

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA ENGENHARIA INDUSTRIAL MECÂNICA

> GABRIEL AMILCAR ROMMINGER JULIO ALBERTO GODOFREDO

ANÁLISE DA INFLUÊNCIA GEOMÉTRICA NO TEMPO DE HOMOGENEIZAÇÃO DA TEMPERATURA DE PEÇAS EM FORNO DE TRATAMENTO TÉRMICO

TRABALHO DE CONCLUSÃO DE CURSO II

CURITIBA 2014

GABRIEL AMILCAR ROMMINGER JULIO ALBERTO GODOFREDO

ANÁLISE DA INFLUÊNCIA GEOMÉTRICA NO TEMPO DE HOMOGENEIZAÇÃO DA TEMPERATURA DE PEÇAS EM FORNO DE TRATAMENTO TÉRMICO

Proposta de Projeto de Pesquisa apresentada à disciplina de Trabalho de Conclusão de Curso 2 do curso de Engenharia Industrial Mecânica da Universidade Tecnológica Federal do Paraná, como requisito parcial para aprovação na disciplina.

Orientador: Prof. Dr. Rodrigo Lupinacci Villanova

CURITIBA 2014

TERMO DE APROVAÇÃO

Por meio deste termo, aprovamos o Projeto de Pesquisa "ANÁLISE DA INFLUÊNCIA GEOMÉTRICA NO TEMPO DE HOMOGENEIZAÇÃO DA TEMPERATURA DE PEÇAS EM FORNO DE TRATAMENTO TÉRMICO", realizada pelos alunos GABRIEL AMILCAR ROMMINGER e JULIO ALBERTO GODOFREDO, como requisito parcial para aprovação na disciplina de Trabalho de Conclusão de Curso II do curso de Engenharia Industrial Mecânica da Universidade Tecnológica Federal do Paraná.

> Prof. Dr. Rodrigo Lupinacci Villanova Departamento Acadêmico de Mecânica, UTFPR Orientador

> Prof. Ricardo Fernando dos Reis Departamento Acadêmico de Mecânica, UTFPR Avaliador

> Prof. Julio Cesar Klein das Neves Departamento Acadêmico de Mecânica, UTFPR Avaliador

> > Curitiba, 02 de Fevereiro de 2014

AGRADECIMENTOS

A Deus, nosso criador, por seu amor incondicional e por as benções que recebo desde a infância, e a Jesus.

Aos meus pais por tudo que fizeram e ainda fazem por mim. Sem vocês hoje eu não estaria aqui. Vocês construíram o alicerce para a construção do meu caráter. Agradeço aos meus irmãos pelo amor e companheirismo.

E para finalizar agradeço a minha doce Yohanna, por ser minha namorada, parceira e cúmplice durante todos estes anos.

E ao Julio pela camaradagem.

Gabriel

À minha tia Wanda e minha vó Melania, que fizeram o papel de mãe para mim, que me ensinaram valores que levo comigo até hoje. Obrigado por me oferecerem uma infância maravilhosa.

A minha mãe e minha vó Alzira que estão sempre comigo e que muito me ajudam nos momentos que mais preciso.

Ao Beto por fazer por mim o que muitos pais não fazem por seus filhos.

E a todos que direta ou indiretamente fizeram parte da minha jornada na UTFPR nos últimos seis anos.

Julio Alberto

Além disso em especial agradecemos ao professor Rodrigo Villanova por oferecer a oportunidade de trabalhar neste projeto com ele e pelo apoio que recebemos.

E por fim aos nossos amigos que tornaram nosso caminho muito mais fácil durante a faculdade: Alan, Kuzma, Renato, Sérgio e Rubens.

RESUMO

O presente trabalho irá abordar um problema de extrema importância em processos de tratamento térmico. Será estudado como tempo de homogeneização da temperatura de peças metálicas sujeitas a aquecimento durante processos de tratamento térmico é influenciado pela geometria dessas peças. Para isso serão realizados uma série de experimentos, com diversas geometrias diferentes e, para auxiliar no entendimento do processo, também serão realizadas simulações computacionais através de CFD (Computational fluid dynamics) onde serão representados computacionalmente os mesmos casos realizados experimentalmente.

Com base nos resultados obtidos foram discutidos de que maneira diversos aspectos geométricos influenciam no tempo em que as peças necessitam permanecer no formo para a execução dos tratamentos térmicos usualmente realizados na indústria. Sendo possível concluir que quanto maior o comprimento característico do corpo mais tempo ele demora para homogeneizar. Além de que objetos com as dimensões do projeto, feitos de Aço AISI 1045, homogeneízam mais rapidamente a 750°C, 850°C e 650°C respectivamente.

Através dos resultados nas simulações foi possível estudar o comportamento da variação da temperatura no interior da peça durante o processo. Ficando visível que o gradiente térmico torna-se muito pequeno um bom tempo antes da homogeneização.

Outra constatação importante do trabalho foi a grande influência da presença de óxidos na superfície. Os quais abaixam significativamente o tempo de homogeneização.

Devido a limitações em algumas etapas dos procedimentos realizados algumas hipóteses simplificadoras serão utilizadas.

Palavras-chave: Tempo, Homogeneização de temperatura, Simulação, Tratamento Térmico.

ABSTRACT

In the present work, an important problem in the thermal treatment procedures used in industry was investigated. The influence of the samples geometries on the homogenization time of metallic samples during heat treatment procedures was studied. To accomplish that, a series of experiments with different geometries was conducted. Also, Computer Fluid Dynamics (CFD) simulations were made in order to contribute to the understanding of the problem, in which the same cases that had been experimentally tested were simulated. Based on the results of these simulations, the ways in which several geometrical aspects of the samples influence the time required for the completion of the thermal treatments were discussed. However, some simplifying hypotheses were assumed due to limitations in the experimental procedures.

Keywords: Time, Temperature homogenization, Simulation, Heat Treatment.

"Só chega na frente quem corre atrás." (Autor desconhecido)

LISTA DE FIGURAS

Figura 2.1 - Associação da Transferência de calor por condução à difusão
de energia devido à atividade molecular17
Figura 2.2 - Tipos de transferência de calor por convecção20
Figura 2.3 - Transferência de calor por radiação entre uma superfície e um
ambiente23
Figura 2.4 – Exemplos de simulação computacional realizada no
CFD24
Figura 3.1 – Perfis das amostras25
Figura 3.2– Cilindro e torre 3D
Figura 3.3 – Cotas das amostras
Figura 3.4 –Termopar tipo K29
Figura 3.5 – Centro térmico
Figura 3.6 – Ponto de coleta nos cilindros D40, D70 e D100
Figura 3.7 – Ponto de coleta T1
Figura 3.8 – Ponto de coleta T232
Figura 3.9 – Ponto de coleta T3
Figura 3.10 – Hipóteses

Figura 3.11 – Forno real/simulado	
Figura 3.12 – P1/P2 nos cilindros	
Figura 3.13 – P1/P2 nas torres	
Figura 3.14 – Temperatura na amostra D40	
Figura 4.1 – Torre não oxidada	
Figura 3, 13 – Torre oxidada	

LISTA DE ABREVIATURAS, SIGLAS E ACRÔNIMOS.

- DAMEC Departamento Acadêmico de Mecânica MLtT - Massa, Comprimento, Tempo e Temperatura
- SI Sistema Internacional de Unidades
- UTFPR Universidade Tecnológica Federal do Paraná

SUMÁRIO

1 INTRODUÇÃO	12
1.1 Contexto	12
1.2 Problema	13
1.3 Objetivos	13
1.3.1 Objetivo Geral	13
1.3.2 Objetivos Específicos	13
2 FUNDAMENTAÇÃO TEÓRICA	15
2.1 Tratamento Térmico	15
2.2 Síntese de Balanço de Energia	16
2.3 Transferência de Calor	16
2.3.1 Condução	17
2.3.2 Convecção	20
2.3.3 Radiação	21
2.4 Método dos volumes finitos	23
2.5 CFD	24
3 MATERIAIS E MÉTODOS	25
3.1 Materiais	25
3.2 Metodologia	30
3.2.1 Fase Experimental	30
3.2.3 Simulações computacionais	34
4 RESULTADOS E DISCUSSÕES	41
4.1 Influência das condições da peça no experimento	41
4.2 Comparação dos resultados obtidos nos experimentos com a equação 1.1	43
4.3 Influência das Variáveis do Processo no Tempo de homogeneização	46
3.3.1 Influência do Comprimento Característico	46
3.3.2 Influência do Temperatura do Forno	50
4.4 Análise da Variação dos Gradientes de Temperatura Internos homogeneização	54
5 SUGESTÕES PARA TRABALHOS FUTUROS	63
6 CONCLUSÕES	64
REFERÊNCIAS	65
APÊNDICES	00

1 INTRODUÇÃO

1.1 Contexto

Uma classificação amplamente utilizada na definição de materiais divide-os em metálicos, cerâmicos, poliméricos e compósitos. Todos são amplamente utilizados nas diversas áreas da engenharia devido as suas propriedades específicas, adaptando-se diferentemente as mais diversas situações, correspondendo de diferentes formas às inúmeras aplicações.

Materiais metálicos destacam-se por apresentar excelentes propriedades mecânicas. No entanto essas propriedades, como por exemplo, a tenacidade, ductilidade, dureza e usinabilidade, devem algumas vezes ter seus valores modificados, fazendo com que seja necessária a realização de tratamentos térmicos, tornando assim a peça capaz de resistir às condições que serão impostas durante sua utilização. Esse tratamento é realizado sob condições controladas de temperatura, tempo, atmosfera e velocidade de resfriamento.

De acordo com as inúmeras mudanças possíveis de se realizar nesses parâmetros surgiram vários tipos de tratamentos térmicos, sendo cada um apto a provocar mudanças específicas nas propriedades do material. Dentre eles destacam-se a têmpera, a normalização, o recozimento e o revenimento. Em todas elas uma das etapas ocorre no forno, no qual a peça tem sua temperatura alterada desde a temperatura na qual se encontrava anteriormente até um valor necessário para a realização do restante do procedimento.

Devido ao fato de apenas a superfície da peça estar em contato com a atmosfera do forno não existe uma distribuição homogênea da temperatura em todos os instantes do processo, ou seja, diferentes regiões da peça apresentam diferentes temperaturas, resultando em um fluxo de calor. Esse fluxo persiste até o momento no qual acontece a homogeneização da temperatura no interior do sólido.

O tempo necessário para que isso ocorra depende de inúmeras variáveis, resultando em um problema extremamente complexo. Devido

às dificuldades presentes na obtenção desse tempo ele é muitas vezes estimado, tornando o processo de tratamento térmico menos eficiente.

1.2 Problema

Nos processos de tratamento térmico, na fase de aquecimento, a determinação do tempo que a peça ficará no forno é crucial para se obterem resultados satisfatórios. Erros na determinação deste tempo podem acarretar em sérios prejuízos.

Segundo Chiaverini (2012, p.83), a relação entre tempo, temperatura e as modificações estruturais deve ser estritamente a necessária, e pelo menos suficiente para que seja atingida a homogeneidade de temperatura em toda a seção da peça.

Vários aspectos operacionais influenciam no tempo de homogeneização da temperatura em fornos de tratamento térmico. Um desses principais fatores é a geometria da peça que está sendo submetida ao tratamento.

1.3 Objetivos

1.3.1 Objetivo Geral

Analisar, com auxílio de experimentos e resultados matemáticos obtidos através de soluções numéricas computacionais, como diversos aspectos geométricos das peças que são submetidas a processos de tratamento térmico influenciam no tempo de homogeneização da temperatura.

1.3.2 Objetivos Específicos

- Realizar testes experimentais com peças de aço 1045 de geometria cilíndrica e com uma geometria formada por uma torre constituída de vários cilindros sobrepostos uns sobre os outros;
- Determinar um centro térmico aproximado para a torre de cilindros;
- Simular todos os experimentos utilizando técnicas de CFD;

- Gerar gráficos que representem a física dos processos de transferência de calor em peças metálicas sendo aquecidas.
- Comparar os resultados obtidos com a equação 1.1 desenvolvida por Volce e Figueiredo (2014).

2 FUNDAMENTAÇÃO TEÓRICA

Os métodos atualmente utilizados para a determinação do tempo em que peças submetidas a tratamentos térmicos ficarão nos fornos são baseados em experiências prévias e não possuem bases científicas para valida-los. Em geral, a peça permanece no forno durante 30 minutos para cada polegada da sua maior seção.

Para a compreensão e realização deste trabalho alguns conceitos de engenharia devem ser revisados. Entre eles estão noções básicas de tratamentos térmicos e alguns tópicos referentes à mecânica dos fluídos, termodinâmica e transferência de calor.

2.1 Tratamento térmico

Segundo Chiaverini (2012, p82), tratamento térmico é o conjunto de operações de aquecimento e resfriamento a que são submetidos os aços, sob condições controladas de temperatura, tempo, atmosfera e velocidade de resfriamento, com o objetivo de alterar as suas propriedades ou conferir-lhes determinadas características.

Para cada aplicação na qual os aços são submetidos é necessário que eles possuam propriedades específicas. Os tratamentos térmicos modificam a estrutura dos aços. Alterando sua estrutura, consequentemente suas propriedades se modificam também.

Os principais objetivos dos tratamentos térmicos são os seguintes:

- Remoção de tensões internas (oriundas de esfriamento desigual, trabalho mecânico ou outra causa);

- Aumento ou diminuição da dureza;

- Aumento da resistência mecânica;

- Melhora da ductilidade;
- Melhora da usinabilidade;
- Melhora da resistência ao desgaste;
- Melhora das propriedades de corte;
- Melhora da resistência à corrosão;
- Melhora da resistência ao calor;
- Modificação das propriedades elétricas e magnéticas.

Em geral, a melhora de uma ou mais propriedades, mediante um determinado tratamento térmico, é conseguida com prejuízo de outras. Por exemplo, o aumento da ductilidade provoca simultaneamente queda nos valores de dureza e resistência à tração.

2.2 Síntese de Balanço de Energia

Para Moran e Shapiro (2002, p.1), o início de uma análise de engenharia é descrever o sistema, podendo ser ele aberto ou fechado.

De acordo com Çengel e Boles (2001, p.9), um sistema fechado é aquele pelo qual não flui massa através das fronteiras do sistema, apenas calor e trabalho. Um sistema aberto permite a avaliação de fluxo de massa através das fronteiras. É extremamente importante reconhecer o tipo de sistema antes de iniciar o estudo.

Identificando e quantificando os fluxos de energia nas bordas do sistema é possível avaliar a energia total.

Para Moran e Shapiro (2002, p.36), a variação da quantidade de energia em um sistema durante um intervalo de tempo é igual à quantidade líquida de energia transferida para o sistema na forma de calor menos a quantidade líquida de energia transferida do sistema na forma de trabalho, no mesmo intervalo de tempo. Este conceito é denominado balanço de energia.

2.3 Transferência de Calor

De acordo com INCROPERA (et al., 2012) transferência de calor é energia térmica em trânsito devido a uma diferença de temperaturas no espaço.

A ciência da termodinâmica afirma que energia pode ser transferida na forma de calor ou trabalho, de um corpo para a sua vizinhança ou vice-versa. No entanto a aplicação em termodinâmica apenas fornece as interações globais, como balanços de massa e energia. A análise dos mecanismos envolvidos e a taxa com que a energia se transfere são obtidas em transferência de calor, ou simplesmente calor.

A ocorrência da transferência de calor pode ser de diferentes modos, que são: condução, convecção e radiação térmica.

2.3.1 Condução

Em Incropera *et al.* (2012, p.2) define-se como condução a transferência de calor relacionada com a atividade atômica e molecular, pois é através deste mecanismo que a condução se sustenta, das partículas com maior para as com menor energia, valor que mensuramos utilizando a propriedade temperatura.

Eles ainda descrevem tal fenômeno quantificando e indicando a direção do fluxo de energia. A quantificação é dada pela proporcionalidade da diferença de temperatura e a distância entre moléculas em um corpo em estado sólido ou fluido, sendo que o calor flui das moléculas com maior temperatura para as com menor temperatura, conforme ilustrado na Figura 2.1.

Figura2.1-AssociaçãodaTransferênciadecalorporconduçãoàdifusãodeenergiadevidoà atividade molecular

Fonte: INCROPERA et. al. (2012)

Esse fluxo de calor acontece de acordo com a Lei de Fourier, na qual é possível quantificar a quantidade de energia transferida por unidade de tempo

através das dimensões. Abaixo segue a equação da lei de Fourier para uma transferência de calor unidimensional.

$$q = -k \cdot A \cdot \frac{dT}{dx}$$
Eq. (2.1)

Onde:

q = Fluxo de transferência de calor por condução [W]

k = Coeficiente de Condutibilidade Térmica [W/m.K]

A = Área da seção transversal do corpo [m²]

T = Temperatura no ponto x [K]

x = dimensão espacial do ponto no eixo x [m]

Para Callister e Rethwisch (2012, p. 673) a condutividade térmica está relacionada a dificuldade ou facilidade que um dado material possui para transferir calor por condução. Sendo que os valores da condutividade de todos os materiais estudados foram obtidos experimentalmente, e não através de um princípio fundamental (INCROPERA et al., 2012).

Outra importante característica dos materiais é a capacidade calorífica, propriedade que representa a quantidade de energia necessária para produzir um aumento unitário na temperatura (CALLISTER e RETHWISCH, 2012). Na maioria das vezes a capacidade calorífica é reescrita por unidade de massa, sendo então chamada de calor específico.

$$C = m.c$$

Eq. (2.2)

Onde: C = Capacidade calorifica [J] m = Massa [kg] c = calor especifico [J / kg. K]

Outra importante propriedade do material é a difusividade térmica.

Segundo Incropera et al. (2012, p. 43) tal propriedade nos fornece a capacidade de condução térmica de um material em relação a sua capacidade de armazenar energia.

As propriedades citadas variam de acordo com a temperatura do material, o que poderia tornar a solução de problemas de transferência de calor matematicamente ainda mais complexos. Para contornar tais dificuldades definem-se muitas vezes valores constantes. Isso torna a solução mais simples mas cria um acréscimo no erro do resultado final, muitas vezes irrelevante.

Outra aproximação utilizada em muitos casos é representar o fenômeno de condução térmica como um processo em regime permanente, considerando a temperatura nos pontos independente do tempo. Reduzindo o trabalho matemático.

Existem problemas nos quais não é possível avaliar o fenômeno como um regime permanente, são os problemas de condução em regime transiente. Segundo Bejan (2004, p.114) este tipo de problema possui grande relevância em muitas áreas, por exemplo, nos tratamentos térmicos de metais e na refrigeração de imas supercondutores.

Mesmo nesse caso, algumas simplificações necessitam ser realizadas, como a de uniformidade de temperatura no início do processo, e de que as propriedades do material sejam independentes da temperatura.

2.3.2 Convecção

Segundo INCROPERA et al. (2012, p 347) convecção é o modo de transferência de calor no qual um fluido escoando atua como transportador de energia que é transferida para ou de um sólido.

Sendo assim um processo convectivo é a soma de duas parcelas de transferência de energia, uma através do movimento global do fluído, definido

como advecção e outra pelo movimento aleatório das moléculas do fluído, a condução.

O modo convecção de transferência de calor pode ser classificado em dois tipos principais: convecção forçada e convecção natural, ambos estão representados na Figura 2.2 (a) e (b), respectivamente.

A convecção forçada é caracterizada pela ação de um agente externo que fornece energia de movimento ao fluído, por exemplo, ventiladores, bombas, ventos atmosféricos e outros. Enquanto a convecção natural ocorre devido a forças de empuxo originarias de diferenças de massa especifica no fluido em decorrência de diferenças de temperatura (INCROPERA et al., 2012).

Figura2.2- Tipos de transferência de calor por convecção: (a)Convecção forçada (b)Convecção natural Fonte: INCROPERA *et. al.* (2012)

Na convecção uma proporcionalidade que relaciona o calor transferido, entre o fluído e o corpo sólido, independentemente da direção, e a diferença de temperatura entre os mesmos, é conhecido como coeficiente convectivo (BEJAN, 2004). Seu valor sofre influência das características do escoamento, por exemplo, geometria da superfície, tipo de convecção além de uma série de propriedades termodinâmicas e de transporte do fluído. Conhecendo o coeficiente convectivo e outras características do sistema é possível encontrar o calor transferido entre o fluido e o corpo através da Lei do Resfriamento de Newton. (INCROPERA et al., 2012).

$$q = h \cdot A \cdot (Ts - T\infty)$$

Eq. 2.3.

Onde

q = Fluxo de Transferência de calor por convecção [W] h = Coeficiente Convectivo [W/m².K]

A = Área da Superfície[m²]
Ts = Temperatura da superfície [K]
T∞ = Temperatura do fluido [K]

2.3.3Radiação

Radiação é a forma de transferência de calor que ocorre através do fluxo de energia das ondas eletromagnéticas. Sendo assim não necessita de um meio físico, podendo acontecer no vácuo (INCROPERA et al., 2012).

Apesar das diferenças em relação à condução e a convecção, também na radiação uma proporcionalidade é observada entre o calor transferido e a temperatura dos corpos envolvidos. Tal proporcionalidade é dada pela capacidade dos corpos envolvidos em absorver e emitir radiação, além da área em que isso ocorre (BEJAN, 2004).

Estas propriedades são inerentes ao processo em desenvolvimento, dependendo por exemplo de temperaturas, geometrias, posições, meio entre outras. Uma destas propriedades é denominada emissividade e outra a absortividade, esta última que determina a fração da irradiação que é absorvida pelo corpo (INCROPERA et al., 2012).

Conhecendo essas propriedades e outras características do sistema é possível encontrar o calor transferido entre os corpos através da equação abaixo (INCROPERA et al., 2012).

$$q = hA (Ts - T\infty) + A\sigma (T^4s - T^4sur)$$

Eq. 2.4.

Onde

q = Fluxo de Transferência de calor por radiação [W]

h = Coeficiente Convectivo [W/ m² . K]

A = Area da superfície [m²]

Ts = Temperatura da superfície do corpo [K]

T∞ = Temperatura do ambiente [K]

 \Box = Emissividade do corpo

 σ = Constante de Stafan [W m^-2 K ^-4]

Tsur = Temperatura da superfície do corpo circundante [K]

Figura2.3 – Transferência de calor por radiação entre uma superfície e um ambiente:

Fonte: INCROPERA et. al. (2012)

2.4 Método dos Volumes Finitos

O Método dos Volumes Finitos é um método numérico utilizado na solução das equações diferenciais parciais na forma de equações algébricas (LEVEQUE, 2002). O procedimento básico para aplicação do método pode ser descrito pelos passos listados abaixo:

- Identificar o domínio da região onde acontece o fenômeno.
- Dividir o domínio em pequenos volumes localizando no centroide de cada volume a variável que será calculada.
- Integrar a equação diferencial de governo em cada volume.
- Aplicar o método numérico de solução da equação diferencial.

A aplicação do método em sistemas complexos gera uma elevada quantidade de equações, tornando a solução sem o auxílio de computadores praticamente impossível. Sendo assim são utilizados na solução desses sistemas programas como o CFD (Computational Fluyd Dynamics).

2.5 CFD – Computational Fluyd Dynamics

CFD é o nome dado ao grupo de técnicas matemáticas, numéricas e computacionais utilizadas na obtenção, visualização e interpretação de soluções para equações matemáticas.

No presente trabalho o CFD irá resolver as equações de convecção e radiação da superfície dos sólidos e condução no interior.

Figura 2.4 – Exemplos de simulação computacional realizada no CFD.

O programa executa essas tarefas a partir das condições iniciais e das fórmulas que regem o fenômeno.

As propriedades variam no tempo no interior de cada um dos subdomínios definidos de acordo com o método dos volumes finitos.

2.6 Equação do Tempo de Homogeneização da Temperatura

$$t = \left(\frac{L_{c,p}^{4} \cdot \rho}{T_{f} \cdot k}\right)^{1/3} \cdot \left\{11,395.10^{6} \cdot \left(\frac{T_{0}}{T_{f}}\right) + 0,319.10^{6} \cdot \left(\frac{L_{c,f}}{L_{c,p}}\right) + 159,92 \cdot \left[c_{p} \cdot \left(\frac{T_{f} \cdot L_{c,p}^{2} \cdot \rho^{2}}{k^{2}}\right)^{1/3}\right] - 4,474.10^{6}\right\}$$

Eq. (2.5)

A equação 2.5 foi desenvolvida no TCC de Volce e Figueiredo (2014) através de dados experimentais obtidos aquecendo uma série de

cilindros. Com esses dados foi utilizada a técnica dos Pi de Buckingham para se gerar a equação e a mesma foi validada através do método da capacitância global.

No apêndice D encontra-se um resumo da metodologia utilizada por Volce e Figueiredo (2014) e o gráfico F.1 da equação acima que relaciona a temperatura do forno e o tempo de homogeneização da temperatura para um intervalo de comprimentos característicos das peças que varia de 1mm a 8mm. Adiante, na metodologia do trabalho, será explicado mais detalhadamente o que é o comprimento característico de uma amostra.

- Comparar os resultados obtidos experimentalmente com os resultados obtidos numericamente.
- Sugerir métodos para a obtenção do tempo de homogeneização da temperatura das peças submetidas a tratamentos térmicos.

3 MATERIAIS E MÉTODOS

Neste capítulo serão apresentados os materiais que foram utilizados no projeto e a metodologia aplicada para sua realização.

3.1 Materiais

Na fase experimental foram utilizadas peças de aço AISI 1045 previamente usinadas na geometria necessária, termopar tipo K, multímetro, cronômetro e forno.

Foram usinadas seis peças de aço AISI 1045 denominadas D40, D70, D100, T1, T2, T3. Onde D40, D70 e D100 são cilindros e T1, T2 e T3 são torres constituídas de cilindros, como mostra a figura 3.1 e 3.2:

Figura 3.1 – Cilindro e torre 3D Fonte: Autoria Própria (2014)

Os cilindros têm dimensões diferentes. Já as torres possuem todas as mesmas dimensões, porém o ponto onde a temperatura foi medida em cada uma é diferente.

O fator geométrico tem muita relevância na análise a ser realizada, portanto é necessária a definição de uma dimensão capaz de representar a geometria da peça como um todo. Em problemas de transferência de calor, usualmente esta dimensão é denominada comprimento característico. A definição que será utilizada neste trabalho para sua determinação é mostrada na Eq. (3.1).

$$L_c = \frac{V}{A_s}$$

Eq.(3.1)

Onde:

Lc=Comprimento característico [m];

V = Volume [m³];

As = Area superficial [m²].

Para a presente análise foi calculado o comprimento característico de duas maneiras. Na primeira considerando toda a área superficial da peça (Lcb), e na segunda desconsiderando a área inferior da peça (Lcs). Esse procedimento foi feito para auxiliar na análise de quanto a área inferior (que não sofre processos convectivos e de radiação) influencia no processo de transferência de calor para a peça.

As informações geométricas das amostras dos cilindros são apresentadas na tabela 3.1 e 3.2, e nas figuras 3.2 e 3.3.

	Código da amostra	Diâmetro (D) [mm]	Altura (H) [mm]	Comprimento característico (com base) (Lcb) [mm]	Comprimento característico (sem base) (Lcs) [mm]
	D40	40.00	30.00	6.00	7.50
	D70	70.00	30.00	8.80	11.05
	D100	100.00	30.00	9.38	13.64
	TORRES	_	90.00	10.95	14.06
-					

Tabela 3.1 – Características geométricas das amostras

Tabela 3.2 - Percentual da área da base em	n rela	cao á	i área '	total
--	--------	-------	----------	-------

D40	D70	D100	TORRE
20,00%	26,92%	31,25%	22,12%

No apêndice A são apresentados mais sucintamente todos os cálculos realizados para a obtenção das duas tabelas acima.

Na figura 3.3 são apresentadas a vista lateral e superior das torres, com suas medidas em milímetros.

Figura 3.2 – Perfis das amostras Fonte: Autoria Própria (2014)

Observa-se que torres nada mais são que a superposição dos três cilindros das amostras D40, D70 e D100.

Como o perfil das amostras tinham uma grande área de contato com a base do forno, observou-se uma considerável diferença nos valores dos comprimentos característicos com e sem a base.

A preparação das amostras foi realizada de tal modo a obter-se distintos valores de comprimentos característicos, para que fosse possível analisar a equação 1.1 para peças com especificações geométricas distintas.

Foram realizados furos, com diâmetro de 7mm, na linha de centro de cada uma das amostras. A profundidade do furo, nos cilindros, foi até a metade da altura e, em cada torre, o furo foi até a metade de um dos cilindros que a constituíam. O termopar tipo K, cujo comprimento e diâmetro da haste são de 500mm e 6mm respectivamente, ligado ao multímetro, foi utilizado para medir a temperatura no interior das amostras.

Figura 3.3 – Termopar tipo K Fonte: Autoria Própria (2014)

O forno utilizado foi o Jung, modelo 0612 do laboratório de tratamentos térmicos da UTFPR e sua função foi a de fonte de calor para os experimentos. As dimensões do forno estão apresentadas na tabela 3.2.

Tabela 3.3 – Características geométricas do fo				
	Altura [mm]	Largura [mm]	Profundidade [mm]	
	150	150	300	

3.2 Metodologia

O trabalho foi dividido em três partes: coleta de dados experimentais no laboratório; simulação dos experimentos realizados com o auxílio de métodos computacionais; e por fim, realizar a análise dos dados obtidos, com a finalidade de compreender melhor os processos físicos envolvidos, testar a validade da equação 1.1 e observar de que modo a geometria das peças afeta a homogeneização da temperatura quando as mesmas estão sendo aquecidas.

3.2.1 Fase experimental

O centro térmico é o último ponto no qual existe aquecimento antes que ocorra a homogeneização da temperatura na peça. Portando o tempo em que esse ponto atinge a temperatura de aquecimento é igual ao tempo de homogeneização da temperatura na peça.

O centro térmico se encontrará no eixo de simetria da como mostrado na figura 3.3.

Figura 3.4 – Centro térmico Fonte :Autoria

Onde: CT = centro térmico LT= comprimento do centro térmico [m]

Previamente não era conhecido onde se encontrava o centro térmico das amostras. Para os cilindros, intuitivamente imagina-se que seria na metade da sua altura, porém, o fato da entrada de calor não ser simétrica (pois na base os processos de transferência de calor são diferente dos das laterais das peças) faz com que esse ponto não seja exatamente na metade. Nas torres o local exato também não era conhecido.

Primeiramente então, os testes foram realizados de tal maneira que os pontos de coleta nos cilindros fossem exatamente na metade de sua altura, e em cada torre, na metade de um dos cilindros que a constituíam.

Nas figuras 3.5, 3.6, 3.7, 3.8 são ilustrados os pontos de coletas para as amostras:

Figura 3.5 – Ponto de coleta nos cilindros D40, D70 e D100

Fonte: Autoria Própria (2014)

Figura 3.8 – Ponto de coleta T3 Fonte: Autoria Própria (2014)

A medição da temperatura foi realizada através da medição da diferença de potencial gerada pelo termopar, deste modo efetivamente o que se mediu no multímetro foi a diferença de potencial que, através da tabela apresentada no anexo A, pode ser convertida em temperatura em graus Celsius. Para tanto se convertia a diferença entre a temperatura desejada e a temperatura medida no ambiente, para a sua equivalência em miliVolt (mV). Assim, após o fechamento da porta do forno, se iniciou a contagem de tempo através do cronômetro, até que a tensão medida no multímetro se igualasse a tensão equivalente a temperatura desejada.

O erro associado calculado utilizando as fichas técnicas do termopar e multímetro utilizado foi de aproximadamente 5°C para mais e para menos

Para a realização de cada experimento, primeiramente o forno foi aquecido até a temperatura desejada. Logo em seguida foi esperado 10 minutos para que a temperatura no seu interior se estabilizasse. Durante os primeiros minutos após o forno atingir a temperatura desejada, essa temperatura caía e aumentava em relação ao que foi configurado em aproximadamente 10°C. Próximo aos 10 minutos essa variação praticamente não existia mais. A fim de diminuir as incertezas do processo, para cada ponto de amostra foram realizados três testes.

Para cada ponto também, foram feitos testes em três temperaturas distintas: 650, 750 e 850 graus Celsius. Tais temperaturas se encontram em regiões distintas no diagrama ferro carbono para o material selecionado.

A princípio seriam seis amostras analisadas em três temperaturas distintas, e para cada amostra seriam realizados três testes. Totalizando 54 experimentos.

Os 27 testes referentes aos cilindros foram realizados. Durante esse período foram simulados computacionalmente os experimentos realizados e nesse processo foi descoberto que no interior da peça os gradientes de temperaturas eram tão baixos, que a partir de uma temperatura, inferior à da homogeneização, poderíamos aproximar que a peça já estava homogeneizada. Assim, concluiu-se que o ponto onde o termopar seria localizado é indiferente e os resultados nos três pontos da torre seriam praticamente os mesmos. Foram feitos alguns experimentos que validaram essa hipótese nas torres. Na próxima sessão serão apresentados todos os testes realizados e seus resultados.

No apêndice B são apresentados os resultados de todos os experimentos.

3.2.2 Simulações computacionais

Além dos testes experimentais realizados nos laboratórios da UTFPR, também foram realizadas simulações computacionais onde foi possível entender melhor os processos físicos envolvidos e poder compreender melhor de que maneira a geometria da peça pode interferir no tempo de homogeneização de sua temperatura quando aquecida.

Para a realização das simulações foi utilizado o software *FLUENT* do pacote *ANSYS 13.0.*

As etapas para a representação numérica foras as seguintes:

- Construir uma malha computacional que represente o espaço onde ocorre os processos de transferência de calor;
- Refinar a malha conforme a necessidade;
- Alimentar o modelo com as equações fundamentais que regem os fenômenos de transferência de calor;
- Configurar as propriedades dos meios constituintes (ar, aço);
- Determinar as condições de contorno do sistema;
- Determinar o passo de tempo em que o programa realizará cada interação do processo;
- Configurar os dados de saídas (tabelas, vídeo);
- Simular computacionalmente.

Para representação do aço 1045 foram consideradas as variações nos valores de sua condutividade térmica e calor específico em função da temperatura.

Os dados utilizados estão apresentados no apêndice C.

Não é possível simular todos os fenômenos físicos envolvidos. Desta forma diversas hipóteses simplificadoras foram utilizadas.

A figura 3.10 abaixo representa esquematicamente as principais hipóteses adotadas.

Figura 3.9 – Hipóteses simplificadoras Fonte: Autoria Própria (2014)

Como mostrado na figura 3.10 as principais hipóteses foram:

- A base do forno foi considerada adiabática;
- Os sistema foi considerado simétrico em relação ao eixo que passa no centro do forno;

- Temperatura da parede do forno foi considerada constante;
- Não foram consideradas trocas de calor da superfície superior do forno;
- O sólido possuí propriedades variáveis;
- O ar foi considerado como gás ideal e também possuí propriedades variáveis. (as propriedades do ar estão contidas na biblioteca do software utilizado);

Além disso foram considerados:

- Peça sem rugosidade.
- O ar é invisível para radiação.

Como mostrado acima o sistema foi considerado simétrico em relação ao centro do forno. Isso foi feito pois assim foi possível realizar uma simulação em duas dimensões, que são muito mais simples de serem simuladas. Ao adotar essa metodologia nada foi variado na geometria da peça, pois o centro do eixo de simetria coincidiu com o eixo de simetria das amostras (todas as amostras são axissimétricas).

Em contrapartida as dimensões do forno foram alteradas de tal forma que sua altura permaneceu a mesma. Porém seu formato deixou de ser um paralelepípedo e passou a ser um cilindro de raio 75 mm e 150 mm de altura.

Todas as simplificações alteram o resultado obtido quando comparados aos resultados reais. Mas como será mostrado adiante mesmo com as devidas simplificações a simulação se comportou fisicamente de maneira similar aos experimentos.

A tabela 3.4 abaixo mostra as características geométricas do forno simulado.
Tabela 3.4 – Características geométricas do forno simulado

Altura [mm]	Raio [mm]
150	300

A imagem 3.10 representa o forno real e o simulado.

FORNO REAL

FORNO SIMULADO

Figura 3.10 – Forno real/simulado Fonte: Autoria Própria (2014)

As tabelas 3.3 e 3.4 indicam as dimensões dos fornos reais e simulados.

Ao realizar as simulações, os dados obtidos foras retirados de pontos específicos das amostras, denominados P1 e P2.

O ponto P1 é o primeiro ponto onde a peça recebe calor e P2 é o último ponto onde o calor transferido chega na peça. Portanto, a maior diferença de temperatura na peça se encontra entre P1 e P2. Na figura 3.12 e 3.13 mostram onde foram selecionados esses pontos nos cilindros e nas torres, respectivamente.

Figura 3.11 – P1/P2 nos cilindros Fonte: Autoria Própria (2014)

Figura 3.12 – P1/P2 nas torres Fonte: Autoria Própria (2014)

Observando a figura 3.14 observamos como se comportou a temperatura nas amostras D40 em três tempos consecutivos. A escala de cor a esquerda indica a temperatura, do azul ao vermelho de maneira crescente.

Figura 3.13 – Temperatura na amostra D40 Fonte: Autoria Própria (2014)

Percebe-se que a temperatura aumenta a partir do ponto P1 até por último em P2.

Para todas as amostras observou-se o mesmo comportamento. Inclusive nos pontos P1 e P2 selecionados nas torres.

A metodologia completa utilizada para as simulações numéricas foram semelhantes as utilizadas por Lugarini (2014).

4 RESULTADOS E DISCUSSÕES

Para obtenção do resultado final deste trabalho, primeiramente foram obtidos através do gráfico F.1, quais seriam os resultados estimados para o tempo de homogeneização para os experimentos executados através da metodologia desenvolvida por Figueiredo e Volce (2014). Foram obtidos resultados utilizando comprimentos característicos Lcb e Lcs. Para os valores de comprimento característicos não contidos no gráfico foram feitas extrapolações nas curvas correspondentes a esses comprimentos. Em seguida esses valores foram comparados e discutidos em relação aos valores reais obtidos nos experimentos e nas simulações numéricas.

Os resultados brutos dos experimentos estão contidos no apêndice B do presente projeto. Os 27 experimentos referentes aos cilindros foram realizados Já nas torres, foram feitos apenas 18 dos 27 experimentos. Isso aconteceu pois durante o trabalho, através dos resultados obtidos pelos modelos numéricos, chegou-se à conclusão que muito antes da peça chegar à temperatura do forno os gradientes em seu interior eram praticamente desconsideráveis. Isso ocorre devido ao fato de que a velocidade com que o calor é transferido no interior da peça é muito maior do que a velocidade em que o calor que é transferido para a peça através de radiação e convecção.

Na realização das medições das torres, primeiramente foram feitos os experimentos a 650°C nos três pontos (T1, T2 e T3). Os resultados obtidos, como esperado, foram semelhantes para os três pontos. Nos experimentos a 750°C, foram apenas analisados os pontos T1 e T2, os quais tiveram resultados também semelhantes. E por fim, a 850° foi realizado apenas o experimento no ponto T2.

4.1 Influência das condições da peça no experimento

O primeiro experimento de cada peça foi realizado em condições semelhantes a da figura 4.1, em que a peça acabara de ser usinada.

Após o tratamento térmico a peça encontrava-se com a superfície totalmente oxidada, como pode ser visualizada na figura 4.2.

Fig. 4.1 – Torre Não Oxidada

Fig. 4.2 – Torre Oxidada

Foi notado que peças não oxidadas demoram de 15 a 20% mais tempo para alcançar a temperatura de homogeneização.

As razões de tal acontecimento podem ser inúmeras e valem discussões futuras. Dentre os possíveis motivos está a variação da emissividade e absortividade a superfície em função da presença de oxidação.

4.2 Comparação dos resultados obtidos nos experimentos com a formulação desenvolvida por Figueiredo e Volce (2014).

Na tabelas 4.1, 4.2 e 4.3, seguem os resultados obtidos experimentalmente e os resultados esperados utilizando a formulação desenvolvida por Figueiredo e Volce (2014). Foram analisados como os resultados variaram utilizando como comprimento característico Lcb e Lcs. Nas duas últimas colunas estão descritos os erros correspondentes. As linhas não preenchidas correspondem aos experimentos que não foram realizados.

Peça	Tempo Experimental [h:mm:s]	Tempo da fórmula (Lcb) [h:mm:s]	Tempo da fórmula (Lcs) [h:mm:s]	Erro (Lcb) [%]	Erro (Lcs) [%]
D40	00:27:17	00:18:32	00:21:25	47,21	27,39
D70	00:48:45	00:23:07	00:34:23	110,89	41,78
D100	01:05:33	00:26:32	00:41:39	147,05	57,38
T1	01:58:26	00:34:41	00:44:44	241,47	164,75
T2	01:52:31	00:34:41	00:44:44	224,41	151,53
T3	02:05:01	00:34:41	00:44:44	260,45	179,47

Tabela 4.1 - Tempos de homogeneização experimentais e obtidos através da fórmula e seus erros percentuais - 650°C

Peça	Tempo Experimental [h:mm:s]	Tempo da fórmula (Lcb) [h:mm:s]	Tempo da fórmula (Lcs) [h:mm:s]	Erro (Lcb) [%]	Erro (Lcs) [%]
D40	00:19:10	00:15:33	00:19:13	23,26	-0,26
D70	00:34:15	00:19:11	00:30:12	78,54	13,41
D100	00:46:32	00:23:16	00:36:06	100,00	28,90
T1	01:29:35	00:28:24	00:39:12	215,43	128,53
T2	01:23:28	00:28:24	00:39:12	193,90	112,93
Т3	-	-	-	-	-

Tabela 4.2 - Tempos de homogeneização experimentais e obtidos através da fórmula e seus erros percentuais - 750°C

Tabela 4.3 - Tempos de homogeneização experimentais e obtidos através da fórmula e seus erros percentuais - 850°C

Peça	Tempo Experimental [h:mm:s]	Tempo da fórmula (Lcb) [h:mm:s]	Tempo da fórmula (Lcs) [h:mm:s]	Erro (Lcb) [%]	Erro (Lcs) [%]
D40	00:22:50	00:15:02	00:18:43	51,88	21,99
D70	00:35:45	00:18:40	00:30:21	91,52	17,79
D100	00:49:58	00:23:28	00:36:18	112,93	37,65
T1	-	-	-	-	-
T2	01:40:28	00:27:53	00:39:29	260,31	154,45
Т3	-	-	-	-	-

Primeiramente, vamos ressaltar que a formulação desenvolvida por Figueiredo e Volce (2014) foi desenvolvida através de amostras cilíndricas com características peculiares. No trabalho desenvolvido por esses autores os cilindros possuíam forma delgada, em que uma porcentagem pequena da área superficial da peça entrava em contato com a base do forno, ou seja, quase toda a superfície das amostras sofriam processos de convecção e radiação. Além disso as amostras possuíam um volume muito menor que as do encontradas no presente projeto.

Outro fator a ser considerado é que a validação dos resultados obtidos pela equação 1.1, foi através do método da capacitância global, em que como hipótese toda a superfície da peça está sujeita a processos de troca de calor.

Analisando as três tabelas anteriores, primeiramente, observando, isoladamente as três primeiras linhas referentes aos cilindros e as três últimas linhas referentes às torres, nota-se que com o aumento da porcentagem da peça que está em contato com a base do forno (área da base), maior será o erro encontrado. Teoricamente os erros para todas as amostras deveriam ser próximos. Esse diferença se deve ao fato de que conforme se aumenta a área da base, mais o experimento se distancia das hipóteses utilizadas para desenvolver a equação 1.1.

A retirada dá área inferior da peça no cálculo de seu comprimento característico foi um meio utilizada para tentar corrigir a área inferior que não sofre processos de convecção e radiação. Porém essa tentativa mostrou-se ineficiente, pois os erros, apesar de menores, continuaram relevantes.

Esse resultado mostra a importância dos processos de radiação e convecção durante o aquecimento das peças, além da importância da área da peça que está em contato com a base do forno. Em outras palavras, quanto menor a área da peça que estiver em contato com a base do forno, mais eficiente será o procedimento.

Agora, comparando-se apenas as amostras D40 com as torres (ambas possuem um percentual da área de contato com a base do forno semelhantes), observamos que o erro encontrado nas torres é muito maior. O fator que difere essas peças e pode ter influenciado na grande diferença no erro encontrado são aspectos geométricos. A formulação desenvolvida foi a partir de dados extraídos de experimentos realizados em cilindros. Quando a fórmula desenvolvida é aplicada em uma geometria diferente seus resultados fogem do esperado. Vários aspectos podem ser a causa disso, por exemplo: diferentes geometrias proporcionam níveis de exposição às superfícies com as quais ela troca calor por radiação.

Esses resultados não excluem a validade da fórmula desenvolvida por Figueiredo e Volce (2014), porém mostra que a mesma só pode ser utilizada em peças com características geométricas semelhantes a utilizadas por esses autores.

Vale ressaltar que na indústria, geralmente as peças são colocadas em fornos que possuem grades inferiores. Esse método mostra-se mais eficiente do que colocando as peças em bases sem grades, pois fazendo isso a área em contato com o meio aumenta.

4.3 Influência das Variáveis do Processo no tempo de Homogeneização

Os parâmetros variados nos experimentos e simulações computacionais foram o comprimento característico das peças, a temperatura do forno e a geometria das peças. Assim é possível mensurar a influência de cada um no tempo de homogeneização da temperatura interna dos corpos.

4.3.1 Influência do Comprimento Característico no Tempo de Homogeneização

A tabela 4.4 mostra o tempo médio de cada experimento nas três temperaturas. Os comprimentos característicos Lcb de cada peça estão na segunda coluna da tabela.

Peça	Lcb	650°C	750 °C	850 °C
D40	6.00	00:27:17	00:19:10	00:22:50
D70	8.80	00:48:45	00:34:15	00:35:45
D100	9.38	01:05:33	00:46:32	00:49:58
T1	10.95	01:58:26	01:29:35	-
T2	10.95	01:52:31	01:23:28	01:40:28
Т3	10.95	02:05:01	-	-

Tabela 4.4 - Tempos de Homogeneização [h:mm:s]

Os gráficos 4.1, 4.2 e 4.3 abaixo, referentes às simulações computacionais realizadas, mostram a temperatura no ponto P1 em função do tempo para todas as temperaturas medidas dos cilindros. Lembrando que o ponto P1 é o primeiro que recebe calor nas amostras.

Teoricamente a temperatura só se homogeneíza em tempo infinito. Desta forma, para observar o comportamento foi preciso estipular um critério de parada para determinar nos gráficos qual seria o tempo em que a temperatura homogeneizou. Para tanto foi escolhido a parada em 5°C antes do tempo determinado. Esse valor foi escolhido pois coincide com o valor do erro aproximado encontrado experimentalmente devido a imprecisões no termopar e multímetro. O local onde a curva chega nesse valor é mostrado através de uma linha vertical cuja a cor é a mesma de sua curva correspondente. Em todos os gráficos posteriores esse mesmo critério foi utilizado.

Gráfico 4.1 - Relação entre o temperatura das peças e o tempo para as amostras D40, D70 e D100 para temperatura do forno de 650°C

Gráfico 4.2 - Relação entre o temperatura das peças e o tempo para as amostras D40, D70 e D100 para temperatura do forno de 750°C

D40 70 100 850

TEMPERATURA X TEMPO D100 850

Gráfico 4.3 - Relação entre o temperatura das peças e o tempo para as amostras D40, D70 e D100 para temperatura do forno de 850°C

Observa-se, através dos três gráficos anteriores e da tabela 4.4, que nas simulações computacionais o tempo de homogeneização mostrou-se maior que o encontrado nos experimentos. Isso ocorre devido as várias aproximações feitas para se poder realizar as simulações, além das incertezas dos experimentos.

Por outro lado os resultados experimentais ainda foram maiores dos que encontrados através da equação 1.1, mostrados nas tabelas 4.1, 4.2 e 4.3, devido as hipóteses consideradas nas equações que não ocorrem nos experimentos reais.

Os gráficos 4.4, 4.5 e 4.6 ilustram melhor essas diferenças.

Gráfico 4.4 – Comparação dos resultados experimentais, computacionais e das formulação matemática para diferentes comprimentos característicos a 650°C.

Gráfico 4.5 – Comparação dos resultados experimentais, computacionais e das formulação matemática para diferentes comprimentos característicos a 750°C.

Gráfico 4.6 – Comparação dos resultados experimentais, computacionais e das formulação matemática para diferentes comprimentos característicos a 850°C.

Como mostram os três gráficos anteriores, apesar dos resultados finais não serem correspondentes, as simulações e a formulação matemática representam os fenômenos físicos envolvidos. As curvas seguem um mesmo padrão.

Em outras palavras, as curvas referentes ao fenômeno real se comportam da mesma maneira que as mostradas computacionalmente e pela equação, porém em proporções diferentes.

Os resultados obtidos mostram que conforme se aumenta o comprimento característico, o tempo de homogeneização também é aumentado.

Isso ocorre por que para aumentar o comprimento característico deve-se aumentar o volume do corpo ou reduzir a área superficial. Sendo que um corpo do mesmo material com volume maior possui maior massa demanda mais energia para aumentar a temperatura. Da mesma forma, um corpo com menor área superficial é menos sujeito a trocas de calor na superfície, tornando o processo de transferência de calor para a peça mais demorado. 4.1.2 Influência da Temperatura do Forno no Tempo de Homogeneização

Com base nos dados obtidos computacionalmente os gráficos 4.7, 4.8 e 4.9 abaixo demonstram o tempo de homogeneização para as mesmas peças em três temperaturas distintas:

Gráfico 4.7 - Relação entre o temperatura das peças e o tempo para a amostra D40 para as temperatura do forno de 650 °C, 750°C e 850 °C.

Gráfico 4.8 - Relação entre o temperatura das peças e o tempo para a amostra D70 para as temperatura do forno de 650 °C, 750 °C e 850 °C.

Gráfico 4.9 - Relação entre o temperatura das peças e o tempo para a amostra P3 para as temperatura do forno de 650 °C, 750 °C e 850 °C.

Analogamente como foi realizado ao analisar a influência do comprimento característico no tempo de homogeneização, os gráficos 4.10, 4.11 e 4.12 abaixo comparam os resultados obtidos experimentalmente, computacionalmente e através da equação 1.1 como a temperatura do forno influencia no tempo de homogeneização.

Gráfico 4.10 – Comparação dos resultados experimentais, computacionais e das formulação matemática para diferentes temperaturas para a amostra D40.

Gráfico 4.11 – Comparação dos resultados experimentais, computacionais e das formulação matemática para diferentes temperaturas para a amostra D70.

Gráfico 4.12 – Comparação dos resultados experimentais, computacionais e das formulação matemática para diferentes temperaturas para a amostra D100.

Analisando 4.7, 4.8 e 4.9, referentes às simulações e os dados obtidos experimentalmente é possível perceber que entre 650° e 750° houve uma redução no tempo de homogeneização da temperatura.

Porém entre 750° e 850° ocorreu um leve aumento neste tempo. Isso mostra que nesse caso entre 650° e 850° a curva que relaciona o tempo de homogeneização da temperatura em função da temperatura do forno possuí ao menos um mínimo.

É possível que este fenômeno ocorra devido às alterações nas propriedades do material que existem durante o processo, que foram levadas em consideração nas simulações computacionais. Analisando o gráfico A.1 no apêndice C, percebe-se uma alteração no comportamento da curva de calor específico próximo ao valor de temperatura onde esse fenômeno ocorre, que é perto dos 800°C.

Entretanto esse mesmo comportamento não é previsto na equação 1.1, e também não ocorreu nos experimentos com cilindros delgados realizados por Figueiredo e Volce (2014). Os dados obtidos através da equação 1.1 apresentam um comportamento sempre decrescente do tempo de homogeneização, conforme aumentamos a temperatura.

Os dados obtidos no presente trabalho não são suficientes para determinar com precisão as causas desse comportamento e porque na formulação matemática e nos experimentos desenvolvidos por Figueiredo e Volce (2014) isso não ocorreu. Porém foi comprovado experimentalmente e numericamente que ele existe. Esse resultado mostra-se suficientemente importante para ser explorado, podendo ser assunto para pesquisas futuras.

4.2.1 Análise da variação dos gradiente de temperatura internos

Todos os gráficos posteriores nesta sessão, apresentam 2 linhas verticais. A preta refere-se ao tempo de homogeneização encontrado experimentalmente e a azul referente ao tempo estipulado computacionalmente.

Os gráficos 4.13, 4.14 e 4.15, obtidos através das simulações computacionais, descrevem a temperatura para dos pontos P1 e P2 em função do tempo para a amostra D40 nas três temperaturas medidas. A

partir dessas curvas, é demostrado no mesmo gráfico da diferença máxima de temperatura no interior da peça.

Gráfico 4.13 - Diferença de temperatura entre P1 e P2 no tempo para peça D40 a 650°C

Gráfico 4.14 - Diferença de temperatura entre P1 e P2 no tempo para peça D40 a 750°C

D40 850°C

Gráfico 4.15 - Diferença de temperatura entre P1 e P2 no tempo para peça D40 a 850°C

Observando os três gráficos acima percebe-se que para a mesma peça, quanto maior o temperatura, maior será o gradiente máximo encontrado. A análise também mostra que em todos os casos existe um alto gradiente máximo nos primeiros minutos do processo, seguido por uma queda brusca nessa diferença.

Analisando as linhas verticais referentes ao tempo real de homogeneização percebe-se que próximo da homogeneização o gradiente se torna-se pouco relevante.

É interessante ressaltar que após isso percebeu-se que não há necessidade de fazer medições experimentalmente em vários pontos da peça, pois quanto mais nos aproximamos do tempo de homogeneização menor as diferenças de temperatura no seu interior. Assim sendo, qualquer ponto da peça terá uma temperatura próxima a do seu centro térmico. Se medíssemos um ponto na superfície da peça, seu tempo de homogeneização seria muito próximo a do seu centro térmico.

Os gráficas 4.16, 4.17 e 4.18 são análogos aos gráficos 4.13, 4.14 e 4.15, porém agora analisando a amostra D70.

Gráfico 4.16 - Diferença de temperatura entre P1 e P2 no tempo para peça D70 a 650 °C

Gráfico 4.17 - Diferença de temperatura entre P1 e P2 no tempo para peça D70 a 750 $^\circ \text{C}$

Gráfico 4.18 - Diferença de temperatura entre P1 e P2 no tempo para peça D70 a 850°C

Analisando os três gráficos anteriores, é visto um comportamento similar aos gráficos referentes à amostra D40. O que se nota, comparando os gráficos 4.13 e 4.14, é que aumentando o comprimento característico da peça, a diferença máxima de temperatura no interior da mesma aumenta. Entretanto as inclinação da queda do valor dos gradientes é igualmente íngreme, e como o tempo para a homogeneização também é maior, os valores dos gradientes próximos do final do processo tomam-se suficientemente pequenos.

Os gráficos 4.19, 4.20 e 4.21 abaixo demonstram o comportamento térmico para as amostras D100.

Gráfico 4.10 - Diferença de temperatura entre P1 e P2 no tempo para peça D70 a 650° C

Gráfico 4.11- Diferença de temperatura entre P1 e P2 no tempo para peça D70 a 750°C

Gráfico 4.12 - Diferença de temperatura entre P1 e P2 no tempo para peça D70 a 850°C

Observando-se os três últimos gráficos percebe-se as mesmas tendências vistas nos gráficos correspondentes às amostras D40 e D70.

Por fim os gráficos 4.22, 4.23 e 4.24 demonstram o comportamento para as torres.

Gráfico 4.22 - Diferença de temperatura entre P1 e P2 no tempo para a Torre a 650° C

Gráfico 4.23 - Diferença de temperatura entre P1 e P2 no tempo para a Torre a 750 $^{\circ}$ C

Gráfico 4.24 - Diferença de temperatura entre P1 e P2 no tempo para a Torre a 850° C

Observa-se que alterando a geometria da peça, os comportamentos descritos anteriormente se mantém.

Percebe-se analisando todos os gráficos anteriores que com o aumento do comprimento característico e da temperatura do forno, o gradiente máximo observado de temperatura aumenta, independente da geometria da peça. Da mesma forma aumentando o comprimento característico e a temperatura do forno, já concluímos anteriormente que isso também leva a um tempo maior de homogeneização da temperatura. E em todos os casos observados, apesar do aumento das diferenças máximas de temperatura, nos minutos finais do processo essas diferenças possuem valores baixos.

5 CONCLUSÕES

Após a realização dos experimentos e simulações do projeto foi possível obter as seguintes conclusões:

- Nas condições estudadas, corpos de prova com a superfície usinada demoram mais tempo para homogeneizar do que corpos com a superfície oxidada.
- Para o aço AISI 1045, o aumento do comprimento característico causou um aumento no tempo necessário para homogeneização da temperatura.
- Observou-se que, independente do comprimento característico, para as temperaturas do interior do forno de 650°C, 750° e 850°C os corpos homogeneízam mais rapidamente a 750°C, 850°C e 650°C respectivamente.
- No início do tratamento térmico os gradientes térmicos no interior da peça alcançam valores máximos, para então decair e alcançar valores praticamente insignificantes um bom tempo antes da homogeneização.
- Considerando que perto da homogeneização os gradientes de temperatura no interior da peça tornam-se muito pequenos tornou-se pouco interessante buscar o centro térmico das torres.
- As simulações realizadas no CFD não mostram ipsis litteris o que acontece no fenômeno, mas representam de forma satisfatória o comportamento térmico dos pontos em função do tempo.
- Comparando os resultados obtidos nos experimentos com os valores esperados de acordo com a fórmula desenvolvida por Amanda e Erick, foram encontrados desencontros significativos no tempo de homogeneização.
- É possível estimar a temperatura no interior do sólido apenas através de uma avaliação da temperatura na superfície.

6 SUGESTÕES PARA TRABALHOS FUTUROS

Este trabalho pode derivar-se em outros, tais como:

- Analisar com mais precisão a influência da área da peça em contato com o chão em processos de tratamento térmico.
- Fazer estudos similares com outras geometrias.
- Estudar como a geometria do forno influencia nos processos de transmissão de calor para as peças.
- Estudar o comportamento do tempo de homogeneização para vários temperaturas de forno.
- Estudar como a oxidação superficial da peça pode influenciar no tempo de homogeneização das mesma.
- Estudar mais profundamente como os gradientes de temperatura no interior da peça se comportam em relação a diversos parâmetros, tais quais: temperatura de aquecimento, geometria da peça.

REFERÊNCIAS

BEJAN, Adrian, **Transferência de Calor**, 1 ed. São Paulo: Edgar Blücher Ltda, 2004.

CALLISTER, William D.; RETHWISCH David G., Ciência e Engenharia de Materiais: uma introdução, 8 ed. Rio de Janeiro, LTC, 2012.

CHIAVERINI, Vicente, **Aços e Ferros Fundidos:** características gerais, tratamentos térmicos principais tipos, 7 ed. São Paulo, Associação Brasileira de Metalurgia, Materiais e Mineração, 2012.

FOX, Robert W.; PRITCHARD, Philip J.; MCDONALD, Alan T., **Introdução a Mecânica dos Fluídos**, 7 ed. Rio de Janeiro, LTC, 2010.

INCROPERA, Frank P.; *et al.*, **Fundamentos de Transferência de Calor e de massa**, 6 ed. Rio de Janeiro, LTC, 2012.

MORAN, Michael J.; SHAPIRO, Howard N., **Princípios da Termodinâmica para Engenharia**, 4 ed. Rio de Janeiro, LTC, 2002.

WHITE, Frank M., **Mecânica dos Fluídos**, 4 ed. Rio de Janeiro, McGraw-Hill, 2002.

WYLEN, Gordan V.; SONNTAG, Richard; BORGNAKKE, Claus, Fundamentos da Termodinâmica, 4 ed. São Paulo, McGraw- Hill, 1995.

ANEXO A – TABELA DE CONVERSÃO DA TENSÃO EM

TEMPERATURA PARA O TERMOPAR TIPO K

_	Temperatura em Graus Celsius (ITS-90)										
°C	0	1	2	3	4	5	6	7	8	9	10
					Tensão er	m Milivoits	[mV]				
0	0.000	0.039	0.079	0.119	0.158	0.198	0.238	0.277	0.317	0.357	0.397
10	0.397	0.43/	0.477	0.517	0.557	0.597	0.63/	0.677	0./18	0.758	0.798
20	0.798	0.838	0.879	0.919	0.960	1.000	1.041	1.081	1.122	1.163	1.203
30	1.203	1.244	1.285	1.326	1.366	1.407	1.448	1.489	1.530	1.5/1	1.612
40	1.012	1.653	1.094	1.735	1.770	1.617	1.606	1.694	1.7641	1.962	2.023
50	2 023	2.064	2,106	2.147	2.188	2,230	2 271	2.312	2.354	2 395	2 436
60	2.436	2.478	2.519	2,561	2.602	2.644	2.685	2,727	2,768	2.810	2.851
70	2.851	2.893	2.934	2.976	3.017	3.059	3.100	3.142	3.184	3.225	3.267
80	3.267	3.308	3.350	3.391	3.433	3.474	3.516	3.557	3.599	3.640	3.682
90	3.682	3,723	3,765	3.806	3.848	3.889	3.931	3.972	4.013	4.055	4.096
100	4 000	4 + 90	4 170	4 000	1000	1 202	1 944	4 995	4 407	1 100	4 500
110	4.090	4.130	4.178	4.220	4.202	4.303	4.750	4.300	4.427	4,400	4.509
120	4.000	4.000	5 002	5 043	5 084	5 124	5 165	5 206	5 247	5 288	5 328
130	5 328	5,369	5 410	5 450	5 491	5 532	5.572	5.613	5 653	5 694	5 735
140	5.735	5.775	5.815	5.856	5.896	5.937	5.977	6.017	6.058	6.098	6.138
150	6.138	6.179	6.219	6.259	6.299	6.339	6.380	6.420	6,460	6.500	6.540
160	6.540	6.580	6.620	6.660	6.701	6.741	6.781	6.821	6.861	6.901	6.941
170	6.941	6.981	7.021	7.060	7.100	7.140	7.180	7.220	7.260	7.300	7.340
180	7.340	7.380	7.420	7.460	7.500	7.540	7.579	7.619	0.059	7.699	7.739
190	1.139	1.119	7.819	1.869	1.899	1.939	1.919	8.019	8.009	8.099	8.138
200	8.139	8,178	8,218	8,258	8,298	8 338	8.378	8.418	8.458	8 4 9 9	8.539
210	8.539	8.579	8.619	8,659	8.699	8,739	8,779	8,819	8,860	8,900	8.940
220	8.940	8.980	9.020	9.061	9.101	9.141	9.181	9.222	9.252	9.302	9.343
230	9.343	9.383	9.423	9.464	9.504	9.545	9.585	9.626	9.666	9.707	9.747
240	9.747	9.788	9.828	9.869	9.909	9.950	9.991	10.031	10.072	10.113	10.153
250	10 152	10 104	10 225	10.278	10 216	10.257	10 202	10.420	10.490	10 520	10 581
250	10.561	10.602	10.643	10.684	10.310	10.765	10.807	10.9439	10.980	10.920	10.971
270	10.971	11 012	11.053	11.094	11 135	11 176	11 217	11 259	11 300	11 341	11.382
280	11 382	11 423	11 465	11.506	11 547	11 588	11 630	11 671	11 712	11 753	11 795
290	11.795	11.836	11.877	11.919	11.960	12.001	12.043	12.084	12.126	12.167	12 209
000	10.000	10.050	10.004	10.000	10.074	10.110	10 157	10 100	10.510	10 500	10.004
310	12.209	12.200	12 207	12.333	12.374	12,410	12,407	12.499	12.540	12.002	12.024
310	12.024	12.005	12.707	12.740	12.790	12.031	12.0/3	12.915	12.900	12.990	13.040
000	10 457	10 400	10 540	10 500	10.004	10 665	10 707	10 740	10 701	10 000	10 074
340	13.874	13.916	13.958	14.000	14.042	14.084	14.126	14.167	14.209	14.251	14.293
350	14.293	14.335	14.377	14,419	14.461	14.503	14.545	14.587	14.629	14.671	14.713
360	14./13	14./55	14.797	14.839	14.881	14.923	14.965	15.007	15.049	15.091	15.133
370	15.133	15,175	15.217	15.259	15.301	15.343	15.385	15.427	15.469	15.511	15.554
380	15.004	16.017	16.038	16.680	16 144	16,106	15.806	16 270	16 010	16.933	16.975
250	10.010	10.017	10.000	10.102	10.144	10.100	10.220	10.210	10.010	10.000	10.001
400	16.397	16.439	16.482	16.524	16.566	16.608	16.651	16.693	16.735	16.778	16.820
410	16.820	16.862	16.904	16.947	16.989	17.031	17.074	17.116	17.158	17.201	17.243
420	17.243	17.285	17.328	17.370	17.413	17.455	17.497	17.540	17.582	17.624	17.667
430	17.667	17.709	17.752	17.794	17.837	17.879	17.921	17.964	18.006	18.049	18.091
440	18.091	18.134	18.176	18.218	18.261	18.303	18.345	18.388	18.431	18.473	18.516
500	20 644	20 697	20 720	20 772	20.015	20.957	20,000	20.042	390.000	21 029	21 071
510	21.071	21 112	21 156	21 100	21 241	21 204	21.206	21.960	21 412	21.020	21.07
520	21.071	21.113	21.100	21.105	21 668	21.204	21.320	21.305	21,412	21.404	21.401
530	21.924	21 966	22 009	22.052	22 094	22 137	22 179	22 222	22 265	22 307	22 350
540	22,350	22.393	22.435	22.478	22.521	22.563	22.605	22.649	22,691	22.734	22.776
550	22.776	22.819	22.862	22.904	22.947	22.990	23.032	23.075	23.117	23.160	23.203
560	23.203	23.245	23.288	23.331	23.373	23.416	23,458	23.601	23.544	23.586	23.629
570	23.629	23.671	23.714	23.757	23.799	23.842	23.884	23.927	23.970	24.012	24.055
580	24.055	24.097	24.140	24.182	24.225	24.267	24.310	24.353	24.395	24.438	24.480
590	24,480	24.523	24.005	24.008	24.050	24.093	24.135	24.118	24.820	24.863	24.905
600	24.905	24.948	24.990	25.033	25.075	25.118	25,160	25.203	25.245	25.288	25.330
610	25.330	25.373	25.415	25.458	25.500	25.543	25.585	25.627	25.670	25.712	25.755
620	25.755	25.797	25.840	25.882	25.924	25.967	26.009	26.052	26.094	26.136	26.179
630	26.179	26.221	26.263	26.306	26.348	26.390	26.433	26.475	26.517	26.560	26.602
640	26,602	26.644	26,687	26,729	26 771	26.814	26.856	26,898	26.940	26,983	27.025

Continuação...

	Temperatura em Graus Celsius (ITS-90)										
°C	0	1	2	3	4	5	6	7	8	9	10
					Tensão en	n Milivolts	[mV]				
700	29 129	29 171	29 213	29 255	29 297	29 338	29 380	29 422	29 464	29,506	29 548
710	29 549	29 599	29 631	29.673	29715	29 757	29 798	29.840	29,882	29 924	29.965
720	20.065	30.007	30.049	30.090	30 132	30 174	30,216	30 257	30,200	30 341	30 382
730	30 382	30 424	30.466	30 507	30 549	30,590	30 632	30 674	30 715	30 757	30 798
740	30.798	30.840	30.881	30.923	30.964	31.006	31.047	31.089	31.130	31.172	31.213
750	01 010	01.055	01.000	01 000	01 070	01.401	01 100	01.504	01 545	01 506	01.000
750	31.213	31,255	31.296	31.338	31.379	31.421	31.462	31.504	31.545	31.586	31.628
760	31.628	31.669	31.710	31.752	31.793	31.834	31.876	31.917	31.958	32.000	32.041
770	32.041	32.082	32.124	32.165	32.206	32.247	32.289	32.330	32.371	32.412	32.453
780	32,453	32.495	32.536	32.577	32.618	32.659	32.700	32.742	32.783	32.824	32,865
790	32,865	32.906	32.947	32.988	33.029	33.070	33.111	33.152	33.193	33.234	33.275
800	33.275	33.316	33.357	33.398	33.439	33.480	33.521	33.562	33.603	33.644	33.685
810	33,685	33,726	33,767	33,808	33.848	33,889	33,930	33,971	34.012	34.053	34.093
820	34 093	34 134	34.175	34 216	34 257	34 297	34 338	34 379	34.420	34 460	34 501
830	34,501	34,542	34,582	34,623	34.664	34,704	34,745	34,786	34,826	34,867	34,908
840	34.908	34.948	34.989	35.029	35.070	35.110	35.151	35.192	35.232	35.273	35.313
050	05 040	05.054	05.004	05 405	05 475	05.540	05 550	05 500	05 007	05 077	05 740
850	35.313	35.354	35.394	35.435	35.475	35.516	35.555	35.595	35.637	35.677	35.718
860	35.718	35.758	35.798	35.839	35.879	35.920	35.960	36.000	36.041	36.081	36.121
870	36.121	36.162	36.202	36.242	36.282	35.323	35.363	36.403	36.443	36.484	36.524
880	36,524	36.564	36.604	36.644	36.685	36.725	36.765	36.805	36.845	36.885	36.925
890	36.925	36.965	37.006	37.046	37.086	37.126	37.166	37.206	37.246	37.286	37.326
900	37.326	37.366	37.406	37.446	37.486	37.526	37.566	37,606	37.646	37.686	37.725
910	37.725	37.765	37.805	37.845	37.885	37.925	37.965	38.005	38.044	38.084	38,124
920	38.124	38.164	38.204	38.243	38.283	38.323	38.363	38.402	38.442	38.482	38.522
930	38.522	38.561	38.601	38.641	38.680	38.720	38.760	38.799	38.839	38.878	38.918
940	38.918	38.958	38.997	39.037	39.076	39.116	39.155	39.195	39.235	39.274	39.314
950	39 314	30 353	30 303	30 432	39 471	39.511	39 550	39.590	39.629	30 660	30 708
080	30 708	30 747	30 797	30 826	30 966	30 005	30 044	30 084	40.023	40.062	40 101
070	40.101	40 141	40 190	40 210	40 250	40 208	40 337	40.376	40 415	40.455	40.404
000	40.101	40.522	40.100	40.611	40.258	40.280	40.337	40.310	40.907	40.455	40.994
990	40.885	40.933	40.963	41.002	41.042	41.081	41.120	41.159	41.198	41.237	41.276
	44 070							44 540	44 505	11.000	
1000	41.276	41.315	41.354	41,393	41.431	41.470	41.509	41.548	41.587	41.626	41.665
1010	41.665	41.704	41.743	41.781	41.820	41.859	41.898	41,937	41.976	42,014	42.053
1020	42.053	42.092	42.131	42.169	42.208	42.247	42.286	42.324	42.363	42.402	42.440
1030	42.440	42,479	42.518	42.556	42.595	42.633	42.672	42.711	42.749	42.788	42.826
1040	42.826	42.865	42.903	42.942	42.980	43.019	43.057	43.096	43.134	43.173	43.211
1050	43.211	43.250	43.288	43.327	43.365	43.403	43.442	43.480	43.518	43.557	43.595
1060	43.595	43.633	43,672	43.710	43.748	43.787	43.825	43.863	43.901	43,940	43.978
1070	43.978	44.016	44.054	44.092	44.130	44.169	44.207	44.245	44.283	44.321	44.359
1080	44.359	44.397	44,435	44.473	44.512	44.550	44.588	44.626	44.664	44.702	44.740
1090	44.740	44.778	44.816	44.853	44.891	44.929	44.967	45.005	45.043	45.081	45.119
1100	45 110	45 157	45 104	45 000	45 270	45 200	45 246	46 202	45 421	45 450	45 407
11100	45,119	45.157	45.184	15 010	45.270	45.305	45.340	45.363	45,421	45,459	45,497
1100	40.487	40.004	40.072	45.000	40.047	40.000	40.120	40.700	40.780	40.000	40.010
1120	45.8/3	45.911	45,948	45,986	40.024	40.001	40.099	40.130	40.174	40.211	40.249
1140	46.623	46,660	46.824	46.361	46.398	46,809	46.473	46,884	46.921	46,585	46.623
									10.25 8.5		
1150	46.995	47.033	47.070	47.107	47.144	47.181	47.218	47.256	47.293	47.330	47.367
1160	47.367	47.404	47.441	47.478	47.515	47.552	47.589	47.626	47.663	47.700	47.737
1170	47.737	47.774	47.811	47.848	47.884	47.921	47.958	47.995	48.032	48.069	48.105
1180	48.105	48,142	48.179	48.216	48.252	48.289	48.326	48.363	48.399	48.436	48.473
1190	48.473	48.509	48.546	48.582	48.619	48.656	48.692	48.729	48.765	48.802	48.838

Fonte: Adaptado da ASTM-E230 Tabela 14.

APÊNDICE A

CÁLCULO DAS CARACTERÍSTICAS GEOMÉTRICAS DAS AMOSTRAS

Para o cálculo dos comprimentos característicos Lcb e Lcs primeiramente dividimos a área lateral da peça em: área da base e área restante. Como é mostrado nas figuras A.1 e A.2 abaixo:

Fonte:Autoria Própria(2014)

A tabela A.1 abaixo mostra os valores geométricos calculados para cada amostra, sendo que Lcb é a divisão do volume da peça pela sua área considerando a base e Lcs a divisão do volume pela área sem considerar a sua base, conforme a equação 3.1. Na última coluna se encontra o percentual que a base representa da área total da amostra.

Código da amostra	Diâmetro (D1) [mm]	Altura (H) [mm]	Área da base [mm²]	Área restante [mm²]	Área total com a base [mm²]	Área total sem a base [mm²]	Volume total [mm³]	Lcb [mm]	Lcs [mm]	Percentual da área da base [%]
D40	40,00	30,00	1256,00	5024,00	6280,00	5024,00	37680,00	6,00	7,50	20,00
D70	70,00	30,00	3846,50	10440,50	14287,00	10440,50	115395,00	8,08	11,05	26,92
D100	100,00	30,00	7850,00	17270,00	25120,00	17270,00	235500,00	9,38	13,64	31,25
Torres	-	90,00	7850,00	27632,00	35482,00	27632,00	388575,00	10,95	14,06	22,12

APÊNDICE B

CÁLCULO DAS CARACTERÍSTICAS GEOMÉTRICAS DAS AMOSTRAS

VALORES DOS RESULTADOS EXPERIMENTAIS PARA OS CLINDROS D40, D70 e D100

	D40									
	m1	m2	m3	Média	Desvio padrão					
650°C	00:30:30	00:25:55	00:25:25	00:27:17	00:02:48					
750°C	00:18:48	00:19:42	00:19:01	00:19:10	00:00:28					
850°C	00:24:00	00:23:10	00:21:20	00:22:50	00:01:22					

	D70									
	m1	m2	m3	Média	Desvio padrão					
650°C	00:48:30	00:52:05	00:45:41	00:48:45	00:03:12					
750°C	00:34:32	00:34:13	00:34:00	00:34:15	00:00:16					
850°C	00:37:50	00:35:15	00:34:10	00:35:45	00:01:53					

	D100									
	m1	m2	m3	Média	Desvio padrão					
650°C	01:10:00	01:07:25	00:59:15	01:05:33	00:05:37					
750°C	00:48:45	00:46:25	00:44:25	00:46:32	00:02:10					
850°C	00:50:30	00:52:42	00:46:43	00:49:58	00:03:02					

VALORES DOS RESLTADOS EXPERIMENTAIS PARA A TORRE NOS PONTOS T1, T2 E T3

		TORRE T1									
	m1	m2	m3	Média	Desvio padrão						
650°C	01:55:46	02:01:26	01:58:06	01:58:26	00:02:51						
750°C	01:24:00	01:32:10	01:32:35	01:29:35	00:04:50						
850°C	-	-	-	-	-						

	TORRE T2						
	m1	m2	m3	Média	Desvio padrão		
650°C	01:51:01	01:53:31	01:53:01	01:52:31	00:01:19		
750°C	01:21:20	01:28:36	01:20:28	01:23:28	00:04:28		
850°C	01:35:20	01:42:28	01:43:36	01:40:28	00:04:29		

	TORRE T3						
	m1	m2	m3	Média	Desvio padrão		
650°C	02:01:01	02:07:31	02:06:31	02:05:01	00:03:30		
750°C	-	-	-	-	-		
850°C	-	-	-	-	-		

Gráfico A.1 – Propriedades Térmicas do Aço Carbono AISI 1045 Fonte: Adaptado da Tabela A1 do Apêndice A (INCROPERA et al., 2012)

APENDICE D – GRÁFICO GERADO NO TRABALHO DE VOLCE E FIGUEIREDO PARA O AÇO 1045

