, resulting in a

two-state folding behavior, which is observed for most small proteins (FERSHT, 1999).
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The search for the native state goes through a huge conformational space by a folding

pathway, which is characterized by several intermediate folding states and energy bar-

riers (LEVINTHAL, 1968) between the two significantly folded states, the denatured

and the native states (the energy barrier separating these two states is larger than a few

kilocalories (KARPLUS, 2011)).

More recently, Frigori, Rizzi and Alves (2013) argue, based on a simple force

field, that the absence of a free-energy barrier favors the presence of partially unfolded

conformations in the hPrP heteropolymer. It could explain why it is an aggregation-

prone heteropolymer.

The conceptual basis of the energy landscape is shown in Figure 4(b), where it

incorporates the accepted assumption that the native state of a protein has the lowest

free-energy. In this figure, the surface is derived from a computer simulation of the

folding of a highly simplified model of a small protein (DINNER et al., 2000). The

surface shows a funnel-like behavior, where denatured conformations converge to the

unique native structure. The critical region on the energy landscape is the saddle point

(or local minima) corresponding to the transition state, that is the barrier that all pro-

teins must cross in order to fold to the native state (DOBSON, 2004). The transition

state can be defined as an ensemble of partially folded conformations (also known as

the Transition State Ensemble – TSE) with equal probability (p f old = 50%) to fold or

unfold. According to this definition, a trajectory (or pathway) that passes through a

transition-state conformation has the same probability to proceed to the native state

or to an unfolded state (WEIKL, 2010; SNOW; RHEE; PANDE, 2006). A conformation

corresponding to the transition state is indicated in the Figure. The native structure

is shown at the bottom of the surface, while at the top unfolded conformations are

represented. (VENDRUSCOLO et al., 2001) presents an approach for the determina-

tion of the structure of the transition state from experimental data. They suggest that

the native structure is almost defined in the transition state despite the structures are

disordered, and that it will almost invariably be generated during the final stages of

the folding process. Their approach also incorporates experimental data to the energy

function in order to transform the landscape. It creates a minimum corresponding to

the state observed experimentally and, consequently, allows an efficient conformatio-

nal space sampling (see Figure 4(c)).

It is also known that fluctuations in the conformation of a polypeptide allow

the formation of contacts between residues (DOBSON, 2004).
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(a) (b)

s
(c)

Figure 4: (a) An example of a folding funnel diagram, (b) A schematic energy landscape
for protein folding and (c) Schematic representation of the transformation of the energy
landscape used to determine the transition state. Green and red lines represent the energy
landscape and the transformed landscape, respectively.

Source: (a) Adapted from (KARPLUS, 2011), (b) adapted from (DOBSON, 2004), (c) adapted
from (VENDRUSCOLO et al., 2001).

These paradigms have guided the interpretation of experimental observations

in the last decades. However, several important questions are still unsolved (SOS-

NICK; BARRICK, 2011; RUMBLEY et al., 2001):

• how is it possible for the amino acid sequence to code the final native conforma-

tion?

• what role is played by the residual structure in the unfolded state?

• how many distinct pathways are present, and how different are they from one

another?

• is there a free-energy barrier for folding, and what is its magnitude?
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2.3 PROTEIN DATABASES

Finding protein functions has been, since long time ago, an important topic

in the Bioinformatics community. As mentioned in Section 2.1.2, the function of a

protein is directly related to its structure. Due to its great importance for Medicine

and Biochemistry, many research has been done about proteins (including the many

genome sequencing projects) and, consequently, many information is available. There

are many resources related to protein structure and function. Table 3 lists some of

the main protein databases. Basically, the protein databases can be classified into two

classes: sequence and structure databases.

In this work we used the Protein Data Bank (PDB) (BERNSTEIN et al., 1977;

BERMAN et al., 2000) that is an international repository of three-dimensional structure

of biological macromolecules. The data is, typically, obtained by X-ray crystallography

(SUNDE; BLAKE, 1997; DRENTH, 1999) or NMR spectroscopy (Nuclear Magnetic Re-

sonance) (WÜTHRICH, 1986; JARONIEC et al., 2004).

2.4 COMPUTATIONALMODELS OF PROTEINS

Basically, there are two main classes of representation of protein structures:

analytical (also known as all-atom) and coarse-grainedmodels, with implicit and expli-

cit representations of the solvent. Analytical models have a detailed description of the

three-dimensional structure of a protein, including information about all its individual

atoms. On the other hand, coarse-grained models describe protein structures in a very

reduced level of details. Coarse-grained models have recently gained renewed interest

due to two main factors: the simulation of all-atom models is not always computatio-

nally feasible, and coarse-grained models allow biologically relevant simulations with

enhanced computational power. The main challenge in modelling coarse-grained mo-

dels is to reduce complexity whilemaintaining biological details (MIRNY; SHAKHNO-

VICH, 2001; ISTRAIL; LAM, 2009). Although simulations with coarse-grained models

still cannot be considered as predictive as all-atom simulations, noticeable advances

have been achieved, concerning the use of more rigorous methodologies for paramete-

rization and novel algorithms for sampling the configurational space (TOZZINI, 2005).

Analytical and coarse-grained models will be presented in next sections.
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Table 3: Some important protein databases.

Database Description Web Address

PDB repository of protein
structures

http://www.pdb.org

UniProtKB repository of
protein amino
acid sequences,
name/description,
taxonomic data and
citation information
/TrEMBL

http://www.uniprot.org/

PIR protein sequence da-
tabases

http://pir.georgetown.edu/

PROSITE documentation en-
tries describing
sequence motif de-
finitions, protein
domains, families
and functional pat-
terns

http://www.expasy.org/prosite/

PRINTS Fingerprints infor-
mation on protein
sequences

http://www.bioinf.man.ac.uk/dbbrowser/

BLOCKS Multiple-alignment
blocks

http://blocks.fhcrc.org/

eMOTIF protein motif data-
base, derived from
PRINT and BLOCKS

http://motif.stanford.edu/distributions/

PRODOM protein domain data-
bases

http://prodom.prabi.fr/

InterPro protein families and
domains

http://www.ebi.ac.uk/interpro/

Source: Own work. The URLs were accessed in may, 2015.

2.4.1 ANALYTICALMODEL

The analytical model was presented by (RICHARDSON, 1981) and (NGO;

MARKS; KARPLUS, 1994). In this model, proteins are considered as a collection of

atoms connected each other by bonds. Therefore, the three-dimensional structure of a

protein can be specified by angles, lenghts and torsion of each bond among atoms in

the structure. As a consequence, the complexity of this representation is very high, and
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its simulation requires significant computational efforts, despite the great advances in

recent years.

In this model, the free-energy function considers bonded and non-bonded

atoms contributions. Terms related to bond lenghts, angles and torsions for bonded

atoms, and physical principles are used for non-bonded atoms (for example, Coulomb

and Van der Waals forces) or statistical informations inferred from known structures.

Computationally, the simulation with atomistic models is NP-hard

(NGO; MARKS; KARPLUS, 1994).

Best (2012) presents a review about the recent progress in atomistic molecular

simulations of protein folding and highlights future challenges in this area.

2.4.2 COARSE-GRAINEDMODELS

Consequently, researchers have been developed several coarse-grained (CG)

models for representing protein structures. A possible approach to obtain simplified

models is to reduce the level of details through the integration of a huge number of

degrees of freedom into a few, that is, coarse graining. Models should be rather simple

to allow computational feasibility and not too simple to miss important biological as-

pects of the folding process. In the last decades, different coarse-grained models have

been proposed, using discretized and continuous space representation of the confor-

mational space.

2.4.2.1 DISCRETE MODELS

The simplest computational models for the PFP are known as the lattice mo-

dels. In these models, the protein structure is represented considering solely a se-

quence of beads, which represent the amino acids, positioned in a lattice. The connec-

tions between amino acids are restricted by the lattice structure, that usually is two-

dimensional (plane) or three-dimensional (space). In a valid conformation, a given

position in the lattice can be occupied by, at most, one amino acid, and adjacent amino

acids can occupy adjacent positions in the lattice. Several lattice models have been de-

veloped and applied to the PFP. For instance, the simplest lattice model for the PFP

is known as Hydrophobic-Polar (HP) model, both in two (2D-HP) and three (3D-HP)

dimensions (DILL et al., 1995). Figures 5(a) and 5(b) show the 2D-HP and 3D-HP mo-

dels. In the HPmodel, the 20 amino acids are classified into two types: Hydrophilic (or
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Polar) and Hydrophobic. Therefore, a protein is represented by a string of characters

defined over a binary alphabet {H,P}, and it is considered that interactions between

hydrophobic amino acids represent the most important contribution to the free-energy

of the protein. The more hydrophobic interactions, the small the free-energy of the

protein.

Although simple, the computational approach for searching a solution for the

PFP using HPmodels was proved to be NP-complete (ATKINS; HART, 1999; BERGER;

LEIGHTON, 1998; CRESCENZI et al., 1998).

Other simple lattice models were employed in the modeling of protein struc-

tures. For instance, Diamond, Face-Centered-Cubic (FCC) and Body-Centered-Cubic

(BCC) show a better description of the local geometry of real proteins than simple

lattice models (RAGHUNATHAN; JERNIGAN, 1997). These models allow the repre-

sentation of α-helices and β -sheets with a reasonable similarity to real proteins (KO-

LINSKI; SKOLNICK, 2004). The FCC model (see Figure 5(d)) describes the local pac-

king in folded proteins (RAGHUNATHAN; JERNIGAN, 1997) and can produce high

resolution backbone models (PARK; LEVITT, 1995). It can be considered as the best

choice among the lattice models and have been used in many protein structure studies

(ULLAH et al., 2009). Shakhnovich and Gutin (1993) presented the Perturbed Homo-

polymer (PH), which is a HP-based model, where interactions among residues of same

type (i.e. H-H or P-P) are taken into account.

Unger andMoult (1993a) proposed the Lattice Polymer Embedding (LPE). In this

model, protein structures are embedded in a cubic lattice, each residue interaction (i.e.

between si and s j amino acids) has an affinity coefficient (c(si,s j)), and the energy func-

tion to be minimized is the sum of the product of the affinity coefficient by the distance

between amino acids. The simulation using this model is also a NP-complete problem

(UNGER; MOULT, 1993a).

Ngo, Marks and Karplus (1994) presented the Charge Graph Embedding mo-

del (CGE). In this model, a charge is assigned to each amino acid (C(si) ∈ {−1,0,1})
and the influence of a given amino acid on another one is not taken into account when

the distance between them is lower than a cutoff value.

Bornberg and Bauer (1997) proposed the HPNX model in order to address the

degeneracy problem (i.e. different possible conformations with the same energy) pre-

sented by HP models. (BACKOFEN; WILL; BORNBERG-BAUER, 1999) showed that

the HPNX model can reduce the degeneracy problem and lead to a more effective
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protein folding simulation. The HPNX model classifies the amino acids into four clas-

ses: hydrophobic (H), positive (P), negative (N) and Neutral (X). This model is also

based on the HP model and considers hydrophobic interactions as attractive forces,

decreasing the free-energy value by -4.0, and interactions between positive (P-P) and

negative (N-N) amino acids as repulsive interactions, increasing the free-energy by 1.0.

Hoque, Chetty and Sattar (2009) proposed an improved version of the HPNX model,

which is called hHPNXmodel, by extracting important features from the YhHXmodel

(BORNBERG-BAUER, 1997). Modifications in the HP model with different codes for

the amino acid sequence were proposed by (LOCKER; HERNANDEZ, 2001; KAYA;

CHAN, 2002; SALI; SHAKHNOVICH; KARPLUS, 1994).

The side chain packing is probably the main factor for the native structure for-

mation (KOLINSKI; SKOLNICK, 2004). The lattice models presented previously do

not consider the side chain packing. However, several lattice models that include side

chains have been proposed. For instance, Li, Klimov and Thirumalai (2002) present

a more realistic model that includes the side-chain (SC) of the amino acids in the HP

models, that is known as the 2D-HP-SC and 3D-HP-SC (see Figure 5(c)) model for the

two and three-dimensional versions, respectively. Recall that all the standard amino

acids have the same basic structure (backbone), but different side-chains define their

physico-chemical properties. Therefore, a protein is modeled by a common backbone

and a side-chain, either Hydrophobic (H) or Polar (P). Differently from the 2D-HP and

3D-HP, the 3D-HP-SC model is very sparsely studied in the recent literature. For ins-

tance, Benítez and Lopes (2010) describes a Hierarchical Parallel Genetic Algorithm

(HPGA) applied to the PFP, using the 3D-HP-SC. Heun (2003) proposed an extended

HP side chain model, extending the cubic lattice by diagonals in the plane in order to

eliminate the drawback imposed by the bipartiteness of the cubic lattice. Besides the

lattice models with side chains, the side chain only model (SICHO) (KOLINSKI; SKOL-

NICK, 1998; NALS; KOLINSKI; SKOLNICK, 2002) uses an extremely simple represen-

tation of strings and beads chains connecting the centers of mass of the side group of

the residues in their rotational isomeric conformations (see Figure 5(f)). The side-chain

centers are calculated by averaging the positions of all heavy side-chain atoms inclu-

ding the Cα atom (for glycine the virtual particle is positioned at the position of the

Cα atom). This model allows a large number of possible virtual bonds between side

groups. In addition, the position of each Cα is defined by an approximation obtained

from the positions of the three consecutive side groups. Here, it is important to recall

that the aproximation of the Cα position is actually more accurate than the accuracy of
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the side chain positions (KOLINSKI; SKOLNICK, 2004; FEIG et al., 2000).

Moderate resolution lattice models have been developed. For instance, the

three-dimensional “chess-knight” (also known as the 210 lattice model) represents the

Cα trace by a chain of cyclic permutation vectors (±2, ±1, 0). These lattice vectors are

like a “knight’s walk” in chess, but in three dimensions. Figure 5(e) shows the “chess-

knight” model. In this model, the number of possibly virtual Cα–Cα bond orientations

is equal to 24 and the side chains are restricted to a three-dimensional lattice, separated

from the backbone by a diamond lattice vector (±1, ±1, ±1). This model enables the

low resolution study of real proteins (SKOLNICK; KOLINSKI, 1991).

(a) (b) (c)

(d) (e) (f)

Figure 5: Example of hypothetical protein structures using lattice models: 2D-HP (a), 3D-HP
(b), 3D-HP-SC (c), FCC (d), “Chess knight“ (e) and SICHO (f)

Source: Adapted from (DILL et al., 1995), (LI; KLIMOV; THIRUMALAI, 2002), (KOLINSKI;
SKOLNICK, 2004), (SKOLNICK; KOLINSKI, 1991) and (KOLINSKI; SKOLNICK, 1998).

2.4.2.2 CONTINUOUSMODELS

Besides lattice models, several off-latticemodels have been proposed with vari-

ous levels of generalization. Off-lattice models are also known as bead models and they

are based on a united-atom representation of the amino acid molecule, involving one

to six sites or interacting centers. In general, the smaller the number of beads repre-

senting an amino acid molecule, the more feasible the computational simulations. In

other words, the computational cost of a simulation with bead models is proportional
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to the number of beads per amino acid. On the other hand, the parameterization of

the force field that defines the energy equation is more complex for coarser models

because more specific interactions must be effectively included using few parameters.

The models can be classified into four main classes according to the number of sites for

each amino acid, from the coarsest (one-bead models) and the finest (four and six beads)

classes:

• One-bead models: most of the currently one-bead models (see Figure 6(a)) are

an evolution of Gō models (UEDA; TAKETOMI; Gō, 1978), that includes more

sophisticated potentials in the energy equation. Hills and Brooks (2009) review

the many variations of the Gō model that have been used to yield insights into

folding mechanisms. They discuss the ability of Gō models to capture sequence

effects in folding and conformational transitions. According to (BAKER, 2000;

KOGA; TAKADA, 2001), Gō models are consistent because they represent a per-

fectly funneled model for protein folding that correctly includes the topology of

the native state. In these models, each amino acid is represented by one bead po-

sitioned at the Cα position. For instance, Brown, Fawzi and Head-Gordon (2003)

present a one-bead model that requires a priori knowledge of a reference secon-

dary structure for the parameterization of the angle and dihedral terms. This

model also includes a sequence specificity in non-bonded terms (that is, terms

that describe hydrophobicity and hydrophilicity).

Tozzini, Rocchia and McCammon (2006) present a one-bead model for proteins

that accounts for transitions between α-helix to β -sheet secondary structures. In

the one and two beads coarse-grained models, the two conformational dihedrals

φ and ψ that describe the backbone geometry are no longer present as expli-

cit internal coordinates, thus the information contained in the Ramachandran

plot cannot be used directly (TOZZINI; ROCCHIA; McCammon, 2006). Those

authors also derive an analytical mapping of the all-atom internal backbone co-

ordinates (i.e. conformational dihedrals φ and ψ) to the coarse-grained model

internal backbone coordinates (θ and α) that allow to map the Ramachandran

plot onto a new conformational density plot. They also proposed a new force

field with an accurate bond angle interaction based on the backbone coordinates.

Yap, Fawzi and Head-Gordon (2008) developed a one-bead model that uses an

Cα trace to represent the backbone inspired in a previous model proposed by

(HONEYCUTT; THIRUMALAI, 1992). This model includes a potential force for



49

hydrogen bonding for secondary structures formation.

Wolff, Vendruscolo and Porto (2011) proposed a one-bead model which repre-

sents the protein chain as a tube with a finite thickness (with diameter of 3.3Å and

bond length of 3.8Å between amino acids) in order to describe the self-avoidance

effects of the chain. This model uses a two-term energy function, one term for

effective-connectivity (EC) and other term based on Gō model potential that can

be defined using a contact map of a given native conformation (see Section 2.5

for further information).

Two simple models are the HP-TSSC (Hydrophobic-Polar Tangent Spheres Side

Chain Model) and the AB off-lattice models, which were proposed by (HART;

ISTRAIL, 1997) and (STILLINGER; HEAD-GORDON, 1995), respectively. The

HP-TSSC is based on HP models, but it does not embed the amino acids in a

lattice. In this model, a protein is represented by a graph that is transformed in

a set of tangent spheres with equal radius, that represent the backbone and side

chains.

In this work, the AB off-latticemodel is used to represent protein structures and it

is detailed in Section 2.4.2.3.

• Two-three beads models: as shown in Figure 6(b), two-bead models represent

each amino acid with two beads, where one bead is positioned at the Cα position

and additional beads are used for representing the side chain). For instance, a

physics-based united-residue force field (UNRES) model is presented by (LIWO;

KHALILI; SCHERAGA, 2005). In this model, a polypeptide chain is represented

as a sequence of Cα atoms, where the Cα atoms are linked together by means of

virtual bonds (designated as dC). United side chains (SCs) are connected to the

backbone by virtual bonds (designated as dX ). Peptide groups (p) are positioned

in the centers of the dCs and the center of mass of the side chains are at the ends

of the dXs (See Figure 6(d)).

Combe and Frenkel (2007) proposed a two-bead model, which considers interac-

tions between side chains and hydrogen bonds. This model does not describe

the solvent molecules. To account hydrogen bonds, this model presents a plane

modeled as a spin that can rotate perpendicularly to the Cα-Cα bond. Thus,

hydrogen bonds are taken into account through the interaction between spins.

Side chains are represented by three different types of spheres: hydrophobic (H),

hydrophilic positive (P) and hydrophilic negative (N). They used this model for
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studying the aggregation of proteins in prion diseases and the folding pathway

through a free-energy analysis.

Bahar and Jernigan (1997) proposed a two-bead model with a parameterized

force field based on a statistical analysis of a set of experimental structures (REITH;

PUTZ; MULLER-PLATHE, 2003). This model is independent of a reference struc-

ture, but the energy terms are complex. An updated version of this approach

with a simpler force field had been proposed by (MUKHERJEE; BAGCHI, 2004),

which has an addicional term for α-helix propensity.

Gu et al. (2009) proposed an improved Cα-SC energy potential designed for

protein fold recognition with three main interactions: inter-residue contacts, hy-

drophobicity and pseudo-dihedral potentials.

Zacharias (2003) proposed a three-beadmodel with one additional bead for larger

side chains. They used this model for a protein-protein docking that allows side

chain flexibility.

Capriles, Custódio and Dardenne (2010) proposed a two-beads model that is de-

fined by torsion angles (dihedral angles, φ and ψ) based on (MAUPETIT; TUF-

FERY; DERREUMAUX, 2007), where each side chain is placed at the geometrical

center of the side chain group. The energy function of this model is calculed

using the GROMOS96 force field (SCHULER; DAURA; GUNSTEREN, 2001).

Bezkorovaynaya (2011) presents the first model for oligoalanine that consists of a

linear chain with two types of spherical beads, representing the Cα and the side

chain, respectively (See Figure 6(e)). To parameterize the interactions, they exten-

ded a methodology previously developed by (VILLA; PETER; VAN DER VEGT.,

2009). In this model, two different types of water representations are considered

for the coarse-grained system: an implicit water representation, where the effect

of the water molecules on the peptide is accounted through side chain interacti-

ons, and an explicit water model, where each water molecule is represented by a

coarse-grained bead (See Figure 6(f)).

• Four-six-beadmodels: four to six beadsmodels represent explicitly the backbone

atoms (i.e. Cα , N, and C) with additional ”beads“ for the side chain, the oxygen

(O) of the carboxyl group and the hydrogen (H) of the backbone (see Figure 6(c)).

These models use the conformational dihedral angles (φ and ψ), that are used

to plot the Ramachandran plot, formed by the backbone atoms C-N-Cα-C and

N-Cα-C-N respectively. As explained before, in the one and two beads models
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only the Cαs of the backbone, including beads for the side chain in two beads

models, are represented explicitly.

Bereau and Deserno (2009) proposed a four-bead model with implicit solvent,

where each amino acid is represented by three or four beads. These beads repre-

sent the amine group, Cα , the carboxyl group and a side chain. This model also

uses geometric parameters taken from a previous models (DING et al., 2003). The

energy function of this model incorporates bonded and non-bonded interactions,

such as hydrogen bonds, hydrophobicity (side chain) and dipolar interactions in

order to study thermodynamics and kinetics of a three-helix bundle. The pa-

rameters are tuned to reproduce probability distribution functions (PDF) of the

dihedral angles, which are an extension of the Ramachandran plot, and experi-

ments were done using a Monte Carlo (MC) approach.

Maupetit, Tuffery and Derreumaux (2007) proposed a six-beads model, which

consists of a detailed representation of the backbone, modelled by all their atoms

(i.e. N, H, Cα , C, O), and one bead for side-chains (except the proline which is

represented by all atoms). This model uses the OPEP (Optimized Potential for

Efficient structure Prediction) energy function, that includes 4-body hydrogen

bonding terms, local potentials related to bond angle and torsional forces, and

short-range and long-range non-bonded potentials. The force constants associa-

ted with the backbone atoms are taken from AMBER (Assisted Model Building

with Energy Refinement) (CASE et al., 2005).

Gopal et al. (2010) proposed a coarse-grained model called PRIMO/PRIMONA

(Protein Intermediate Model and Protein/nucleic-acid version). In this model,

the simulation is performed with explicit water and the backbone is represented

with N, Cα and a combined carbonyl site placed at the geometric center of the

carbonyl C andO atoms. This is done to preserve the hydrogen bond interactions,

which are essential to describe secondary structures. Non-glycine side chains are

represented with one to five sites. Amino acids Ala, Cys, Pro, Ser and Val have

only one bead; amino acids Ile, Leu and Thr are modeled with two beads; amino

acids Asn, Asp, Gln, His, Met and Phe have three beads; amino acids Lys, Trp

and Tyr have four beads; and amino acid Arg has five beads. This model uses the

CHARMM22 force field (MACKERELL et al., 1998) with the CMAP correction

(MACKERELL; FEIG; BROOKS, 2004).

Tian et al. (2011) developed a knowledge-based scoring function, called NCACO-

score that integrates structural information to model protein structure from se-
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quence. They consider five-beads coarse-grained model, where each amino acid

is represented by four main chain atoms (N, Cα , C and O) and a pseudo side

chain (except for Glycine). The pseudo side chain center of mass (SCM) was

determined from backbone torsion angles (φ and ψ). The NCACO-score con-

siders four energy terms: a pairwise atom-atom contact potential, a sequence-

dependent local potential, a solvation potential and a β -sheet geometry propen-

sity potential. For performance assessment, they use two quality measures: the

rank of native structure relative to decoy structures based on the energy (Rn) and

the Z-score, which is a quantitative measure of energy bias for the native struc-

ture against decoy structures. They demonstrate that NCACO-score can guide

fragment assembly for protein structure prediction.

A different coarse-grainingmethod is the so-called Elastic NetworkModel (ENM)

in which the protein is represented by a network of beads connected by elastic springs

(TIRION, 1996; ATILGAN et al., 2001; KUNDU; SORENSEN; PHILLIPS, 2004; WU et

al., 2003; BURIONI et al., 2004; ZHANG; SHI; LIU, 2003; MICHELETTI; CARLONI;

MARITAN, 2004). Micheletti, Carloni and Maritan (2004) proposed a two-bead ENM,

that includes a bead for side-chain representation. This model presents the same com-

putational complexity of a one-bead ENM and is proven to give a good accuracy.

Williams and Toon (2010) proposed an extension of the ENM, called DNM (Damped

Network Model), for describing the folding pathways, where both bonded and nond-

bonded interactions are modeled with a quadratic potential that extends over a finite

radius of influence with the oscillations being damped by a friction term.

2.4.2.3 THE AB OFF-LATTICE MODEL

The AB off-lattice model was introduced by (STILLINGER; HEAD-GORDON,

1995) to represent protein structures. In this model each residue is represented by a

single interaction site located at the Cα position. These sites are linked by rigid unit-

length bonds (b̂i) to form the protein structure. The three-dimensional structure of a

N-length protein is specified by the N−1 bond vectors b̂i, N−2 bond angles τi and N−3

torsional angles αi, as shown in Figure 7.

In this model, the 20 proteinogenic amino acids are classified into two classes,

according to their affinity to water (hydrophobicity): ’A’ (hydrophobic) and ’B’ (hy-

drophilic or polar). This model does not describe the solvent molecules. However,

solvent effects such as the formation of the hydrophobic core are taken into account
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(a) (b) (c)

(d) (e)

(f)

Figure 6: Examples of continuous models of protein

Source: (a, b and c) Own work. (d) Adapted from (LIWO; KHALILI; SCHERAGA, 2005). (e
and f) Adapted from (BEZKOROVAYNAYA, 2011).

(a) (b)

Figure 7: The AB off-lattice model: (a) Example of a hypothetic protein structure and (b)
definition of b̂i, τi and αi. Blue balls represent the polar residues and Red ones represent the
hydrophobic residues. The backbone and the connections between elements are shown in
black lines.

Source: Adapted from (IRBACK et al., 1997)
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through interactions between residues, according to their hydrophobicity (species-

dependent global interactions).

When a protein is folded into its native conformation, the hydrophobic amino

acids tend to pack inside the protein, in such a way to get protected from the solvent

by an aggregation of polar amino acids that are positioned outwards. Interactions be-

tween amino acids take place and the energy of the conformation tends to decrease.

The conformation tends to converge to its native state, in accordance with the Anfin-

sen’s thermodynamic hypothesis (ANFINSEN, 1973).

The energy function of a folding is given by (IRBACK et al., 1997):

E(b̂i;σ) = EAngles+Etorsion+ELJ (2)

where

EAngles and Etorsion are the energies from bond angles and torsional forces, respectively;

and are given by Equations 3 and 4.

EAngles =−k1
N−2

∑
i=1

b̂i · ˆbi+1 (3)

Etorsion =−k2
N−3

∑
i=1

b̂i · ˆbi+2 (4)

where

b̂i represents the ith bond that joins the (i− 1)th and the ith residues, and it is repre-

sented by the vector b̂i, as shown in Equation 5 and k1 =−1; k2 =+1/2 (IRBACK et al.,

1997).

b̂i =~ri−~ri−1 (5)

The species-dependent global interactions are given by the Lennard-Jones po-

tencial (ELJ); for pairs of ith and jth residues separated by a distance of ri j, as shown

in Equation 6.

ELJ =
N−2

∑
i=1

N

∑
j=i+2

4ε(σi,σ j)(r
−12
i j − r−6

i j ) (6)
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where

ri j represents the distance between ith and jth residues; σ = σ0, ..., σN form a binary

string that represents the protein sequence.

ε(σi,σ j) is chosen to favor the formation of the hydrophobic core (’A’ residues). Thus,

ε(σi,σ j) is 1 for AA interactions and 1/2 for BB/AB interactions, as shown in Equation

7.

ε(σi,σ j) =

{

1 if AA interaction
1
2

if BB or AB interaction
(7)

Finally, it is important to mention that the model can be explored for different

values of k1 and k2 as stated by (IRBACK et al., 1997).

2.4.3 RECONSTRUCTIONOF PROTEIN STRUCTURES

The applicability of a coarse-grained model can be evaluated by comparing

the obtained structures with real protein structures (i.e. protein structures extracted

from PDB), where a structural transformation procedure has to be done. Most coarse-

grained models do not describe how to return to all-atom model structure (MAUPE-

TIT; P.DERREUMAUX; TUFFÉRY, 2009). In order to enable the transformation of a

real protein structure into a coarse-grained model and vice versa, a representative mo-

del must be obtained. For instance, Manuch and Gaur (2006) have shown that this

problem for the 3D-cubic lattice model is NP-complete and named it the Protein Chain

Lattice Fitting (PCLF). Reva et al. (1995) presented an approach to solve the PCLF pro-

blem including side chains. They developed a dynamic programming approach to

find an optimal solution according to an error function. Mann et al. (2012) introduce

a new tool (called LatFit) to produce high-accuracy lattice protein models from PDB

files on three commonly used lattices, previously mentioned in this section: 3D cu-

bic, face-centered and knight’s walk. To the best of our knowledge, LatFit is the first

study of lattice quality and the only available tool that enables a high resolution fitting

(available via web interface and as stand-alone tool) 3 for lattice protein models.

In addition, Rotkiewicz and Skolnick (2008) present a fast and robust method

for the reconstruction of full-atom protein models starting from a reduced protein

structure representation called PULCHRA. Their method is suitable as a “bridge“ be-

tween coarse-grained models and full-atom simulations. The accuracy of the method

3Available in: http://cpsp.informatik.uni-freiburg.de:8080/LatFit.jsp
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was tested on a set of high-resolution crystallographic structures as well as on a set of

protein decoys generated by the protein structure prediction algorithm called TASSER

(Threading/ASSembly/Refinement) (ZHANG; ARAKAKI; SKOLNICK, 2005).

There are other web-based programs for all-atom structure reconstruction. For

instance, Maupetit, Gautier and Tufféry (2006) present an approach for backbone atoms

reconstruction from one-beadmodels, called SABBAC (Structural Alphabet based pro-

tein Backbone Builder from Alpha Carbon trace) 4, where the side chains are positio-

ned using the SCit approach (GAUTIER; CAMPROUX; TUFFÉRY, 2004). Krivov, Sha-

povalov and Dunbrack (2009) proposed a method for side chain reconstruction from

four-six-beads models, called SCWRL4.

2.5 CONTACTMAPS

There are alternative representations of protein structures: ContactMaps (VEN-

DRUSCOLO; KUSSELL; DOMANY, 1997), the Ramachandran plot (NELSON; COX,

2008) and Weighted Secondary Structure element Graph (WSG) (ZAKI et al., 2004). In

this work, we use Contact Maps (CM), that are minimalistic representations of protein

structures. The contact map for a protein sequence with N amino acids is a N×N bi-

nary symmetrical matrix (C), which is defined as follows: each position of the matrix

(ith, jth) is 1 if the amino acid pair (ith and jth amino acids) fulfills the connectivity

condition. One can define a contact between two amino acids in different ways. For

instance, we can consider two amino acids in contact when their Cα atoms are closer

than a threshold distance (VENDRUSCOLO; KUSSELL; DOMANY, 1997).

Figure 8 presents the contact map of a given protein structure, indicating its

secondary structures.

The contact map serves not only as a representation of structure, but also as

an energy fingerprint of the protein conformation (MIRNY; DOMANY, 1996). Contact

maps can represent secondary structures. For instance, an α-helix contains contacts

between the pairs (i, i± 4)th and (i, i± 3)th amino acids. The α-helix are parallel and

near to the main diagonal of the contact map. Parallel β -sheets are formed by contacts

between (i+k)th and ( j+k)th amino acids, where k= 0,1,2, .... On the other hand, an-

tiparallel β -sheets contains contacts between (i+k)th and ( j−k)th amino acids. There-

fore, β -sheets appear as group of contacts that are perpendicular to the main diagonal

4Available in http://bioserv.rpbs.univ-paris-diderot.fr/cgi-bin/SABBAC



57

Figure 8: Contact map (right) of a given protein structure (left)

Source: Adapted from (ABU-DOLEH; AL-JARRAH; ALKHATEEB, 2012).

of the map (MIRNY; DOMANY, 1996).

Hu et al. (2002) describe how data mining can be used to extract valuable in-

formation from CMs. For instance, secondary structures can easily be discerned from

CMs. For example, α-helices appear as thick bands along the main diagonal since

they involve contacts between one amino acid and its four successors, while β -sheets

are thin bands parallel or anti-parallel to the main diagonal, among others (HU et al.,

2002).

CMs can be also considered as graphs, where the contacts are the edges and

the residues are the nodes (BARTOLI et al., 2008).

CM prediction has become an alternative way to predict protein structures.

Several methods have been developed for CM prediction from sequence. For instance,

Neural Networks (NN) (PUNTA; ROST, 2005; G.POLLASTRI; BALDI, 2002), Hidden

Markov Models (HMM) (BYSTROFF; SHAO, 2002; ZAKI; JIN; BYSTROFF, 2003) and

Genetic Programming (GP) (MACCALLUM, 2004).

Pietal, Tuszynska and Bujnicki (2007) developed a tool for contact map com-

parison, called Protmap2D 5, that provides a sensitive measure of protein structure

similarity. Vehlow et al. (2011) developed a tool called CMView 6 which integrates rich

contact map analysis with 3D visualizatoin using PyMol 7. This tool provides functi-

ons for contact map calculation from structure and visualization in contact map and

3D space and structural comparison with different built-in alignment methods.

See Section 2.10.6 for further information about contact map prediction and

5Protmap2D is available at http://genesilico.pl/protmap2d.htm
6CMView is available at http://www.bioinformatics.org/cmview
7PyMol is available at http://www.pymol.org
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reconstruction of protein structures from contact maps.

2.6 MOLECULAR DYNAMICS

Molecular Dynamics (MD) is a computational simulation of the physical mo-

vements of particles (atoms or molecules). The theoretical basis for MD embodies

many of the important results produced by the great names of analytical mechanics

– Newton, Euler, Hamilton and Lagrange. The basic form of MD involves little more

than Newton’s second law (RAPAPORT, 2004). The idea of MD is to generate the tra-

jectory of a system with N particles through numerically integration of the classical

equations of motion.

MD is a deterministic approach, differently fromMonte Carlo simulations that

are stochastic (SUTMANN, 2002). Thus, a MD simulation will always generate the

same trajectory from the same initial condition.

The high level of detail in MD simulations gives general physical conclusions.

MD has been limited by the current computer hardware. These simulations are usu-

ally limited to biological events that occur on short timescales (typically, ηs) because

the calculation of the physical forces is computationally expensive. Two solutions to

overcome the computational cost are to use coarse-grained models and use faster hard-

ware (HARDER et al., 2012) in MD simulations. For instance, (SHAW et al., 2010;

LINDORFF-LARSEN et al., 2011) achieved simulations on timescales of microseconds

or milliseconds using a custom built special-purpose hardware, called Anton.

Another important issue in Molecular Dynamics andMonte Carlo simulations

is the design and parameterization of the force field for a given model. Ponder, Case et

al. (2003) presents a review of force fields for all-atom peptide and protein modeling.

See Section 3.1 for information about the implementation of the Molecular Dy-

namics (DM) algorithm for the Protein Folding Problem (PFP) using the 3D-AB off-

lattice model of proteins.

2.7 A “NEW KIND OF SCIENCE” AND CELLULAR AUTOMATA (CA)

Stephen Wolfram proposed a “New kind of Science” that is based on gene-

ral types of rules that can be embodied in simple computer programs for reproducing

real-world complex behaviors, instead using traditional mathematical methods (WOL-
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FRAM, 2002). A particular class of such computer program are the Cellular Automata

(CAs), which are simple discrete idealizations of natural systems. CAs are families of

simple, finite-state machines that exhibit emergent behaviors through their interactions

(LUGER, 2008).

The computational simulation of a CA system is relatively simple, where a

configurational state of the CA is determined according to its predecessor state and a

transition rule. However, finding a transition rule for a given dynamic behavior is a

very difficult task, for which there is no efficient method (WEINERT; LOPES, 2010).

Cellular Automata (CAs) were introduced by John von Neumann in his work

on self-reproducing machines (NEUMANN, 1966) and have been used to model seve-

ral biological, physical and engineering systems. For instance, simulation of the HIV

infection dynamics (MO et al., 2014), and water flow simulation (TOPA; MLOCEK,

2013).

Basically, CAs are discrete dynamic systems that are represented by a d-dimen-

sional array, composed of identical interconnected components (cells).

The dynamic behavior of a CA is represented by its spatio-temporal diagram.

Each cell has a discrete state that is updated on discrete time steps, considering its

current state and the state of the neighboring cells (neighborhood relationship). All

cells of the d-dimensional matrix are updated at the same time step by the application

of a transition rule. Thus, sucessive applications of the transition rule will lead to a

dynamic behavior, from the initial state in t0 to successive states in subsequent time

steps (t1, · · · , tn).

The following formal notation for CAs is presented by (MITCHELL, 1998): ∑

set of possible states of a cell; k number of elements of the set ∑; i index of a specific

cell; Sti state of a cell in a given time t; ηti neighborhood of cell i; Φ(ηti ) transition rule

that defines the next state St+1
i for each cell i, as function of ηti .

The neighborhood of each cell (ci, j) of a two-dimensional Cellular Automaton

(2D-CA) is composed following a neighborhood relationship. The neighborhood re-

lationship is determined by a predefined radius (r). The size (number of cells) of the

neighborhood (m) is defined as a function of r, acoording to m= 2r+1. The most com-

mon types of neighborhood for 2D-CA are the von Neumann and the Moore neigh-

borhoods. The size of the von Neumann neighborhood with r = 1 is m= 5, comprising

the four orthogonally neighboring cells (ci−1, j, ci, j−1, ci+1, j, ci, j+1) surrounding a central
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cell (ci, j). On the other hand, the Moore neighborhood is composed by the central cell

and eight neighboring cells (ci−1, j, ci, j−1, ci+1, j, ci, j+1, ci−1, j−1, ci+1, j−1, ci−1, j+1, ci+1, j+1).

In addition, boundary conditions are used to allow the connection between

cells that are situated at the extremities, forming a toroidal arrangement. Thus, the

transition rule (Φ(ηti )) is applied over all cells of the CA, without failure.

The number of transitions (possible configurations of the neighborhood) that

compose the rule Φ is given by k2r+1 and the number of rules represented by those

transitions is kk
2r+1

. For instance, the rule of a binary 2D-CAwith von Neumann neigh-

borhood (with r = 1) is composed of 32 transitions. In other words, the rule is com-

posed of 32 bits, where each bit represents the result of a transition (i.e. c(t)i, j → c
(t+1)
i, j ),

according to the concept of elementary automata proposed by Wolfram. The number

of possible transition rules with the von Neumann neighborhood is kk
2r+1 ≈ 4.295× 109.

On the other hand, using the Moore neighborhood (with r = 1), there are ≈ 1.34×10154

possible transition rules.

2.8 BIOINSPIRED COMPUTATION

The two main families of bioinspired optimization algorithms are the Evolu-

tionary Computation (EC) and the Swarm Intelligence (SI).

Evolutionary Computation is a field of Computational Intelligence which uses

strategies that mimick the natural evolution process.

The origins of Evolutionary Computation date back to the 1950’s, with the

works of (BOX, 1957), (FRIEDBERG;DUNHAM;NORTH, 1958) and (BREMERMANN,

1962). The fundamental approaches emerged during the 1970’s with the works of

(HOLLAND, 1975) (Genetic Algorithms – GA), (FOGEL, 1962) (Evolutionary Program-

ming – EP) and (RECHENBERG, 1965) (Evolutionary Strategies – ES). However, the

EC has started to receive significant attention since the 1990’s and the number of pu-

blications and congresses related to this area have growth as well as novel approaches

have emerged, descending from the three main approaches, previously cited: GA, EP

and ES, where some of the most used are: Memetic Algorithms (MOSCATO; COTTA;

MENDES, 2004), Differential Evolution (STORN; PRICE, 1997), Genetic Programming

(KOZA, 1992) and Gene Expression Programming (FERREIRA, 2001).

Gerardo Beni and JinWang are known as the creators of the term “Swarm Intel-

ligence” (SI). Basically, Swarm intelligence is the collective behavior of decentralized,
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self-organized systems, natural or artificial (BENI;WANG, 1989). The inspirations of SI

algorithms are related to the behavior of social living beings (BONABEAU; DORIGO;

THERAULAZ, 1999), such as fish schools, ant colonies, bee colonies, bird flocking, the

hunting nechanism of gray wolves, bacterial growth, among others.

The main SI approaches are the Ant Colony Optimization (ACO) (DORIGO;

STÜTZLE, 2004), Particle Swarm Optimization (PSO) (POLI, 2008) and the Artificial

Bee Colony Optimization (ABC) (KARABOGA; BASTURK, 2008). Novel approaches

and applications of SI are presented in (PARPINELLI; LOPES, 2012).

Many Bioinformatics problems are featured mainly to be non-linear and stron-

gly constrained due to the lack of exact methods for solving such a class of problems,

the need for robust heuristic methods arises. Along decades, Evolutionary Compu-

tation (EC) and Swarm Intelligence (SI) have provided a large range of flexible and

robust optimization methods, capable of dealing successfully with complex optimiza-

tion problems. Both EC and SI are population-based methods in which each individual

of a population represents a tentative solution to the problem to be solved. In recent ye-

ars several other SI algorithms have appeared, as presented by (PARPINELLI; LOPES,

2011). With such diversity of search strategies, it is possible to establish an analogy

with the dynamics of biological ecosystems. Section 2.8.6 presents the main concepts

of the ecological-inspired algorithm, named ECO.

Sections 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.8.5 and 2.8.6 present EC and SI algorithms

that are related to this work.

2.8.1 GENE-EXPRESSION PROGRAMMING (GEP)

Gene-Expression Programming (GEP) is an extension of Genetic Programming

(GP) that was proposed by (FERREIRA, 2001). The difference between these approa-

ches lies in how the individuals are represented. In GP, the individuals are nonlinear

entities of different sizes and shapes (concrete syntax trees). On the other hand, in GEP

the individuals are encoded as fixed-size linear strings (also known as genome or ch-

romosome), which are afterwards expressed as nonlinear entities of different sizes and

shapes (i.e. expression trees or diagram representations) (FERREIRA, 2001).

The encoding of individuals in GEP is based on the biological concept of open

read frame (ORF), that is the coding sequence of a gene. However, it is important to

know that genes are composed of more sequences than the respective ORF. In biology,
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an ORF is composed of amino acid codons, beginning with a ”start“ codon and ending

at a termination codon. GEP genes are composed of a head and a tail. The head has

symbols that represent functions and terminals. On the other hand, the tail contains

only terminals. GEP genes can have noncoding regions, that, in fact, are the essence of

GEP, allowing modifications of the genome using any genetic operator without restric-

tions, producing valid programs without the need for editing processes(FERREIRA,

2001). In other words, the encoding region of a gene (ORF) can ”activate“ or ”deacti-

vate“ portions of the genetic material algorithm, according to the functions and their

arities (i.e. number of arguments) encoded in the head of the gene.

GEPCLASS (WEINERT; LOPES, 2006) is an implementation of GEP specially

designed for finding rules for classification problems based on supervised learning,

where it is aimed to find rules for modeling a given domain of known data samples,

and then classify unseen sets of data. In GEPCLASS, a population of individuals evol-

ves for a number of generations, where selected individuals are subjected to genetic

operators (mutation, recombination and transposition), generating diversity and, con-

sequently, allowing the evolutionary process to continue for more generations, incre-

asing the chances of finding even better solutions. The head of the gene can have

elements belonging only to the set of functions, such as logical and comparison ope-

rators. (i.ex.: AND, OR, NOT, =, 6=, < and >). The tail, in turn, can have elements

either from the set of functions or from the set of terminals, which in turn, includes the

attributes that describe particular values.

The mapping between the genotype to the phenotype is carried out as follows.

The chromosome is transcribed into a variable-size expression tree (ET), following the

Karva language (FERREIRA, 2001), where each gene is trascribed to a separated sub-

tree. Then, all sub-trees are joined together by a linking function (AND orOR operator),

composing the ET that represents a candidate solution to a given problem. The quality

of the candidate solutions is measure by a fitness function.

Algorithm 11 (see Annex B) presents the pseudo-code of the GEP algorithm,

as proposed by (FERREIRA, 2001).

2.8.2 PARTICLE SWARMOPTIMIZATION (PSO)

Swarm-based algorithms are inspired by the behavior of some social living

beings, such as ants, bees, birds, and fishes (PARPINELLI; LOPES, 2012a). Self-organization

and decentralized control are remarkable features of swarm-based systems that, such
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as in nature, leads to an emergent behavior. Emergent behavior is a property that

emerges through local interactions among system components that is not possible to

be achieved by any of the components of the system acting alone (GARNIER; GAU-

TRAIS; THERAULAZ, 2007).

The Particle Swarm Optimization algorithm (PSO) was motivated by the coor-

dinate movement of fish schools and bird flocks (KENNEDY; EBERHART, 1995). The

PSO is compounded by a swarm of particles that interacts each other in a continu-

ous search space. The position of each particle represents a potential solution to the

problem being solved and it is represented as an n-dimensional vector. In PSO, parti-

cles “fly” through the hyperdimensional search space, and changes to their positions

are based on the socio-cognitive tendency of particles to emulate the success achieved

by other particles. Each particle of the swarm has its own life experience and is able

to evaluate the quality of own experience. As social individuals, they also have kno-

wledge about how well their neighbors have behaved. These two kinds of information

corresponds to the cognitive component (individual learning) and the social compo-

nent (cultural transmission), respectively. Hence, decisions of an individual takes into

account both the cognitive and the social components, thus leading the population

(swarm) to an emergent behavior. The PSO is shown in Algorithm 12 (see Annex B).

In this Algorithm, each solution ~xi = [xi1,xi2, ...,xid] of dimension d is evaluated by a

fitness function f (~xi), where i = 1, ...,n. As mentioned before, particles “fly” through

the hyperdimensional search space according to their velocity ~vi. Each individual of

a population has its own life experience (~pi) They are social individuals, and so they

also have knowledge about the quality of their neighbors (~g) . These two sources of in-

formation correspond to the cognitive and social components, respectively. The para-

meters ϕp, ϕg and w determine the relative influence of the cognitive social and inertia

components, respectively. rp and rg are randomly generated numbers (PARPINELLI;

TEODORO; LOPES, 2012). The PSO algorithm may converge to a local optimal during

the search. This can be avoided or, at least, delayed through parameters tuning or me-

chanism, such as decimation or explosion. It is important to known that the probability

of finding a better solution is very low after the stagnation of the search.

2.8.3 ARTIFICIAL BEE COLONY ALGORITHM (ABC)

The Artificial Bee Colony Algorithm (ABC) was inspired by the foraging beha-

vior of honey bees. ABCwas first proposed by (KARABOGA; BASTURK, 2008) for sol-
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ving multi-dimensional and multi-modal optimization problems. The bees aim at dis-

covering places of food sources (that is, regions in the search space) with high amount

of nectar (good fitness values, meaning good solutions for the problem). There are th-

ree types of bees: scout bees that randomly fly in the search space without guidance,

employed bees that exploit the neighborhood of their locations selecting a random so-

lution to be perturbed, and onlooker bees that use the population fitness to select pro-

babilistically a guiding solution to exploit its neighborhood. If the amount of nectar

of a new source is higher than that of the previous one in their memory, they update

the new position and forget the previous one (this is a greedy selection method). If

a solution is not improved by a predetermined number of trials, the food source is

abandoned by the corresponding employed bee and it becomes a scout bee. The ABC

algorithm attempts to balance exploration and exploitation by using the employed and

onlooker bees to perform local search, and the scout bees to perform global search, res-

pectively. The ABC is shown in Algorithm 13 (see Annex B).

The number of applications with ABC has growth rapidly. Karaboga et al.

(2014) present a survey of the advances and applications with ABC.

2.8.4 DIFFERENTIAL EVOLUTION (DE)

The Differential Evolution was proposed by (STORN; PRICE, 1997) and is a

optimisation method from the Evolutionary Computation field.

The DE algorithm is a population-based meta-heuristic composed by n candi-

date solutions which, in turn, are represented as solution vectors. Each vector −→xi =
[xi1,xi2,···,xid ] is evaluated by an objective function. The main idea of DE is to generate

a new population using difference vectors to generate perturbations in the current po-

pulation, where new vectors (that form a mutant population) are generated through

the combination of randomly selected vectors weighted by a constant F (differential

weight). This operation is analogue to the mutation operation in EC algorithms. Then,

the generated vector are probabilistically recombined with a predetermined vector (or

target vector) according to a crossover rate (CR), yielding to a trial vector (−→yi ). Finally,
a greedy selection is done, where the trial vector is accepted for the new population if

it minimize the value of the objective function.

Algorithm 14 (see Annex B) shows the canonical DE with DE/rand/1/bin

scheme as described by (STORN; PRICE, 1997), where a random solution is perturbed

(“rand”), a difference vector is used in the perturbation (“1”) and a binomial recombi-
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nation operator is used (“bin”). It is important to recall that many other schemes for

creation of candidate solutions are possible. For instance, the best solution could be

selected to be perturbed.

2.8.5 BIOGEOGRAPHY-BASED OPTIMIZATION

The Biogegraphy-based Optimization (BBO) was proposed by (SIMON, 2008).

It is a population-based algorithm, where each individual is considered as a “habitat”

with a habitat suitability index (HSI), which is similar to the fitness function that is

used to evaluate the quality of the individual for a given problem. Solutions with high

HSI tend to share their features with low HSI solutions in order to improve the quality

of the solutions.

Algorithm 15 (see Annex B) shows the pseudo-code of the BBO algorithm,

where n is the number of habitats; E is the maximum possible emigration rate; I is the

maximum possible immigration rate; k is the number of species of the k-th individual;

Smax is the largest number of species of a habitat; mmax is a user-definedmutation weight

and elite is the number of best individuals that will “survive” to next generation.

A potential solution is represent by a d-dimensional vector −→xi = [xi1,xi2,···,xid ],

where each dimension in the solution vector is considered to be a suitability index

variable (SIV). Each individual −→xi has an immigration rate αi and an emigration rate

µi. These rates are functions of the number of species in the habitat, where a suitable

solutions have high µ and low α .

2.8.6 THE ECOLOGICAL-INSPIRED APPROACH

The Ecological-Inspired algorithm (ECO) represents a new perspective to de-

velop cooperative evolutionary algorithms. This approach was proposed by (PAR-

PINELLI; LOPES, 2012a) and is composed by populations of individuals (candidate

solutions for a problem being solved), where each population evolves according to an

optimization strategy. Thus, individuals of each population are modified according to

the mechanisms of diversification and intensification of an optimization strategy. The

ECO algorithm can be modelled in a homogeneous or heterogeneous manner. In a

homogeneous model, all populations evolve according to the same optimization stra-

tegy (configured with the same parameters). On the other hand, the hybridization of

different strategies characterises a heterogeneous model.
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The ecological inspiration stems from the use of some ecological concepts,

such as: habitats, ecological relationships and ecological successions (BEGON; TOWN-

SEND; HARPER, 2006)(MAY; MCLEAN, 2007). Once dispersed in the search space,

populations of individuals established in the same region constitute an ecological ha-

bitat. For instance, in a multimodal hyper-surface, each peak can become a promising

habitat for some populations. Populations can move around through all the environ-

ment. However, each population may belong only to one habitat at a given time t.

Two categories of ecological relationships can be defined: intra-habitats rela-

tionships that occur between populations inside each habitat, and inter-habitats rela-

tionships that occur between habitats (BEGON; TOWNSEND; HARPER, 2006)(MAY;

MCLEAN, 2007).

Populations belonging to the same habitat can establish reproductive links be-

tween their individuals (i.e. intra-habitat relationship), favouring the co-evolution of

the involved populations through competition for mating. On the other hand, the

inter-habitats relationship are the migrations between habitats. Individuals belonging

to a given habitat can migrate to other habitats aiming at identifying promising areas

for survival and mating.

Considering the ecological context of ECO, the intra-habitats and the inter-

habitats relationships are responsible for intensifying and diversifying the search, res-

pectively. The ecological successions represent the transformational process of the sys-

tem, where habitats are formed, relations between populations are established and the

system stabilizes by means of self-organization.

A key concept of the ECO system is the definition of habitats. The ECO appro-

ach uses a hierarchical clustering algorithm to set-up the habitats where each cluster

represents a habitat. Hence, the habitats are defined probabilistically taking into ac-

count the distance information returned by clustering algorithm. Once the habitats

have been defined, the next step is the definition of the communication topology for

each habitat that is probabilistically defined (PARPINELLI; LOPES, 2012b).

For a habitat with more than one population, intra-habitat communication oc-

curs in such a way that each population inside the habitat chooses another population

to perform communication. Here, the distance between populations influence directly

the probabilistic decision. The closer two populations are from each other the higher is

the chance of these two populations communicate. The opposite happens with farthest

populations.
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Figure 9(a) shows a possible representation of the elements of Ecological-inspi-

red computational approach, where three populations which, in turn, represent EC al-

gorithms with different behaviors, combining local and global search strategies. Figure

9(b) shows a general view of the Ecological-Inspired approach, where in the lower le-

vel populations search for potencial solutions for a given problem in the search space.

In the intermediate level, the populations form habitats and intra-habitats communi-

cation topologies take place, where the small circles represent the populations. In the

upper level, the habitats are connected through an inter-habitats communication topo-

lopy.

This combination aims at taking advantage of the benefits of different seve-

ral search strategies and the maintenance of the diversity of the populations through

sporadic migrations between them.

(a)

(b)

Figure 9: General view of the Ecological-Inspired Approach: (a) Possible representation
of the elements of a computational “ecosystem”, (b) Hyper-surface of the search space and
communication topologies.

Source: Adapted from (PARPINELLI; LOPES, 2012a).

To end this section, it is important to mention that Parpinelli and Lopes (2015)
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present a review of the theoretical foundations, applications and future research direc-

tions of the ECO.

2.9 PARALLEL COMPUTING

2.9.1 BEOWULF CLUSTER AND THE MESSAGE PASSING INTERFACE (MPI) LI-
BRARY

The concept of Beowulf clusters 8 was created by Thomas Sterling and Donald

Becker at theCenter of Excellence in Space Data and Information Sciences (CESDIS –NASA)

with the main objetive of building parallel computers that incorporates mass-market

PC technology to achieve the best price/performance and specific computational re-

quirements for scientifc applications (STERLING, 2002).

A Beowulf Cluster incorporates all hardware components and software res-

ponsible for program execution, external communications, user command interface,

among others. The main hardware components are the processing nodes and the in-

terconnection network that interconnects them to form a single system. The software

components are development tools for developing parallel programs and the software

environment for managing the parallel resources of the cluster. The specification of

a Beowulf cluster determines the costs, performance and usability of the system (EL-

REWINI; ABD-EL-BARR, 2005).

Higher-level programming abstractions are used to develop parallel applicati-

ons. Beowulf users converged to the Message Passing Interface (MPI) (GROPP; LUSK;

THAKUR, 1999) and Parallel Virtual Machine (PVM) (GEIST et al., 1994) models.

The MPI library provides a standard library of routines that helps on the de-

velopment of efficient parallel applications using the message passing paradigm (see

Annex C).

AMPI application can be seen as a group of concurrent autonomous processes,

in a MIMD style, that work together, exchanging data and synchronizing operations.

MPI does not specify the execution model for each process. Thus, the processeses

can be purely sequential or multi-threaded. The execution model can be defined by

the developer. In other works, the parallelism is explicit, where the identification of

8The name “Beowulf” derives from an english epic poem which is possibly the oldest English long
poem, dated between the 8th and 11th centuries. Sterling chose because Beowulf has “thirty men’s heft
of grasp in the gripe of his hand”
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parallelism, creation and organization of processes are done by the programmer (EL-

REWINI; ABD-EL-BARR, 2005).

2.9.2 DESIGN APPROACH OF PARALLEL ALGORITHMS

A design approach for parallel algorithm development has four phases (RO-

OSTA, 1999), as shown in Figure 10: partitioning, communication, grouping and map-

ping.

Figure 10: Design approach of parallel algorithms

Source: Adapted from (ROOSTA, 1999).

In the first two phases, hardware-independent aspects are considered, as ope-

ration concurrency and task decomposition. On the other hand, hardware-dependent

aspects are considered in the last two phases, as performance and the global commu-

nication cost.

• Partitioning: the parallelism oportunities are identified in this phase, splitting

the processing into several distinct parallel routines. There are two partitioning

methods:
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– Domain partitioning: focuses on data associated with the problem and de-

termines suitable computation of the data;

– Functional partitioning: focuses on processing decomposition into disjoint

tasks.

These methods can be applied to different components of the problem. Conse-

quently, task or data replication must be avoided. In this phase, paradigms for

parallism must also be defined.

• Communication: in this phase, the communication structure and the environ-

ment for task execution are defined.

– Communication channel structure: related to direct or undirect link between

tasks;

– Message-passing structure: specification of messages that must be sent to or

received from the communication channel.

This phase is essential due to the communication cost of parallel computing. Ge-

nerally, it is aimed to optimize the performance through the distribution of com-

munication operations between several tasks, organizing them in order to allow

parallel execution. However, thinking in terms of channel structure can help in

the communication cost evaluation.

• Grouping: this phase evaluates the granularity of the tasks (or size of the process)

and the communication cost between them. During this phase, the first two pha-

ses can be verified to make the right decisions, involving the available hardware

and, if necessary, return to the two previous phases. The tasks with more data

dependency or those that are more correlated must be grouped.

• Mapping: in this phase, each process is mapped to a processing node in order to

maximize the usage of the available processing nodes and reduze the communi-

cation cost between them.

2.10 METHODS APPLIED TO THE PROTEIN FOLDING PROBLEM

The protein structure prediction (PSP) can be done experimentally or by in

silico methods. In this section, the main approaches applied to the PSP will be pre-

sented: experimental techniques, Sequence-based comparative/homology modeling
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methods, Threading methods, Taxonomic methods, Ab initio prediction methods and

protein structure reconstruction.

2.10.1 EXPERIMENTALMETHODS

Advances in experimental techniques, such as protein engineering, Nuclear

Magnetic Resonance (NMR), Fluorescence Resonance Energy Transfer (FRET), have

made it possible to obtain detailed information about the protein folding process (CHEN

et al., 2008; DINNER et al., 2000).

NMR is an important tool for the study of protein structures, and it is the me-

thod with the highest structural resolution (NÖLTING, 2006; JARONIEC et al., 2004;

WÜTHRICH, 1986). The NMR approaches can be classified into four types: the che-

mical shifts, coupling constants, Nuclear Overhauser Effect (NOE) and amide proton

exchange rate (WÜTHRICH, 1986).

Circular dichroism (CD) is sensitive to protein conformation changes. Although

its resolution is not as high as NMR, it is sensitive to secondary structure (NÖLTING,

2006; PLAXCO; DOBSON, 1996; CHEN et al., 2008).

Kinetic resolution of molecular dimensions became possible by advances in

X-ray scattering (SEMISOTNOV et al., 1996; DRENTH, 1999; SUNDE; BLAKE, 1997)

and dynamic light scattering (GAST et al., 1997). NMR spectrometry is also used to

obtain information about local and global folding events (NÖLTING, 2006), such as

residue-specific information about the structure at different stages of the folding re-

action (NULAND et al., 1998). For instance, real-time NMR spectroscopy with kinetic

resolution has significantly advanced into themillisecond time range (HOELTZLI; FRI-

EDEN, 1998; NÖLTING, 2006).

Cryo-electron Microscopy (cryo-ME) is another versatile tool for protein struc-

ture determination (FRANK, 2006; JIMENEZ et al., 2002; ORLOVA; SAIBIL, 2011).

2.10.2 HOMOLOGY MODELINGMETHODS

The basic premise for template-based protein structure prediction is three-

fold (ZAKI; BYSTROFF, 2008): (a) similar sequences adopt similar protein structures

(CHOTHIA; LESK, 1986); (b) many unrelated sequences fold into similar structures

(FISCHER et al., 1996); and (c) there are only a relatively small number of unique struc-
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tural folds, when compared with the number of proteins in nature (ZHANG; DELISI,

1998). The first observation is the foundation of homology modeling, while the second

and third assumptions are foundations of protein threading (See Section 2.10.3).

Basically, template-based homology consists of four steps (CHEN et al., 2008;

PETREY; HONIG, 2005): (a) Finding known structures, considered as templates, related

to the sequence to be modeled (target); (b) Aligning the target sequence to the tem-

plate structure; (c) building structural frameworks by copying the aligned regions or

by satisfying the spatial constraints from templates; (d) Constructing the unaligned

loop regions and adding side-chain atoms. The first two steps can be considered as

threading or fold recognition procedures. Two additional steps are usually included:

model refinement and model evaluation.

The first homology model was developed by Browne et al. using a method cal-

led rigid body assembly (BROWNE; LESK, 1969) and, since then, several approaches

have been developed. Overall, these approaches can be classified into four categories:

(a) rigid body assembly, (b) segment matching, (c) spatial restraint, and (d) artificial

evolution model building.

The rigid-body method has been implemented in several programs, including

COMPOSER (SUTCLIFFE et al., 1987), MODELLER (ESWAR et al., 2007), Swiss-Model

(PEITSCH; JONGENEEL, 1993; ARNOLD et al., 2006), PriSM (YANG; HONIG, 1999),

3D-Jigsaw (BATES et al., 2001), RigidFinder (ABYZOV et al., 2010) and (PANDURAN-

GAN; TOPF, 2012).

Segment-matching method is developed based on the observation that most

hexapeptide segments of proteins structures can be clustered into about 100 structural

classes (UNGER et al., 1989).

MODELLER (ESWAR et al., 2007) is considered the most popular homology

modeling program, which uses spatial constraints derived from template structures to

guide the building process. DSModeller is a commercial version of MODELLER.

The artificial evolution method build structural models by simulating the natu-

ral process of structural evolution from a template structure to the target model (ZAKI;

BYSTROFF, 2008; PETREY et al., 2003).

Side-chain prediction also represents a challenge in homology modeling. For

instance, this problem has been formulated as a graph-theoretic problem and solved by

combinatorial optimization algorithm (XU, 2005; DESMET; SPRIET; LASTERS, 2002).
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Fain and Levitt (2003) proposed a method for designing a funnel surface for

folding α , βand αβ structures, assuming a priori knownledge of secondary structu-

res. Although their method do not solve the protein folding problem and has several

limitations, it is suitable for determining effective energies for homology modeling.

2.10.3 THREADINGMETHODS

Protein threading was introduced in the 1990s by (BOWIE; LUTHY; EINSEN-

BERG, 1991; JONES; TAYLOR; THORNTON, 1992). It corresponds to the case where

structures (templates) similar to a given target sequence exist in the PDB but are not

easily identified (PETREY; HONIG, 2005). The main idea is to thread the amino acids

of a query protein, following their sequential order and allowing for insertions and

gaps into structural positions of a template structure in an optimal way, measured by a

scoring function. This procedure is repeated for each template structure in a database

of protein structures (See Section 2.3). Basically, threading approaches involves four

issues: (a) development of energy functions for assessing the quality of a sequence-

structure alignment; (b) threading algorithms for finding a sequence-structure align-

ment through energy function optimization; (c) statistical assessment and Folding Re-

cognition (FR); and (d) development of a structural template library (ZAKI et al., 2004).

Threading methods use protein informations obtained from databases such as

SCOP (Structural Classification of Proteins) (Lo Conte et al., 2000; ANDREEVA et al.,

2008) and CATH (Class, Architecture, Topology, Homology) (PEARL et al., 2005; CUFF

et al., 2011), which divide proteins into discrete families based on simple sequence

relationships, superfamilies based on structural and function similarity.

To the best of our knowledge, I-TASSER (AMBRISH; XU; ZHANG, 2011) re-

presents the threading method with the best results.

2.10.4 TAXONOMIC METHODS

The taxonomy-based method for protein fold recognition, which was propo-

sed by (DUBCHAK et al., 1995), classifies a query protein into one of the known struc-

tures. Most implementations of the taxonomy-based method have adopted the SCOP

(See Section 2.10.3 above) classification architecture (YANG; CHEN, 2011). Basically,

this method has two procedures: feature extraction and aMachine Learning (ML) clas-

sifier. Features from the amino acid sequence are extracted by a feature extraction
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procedure. In addition, several features can be constructed through exploiting infor-

mation. For instance, (CHEN; KURGAN, 2007) proposed a fold classification method,

called PFRES, that uses the PSI-BLAST (ALTSCHUL, 1997) profile, which considers

evolutionary information (JONES, 1999), and features generated from secondary struc-

ture predicted using the PSI-PRED (JONES, 1999). (SHEN; CHOU, 2009) proposed a

novel approach that is featured by combining functional domains and the sequential

evolution information through a fusion emsemble classifier. The taxonomic methods

that achieve highest prediction accuracies are the TAXFOLD (YANG; CHEN, 2011),

ACCFold (DONG; ZHOU; GUAN, 2009), PFRES (CHEN; KURGAN, 2007), PFP-pred

(SHEN; CHOU, 2006), SVM-Fold (MELVIN et al., 2007), FUGUE (SHI; BLUNDELL;

MIZUGUCHI, 2001), THREADER (JONES; TAYLOR; THORNTON, 1992), Kavousi

method (KAVOUSI et al., 2011), (MOHAMMAD; NAGARAJARAM, 2011) and (KA-

VOUSI et al., 2012).

2.10.5 AB INITIOMETHODS

Generally, ab initio (also known as de novo) methods perform the protein struc-

ture prediction “from first principles” without using any structural information of pre-

viously solved native structures. Ab initio methods are based on the principles of phy-

sics, where the candidate conformations are evaluated based on an energy function

(related to a force field) or a scoring function (ZAKI et al., 2004). The main problem

with ab initiomethods is that we do not have enough knowledge about the folding of a

protein. Several ab initio methods have been developed with different energy/scoring

functions and protein structure representations (See Section 2.4).

For instance, ROSETTA (ROHL et al., 2004; SCHMITZ et al., 2012) and, the

previously cited, I-TASSER (AMBRISH; XU; ZHANG, 2011) are examples of ab ini-

tio simulations. The ROSETTA simulation algorithm 9 uses Monte Carlo Fragment

Insertion (MCFI) to predict protein structure of small proteins or protein fragments

without structural templates. The MCFI is a downhill searh in a knowledge-based

energy landscape (BYSTROFF; SHAO, 2004).

Arkun and Gur (2012), Liwo, Khalili and Scheraga (2005) presented Molecular

Dynamics approaches for the PFP, using coarse-grained protein models, in order to

analise the folding pathways.

Lindorff-Larsen et al. (2011) reports the results of atomic-level Molecular Dy-
9Available in www.bioinfo.rpi.edu
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namics simulations executed in a specialized supercomputer, called Anton. They stu-

died the reversible folding simulations of 12 proteins (α-helices, β -sheets and α/β that

range in size from 10 to 80 amino acids.

Gin, Garrahan and Geissler (2009) presented the first systematic comparison of

folding pathways within Gō-like and full models, using the Contact Appearance Order

(CAO) histogram of sequences. They focused on a lattice representation of proteins

and used the Metropolis Monte Carlo algorithm for evolving the chain.

Dokholyan et al. (1998) applied the DiscreteMolecular Dynamics (DMD) (PROC-

TOR; DING; DOKHOLYAN, 2011) to the PFP, using a Gō-based model

Evolutionary Computation (EC) approaches have been applied to the ab initio

PFP. For instance, Custódio, Barbosa and Dardenne (2010) presented a full-atom ab ini-

tio PFP with a Genetic Algorithm that uses a similarity-based surrogate model. Capri-

les, Custódio and Dardenne (2010) presented an ab initio PFP using Genetic Algorithms

(GA) and coarse-grained model for side chains. Benítez and Lopes (2010) describes a

Hierarchical Parallel Genetic Algorithm (HPGA) applied to the PFP using the 3D-HP

Side-Chain model (3D-HP-SC). Shmygelska and Hoos (2005), Fidanova (2006), Chu,

Till and Zomaya (2005) applied the Ant Colony Optimisation (ACO) method to the

PFP using the 3D-HP model. Benítez, Parpinelli and Lopes (2012) proposed the hybri-

dization of the Artificial Bee Colony (ABC) and a Genetic Algorithm, in a hierarchical

topology, for the PFP, using the 3D-HP-SC model. More recently, García-Martínez et al.

(2014) present an application of the Universal Evolutionary Global Optimization (UEGO)

to determine the protein structure, using the 3D-HPmodel and conformations encoded

by relative coordinates.

Local search methods such as Tabu Search (TS), Simulated Annealing and Hill-

climbing have been applied as genetic operators of GAs applied to the PFP by (COX

et al., 2004; JIANG et al., 2003; TANTAR et al., 2007), (LI, 2007) presented a Simulated

Annealing approach applied to the PFP, using the 2D-HP model. Recently, Albrecht,

Kapsokalivas and Steinhöfel (2010) presented simulations of unfolding executed by a

new population-based search that uses Simulated Annealing (SA), using a cubic lat-

tices model of proteins with two types of simplified energy functions, known as the

Miyazawa-Jerningan (MJ) energy function (MIYAZAWA; JERNIGAN, 1985).

The Differential Evolution algorithm have been applied to the PFP by (BI-

TELLO; LOPES, 2007) and (KALEGARI; LOPES, 2010), using the 2D-HP and 2D-AB

off-latticemodels, respectively.
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Artificial Immune Systems (AIS) have been also applied to the PFP, using the

2D and 3D-HP (CUTELLO; NARZISI; NICOSIA, 2005). (ALMEIDA; GONÇALVES;

DELGADO, 2007) proposed an hybrid system for the PFP, based on AIS, tabu search

and fuzzy logic, using the 3D-HP model.

Ostrovsky et al. (2001) proposed a CA Margolus dynamics approach for the

simulation of polymers, where “ON” cells represent monomers.

More recently, Santos, Villot and Diéguez (2013) presents a method inspired

in the approach proposed by (KRASNOGOR et al., 2006), using the 3D-HP model of

proteins. It is based on a neural-CA approach optimized with Differential Evolution.

Zaki et al. (2004) proposed an ”unfolding“ approach to learn the sequence of

event that leads the folded protein to its unfolded state, applying graph basedmethods

on WSGs. They demonstrate the success of their approachon proteins whose pathway

is partially known.

The Critical Assessment of Structure Prediction (CASP) has been used to as-

sess the overall prediction for protein structures by the existing prediction techniques

(MOULT et al., 2007; ZAKI; BYSTROFF, 2008; MONASTYRSKYY et al., 2011).

Folding@home (FAH or F@h) is a distributed computing project applied to

the protein folding simulation and computational drug design that uses idle personal

computers of volunteers around theWorld. FAH is developed by the Pande Laboratory

at the Stanford University 10, under the direction of Vijay Pande. Lane et al. (2013)

present a review of protein folding achievements from Folding@home, demonstrating

that it is also capable of slow-folding proteins beyond the capabilities of other systems,

such as the, previously cited, special-purpose MD supercomputer, called Anton, from

DESRES group 11.

2.10.6 CONTACTMAPS AND PROTEIN STRUCTURE RECONSTRUCTION

The solution of the folding problem is still lacking. Among different possi-

bilities, the prediction of protein contact maps starting from sequence is particularly

promising, since even a partial solution of it can significantly help the prediction of the

protein structure (FARISELLI et al., 2001). Several approaches have been developed

for contact map prediction. For instance, in (VENDRUSCOLO; KUSSELL; DOMANY,

10For more information, visit http://folding.stanford.edu/
11For more information, visit http://www.deshawresearch.com/
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1997) proposed a heuristic method of growing the amino acid chain of monomers one

by one, using the METROPOLIS criterion.

Abu-Doleh, Al-Jarrah and Alkhateeb (2012) introduced a new approach for

contact map prediction, called JUSTcon, which consists of multiple parallel stages that

are based on adaptative neuro-fuzzy inference System (ANFIS) and K nearest neigh-

bors (KNN) classifier.

Cheng and Baldi (2007) proposed a new contact map preditor (called SVMcon)

that uses Support Vector Machines (SVM) to predict residues contact in the proteins.

Lane et al. (2013) developed a novel machine learning approach to contact map

prediction using three steps, based on two-dimensional and deep neural networks in

order to refine the prediction of contacts.

Barah and Sinha (2008) used a coarse-grained network description of protein

structures based on contact maps, called Protein Contact Networks (PCN), to study

secondary structural elements in structures available in the PDB, without considering

atomistic details.

Diaz and Tischer (2011) proposed a Genetic Algorithm approach for mining

Contact Maps by using Cellular Automata models (i.e. neighborhood relationship,

set of possible states of the cells and transition rule) from simulation trajectories of

the protein HP35-NleNle 12 (Chicken villin subdomain, PDB 2F4K), which is formed

solely by α-helices (SHERMAN, 2005). To the best of our knowledge, it represents

the first application of Cellular Automata to the PFP, using Contact Maps and Genetic

Algorithms. However, they do not describe their approach in a clear manner.

A reconstruction procedure of the three-dimensional structure of proteins is

need after the contact map prediction. Vassura et al. (2008b) stated that this procedure

is equivalent to the unit-disk-graph recognition, which has been proved to be NP-hard

(BREU; KIRKPATRICK, 1993). For instance, (VASSURA et al., 2008b, 2008a; MEDRI,

2009; DUARTE et al., 2010; VASSURA et al., 2011) proposed approaches for protein

structure reconstruction from native contact maps.

Konopka et al. (2014) present a pipeline approach applied to structure recons-

truction, composed by the FT-COMAR (VASSURA et al., 2008b), the SABBAC (MAU-

PETIT; GAUTIER; TUFFÉRY, 2006) and the SCWRL4 (KRIVOV; SHAPOVALOV; DUN-

BRACK, 2009) algorithms. They obtained structures with an average RMSD of 5.27Å,

12Available in: https://simtk.org/home/foldvillin
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using a representative set of protein structures and the KcsA ion channel.

Basically, the studies differ in terms of test sets and methodologies used for

validation. Therefore, the different approaches cannot be compared. For instance, in

(DUARTE et al., 2010) validations were limited to reconstruction of protein Cα traces.

Taylor, Jones and Sadowski (2012) used a set of globular folds and (NUGENT; JONES,

2012) were limited to prediction of transmembrane proteins.

Typical values of threshold considered in the literature vary between 7 and 12

Å. Medri (2009) stated that, in general, higher threshold values allow a better recons-

truction.

Recently, Kuo (2012) proposed a methodology for predicting distance maps

from fuzzy CMs which, in turn, are generated from CMs at different thresholds, in

order to extend the traditional CMs.

Finally, it is important to know that Protein contact site informations can signi-

ficantly improve the quality of protein structure predictions. For instance, in CASP10,

for the first time, contact-assisted structure predictions have been assessed (TAYLOR

et al., 2014). However, the highly accurate contact map prediction and reconstruction

of protein structures from contact maps are still unsolved problems, which has been

proved to be NP-hard.
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3 METHODOLOGY

“Divide each difficulty into as many parts as is

feasible and necessary to resolve it.”

— René Descartes

This thesis proposes a novel heterogeneous computational approach based on

Cellular Automata, Bioinspired Computation and Parallel Computing applied to pro-

tein folding simulation and protein structure prediction.

Figure 11(a) presents a simplified functional block diagram of the proposed

approach. Protein folding is simulated by using a two-dimensional Cellular Automata

(2D-CA) which, in turn, represent the Contact Map (CM) of the folding states, instead

using the three-dimensional structure of the protein. A Cellular Automata evolver

is used in order to simulate the folding process from an initial folding state that is

represented by a CM. Each folding state is obtained according to its predecessor. In

other words, the configurational state of the 2D-CA (that represents a folding state) is

determined according to its predecessor state and a transition rulewhich, in the context

of the protein folding, could be considered as a folding rule.

Since finding a transition rule for a given dynamic behavior is a very difficult

task, it is proposed a novel approach for inducing transition rules to simulate the pro-

tein folding using CMs, called pGEP-CA, which is based on a Gene-Expression Pro-

gramming (GEP). Figure 11(b) presents a simplified functional block diagram of the

pGEP-CA.

Finally, the protein structure of each folding state is reconstructed. For this pur-

pose, a parallel Ecological-inspired Algorithm (ECO), called pECO, was implemented

for protein structure reconstruction from the previously obtained Contact Maps (with

a given threshold) and protein sequence.
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(a)

(b)

(c)

Figure 11: (a) The proposed approach for simulating protein folding pathways (b) The

pGEP-CA (c) Contact Maps generation procedure.

Source: Own work.
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In order to evaluate the proposed approach, the 3D-AB off-latticemodel is used

to represent protein structures and Molecular Dynamics (MD) is used for generating

protein structures and CMs, which to the best of our knowledge is the first applica-

tion of MD to the PFP using that model. Figure 11(c) and Section 4.2 present the CM

generation procedure.

In this Chapter, the next sections are organized as follows: Section 3.1 presents

the MD approach. Sections 3.2 and 3.3 present the main approaches and methods

proposed in this thesis. The methodologies used for validation and performance mea-

surement are presented in Sections 3.4 and 3.5. Finally, Section 3.6 presents the protein

sequences which were used in the experiments.

3.1 A MOLECULAR DYNAMICS APPROACH APPLIED TO THE FOLDING PRO-
BLEM USING A COARSE-GRAINEDMODEL

As commented in the beginning of this chapter, a Molecular Dynamics appro-

ach is proposed in this thesis and used for generating a test set of Contact Maps and

three-dimensional structures that represent folding states of folding pathways, using

the 3D-AB off-latticemodel.

Algorithm 1 shows the pseudo-code of the Molecular Dynamics algorithm.

Algorithm 1Molecular Dynamics pseudo-code
1: Start
2: Set the initial conditions: positions ri(t0), velocities vi(t0) and accelerations ai(t0)
3: while t < tmax do
4: Compute forces on all particles (amino acids)
5: Integrate equations of motion
6: Perform ensemble control
7: Compute geometric constraints
8: Compute the desired physical quantities
9: t← t+δ t
10: end while
11: End

• Set the initial conditions: in this step, initial positions, velocities and accelerati-

ons are assigned to all particles (i.e. amino acids). An initial unfolded or parti-

ally folded conformation is randomly generated. To represent the position of the

amino acids, three-dimensional Cartesian coordinates are defined by a vector −→ri ,
as shown in Equation 8.
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−→ri = (xi,yi,zi) ∈ℜ, i= 0, ...,N−1 (8)

Where, N is the number of amino acids; and xi, yi and zi are the Cartesian coordi-

nates.

The first amino acid of the primary structure is positioned at the origin of the

Cartesian system and next ones are positioned at Cartesian coordinates relative

to their immediate predecessor, and obtained from random spherical coordinates

(see Figure 12 ), as shown in Equation 9.

Figure 12: Example of spherical coordinates

Source: Own work.

xi = x j+ ri j ∗ sinθ ∗ cosφ

yi = y j+ ri j ∗ sinφ ∗ sinθ

zi = z j+ ri j ∗ cosθ (9)

Where φ ∈ [0,2π ] and θ ∈ [0,π ]. are the azimuth and inclination, respectively, ri j
is the radial distance, j = i−1 and i> 0 (from second amino acid).

It is important to recall that the AB model uses unity radial distances between

residues, that is, unit-length bond (see Section 2.4.2.3 – page 52), as shown in

Equation 10.

ri j = |b̂i|= |~ri−~ri−1|= 1 (10)

The initial velocities are generated in two steps. First, random directions and a

fixed magnitude based on the temperature are assigned, as shown in Equation

11.
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vi

∣

∣

∣

t=0
= velMag∗−→ξ ; (11)

Where velMag represents the temperature-based magnitude, as shown in Equa-

tion 12;
−→
ξ is a randomly oriented vector of unit length, generated by a random

number generator with uniform distribution over the interval [-1, +1] (RAPA-

PORT, 2004).

velMag=
√

3.(1− 1
N
).T0 (12)

Where N and T0 represent the number of amino acids of the protein and the initial

temperature, respectively.

For generating the unit length vectors, a rejection method proposed by (MARSA-

GLIA, 1972) is used, where the probability distribution is related to the uniform

distribution on a unit sphere, as shown in Algorithm 2.

Algorithm 2 Random Unit length vector generation algorithm
1: Start
2: s2 ← 2

3: while s2 > 1 do
4: x← 2∗ rand()−1

5: y← 2∗ rand()−1

6: s2 ← x2+ y2

7: end while
8: x← 2∗ (

√
1− s2)∗ x

9: y← 2∗ (
√

1− s2)∗ y
10: z← 1−2∗ s2
11: End

Where, rand() is a Linear Congruential RandomNumber generator (LCG) (KNUTH,

1981).

Next, the velocities are also adjusted to ensure that the center of mass is at rest at

time zero, thereby eliminating any overall flow (RAPAPORT, 2004), as shown in

Equation 13.

vi

∣

∣

∣

t=0
= vi

∣

∣

∣

t=0
− 1
N ∑ j v j

∣

∣

∣

t=0
(13)

All the initial accelerations initialized to zero, as shown in Equation 14.

ai

∣

∣

∣

t=0
= 0∀i≤ N−1 (14)
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• Compute forces on all particles: This section is based on (RAPAPORT, 2004).

The forces fi that act on the particles are usually derived from the potential energy

u(r) (see Equation 2), as shown in Equation 15.

f = ∇u(r) = ∇E(b̂i;σ) = ∇(EAngles+Etorsion+ELJ) (15)

The equations of motion are written according to Newton’s second law, as shown

in Equation 16.

fi = m~̈ri = ∑Nj=1( j 6=i) fi j (16)

Where, N represents the number of amino acids. The Newton’s third law implies

that f ji = − f i j Thus, each particle pair need to be examined only once. The AB

model does not represent the mass value of residues. Thus, we used the unity

dimensionless mass in this work (m= 1).

According to Equation 15, the force field has three terms: bond-angle forces,

bond-torsion forces and forces corresponding to the Lennard-Jones potential.

– Lennard-Jones potential: The force that the jth amino acid exerts on the ith

amino acid, corresponding to the Lennard-Jones potential is:

fi j = 48∗ ε(σi,σ j)(r
−14
i j − 1

2
r−8
i j )∗~ri j (17)

– Bond-angle forces: A change in the bond-angle (τi) produces forces on three

neighbor residues j = i−2, i−1, i given by:

−∇r ju(τi) =−
du(τ)
d(cosτ)

∣

∣

∣

τ=τi
f
(i)
j (18)

where u(τi) is the angle potential and f
(i)
j = ∇r jcos(τi)

Since ∑ j f j = 0, the bond-angle forces can be expressed by, following the

notation of (RAPAPORT, 2004):

f
(i)
i−2 = (ci−1,i−1cii)

−1/2[ ~bi−1(ci−1,i/ci−1,i−1)−~bi]

f
(i)
i = (ci−1,i−1cii)

−1/2[ ~bi−1−~bi(ci−1,i/cii)] (19)

Such that ci, j represents the scalar product of the ith and the jth bond vectors

and it is represented by the vector ci, j = ~bi · ~b j .
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The potential associated with the bond angles for the AB protein model

(EAngles) is shown in Equation 2. This equation can be written in cosine form

because the AB model uses unit-length bonds, as follows:

u(τi) =−k1b̂i · ˆbi+1 =−k1 ∗ cos(τi) (20)

and the derivative used for the forces is given by − du(τ)
d(cosτ) =−k1.

– Bond-torsion forces: The force associated with a torsional degree of free-

dom is defined in terms of the relative coordinates of four consecutive resi-

dues.

The torque caused by a rotation about the ith bond generates forces on four

neighbor residues ( j = i− 2, ..., i+ 1) and it is defined by Equation 18, but

replacing the argument τi by αi. Where u(αi) is the angle potential and ~f
(i)
j =

∇r jcos(αi).

Since ∑ j f j = 0, the torsional forces can be expressed by, following the nota-

tion of (RAPAPORT, 2004):

~f
(i)
i−1 =−(1+ ci−1,i/cii)~f

(i)
i−2+(ci,i+1/cii)~f

(i)
i+1

~f
(i)
i = (ci−1,i/cii)~fi−2− (1+ ci,i+1/cii)~f

(i)
i+1

~f
(i)
i−2 =

cii

q
1/2
i (ci−1,i−1cii−c2i−1,i)

[w1
~bi−1+w2

~bi+w3
~bi+1]

~f
(i)
i+1 =

cii

q
1/2
i (ciici+1,i+1−c2i,i+1

)
[w4

~bi−1+w5
~bi+w6

~bi+1] (21)

where:
w1 = ci−1,i+1cii− ci−1,ici,i+1

w2 = ci−1,i−1ci,i+1− ci−1,ici−1,i+1

w3 = c
2
i−1,i− ci−1,i−1cii

w4 = ciici+1,i+1− c2i,i+1

w5 = ci−1,i+1ci,i+1− ci−1,ici+1,i+1

w6 =−w1

qi = (ci−1,i−1cii− c2i−1,i)(ciici+1,i+1− c2i,i+1) (22)

The potential associated with torsion for the AB protein model (Etorsion) is shown

in Equation 2. This equation can also be written in cosine form as shown in

Equation 20. The derivative used for the forces is given by − du(α)
d(cosα) =−k2.

Further information about bond-angle and bond-torsion forces calculation (with

an example of an alkane chain) can be found in (RAPAPORT, 2004).
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• Integrate equations of motion:

In this work, we use the velocity-verlet algorithm (SWOPE et al., 1982). The

implementation scheme of this algorithm is:

~ri(t+δ t) =~ri(t)+~vi(t)δ t+
1
2
~ai(t)δ t

2

~vi(t+δ t/2) =~vi(t)+
1
2
δ t~ai(t)

~vi(t+δ t) =~vi(t+δ t/2)+ 1
2
~ai(t+δ t)δ t (23)

Where, ~ri(t),~vi(t) and ~ai(t) are the position, velocity and acceleration of the ith

residue, respectively; t and δ t are the time and the timestep.

• Perform ensemble control:

The MD simulation performs the canonical ensemble (also referred to as the en-

semble NVT), where the number of particles (residues), the volume and the tem-

perature are controlled at desired values. The temperature is controlled by using

the method of weak coupling to a thermal bath proposed by (BERENDSEN et al.,

1984). In this approach, coupling removes or adds energy to the system to main-

tain an approximately constant temperature. The velocities are scaled at each

step using the scaling factor α , as follows:

~vi(t) = λ ∗~vi(t) (24)

λ =
√

1+ δ t
τT
(
Tsp
T
−1) (25)

Where λ , τT , Tsp, T are the scaling factor, the coupling constant, the desired tem-

perature (set-point) and the current temperature, respectively.

• Compute geometric constraints:

As commented before, a protein with the ABmodel is subject to geometrical cons-

traints due to the fixed unit-length bonds between amino acids (|~ri−~r j|2 = b2i = 1).

Considering a protein with N residues, there are a total of nc = N− 1 geometric

constraints. In this work, we use the SHAKE algorithm (RYCKAERT; CICCOTTI;

BERENDSEN, 1977) to deal with constraints.

The SHAKE algorithm starts after the system has advanced a single timestep,

while ignoring the constraints (RAPAPORT, 2004). Thus, a set of uncorrected

coordinates is obtained that are represented by Equation 26.
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~r′i(t+δ t/2) = 2~ri(t)−~ri(t−δ t)+(δ t/2)2/mi ·~fi(t) (26)

Algorithm 3 shows the SHAKE algorithm that has two parts. First, corrections

along the direction of ~ri j(t) are done. The estimated coordinates ~r′i and ~r′j are

updated by using the correction factor γ , which is determined as shown in lines 1

and 8 of the algorithm. Next, velocities are corrected in a similar manner. Here, it

is important to recall that mi and m j are the masses of the ith and jth amino acids,

respectively. As mentioned in Section 3.1 (page 84), AB model does not represent

the mass value of residues, therefore mi = m j = 1. In addition, bi represents the

bond length between the ith and jth amino acids which, as mentioned, are unit-

length bonds in the AB model. The process is repeated for both directions and

velocity corrections until all the constraints are satisfied.

The precision of the SHAKE algorithm is given by |~r0−~r|/|~r0|< 10−k, where 10−k

is the desired precision (10−6 in this work).

Algorithm 3 SHAKE algorithm
1: Start

Coordinates correction:

2: γ ← ~r2
′
i j−b2i

4(δ t/2)2(1/mi+1/m j)~r
′
i j·~ri j

3: while |γ|< 10−k ·b2i do
4: ~r′i←~ri− γ~ri j
5: ~r′j←~r j+ γ~ri j

6: γ ← ~r2
′
i j−b2i

4(δ t/2)2(1/mi+1/m j)~r′i j·~ri j
7: end while

Velocities correction:
8: γ =

¨~ri j·~ri j
2~r2i j

9: while |γ|< 10−k ·b2i do
10: ~̇r′i←~̇r j− γ~ri j
11: ~̇r′j←~̇r j+ γ~ri j

12: γ =
˙~ri j·~ri j
2~r2i j

13: end while
14: End

• Compute the desired physical quantities:

Besides the total energy (see Equation 2 – page 54) of the conformation, we also

compute the radius of gyration (GROSBERG; KHOKHLOV, 1994), that measures

the compactness of a set of points (in this case, the residues of the protein). The
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more compact the set of points, the smaller the radius of gyration is. The radius

of gyration is computed as shown in Equation 27.

Rg =

√

∑N−1
i=0

[(xi−X)2+(yi−Y )2+(zi−Z)2]
N

(27)

In this equation, xi, yi and zi are the coordinates of the residues. X , Y and Z are the

average of all xi, yi and zi; and N is the number of residues.

• General comments:

– The simulation takes place in a cubic container, using periodic boundary

conditions. The periodic boundary conditions are equivalent to considering

an infinite array of identical copies of the simulation region (RAPAPORT,

2004). There are two consequences of this periodicity: particles (i.e. amino

acids) that leave the simulation region through a particular bounding face

immediately reenters the region through the opposite face, and particles

lying within a distace of a boundary interact with particles in an adjacent

copy of the system (i.e. particles near the opposite boundary). The second

consequence is considered to be a wraparound effect. If a particle has mo-

ved outside the region, its coordinates are adjusted to bring it inside the

simulation region, as shown in Equations 28, 29 and 30.

xi =

{

xi−Lx if xi ≥ Lx/2
xi+Lx otherwise

(28)

yi =

{

yi−Ly if yi ≥ Ly/2
yi+Ly otherwise

(29)

zi =

{

zi−Lz if zi ≥ Lz/2
zi+Lz otherwise

(30)

Where xi, yi and zi represent the Cartesian coordinates of the amino acids; Lx,

Ly and Lz are the region size in the x, y and z directions, respectively.

The components of the distance between amino acids are determined in a

similar manner, as shown in Equations 31, 32 and 33.

(ri j)x =

{

(ri j)x−Lx if (ri j)x ≥ Lx/2
(ri j)x+Lx otherwise

(31)
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(ri j)y =

{

(ri j)y−Ly if (ri j)y ≥ Ly/2
(ri j)y+Ly otherwise

(32)

(ri j)z =

{

(ri j)z−Lz if (ri j)z ≥ Lz/2
(ri j)z+Lz otherwise

(33)

Where (ri j)x, (ri j)y and (ri j)z are the components of the distance between the

ith and jth amino acids.

– We do not use real physical units because they are not defined for the AB

model of proteins. Thus, the energy, temperature and length are shown in

reduced (or dimensionless) units.

It is important to note that in simulations of real molecular systems it is con-

venient to express physical quantities, such as temperature and pressure, in

reduced units, and to use basic units in order to translate them to real units.

The basic units depend on experimental data and are: length (σ ), energy

(ε), mass (m) and temperature (ε/KB), where KB is the Boltzmann constant

(FRENKEL; SMIT, 2002). Moreover, the main reason for using dimension-

less units in simulations with real physical units is related to scaling. Thus,

properties that have been measured in dimensionless units can be scaled to

the physical units for the problem of interest. From a practical point of view,

the use of dimensionless units removes any risk of problems with data re-

presentation.

Finally, it is important to mention that two publications describe the MD ap-

proach presented in this section: (BENÍTEZ; LOPES, 2012) and (BENÍTEZ; LOPES,

2013).

3.2 ADISTRIBUTEDGENEEXPRESSIONPROGRAMMINGFOREVOLVINGTWO-
DIMENSIONAL CELLULAR AUTOMATA APPLIED TO THE CONTACT MAP
PREDICTION (pGEP-CA)

In this thesis, the main idea consist in simulating the protein folding process in

a macroscopic level, using simple mathematical idealizations, known as Cellular Au-

tomata. It evolves progressively according to deterministic rules from a particular ini-

tial state, instead using the protein structure coordinates and traditional mathematical

methods. For instance, in conventional Molecular Dynamics simulations, numerical
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integrations of the classical equations of motion and other mathematical methods are

used to generate the trajectory of a system. Here, we propose the simulation of the

protein folding using Contact Maps (CM) represented by two-dimensional Cellular

Automata (2D-CA).

Starting with an initial configuration (initial CM), the next folding states are

generated by the application of a transition rule (or folding rule, in the protein folding

context), as shown in Figure 13.

Figure 13: An example of 2D-CA evolution

Source: Own work.

The computation of the Cellular Automata is simple. However, finding transi-

tion rules for simulating the protein folding is very difficult. Therefore, in this thesis, we

propose a novel approach for the induction of transition rules (or folding rules) of two-

dimensional Cellular Automata (2D-CA) applied to the protein folding simulation.

It is important to recall that the simulation of the protein folding using 2D-CA

is indendepent of the computational model used to represent protein structures, such

as the 3D-AB off-lattice model and the models presented in Section 2.4. On the other

hand, the procedure for finding transition rules uses two CMs previously generated

from protein structures.

Below, we present a detailed description of a novel parallel approach for the in-

duction of transition rules of two-dimensional Cellular Automata (2D-CA), using Gene

Expression Programming, applied to the Protein Contact Maps prediction and folding

pathway simulation, called pGEP-CA.

Algorithm 4 shows the pseudo-code of the pGEP-CA. A parallel master-slave
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architecture, described in Section 3.2.5, is employed in order to speed up processing

time. In this algorithm, bold instructions are processed in parallel.

The software was developed in ANSI-C programming language, using the

Message Passing Interface (MPI) for communication between processes 1 and the Mer-

senne Twister random number generator (MATSUMOTO; NISHIMURA, 1998).

Algorithm 4 Pseudo-code for parallel GEP-CA (pGEP-CA)
1: Start
2: Initialize population;
3: Determine ORFs
4: do parallel
5: Simulate 2D-CAs
6: Evaluate fitness
7: end do parallel
8: while stop criteria not satisfied do
9: Clone operator (part 1)
10: Selection
11: Apply genetic operators
12: Update population
13: Determine ORFs
14: do parallel
15: Simulate 2D-CAs
16: Evaluate fitness
17: end do parallel
18: Clone operator (part 2)
19: end while
20: Export postprocess results: best transition rule, CM obtained, metrics
21: End

3.2.1 CELLULAR AUTOMATA CONFIGURATION

First of all, it is essential to know how the Two-dimensional Cellular Auto-

mata (2D-CA) are composed for understanding the proposed approach. The 2D-CA

are used to represent Contact Maps (CM) which, in turn, are N×N binary symmetri-

cal matrices representing the contacts between amino acids of a protein structure with

N amino acids. Thus, the 2D-CA is a system formed by identical cells arranged in a

two-dimensional cellular space.

Each cell of the 2D-CA (ci, j) has two possible states: ’0’ and ’1’ represent con-

tacts and non-contacts between ith and jth amino acids, respectively, as shown in Figure

14(a). Thus, following the formal notation presented by (MITCHELL, 1998) (see Sec-

tion 2.7), the set of possible states of a cell with two states (k= 2) is ∑= 0,1, representing

an “elementary” CA.

1Available at: http://www.mcs.anl.gov/research/projects/mpich2/
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The state of each cell is denoted Sti (where Sti ∈∑), and together with the state of

the neighbor cells, forms a neighborhood (ηti ). In this approach, it is used the von Neu-

mann neighborhoodwith r = 1 and m= 5 that comprises the four orthogonally neighbo-

ring cells (ci−1, j, ci, j−1, ci+1, j, ci, j+1) surrounding a central cell (ci, j), as shown in Figure

14(c).

The 2D-CA evolves deterministically in discrete time steps. At each time step

(t), the states of all cells of the 2D-CA are updated synchronously according to the tran-

sition rule Φ(ηti )which, in turn, is a function of the neighborhood (ηti ). The application of

the transition rule is donewith periodic boundary conditions (see Figure 14(b)) allowing

the connection between cells that are situated at the extremities, forming a toroidal ar-

rangement and avoiding failure. Here, it is important to recall that a real synchronous

update of all cells is not possible in the von Neumann architecture. However, a real pa-

rallel update can be done using reconfigurable hardware, such as FPGA, in a non-von

Neumann style as we proposed for one-dimensional CA in a previous work (WEINERT

et al., 2007).

(a) (b) (c)

Figure 14: (a) Illustration of a two-dimensional Cellular Automaton (2D-CA), (b) An exam-

ple of periodic boundary conditions, (c) Examples of transitions with the von Neumann

neighborhood

Source: Own work.
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According to Section 2.7, a transition rule is formed by concatenating all possi-

ble transitions, which, in turn, are defined by the possible combinations of the neigh-

boring cells. Thus, there are 32 possible combinations using the von Neumann neigh-

borhood with unity radius. For instance, the transition rule 010101110· · ·11111011001012

is formed by the transitions, from right to left, ”000002“→1; ”000012“→0; ”000102“→1;

· · ·; ”111112“→0. Figure 14(c) shows examples of the first and last possible transitions,

where the cell to be updated is shaded.

3.2.2 SOLUTION ENCODING

An important issue when using GEP for a given problem is the encoding of

the individual that represent a possible solution to the problem. The way variables

are encoded can have a strong influence not only in the size of the search space, but

also in the dynamics and efficiency of the algorithm. In this work, the encoding of the

individuals is defined according to the set of terminals and their domains, following

the Pittsburgh approach (FREITAS, 2002), in which each individual represents a arran-

gement of rules, forming the transition rule.

In GEP, the individuals are represented by twomultigenic chromosomes, which

are composed of more than one gene of equal size. Each gene is divided into a head and

a tail. The size of the head (h) and the number of genes of each chromosome can be cho-

sen a priori. On the other hand, the size of the tail (t) is determined according to the size

of the head as proposed by (WEINERT; LOPES, 2006): t = IntegerPart[0.5(h(n−1)+1)],

where n represents the largest arity (number of arguments) among all the functions

used.

Each gene is directly translated into an expression tree (ET). In this work, each

chromosome is composed of two genes. Thus, the sub-ETs codified by the genes are

linked together by a logical function (AND or OR), which can be chosen a priori.

The terminals are binary and represent the state of the neighboring cells (’1’=con-

tact, ’0’=non-contact). The set of terminals (T ) represent all possible combinations of the

neighborhood, mapping all transitions of a given rule. Considering the von Neumann

neighborhood with r = 1, the terminal set is composed of five terminals (labeled as a,

b, c, d and e), where the central cell (ci, j) is represented by c and the neighboring cells

ci−1, j, ci, j−1, ci+1, j and ci, j+1 are represented by a, b, e and d, respectively. The terminals

have the same domain, which in turn, are defined by the possible states of the cells of

the 2D-CA (∑ = [0;1]).
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Apossible transition encoded in an individual is written in the form IF A THEN

C as in data classification systems, for example: IF (a= 1 AND b= 0) THEN Rule = ’1’;

else Rule = ’0’.

Figure 15: GEP Transcription process – example

Source: Own work.

Figure 15 shows a simplified example of the transcription process. In the pro-

posed approach, a rule is generated from the ET represented by each individual. For

instance, Table 4 shows the rule obtained for each transition from the ET shown in

Figure 15.

It is important to recall that, for binary terminals, the relational operators <

and > are equal to 6= and =, respectively. The DEFAULT value is user-defined (’0’ or

’1’). The example shown in Table 4 was done using DEFAULT = 0.

Finally, the complete transition rule is obtained from the Rule Table, shown in

Table 4, concatenating the rules obtained. Thus, transition rule = 110· · ·101.
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Table 4: Rule table obtained from the ET

Combination Neighborhood Rule

a b c d e

0 00000 1

2 00001 0

3 00010 1

· · · · · · · · ·

29 11101 0

30 11110 1

31 11111 1
Source: Own work.

3.2.3 FITNESS FUNCTION

Contact maps (CMs) are generally sparse symmetric matrices, populated pri-

marily with non-contacts (or zeros). Therefore, a similarity measure between two CMs

based on the Hamming distance (PETERSON; WELDON, 1972) or Euclidean distance,

that are the most common metrics, does not work well for CMs, because contacts (true)

and non-contacts (false) values carry the same weight. For instance, a wrong choice

would be using a fitness function based on the Hamming distance, shown in Equation

34. Figures 16(a) and 16(b) show, respectively, the expected and obtained CMs of a

simulation using the fitness function based on the Hamming distance. In this exam-

ple, the fitness value of the individual that represents the rule used to generate the CM

(Figure 16(b)) is 0.9547, representing an accuracy of 95.47%. However, it is possible to

observe that the obtained CM lacks contacts, when compared with the expected CM.

f itnessHamming =
∑Ni=1 ∑Nj=1[1−|(C1i, j−C2 j,i)|]

N2
(34)

where: N is the number of amino acids; C1 and C2 are the expected and obtained CMs.

Ertoz, Steinbach and Kumar (2002) stated, in their publication about a new

clustering algorithm, that the presence of an attribute is a lot more important than the

absence of an attribute in sparse high dimensional data sets. Thus, different measures
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(a) (b)

Figure 16: (a) Expected and (b) obtained CMs, using the fitness function based on the Ham-
ming distance

Source: Own work.

could be proposed in order to give more importance to the presence of contacts of CMs.

Here, the challenge is to properly write a suitable fitness function for measu-

ring the ability of a transition rule to generate a CA that represents a CM correctly. In

this thesis, two novel fitness functions were proposed, called f itness1 and f itness2, that

are better suited to this problem, as follows:

(a) The fitness function f itness1 is based on three metrics, shown in Equation 35:

f itness1 = SC ∗SNC ∗S2
i (35)

where: SC, SNC are based on the sensitivity and specificity measures, respectively.

Sensitivity and specificity are commonly used in classification systems. Sensiti-

vity measures the ability of the classifier to correctly assign a data to its real class.

On the other hand, specificity measures the ability to reject a given data as belon-

ging to a class to which it does not belong. In this work, SC and SNC measure the

ability of a transition rule to generate correct contacts and non-contacts, respectively.

SC and SNC are defined following four types of results, shown in Equations 36 and

37, respectively. Si measures the symmetry of the CM, as shown in Equation 38,

where m and n are the number of rows and columns of the CM, respectively.

SC =
TC

TC+FNC
(36) SNC =

TNC

FC+TNC
(37)

Si=
i<m−1

∑
i=0

j<n

∑
j=i+1

[1−|(Ci, j−C j,i)|]

(38)
where:
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• True contacts (TC): number of contacts generated by the transition rule that,

in fact, are contacts;

• True non-contacts (TNC): number of non-contacts generated by the transition

rule that, in fact, are non-contacts;

• False contacts (FC): it counts the contacts generated by the transition rule

that, in fact, are non-contacts;

• False non-contacts (FNC): it counts the non-contacts generated by the transi-

tion rule that, in fact, are contacts;

• Ci, j represents the value at cell location (i, j) of the CM (m×nmatrix).

(b) The fitness function f itness2 is based on the Jaccard similarity coefficient (JAC-

CARD, 1908). Basically, the Jaccard similarity coefficient (J) is used to measure

the similarity between two sample sets (A and B). For instance, Equation 39

shows the Jaccard similarity coefficient for binary sample sets.

J(A,B) =
A
⋂

B

A
⋃

B
=

M11

M01+M10+M11

(39)

where: 0≤ J(A,B)≤ 1;

M11 represents the total number of attributes that are ’1’ in A and B;

M01 represents the total number of attributes that are ’0’ in A and ’1’ in B;

M10 represents the total number of attributes that are ’1’ in A and ’0’ in B;

and, clearly, J(A,B) = 1 when A and B are equal.

Considering C1 and C2 as the expected and obtained CMs, and the metrics TC,

TNC, FC and FNC, the Jaccard similarity coefficient J(C1,C2) may be rewritten as

shown in Equation 40.

J(C1,C2) =
TC

FNC+FC+TC
(40)

Equation 41 presents the fitness function f itness2.

f itness2 = J ∗S2
i (41)

where: J is the Jaccard similarity coefficient, defined as shown in Equation 40;

Si measures the symmetry of the CM, as shown in Equation 38.
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3.2.4 RUNNING PARAMETERS AND GENETIC OPERATORS

The individuals of the initial population are created randomly, according to

the functions, terminals, size of the head of each gene and number of genes of the

chromosome, specified by the user. We used the Mersenne Twister pseudo-random

number generator (MATSUMOTO; NISHIMURA, 1998), which is known as one of the

best generators for this purpose.

In GEP, the individuals of the population are selected through a selection me-

thod, according to a pre-defined criteria. Then, the genetic operators modify them

probabilistically, in order to create new individuals and introduce variation in the po-

pulation.

It is important to recall that the selection method is not a genetic operator. The

proposed approach uses the selection method known as stochastic tournament, that

is a succesful method used in Genetic Algorithms and Swarm Intelligence algorithms.

The stochastic tournament selection is not based on the competition among individu-

als of the whole population. This method chooses a number of individuals from the

current population (the number of individuals chosen is known as tourney size). Then,

the best suited individual of the group is selected.

The crossover operator is the first genetic operator to be applied, according to a

probability (pcross), to the individuals which were previously selected by the selection

method. This operator swaps the genetic material between the heads of two parent ch-

romosomes, that are randomly chosen. Basically, the one-point recombination is used,

where the heads of the parents (A and B) are crossed over at a randomly chosen point

(known as the crossover point). Finally, if the functions have the same arity, the cros-

sover is done and the parents are cut at the crossover point, and exchange the material

between them downstream from the crossover point, forming the offspring. It is impor-

tant to know that the crossover operator does not change the syntactic structure of the

chromosomes.

Basically, the mutation operator introduces genetic diversity to the population.

After the application (or not) of the crossover operator, each recently created individual

is subject to the mutation operator, according to a mutation probability (pmut ).

Usually, mutations can occur anywhere in the chromosome. However, in this

approach, the mutation operator works as in GEPCLASS (WEINERT; LOPES, 2006), in

three different levels. When a function is selected for mutation, it will be substituted
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by another function of the same type. For instance, when a logical function is selected

for mutation, it will be substituted by another logical function. At the leaf level of

the ET, when a terminal is selected for mutation, it will be randomly substituted by

a new attribute. The mutation operator is inoperative in a special situation: when a

NOT function is selected for mutation, since it is the only unary operator and cannot

be substituted by another n-ary logical operator.

The transposable elements of GEP are the fragments of the genome that can be

activated and jump to another place within the chromosome (FERREIRA, 2001). Both

the IS (Insertion Sequence) and RIS (Root IS) transposition operators work over a single

chromosome. On the one hand, the IS transposition modifies only the tail of a gene,

changing the position of the terminals within the gene. The IS transposition operator

can move genetic material from one gene to another or within the gene. On the other

hand, in RIS transposition, the donor and the receptor sites are always in the tail of a

gene and the first terminal of the same gene, respectively.

The Gene transposition operator, basically, transposes an entire gene of a ch-

romossome. It is important to recall that, as a result of the gene transposition, a new

individual may have duplicated genes. Lynch and Conery (2000) stated that the dupli-

cation of genes plays an important role in evolution. Thus, individuals with duplicated

genesmay appear during the process and contribute to the evolution of the population.

The cloning operator is a simple elitist mechanism, where the best individual

of each generation is maintained. If enabled, the clone operator (part 1) save a copy of

the best individual of the current generation. After the application of the genetic opera-

tors, the clone operator (part 2) substitute the worst individual of the next population

by the copy.

3.2.5 PARALLELIZATION IN A BEOWULF CLUSTER

This section presents a detailed description of the parallelism of the pGEP-CA

implemented in a Beowulf Cluster, following the methodology proposed by Roosta

(1999) (see Section 2.9.2).

The software was developed in ANSI-C programming language, using the

Message Passing Interface (MPI) for communication between processes.

A Beowulf cluster is composed by several processing nodes. In this work,

each processing node has four processing cores, each one running a single process.
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The processes are integrated virtually, using message passing mechanisms.

Each process is identified with a sequencial number, called rank, and the group

of connected processes is known as communicator. Using the Message Passing Interface

(MPI), a copy of the program is sent automatically to each process. In other words, the

processes are independent and execute the same algorithm, simultanously. The MPI is

responsible for managing themessages between processes through the interconnection

network. However, the MPI does not provide a mechanism for parallel task division

and coordination. Hence, the developer is responsible for specifying the function (or

task) of each process as well as the communication protocol between processes.

Figure 17 shows the parallel architecture implemented, which is a synchronous

master-slave. This model is a global system with a single population. The master

process divides the processing load into several slave processes which, in turn, run the

algorithm in different processors.

Master Process 0

S1 S2 S3 Sn

Process 1 Process 2 Process 3 Process (n−1)

Figure 17: pGEP-CAmaster-slave architecture

Source: Own work.

Figures 18 and 19 present the statechart of the master and slave processes,

respectively.

Themaster is responsible for initializing the population, determining the ORFs,

performing the selection procedure, applying the operators (clone operator, mutation,

crossover, IS (insertion sequence) transposition, RIS (root IS) transposition and genic

transposition) and distributing individuals to the slaves.

Slaves, in turn, are responsible for reading the initial and final 2D-CAs, simu-

lating the 2D-CAs from the initial 2D-CA, using the induced rules and computing the

fitness function of each individual received, using the final (expected) 2D-CAs and the

obtained 2D-CAs.

The distribution of individuals by themaster processor to the slaves starts with
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pGEP-CA – MASTER PROCESS

Initializing population
and determining ORFs

Dividing the
processing load

f itness Evaluation

Estimating the size
of the packages

Sending the package of individuals
to the next slave
process

Verifying pending messages

Waiting slave
processes

Requesting results
to the next slave
process

Unpacking the received result
package

Updating individuals

Verifying pending receipt messages

[There are no
pending
packages]

[There are no
pending
packages]

[There are
pending
packages]

[There are
pending packages]

Verifying
stop criteria

Applying operators and
generating new

population

[Generation ≤ Total Generations]

Export
results

[Generation > Total Generations]

Finalizing
slaves

/Generation++

Figure 18: Statechart of the master (pGEP-CA)

Source: Own work

the load balancing, according to the number of individuals to be evaluated and the

number of slaves available. Next, the size of the package of individuals to be sent to

each slave is estimated. Each package is composed by a number of individuals (chro-

mosomes) with the size of their respective ORF (i.e. the size of the coding sequence of

each gene of the individual), shown in Figure 20.

The packages are sent to the slaves in the next steps, using a blocking commu-

nication (see Annex C), as follows: first, a simple Handshaking between the master and

the slave is done. Next, the master sends the number of individuals and the size of
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pGEP-CA – SLAVE PROCESS

Waiting command message
fromMaster

Packaging
results

Sending package of
results to
Master

[Msg=Request of
results]

[Generation > Total Generations]

Receiving the size of the
package to be received

fromMaster

Determining the size of the
buffer for the

package to be received

Receiving package
fromMaster

Unpacking package

Generating the Expression Tree
from each individual

and obtaining the Transition Rule

Simulating CA and
processing f itness function
for each received individual

Confirming end of processing
to Master

[Msg=Task]

Figure 19: Statechart of the slaves (pGEP-CA)

Source: Own work.

the package to be sent. After that, the package is sent to the slave. Finally, the master

waits to a confirmation message from the slave (with the number of individuals that

the slave received before).

The message sent by the master is composed by two parts:

• Message envelope: it represents the information that is used to distinguish messa-

ges and selectively receive them. It consists of a fixed number of fields: source

(master) rank, the destination (slave) rank, the label of the message (tag) and the

communicator of the group of processes;

• Data: it represents the package of individuals, as shown in Figure 20.

After sending all packages to the slaves, the master requests the results (i.e.

fitness value of each individual) from the slaves, starting with a simple handshaking

protocol. Next, each slave determines and sends the size of the package, followed

by the package with the fitness value of a number of individuals. Finally, the master

sends a confirmation message (with the number of results that the slave sent before)
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Figure 20: Package of individuals – example

Source: Own work.

and proceeds to unpack the package and update the fitness of each related individual.

The packages sent by the slaves are composed by the fitness value of the received

individuals, shown in Figure 21.

Figure 21: Package of results – example

Source: Own work.

The message sent by the slaves is composed by two parts:

• Message envelope: source (slave) rank, the destination (master) rank, the label of

the message (tag) and the communicator of the group of processes;

• Data: it represents the package of results, shown in Figure 21.

This approach can be very efficient when the communication overload is negli-

gible compared with the processing time of the algorithm (including the computation

of the fitness function, initialization, among others).

Finally, it is important to mention that the proposed approach presented in this

section was published in (BENÍTEZ; WEINERT; LOPES, 2015).
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3.3 ANECOLOGICALLY-INSPIREDAPPROACHAPPLIEDTOTHEPROTEIN STRUC-
TURE RECONSTRUCTION FROM CONTACTMAPS

In (PARPINELLI; LOPES, 2012a), the potentiality of some ecological concepts

are illustrated presenting an ecology-inspired algorithm (ECO) for optimization. In

order to explore different search strategies cooperatively in an ecologically inspired

context, a novel parallel and heterogeneous application of ECO (called pECO) was

developed. pECO was applied to a hard optimization problem from bioinformatics:

the protein structure reconstruction from Contact Maps. Basically, the aim is to find a

low energy conformation, using the Contact Map as a guide.

Different search strategies can compose a computational ecosystem. Previous

works (BENÍTEZ; LOPES, 2010) and (BENÍTEZ; PARPINELLI; LOPES, 2012) showed

that heterogeneous search strategies working cooperatively can perform better than

using a single one. Therefore, in this work, four population-based approaches are em-

ployed cooperatively: the Artificial Bee Colony algorithm (ABC) (KARABOGA; BAS-

TURK, 2008), Particle Swarm Optimization algorithm (PSO) (KENNEDY; EBERHART,

1995), Differential Evolution (DE) (STORN; PRICE, 1997), and a hybrid Differential

Evolution / Biogeography-based Optimization algorithm (jDE-BBO) (GONG; CAI; LING,

2010).

Since the problem demands a lot of computational effort, a parallel architecture

is employed to enable the application of the computational ecosystem in a reasonable

computing time.

3.3.1 IMPLEMENTATION OF pECO

In the novel parallel version of ECO (named pECO), proposed in this thesis,

the processing load is divided into several processors (master and slaves), under the

coordination of a master processor. Each processor (master or slave) is responsible for

initializing the population, and performing the evolutive period of a population inde-

pendently. The master processor is also responsible for defining the communication

topologies between populations and habitats. Figure 22 shows the pECOmaster-slave

topology, where each species represents a population-based approach.
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Species1 Master – Process 0

Species2 Species3 Species4 Speciesn

S1 – Process 1 S2 – Process 2 S3 – Process 3 Sn – Process (n−1)

Figure 22: pECO architecture

Source: Own work.

Algorithm 5 presents the pseudo-code of the pECO algorithm, where the italic

instructions are processed by each processor (master or slaves) while bold instructions

are processed by the master processor. In the first step, line 3, each processor initializes

a population Qi. In line 4, the master coordinates the ecological succession loop. The

first step inside this loop is the evolutive period that is carried by the processors (line

5).

As in nature, the populations can move through all the environment, interac-

ting to each other and evolving over time. In other words, symbiosis may occur, where

an individual of a population is directly affected by another individual which, in turn,

might be a member of another population. In this approach, two types of ecological

communication topologies are defined: the intra-habitat and the inter-habitat. On one

hand, communications between populations inside each habitat take place in intra-

habitat topologies. On the other hand, in inter-habitat topologies, communications

between habitats take place. After the evolutive period of all populations, the region

of reference of each population is determined in order to re-define the habitats of the

system. The region of reference is defined by the centroid (~Ci), and it is calculated by

Equation 42, as proposed by (PARPINELLI; LOPES, 2015).

~Ci =
∑
POPi
k=1

xk

POPi
(42)

where: POPi represents the size of the ith population; xk is the kth solution vector (as

defined in next section) of the ith population.

In line 6, each processor calculates the centroids and, then, the slaves send

them to the master. Next, the master creates the habitats and defines the intra-habitats

communication topology, lines 7 and 8 respectively. It is based on the Euclidean dis-
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tance between the centroids, according to the minimimum threshold distance ρ (PAR-

PINELLI; LOPES, 2015). An adjacencymatrix is generated, where a pair of populations

are adjacent if their centroids are closer than the threshold distance ρ . After that, the ha-

bitats are defined according to the adjacency matrix. The intra-habitat communication

topology is also defined from the adjacency matrix, where a group of populations can

establish a relationship within the habitat. The ecosystem may have several habitats

H j (with j = 1, · · · ,NH), where NH represents the number of habitats of the ecosystem.

Each habitat (H j) has an intra-habitat communication topology TC j(t) that indicates

the populations of the habitat that will be able to communicate to each other at time t.

Algorithm 5 Pseudo-code for parallel ECO (pECO)
1: Start
2: Let i= 1, . . . ,NQ, j = 1, . . . ,NH and t = 0;
3: Initialize each population Qi(t) with POPi random candidate solutions;
4: while stop criteria not satisfied do {Ecological succession cycles}
5: Perform evolutive period for each population Qi(t);
6: Idendify the region of reference ~Ci for each population Qi(t);
7: define_Habitats()
8: For each habitat H j(t) define the communication topology TC j(t) between po-

pulations Q ji (t);
9: interactions_C()

10: Define communication topology TH(t) between H j(t) habitats;
11: interactions_H()
12: t← t+1;
13: end while
14: End

Once defined the intra-habitat communication topologies, the master coordi-

nates the mating process, requesting the best individual of each species and sending it

to an adjacent species. Next, each species replaces a randomly selected individual by

a new individual, which in turn, is generated through a genetic exchange between the

individual received and an individual chosen using the stochastic tournament strategy

(line 9).

Once the interactions between populations are over, the master defines the

inter-habitats communication topology TH(t) (line 10). Basically, migrations between

habitats take place, where a population of each habitat is chosen randomly. Next, the

best individual of each chosen population migrates to another habitat, replacing an

individual chosen at random (excluding the best individual).

The master coordinates the migration process between habitats, requesting the

best individual of a randomly chosen population from each habitat and sending it
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to another one of an habitat also randomly chosen (line 11). Finally, the ecological

succession loop restarts.

3.3.1.1 ENCODING OF CANDIDATE SOLUTIONS AND INITIAL POPULATION

An important issue when using population-based approaches for a given pro-

blem is the encoding of the candidate solutions. The encoding has a strong influence

not only in the size of the search space, but also in the complexity of the problem,

due to the presence of unknown epistasis between variables that form the individuals

(solution vectors). In this work, a given conformation of the protein is represented as

a set of bond rotation and torsion angles over a three-dimensional space (see Section

2.4.2.3).

Considering the folding of a protein with N amino acids, an individual has

(2N− 5) variables, such that positions P1 to PN−2 represent the bond rotation angles

(τi), and PN−1 to P2N−5 represent the torsion angles (αi), where τ and α ∈ [−π ,π ]. Figure

23 shows an example of an individual that represents the structure of a folded protein

with 13 amino acids.

Figure 23: Example of individual

Source: Own work.

The initial population (or swarm) is randomly generated by using the Mer-

senne Twister algorithm (MATSUMOTO; NISHIMURA, 1998), which is known as one

of the best generators for this purpose.

3.3.1.2 FITNESS FUNCTION

An individual is represented by a single vector and it is evaluated and its fit-

ness value represents how good the solution (represented by the individual) is. The

fitness function proposed here is based on the energy equation of the model of pro-

teins and the metrics SC and SNC (previously presented in Section 3.2.3). Equation 43

shows the objective function, using the 3D-AB model (for further information, see Sec-

tion 2.4.2.3).
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f itness= E(b̂i;σ)∗SC ∗SNC (43)

where:

E(b̂i;σ) represents the energy equation of the model (see Equation 2 – page 54). The

energy is calculated using the coordinates of the amino acids that compose the struc-

ture of the protein which, in turn, is represented by the individual. SC and SNC are

computed using the input CM and the CM of the obtained conformation. SC measures

the similarity between both CMs from the contact point of view (see Equation 36). On

the other hand, SNC measures the similarity between both CMs from the non-contact

point of view (see Equation 37).

It is important to know that a given conformation under evaluation may have

collisions between amino acids. Obviously, such conformation is physically invalid,

but, anyway, the corresponding individual can carry some promising information and

should not be disposed.

Algorithm 6 shows the pseudo-code of the objective function calculation pro-

cedure. Basically, this procedure has five parts: conversion of angles to Cartesian coor-

dinates, computation of the energy, conversion of the Cartesian coordinates to the CM

representation, computation of the metrics SC and SNC and computation of the f itness.

It is important to recall that the conversion of the Cartesian coordinates to the

CM representation is done according to the same threshold value of the input CM.

Algorithm 7 shows the pseudo-code of the angles (θi and αi) to Cartesian co-

ordinates conversion procedure.

This procedure has four steps:

• translate2origin(): in this step, the (i−2)th and (i−1)th amino acids are translated

relative to the origin, using the Equation 44 (PAUL, 1981).
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where,

x,y,z are the initial coordinates (before the translation);
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x′,y′,z′ are the final coordinates (after the translation);

dx, dy, dz represent the translation vector, which are: dx = 0−x; dy = 0−y; dz = 0−z

• Zaxis_rotation(): in this step, a z-axis rotation is applied to the (i−2)th and (i−1)th

amino acids in order to translate them to the xy-plan. The rotation is applied

using the rotation angle (θ = τ) represented by the variable that is being evalua-

ted, using the rotation matrix (called R) (PAUL, 1981), resulting in the point A′i−1,

as shown in Equation 45.

Algorithm 6 Fitness function calculation procedure
1: Start

Let n be the protein size (number of amino acids)
Let v be the set of bond rotation and torsion angles (θi,αi)
Let Ob j f unc be the objective function
Let amino be the structure that represents the amino acids’ cartesian coordinates
vector and types (’A’ or ’B’)
Let d be the Euclidean distance between amino acids
Let EAngles, Etorsion and ELJ be the energy terms

2: Angles2Cartesian() //angles to cartesian coordinates conversion
3: Compute Energy:
4: EAngles = Etorsion = ELJ = 0

5: for i= 1→ n−1 do
6: EAngles = EAngles+ calcBondAngleEnergy(amino[i].coord,amino[i−1].coord)
7: end for
8: for i= 1→ n−2 do
9: Etorsion = Etorsion+ calcTorsionEnergy(amino[i].coord,amino[i−1].coord)
10: end for
11: for i= 1→ n−2 do
12: for j = (i+2)→ n do
13: if (amino[i].type = ’A’ AND amino[ j].type = ’A’) then
14: c= 1

15: else
16: c= 0.5
17: end if
18: d = calcDistance(amino[i].coord,amino[ j].coord)
19: ELJ = ELJ+ calcLJpotential(d,c)
20: end for
21: end for
22: Energy= EAngles+Etorsion+ELJ
23: Cartesian2CM() //cartesian coordinates to CM conversion
24: Compute SC and SNC
25: f itness= Energy∗SC ∗SNC
26: End
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Algorithm 7 Polar to Cartesian coordinates conversion procedure – Angles2Cartesian()

1: Start
Let n be the protein size (number of amino acids)

2: amino[0].coord← [0,0,0]
3: amino[1].coord← [0,1,0]
4: for i= 2→ n do
5: translate2origin(i)
6: Zaxis_rotation(i)
7: Yaxis_rotation(i)
8: translate()
9: end for

10: End

A′i−1 = R(θ)Ai−1 (45)

Given a unit vector u= (ux,uy,uz), where u2x+u2y+u2z = 1, the matrix for a rotation

by an angle of θ about an axis in the direction of u is given by Equation 46.

R(θ)=









cosθ +u2x(1− cosθ) uxuy(1− cosθ)−uz sinθ uxuz(1− cosθ)+uy sinθ

uyux(1− cosθ)+uz sinθ cosθ +u2y(1− cosθ) uyuz(1− cosθ)−ux sinθ

uzux(1− cosθ)−uy sinθ uzuy(1− cosθ)+ux sinθ cosθ +u2z (1− cosθ)









(46)

• Yaxis_rotation(): in this step, the torsion is applied through a y-axis rotation of the

A′i−1, using the torsion angle θ = α and the rotation matrix MR, resulting in the

point A′i.

• translate(): rotations related to the origin are applied in the previous steps. There-

fore, a translation of the point A′i is required in order to obtain the coordinates of

the ith amino acid. This is accomplished by adding the value of the coordinates

of the (i−1)th amino acid to the A′i coordinates.

Algorithm 8 shows the procedure for obtaining the CM of the conformation

from Cartesian coordinates.

3.3.1.3 PARALLELIZATION IN A BEOWULF CLUSTER

The parallelism implemented in pECO is similar to the pGEP-CA (presented

in Section 3.2.5), following the methodology proposed by (ROOSTA, 1999). In pGEP-
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Algorithm 8 Cartesian coordinates to Contact Map conversion procedure – Carte-
sian2CM()
1: Start

Let n be the protein size (number of amino acids)
2: for i= 1→ n do
3: for j = 1→ n do
4: d = calcDistance(amino[i].coord,amino[ j].coord)
5: if d ≤ threshold then
6: CM[i][ j]←′ 1′

7: else
8: CM[i][ j]←′ 0′

9: end if
10: end for
11: end for
12: End

CA, the slaves are used only for simulating the CA and processing the fitness func-

tion. On the other hand, in pECO, the slaves also perform the evolutive period of a

population-based algorithm, such as the ABC algorithm. In pGEP-CA, the master per-

forms the GEP algorithm, distributes individuals to the slaves and exports postprocess

results. On the other hand, in pECO, the master also performs the evolutive period of a

population-based algorithm, defines the habitats andmanages the migration processes

between them, in intra-habitat and inter-habitat communications. Basically, these are

the main differences between pGEP-CA and pECO from the parallelism point of view.

Figure 24 presents the simplified statechart of the processes.

The message sent by the processors to the master, before the definition of the

habitats, is composed by two parts:

• Message envelope: it represents the information that is used to distinguish messa-

ges and selectively receive them. It consists of a fixed number of fields: source

(slave) rank, the destination (master) rank, the label of the message (tag) and the

communicator of the group of processes;

• Data: it represents the package with the emigrant individual, as shown in Figure

25. This package also contains the fitness of the received individual (that is the

best individual of the population from it was sent), the centroids of the variables

and the fitness value of the centroid of the population, which are used during the

definition of the habitats and in postprocess results exportation.

The message sent by the master to the processors, after the definition of the
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pECO – MASTER PROCESS

Initializing population

Perform evolutive period
Example: ABC algorithm

Verifying
stop criteria (EVO Steps)

Export
results

[ECO step = Total ECO steps]

Finalizing
slaves

ECO step++

Communication topologies and Migrations

Verifying
stop criteria (ECO Steps)

Verifying the rank
of the processor

Requesting package with Emigrant to
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Waiting request
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migration will start
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fromMaster

Waiting slave Unpacking the received
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to Slave

Substituting
individual

Finalizing
intra-habitat
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Figure 24: Statechart of pECO

Source: Own work.

habitats, during the migration process, is composed by two parts:



113

• Message envelope: similar to the previous, but the origin is the master and the

destination is the slaves.

• Data: it represents the packagewith only the emigrant individual. In other words,

the sent data is composed solely by the solution vector~x.

Figure 25: Package with Emigrant individual

Source: Own work.

Finally, it is important to mention that an article related to the proposed appro-

ach presented in this section is published in (BENÍTEZ; PARPINELLI; LOPES, 2013).

3.4 STRUCTURE ALIGNMENT AND VALIDATION

This work also proposes a novel method for comparing structures, using the

3D-AB model, and calculating the RMSD (Root-mean-square deviation) in [Å]. It is

used for comparing the obtained structures with real structures (from PDB). Algorithm

9 presents this method.

Algorithm 9 Structure evaluation algorithm
1: Start
2: AB_likea← fitting(P1)
3: AB_likeb← fitting(P2)
4: RMSD← kabsch(AB_likea,AB_likeb)
5: End

Basically, Algorithm 9 has three steps, where the first two steps are fitting pro-

cedures and the last one represents a quality assessment.

• Fitting procedures: In step 1 (AB_likea← fitting(P1)), the PDB file coordinates (P1)

are fitted to an off-lattice structure (called “AB_like”), where all bond lenghts are

scaled to 3.8 Å (AB_likea), which is the mean distance between consecutive Cα

atoms (MANN et al., 2012). In step 2 (AB_likeb ← fitting(P2)), the coordinates of

the obtained AB model structure (P2) are fitted to the “AB_like’ structure, where
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all unit-length bonds are also scaled to 3.8 Å (AB_likeb). Algorithm 10 shows the

fitting procedure.

It is important to recall that the atan2 function returns a positive value for counter-

clockwise angles, and a negative value for clockwise angles.

Algorithm 10 Fitting procedure – fitting(p)

1: Start
Let N be the protein size (number of amino acids)
Let p be the input coordinates (from PDB or AB)
Let a be the output “AB_like” coordinates
Let dx, dy and dz Let r be the bond lenght between i and (i+1) amino acids

2: for i= 1→ N−1 do
3: dx← p[i+1].x− p[i].x
4: dy← p[i+1].y− p[i].y
5: dz← p[i+1].z− p[i].z
6: r←

√

(dx2+dy2+dz2)
7: θ [i]← acos(dz/r);
8: φ [i]← atan2(dx,dy);
9: end for

10: a[0].coord← p[0]
11: for i= 2→ N do
12: a[i].x← a[i−1].x+3.8∗ sin(θ [i−1])∗ cos(φ [i−1])
13: a[i].y← a[i−1].y+3.8∗ sin(θ [i−1])∗ sin(φ [i−1])
14: a[i].z← a[i−1].z+3.8∗ cos(θ [i−1])
15: end for
16: return a
17: End

• Quality assesment:

In step 4, it is measured the similarity between the off-lattice structures obtai-

ned in steps 2 and 3. According to (PARK; LEVITT, 1995; MANN et al., 2012),

RMSD is used to assess protein model quality. It measures the similarity of two

structures from coordinates, as shown in Equation 47.

RMSD=

√

∑N−1
i=0

|P1i−P2i |
N

(47)

Where, N, P1i and P2i represent the number of amino acids, the Cartesian coordi-

nates of the first protein structure P1 and the Cartesian coordinates of the second

protein structure P2, respectively.

The RMSD evaluation depends on the superpositioning of the protein structures.

Since the RMSD is a rotation-dependent measure, a optimised RMSD is done
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using the Kabsch method (KABSCH, 1978) in order to obtain the lowest RMSD.

The main idea of the Kabsch method is to calculate the rotation matrix, which is

used to minimize the RMSD. Basically, the Kabsch method algorithm has three

steps. First, a translation to the origin of the centroids of both structures (AB_likea,

AB_likeb) is done by using Equation 44. It results in two translated structures P

andQ, that areN×3matrices. The ith row of eachmatrix represents the translated

coordinates of the ith amino acid. Next, the covariance matrix (Ai j) is calculated,

as shown in Equation 48. Then, the computation of the optimal rotation matrix

(U ) is done using Singular Value Decomposition (SVD) (GOLUB; LOAN, 2012),

and it is used to rotate P unto Q. Finally, the RMSD is calculated by using the

rotated P and Q, as shown in Equation 47.

Ai j =
N

∑
k=1

PkiQk j (48)

where, N is the number of amino acids; P and Q are the sets of coordinates of the

translated structures.

3.5 PERFORMANCEMEASURES IN PARALLEL COMPUTING

In order to evaluate the parallel algorithms proposed in this thesis, three per-

formance measures are used: speedup, efficiency and serial fraction.

Probably, speedup is the most widely used performance measure in parallel

computing (ALBA, 2005). This measure aims at evaluating how much a parallel algo-

rithm is faster than the equivalent sequential version. Speedup (sm) is defined as the

time needed for running a given algorithm in one processor (T1) divided by the run-

ning time of the same parallel algorithm, running in m processors (Tm), as in Equation

49.

sm =
T1

Tm
(49)

From Equation (49) three types of speedup behavior can be clearly identified:

sublinear speedup (sm<m), linear speedup (sm=m), and superlinear speedup (sm>m).

In (ALBA, 2005), there is an interesting taxonomy for the measurement of speedup in

parallel processing systems that was useful for this work:
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• Strong speedup: compares the execution time of the parallel version with the

best sequential version of the algorithm (also known as best-so-far sequential

algorithm).

• Weak speedup: compares the execution time of the parallel version of an algo-

rithm developed by a given programmer with its own sequential version of the

algorithm. There are two variations for this type of measure:

– Versus panmixia: compares the parallelized algorithm with the sequential

version;

– Orthodox: compares the parallel algorithm running in one processor against

the same algorithm running in m processors.

Efficiency is a measure capable of evaluating the amount of time that a given

processor is actually used for processing (ROOSTA, 1999). Equation 50 shows how

the Efficiency of a parallel computing system is computed: it is simply the speedup

divided by the number of processors.

em =
sm

m
(50)

An interestingmetric for measuring and observemore effects rather than using

the speedup metric is the serial fraction ( fm), proposed by (KARP; FLATT, 1990) and it

defined in Equation 51.

fm =
1/sm−1/m

1−1/m
(51)

To the best of our knowledge, the first attempt to use the serial fraction to

analyze Parallel Evolutionary Algorithm was done by (ALBA, 2002). He showed that

if super-linear speedup occurs, the serial fraction would take a negative value. They

also showed that an increasing of fm is a warning that the granularity of the parallel

processes is too fine.
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3.6 MATERIALS ANDMETHODS

3.6.1 SYNTHETIC SEQUENCES

We used synthetic protein sequences based on the Fibonacci numbers that

were proposed by (STILLINGER;HEAD-GORDON, 1995). These sequenceswere used

for the 3DABmodel by several researchers. For instance, the best results with those se-

quences were obtained by (LIANG, 2004), (BACHMANN; ARKM; JANKE, 2005) and

(KIM; LEE; LEE, 2005), who presented an Annealing Contour Monte Carlo (ACMC), a

Multicanonical Monte Carlo and a Conformational Space Annealing approaches, respecti-

vely.

The arithmetic sequence of Fibonacci numbers ( f0, f1, ..., fN) is generated by

Equation 52.

f0 = 0, f1 = 1, fi = fi−1+ fi−2 (∀i> 1) (52)

Themagnitudes of the fi numbers increasewith index i, approaching the asym-

totic limiting form (Equation 53):

fi ∼ a.γ i (53)

where: a = 0.447213 and γ represents the “golden mean” ratio, that is given by the

Equation 54.

γ = (51/2+1)/2 (54)

A string of A’s and B’s is generated from the Fibonacci numbers according to

Equation 55.

S0 = 0, S1 = 1, Si+1 = Si−1kSi (∀i> 0) (55)

Where kmeans the concatenation of the strings. For example, A, B, AB, ABBAB,

BABABBAB, ... are the first five elements of the Fibonacci sequence, that are generated

following the rule, and mapping 1→ A and 0→ B.

Some properties of the Fibonacci sequences were shown by (STILLINGER;
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HEAD-GORDON, 1995):

• A residues are isolated along the backbone, flanked on both sides by B residues;

• B residues appear only isolated or in pairs;

• the number os residues in Si is fi+1

Table 5 shows the Fibonacci sequences that were used in this work and in the

related works previously cited in this section.

Table 5: Benchmark Fibonacci sequences for the 3D AB off-lattice model, proposed by
(STILLINGER; HEAD-GORDON, 1995) for the AB models

id N Sequence
1 13 (ABB)2(AB)2BAB
2 21 (BA)2B2ABA(BBA)2BAB2AB

3 34 (ABB)2(AB)2(BABBA)3B2ABAB2AB

4 55 (BA)2B2ABA(BBA)2(BABBA)2B2ABA(BBA)2(BABBA)2B2ABAB2AB

Source: Adapted from (STILLINGER; HEAD-GORDON, 1995).

Where N represents the protein sequence size (number of amino acids) and the

sk means k repetitions of a substring s.

Besides the Fibonacci sequences, other synthetic sequences were used, which

were proposed by (YUE; DILL, 1993) for the 3DHP model, previously used by (BENÍ-

TEZ; LOPES, 2010) for the 3DHP-SC model and have either 27, 31, 36 and 48 amino

acids. These sequences are shown in Table 6.

Table 6: Benchmark sequences for the AB off-lattice model, proposed by (YUE; DILL, 1993)
for the 3DHP models.

id N Sequence
5 27 AB4A4B2ABABA3BAB2A2B2A

6 27 ABBBAAAABABAABBBABAABABBBAB

7 27 AB(AABB)2A4(BBBA)2A2B2A

8 31 (AAB)2A6(BBAAAAA)2A2

9 36 BA(BBA)11B

Source: Adapted from (YUE; DILL, 1993).

3.6.2 REAL PROTEIN SEQUENCES

Table 7 shows the list of real protein sequences that were used in this work. In

this table, the second column, third and fourth columns identify, respectively, the PDB
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code, name, size (N) and the structural class of the proteins. The structural class α +β

indicates that the protein is formed by α-helices and antiparallel β -sheets. On the other

hand, α/β means that the protein is formed by α-helices and parallel β -sheets. These

sequences were chosen according to their size. Table 8 shows the amino acids sequence

of each protein, using the three letter encoding.

Table 7: List of real protein sequences
id PDB code Name N Structural class
10 2gb1 Protein G 56 α + β
11 1pcy Oxidized Poplar Plastocyanin 99 α + β
12 2trx Thioredoxin da Escherichia coli 108 α/β
13 3fxn Clostridium Beijerinckii Flavodoxin 138 α/β

Source: Own work, based on PDB files.

Figures 26(a), 26(b), 26(c) and 26(d) show, respectively, the native conformati-

ons of the real proteins used in this work, using RasMol 2.

(a) (b) (c)

(d)

Figure 26: Native conformations of the proteins 2gb11 (a), 1pcy (b), 2trx (c) and 3fxn (d)

Source: These figures were generated from PDB files, using the Cartoon visualization of

the RasMol application.

2RasMol is a molecular visualization software. Available at http://www.rasmol.org
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Table 8: List of real protein sequences
id PDB code Sequence
10 2gb1 MET THR TYR LYS LEU ILE LEU ASN GLY LYS THR LEU LYS

GLY GLU THR THR THR GLU ALA VAL ASP ALA ALA THR ALA
GLU LYS VAL PHE LYS GLN TYR ALA ASN ASP ASN GLY VAL
ASP GLY GLU TRP THR TYR ASP ASP ALA THR LYS THR PHE
THR VAL THR GLU

11 1pcy ILE ASP VAL LEU LEU GLY ALA ASP ASP GLY SER LEU ALA
PHE VAL PRO SER GLU PHE SER ILE SER PRO GLY GLU LYS
ILE VAL PHE LYS ASN ASN ALA GLY PHE PRO HIS ASN ILE
VAL PHE ASP GLU ASP SER ILE PRO SER GLY VAL ASP ALA
SER LYS ILE SER MET SER GLU GLU ASP LEU LEU ASN ALA
LYS GLY GLU THR PHE GLU VAL ALA LEU SER ASN LYS GLY
GLU TYR SER PHE TYR CYS SER PRO HIS GLN GLY ALA GLY
MET VAL GLY LYS VAL THR VAL ASN

12 2trx SER ASP LYS ILE ILE HIS LEU THR ASP ASP SER PHE ASP
THR ASP VAL LEU LYS ALA ASP GLY ALA ILE LEU VAL ASP
PHE TRP ALA GLU TRP CYS GLY PRO CYS LYS MET ILE ALA
PRO ILE LEU ASP GLU ILE ALA ASP GLU TYR GLN GLY LYS
LEU THR VAL ALA LYS LEU ASN ILE ASP GLN ASN PRO GLY
THR ALA PRO LYS TYR GLY ILE ARG GLY ILE PRO THR LEU
LEU LEU PHE LYS ASN GLY GLU VAL ALA ALA THR LYS VAL
GLY ALA LEU SER LYS GLY GLN LEU LYS GLU PHE LEU ASP
ALA ASN LEU ALA

13 3fxn MET LYS ILE VAL TYR TRP SER GLY THR GLY ASN THR GLU
LYS MET ALA GLU LEU ILE ALA LYS GLY ILE ILE GLU SER
GLY LYS ASP VAL ASN THR ILE ASN VAL SER ASP VAL ASN
ILE ASP GLU LEU LEU ASN GLU ASP ILE LEU ILE LEU GLY
CYS SER ALAMET GLY ASP GLU VAL LEU GLU GLU SER GLU
PHE GLU PRO PHE ILE GLU GLU ILE SER THR LYS ILE SER
GLY LYS LYS VAL ALA LEU PHE GLY SER TYR GLY TRP GLY
ASP GLY LYS TRP MET ARG ASP PHE GLU GLU ARGMET ASN
GLY TYR GLY CYS VAL VAL VAL GLU THR PRO LEU ILE VAL
GLN ASN GLU PRO ASP GLU ALA GLU GLN ASP CYS ILE GLU
PHE GLY LYS LYS ILE ALA ASN ILE

Source: Adapted from PDB files.
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These proteins were extracted from PDB files 3. The PDB format has 12 secti-

ons, where different records are listed in a specific order. Table 9 shows the sections

and records of the PDB file format 4.

Table 9: Sections and records of the PDB file
Section Description Records
Title Summary Description HEADER, OBSLTE,

TITLE, CAVEAT,
AUTHOR, REVDAT,

SPRSDE, JRNL
KEYWDS, EXPDTA,
COMPND, SOURCE

Remark References, REMARKS 1,...n
Description of the biological function

Primary sequence of residues DBREF, SEQADV,
structure in each chain of SEQRES, MODRES

the macromolecule
Heterogen complete description of HET, HETNAM
description non-standard residues in the entry HETSYN, FORMUL
Secondary description of the HELIX, SHEET
structure secondary structures TURN

Connectivity chemical SSBOND, LINK
annotation connectivity HYDBND, SLTBRG, CISPEP

Miscellaneous feature descriptions SITE
features of the macromolecule

Crystallographic Description of the CRYST1
Crystallographic Cell

Coordinate coordinate system ORIGXn, SCALEn,
transformation transformations MTRIXn, TVECT
Coordinate atomic coordinates MODEL, ATOM,

SIGATM, ANISOU,
SIGUIJ, TER,

HETATM, ENDMDL
Connectivity chemical CONECT

connectivity
Bookkeping final information MASTER, END

about the file
Source: Adapted from the PDB file format documentation.

In this work, the amino acid sequence and the coordinates of the amino acids

of the protein are required. Thus, we used the SEQRES and ATOM records of the PDB

file. Table 10 shows the SEQRES record format, where first, second and third columns

show the columns numbers, name and definition of each field.
3Available in http://www.pdb.org
4Available at http://www.wwpdb.org/documentation/file-format
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Table 10: SEQRES record format
Columns Field Definition

1-6 Record name “SEQRES”
9-10 serNum serial number
12 chainID Chain identifier

14-17 numRes number of residues
20-22

resName

Residue name
24–26 (three letters code)
...

68–70
Source: Adapted from the PDB file format documentation.

For example, Figure 27 shows the SEQRES records of the PDB file of the 2gb1

protein.

Figure 27: Example of SEQRES records: 2gb1 PDB file

Source: Adapted from 2gb1 PDB file.

Table 11 shows the ATOM record format, where first, second and third co-

lumns show the columns numbers, name and definition of each field.

Figure 28 shows the first ten ATOM records of the PDB file of the 2gb1 protein.

It is important to recall that we use the backbone of the proteins, which is formed by

the Cαs of the amino acids. Hence, our approach reads only the Cα coordinates from

the PDB file. In Figure 28, the bold text shows the Cα coordinates of the first amino

acid of the chain, where “CA” (name field) indicates the Cα .
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Table 11: ATOM record format
Columns Field Definition

1-6 Record name “ATOM ”
7-11 serNum serial number
13-16 Name atom role name
17 altLoc atom variant

18–20 resName amino acid code
(three letters code)

22 chainId chain ID
23–26 resSeq residue sequence

number
27 iCode Insertion code

31–38 x atom x coordinate
39–46 y atom y coordinate
47–54 z atom z coordinate
55–60 occupancy atom occupancy
61–66 tempFactor temperature factor
77–78 element element symbol
79–80 charge charge on the atom

Source: Adapted from the PDB file format documentation.

Figure 28: Example of ATOM records: 2gb1 PDB file

Source: Adapted from 2gb1 PDB file.
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4 COMPUTATIONAL EXPERIMENTS AND RESULTS

“No man’s knowledge here can go beyond his

experience.”

— John Locke

In this chapter, a series of computational experiments that explores each part

of the proposed approach is presented. First, Section 4.1 presents how the Molecular

Dynamics simulations were conducted. After that, the experiments for evaluating the

performance of the parallel approaches pGEP-CA and pECO are presented in Sections

4.3 and 4.4, respectively.

All experiments reported in this work were run in computers with a Intel pro-

cessor Quad Core, running Arch Linux 1. Parallel approaches were developed using

the MPICH2 for the message passing interface. All algorithms were implemented in

ANSI-C programming language. The figures were generated using Gnuplot 2 and a

developed OpenGL3 -based interface.

4.1 MOLECULAR DYNAMICS SIMULATIONS

The basic MD parameters used in all the experiments are: time-step: δ t =

0.0001; stop criterion: tmax = 300 (this value represents 3×106 energy evaluations); and

coupling constant (Berendsen’s thermostat): τp = 0.01. The parameters were chosen

empirically.

1Available at: https://www.archlinux.org/
2Available at: http://www.gnuplot.info
3Available at: http://www.opengl.org/
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4.1.1 EXPERIMENTS USING SYNTHETIC SEQUENCES

In this section we present the experiments and results obtained through Mole-

cular Dynamics simulations, using synthetic sequences. This Section is based on our

previous conference paper (BENÍTEZ; LOPES, 2012).

Tables 5 and 6 (see Section 3.6.1) show the synthetic sequences that were used

in the experiments reported in this section.

In order to study the temperature dependence of the protein folding, experi-

ments were done under different values of the environment temperature (T = [0.1;0.2;

0.5;0.8;1.0;1.1;1.2;1.5;1.8;2.0]) and using the 13-amino-acid-long sequence. The energy

and radius of gyration of the best conformation obtainedwere recorded in order to ana-

lise the thermodynamic behavior of the protein. For each temperature, 10 independent

runs were done using different initial unfolded conformations, and the average results

are shown in Figures 29(a) and 29(b).

The overall size of the molecule (compactness of the residues), as measured by

Rg, increases substantially when T increases as shown in Figure 29(b). The total energy

also increases when T increases. This indicates a denaturation process. The best results

(i.e. lower energy conformations) were obtained at T = 0.1. Therefore, this value was

fixed for the remaining experiments.
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Figure 29: Thermodynamic properties: average E (a) and Rg (b) (in dimensionlessMD units).

Source: Own work.

Table 12 presents the results obtained through Molecular Dynamics simulati-

ons, using synthetic sequences. In this table, the first column identifies the size of the

sequences. For comparison purpose, the second column shows the best results obtai-

ned for the 3D AB model of the literature. The third column shows the best results

found. Next, the fourth column shows the percent difference between them and our
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results. The fifth column presents the average (± standard deviation) of the energy

values obtained. Finally, the average processing time is shown in last column.

Here, it is important to known that (LIANG, 2004) and (BACHMANN;ARKM;

JANKE, 2005) obtained the best result for the 13 and 21-amino-acid-long sequences. In

addition, (KIM; LEE; LEE, 2005) obtained the best results for the 34 and 55-amino-

acid-long sequences. The other five sequences were only used for simple HP models.

Therefore, there are no comparison values for these sequences.

Analyzing the percent difference, it is observed that our results are slightly

worse than the best results found in the literature. Probably, even better results would

be found by increasing the stop criterion parameter (tmax) or starting from other initial

unfolded conformations.

Since the MD simulation is deterministic, the average of the energy values

obtained indicates that different folding trajectories were generated. Thus, different

initial conditions led to different structures.

Overall, the processing time is a function of the length of the sequence, growing

as the number of amino acids of the sequence increases.

Table 12: Results for the 3D AB off-lattice model. N/A = not available

N
Energy

tp(s)Best (literature) Best diff (%) Avg±stdev
13 -26.507 -26.4661 0.15 -24.18±1.83 131.34
21 -52.917 -51.7720 2.18 -48.07±1.91 234.90
34 -97.7321 -91.3662 6.73 -87.11±3.81 326.50
55 -173.9803 -160.9863 7.75 -153.45±4.45 504.39
27 N/A -75.8225 – -71.44±3.38 302.56
27 N/A -73.0161 – -67.96±3.52 264.34
27 N/A -74.3461 – -68.63±3.56 325.72
31 N/A -103.4963 – -99.36±3.08 247.09
36 N/A -94.0439 – -89.92±2.59 271.53

Source: Own work.

An example of the folding pathway of the 13-amino-acid-long is presented in

Figure 30. An OpenGL 4 interface was developed for generating this figure. In this fi-

gure, six folding states obtained in the simulation are shown. The captions below each

protein structure shows the energy (E) and radius of gyration (Rg) at different times

(t). The folding process starts with a denatured conformation with high energy (in this

example: E =−6.626). The protein folds through a series of intermediate states, where
4The OpenGL library is available at: http://www.opengl.org/
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fragments start to pack and the protein leaves the misfolded (or partially-structured)

intermediate states and forms a native-like structure. In order to reinforce our obser-

vation about the folding pathway, Figures 31(a) and 31(b) show the time dependence

of the total energy and the radius of gyration.

Figure 30: Sample snapshot from a folding pathway. The number 1 denotes the N terminus
of the chain.

Source: Own work.
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Figure 31: energy(t) (a) and rg(t)(b) (in dimensionless MD units).

Source: Own work.
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4.1.2 EXPERIMENTS USING REAL SEQUENCES

4.1.2.1 STRUCTURE CONVERSION

Real coordinates, extracted from PDB files, were converted into coordinates of

an off-lattice structure (called “AB_like”). According to Section 3.4, all bond lengths are

scaled to 3.8 Å (AB_likea), which is the mean distance between consecutive Cα atoms

in protein structures (MANN et al., 2012). It is important to note that the “AB_like” are

considered here to be the native structures, for comparison purposes.

Table 7 (see Section 3.6.2) shows the real sequences that were used in the expe-

riments reported in this thesis. Figures 32(a), 32(b), 32(c) and 32(d) show the obtained

“AB_like” structures for proteins 2gb1, 1pcy, 2trx and 3fxn, respectively. An OpenGL

based 5 interface was developed for generating these figures.

Table 13 shows the RMSD between AB_like structures obtained from real pro-

teins (obtained from PDB files) and AB structures (with all bond lengths equal to 3.8 Å).

The RMSD was computed using the Kabsch algorithm (See Section 3.4 for further in-

formation). In this table, first, second and third columns show the identification, name

and size of the protein sequences (N). The fourth column shows the RMSD between the

protein structures, and for further information, fifth column shows the average bond

length between Cαs of the real protein structures for 10 independent runs.

Table 13: RMSD between real proteins (from PDB) and AB_like structures
Protein

RMSD (Å)
Average

id Name N Bond length (PDB)
10 2gb1 56 0.040776 3.809915
11 1pcy 99 1.605116 3.672578
12 2trx 108 0.828630 3.764471
13 3fxn 138 0.559579 3.798874

Source: Own work.

In Table 13, we can observe that the RMSD is not correlated with the size of

the protein sequence (N), and the lower the average bond length between Cαs of the

real structures, the larger the RMSD. In other words, the further the average from 3.8

Å, larger the error due to the conversion procedure to the “AB_like” structures and,

consequently, the larger the RMSD.

5The OpenGL library is available at: http://www.opengl.org/
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(a) (b)

(c) (d)

Figure 32: AB_like conformations of proteins 2gb1 (a), 1pcy (b), 2trx (c) and 3fxn (d), where all
bond lengths are equal to 3.8 Å. Blue and red balls represent the polar and the hydrophobic
residues, respectively. The backbone and the connections between elements are shown in
black lines. In this example, we used the amino acid conversion following the classification
by (ALBERTS et al., 2002), as shown in Table 2.

Source: Own work.

4.1.3 HYDROPHOBICITY SCALES AND AMINO ACID CONVERSION

In order to convert the protein sequences of the PDB into the AB model alpha-

bet (i.e.: ’A’ and ’B’ for hydrophobic and hydrophilic residues, respectively) we need to

use an amino acid conversion table. In this work, we used the amino acid type classi-

fication shown in (ALBERTS et al., 2002) and derived an amino acid type classification

from the hydrophobicity scales presented in Section 2.1.1.

Many experiments were done to verify the adequacy of the amino acid con-

version tables which, in turn, are obtained from the hydrophobicity scales presented
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in Section 2.1.1, for the PFP using the AB model of proteins. The evaluation of these

experiments takes into account not only the quality of the solutions obtained, which is

measured through the RMSD value between the folded structures and AB_like structu-

res from PDB files, but also, the correlation between the estimated energy and RMSD

values.

Table 14 shows the equivalent AB sequences of the proteins 2gb1, 1pcy, 2trx

and 3fxn for each hydrophobicity scale (or amino acid classification, according to its

hydrophobicity). In this table, the second and third columns identify the name of the

amino acid conversion table and the equivalent sequence written in the AB model

alphabet.

Table 15 shows the results obtained through Molecular Dynamics simulations,

using the equivalent AB sequences of the real sequences 2gb1, 1pcy, 2trx and 3fxn.

In this table, the first column identifies the name of the protein. The second column

identifies the name of the amino acid conversion table. The third and fourth columns

identify the best results and average (± standard deviation) of the energy values obtai-

ned. The fifth column represents the RMSDvalues obtained betweenAB_like structures

(see Section 4.1.2.1). The eighth column identifies the average radius of gyration (Rg)

of the AB structures obtained. The last column shows the average processing time (Tp).

The correlation coefficient r (also referred to as the Pearson product moment correlation

coefficient) (RODGERS; NICEWANDER, 1988) is also presented in the seventh column.

It measures the linear relationship between the energy of the structures obtained and

RMSD.

In Table 15, it is observed that there is no linear correlation between the energy

and RMSD values for these sequences, but the correlation obtained using the “Hessa”

conversion for sequence 1pcy (r = −0.77) almost represents a correlation between the

energy and RMSD. Moreover, it is possible to observe that the best result for sequence

2gb1, regarding the RMSDmeasure, was achieved using the conversion table following

the classification by (ALBERTS et al., 2002).

In order to compare the conversion tables, regarding the RMSD values, Figu-

res 33(a) – 33(d) show the comparative boxplots obtained from Table 15. The boxplots

represent an informative graphical display that visually highlights the location and

spread of sets of data and it is often highly suggestive of the need for inferential com-

parisons of means and standard deviations. The mean is indicated by a line segment

drawn within the box parallel to the edges, and the variability of the data is represen-
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Table 14: Equivalent AB sequences of the proteins
Protein Classification Sequence

2gb1

Alberts AB3A3BAB2ABAB4B(AAB)2AB2A2(BBBA)3A(BA)2B(BBBA)2BAB2

Kyte AB3A3B4AB6(BAA)2BAB2A2B3AB4AB8AB3(AB)2B
Wimley (AB)2A2(ABBBB)2B13(ABB)2B7(AB)2B5AB4

Hessa AB3A2(ABBBB)4B4AB7A(ABBBBBBBB)2B4(AB)2B
Eisenberg (AB)2A3BAB(BA)2B4(BAA)2BA(BBAA)2B3A2(BA)3B2AB3(AB)2B
Janin AB3A3BAB(BA)2B4(BAA)2BAB2A2(BBBA)3(AB)3(BBBA)2BAB2

Engelman A2B2A3(BA)2(AB)2A(AAB)2A2(AABB)2BAB3A2(BA)2AB3A2BA5B

1pcy

Alberts A(BAAAAABBA)2(BA)2AB2A3B3A4B2A3B4(AAB)2AB(BA)2B4A2

(BA)2B(BA)2A2(BBBA)2(BA)2BBAAAAAABABAB
Kyte ABA3BAB4A4B3(AB)2B4A3B2(BA)2B3A3B(BBBA)2BAB(BA)2B4

A2BAB3(BA)2A2B7(AB)2B3(BA)2AB(BA)2B
Wimley AB2A2B6(AB)2B2(BA)2B5(AB)2B(BBBA)2BAB4AB8(AB)2B3A2

B6(ABBB)2B(BA)2A2B7AB7

Hessa ABA3B6ABA2B2(BA)2B5A3B5AB3A3B(BBBA)2AB3(BA)2B4A2

B6(AB)3B6(AB)2B6A2B(BA)2B
Eisenberg ABA5B2ABA5B(BA)3AB2A3B3A(AAABB)2B(BAA)2BAB(BA)2B4A2

(BA)2B2ABA3B2(BA)3A(AB)2BA6(BA)2B
Janin ABA5B(BA)2A3B2(BA)2B2AB2(AAABBB)3BAB2A2BAB(BA)2B4A

(AB)3(BA)2A2(BBBA)2BAB4A5(AB)3

Engelman ABA5B2A6(BA)2A2(AB)2B(AAABBB)3A2BA3(BAA)2A2B3A(AB)3

A2BA3(ABB)2(AAB)2B2A6BA3B

2trx

Alberts B3A(AB)2(BBBA)2(AB)2A2(AAAB)2A5BA6B2A2B4(AB)2A2(BA)2

B2(BAA)2B2A2(BAAA)2AB(BA)2A2B2A4B(BA)2B2A2(BA)2A
Kyte B3A2(BABBB)2A2BAB2A4(BA)2(BBA)2BA3B(AABB)2B3(BA)2

(AB)3B(BBBBA)2(BBA)2A3B4A2AB(BA)2AB2(BBA)2A(BA)2A
Wimley B3AABA(BBBBA)2B3(BBAA)3B2ABA2B2A2B2(ABBB)3(BA)2B8

(BA)2(BBA)2A3B8(BBBBA)2B2A2B3AB

Hessa B3A2BAB(BBBA)2AB5A2(AB)2B(BBA)2B(AABB)2AB7(AB)2(BA)2

B9(BBA)3A3(BBBBA)2B2AB4AB2A2B3AB

Eisenberg B3A2BAB4AB3A2(BA)2A4(BAAA)2A2BA4(AABB)2(AB)3A(AB)3

B(BAA)3A2(BAAA)2AB(BA)2A2B2A4B(BA)2B2A(AB)2A2

Janin B3A(AB)2(BBBA)2A(BA)2A(AAAB)3ABA(AAB)2BA2B4(AB)2A2

(BA)2B4(AB)2B(BAA)2B2A4B(BA)2A2B2A4B(BA)2B2A2(BA)2A
Engelman AB2(AAB)2BA2(BA)2(AB)2A2(AAAB)3ABA(AAB)2BA2B4ABA4(BA)2

B4A3B3(AAB)2A5B(BA)2A3BA5(BA)2B2A2(BA)2A

3fxn

Alberts ABA2(BA)3B4A2(BAAA)2(BBA)3(BABBA)2AB3A6BA

(AABB)2B(BA)2A(ABB)2B(AB)2BA5B2A3(BA)2AB2AB3

(AB)2A(AAAABB)2BAB2AB3(AAB)2BA2BA

Kyte ABA2B10A2BA3B2A2B5AB(BA)2B(BA)2B2A2B3

A4(BA)2AB3A2B4AB2A2B2AB3AB4A4B8(BBA)2B3

AB4A4B3A3B6AB3A2BAB3A2BA

Wimley (AB)2A2B8AB2A2B2A2B8AB6AB2A2B3A4B(ABB)2

B2AB4AB2A2B2AB3AB6A2B(BA)2B4A2B2AB(BBA)2

BAB6A2B11A2BAB(BBA)2

Hessa ABA2B10AB2A2B3AAB3(BBA)2(BABBA)2AB3A4BAB2

AB3A2B4AB2A2B2AB3AB3(BA)2AB10AB2AB3AB4A4

B3A3B10A2BAB(BBA)2

Eisenberg ABA4(BA)2B3(BAA)2ABA3(BBA)3BAB(BA)2B2A2B3A6BA3

B2A2B4ABA3B2AB2(BA)2B2A5BA4(BA)2AB2AB3ABA7B2

A4B(BBA)2B2(BAA)2B2A2BA

Janin ABA(AB)4B2(BAA)2ABA3(BBA)3(BABBA)2AB3A6BA3B2A2B4

AB2A2B2AB2(BA)2B2A5B2A3(BA)2AB2AB2(BA)3A2

(AAABBB)2(BBBA)2ABA2B2A2BA

Engelman A(BAA)2A2(AB)2(BAA)2(ABAA)2B2A(BAA)2(BA)2B2A2B3

A8(AABB)2(AB)2BA2B2(AAAB)2BA3(AAAB)2ABA2B2AB2(BA)3A3

(AB)2A3B3(BBBA)2ABA2B2A2BA

Source: Own work.
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Table 15: Results for the equivalent AB sequences of the real sequences 2gb1, 1pcy, 2trx and
3fxn.
Protein Class Energy RMSD r Avg(Rg) Avg(Tp) (s)

Best Average Best Average

2gb1

Alberts -166.96 -159.44± 3.46 7.35 9.52 ± 0.79 -0.02 1.85 2621.50
Kyte -157.31 -151.19± 4.17 9.46 9.96 ± 0.32 0.06 1.85 2615.70
Wimley -147.74 -144.14± 2.76 8.90 9.91 ± 0.50 0.46 1.84 2610.20
Hessa -148.88 -145.86± 2.51 7.73 9.33 ± 0.84 0.30 1.82 2609.50
Eisenberg -171.44 -165.46± 3.81 8.94 9.53 ± 0.56 0.04 1.83 2624.60
Janin -165.84 -159.84± 4.72 8.45 9.61 ± 0.72 0.42 1.85 2623.60
Engelman -184.84 -179.83± 2.61 8.29 9.39 ± 0.71 -0.47 1.84 2622.30

1pcy

Alberts -350.97 -339.41± 6.76 10.5 12.34 ± 1.11 0.20 2.46 8377.56
Kyte -318.75 -303.09± 7.31 10.17 11.65 ± 0.94 0.03 2.27 8309.89
Wimley -288.86 -283.38± 4.78 10.05 11.62 ± 0.74 -0.34 2.28 8341.89
Hessa -292.38 -289.48± 2.35 11.96 12.32 ± 0.32 -0.77 2.26 8308.67
Eisenberg -346.53 -339.59± 6.85 11.21 12.15 ± 0.58 -0.10 2.33 8331.89
Janin -331.43 -325.43± 5.04 11.24 12.27 ± 0.71 -0.13 2.29 8349.22
Engelman -360.31 -351.51± 7.15 11.40 12.22 ± 0.45 0.42 2.38 8407.56

2trx

Alberts -393.17 -379.57± 5.94 11.06 11.94 ± 0.75 -0.51 2.36 12954.22
Kyte -351.73 -342.92± 4.82 10.26 11.61 ± 0.93 0.17 2.35 13074.56
Wimley -332.86 -318.80± 6.42 10.75 11.94 ± 0.84 0.54 2.35 12920.22
Hessa -328.38 -319.79± 6.43 10.44 12.16 ± 0.94 -0.53 2.32 12994.33
Eisenberg -399.10 -380.91± 10.46 11.91 12.55 ± 0.50 -0.10 2.36 13013.56
Janin -378.33 -367.26± 6.95 10.53 11.87 ± 0.79 0.09 2.39 12934.89
Engelman -392.30 -385.42± 7.39 11.37 12.34 ± 0.59 -0.10 2.40 12947.56

3fxn

Alberts -490.08 -474.30± 7.09 11.25 12.54 ± 0.87 -0.19 2.61 21301.80
Kyte -441.65 -431.24± 8.38 11.26 12.70 ± 0.88 0.26 2.66 21431.10
Wimley -419.11 -414.39± 6.44 12.42 13.33 ± 0.59 -0.13 2.64 21170.00
Hessa -431.96 -422.38± 8.31 11.53 12.89 ± 0.95 0.17 2.63 21244.50
Eisenberg -500.49 -483.85± 11.16 11.01 13.06 ± 1.03 0.45 2.69 21351.30
Janin -484.32 -473.74± 7.03 12.23 13.45 ± 0.67 0.11 2.60 21206.00
Engelman -515.18 -500.94± 7.51 11.11 12.67 ± 0.73 0.21 2.62 21246.40

Source: Own work.
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ted by the lengths of vertical lines drawn from the edges of the boxes to upper and

lower adjacent values (MASON; GUNST; HESS, 2003).

(a) (b)

(c) (d)

Figure 33: Comparative boxplots – RMSD for conversion tables: (a) 2gb1, (b) 1pcy, (c) 2trx
and (d) 3fxn

Source: Own work.

The informations displayed in the boxplots suggest that the conversion table

obtained from the hydrophobicity scale introduced by (HESSA et al., 2005), (WIMLEY;

WHITE, 1996), (KYTE; DOOLITTLE, 1982) and (ALBERTS et al., 2002) lead to the best

results for sequences 2gb1, 1pcy, 2trx and 3fxn, respectively, regarding the average

RMSD measure. However, there is no strong evidence to suggest that these are the

most suitable conversion table for the PFP using the AB model. Thus, it is necessary

to perform a statistical test in order to verify if there is a statistically significant dif-

ference between the results obtained using the conversion tables and, consequently,

to identify the conversion table that best fits to the PFP using the AB model. Hence,

we performed a single-factor analysis of variance (ANOVA) (MONTGOMERY, 2001)

of the results obtained. The ANOVA is the common statistical method for testing the

differences between more than two samples, representing the appropriate procedure

for testing the equality of several means (MONTGOMERY, 2001; FISHER, 1959). The
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null hyphotesis for ANOVA test states equality of the means between the data. That is

H0 : µ1 = µ2 = µ3 = ...= µk, where H0 is the null hyphotesis and µi represent the means.

On the other hand, the alternative hyphotesis is defined as the negation of the null

hypothesis, that is, H1 : µi 6= µ j for at least one pair (i, j).

Table 16 reports the results obtained for the ANOVA test. In this table, second,

third, fourth and last columns represent the F test statistic, the P− value, the F critical

value and the significance level (α). F represents the test statistic for the hypothesis

of no differences in treatment means (MONTGOMERY, 2001). We should reject the

null hypothesis (H0) and conclude that there are differences between the means if F >

Fcritical. We could also use the P− value approach for decision making, where the null

hypothesis is rejected if this probability is less than or equal to the significance level

(i.e. P− value ≤ α). In Table 16, it is observed that F < Fcritical and P− value > α .

Thus, we do not reject H0 and conclude that the means do not differ; that is, there

is no significant difference between the results obtained using the conversion tables.

Therefore, the conversion tables are equally suitable for the PFP using the AB model

for sequences 2gb1, 1pcy, 2trx and 3fxn. Hence, the classification by (ALBERTS et al.,

2002) was chosen to be used in the remaining experiments.

Table 16: Results obtained of the ANOVA. Source of variations: Between groups
Protein F P− value Fcritical α
2gb1 1.360 0.245 2.246 0.05
1pcy 1.595 0.166 2.266 0.05
2trx 1.483 0.201 2.266 0.05
3fxn 1.722 0.130 2.246 0.05

Source: Own work.

4.1.4 TIME DEPENDENCE OF PHYSICAL QUANTITIES

Figures 34(a), 34(b) and 34(c) show the time dependence of the total energy of

the best conformation of each sequence, radius of gyration of the best conformation

of each sequence and the radius of gyration of the hydrophobic (RgH) and hydrophilic

(RgP) residues of protein 2gb1, using the conversion table following the classification

by (ALBERTS et al., 2002). Such plots confirm the Anfinsen’s thermodynamic hypothe-

sis, where a denatured conformation has high energy and folding to the native state,

the free energy of the protein decreases significantly.

Fluctuations in radius of gyration (Rg) provide a sensitive way to characterize
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such conformational motions of proteins (PICKOVER, 2001). Notice that, in Figure

34(c), it is possible to observe the formation of a compact hydrophobic core, surroun-

ded by polar residues, during folding because the radius of gyration of the hydropho-

bic residues is much lower than that of the polar residues (that is, RgH < RgP). Also,

in the maximized plot of this figure, it is observed an evidence of conformational fluc-

tuations of the protein structure (large groups of atoms in the protein move in uni-

son). These fluctuations are known as breathing motion (PICKOVER, 2001; RAMA-

NATHAN; AGARWAL, 2009).
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Figure 34: Properties (in dimensionless MD units): (a) Energy of the best conformation of
each sequence, (b) radius of gyration of the best conformation of each sequence and (c)
represent the radius of gyration of the hydrophobic (RgH) and hydrophilic (RgP) residues of
sequence 2gb1.

Source: Own work.

4.1.5 PROCESSING TIME

Figure 35 shows the average processing time of the MD simulations for diffe-

rent protein sizes. In this figure, it is observed that the processing time would grow
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quadratically with larger proteins. It strongly suggests the need for high performance

approaches for dealing with this problem. With the advantage of parallel processing,

it will be possible to simulate several folding pathways, which could allow the explo-

ration of the energy landscape of the AB model.
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Figure 35: Average processing time tp(s) for different protein sizes N

Source: Own work.

4.2 CONTACTMAPS GENERATION

The performance of the pGEP-CA and pECO, described in Sections 3.2 and 3.3,

respectively, was evaluated using Contact Maps (CMs) which, in turn, were generated

from 3D protein structures obtained by Molecular Dynamics (MD) simulations.

Figure 11(c) (page 80) shows the overall CM generation procedure. As shown

in Section 4.1.4, the 3D structures were generated for four protein sequences with dif-

ferent lengths (N), previously presented in Table 7, 2gb1 (N = 56), 1pcy (N = 99), 2trx

(N = 108) and 3fxn (N = 138) using the the amino acid type classification proposed

by (ALBERTS et al., 2002), by MD simulations with time-step: δ t = 0.0001 and stop

criterion: tmax = 300, leading to 3×106 folding states for each protein sequence.

From the structures obtained by MD simulations at equal intervals of time

between 0 and tmax, 100 CMs were generated for the following threshold values: 6.65,

7, 8, 9, 10, 11 and 12Å, as shown in Algorithm 8). The first value was obtained from the

dimensionless value defined by (IRBACK et al., 1997). They stated that two monomers

i and j are taken to be in contact if r2i j < 1.75. Considering that the unity dimensionless

distance is 3.8Å, 1.75 is equal to 6.65Å. The other ones are typical values of threshold

considered in the literature. Thus, 700 CMs were generated for each protein sequence,
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and a total of 2800 CMs for the four sequences.

For instance, for the protein 2gb1, composed by 56 amino acids, each CM is a

56x56 matrix and represents a folding state of the folding process.

As commented before, the CMs generated following the procedure presen-

ted in this section were used in the computational experiments for the pGEP-CA and

pECO which, in turn, will be presented later in Sections 4.3 and 4.4, respectively.

4.3 pGEP-CA – COMPUTATIONAL EXPERIMENTS

The contact maps (CMs) used in the experiments to validate the proposed ap-

proach – the pGEP-CA – were generated as described in Section 4.2. In the pGEP-CA,

the CMs are represented by 2D-CAs, which in turn, are simulated using evolved (or

induced) transition rules by GEP simulations. In order to evaluate the proposed ap-

proach, experiments were done using consecutive ith and jth CMs, which in turn,

represent the initial 2D-CA configuration and the expected final 2D-CA configuration,

respectively. The fitness of GEP individuals is computed using the expected CM (ob-

tained by MD simulations) and the 2D-CA achieved using the rules obtained.

Due to the stochastic nature of the algorithm, 30 independent runs were done

with different initial random seeds for each pair of CMs, totaling 103,950 experiments.

Section 4.3.1 presents a brief analysis of the load balancing and performance

measures in the pGEP-CA. Next, Section 4.3.2 shows the running parameters used in

the experiments with the CMs of the protein sequences. Then, the results obtained

using the protein sequences 2gb1, 1pcy, 2trx and 3fxn are presented in Sections 4.3.2

and 4.3.3.

4.3.1 LOAD BALANCINGAND PERFORMANCEMEASURES IN pGEP-CA

Since the best sequential version of the GEP-CA algorithm is not known, the

“Strong speedup” measure cannot be used. Thus, we shall use the “Versus panmixia”

approach to evaluate the parallel implementation (the pGEP-CA), using the sequential

version of the algorithm as a reference.

Figures 36(a) – 36(c) were generated using three different values of GEP po-

pulation size (popsize = [100;200;600]), one 2D-CA interaction (CAiter = 1), number of

slave processors varying from 5 to 100 (s = 5;10;20; · · · ;100) and CMs of the protein
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sequence 2gb1 (with 56 amino acids). The basic parameters of GEP and CA algorithms

are presented in Section 4.3.2.

Figure 36(a) shows the speedup curve of the pGEP-CA. In this figure, it is ob-

served that the speedup is always sublinear and tends to get apart from linear speedup

as the number of slave processors increase.
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Figure 36: pGEP-CA performance measures using Versus Panmixia approach: (a) Speedup

(b) Efficiency (c) Serial Fraction and (d) Speedup vs. Serial Fraction with popsize = 100

Source: Own work.

Figure 36(b) shows the efficiency curve of the pGEP-CA. Ideally, efficiency

should be close to the unity. However, in practice, this is not always possible, since

processors are not used 100% of time for processing, but also for communication, me-

mory allocation and other tasks of the underlying operating system (ROOSTA, 1999).

It is observed a loss of efficiency as the number of slave processors increase. Basically,

this behavior is expected, due to the communication overload caused in the master

processor. Also, a perfect load balancing between processors is not possible in some si-

tuations, since the number of GEP individuals to be processed divided by the number
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of slave processors is not an exact number. This may cause a loss of efficiency since, in

a given instant of time, there might be some slaves working and others waiting.

It is also important to recall that both the speedup and efficiency may increase

with the number of individuals of the GEP population, the size of the CMs, the num-

ber of 2D-CA interactions and the size of the neighboorhood (e.g. the Moore neigh-

boorhood), because the processing load due to the fitness computation of the overall

population will increase, as shown in Figures 36(a) and 36(b).

Figure 36(c) shows the serial fraction ( fm) curve of the pGEP-CA. The increase

of the serial fraction with the number of slaves indicates that the granularity of the

parallel processes decreases. In other words, the higher the number of slaves, the finer

the granularity is. It is also possible to observe that a super-linear speedup occurs,

when the pGEP-CA has 100 individuals and 5 slaves due to the negative value of the

fm.

Theoretically, the less the value of fm, the better the parallelization is. Howe-

ver, Figure 36(d) shows that smaller values of serial fraction are better if they result in

higher speedup. It is also possible to observe that the increase of the number of pro-

cessors may lead to higher values of serial fraction, resulting in larger load imbalance.

4.3.2 NUMERICAL RESULTS

The running parameters for the pGEP-CA were defined empirically and they

are shown in Table 17. A better understanding of the relationship between the para-

meters and the performance of the algorithm is quoted as an important future work to

address.

Tables 20 – 23 show the results obtained using the CMs of the protein sequen-

ces 2gb1 (N = 56), 1pcy (N = 99), 2trx (N = 108) and 3fxn (N = 138). In order to facilitate

the reading, these tables are shown in Appendix A. In these experiments, the fitness

function f itness1 (see Equation 35) was used. In these tables, the first column shows the

metrics of the best individuals: TC, TNC, FC and FNC represent the number true contacts,

true non-contacts, false contacts and false non-contacts, respectively. SC, SNC measure

the ability of a transition rule to generate correct contacts and non-contacts, respectively.

Si measures the symmetry of the CM. Next columns show their values for each th-

reshold value. We can observe, from the f itness, SC and SNC values, that the induced

transition are able to generate 2D-CAs with correct contacts and non-contacts, despite
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Table 17: pGEP-CA parameters
Parameter Description Value

G
E
P
pa

ra
m
et
er
s

popsize Population size 100

Maxgen maximum number of generations 350

link linking function AND

F function set [AND, OR, NOT]

T terminal set [a, b, c, d, e]

N Number of classes 2 (’0’ and ’1’)

ng number of genes per chromosome 2

h size of the head 10

sel selection method stochastic tournament

Tourney size tourney size 10% of popsize

pcross recombination probability 0.8

pmut mutation probability 0.1

ptIS IS transposition probability 0.7

ptRIS RIS transposition probability 0.7

pgt genic transposition probability 0.7

C
A

pa
ra
m
et
er
s ∑ set of possible states of a cell [0,1]

η ti neighboorhood 2D-CA von Neumann neighboorhood with r = 1, m= 5

l length of the transition rule Φ(η ti ) 32

CAiter number of 2D-CA interactions 1 (one transition)

Source: Own work.

the FC and FNC. From the minimum values of SC obtained, it is also important to recall

that the ability of the obtained transition rules to generate correct contactsmay decrease

with the size of the CMs. For instance, it is possible to observe by comparing the mini-

mum values of SC obtained for the CMs of 2gb1 and 3fxn, specially with the threshold

values 6.65Å, 7Å and 10Å.

Table 24 (see Appendix A) shows the results obtained using the CMs of the

protein sequence 2gb1 and the second proposed fitness function ( f itness2) which, in

turn, is based on the Jaccard similarity coefficient (see Equation 41). Comparing the

results obtained using both proposed fitness functions ( f itness1 and f itness2) which

are shown in Tables 20 and 24, it is possible to observe that both the proposed fitness

functions are suitable to the problem and the fitness function f itness1 is slightly better

for CMs with lower threshold values (6.65 and 7Å).
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4.3.3 GRAPHICAL RESULTS

Figure 37(a) shows a plot of the fitness (best and average) obtained in a simu-

lation. In this figure, it is observed that the genetic diversity is preserved along the

run, since the distance from average to best is maintained throughout GEP generati-

ons. Figures 37(b) and (c) show a expected (final) CM and the CM generated using the

induced rule (”011111110111111101111111011111112“, with f itness = 0.85). The CM

obtained suggests that the proposed fitness function is adequate to induce transition

rules for evolving 2D-CAs, which in turn, represent CMs. Best results can be obtai-

ned, using a knowledge-based strategy to correct the drawbacks of the obtained CMs

or using a specialized procedure for generating the initial population. For instance, a

specialized decimation and diversification strategy may be used in order to improve

the quality and diversity of the population, in the transition rule space (transition rules

obtained from individuals), similar to the method called ”Decimation-and-Hot-Boot“

(SCAPIN; LOPES, 2007)(BENÍTEZ; LOPES, 2010).
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Figure 37: (a) Example of performance of the pGEP-CA and Example of an obtained CM: (b)
Expected CM (c) Obtained CM, where cells in states ’0’ and ’1’ are represented by white and
black squares (or dots), respectively.

Source: Own work.

It may be possible to improve the obtained CMs using larger neighborhoods,

such as the Moore or the extended Neumann neighborhoods as well as using a me-
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thod for self-adjustment of parameters, such as REVAC (NANNEN; EIBEN, 2007). It

is quoted as an important future work to address.

4.4 pECO COMPUTATIONAL EXPERIMENTS

The Contact Maps (CMs) used in the experiments to validate the proposed

approach applied to the reconstruction of protein structures from CMs (pECO) were

generated as described in Section 4.2. The CMs obtained by pGEP-CA simulations

were also used in pECO computational experiments.

Sections 4.4.1 and 4.4.2 present the pECO control parameters and the parame-

ters of each algorithm, respectively. As commented in Section 4.3.2, it is important

to recall that the parameter adjustment is not the focus of the present work and it is

quoted as an important future work to address.

4.4.1 pECO CONTROL PARAMETERS

The parameters used for the pECO algorithm are: number of populations (NQ)

that will be co-evolved, the initial population size (POP), number of cycles for ecolo-

gical successions (ECO-STEP), the size of the evolutive period (EVO-STEP) that repre-

sents the number of function evaluations in each ECO-STEP, the minimum threshold

distance (ρ), and the tournament size (T-SIZE) used to choose solutions to perform in-

tra and inter-habitat communications. The values for these parameters were defined

empirically with: NQ = 40, POP = 50, ECO-STEP = 2,000, EVO-STEP = 100 , ρ = 0.5

and T-SIZE = 5. The heterogeneous model of the pECO approach, combines all four

algorithms (ABC-PSO-DE-jDE/BBO) in which 1/4 of the populations behaves accor-

ding to one of these strategies. In this work, the number of processors (m) is equal to

the number of populations (m= NQ).

4.4.2 PARAMETERS OF THE ALGORITHMS

Default parameters recommended in the literature were used in the algorithms

employed. POP is a common parameter between all algorithms and is adjusted asmen-

tioned in Section 4.4.1. For ABC algorithm, there is only one control parameter, limit =

100 (KARABOGA;AKAY, 2009). For PSO algorithm, besides POP, the parameterswere
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set to standard values6: inertia weight W = 0.721; cognitive and social components

ϕp = ϕg = 1.193, respectively. For DE algorithm, the parameters are F = 0.9 (F controls

the amplification of the differential variation) and CR = 1.0 (crossover constant) with

DE/rand/1/bin. And for jDE/BBO the parameters used are I = E = 1.0 (maximum

possible immigration and emigration rates),CR= 0.9, F = 0.5, and Smax =POP (GONG;

CAI; LING, 2010).

4.4.3 LOAD BALANCINGAND PERFORMANCEMEASURES IN pECO

Figures 38(a), 38(b) and 38(c) show the performance measures of the pECO

approach. The “Versus panmixia” approach is used to evaluate the parallel imple-

mentation (the pECO), using the sequential version of the algorithm as a reference. In

Figure 38(a), a sublinear speedup (sm < m, where m= NQ= 40) behavior can be clearly

identified. Recall that a speedup higher than one suggests that the parallelization of

the algorithm decreases the overall computational cost. Ideally, the speedup should be

linear, but this is not possible in practice, since processors are not used only for pro-

cessing, but also for other tasks such as for message-passing communication between

them. It is also possible to observe that the speedup increases with the protein size.

This is due to the relatively high time needed to transmit data between processes for

small proteins, when compared with the processing load. Therefore, it is necessary

to establish a load balance between the processing and communication loads between

processes. Better speedups can be achieved for larger proteins.

Figure 38(b) presents the computed efficiency. These values suggest that the

processors are not fully used all the time. In fact, speedup and efficiency are a direct

consequence of the balance between the processing load of the slaves and the commu-

nication load between master and slaves. The serial fraction is shown in Figure 38(c)

and indicates that the granularity of the parallel approach decreases when increasing

the protein length. Thus, the approach is more efficient for larger protein sequences.

4.4.4 NUMERICAL RESULTS

Table 18 presents the results obtained through pECO simulations, using CMs

of the 2gb1 (N = 56) sequence, which were generated by MD and pGEP-CA simulati-

ons. The first column shows the metrics of the best individuals. Next columns show
6Standard PSO (SPSO-07): http://www.particleswarm.info/Programs.html
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Figure 38: Plots for the Versus Panmixia performance measures according to the protein size

Source: Own work.

their values for each threshold value. It is important to recall that the SC, SNC metrics

and the RMSD are computed using the input CM and the CM of the obtained confor-

mation. Overall, from the SC and RMSD values, it is possible to observe that better

results are obtained for larger threshold values, since the SC increases and the RMSD

decreases when increasing the threshold. Comparing the obtained results shown in

Table 18 from the RMSD point of view, it is observed that the results are slightly worse

using the CMs obtained by pGEP-CA simulations due to the error in the CMs.

In addition, experiments were done using CMs of the 1pcy (N = 99), 2trx

(N = 108) and 3fxn (N = 138) sequences obtained by MD simulations (with threshold of

7Å). The obtained results are shown in Table 19. As expected, from the SC, RMSD and

processing time values, it is possible to observe that the performance of the approach

decreases with the protein length, since the search space complexity grows exponenti-

ally.

4.4.5 GRAPHICAL RESULTS

Figures 39(a), 39(b), 39(c) and 39(d) show four examples of the convergence

plot for the CMs of the sequences 2gb1 (N = 56), 1pcy (N = 99), 2trx (N = 108) and
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3fxn (N = 138), respectively. In these figures, each label indicates the number of the

species and its algorithm. In these figures, the x-axis shows the number of Ecological

sucessions and the y-axis represents the best-ever fitness value. Analyzing these plots

it is observed that for the 56 and 99 amino-acids-long sequences the convergence is not

accentuated in the direction of a stagnation point during the ecological successions.

Thus, best solutions may be achieved increasing the number of ecological successions.

For the 108 and 138 amino-acids-long sequences the convergence seems to be slow

and attracted to a basin region of local minima. It is possible to verify that small im-

provements are achieved from half of the ecological successions forwards. These con-

vergence plots indicate that, in order to improve the results, strategies for maintaining

diversity inside populations are required as well as a method to detect and escape from

the attraction basin regions of local minima. Also, these figures show some labels indi-

cating which algorithm achieved the best solution at each ecological succession. Once

a different algorithm updates the best solution, a new label is added. For example, for

the 56 amino acids-long sequence a population with the PSO algorithm achieved the

best solution until around succession 20, where the 17th species found the best solution.

From successions 21 to around 49 a population with the jDE/BBO algorithm (the 6th

species) achieved the best solution; from successions 319 to 345 a population with the

ABC algorithm (the 14th species) achieved the best solution, and from successions 370

to 2,000 different populations with the jDE/BBO algorithm achieved the best solution.

Analysing these labels, it is possible to notice the coevolution between the different

search strategies (ABC/PSO/DE/jDE-BBO) because they alternate in finding the best

solutions. Possibly this is due to the peculiarity of each method in searching the space

of solutions.

Figures 40 (a), 40 (b), 40 (c) and 40 (d) show four examples of the evolution of

the number of habitats for each ecological succession step for the CMs of the sequen-

ces 2gb1 (N = 56), 1pcy (N = 99), 2trx (N = 108) and 3fxn (N = 138), respectively. It

is observed that, at the beginning of the optimization process, with the populations

widely dispersed in the search space, there is a large number of habitats. As the op-

timization process moves through the ecological successions, the populations tend to

move through the search space converging to specific regions. As shown in these figu-

res, the number of habitats decreases with the ecological succession cycles, indicating

that the populations tend to converge to points close to each other. Overall, due to

the high complexity of the problem, the populations are dispersed through the search

space during all successions. This indicates that more ecological successions the pECO
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Figure 39: Plots for the pECO convergence.

Source: Own work.

approach could lead to even better results.

Figures 41(a), 41(b), and 41(c) show the best values of the the metrics SC, SNC
and RMSD obtained for each CM of the 2gb1 sequence with different threshold va-

lues (for the sake of simplification, in these plots, only the results for three different

threshold values are shown). Figure 41(a) shows that higher values of SC are obtai-

ned using CMs with higher threshold values. Basically, it indicates that the approach

obtained better structures using CMs with more contacts. On the other hand, Figure

41(b) shows that better values of SNC are obtained for CMs with lower threshold. In

Figure 41(c), it is possible to observe that lower RMSD values were obtained for higher

threshold values. This indicates that the contacts of the structures obtained are more

important than the non-contacts in the process of structure reconstruction. Overall, bet-

ter results are obtained for CMs with higher threshold values.
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Table 18: Numerical results obtained using CMs with different threshold values (generated
by MD and pGEP-CA simulations) – sequence 2gb1

Metric

Results using CMs generated by MD simulations

CM threshold [Å]

Avg(Min/Max) 6.65 7 8 9

Best f itness -88.68 (-120.59/-82.27) -84.47 (-114.80/-77.56) -83.51 (-108.90/-77.52) -83.87 (-106.16/-76.22)

TC 268.68 (138/296) 506.22 (296/562) 781.06 (396/856) 999.00 (456/1108)

FC 112.94 (68/242) 172 (102/292) 194.94 (116/352) 191.70 (124/346)

TNC 2600.8 (2562/2742) 2206.3 (2120/2554) 1813.88 (1694/2378) 1561.38 (1436/2320)

FNC 153.58 (14/180) 251.48 (10/310) 346.62 (10/422) 383.92 (14/482)

SC 0.64 (0.59/0.907) 0.67 (0.60/0.967) 0.697 (0.64/0.975) 0.73 (0.66/0.976)

SNC 0.96 (0.91/0.975) 0.93 (0.89/0.96) 0.90 (0.86/0.94) 0.89 (0.84/0.94)

Energy -144.74 (-152.86/-128.79) -135.52 (-146.08/-124.15) -132.78 (-143.76/-123.53) -129.65 (-137.65/-115.72)

Kabsch RMSD [Å] 7.24 (5.22/11.96) 6.15 (3.31/11.91) 5.82 (3.41/11.04) 5.508 (3.12/7.43)

Metric

Results using CMs generated by pGEP-CA simulations

CM threshold [Å]

Avg(Min/Max) 6.65 7 8 9

Best f itness -83.32 (-105.66/-75.85) -78.06 (-98.16/-69.06) -76.83 (-96.56/-67.35) -76.85 (-93.01/-64.32)

TC 260.83 (234/288) 484.46 (394/548) 748.59 (516/826) 955.11 (614/1042)

FC 114.89 (84/152) 182.74 (124/256) 202.79 (104/320) 208.32 (132/338)

TNC 2593.03 (2527/2675) 2189.57 (2120/2365) 1798.18 (1670/2277) 1537.59 (1368/2200)

FNC 167.25 (84/219) 279.22 (121/344) 386.42 (87/492) 434.97 (92/542)

SC 0.61 (0.54/0.75) 0.64 (0.55/0.79) 0.66 (0.58/0.86) 0.69 (0.61/0.87)

SNC 0.96 (0.94/0.97) 0.92 (0.89/0.95) 0.89 (0.83/0.95) 0.88 (0.80/0.92)

Energy -142.60 (-153.04/-132.91) -133.02 (-142.26/-120.08) -129.21 (-142.84/-118.56) -126.59 (-136.45/-111.33)

Kabsch RMSD [Å] 7.43 (5.72/10.67) 6.62 (4.83/10.82) 6.14 (4.03/9.62) 6.01 (4.08/7.86)

Avg tp(s) 304 295.49 330.996 330.66

Metric

Results using CMs generated by MD simulations

CM threshold [Å]

Avg(Min/Max) 10 11 12

Best f itness -82.33 (-104.48/-74.09) -80.59 (-103.29/-70.60) -79.93 (-102.86/-64.15)

TC 1210.34 (554/1310) 1506.16 (670/1634) 1734.00 (776/1918)

FC 185.88 (106/306) 151.06 (82/328) 115.62 (66/380)

TNC 1325.48 (1172/2260) 1010.18 (860/2130) 791.66 (664/1980)

FNC 414.30 (16/552) 468.60 (8/622) 494.72 (6/712)

SC 0.75 (0.67/0.97) 0.76 (0.70/0.99) 0.78 (0.69/0.99)

SNC 0.88 (0.80/0.94) 0.87 (0.80/0.93) 0.87 (0.80/0.92)

Energy -125.46 (-137.60/-116.01) -120.98 (-130.76/-109.92) -117.13 (-128.19/-105.53)

Kabsch RMSD [Å] 5.61 (3.41/7.31) 5.55 (3.64/7.27) 5.75 (4.14/7.18)

Metric

Results using CMs generated by pGEP-CA simulations

CM threshold [Å]

Avg(Min/Max) 10 11 12

Best f itness -73.47 (-93.56/-50.21) -67.92 (-95.42/-43.86) -60.34 (-98.24/-36.40)

TC 1146.04 (730/1306) 1379.79 (834/1602) 1526.26 (956/1866)

FC 192.97 (100/282) 143.31 (58/306) 105.37 (38/312)

TNC 1315.02 1018.55 (840/1917) 806.75 (672/1803)

FNC 481.97 (86/704) 594.34 (79/934)

SC 0.708 (0.59/0.91) 0.703 (0.54/0.91) 0.692 (0.54/0.97)

SNC 0.87 (0.80/0.93) 0.88 (0.79/0.95) 0.89 (0.79/0.96)

Energy -119.09 (-130.99/-94.00) -109.78 (-128.04/-85.11) -97.67 (-120.23/-73.92)

Kabsch RMSD [Å] 5.98 (3.56/8.21) 6.26 (4.29/9.01) 6.38 (4.22/9.64)

Avg tp(s) 324.70 340.39 294.70

Source: Own work.
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Table 19: Numerical results obtained using CMs with threshold = 7Å– sequences 1pcy, 2trx
and 3fxn

Metric Sequence

Avg(Min/Max) 1pcy 2trx 3fxn

Best f itness -114.72 ± 19.26 (-221.59/-90.79) -99.72 ± 22.34 (-240.53/-67.75) -81.55 ± 20.64 (-207.33/-56.72)

TC 765.78 ± 43.95 (450/840) 741.64 ± 41.41 (556/828) 824.4 ± 52.82 (592/948)

FC 377.84 ± 69.68 (230/692) 351.50 ± 100.35 (138/690) 248.5 ± 84.59 (94/752)

TNC 7919.02 ± 155.93 (7709/8629) 9651.2 ± 178.71 (9382/10374) 16628.88 ± 231.40 (16346/17588)

FNC 738.36 ± 144.13 (30/852) 919.66 ± 170.84 (44/1094) 1342.22 ± 243.04 (148/1564)

SC 0.52 ± 0.08 (0.46/0.94) 0.45 ± 0.08 (0.38/0.93) 0.39 ± 0.07 (0.32/0.8)

SNC 0.95 ± 0.008 (0.93/0.97) 0.96 ± 0.01 (0.94/0.98) 0.98 ± 0.005 (0.96/0.99)

Energy -232.13 ± 12.47 (-259.61/-195.51) -226.66 ± 21.44 (-276.83/-179.11) -211.72 ± 20.79 (-270.26/-168.96)

Kabsch RMSD [Å] 10.22 ± 2.19 (6.92/23.51) 12.56 ± 2.96 (8.39/27.44) 20.16 ± 4.27 (12.14/32.39)

Avg tp(s) 496.01 551.08 771.41

Source: Own work.
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5 CONCLUSIONS AND FUTURE WORKS

“Art is never finished, only abandoned.”

— Leonardo da Vinci

5.1 CONCLUSIONS

The PFP is still an open problem in Bioinformatics for which there is no closed

computational solution. Even using the simplest model, the computational approach

for searching a solution for the PFP was proved to be NP-complete.

In this thesis, we proposed computational approaches based on Cellular Auto-

mata, Bioinspired Computation and Parallel Computing applied to the protein folding

pathways simulation and the protein structure prediction. The main idea is to simulate

the folding process using a minimalistic representation of protein structures, known as

Contact Maps (CM), represented by two-dimensional Cellular Automata (2D-CA), ins-

tead using traditional mathematical methods, such as the Molecular Dynamics (MD)

simulations, and three-dimensional protein structures. The computation of the 2D-CA

is simple, when compared to the MD. However, finding transition rules for simulating

the protein folding is very difficult. Therefore, a novel approach based on Gene Ex-

pression Programming (GEP) for inducting transition rules of 2D-CA for simulating the

protein folding is proposed in this thesis.

A procedure for reconstructing the three-dimensional structure of proteins is

need after the CM prediction. Therefore, a novel ecological-inspired approach is also

proposed for this issue.

To the best of our knowledge, this work presents the first implementation of

MD for the 3D-AB off-lattice model. This approach was used to simulate the folding

process and generate the structures and CMs that were used for evaluating the perfor-

mance of the proposed approaches. It is believed that the use of MD for the PFP using
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a coarse-grained model is promising for this area of research. Therefore, an important

contribution of this thesis are the results regarding this issue.

Since the 3D-AB off-latticemodel is subject to geometrical constraints, we used

the Shake algorithm to deal with them. The results indicates that this method is suita-

ble for the problem.

The 3D-AB off-lattice has been sparsely approached, even more using Evolu-

tionary Computation. As a consequence, there are few benchmarks for this model.

Therefore, this work also offered new reference values for benchmark sequences that

can be used in the future by other researchers for testing computational approaches

applied to this problem.

Synthetic and real protein sequences with different sizes were used for evalu-

ating the performance of the MD approach, where the real ones were extracted from

PDB according to their size. In this work, only the sequence and the coordinates of the

amino acids of the protein were required. Thus, a procedure for reading the sequence

and the real coordinates of the central carbon atoms from the PDB files was implemen-

ted. In order to convert the protein sequences into the AB model alphabet, we used

seven amino acid type classifications as conversion tables. Many experiments were

done in order to verify their adequacy, taking into account the quality of the solutions

obtained as well as the correlation between the estimated energy and RMSD values.

Overall, the results showed that the conversion tables are equally suitable for the PFP

using the AB model for the selected sequences (see Table 16).

By using a method of weak coupling to a thermal bath, the temperature depen-

dence of the protein folding under different conditions was analysed. A denaturation

process was observed when the temperature increases. Moreover, the observation of

the time dependence of physical quantities confirmed the Anfinsen’s thermodynamic

hypothesis and it showed some biological properties of real proteins during folding.

For instance, it was observed that a hydrophobic core is formed, partially surrounded

by polar amino acids, during the folding process because the radius of gyration of the

hydrophobic residues is much lower than that of the polar residues. Also, an evidence

of conformational fluctuations was verified. Therefore, it is possible to conclude that

the proposed approach is suitable for the problem.

Finally, it is important to recall that the three-dimensional structures obtained

through MD simulations were converted into Contact Maps for evaluating the perfor-

mance of the other approaches.
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The process of 2D-CA transition rules induction for simulating dynamic beha-

viors is still an open research problem. Therefore, the approach presented in this thesis

represents an important contribution regarding this issue. This thesis also contributes

significantly to Bioinformatics, presenting the first implementation of a parallel com-

putational approach based on GEP and CA applied to the prediction of Contact Maps.

There are two basic issues for applying GEP for a given optimization problem.

The first issue is the representation of the problem, and the latter, the evaluation pro-

blem. It is known that the way variables are encoded has a significant influence in the

dynamics and efficiency of GEP. Therefore, we used a parsimonious encoding, where

the size of the individual can be chosen a priori and does not depend on the size of

the transition rule. Moreover, it is important to mention that the encoding does not

depend on the size of the proteins. Basically, the encoding of the individuals is defined

according to the set of terminals and their domains which, in turn, are defined by the

possible states of the cells of the 2D-CA. Then, the individuals are directly translated

into expression trees for generating the resulting transition rules.

Since the ContactMaps are sparse symmetric matrices, specialized fitness func-

tions were proposed. Experiments were done ir order to evaluate their adequacy and

it was observed that they are suitable for the problem. Overall, this work showed that

GEP can be an efficient way to deal with the problem. For instance, it was observed,

from the SC and SNC values (see Appendix A), that the induced transition rules were

able to generate CMs with correct contacts and non-contacts. Also, by comparing the

minimum values of SC obtained for the CMs of 2gb1 and 3fxn sequences, specially

with the threshold values 6.65Å, 7Å and 10Å, it was observed that the ability of the

obtained transition rules to generate correct contacts may decrease with the size of the

CMs. Although the results obtained cannot be considered optimal, they are coherent

with the model. Certainly, the results can be improved hybridizing the GEP algorithm

with specialized strategies in order to keep high genetic diversity and explore the se-

arch space efficiently leading to better individuals, such as local search methods or

coevolution with other Evolutionary Computation algorithms.

The reconstruction of protein structures from CMs is still an unsolved problem,

which has been proved to be NP-hard. In this thesis, the performance of a parallel

ecologically-inspired optimization algorithm (pECO) was analysed, under the task of

reconstructing the structure of proteins from CMs, featuring the 3D-AB off-lattice mo-

del. Four population-based algorithms (ABC, PSO, DE, and jDE/BBO) were employed
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in an ecological heterogeneous model. It is possible to conclude that, in this problem

case, these strategies are quite complementary, even during few successions. The con-

vergence plots indicate that ABC and PSO algorithms are best suited for global search

(initial ecological successions), whilst the DE and jDE/BBO algorithms are best suited

for local search (final ecological successions). According to the obtained results, it was

observed that a smooth convergence is achieved throughout the pECO simulations,

avoiding stagnation of the search. Overall, from the SC and RMSD values (see Table

18), it is possible to observe that better results (i.e. conformations with lower RMSD va-

lues) are obtained for CMs with larger threshold values, since the SC increases and the

RMSD decreases when increasing the threshold. Furthermore, due to the high comple-

xity of the problem, it was observed that the populations were dispersed in the search

space during ecological successions. This indicates that even better results would be

found by increasing the number of successions or through the diversification of evo-

lutive behaviors of the computational ecosystem, by inserting other algorithms. For

instance, local-search strategies could be used to improve the quality of the obtained

solutions.

An important drawback is regarding the processing time for the simulations.

It is clear that there is an increase of processing time as the length of the protein grows

in all the approaches presented in this thesis. This fact, by itself, strongly suggests that

parallel processing is essential to allow us to obtain results in a reasonable processing

time. Therefore, two parallel approaches were implemented in a Beowulf cluster to

speed up processing time: the pGEP-CA and pECO. Also, a brief analysis of the load

balancing of the parallel approaches is presented, based on the performance measu-

res speedup, efficiency and serial fraction, that are a direct consequence of the balance

between the processing load and the communication load between master and slaves

processors. Ideally, the speedup should be linear, but it is not possible in practice,

since processors are not used only for processing, but also for other tasks. In fact, it

was observed that the obtained speedup is sublinear. For instance, the speedups achi-

eved by the pECO approach were 11.98, 17.36, 23.84 and 27.87 for the 56, 99, 108 and

138 amino acid-long sequences, respectively, as shown in Figure 38(a). Although the

pECO approach have shown good speedup, the processing time would increase for

larger proteins, since the search space complexity grows. It is important to recall that

the speedup can be improved including more processing cores. For instance, slave

processors can be added for processing the fitness function of the individuals of each

population, leading to a Hierarchical Parallel ECO algorithm (HpECO) which has th-
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ree levels, based on our previous work for GAs (BENÍTEZ; LOPES, 2010). Basically,

in the lower level single-population master-slaves search for potencial solutions for a

given problem in the search space, where the processing load (fitness function com-

putation) is divided into several slaves, under the coordination of a master which, in

turn, represents a population. The next two levels are defined as in the pECO appro-

ach, where in the intermediate level the populations form habitats, and intra-habitats

communication topologies take place and in the upper level, the habitats are connected

through an inter-habitats communication topolopy. A master processor is also respon-

sible for defining the communication topologies between populations and habitats.

This combination aims at taking advantage of the benefits of both approaches. The

implementation and analysis of the HpECO is a future work to address.

Another drawback is regarding the high number of user-defined parameters

for the approaches. It is important to recall that there is no specific procedure for ad-

justing running parameters of Evolutionary Algorithms for a given problem (LOBO;

LIMA; MICHALEWICZ, 2007) and that it represents one of the grand challenges of

the Evolutionary Computation (EC) field. A strategy frequently used in the litera-

ture is setting a range for all important parameters of the algorithm and testing all

possible combinations. This procedure is known as factorial experiment (BOX; HUN-

TER; HUNTER, 2005). Furthermore, Eiben and Smit (2011) present a conceptual fra-

mework for parameter tuning and provide a survey of tuning methods. Although

self-adjustment of parameters tends to be more efficient than trial-and-error design

and factorial experiments, this was not the focus of the present work. Although not

optimal for any instances, the parameters used in the approaches presented in this the-

sis could be an initial reference to other researchers and they will be an important issue

for future works.

It is also important to mention that a novel method for comparing the structu-

res obtained is also proposed, using the 3D-AB off-latticemodel and the Kabschmethod

in order to obtain the lowest RMSD.

In a broader sense, it is believed that the computational approaches proposed

in this thesis are very promising for the research areas related to Cellular Automata,

Evolutionary Computation, Molecular Dynamics and the Protein Folding Problem.

Although there are interesting research directions that suggest the continuity of this

work (see Section 5.2), the initial objectives were achieved satisfactorily. The contri-

butions of this thesis were theoretical and methodological. Moreover, the investigated
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subjects have generated scientific publications that lead to some relevant contributions.

These publications, presented in Section 1.4, also provides theoretical and technical in-

sights for future developments.

5.2 FUTUREWORKS

There are research directions for future works. For instance:

• Future work will include simulations and analysis of folding pathways using

structures built by MD simulations from real protein structures extracted from

the PDB, using a more realistic coarse-grained model for proteins.

• MD simulations with different thermodynamic ensembles will be done in future

works, such as the isothermal-isobaric (NPT – moles, pressure, temperature) en-

semble.

• Regarding the high processing time of the MD with larger protein sequences, fu-

ture work will also investigate other parallel versions for the MD approach, such

as GPGPU (General Purpose Graphics Processing Units) and hardware-based ac-

celerators (BENÍTEZ et al., 2011).

• Non-uniform Cellular Automata (NCA) (CATTANEO et al., 2009) with neigh-

borhood definition of the cells changing in space and time could be investigated.

Since it is likely that the state of some cells of the CM (represented by the 2D-CA)

do not depend on other, the NCA can be suitable to the problem.

• In future works, an analysis of the space of transition rules will be done in order

to develop strategies for improving the quality and diversity of the population,

in the transition rule space (transition rules obtained from individuals).

• Knowledge-based strategies to correct the faults of the CMs obtained by CA si-

mulations will be also addressed.

• The hybridization of the GEP with specialized strategies, such as local search

methods and coevolution with other EC algorithms will be focused in future

works.

• Considering the intrinsic parallelism of 2D-CAs, the application of Reconfigu-

rable Hardware Computing for simulating their dynamic behavior, such as the
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approach proposed in a our previous work (WEINERT et al., 2007), will be stu-

died in future works.

• Different fitness functions based on binary similarity/dissimilarity measures, such

as the Tanimoto and Hamann similarity coefficients, as well as knowledge-based

operators can be implemented and analysed.

• Since the EC approaches involve a large number of parameter settings and de-

sign choices, efficient self-tuning or automated algorithm configuration mecha-

nism will be studied. It could not only release the user for higher level tasks, but

also offer the possibility of using suitable parameters for each step of the search

process.
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APPENDIX A -- NUMERICAL RESULTS OF pGEP-CA

Tables 20 – 24 show the results obtained using the CMs of the protein sequences

2gb1 (N = 56), 1pcy (N = 99), 2trx (N = 108) and 3fxn (N = 138), where TC, TNC, FC and

FNC represent the number true contacts, true non-contacts, false contacts and false non-

contacts, respectively. SC, SNC measure the ability of a transition rule to generate correct

contacts and non-contacts, respectively. Si measures the symmetry of the CM.

Table 20: Numerical results obtained using CMs with different threshold values and the
fitness function f itness1 – sequence 2gb1 (N = 56)

Metric CM threshold [Å]

Avg(Min/Max) 6.65 7 8 9

Best f itness 0.91 (0.73/0.97) 0.86 (0.75/0.91) 0.88 (0.74/0.93) 0.92 (0.76/0.97)

TC 393.3 (216/428) 678.9 (334/722) 1047.2 (478/1100) 1323.4 (556/1392)

FC 34.1 (12/277) 85.1 (46/348) 85.2 (22/336) 63.1 (12/211)

TNC 2677.2 (2493/2789) 2290.1 (2162/2625) 1916.8 (1850/2491) 1682.6 (1608/2408)

FNC 31.4 (12/277) 81.9 (32/146) 86.8 (40/194) 66.9 (28/206)

SC 0.92 (0.76/0.98) 0.89 (0.78/0.94) 0.92 (0.74/0.96) 0.95 (0.76/0.98)

SNC 0.98 (0.9/0.996) 0.96 (0.86/0.98) 0.96 (0.85/0.99) 0.96 (0.9/0.99)

Si 0.9998 0.9999 0.9999 0.9999

Avg tp(s) 12.68 12.70 12.69 12.69

Metric CM threshold [Å]

Avg(Min/Max) 10 11 12

Best f itness 0.897 (0.76/0.93) 0.88 (0.74/0.93) 0.89 (0.74/0.95)

TC 1548.6 (650/1644) 1888.4 (656/1992) 2160.4 (770/2280)

FC 78.62 (20/202) 83.7 (4/203) 61.12 (2/182)

TNC 1424.4 (1328/2307) 1068.2 (964/2240) 834.9 (730/2130)

FNC 84.4 (32/218) 95.8 (46/308) 79.64 (26/338)

SC 0.95 (0.78/0.98) 0.95 (0.74/0.98) 0.96 (0.74/0.988)

SNC 0.95 (0.90/0.99) 0.93 (0.88/0.998) 0.93 (0.87/0.999)

Si 0.99997 0.99998 0.99999

Avg tp(s) 12.70 12.69 12.69

Source: Own work.
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Table 21: Numerical results obtained using CMs with different threshold values and the
fitness function f itness1 – sequence 1pcy (N = 99)

Metric CM threshold [Å]

Avg(Min/Max) 6.65 7 8 9

Best f itness 0.93 (0.66/0.97) 0.83 (0.65/0.92) 0.87 (0.69/0.94) 0.91 (0.72/0.97)

TC 757.15 (346/818) 904.208 (286/1462) 1226.55 (464/2278) 1559.69 (536/2916)

FC 60.85 (24/530) 112.06 (12/879) 97.39 (22/684) 71.94 (12/534)

TNC 8932.42 (8603/9258) 4233.93 (2230/8843) 2821.35 (1850/8572) 2535.93 (1608/8415)

FNC 50.59 (20/156) 107.47 (46/246) 101.54 (40/300) 79.28 (28/310)

SC 0.94 (0.69/0.98) 0.891 (0.68/0.955) 0.92 (0.74/0.965) 0.95 (0.76/0.98)

SNC 0.99 (0.94/0.997) 0.97 (0.897/0.996) 0.96 (0.92/0.99) 0.97 (0.93/0.995)

Si 0.9999 0.9999 0.9999 0.9999

Avg tp(s) 14.68 13.36 13.04 13.03

Metric CM threshold [Å]

Avg(Min/Max) 10 11 12

Best f itness 0.90 (0.70/0.95) 0.91 (0.74/0.95) 0.94 (0.75/0.97)

TC 1833.31 (548/3478) 2410.73 (700/4474) 2619.75 (770/5220)

FC 96.65 (8/487) 108.34 (4/671) 80.28 (14/485)

TNC 2215.15 (1328/8267) 2410.73 (700/4474) 1453.77 (730/7835)

FNC 103.72 (32/392) 120.46 (46/456) 93.03 (26/524)

SC 0.95 (0.72/0.98) 0.95 (0.74/0.98) 0.96 (0.78/0.988)

SNC 0.95 (0.91/0.996) 0.94 (0.87/0.998) 0.93 (0.87/0.998)

Si 0.9999 0.9999 0.9999

Avg tp(s) 13.05 13.19 17.15

Source: Own work.

Table 22: Numerical results obtained using CMs with different threshold values and the
fitness function f itness1 – sequence 2trx (N = 108)

Metric CM threshold [Å]

Avg(Min/Max) 6.65 7 8 9

Best f itness 0.93 (0.66/0.97) 0.83 (0.65/0.92) 0.87 (0.69/0.94) 0.91 (0.72/0.97)

TC 770.78 (346/892) 930.02 (286/1618) 1272.87 (464/2584) 1619.50 (536/3318)

FC 62.64 (22/905) 115.29 (12/1159) 101.42 (22/759) 72.83 (12/475)

TNC 9226.89 (8603/10966) 4514.28 (2230/10575) 3078.49 (1850/10185) 2784.27 (1608/9959)

FNC 51.19 (20/156) 108.58 (46/294) 104.55 (40/364) 80.72 (28/360)

SC 0.94 (0.69/0.98) 0.89 (0.68/0.95) 0.92 (0.74/0.96) 0.95 (0.76/0.98)

SNC 0.99 (0.92/0.997) 0.97 (0.88/0.99) 0.96 (0.92/0.99) 0.97 (0.93/0.996)

Si 0.9999 0.9999 0.9999 0.9999

Avg tp(s) 14.79 13.47 13.15 13.15

Metric CM threshold [Å]

Avg(Min/Max) 10 11 12

Best f itness 0.91 (0.70/0.94) 0.91 (0.74/0.95) 0.94 (0.75/0.97)

TC 1904.54 (548/3960) 2538.78 (700/5100) 2739.67 (770/6020)

FC 98.03 (8/733) 114.46 (4/625) 83.24 (18/442)

TNC 2447.97 (1328/9748) 2294.99 (964/9443) 1636.91 (730/9186)

FNC 106.79 (32/466) 125.94 (46/524) 97.52 (26/578)

SC 0.95 (0.72/0.98) 0.95 (0.74/0.98) 0.96 (0.78/0.989)

SNC 0.95 (0.72/0.98) 0.94 (0.74/0.98) 0.93 (0.87/0.99)

Si 0.9999 0.9999 0.9999

Avg tp(s) 13.16 13.34 17.26

Source: Own work.
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Table 23: Numerical results obtained using CMs with different threshold values and the
fitness function f itness1 – sequence 3fxn (N = 138)

Metric CM threshold [Å]

Avg(Min/Max) 6.65 7 8 9

Best f itness 0.93 (0.66/0.98) 0.83 (0.65/0.94) 0.87 (0.69/0.94) 0.91 (0.72/0.97)

TC 813.48 (346/1180) 1008.23 (286/2188) 1397.79 (464/3464) 1785.12 (536/4464)

FC 68.31 (24/1165) 135.23 (12/1647) 112.85 (22/1563) 80.38 (12/724)

TNC 10406.52 (8603/18131) 5639.51 (2230/17475) 4162.98 (1850/17045) 3832.96 (1608/16679)

FNC 68.31 (24/1165) 115.19 (46/386) 113.71 (40/430) 88.87 (28/474)

SC 0.94 (0.69/0.98) 0.89 (0.67/0.97) 0.92 (0.74/0.97) 0.95 (0.76/0.98)

SNC 0.99 (0.93/0.998) 0.97 (0.90/0.995) 0.96 (0.90/0.99) 0.97 (0.93/0.99)

Si 0.9999 0.9999 0.9999 0.9999

Avg tp(s) 15.23 13.91 13.59 13.59

Metric CM threshold [Å]

Avg(Min/Max) 10 11 12

Best f itness 0.91 (0.70/0.95) 0.91 (0.73/0.95) 0.94 (0.75/0.97)

TC 2111.24 (548/5400) 2905.18 (700/7044) 3073.71 (770/8462)

FC 110.19 (8/985) 133.83 (4/895) 97.49 (18/590)

TNC 3446.70 (1328/16353) 3564.36 (964/15939) 2501.78 (730/15583)

FNC 119.19 (32/566) 148.099 (46/674) 114.36 (26/666)

SC 0.95 (0.72/0.98) 0.95 (0.74/0.977) 0.96 (0.78/0.988)

SNC 0.95 (0.91/0.996) 0.94 (0.87/0.997) 0.94 (0.87/0.996)

Si 0.9999 0.9999 0.9999

Avg tp(s) 13.60 13.95 17.71

Source: Own work.

Table 24: Numerical results obtained using CMs with different threshold values and the
fitness function f itness2 – sequence 2gb1 (N = 56)

Metric CM threshold [Å]

Avg(Min/Max) 6.65 7 8 9

Best f itness 0.86 (0.50/0.93) 0.80 (0.65/0.87) 0.86 (0.69/0.92) 0.91 (0.72/0.96)

TC 392.45 (144/428) 676.93 (286/722) 1046.35 (464/1100) 1323.11 (536/1392)

FC 30.80 (8/70) 80.36 (12/128) 82.92 (22/174) 61.41 (12/166)

TNC 2680.21 (2644/2848) 2293.38 (2230/2702) 1918.11 (1850/2492) 1682.45 (1608/2425)

FNC 32.54 (8/136) 85.33 (46/166) 88.62 (40/194) 69.03 (28/206)

SC 0.922 (0.51/0.98) 0.89 (0.68/0.94) 0.92 (0.74/0.97) 0.95 (0.76/0.98)

SNC 0.99 (0.98/0.997) 0.97 (0.95/0.995) 0.96 (0.93/0.991) 0.97 (0.96/0.995)

Si 0.9999 0.9999 0.99995 0.99993

Avg tp(s) 13.82 12.69 12.70 12.70

Metric CM threshold [Å]

Avg(Min/Max) 10 11 12

Best f itness 0.90 (0.70/0.94) 0.91 (0.74/0.95) 0.94 (0.75/0.97)

TC 1549.01 (548/1644) 1892.93 (700/1992) 2168.46 (770/2280)

FC 76.62 (8/202) 83.37 (4/146) 63.43 (18/182)

TNC 1424.39 (1328/2358) 1064.77 (964/2221) 829.29 (730/2130)

FNC 85.98 (32/232) 94.93 (46/308) 74.81 (26/266)

SC 0.95 (0.72/0.98) 0.95 (0.74/0.93) 0.97 (0.78/0.99)

SNC 0.95 (0.91/0.996) 0.93 (0.87/0.998) 0.93 (0.86/0.992)

Si 0.99996 0.99995 0.99997

Avg tp(s) 12.71 12.74 17.64

Source: Own work.
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ANNEX A -- AMINO ACIDS

Table 25: List of Amino acids and AB classification according to (ALBERTS et al., 2002)
Amino acid Type

name symbol Class AB model Frequency in proteins
(ALBERTS et al., 2002) (%)(CREIGHTON, 1993)

Aspartic acid ASP Hydrophilic B 5
Glutamic acid GLU Hydrophilic B 6
Arginine ARG Hydrophilic B 6
Lysine LYS Hydrophilic B 6
Histidine HIS Hydrophilic B 2
Asparagine ASN Hydrophilic B 4
Glutamine GLN Hydrophilic B 4
Serine SER Hydrophilic B 7
Threonine THR Hydrophilic B 6
Tyrosine TYR Hydrophilic B 3
Alanine ALA Hydrophobic A 8
Glycine GLY Hydrophobic A 7
Valine VAL Hydrophobic A 7
Leucine LEU Hydrophobic A 9
Isoleucine ILE Hydrophobic A 5
Proline PRO Hydrophobic A 5
Phenylalanine PHE Hydrophobic A 4
Methionine MET Hydrophobic A 2
Tryptophan TRP Hydrophobic A 1
Cysteine CYS Hydrophobic A 2

Source: Adapted from (ALBERTS et al., 2002) and (CREIGHTON, 1993).
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Table 26: Preferences for different types of secondary structure
Amino acid Conformational preference parameter

(THORNTON et al., 1995)
Name α-helix β -sheet Turn
Aspartic acid 0.9 – 1.1 0.5 – 0.7 1.4 – 1.5
Glutamic acid 1.4 0.5 – 0.8 0.7 – 1.0
Arginine 0.9 – 1.4 0.7 – 1.0 0.9 – 1.0
Lysine 1.1 – 1.2 0.7 – 0.9 1.0
Histidine 1.0 – 1.2 0.8 – 1.1 0.7 – 1.0
Asparagine 0.8 – 0.9 0.6 – 0.7 1.3 – 1.6
Glutamine 1.1 – 1.4 0.8 – 1.0 1.0
Serine 0.7 – 0.8 0.9 – 1.0 1.3 – 1.4
Threonine 0.7 – 0.8 1.2 – 1.3 1.0
Tyrosine 0.7 – 0.9 1.2 – 1.5 1.1
Alanine 1.3 – 1.5 0.8 – 0.9 0.7
Glycine 0.4 – 0.6 0.6 – 0.9 1.6
Valine 0.9 – 1.0 1.5 – 1.7 0.5
Leucine 1.3 1.0 – 1.2 0.6
Isoleucine 1.0 – 1.1 1.5 – 1.8 0.5
Proline 0.5 – 0.6 0.4 – 0.6 1.5 – 1.9
Phenylalanine 1.0 – 1.1 1.2 – 1.4 0.6
Methionine 1.3 – 1.4 1.0 – 1.3 0.4 – 0.6
Tryptophan 1.0 1.2 0.8 – 1.0
Cysteine 0.9 – 1.0 0.8 – 1.2 0.9 – 1.2

Source: Adapted from (THORNTON et al., 1995).
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ANNEX B -- BIO-INSPIRED COMPUTATION ALGORITHMS

This section presents the EC and SI algorithms that are related to this work.

Algorithm 11 Pseudo-code for GEP
1: Start
2: Initialize population;
3: Express Chromosomes
4: Execute each program
5: Evaluate fitness
6: while stop criteria not satisfied do
7: Keep Best Program
8: Select Programs
9: Reproduction:
10: Replication
11: Mutation
12: IS transposition
13: RIS transposition
14: Gene transposition
15: 1-Point Recombination
16: 2-Point Recombination
17: Gene Recombination
18: Prepare New Program of Next Generation
19: end while
20: Postprocess results and visualization
21: End
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Algorithm 12 Canonical PSO
1: Set parameters: n, ϕp, ϕg, w
2: Initialize f (~g)
3: for i= 1 to n do
4: Initialize the positions~xi and velocities~vi randomly
5: Evaluate fitness f (~xi)
6: Initialize the particle’s best known position to its initial position: ~pi =~xi
7: if f (~pi) is better than f (~g) then
8: Update the swarm’s best known position: ~g= ~pi
9: end if

10: end for
11: while stop condition not met do
12: for i= 1 to n do
13: Update particles’ velocity: ~vi =~vi+ϕp ∗ rp ∗ (~pi−~xi)+ϕg ∗ rg ∗ (~g−~xi)
14: Update particles’ position: ~xi =~xi+~vi
15: if f (~xi) is better than f (~pi) then
16: ~pi =~xi
17: if f (~pi) is better than f (~g) then
18: ~g= ~pi
19: end if
20: end if
21: end for
22: end while
23: Postprocess results and visualization
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Algorithm 13 Canonical ABC
1: Set parameters: n, limit
2: Initialize the food sources~xi randomly
3: Evaluate fitness f (~xi) of the population
4: counti← 0

5: while stop condition not met do
6: for i= 1 to n/2 do {Employed phase}
7: Select k, j and r at random such that k ∈ {1,2, ...,n}, j ∈ {1,2, ...,d},
8: r ∈ [0,1]
9: ~v← xi j+ r · (xi j− xk j)
10: Evaluate solutions~v and~xi
11: if f (~v) is better than f (~x) then
12: Greedy selection
13: else
14: counti← counti+1

15: end if
16: end for
17: for i= n/2+1 to n do {Onlooker phase}
18: Calculate selection probability
19: P(~xk)← f (~xk)

∑nk=i f (~xk)

20: Select a bee using the selection probability
21: Produce a new solution~v from the selected bee
22: Evaluate solutions~v and~xi
23: if f (~v) is better than f (~x) then
24: Greedy selection
25: else
26: counti← counti+1

27: end if
28: end for
29: for i= 1 to n do {Scout phase}
30: if counti > limit then
31: ~xi← rand()
32: counti← 0

33: end if
34: end for
35: Memorize the best solution achieved so far
36: end while
37: Postprocess results and visualization
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Algorithm 14 Canonical DE with DE/rand/1/bin scheme
1: Set parameters: n, F, CR
2: for i= 1 to n do
3: Initialize population POP (solution vector −→xi ) randomly
4: Evaluate objetive function f (−→xi )
5: end for
6: Find the best solution vector Sbest in POP
7: while stop condition not met do
8: for i= 1 to n do
9: Select random indices r1,r2,r3 ∈ n where r1 6= r2 6= r3 6= i

10: Select a dimension p ∈ d randomly
11: for j = 1 to d do
12: if (( j = p) ∨ (rand() ≤CR)) where rand() ∼ U[0,1] then
13: y j← xr3, j+F× (xr1, j− xr2, j)
14: else
15: y j← xi j
16: end if
17: end for
18: Evaluate f (−→y )
19: if f (−→y ) < f (−→xi ) then
20: NewPop←−→y
21: else
22: NewPop←−→xi
23: end if
24: end for
25: POP← NewPop

26: for i= 1 to n do
27: Evaluate f (−→xi )
28: end for
29: Find the best solution vector Sbest in POP
30: end while
31: Postprocess results and visualization
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Algorithm 15 Canonical BBO algorithm
1: Set parameters: n, E, Smax,mmax,elite
2: for i= 1 to n do
3: Initialize habitat −→xi ) randomly
4: Evaluate objetive function f (−→xi )
5: Initialize the species count probability of each habitat Pi = 1/n
6: end for
7: while stop condition not met do
8: Identify elite habitats
9: Map HSI to the number of species by sorting the population from best to worst
10: for i= 1 to n do
11: Calculate the immigration rate αi = I(1− k/n)
12: Calculate the emigration rate µi = Ek/n
13: end for
14: for i= 1 to n (Habitat recombination) do
15: if rand() ≤ αi where rand() ∼ U[0,1] then
16: for j = 1 to n do
17: if rand() ≤ µi where rand() ∼ U[0,1] then
18: Randomly select an SIV σ from −→x j
19: Replace a random SIV in −→x j with σ
20: end if
21: end for
22: end if
23: end for
24: for i= 1 to n do
25: Compute the time derivative Pi for each habitat
26: Compute mutation rate for each habitat: mi = mmax(1−Pi)/Pmax

where Pmax = argmax(Pi)
27: end for
28: for i= 1 to n (Habitat mutation) do
29: for j = 1 to d do
30: if rand() ≤ µi where rand() ∼ U[0,1] then
31: Replace −→xi j with a randomly generated SIV
32: end if
33: end for
34: Evaluate objective function f (−→xi )
35: end for
36: Keep elite habitats
37: end while
38: Postprocess results and visualization
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ANNEX C -- BASIC MPI FUNCTIONS

Table 27: Basic MPI functions
Function Description
MPI_Init It initializes the MPI environment.

MPI_Comm_size It determines the size of a group that is associatedwith
a communicator.

MPI_Comm_rank This function determines the rank of the calling pro-
cess in the communicator.

MPI_Send / MPI_Bsend These functions perform blocking send. MPI_Bsend
performs basic send with user-defined buffering

MPI_Recv Blocking receive for a message.
MPI_Finalize It terminates MPI execution.
MPI_Pack This function packs a datatype into a contiguous me-

mory.
MPI_Unpack It unpacks a buffer according to a datatype into a con-

tiguous memory.
MPI_Cart_Create It creates a cartesian topology with a new communi-

cator

Source: Adapted from the MPI documentation.


