UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ ENGENHARIA CIVIL CAMPUS APUCARANA

JOSÉ HENRIQUE NUNES GARCIA

ANÁLISE DO POTENCIAL DE COLAPSO DE UM SOLO ARGILOSO DO MUNICÍPIO DE APUCARANA – PR

APUCARANA 2019

JOSÉ HENRIQUE NUNES GARCIA

ANÁLISE DO POTENCIAL DE COLAPSO DE UM SOLO ARGILOSO DO MUNICÍPIO DE APUCARANA – PR

Monografia apresentada como parte dos requisitos necessários para aprovação no componente curricular Trabalho de Conclusão do Curso de Engenharia Civil da Universidade Tecnológica Federal do Paraná.

Orientador(a): Prof. Ms. Augusto Montor de Freitas Luiz

APUCARANA 2019

TERMO DE APROVAÇÃO

ANÁLISE DO POTENCIAL DE COLAPSO DE UM SOLO ARGILOSO DO MUNICÍPIO DE APUCARANA – PR

por

José Henrique Nunes Garcia

Este Trabalho de Conclusão de Curso foi apresentado aos 26 dias do mês de novembro do ano de 2019, às 10 horas e 20 minutos, como requisito parcial para a obtenção do título de Bacharel do Curso Superior em Engenharia Civil da UTFPR – Universidade Tecnológica Federal do Paraná. O candidato foi arguido pela banca examinadora composta pelos professores abaixo assinados. Após deliberação, a banca examinadora considerou o trabalho aprovado.

Augusto Montor de Freitas Luiz – ORIENTADOR

Andrea Sartori Jabur – EXAMINADORA

Mariana Alher Fernandes – EXAMINADORA

"A Folha de Aprovação assinada encontra-se na Coordenação do Curso".

À minha família e amigos, especialmente à minha mãe quem sempre me motiva a trabalhar pela ciência.

AGRADECIMENTOS

Gostaria de prestar meus sinceros agradecimentos elencando todas as pessoas com quem convivi durante os cinco anos de graduação, contudo não haveria espaço suficiente para tal. Por isso, mesmo para aquelas que não aparecem aqui, deixo um sincero muito obrigado e digo que guardarei todos em minha memória.

Agradeço ao meu orientador, Augusto, que nunca mediu esforços para me auxiliar em todos os momentos neste trabalho, não apenas no contexto acadêmico, mas também no convívio pessoal com seus sábios conselhos e produtivas conversas.

A minha família, que sempre me incentivou, de maneira especial a minha mãe, Dr^a Silvia Nunes, exemplo de mulher e mãe, pesquisadora, motivadora e batalhadora. Também ao meu pai José Sergio por todos os incentivos. Ao meu irmão Alexandre, fonte de inspiração para a vida e enorme companheirismo e amizade fraterna.

Agradeço a minha namorada Letícia, que sempre esteve ao meu lado em todos os momentos, me apoiando, motivando e dando forças nas situações difíceis e partilhando dos bons momentos, o que foi fundamental para que chegasse até aqui.

A UTFPR de Apucarana, desde os porteiros que me atenderam inclusive em finais de semana, até aos servidores e docentes que contribuíram com seus preciosos ensinamentos e a Prof^a Andrea, em especial, por estar sempre presente nas singelas confraternizações com os amigos da turma.

Não poderia faltar o agradecimento aos meus amigos e colegas de curso e de convívio social, em especial ao Robert, Lucas Zanotta, Beatriz, José Marcos, Leonardo, João Victor, Soraia, João Fernando e Iago. Levarei esta amizade comigo onde estiver.

A DR Engenharia que me concedeu meu primeiro estágio, inclusive ao engenheiro João Maronese que me orientou no dia-a-dia e, também ao amigo Bruno Custódio pela indicação para esta atividade.

A Politécnica Engenharia, também pela concessão de um estágio, e mais do que isso, que enriqueceu grandemente com ensinamentos, sendo uma segunda escola de engenharia.

Agradeço as empresas Paraná Fundações, RO Engenharia e as demais que forneceram informações e disponibilizaram seus tempo e espaço para contribuir com este trabalho.

Em cada tarefa peculiar, o pesquisador com espírito *inquiritivo* depara, por isso, constantemente com novos problemas, para chegar a ver o seu trabalho laureado quando, em sua busca, alcança êxito e encontra respostas.

Reinhard Maack

RESUMO

GARCIA, José H. N. **Análise do potencial de colapso de um solo argiloso do município de Apucarana – PR.** 2019. 100p. Trabalho de Conclusão de Curso Bacharelado em Engenharia Civil - Universidade Tecnológica Federal do Paraná. Apucarana, 2019.

A concepção de um mapa mental acerca dos solos da região de Apucarana-PR ainda é deficitária em função da carência de pesquisas neste sentido. Das inúmeras características inerentes aos solos, chama a atenção um fenômeno de possível ocorrência na região de estudo: a colapsibilidade da estrutura dos solos, uma vez que se tem conhecimento da alta porosidade do tipo de solo presente nesta região. Assim, este trabalho tem por objetivo apresentar, em uma etapa inicial, uma caracterização básica de algumas amostras de solos apucaranenses. E também uma análise de uma amostra indeformada de um solo específico, para verificação do potencial de colapsibilidade, com estágios de carga de inundação incrementais, em ensaio edométrico simples, subsidiando, posteriormente, estudos acerca do comportamento mecânico dos mesmos. Para tanto, foram coletadas amostras deformadas e uma indeformada, em diferentes pontos do município e realizados ensaios, conforme as normas brasileiras e internacional, para determinação dos Índices Físicos e limites de consistência e, na sequência, verificado o potencial de colapsibilidade das mesmas mediante a aplicação de critérios baseados em Índices Físicos e de laboratório. Os resultados obtidos confirmam a existência de solos argilosos altamente porosos e com certa plasticidade na região de Apucarana. Os estudos de colapsibilidade, mediante a aplicação de critérios teóricos, apontam resultados insuficientes para comprovação da existência de material colapsível em três pontos estudados. Em um estudo mais aprofundado, a partir de ensaios edométricos simples com inundação, os resultados mostraram que um Nitossolo vermelho apresentou comportamento colapsível de gravidade moderada a uma tensão de inundação de 207,10 kPa. Conforme o aumento das tensões de inundação, o potencial de colapso apresentou um crescimento até atingir um valor máximo e, após o pico, uma diminuição que tende a estabilização.

Palavras-chave: Solos colapsíveis. Potencial de colapso. Ensaios edométricos simples.

ABSTRACT

GARCIA, José H. N. **Analysis of the collapse potential of a clay soil from Apucarana - PR.** 2019. 100p. Trabalho de Conclusão de Curso Bacharelado em Engenharia Civil - Federal Technology University - Parana. Apucarana, 2019.

The conception of a mental map about the soils of the Apucarana-PR region is still deficient due to the lack of research in this regard. The innumerable characteristics inherent to soils, a phenomenon of possible occurrence in the study region is noteworthy: the collapsibility of the soil structure, since it is known of the high porosity of the soil type present in this region. Thus, this work aims to present, at an early stage, a basic characterization of some samples of soils from Apucarana and an analysis of an undisturbed example of a specific soil, to verify the collapsibility potential, with incremental soaking stages, in simple edometric test, supporting studies about their mechanical behavior. For this purpose, deformed and one undeformed sample were collected in different parts of the city and tests were performed, according to Brazilian and international standards, to determine the physical indexes and consistency limits and their collapsibility potential was verified by application of criteria based on physical and laboratory indexes. The results confirm the existence of highly porous clay soils with some plasticity in the Apucarana region. Collapsibility studies, through the application of theoretical criteria, show insufficient results to prove the existence of collapsible material in three studied points. In a more in-depth study from simple flood edometric tests, the results showed that a red Nitosol exhibited collapsible behavior of moderate gravity at a soaking stress of 207.10 kPa. As soakings stress increased, the collapse potential presented a growth to a peak and after, decreased to stabilize.

Keywords: Collapsible soils. Collapse potential. Simple edometric tests.

LISTA DE FIGURAS

Figura 2.1 - Localização do município de Apucarana – PR	15
Figura 2.2 - Relação do clima com tipo e eficácia de agentes intempéries	17
Figura 2.3 - As Fases do Solo	21
Figura 2.4 – Limites de Consistência	23
Figura 2.5 – Determinação da Tensão de Pré-adensamento pelo método de Pacheco Silva2	25
Figura 2.6 – Carta de Plasticidade	26
Figura 2.7 – Sistema de Classificação SUCS	27
Figura 2.8 – Sistema de Classificação AASHTO	28
Figura 2.9 - Mapa pedológico de Apucarana	30
Figura 2.10 – Estrutura do Silte/Argila antes e após o colapso	33
Figura 2.11 – Curva <i>e versus</i> $log \sigma v$ do ensaio edométrico simples	34
Figura 2.12 – Coeficiente de Colapso versus Tensão de Inundação (Latossolo Vermelho)3	36
Figura 2.13 - Coeficiente de Colapso versus Tensão de Inundação (Nitossolo Vermelho)3	36
Figura 2.14 – Comportamento das deformações de colapso e expansão em solos inundados.3	37
Figura 2.15 – Critério de GIBBS & BARA para identificação da colapsibilidade de solos4	40
Figura 2.16 – Curva <i>log σ versus e</i> proposta por Denisov (1951) ²	41
Figura 3.1 – Síntese da metodologia utilizada ²	15
Figura 3.2 – Pontos de coleta de amostras para caracterização ²	17
Figura 3.3 – Coleta de amostra no Ponto B ²	17
Figura 3.4 - Coleta de bloco de amostra indeformada – Ponto D	18
Figura 4.1 - Curva granulométrica	54
Figura 4.2 – Classificação do solo (SUCS) na Carta de Plasticidade	55
Figura 4.3 - Curva de compressão edométrica - EDS-N	57
Figura 4.4 - Tensão de pré-adensamento: Método Pacheco Silva	58
Figura 4.5 - Curva de compressão edométrica - EDS-I a 43,60 kPa	59
Figura 4.6 - Curva de compressão edométrica - EDS-I a 98,10 kPa	50
Figura 4.7 - Curva de compressão edométrica - EDS-I a 207,10 kPa	51
Figura 4.8 - Curva de compressão edométrica - EDS-I a 425,10 kPa	52
Figura 4.9 - Comparação normalizada das curvas de compressão edométricas	53
Figura 4.10 - Curva de Potencial de Colapso <i>versus</i> Tensão de Inundação	56

LISTA DE TABELAS

Tabela 2.1 - Intervalos de tamanho dos grãos para as frações	19
Tabela 2.2 - Valores de Limites de Atterberg para alguns solos do Brasil	23
Tabela 2.3 – Terminologia utilizada pelo método SUCS	26
Tabela 2.4 – Potencial de colapso segundo Jennings & Knight	42
Tabela 2.5 – Potencial de Colapso segundo Lutenegger & Saber (1988)	43
Tabela 3.1 - Características dos pontos de amostragem	46
Tabela 3.2 – Ensaios de Caracterização	48
Tabela 3.3 - Ensaio edométrico simples natural (EDS-N)	50
Tabela 3.4 – Ensaios edométricos simples inundados (EDS-I)	50
Tabela 4.1 – Índices Físicos das amostras Deformadas	52
Tabela 4.2 – Índices Físicos da amostra Indeformada	53
Tabela 4.3 - Resultado de análise granulométrica conjunta	54
Tabela 4.4 - Dados dos corpos de prova ensaiados	56
Tabela 4.5 - Resultados do EDS-N	56
Tabela 4.6 - Resultados do EDS - I para inundação a 43,60 kPa	58
Tabela 4.7 - Resultados do EDS - I para inundação a 98,10 kPa	59
Tabela 4.8 - Resultados do EDS - I para inundação a 207,10 kPa	60
Tabela 4.9 - Resultados do EDS - I para inundação a 425,10 kPa	61
Tabela 4.10 - Resultados por critérios teóricos – Amostras deformadas	64
Tabela 4.11 – Resultados por critérios teóricos – Amostra indeformada	65
Tabela 4.12 - Resultados por critérios baseados em ensaios edométricos simples	65
Tabela 4.13 - Valores de colapso conforme tensão de inundação	66

SUMÁRIO

1	INTRODUÇÃO	12
1.1	JUSTIFICATIVA	13
1.2	OBJETIVOS	14
1.2.1	Objetivo geral	14
1.2.2	Objetivos específicos	14
2	REVISÃO BIBLIOGRÁFICA	15
2.1	CARACTERIZAÇÃO DA REGIÃO DE ESTUDO	15
2.2	PROPRIEDADES DOS SOLOS	16
2.2.1	Propriedades Pedológicas	16
2.2.2	Propriedades Geotécnicas	19
2.2.2.1	Granulometria	19
2.2.2.2	Índices Físicos	21
2.2.2.3	Estados e Limites de Consistência	22
2.2.2.4	Resistência ao Cisalhamento	23
2.2.2.5	Compressibilidade e Adensamento	24
2.3	SISTEMAS DE CLASSIFICAÇÃO DOS SOLOS	25
2.3.1	Sistema de Classificação SUCS	25
2.3.2	Sistema de Classificação AASHTO	27
2.4	OS SOLOS DE APUCARANA	29
2.5	COLAPSIBILIDADE EM SOLOS	31
2.5.1	Mecanismos de colapso	32
2.5.2	Identificação de Solos Colapsíveis	33
2.5.2.1	Ensaios de Identificação de Solos Colapsíveis	33
2.5.2.1.1	Ensaio edométrico simples	34
2.5.3	Comportamento do Potencial de Colapso com a Tensão de Inundação	35
2.5.4	Critérios de Identificação dos Solos Colapsíveis	37
2.5.4.1	Critérios Baseados em Índices Físicos do Solo	37
2.5.4.1.1	Critério de DENISOV	38
2.5.4.1.2	Código de Construção da União Soviética	38
2.5.4.1.3	Critério de Feda	38
2.5.4.1.4	Código de Obras da URSS	39
2.5.4.1.5	Critério de GIBBS & BARA	39
2.5.4.2	Critérios Baseados em Ensaios de Laboratório	40
2.5.4.2.1	Critérios com base em Ensaios Edométricos Simples	41

3	MATERIAIS E MÉTODOS	44
3.1	MATERIAIS	44
3.2	METODOLOGIA	45
3.2.1	Área de estudo e coleta de amostras	46
3.2.2	Ensaios	
3.2.2.1	Ensaios de Caracterização	48
3.2.2.2	Ensaio Edométrico Simples	48
3.3	ANÁLISE DOS DADOS	51
4	RESULTADOS E DISCUSSÃO	
4.1	CARACTERIZAÇÃO	52
4.1.1	Índices Físicos	
4.1.1.1	Análise primária: Amostras deformadas	52
4.1.1.2	Análise secundária: Bloco de amostra indeformada	53
4.1.2	Análise Granulométrica	53
4.2	CLASSIFICAÇÃO	55
4.3	ENSAIOS EDOMÉTRICOS SIMPLES	56
4.3.1	Ensaio Edométrico Simples Natural (EDS-N)	
4.3.1.1	Tensão de Pré-adensamento	57
4.3.2	Ensaios Edométricos Simples Inundados (EDS-I)	
4.3.2.1	Comparação das curvas de compressão edométricas normalizadas	62
4.4	CRITÉRIOS DE IDENTIFICAÇÃO DE SOLOS COLAPSÍVEIS	63
4.4.1	Critérios Teóricos Baseados em Índices Físicos	63
4.4.1.1	Análise primária: Amostras Deformadas	64
4.4.1.2	Análise secundária: Bloco de amostra indeformada	65
4.4.2	Critérios baseados em ensaios edométricos simples	65
4.5	POTENCIAL DE COLAPSO	66
5	CONCLUSÕES	68
REFERÍ	ÊNCIAS	70
APÊNDI	ICE A: ENSAIO EDOMÉTRICO SIMPLES NATURAL (EDS-N)	74
APÊNDI	ICE B: ENSAIO EDOMÉTRICO SIMPLES INUNDADO (EDS-I) 1	82
APÊNDI	ICE C: ENSAIO EDOMÉTRICO SIMPLES INUNDADO (EDS-I) 2	85
APÊNDI	ICE D: ENSAIO EDOMÉTRICO SIMPLES INUNDADO (EDS-I) 3	89
APÊNDI	ICE E: ENSAIO EDOMÉTRICO SIMPLES INUNDADO (EDS-I) 4	94

1 INTRODUÇÃO

O estudo dos solos, desde sua classificação, previsões, análises de comportamento e correlações, até as suas diversas aplicações, é uma tarefa prioritária para qualquer projeto de Engenharia Civil. De acordo com a Sociedade Internacional de Mecânica dos Solos e Engenharia Geotécnica (ISSMGE, 2019) tudo o que não é suportado por solo ou rocha flutua, voa ou cai. Desse modo, o engenheiro geotécnico é o responsável por toda infraestrutura que suporta as mais variadas construções civis existentes, fazendo-se necessário conhecer o solo do local onde se pretende projetar uma obra.

Segundo Pinto (2006), a classificação dos solos, sob o ponto de vista de engenharia, tem por objetivo poder estimar o provável comportamento do solo e, minimamente, orientar o programa de investigação necessário para permitir uma análise de um problema. Nesse contexto, são realizados diversos estudos que iniciam na etapa da exploração do material em campo, seguido por coleta de amostras para ensaios em laboratório. Tais ensaios possibilitam analisar o solo, de acordo com o tamanho das partículas que o constituem, suas tensões de resistência sujeitas a carregamentos, as principais características estruturantes, ou seja, propriedades que permitem caracterizar a amostra e classificá-la de acordo com métodos clássicos da Mecânica dos Solos.

Das inúmeras características inerentes aos solos, chama a atenção um fenômeno que ocorre em solos tropicais, inclusive na região Centro-Norte do Paraná: a colapsibilidade da estrutura dos solos. Este fenômeno, segundo Lollo (2008), atribui-se aos solos que experimentam reduções de volumes repentinas quando ocorre aumento de quantidade de água em seus vazios, submetidos ou não a uma aplicação de sobrecarga. Estes solos são designados como solos colapsíveis.

Uma obra assentada neste tipo de solo pode apresentar uma série de patologias como recalque em estruturas de fundações, trinca em alvenarias, empenamento de esquadrias, grandes fissuras em elementos estruturais e até mesmo levar à ruína estruturas antigas, comprometendo a segurança de quem a utiliza (SEGANTINI, 2008).

O local em que este trabalho objetiva abordar um estudo específico de caracterização de solo, voltado à engenharia geotécnica, pertence ao município de Apucarana, no estado do Paraná, Brasil. De acordo com Manosso (2005), a cidade foi colonizada a partir das décadas de 1930 e 1940, por intermédio da Companhia de Terras Norte do Paraná e por imigrantes que buscavam trabalho na área agrícola cafeeira. Ainda, segundo Manosso (2005), a economia do

município possui como base, além da indústria têxtil, a agricultura mecanizada. Tal realidade reflete a natural e abundante existência de classificações dos solos da região, realizadas pela Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA, 2018), que utiliza o sistema nacional e internacionalmente conhecido como Sistema Brasileiro de Classificação de Solos (SiBCS).

Conforme Beraldo (2018), em 2014 houve grandes alterações no Plano Diretor do município que favoreceram fortemente o setor construtivo, sendo iniciado, no ano seguinte, o processo de verticalização das edificações em diversas regiões da cidade, antes limitadas a 3 pavimentos. Tal avanço teve pouco – ou nenhum – estudo acadêmico de caracterização detalhado dos solos. Atualmente, são realizados os Ensaios de Sondagem a Percussão (SPT), por empresas privadas do setor da construção civil. Esta realidade evidencia a importância de se estudar mais detalhadamente, sob a ótica da geotecnia, o solo da região em questão, que carece deste tipo de pesquisa, agregando ainda mais parâmetros aos trabalhos existentes.

No contexto da colapsibilidade, estudos realizados por Miguel e Belincanta (2004) e Gutierrez (2005) indicam que os solos tropicais da região Norte do estado do Paraná, especificamente nas cidades de Londrina e Maringá, apresentaram comportamento colapsível. Este fato instiga a investigação do comportamento semelhante no local aqui abordado.

1.1 JUSTIFICATIVA

A ausência de dados geotécnicos específicos para a área de Engenharia Civil, ou até mesmo pela não publicidade deles, justifica a necessidade de estudos que corroborem neste sentido. A caracterização genérica dos solos do município de Apucarana fornece a população municipal, especialmente aos profissionais de Engenharia Civil, informações importantes a respeito do subsolo em uso ou de possível obra de edificação a ser executada. Além disso, a avaliação do potencial de colapso permite alertar aos usuários, caso exista, a possibilidade de recalques no solo e, consequentemente, nas fundações.

A importância de avaliar o comportamento do colapso do solo no local proposto devese aos estudos realizados por Lopes (1987, apud AGNELLI, 1997 p. 10) em Terra Roxa – PR, Miguel e Belincanta (2004) em Londrina – PR, e também por Gutierrez (2005) em Maringá – PR, que comprovam a existência de solos colapsíveis nestes locais. Segundo Segantini (2008), o colapso no solo é capaz de provocar desde fissuras em alvenaria, trincas em elementos estruturais e até mesmo a ruína de uma construção antiga, sem projetos de fundações adequados. Gonçalves (2006) afirma que a colapsibilidade está associada a dois fatores externos ao solo: umedecimento e carga limite crítica de colapso. A condição favorável ao colapso ocorre numa combinação destes dois fatores. A ocorrência, na natureza, é de forma súbita. Estão sujeitos solos que suportam ou não edificações, ou seja, solos submetidos a carregamentos variados. Sendo assim, torna-se relevante conhecer o grau de colapso para diversos estágios de cargas no qual o solo é inundado.

1.2 OBJETIVOS

1.2.1 Objetivo geral

Este estudo tem como objetivo realizar um levantamento geotécnico básico, levando em consideração características e comportamentos mecânicos de solos argilosos, presentes no município de Apucarana-PR e uma análise, em uma amostra indeformada de um solo específico, para verificação do potencial de colapsibilidade em variados estágios de carga de inundação¹ em ensaio edométrico simples.

1.2.2 Objetivos específicos

Para se atingir o objetivo geral, deverão ser cumpridas as seguintes etapas:

- Coleta de amostras deformadas e indeformada de solo;
- Caracterização física e mecânica das amostras coletada;
- Classificação do solo pelos métodos clássicos da Mecânica dos Solos;
- Análise do comportamento mecânico da amostra de solo indeformado, para identificação do potencial de colapsibilidade em diferentes cargas de inundação.

¹ Diversos autores da área geotécnica, a exemplo de FEDA (1966), AGNELLI (1997), CINTRA (1998), GUTIERREZ (2005), VILAR (2015) e outros, utilizam o termo "inundação" como analogia ao umedecimento do solo. A palavra – utilizada como uma hipérbole – caracteriza um ganho de umidade crítico para o solo.

2 REVISÃO BIBLIOGRÁFICA

2.1 CARACTERIZAÇÃO DA REGIÃO DE ESTUDO

A cidade de Apucarana, fundada em 28 de janeiro de 1944, localiza-se na região norte central do estado do Paraná, região Sul do Brasil, conforme a Figura 2.1. A população estimada em 2019, de acordo com o Instituto Brasileiro de Geografia e Estatística (IBGE), era de 134.996 habitantes (BRASIL, 2019).

Figura 2.1 - Localização do município de Apucarana - PR

Fonte: Autor (2019), adaptado de BRASIL (2017)

O Mapa de Clima do Brasil (BRASIL, 2002) estabelece que o clima da região é o subtropical super-úmido mesotérmico brando (Cfa), sem estação seca definida e verões quentes. A temperatura média anual é de 20,6 °C e a pluviosidade anual é de 1637mm, segundo o Instituto Agronômico do Paraná (IAPAR) (PARANÁ, 2002).

Morfologicamente, de acordo com Manosso (2005), o município está situado no Terceiro Planalto Paranaense, sobre um tríplice divisor de águas dos rios Ivaí, Pirapó e Tibagi com altitude média de cota 800m acima do nível do mar. Ainda, segundo Manosso, localiza-se sobre uma área de ocorrências de sucessivos derramamentos vulcânicos do período Juro-Cretáceo, onde predominam rochas basálticas e andesi-basálticas.

As camadas de derramamentos vulcânicos alcançam uma espessura média de 450m a 600m. O terceiro planalto compõe a escarpa da Bacia do Paraná e está assentada na Formação Serra Geral, do Grupo São Bento (MAACK, 1947).

2.2 PROPRIEDADES DOS SOLOS

O ser humano depende dos materiais disponíveis na Terra para sobreviver, e um dos mais abundantes disponíveis na superfície é o solo, tendo como finalidades principais a agricultura e a construção. Esta última possui uma grande variedade de aplicações como material base de construção de edifícios, aterros e barragens, além de compor qualquer sistema de infraestrutura de obras civis. A seguir, serão apresentadas as propriedades pedológicas gerais e os parâmetros geotécnicos dos solos.

2.2.1 Propriedades Pedológicas

Sob o ponto de vista pedológico, de acordo com Toledo, Oliveira e Melfi (2003), o solo é um produto oriundo de transformações ocorridas na crosta terrestre a partir da interação com a atmosfera, hidrosfera e biosfera, ou seja, o intemperismo. Definido como conjunto de modificações de ordem física e química ocasionadas, respectivamente, por desagregação e decomposição das rochas afloradas na superfície da Terra. Além disso, o produto formado pelo intemperismo está sujeito a outros processos transformadores durante o ciclo do supérgeno, como erosão, sedimentação e transporte. Isto explica o fato dos solos não apenas representarem unicamente as características da rocha matriz, mas também aspectos de evolução ao longo do tempo.

Os fatores que controlam a ação do intemperismo, ainda segundo Toledo, Oliveira e Melfi (2003), são o clima, o relevo, a fauna e a flora. O primeiro se manifesta na variação sazonal da temperatura e precipitações pluviométricas; o segundo interfere na infiltração e drenagem das águas pluviais; já o conjunto fauna e flora contribuem com a matéria orgânica que provoca as reações químicas. O tempo de exposição da rocha aos agentes intempéricos influi fortemente no grau de alteração da rocha matriz e o tipo de solo produzido. Para contextualizar o local de estudo com os processos de formação dos solos, faz-se necessária uma associação do clima local com o tipo de intemperismo que ocorre, já que o primeiro, conforme Toledo, Oliveira e Melfi (2003), influencia diretamente no segundo. Com base na indicação em amarelo na Figura 2.2 e de acordo com os dados climáticos, verifica-se que o tipo de intemperismo predominante na região de Apucarana, atualmente, é o químico forte.

Figura 2.2 - Relação do clima com tipo e eficácia de agentes intempéries.

A água da chuva que infiltra e percola nas rochas é a principal agente químico de intemperismo. Da interação do O₂ presente na água com o CO₂ atmosférico resulta um produto ácido, diminuindo o pH do ambiente que, juntamente com a degradação incompleta da matéria orgânica, aumenta o poder de ataque nos minerais das rochas. Define-se por fase solúvel os constituintes transportados pelas águas que drenam o perfil de alteração (ou perfil de solo). O material restante no perfil de alteração é chamado de fase residual, pois resistiu ao processo de modificação originando o saprólito (camada inferior do perfil) e o solum (superior). Diversas são as reações químicas que ocorrem com os minerais no substrato rochoso como a hidratação, hidrólise, dissolução e oxidação. O conjunto ambiental de relevo, composição das rochas, temperatura e organismos vivos atuantes ao longo do tempo é responsável pela variabilidade pedogenética dos solos, que tendem a se diferenciar das características da rocha matriz à medida que se distanciam dela (TOLEDO, OLIVEIRA E MELFI, 2003).

Conforme Lodi (2008), a pedogênese classifica os solos de acordo com sua origem genética, sendo os principais tipos e mais comuns os solos residuais; transportados; orgânicos;

e de evolução pedogenética. Os solos residuais são os que permanecem no local de decomposição da rocha, subdivididos em horizontes de I a IV; os solos transportados são aqueles formados por algum agente de transporte que os levaram ao seu local, sendo subdivididos conforme os agentes: gravidade (coluvionares), água (aluvionares), vento (eólicos) e geleiras (glaciais); os solos orgânicos são formados a partir de mistura de restos de organismos com sedimento, apresentando cor escura (presença de húmus); finalmente, os solos de evolução pedogenética são aqueles formados a partir de processos intempéricos de laterização.

A presença de rochas basálticas de composição máfica – minerais ferromagnesianos – sujeitas aos processos pedogenéticos em climas tropicais propiciam a laterização, fenômeno que origina as lateritas. Conforme Toledo, Oliveira e Melfi (2003) as lateritas são formações superficiais constituídas por oxi-hidróxidos de alumínio e ferro oriundos dessas rochas. Solos formados a partir deste fenômeno, com alto grau de alteração, são denominados Latossolos, que geralmente possuem coloração avermelhadas, castanhas ou alaranjadas. O Nitossolo assemelha-se ao Latossolo em sua gênese, porém foi menos alterado por agentes exógenos; antigamente era designado como terra roxa estruturada, devido a sua coloração bem avermelhada. Já os Neossolos apresentam maior resistência aos processos intempéricos, preservando as características da rocha que lhe deu origem.

A camada denominada "solo superficial" tem pouco interesse técnico na engenharia, por possuir uma pequena espessura e baixa resistência. Em contrapartida, solos porosos formados a partir de uma evolução pedogenética, denominados solos lateríticos, possuem grande importância técnica, podendo sua espessura superar 10m. Sua fração de argila constituise basicamente de minerais cauliníticos com alta concentração de óxidos e hidróxidos de ferro e alumínio, o que resulta numa coloração avermelhada (LODI, 2008).

Lodi (2008) ainda destaca que a lixiviação é responsável pela formação de solos altamente porosos e de baixa massa específica. Os solos residuais são originados por este processo. A água da chuva age nas camadas superficiais lixiviando as partículas finas de óxidos de ferro para as camadas subjacentes, tornando estas camadas porosas e as inferiores mais duras.

Recentemente, estudos que associam classificações pedológicas com comportamentos dos solos vêm ganhando campo dentro da Engenharia Civil. Luiz e Gutierrez (2015), mostram que a variação do índice N do ensaio SPT (*Standard Penetration Test*) ocorre de forma distinta em Latossolos Vermelhos e em Nitossoslos Vermelhos da cidade de Maringá-PR. Nos

Latossolos, o crescimento deste índice ocorre de forma mais lenta quanto comparado aos Nitossolos que, por sua vez, apresentam valores mais acentuados em profundidades mais rasas.

2.2.2 Propriedades Geotécnicas

No contexto geotécnico, conforme Lodi (2008), o solo pode ser definido como: "material resultante da desagregação das rochas apresentando um índice de vazios maior que a rocha que o originou". Das (2014) afirma que a Mecânica dos Solos Clássica considera o solo como um sistema trifásico, sendo as fases que o compõe: sólida, líquida e gasosa. A fase sólida, que pode variar de forma e tamanho, normalmente caracteriza o solo. As demais são aquelas que preenchem os poros da estrutura.

2.2.2.1 Granulometria

Para Pinto (2006), a primeira característica que diferencia os solos é o tamanho das suas partículas, existindo uma grande diversidade de tamanho dos grãos. Geralmente, no solo, ocorrem partículas de tamanhos diversos, e estas não são facilmente identificáveis com um simples manuseio do solo. A Norma Brasileira, da Associação Brasileira de Normas Técnicas (ABNT), NBR 6502: Rochas e solos (ABNT, 1995) define um intervalo de tamanhos para cada fração de solo, o qual está apresentado na Tabela 2.1.

Fração	Intervalo (ABNT NBR 6502/1995)
Argila	Menor que 0,002 mm
Silte	0,002 mm a 0,06 mm
Areia fina	0,06 mm a 0,2 mm
Areia média	0,2 mm a 0,6 mm
Areia grossa	0,6 mm a 2,0 mm
Pedregulho	2,0 mm a 60,0 mm
Pedra	60,0 mm a 200,0 mm
Matacão	200,0 mm a 1000,0 mm

 Tabela 2.1 - Intervalos de tamanho dos grãos para as frações

Fonte: NBR 6502 (ABNT, 1995)

O ensaio de granulometria é realizado conforme a NBR 7181: Solo – Análise granulométrica (ABNT, 2016), sendo realizado em duas fases: peneiramento e sedimentação. O objetivo do ensaio é obter uma curva granulométrica, em escala semilog de diâmetro *versus* porcentagens a cada classe de tamanho presente, que descreva a distribuição das dimensões dos grãos no solo (PINTO, 2006).

Após obtenção da curva granulométrica é possível determinar quão graduado o solo é. De acordo com Pinto (2006), solos com distribuição contínua de tamanho das partículas são denominados "bem graduados", enquanto solos com partículas de tamanhos semelhantes, ou com ausência de uma faixa de tamanho de grãos são chamados de "mal graduados".

Segundo Hazen (1892 apud TERZAGHI; PECK, 1996), os solos granulares expressam características de tamanhos em função de um coeficiente de não uniformidade (CNU). Para a curva granulométrica é utilizado o coeficiente de curvatura (CC), dados por:

$$CNU = \frac{D_{60}}{D_{10}}$$
(2.1)

$$CC = \frac{D_{30}^2}{D_{10} \cdot D_{60}} \tag{2.2}$$

Onde D_{10} , $D_{30 e}D_{60}$ representam o diâmetro efetivo, ou seja, a abertura da peneira na qual se tem a porcentagem equivalente a 10%, 30% e 60% das partículas passando, respectivamente. O coeficiente de não uniformidade (CNU) indica a graduação do solo, em sua amplitude. Já o coeficiente de curvatura (CC) dá uma prévia do formato da curva, o que permite identificar descontinuidades no conjunto. Classifica-se em função do CNU os seguintes intervalos: CNU < 5, tem-se grãos muito uniforme; 5 < CNU < 15, tem-se grãos de uniformidade média; CNU > 15, os grãos não são uniformes. Em função do CC, classifica-se como: CC < 1 ou CC > 3: solo mal graduado; 1 < CC < 3: solo bem graduado. (HAZEN, 1892 apud TERZAGHI; PECK, 1996).

O agrupamento de argilas e siltes formam as frações de finos do solo, enquanto as areias e pedregulhos formam as frações grosseiras do solo. Em geral, os solos são compostos de partículas mais finas e, eventualmente, apresentam os grãos maiores. A diversidade dos tamanhos de partículas é a responsável pela existência de volumes de vazios no interior do maciço, já que o formato de cada grão varia. Além disso, as massas das partículas são diferentes, conforme os tamanhos e sua composição química e mineral (PINTO, 2006).

Vargas (1981) conceitua solos finos como aqueles que possuem a maioria dos grãos com diâmetro inferior a 0,1mm. A forma dos grãos intervém, além do tamanho, no comportamento destes solos. Quando existem partículas grossas, essas são envolvidas totalmente pelas partículas finas, que preenchem os espaços deixados pelas maiores, ficando predominantemente responsável pelo comportamento desse tipo de solo. Por isso, uma pequena variação na proporção de partículas grossas pouco altera o seu comportamento mecânico e hidráulico.

2.2.2.2 Índices Físicos

A associação das variáveis peso e volume permite empregar correlações proporcionais entre as três fases existentes no solo. A Figura 2.3 apresenta o esquema do estado do solo, separado nas três fases. Tais correlações são denominadas Índices Físicos.

Fonte: Das (2014), adaptado

Da Figura 2.3 os índices do lado esquerdo representam os volumes de sólidos (Vs), de ar (Var) e de água (Vw), sendo a soma desses dois últimos o volume de vazios (Vv). O volume total é dado por (V). Do lado direito estão representados os pesos da água (Pw), dos sólidos (Ps) e o peso total (P). O peso do ar é desprezado. A partir destes parâmetros são então determinados, conforme Pinto (2006), as seguintes relações, chamadas de Índices Físicos:

Índice de Vazios (e): Relação entre volume de vazios e volume dos sólidos.

$$e = \frac{Vv}{Vs} \tag{2.3}$$

Grau de Saturação (*Sr*): Relação entre o volume de água e o volume de vazios, em porcentagem.

$$S(\%) = \frac{Vw}{Vv} \cdot 100\%$$
(2.4)

Porosidade (*n*): Relação entre o volume de vazios e o volume total, em porcentagem.

$$n(\%) = \frac{Vv}{V} \cdot 100\% \tag{2.5}$$

Teor de umidade (*w*): Relação entre o peso da água e o peso dos sólidos (solo seco), em porcentagem.

$$w(\%) = \frac{Pw}{Ps} \cdot 100\%$$
(2.6)

Peso específico dos sólidos (γ_s): Relação entre o peso dos sólidos e volume de sólidos, determinado por ensaio.

Peso específico natural (γ_n): Relação entre o peso total do solo e seu volume total, também determinado por ensaio.

Peso específico da água (γ_w): Valor usualmente utilizado de 9,81kN/m³.

Peso específico aparente seco (γ_d): Relação entre o peso dos sólidos e o volume total.

Dentre todos estes parâmetros, apenas três são identificados de imediato em laboratório, sendo eles: o teor de umidade, o peso específico dos sólidos e o peso específico natural. Após isso, adota-se o volume de sólidos igual a 1, obtendo as seguintes correlações:

$$\gamma_d = \frac{\gamma_n}{1+w}$$
 (2.7) $e = \frac{\gamma_s}{\gamma_d} - 1$ (2.8) $S = \frac{\gamma_s \cdot w}{e \cdot \gamma_w}$ (2.9)

2.2.2.3 Estados e Limites de Consistência

Terzaghi e Peck (1996) definem o termo consistência como o grau de adesão entre as partículas de solo, além da resistência que elas oferecem a forças que tentam romper ou deformar a massa do solo. A norma NBR 6502 (ABNT, 2019) estabelece que a consistência das argilas e solos coesivos se descreve qualitativamente como mole, média, rija ou dura.

De acordo com Vargas (1981), para se obter o índice de plasticidade dos solos, Arthur Casagrande padronizou ensaios que estabelecem três limites para os quatro estados de consistência proposto por Atterberg, conhecidos como limites de consistência do solo. Ainda, segundo esse autor, os estados são "propriedades índices" dos solos finos que determinam e classificam a sua natureza. São classificados de acordo com a quantidade de água (teor de umidade *w*) presente no solo, conforme indica a Figura 2.4 O limite de contração (LC) divide o estado sólido do semi-sólido. O limite de plasticidade (LP) divide o estado semi-sólido do estado plástico. O limite de liquidez (LL) divide o estado plástico do estado líquido.

Folite. Das (2014)

Assim, o índice de plasticidade (IP) é definido pela diferença entre o limite de liquidez e o limite de plasticidade (DAS, 2014).

$$IP = LL - LP \tag{2.10}$$

Pinto (2006), apresenta os valores típicos dos Limites de Atterberg para alguns solos típicos brasileiros, especialmente os solos estudados em destaque, apresentados na Tabela 2.2.

Tabela 2.2 - Valores de Limites de A	Atterberg para alg	uns solos do Brasil
Solos	LL (%)	IP (%)
Arenoso fino, laterítico (a)	29	11
Arenoso fino, laterítico (b)	44	13
Solos de basalto, laterítico	43	16
Solo saprolítico de gnaisse	48	-
Solo saprolítico de granito	48	16
Argilas orgânicas de várzeas quaternárias	70	30
Argilas orgânicas de baixadas litorâneas	120	60
-		

Tabela 2.2 - Valores de Limites de Atterberg para alguns solos do Brasil

Fonte: Pinto (2006)

2.2.2.4 Resistência ao Cisalhamento

Pinto (2006) define que a resistência dos solos se dá, basicamente, pela resistência ao cisalhamento dele. Esta, por sua vez, corresponde como a máxima tensão de cisalhamento que o solo é capaz de suportar sem que ocorra a ruptura no plano de aplicação da carga. Ainda, segundo o autor, a coesão e o atrito entre as partículas são os fenômenos físico-químicos responsáveis por tal resistência.

A coesão é entendida como a atração química entre os grãos, gerada por agentes cimentantes diversos, presentes significativamente em solos finos evoluídos pedologicamente. Portanto, a coesão real é a parcela da resistência ao cisalhamento dos solos úmidos não saturados, resultante da pressão capilar da água. Já o atrito é a força tangencial que age contra o deslizamento das partículas em um plano, proporcional a força normal. Este fenômeno é pouco presente em solos finos devido ao grande número de grãos de solo, o que facilita o deslizamento entre eles (PINTO, 2006).

2.2.2.5 Compressibilidade e Adensamento

Terzaghi e Peck (1996) definem compressibilidade como uma característica dos solos de se deformarem (diminuição de volume) ao serem submetidos a carregamentos externos. Esta depende do tipo de solo, sendo que, nos solos granulares (não coesivos) de alta permeabilidade, a *compressibilidade* ocorre rapidamente, pois a drenagem da água ocorre mais facilmente. Já no caso das argilas ocorre o contrário, ocasionando uma lenta variação volumétrica até que atinja um estado de equilíbrio, sob aplicação das cargas, e consequentemente, possui dependência do tempo. Neste caso, constitui-se o processo de *adensamento*.

Pinto (2006) recorda que um dos ensaios que simula o comportamento do solo quando ele é submetido a um carregamento vertical, como aterros ou sobrecargas de edificações, é o ensaio de compressão edométrica, ou ensaio de adensamento. Os resultados destes ensaios permitem a relação de parâmetros de tensão vertical com índice de vazios, e ainda, a possibilidade de determinar a tensão de pré-adensamento – máxima tensão na qual o solo já esteve submetido, ao longo do tempo – e o trecho virgem, ou intervalo de tensões no qual o solo nunca experimentou.

Um dos métodos de se determinar a tensão de pré-adensamento, segundo Pinto (2006), é o de Pacheco Silva, ilustrado na Figura 2.5. Neste método, prolonga-se a reta do trecho virgem até a horizontal que corresponde ao índice de vazios inicial (e_0). Da intersecção, traça-se uma reta vertical até a curva de adensamento e deste ponto uma reta horizontal até a prolongação da reta virgem. Este último ponto de intercepto é a tensão de pré-adensamento (σ_{vm}).

Figura 2.5 – Determinação da Tensão de Pré-adensamento pelo método de Pacheco Silva

2.3 SISTEMAS DE CLASSIFICAÇÃO DOS SOLOS

Os sistemas de classificação dos solos possuem a importante função de padronizar os solos de acordo com as suas diversas características. Sejam essas por sua origem, estrutura, evolução, Índices Físicos e presença de matéria orgânica. Para a geotecnia, o principal objetivo de caracterizar o solo é poder estimar o seu comportamento, além de facilitar o entendimento de quem o estuda (PINTO, 2006).

Nesta seção serão abordados dois dos mais utilizados sistemas de classificação de solos, aplicados à Engenharia Geotécnica.

2.3.1 Sistema de Classificação SUCS

O Sistema Unificado de Classificação dos Solos (SUCS), proposto por Arthur Casagrande, na década de 1940, classifica qualitativamente os solos com base nas determinações de granulometria, Limites de Liquidez (LL) e dos Índices de Plasticidade (IP). São divididos em três grandes grupos: solos grossos (granulares), solos finos e solos altamente orgânicos. Casagrande utiliza duas letras para classificar os solos, sendo que a primeira é estabelecida pela granulometria e a segunda conforme a plasticidade (PINTO, 2006).

A Tabela 2.3 apresenta a terminologia utilizada por Casagrande. Devido ao enfoque do trabalho, será descrita neste item a classificação voltada aos solos finos, que, segundo Pinto

(2006), necessita da utilização da Carta de Plasticidade, apresentada na Figura 2.6. A carta relaciona o índice de plasticidade e o limite de liquidez do solo.

Conforme Pinto (2006), quando predominam os finos no solo, ele será classificado em silte (M), argila (C) ou solo orgânico (O), de acordo com seu comportamento argiloso, devido aos índices de consistência. Para classificar os solos, com o uso da carta de plasticidade, basta utilizar os valores de LL e IP no gráfico, com solos de comportamento argiloso acima da Linha A, e solos siltosos ou orgânicos abaixo desta. Em seguida, classifica-se a compressibilidade, de acordo com a linha B, em alta (H) ou baixa (L).

Tabela 2.3 – Terminologia utilizada pelo método SUCS

Sigla	Significado					
G	Pedregulho					
S	Areia					
М	Silte					
С	Argila					
0	Solo orgânico					
W	Bem graduado					
Р	Mal graduado					
Н	Alta compressibilidade					
L	Baixa compressibilidade					
Pt	Turfas					
Fonte: Pinto (2006)						

Figura 2.6 – Carta de Plasticidade

Fonte: Pinto (2006)

A Figura 2.7 apresenta o esquema para a classificação dos solos segundo a SUCS. A leitura deve proceder de cima para baixo e da esquerda para direita.

Processo para identificação no campo					Grupo	Designação característica				
a n.º 40	Irosseira 0	EGUL DS ROS co ou	hum (oi	Grãos cobrindo toda a escala de granulação com quantidade substancial de todas as partículas intermediárias			GW	Pedregulhos bem graduados, misturas de areia e pedregulho com pouco ou nenhum fino.		
SA de malha	PEDREGULHOS Mais de metade da fração g e maior que a # n.º 1	PEDR HU PUI (poue	fin	Predominância de um tamanho de grão ou graduação falhada (ausência de alguns tamanhos de grão)			GP	Pedregulhos mal graduados, misturas de pedregulho e areia com pouco ou nenhum fino.		
D GROS a peneira		PDREGU LHOS COM FINOS (apreciável quantidade de finos)		Finos não plásticos (ML ou MH).			GF	Pedregulhos siltosos, misturas de pedregulho, areia e silte mal graduados.		
ULAÇĂ(bertura da				Finos plásticos (CL ou CH)			GC	Pedregulhos argilosos, misturas de pedregulho, areia e argila bem graduados.		
E GRAN	ação n.°10	EIAS RAS co ou	(0	Grãos cobrindo toda a escala de granulação com quantidade substancial de todas as partículas intermediárias			sw	Areias bem graduadas, areias pedregulhosas, com pouco ou nenhum fino.		
oLOS DE e é maior	AREIAS Mais que metade da fra grosseira menor que a # t	ARE PUI (pour	j.	Predominância de um grão ou graduação falhada			SP	Areias mal graduadas, areias pedregulhosas, com pouco ou nenhum fino.		
SC netade		a meno S ivel	ade (s)	Finos não plásticos (ML ou MH)			SF	Areias siltosas, misturas mal graduadas de areia e silte.		
Mais de r		AREI COM FINO (apreciá quantid		Finos plásticos (CL ou CH ou OH)			sc	SC Areias argilosas, misturas bem graduadas de areia e argila.		
da	Pro	cesso de iden	tificaçã	o executado sobre a fração < # nº 40			A abert	tura da malha # nº 200 corresponde		
a de malha			RESI (esm pelo	STENCIA a SECO agamento os dedos)	DILATÂNCIA (DILAÇÃO)	RIGIDEZ (consistência na proximidade do LP)	aproxim	madamente à menor partícula visíve a olho nu		
ÇÃO FINA ue a abertur	SGILAS	ILTES E ARGILAS the Liquidez menor que 50		enhuma a equena	rápida a lenta	nenhuma	ML	Siltes inorgânicos e areias muito finas, alteração de rocha, areias finas, siltosas ou argilosas com pequena plasticidade.		
SOLOS DE GRANULAÇ ade do material é menor qu # 200	SILTES E AF			média a levada	Nenhuma a muito lenta	média	CL	Argilas inorgânicas de baixa e média plasticidade, argilas pedregulhosas, argilas arenosas, argilas siltosas, argilas magras.		
		L L	Pequena à média		lenta	pequena	OL	Siltes orgânicos e siltes argilosos orgânicos de baixa plasticidade		
	о С	liquidez ue 50	Pequena a média		Lenta a nenhuma	Pequena a média	МН	Siltes inorgânicos, micáceos ou diatomáceos, finos arenosos ou solos siltosos, siltes elásticos.		
a mel	SILTE	SILTE ARGII te de aior qu		ida a muito levada	nenhuma	elevada	СН	Argilas inorgânicas de alta plasticidade, argilas gordas.		
anb si		u II L	Média	a elevada	Nenhuma a muito lenta	Pequena a média	ОН	Argilas orgânicas de média e alta plasticidade		
Mai	TURFAS		Faciln	Facilmente identificáveis pela cor, cheiro, porosidade e freqüentemente pela textura fibrosa.			Pt	Solos com elevado teor de matéria orgânica		

Figura 2.7 – Sistema de Classificação SUCS

Fonte: Vargas (1981)

2.3.2 Sistema de Classificação AASHTO

O Sistema de Classificação da Associação Americana de Rodovias Estaduais e Autoridades de Transporte (AASHTO), também conhecido como Sistema Rodoviário de Classificação, é muito empregado na engenharia rodoviária. Neste sistema, o solo é classificado em sete grupos principais A-1 a A-7. Sendo que em A-1, A-2 e A-3, no máximo 35% das partículas granulares passam pela peneira nº 200. Os demais são os que mais de 35% passam na peneira nº 200, em geral os materiais siltosos e argilosos (DAS, 2014).

A Figura 2.8 apresenta o esquema de classificação AASHTO. Para se classificar neste sistema, deve-se aplicar os dados de ensaio da esquerda para a direita. Por eliminação, a classificação correta é o primeiro grupo da esquerda.

Classificação geral	Materiais granulares (35% ou menos da amostra total passam pela peneira nº 200)								
	A	A-1		A-2					
Classificação de grupo	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7		
Ensaio de peneiramento									
(porcentagem passante)									
Nº 10	50 no máximo								
Nº 40	30 no máximo	50 no máximo	51 no máximo						
Nº 200	15 no máximo	25 no máximo	10 no máximo	35 no máximo	35 no máximo	35 no máximo	35 no máximo		
Características de fração passante nº 40	no maximo	no muximo	no maximo	no maximo	no maximo	no maximo	no maximo		
Limite de liquidez				40 no máximo	41 no mínimo	40 no máximo	41 no mínimo		
Índice de plasticidade 6 no máximo			NP	10 no máximo	10 no máximo	11 no mínimo	11 no mínimo		
Tipos comuns de materiais constituintes significantes	Fragmento	s de pedra, ho e areia	Areia fina	Silte ou pedregulho argiloso e areia					
Avaliação geral subgraduada	1 0		Ex	Excelente para bom					
Classificação	o geral		Materiais de silte-argila (mais de 35% da amostra total passante pela nº 200)						
Classificação o	le grupo		A-4	A-5	A	A-6	A-7 A-7-5ª A-7-6 [₺]		
Ensaio de peneiramento (porcenta Nº 10	agem passante)								
Nº 40									
Nº 200			36 no mínimo	36 no mínin	no no m	36 línimo	36 no mínimo		
Características de fração passante	nº 40								
Limite de liquidez			40 no máximo	41 no mínin	no nom	40 áximo i	41 no mínimo		
Índice de plasticidade			10 no máximo	10 no máxin	no nom	11 nínimo n	11 no mínimo		
Tipos comuns de materiais constit	uintes significant	ies	Solos com silte Solos argilosos			DSOS			
Avaliação geral subgraduada				Fr	aco para ruin	1			
^a Para A-7-5, $IP \le LL - 30$ ^b Para A-7-6, $IP > LL - 30$									

Figura 2.8 – Sistema de Classificação AASHTO

Fonte: Das (2014)

Esta classificação leva em conta três parâmetros para classificação: tamanho dos grãos, sendo eles pedregulho, areia, silte e argila; plasticidade, sendo usado o termo siltoso para IP de no máximo 10 e o termo argiloso para IP maior que 11; pedras e pedregulhos maiores que 75mm são excluídas da parte da amostra da classificação, mas com porcentagem registrada. Além dos parâmetros, um índice de grupo (IG), apresentado na equação 2.11, avalia a qualidade do solo, em termos de porcentagem passante na peneira 200, LL e IP. Quando a equação fornece um valor negativo para IG, adota-se como zero. Os valores de IG deverão ser arredondados para um número inteiro (DAS, 2014).

$$IG = (F_{200} - 35)[0,2 + 0,005 (LL - 40)] + 0,01 (F_{200} - 15)(IP - 10)$$
(2.11)

2.4 OS SOLOS DE APUCARANA

Manosso (2005) elaborou detalhadamente um Mapa Pedológico abrangendo todo limite da cidade, conforme apresenta a Figura 2.9. De acordo com o autor, os solos presentes na superfície da região de Apucarana, ajustados a partir do Levantamento de Reconhecimento dos Solos do Estado do Paraná, do Ministério da Agricultura (BRASIL, 1984), classificados conforme o método SiBCS (EMBRAPA, 2018) são:

- Latossolos: solos constituídos de material mineral argiloso, com horizonte B latossólico imediatamente abaixo de qualquer um dos tipos de horizonte diagnostico superficial, exceto H hístico. Apresenta avançado estágio de intemperização, evoluído e drenagem moderada.
- Nitossolos: solos constituídos por material mineral, com horizonte B nítico (reluzente) de argila de atividade baixa, textura argilosa ou muito argilosa, estrutura em blocos subangulares, angulares ou prismática moderada ou forte, com superfície de agregados reluzente, relacionada a cerosidade e/ou superfícies de compressão.
- Chernossolos: solos constituídos por material mineral com características discriminadas, alta saturação por bases (mais de 70%), argila de atividade alta e horizonte A chernozêmico sobrejacente a um horizonte B textural, B nítico, B incipiente ou horizonte C.
- Neossolos: solos constituídos por material mineral ou por material orgânico pouco espesso com pequena expressão dos processos pedogenéticos, rasos, com poucas modificações expressivas no material originário, de características do próprio material, pela resistência

ao intemperismo ou composição química, e do relevo, que podem impedir ou limitar a evolução desses solos.

De acordo com Manosso (2005), na região urbana, os Latossolos Vermelhos estão predominantemente presentes no platô principal, nas regiões de altas e médias vertentes, com relevos planos e suave ondulado, enquanto os Nitossolos estão presentes nas regiões de baixas vertentes (vales), com relevo ondulado.

Figura 2.9 - Mapa pedológico de Apucarana

Fonte: Manosso (2005)

Da Figura 2.9, Mt1 refere-se a associação Chernossolo Argilúvico, relevo forte ondulado mais Neossolos Litólicos Eutróficos, relevo forte ondulado e montanhoso (rochas eruptivas básicas) mais Nitossolo Vermelho Eutroférrico Chernossólico, relevo ondulado e forte ondulado; Mt2 a Chernossolo Argilúvico, relevo forte ondulado mais Neossolos Litólicos Eutróficos, relevo forte ondulado e montanhoso (substrato de rochas eruptivas básicas); LVdf ao Latossolo Vermelho Distroférrico, relevo suave ondulado; LVef ao Latossolo Vermelho Eutroférrico, relevo suave ondulado; NVdf ao Nitossolo Vermelho Distroférrico, relevo suave ondulado; NVdf ao Nitossolo Vermelho Eutroférrico, relevo suave e plano; NVdf ao Nitossolo Vermelho Distroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave e forte ondulado; NVef ao Nitossolo Vermelho Eutroférrico, relevo suave

ondulado; MD a Chernossolo Rêndzico lítico, relevo ondulado e forte ondulado mais Neossolos Litólicos Eutróficos, relevo forte ondulado e montanhoso (basáltico) (MANOSSO, 2005).

Luiz e Fernandes (2018) reuniram dados de sondagem de simples reconhecimento com SPT em alguns pontos no município de Apucarana, em um alinhamento Norte-Sul na zona central, e realizaram um perfil do subsolo do alinhamento a partir de interpolação das sondagens. O estudo mostrou a existência de uma camada de espessura de cerca de 10 metros de solos de alteração, do tipo Latossolo Vermelho de alta porosidade e alteração, em que o índice "N" aumenta lentamente com a profundidade.

2.5 COLAPSIBILIDADE EM SOLOS

O colapso da estrutura dos solos, dos quais atribuem a estes o nome de "solos colapsíveis", ocorre, segundo Lollo (2008), quando estes experimentam um aumento da quantidade de água no interior de seus vazios ou ainda quando, após aplicação de sobrecarga, são umedecidos e tem seu volume reduzido, variando seu índice de vazios sem que necessariamente tenha aumentado a carga aplicada sobre ele. A Norma Brasileira NBR 6122: Projeto e execução de fundações (ABNT, 2019, p.8) define solos colapsíveis como: "solos que apresentam brusca redução de volume quando submetidos a acréscimos de umidade sob a ação de carga externa".

Ainda, segundo Lollo (2008), o colapso ocorre nos solos não saturados em função da perda dos vínculos ou destruição dos efeitos capilares que mantinham as partículas sólidas unidas, o que resulta na perda de resistência destes. Conforme Gutierrez (2005), a perda de resistência ao cisalhamento, quando o solo é inundado, é responsável pelo colapso, o que ocasiona um "desmoronamento" da sua estrutura.

Estruturalmente o solo está sujeito à ocorrência do colapso quando possui uma estrutura altamente porosa associada a um estado de equilíbrio metaestável entre suas partículas, além de um baixo teor de umidade, menor do que o necessário para sua saturação. A estrutura se mantém pela presença de um vínculo que confere uma resistência temporária ao solo (COLLARES, 1997 apud RODRIGUES; LOLLO, 2008, p.67).

Segundo Agnelli (1997), os vínculos que são responsáveis pela resistência temporária são as forças capilares, forças eletromagnéticas de superfície e a presença de substâncias cimentantes, em geral óxidos de ferro ou carbonatos. Quando ocorre a infiltração de um agente externo (geralmente a água), acontece um desequilíbrio que reduz a ação destes mecanismos de suporte, fazendo com que os grãos deslizem uns sobre os outros para os espaços vazios, o que reduz subitamente ou gradativamente o volume da estrutura, caracterizando o colapso dela.

Cintra (1998) explana sobre alguns motivos que levam o solo a experimentar um brusco umedecimento: grandes volumes de chuvas, enchentes, ruptura de tubulações hidráulicas enterradas, disposições incorretas de outros líquidos sobre o solo, como esgoto ou até mesmo descartes industriais de efluentes.

Alguns valores característicos predominantes dos solos colapsíveis, de acordo com Gonçalves (2006) são: porosidade maior do que 40%, grau de saturação menor do que 60% e número de golpes normalmente baixos ($N_{SPT} \le 4$).

Os solos colapsíveis ocorrem em grande parte do globo terrestre, principalmente em regiões de predominância de clima quente (atual ou pretérito). No Brasil, as regiões Centro-Sul e Nordeste apresentam maiores quantidades de estudos de ocorrência desse tipo de solo. Especificamente na região de estudo, interior do Paraná, os solos são porosos, podendo ser residuais típicos, sedimentares ou colúvios. Os perfis de solos residuais, originados da alteração da rocha sã por intemperismo, apresentam estrutura porosa e baixa massa específica e potencial colapsibilidade, gerada pela lixiviação das camadas superficiais. Estas camadas apresentam texturas mais argilosas quando são originadas por rochas ígneas básicas (RODRIGUES; LOLLO, 2008).

Gutierrez (2005) mostrou em seu estudo que, dos solos que ocorrem na região de Maringá, a maior parte possui comportamento colapsível. Todos os perfis de Latossolos Vermelhos de texturas média e argilosa foram classificados como colapsíveis, enquanto o perfil de textura argilosa do Nitossolo Vermelho foi classificado como susceptível ao colapso. Ainda, conforme a autora, os resultados podem ser extrapolados de acordo com as classes pedológicas.

Dessa maneira torna-se possível associar, inicialmente, a ocorrência de colapso dos mesmos solos apresentados por Manosso (2005), que ocorrem em Apucarana – PR.

2.5.1 Mecanismos de colapso

Jennings e Knigth (1957) descrevem que o solo colapsível, ao receber um carregamento em seu estado natural, tem sua estrutura preservada, já que o material de ligação é comprimido e ocorre poucos movimentos dos grãos de solos. Porém, segundo os autores, ao ganhar umidade – quantidade de umidade crítica – os vínculos perdem a resistência e a estrutura

não resiste mais às forças de deformação, caracterizando, portanto, o colapso (SOUZA NETO, 2004).

Segundo Souza Neto (2004), o colapso obedece ao Princípio das Tensões Efetivas e ocorre devido a uma redução rápida na sucção matricial (ganho de umidade). Esta redução acarreta rupturas microcisalhantes em grande número de contatos, acarretando colapso. A velocidade e intensidade dos recalques depende da estrutura e do tipo de agente ligante entre os grãos, sendo imediatas as perdas de resistência quando as ligações são mantidas pela sucção capilar, mais lentas em contrafortes de argilas e muito lenta em caso de cimentação química.

A Figura 2.10 ilustra a estrutura dos solos finos antes e após o colapso, como sugeriu Arthur Casagrande.

Fonte: Houston et al. (1988, apud SOUZA NETO, 2004)

2.5.2 Identificação de Solos Colapsíveis

2.5.2.1 Ensaios de Identificação de Solos Colapsíveis

É possível observar como se comporta o solo, conforme se alteram seu teor de umidade e/ou as cargas aplicadas em ensaios de campo e laboratório. As modificações da estrutura do solo, através do enfraquecimento das ligações, causam as mudanças de comportamento. Para verificar os efeitos de colapso, opta-se por ensaios que estimam recalques em determinadas situações de aplicação de carga (GUTIERREZ, 2005).

Existem ensaios específicos de campo e laboratório, como prova de carga e ensaio edométrico, respectivamente. Esse último, segundo Gutierrez (2005) tem sido cada vez mais

utilizado para identificação de solos colapsíveis em laboratório, pois fornece informações quantitativas que permite estimar a magnitude de recalques.

Neste trabalho foi utilizado o ensaio edométrico simples para identificação e análise do comportamento colapsível do solo.

2.5.2.1.1 Ensaio edométrico simples

Os ensaios realizados em laboratório para determinar a colapsibilidade do solo buscam simular o mecanismo de colapso que ocorre na natureza. Por isso, o mais empregado é o ensaio edométrico, que leva em consideração as deformações axiais oriundas da inundação dos corpos de prova (CP's) submetido a um estado de tensões. Este ensaio pode ser realizado de duas maneiras: pelo ensaio simples ou duplo. No ensaio simples, o corpo-de-prova é solicitado até uma tensão de interesse, sendo inundado posteriormente. O resultado do ensaio é uma curva gerada de índice de vazios *versus* tensão vertical. Com a inundação, a curva apresentará uma descontinuidade devido ao colapso estrutural do solo. Após estabilização das deformações, 24 horas após a inundação, o corpo de prova é submetido a novos carregamentos progressivos ou encerra-se o ensaio (RODRIGUES; LOLLO, 2008).

Para a identificação de solos colapsíveis, o CP é inundado em uma determinada tensão (σ_v) aplicada. O índice de vazios (e) sofre então uma variação decorrente da inundação, como ilustra a Figura 2.11 (GUTIERREZ, 2005).

Figura 2.11 – Curva *e versus log* σ_v do ensaio edométrico simples

Fonte: Jennings e Knight (1957 apud GUTIERREZ, 2005)

Na realização deste ensaio, conforme recomenda a Norma Internacional D2435 (ASTM, 2011), utiliza-se um corpo-de-prova (CP) talhado de uma amostra indeformada em sua umidade natural. O CP é submetido a estágios de cargas incrementais, até que se atinja a uma tensão de interesse máxima, realizando-se no final a descarga. Durante todo ensaio são lidas as deformações em tempos incrementais.

2.5.3 Comportamento do Potencial de Colapso com a Tensão de Inundação

O termo Potencial de Colapso ou Coeficiente de Colapso, é usualmente designado por PC, *i* ou I para representar expressões, também é conhecido por coeficiente de subsidência total (R_T) . Apesar das diferenças algébricas nas equações de acordo com seus autores, este coeficiente se assemelha em todas as designações presentes na literatura (SOUZA NETO, 2004).

A Norma Brasileira NBR 6122 (ABNT, 2019) estabelece o Ensaio de Colapsibilidade, indicado para solos não saturados que têm potencial de colapso sob aumento de umidade, sendo realizado no mesmo equipamento do ensaio de adensamento, onde se mede a deformação vertical sofrida por uma amostra de solo em uma determinada tensão de inundação.

Rodrigues (2007) concluiu que o potencial de colapso depende, além do grau de saturação (Sr) inicial, da tensão de inundação, existindo um valor desta para qual o solo sofre um colapso máximo. Além disso, para tensões de inundação de 20 e 40 kPa, as deformações encontradas foram pequenas, podendo-se desconsiderar o colapso.

Gutierrez (2005) obteve curvas de compressão em ensaios edométricos simples, a fim de avaliar a colapsibilidade de solos argilosos em Maringá – PR, medindo deformações a partir de tensões de umedecimento de 12,5 kPa a 1600 kPa. Em tensões menores, as deformações de colapso do solo são "negligenciáveis". As análises foram feitas em sete profundidades diferentes, gerando um gráfico do coeficiente de colapso *versus* tensão de inundação. Um exemplo deste tipo de gráfico, para diversas profundidades, de um Latossolo Vermelho, está ilustrado na Figura 2.12, e de um Nitossolo Vermelho, na Figura 2.13.

Vilar e Ferreira (2015) descrevem que, para tensões inferiores a 200 kPa, alguns solos argilosos podem sofrer deformações expansivas ao serem inundados, com umidades controladas, conforme ilustra a Figura 2.14. Este fenômeno, segundo os autores, pode ser explicado pela tensão de inundação ser inferior à de pré-adensamento do solo, no caso abaixo de 160 kPa.

Figura 2.12 - Coeficiente de Colapso versus Tensão de Inundação (Latossolo Vermelho)

Fonte: Gutierrez (2005)

Figura 2.13 - Coeficiente de Colapso versus Tensão de Inundação (Nitossolo Vermelho)

Fonte: Gutierrez (2005)

Figura 2.14 – Comportamento das deformações de colapso e expansão em solos inundados

Ao final dos quatro ensaios, Vilar e Ferreira (2015) mostraram que um mesmo solo, argiloso de alta plasticidade, pode apresentar deformações expansivas em teores de umidade maiores ao início do ensaio, enquanto para teores menores apresentam o colapso.

2.5.4 Critérios de Identificação dos Solos Colapsíveis

Atualmente existem critérios teóricos, baseados em correlações com Índices Físicos, e ensaios, laboratoriais ou em campo, para se desenvolver o estudo dos solos colapsíveis. Os critérios teóricos existentes podem apresentar limitações, pois são restritos aos solos para os quais foram estabelecidos. Já os critérios para ensaios em laboratório podem retratar as condições ideais para mensuração do colapso. Uma estimativa em escala real é obtida apenas com critérios para ensaios realizados em campo (RODRIGES e LOLLO, 2008).

2.5.4.1 Critérios Baseados em Índices Físicos do Solo

Os critérios teóricos utilizados para identificação do colapso são baseados nos Índices Físicos do solo, determinados nos ensaios de caracterização em laboratório. Os critérios, que constam nas bibliografias de Feda (1966) e Rodrigues e Lollo (2008), são:

2.5.4.1.1 Critério de DENISOV

O critério estabelecido por Denisov (1951 apud FEDA, 1966) indica um colapso estrutural do solo, que possui porosidade natural muito elevada e que quando completamente inundado, tem seu teor de umidade maior do que o seu limite de liquidez. Relaciona os índices de vazios inicial, no estado natural e_0 , e no limite de liquidez e_L , por meio do coeficiente de subsidência *K*.

$$K = \frac{e_L}{e_0} \tag{2.12}$$

Sendo e_L dado por:

$$e_L = LL \cdot G_s \tag{2.13}$$

Onde $G_s = \frac{\gamma_s}{\gamma_w}$; sendo γ_s o peso específico dos sólidos; γ_w o peso específico da água. O solo é colapsível para valores de K < 1.

Este critério foi estudado com mais profundidade por Holtz e Hilf (1961 apud FEDA, 1966) em solos colapsíveis de genética e granulometria muito variáveis e estabeleceram novos intervalos para o critério de Denisov (1951), sendo eles:

 $0,50 < K < 0,75 \rightarrow Solos altamente colapsíveis$ $K = 1 \rightarrow Argilas não colapsíveis$ $1,50 < K < 2,00 \rightarrow Solos não colapsíveis$

2.5.4.1.2 Código de Construção da União Soviética

Este critério define um coeficiente λ em função dos índices de vazios, no estado natural e_0 , e no limite de liquidez e_L .

$$\lambda = \frac{e_0 - e_L}{1 + e_0} \tag{2.14}$$

Aplicado para solos com grau de saturação menor ou igual a 60%. A colapsibilidade ocorre quando $\lambda \ge -0,1$. O solo é expansivo para $\lambda \le -0,3$ (RODRIGUES; LOLLO, 2008).

2.5.4.1.3 Critério de Feda

A expressão que prevê o colapso dos solos parcialmente saturados, conforme Feda (1966), se dá pela equação (2.15).

$$K = \frac{\left(\frac{W_0}{S_0}\right) - LP}{LL - LP} \tag{2.15}$$

Onde w_0 é o teor de umidade natural e S_0 o grau de saturação natural. Solos com K > 0,85 são chamados de subsidentes. Também são colapsíveis com valores de $S_0 < 60\%$.

2.5.4.1.4 Código de Obras da URSS

Critério usado para solos com grau de saturação menor do que 80%, relacionando os índices de vazios no estado natural e_0 , e no limite de liquidez e_L . Calcula-se o Coeficiente de Colapsibilidade (CI).

$$CI = \frac{e_0 - e_L}{1 + e_0} \tag{2.16}$$

O solo será colapsível quando os valores encontrados de CI forem menores do que os apresentados com seu respectivo Índice de Plasticidade (RODRIGUES; LOLLO, 2008).

Índice de Plasticidade	CI
$01 \le IP \le 10$	0,10
$10 \leq IP \leq 14$	0,17
$14 \leq IP \leq 22$	0,24

2.5.4.1.5 Critério de GIBBS & BARA

Estabelece o coeficiente de subsidência R, com o conceito de saturação do solo no limite de liquidez.

$$R = \frac{\left(\frac{\gamma_w}{\gamma_d}\right) - \left(\frac{\gamma_w}{\gamma_s}\right)}{LL}$$
(2.17)

Onde γ_w é o peso específico da água; γ_d o peso específico do solo seco; e γ_s é o peso específico dos sólidos. Este critério classifica o solo em três casos, de acordo com o gráfico da Figura 2.15 (RODRIGUES; LOLLO, 2008). Os três casos são:

Caso I: solo fofo, com elevado índice de vazios, totalmente propício ao colapso; Caso II: caso intermediário, com volume de vazios igual ao volume de água no LL; Caso III: solo denso com comportamento plástico, não sujeito ao colapso.

Figura 2.15 – Critério de GIBBS & BARA para identificação da colapsibilidade de solos

Fonte: Lollo (2008)

2.5.4.2 Critérios Baseados em Ensaios de Laboratório

A realização dos ensaios edométricos simples em laboratório fornece dados de deformações sofridas pelo solo, sob os carregamentos submetidos por ele. Nesse contexto, surgem na literatura os critérios que classificam os valores obtidos nos ensaios, permitindo determinar o potencial de colapso que o solo está sujeito.

Denisov (1951 apud RODRIGUES; LOLLO, 2008) determina três coeficientes de subsidência para determinação da colapsibilidade do solo, sendo dois parciais e um total. O coeficiente de subsidência total (R_T) é a soma dos coeficientes parciais, sendo o primeiro, R_P , referente a aplicação da tensão vertical no corpo-de-prova, e o segundo, R_W , referente a inundação da amostra. Os coeficientes são dados por:

$$R_P = \frac{e_0 - e_{\sigma n}}{1 + e_0} \tag{2.18}$$

$$R_w = \frac{e_{\sigma n} - e_{\sigma i}}{1 + e_0} \tag{2.19}$$

$$R_T = R_P + R_w = \frac{e_0 - e_{\sigma i}}{1 + e_0}$$
(2.20)

A Figura 2.16 apresenta a curva de *lo g* σ *versus e*, proposta por Denisov (1951).

Figura 2.16 – Curva *log* σ *versus e* proposta por Denisov (1951)

Fonte: Lollo (2008)

Onde:

 e_0 é o índice de vazios natural;

 $e_{\sigma n}$ o índice de vazios após aplicação da tensão vertical, imediatamente antes da inundação;

 Δe_{σ} a variação do índice de vazios natural e após aplicação de tensão vertical;

 $e_{\sigma i}$ é o índice de vazios após inundação;

 Δe_i é a variação do índice de vazios devido à inundação.

2.5.4.2.1 Critérios com base em Ensaios Edométricos Simples

A seguir serão apresentados os critérios para determinação da colapsibilidade dos solos, com base nos ensaios edométricos simples, segundo Rodrigues e Lollo (2008).

Jennings & Knight (1975 apud RODRIGUES; LOLLO, 2008) definiram PC como um coeficiente de potencial de colapso, baseados nos ensaios edométricos simples. Tal coeficiente serve como guia para a construção de obras sobre solos colapsíveis. Deve-se conduzir o corpo de prova até uma tensão de 200 kPa e então promover a inundação da amostra.

$$PC = \frac{\Delta e_C}{1+e_0} \cdot 100\% \tag{2.21}$$

$$PC = \frac{\Delta H_C}{H_0} \cdot 100\% \tag{2.22}$$

Onde Δe_c é a variação do índice de vazios pela inundação; e_0 é o índice de vazios inicial; ΔH_c é a variação da altura do corpo-de-prova pela inundação e H_0 é a altura inicial do corpo-de-prova. O potencial de colapso é definido pelo critério apresentado na Tabela 2.4.

PC	Gravidade do Problema		
0-1%	Nenhum		
1-5%	Moderado		
5-10%	Problemático		
10-20%	Grave		
>20%	Muito Grave		
Fonte: Lollo (2008)			

Tabela 2.4 – Potencial de colapso segundo Jennings & Knight

2.5.4.2.1.2 Critério de Vargas

Vargas (1978 apud RODRIGES; LOLLO, 2008) estabeleceu parâmetros para o colapso de acordo com o critério que relacionam os índices de vazios, considerando apenas a variação da inundação da amostra, através do coeficiente *i*. Seu estudo baseou-se em solos tropicais no sul do Brasil.

$$i = \frac{\Delta e}{1 + e_i} \tag{2.23}$$

Onde Δe é a variação do índice de vazios pela inundação e e_i é o índice de vazios inicial antes da inundação. Para valores de i > 0,02 os solos são colapsíveis.

O critério apresentado por Lutenegger & Saber (1988 apud RODRIGUES; LOLLO) é semelhante ao de Jennings & Knight, todavia se diferencia pela tensão inicial aplicada ao corpo de prova inicial ser de 300 kPa para, em seguida, promover a inundação. O potencial de colapso *I* é dado pela equação 2.24 ou 2.25.

$$I = \frac{\Delta e}{1+e_i} \cdot 100\% \tag{2.24}$$

$$I = \frac{\Delta H_i}{H_{ai}} \cdot 100\% \tag{2.25}$$

Onde Δe é a variação do índice de vazios pela inundação; e_i é o índice de vazios inicial antes da inundação; ΔH_i é a variação da altura do corpo-de-prova pela inundação e H_{ai} a altura do corpo-de-prova antes da inundação. O potencial de colapso é definido pelo critério apresentado na Tabela 2.5.

Tabela 2.5	- Potencial de Colapso segundo	Lutenegger & Sa	aber (1988)
	Gravidade do Problema	I (%)	_
	Leve	2	-
	Moderada	6	
	Alta	10	
	Fonte: Lollo (2008		-

Souza Neto (2004) observa que os critérios apresentados em 2.5.4.2, certamente, foram estabelecidos conforme a localidade e condições de produção das pesquisas onde foram realizadas as experiências. Dessa forma, é possível inferir que muitos solos colapsíveis podem apresentar, no estado natural, uma tensão de ruptura diferente de 200 kPa ou 300 kPa, apresentadas anteriormente. Além disso, mesmo apresentando características colapsíveis nessas tensões, o potencial de colapso pode se apresentar maior ou menor em diferentes tensões de inundação. Para solos tropicais, como o do Brasil, o critério mais adequado é o de Vargas.

3 MATERIAIS E MÉTODOS

Esta seção aborda os procedimentos para a realização do estudo de caracterização e avaliação do comportamento físico dos solos de Apucarana, quanto ao colapso. Trata-se de uma pesquisa quali-quantitativa e exploratória, com a realização de ensaios dos mesmos, no Laboratório de Geotecnia da UTFPR, *Campus* Apucarana.

3.1 MATERIAIS

Os materiais utilizados no trabalho, desde a coleta de amostras, aparelhos eletrônicos para localização, medidores, recipientes, equipamentos e utensílios em geral, bem como suas finalidades, estão listados no Quadro 3.1.

Quadro 5.1 - Materiais e equipamentos utilizados				
Finalidade				
Localização dos locais de coleta de amostras				
Determinação do Teor de umidade				
Secagem de amostras de solo				
Pesagem de solo				
Medição de temperatura				
Ensaio de Limite de Liquidez				
Ensaio de Limite de Plasticidade				
Análise granulométrica				
Análise granulométrica				
Análise granulométrica				
Molde para coleta de amostra indeformada				
Vedação de bloco de amostra indeformada				
Suporte para fixação da parafina derretida				
Derretimento da parafina				
Ensaio de massa específica natural				
Realização do ensaio edométrico simples				
Realização de ensaios de caracterização				
Talhagem de corpo de prova				
Usos gerais				

Quadro 3.1 - Materiais e equipamentos utilizados

Fonte: Autor (2019)

Os pontos de coleta de amostras foram georreferenciados e tratados mediante a utilização de um software de Sistema de Informações Geográficas (SIG). Já tratamento dos resultados foi realizado por meio do software de planilhas e gráficos, Excel.

3.2 METODOLOGIA

De forma geral, a Figura 3.1 apresenta uma síntese da metodologia proposta para a realização deste estudo.

Figura 3.1 – Síntese da metodologia utilizada

Fonte: Autor (2019)

3.2.1 Área de estudo e coleta de amostras

O local em que as amostras foram coletadas pertence ao município de Apucarana, Paraná, Brasil. As coletas foram feitas em obras de construção civil, localizadas na região urbana do município, buscando-se coletar em pontos construtivos relevantes, como no interior de blocos de estacas de fundação.

Em uma primeira etapa do estudo, de caracterização e avaliação teórica de potencial de colapsibilidade, foram coletadas quatro amostras deformadas em três locais distintos, sendo denominados Pontos de amostragem A, B e C. Ressalta-se que no ponto B foram coletadas duas amostras, em blocos de estacas diferentes, porém com mesmas profundidades, denominadas B1 e B2. Posteriormente, para a coleta da amostra indeformada, utilizou-se o procedimento de abertura de trincheiras, conforme a norma NBR 9604: Abertura de poço e trincheira de inspeção em solo, com retirada de amostras deformadas e indeformadas — Procedimento (ABNT, 2016). Esta última amostra foi coletada em um Ponto de amostragem D.

A Tabela 3.1 apresenta as coordenadas planialtimétricas destes pontos, cuja localização pode ser visualizada na Figura 3.2.

Ponto de amostragem	Altitude média da superfície	Profundidade do topo da amostra	Coordenadas
A	804m	10cm	S 23°33'49.6" W 51°29'14.4"
В	814m	85cm	S 23°33'2.3" W 51° 25' 51.7"
С	828m	10cm	S 23°33'5.6" W 51°25'32.6"
D	835m	45cm	S 23°33'14.35" W 51°25'47.66"

Fonte: Autor (2019)

A Figura 3.3 retrata uma determinada etapa do procedimento de coleta das amostras deformadas pelo método do cilindro de cravação, mais especificamente para amostra do Ponto B. Salienta-se que este procedimento se repetiu para os Pontos A e C. Já a Figura 3.4 retrata o procedimento de escavação do bloco indeformado (Ponto D) cujas dimensões aproximadas foram de 30x30x30 cm.

Figura 3.2 - Pontos de coleta de amostras para caracterização

Fonte: Autor (2019), adaptado de BRASIL (2017)

Figura 3.3 – Coleta de amostra no Ponto B

Fonte: Autor (2019)

Figura 3.4 Coleta de bloco de amostra indeformada - Ponto D

Fonte: Autor (2019)

3.2.2 Ensaios

A seguir estão expostos os ensaios utilizados neste estudo.

3.2.2.1 Ensaios de Caracterização

Os ensaios de caracterização foram realizados no Laboratório de Geotecnia, do *campus* Apucarana, da UTFPR, conforme os procedimentos propostos pela Associação Brasileira de Normas Técnicas (ABNT) e estão apresentados na Tabela 3.2.

Tabela 3.2 – Ensaios de Caracterização				
Ensaio		Norma		
Teor de umidade	ABNT	NBR 6457/2016		
Limite de Liquidez	ABNT	NBR 6459/2016		
Limite de Plasticidade	ABNT	NBR 7180/2016		
Massa específica dos sólidos	ABNT	NBR 6458/2017		
Análise Granulométrica	ABNT	NBR 7181/2016		
Determinação da massa específica aparente (in situ)	ABNT	NBR 9813/2016		
Fonte: Autor (2019)				

3.2.2.2 Ensaio Edométrico Simples

O ensaio edométrico simples foi realizado conforme as recomendações da Norma Internacional D2435 (ASTM, 2011): "Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading", e utilizou-se do equipamento MS-101 – Owntec: Cisalhamento Direto do Solo, na modalidade Ensaio de Adensamento (ADNS), disponível no Laboratório de Geotecnia da UTFPR, representado na Figura 3.5.

O equipamento possui sistema de braço de alavanca, que proporciona uma amplificação em 10 vezes, no corpo-de-prova, o valor de carga aplicado. As amostras utilizadas para os ensaios foram corpos-de-prova talhados de um bloco de amostra indeformada.

Figura 3.5 - Equipamento ensaio de adensamento

Fonte: Owntec (2018)

Os corpo-de-prova eram talhados diretamente no bloco de amostra, com a utilização de um molde quadrado, específico do equipamento de ensaio, que possui massa de 49,7 gramas, dimensões de 6 centímetros de lado e altura de 2,023 centímetros. A Figura 3.6 ilustra a moldagem de um corpo-de-prova no bloco indeformado.

Figura 3.6 - Moldagem de corpo-de-prova de amostra indeformada

Fonte: Autor (2019)

Inicialmente realizou-se um ensaio edométrico simples natural (EDS-N), sem inundação, conhecido como ensaio de adensamento, em etapas de carga e descarga, cujas tensões aplicadas podem ser observadas na Tabela 3.3. Durante a aplicação de cada tensão, as leituras de deformação foram lidas em tempos de 7.5, 15, 30 segundos; 1, 2, 4, 8, 15, 30 minutos; e 1, 2, 4, 8 e 24 horas, como recomenda a Norma Internacional D2435 (ASTM, 2011). Além disso, aplicou-se uma tensão de 5,45 kPa por 10 minutos para efeitos de estabilização inicial.

Estágios	Tensão (kPa)	Tempo
	5,45	10 min
	40,88	24h
	98,1	24h
Carga	207,1	24h
	425,1	24h
	779,35	24h
	534,1	24h
Descarga	207,1	24h
	98,1	24h
	Fonte: Autor (2019)	

Tabela 3.3 - Ensaio edométrico simples natural (EDS-N)

Na segunda etapa, foram realizados quatro ensaios edométricos simples com inundação nas tensões de 43,6 kPa, 98,1 kPa, 207,1 kPa e 425,1 kPa, a fim de se avaliar o efeito da inundação nas amostras, obtendo valores de Potencial de Colapso do solo em função de tais tensões. A Tabela 3.4 apresenta os carregamentos e as diferentes tensões de inundação realizadas em cada ensaio (destacadas em negrito). Após a inundação da amostra na tensão de interesse, monitorou-se a variação da altura do CP em função do tempo durante 24 horas.

	Tensão		Tempo de aplicação	
Ensaio 1	Ensaio 2	Ensaio 3	Ensaio 4	de tensão/inundação
5,45	5,45	5,45	5,45	10 min
21,8	21,8	21,8	21,8	24h
43,6	43,6	43,6	43,6	24h
	98,1	98,1	98,1	24h
		207,1	207,1	24h
			425,1	24h

.

Fonte: Autor (2019)

3.3 ANÁLISE DOS DADOS

Após a realização da coleta das amostras e realização dos ensaios em laboratório, foi realizada a caracterização geotécnica básica dos solos coletados. Com isso, foram calculados os Índices Físicos do solo, conforme as equações apresentadas em 2.2.2.2. Em seguida, foi possível realizar a classificação do solo, de acordo com os métodos SUCS e AASHTO, apresentados em 2.3.1 e 2.3.2, respectivamente.

Posteriormente, fazendo uso dos Índices Físicos calculados para as amostras, avaliouse o potencial de colapsibilidade mediante a aplicação das equações descritas em 2.5.4.1

Com os valores obtidos do ensaio edométrico natural foi plotada a curva de adensamento possibilitando a obtenção da tensão de pré-adensamento da amostra, conforme procedimento de Pacheco Silva, descrito em 2.2.2.5.

A partir dos ensaios edométricos simples com inundação, os valores medidos foram utilizados para avaliar a colapsibilidade do solo segundo os critérios baseados em ensaios de laboratório, descritos em 2.5.4.2. Finalmente, foi possível verificar o comportamento do colapso das amostras para diferentes tensões de inundação.

4 RESULTADOS E DISCUSSÃO

Esta seção apresenta os resultados obtidos no presente estudo, acompanhados das análises dos mesmos, organizados na mesma sequência estabelecida no fluxograma da metodologia, da Figura 3.1. Cabe ressaltar que os dados brutos dos ensaios edométricos simples constam em Apêndice, de maneira a viabilizar uma maior fluidez na leitura deste trabalho.

4.1 CARACTERIZAÇÃO

Os ensaios elencados na Tabela 3.2 possibilitaram a caracterização das amostras de solo coletadas. Optou-se por realizar a análise granulométrica somente para a amostra indeformada.

4.1.1 Índices Físicos

Este item apresenta os Índices Físicos calculados, conforme equações descritas anteriormente em 2.2.2.2. Outros valores foram obtidos diretamente dos ensaios, sem necessidade de correlação.

4.1.1.1 Análise primária: Amostras deformadas

Na Tabela 4.1 estão expostos os Índices Físicos das amostras deformadas.

Tubelu 4.1 Indices Tisleos dus unostrus Detormudus						
Índico Físico			Unid			
		Α	B1	B2	С	Ulliu.
Peso específico natural	γn	17,25	14,29	14,25	17,66	kN/m³
Peso específico dos sólidos	γ_{s}	29,59	30,04	29,93	29,23	kN/m³
Peso específico aparente seco	γ_d	12,29	9,85	9,86	13,08	kN/m³
Teor de umidade natural	W	40,5	45,0	44,6	35,3	%
Limite de Liquidez	LL	56	59	58	54	%
Limite de Plasticidade	LP	42	48	46	43	%
Índice de Plasticidade	IP	14	11	12	11	%
Porosidade	η	58,9	67,1	67,7	55,6	%
Saturação	Sr	85,6	66,2	66,4	83,2	%
Índice de Vazios	e	1,408	2,049	2,037	1,234	-
Índice de Vazios no LL	$e_{\rm L}$	1,671	1,761	1,739	1,581	-
	Ean	tas Austan (2010)			

Tabela 4.1 – Índices Físicos das amostras Deformadas

Fonte: Autor (2019)

As amostras A e C apresentaram maior peso específico natural do que as amostras B1 e B2 (coletadas no mesmo local), porém possuem peso específico dos sólidos semelhantes, pois são originadas da mesma rocha basáltica. Este fato pode-se justificar pela maior porosidade presente nas amostras B1 e B2.

4.1.1.2 Análise secundária: Bloco de amostra indeformada

A Tabela 4.2 mostra os Índices Físicos do solo referentes ao ponto de coleta D, retirada de um bloco de amostra indeformada.

Tabela 4.2 – Indices Físicos da amostra Indeformada						
Índice Físico		Valor	Unid.			
Peso específico natural	γ_n	14,618	kN/m³			
Peso específico dos sólidos	γ_{s}	30,228	kN/m³			
Peso específico aparente seco	γd	10,451	kN/m³			
Teor de umidade natural	W	39,9	%			
Limite de Liquidez	LL	63	%			
Limite de Plasticidade	LP	48	%			
Índice de Plasticidade	IP	15	%			
Porosidade	η	65,4	%			
Saturação	Sr	64,9	%			
Índice de Vazios	e	1,892	-			
Índice de Vazios no LL	e_L	1,941	-			

Fonte: Autor (2019)

Nota-se que os valores de peso específico natural e dos sólidos são semelhantes às amostras B1 e B2. Salienta-se que tanto a amostra do ponto D quanto as amostras dos pontos B1 e B2 foram coletadas no interior de um bloco de estacas, e os pontos de coleta distam pouco mais de 400 metros.

4.1.2 Análise Granulométrica

As porcentagens passantes das partículas de solo nas peneiras normatizadas estão apresentadas na Tabela 4.3. Como mencionado em 4.1, optou-se em realizar apenas para a amostra indeformada.

Análise	Diâmetro (mm)	Peneira (#)	% Passante
	1,2000	15	100,0
	0,6000	30	100,0
Danairamanta	0,4200	40	100,0
Fellellamento	0,3000	50	99,3
	0,1500	100	97,1
	0,0750	200	93,1
	0,0696		92,9
	0,0492		92,9
	0,0348		90,5
	0,0291		88,1
	0,0169		86,9
	0,0124		85,7
Sedimentação	0,0088		83,2
	0,0063		80,8
	0,0045		78,3
	0,0032		77,0
	0,0023		75,4
	0,0015		72,3
	0,0014		68,9

Tabela 4.3 - Resultado de análise granulométrica conjunta

Fonte: Autor (2019)

A Figura 4.1 apresenta a curva granulométrica obtida pelo ensaio.

Figura 4.1 - Curva granulométrica

Assim, verifica-se que as partículas finas totalizam quase 93% do solo, sendo cerca de 74% composto por grãos de argila; 18% de silte e aproximadamente 8% de areia fina. Sendo assim, diz-se que a textura do solo é argilo-siltosa.

4.2 CLASSIFICAÇÃO

Todos os solos analisados, conforme a classificação pedogenética podem ser intitulados como solo residual de basalto. De acordo com o Mapa de solos de Apucarana, apresentado por Manosso (2005), na Figura 2.9, após serem comparados os pontos de coleta de amostras com o mapa, pode-se inferir que a amostra A se trata de um Latossolo Vermelho distroférrico (Lvdf), enquanto as amostras B, C e D de um Nitossolo Vermelho distroférrico (Nvdf).

A Figura 4.2 apresenta a classificação da amostra retirada do bloco indeformado pela metodologia SUCS.

Figura 4.2 – Classificação do solo (SUCS) na Carta de Plasticidade

Ao plotar os valores de LL e IP da amostra, o solo se enquadra como OH (argilas orgânicas de média a alta plasticidade) ou MH (siltes inorgânicos, micáceos ou diatomáceos, finos arenosos ou solos siltosos, siltes elásticos). Neste caso, em função da presença de matéria orgânica observada na amostra, o solo foi classificado como OH.

Com relação à metodologia AASHTO, o solo foi classificado como A-7-5, com índice de grupo (IG) igual a 14.

4.3 ENSAIOS EDOMÉTRICOS SIMPLES

A Tabela 4.4 apresenta um resumo das propriedades das amostras utilizadas para a obtenção da curva de adensamento do solo e, também, das amostras inundadas. Ressalta-se que a altura inicial do corpo-de-prova (H₀) é de 2,023 centímetros, enquanto as larguras são de 6 centímetros.

Parâmetros		EDS - N	EDS-I 43,6 kPa	EDS-I 98,1 kPa	EDS-I 200,1 kPa	EDS - I 425,1 kPa	Unid.
Peso esp. dos sólidos	γ_{s}	30,22	30,22	30,22	30,22	30,22	kN/m³
Peso esp. natural	γ_n	14,61	14,63	13,44	14,37	13,83	kN/m³
Peso esp. aparente seco	γ_d	10,45	10,53	9,61	10,42	10,09	kN/m³
Teor de umidade natural	Wnat	39,9	38,9	39,8	38,0	37,1	%
Índice de vazios inicial	e	1,892	1,869	2,144	1,901	1,995	-
Porosidade	η	65,4	65,1	68,2	65,5	66,6	%
Altura de sólidos no anel	H_s	6,923	6,980	6,369	6,902	6,685	mm
Saturação natural	Sr _{nat}	64,9	64,1	57,2	61,6	57,3	%
Teor de umidade inundado	Win	-	55,5	58,2	53,3	48,5	%
Saturação inundado	Srin	-	93,8	94,6	100,0	100,0	%
		-		010			

Tabela 4.4 - Dados dos corpos de prova ensaiados

Fonte: Autor (2019)

Salienta-se que a variação de umidade inicial dos materiais ensaiados foi de uma perda de 2,8% em relação à umidade inicial, no dia da coleta. Considera-se um valor baixo, dado que decorreram 39 dias da data de coleta da amostra até o início do último ensaio, comprovando a eficiência da vedação com a utilização da parafina derretida.

4.3.1 Ensaio Edométrico Simples Natural (EDS-N)

A Tabela 4.5 expõe os resultados deste ensaio.

Duração (h)	Tensão (kPa)	ΔH (mm)	∆Hac (mm)	Hf (mm)	Índice de vazios (e)	Porosidade (ŋ)
24	40,9	-0,574	-0,574	19,449	1,809	64,40%
24	98,1	-0,830	-1,404	18,619	1,689	62,82%
24	207,1	-1,493	-2,897	17,126	1,474	59,58%
24	425,1	-1,612	-4,509	15,514	1,241	55,37%
24	779,4	-1,137	-5,646	14,377	1,077	51,85%
24	534,1	0,011	-5,635	14,388	1,078	51,88%
24	207,10	0,089	-5,546	14,477	1,091	52,18%
24	98,10	0	-5,546	14,477	1,091	52,18%
				(0010))	

Tabela 4.5 - Resultados do EDS-N

Fonte: Autor (2019)

Onde ΔH refere-se à leitura da variação de altura da amostra observada no equipamento; ΔHac é a variação da altura acumulada após os incrementos de carga; Hf é a altura do corpo de prova ao final de cada período de aplicação de carga.

A curva de compressão edométrica está apresentada na Figura 4.3.

Figura 4.3 - Curva de compressão edométrica - EDS-N

Durante a etapa de descarregamento da amostra, percebeu-se a predominância de deformações plásticas e uma pequena recuperação elástica

4.3.1.1 Tensão de Pré-adensamento

Com a identificação do trecho virgem na curva de compressão edométrica foi possível, por meio do método de Pacheco Silva (ítem 2.2.2.5), determinar a tensão de pré-adensamento do ensaio edométrico simples natural, resultando em um valor de $\sigma_{vm} = 76 kPa$, como indicado na Figura 4.4.

^{× ,}

Figura 4.4 - Tensão de pré-adensamento: Método Pacheco Silva

Fonte: Autor (2019)

4.3.2 Ensaios Edométricos Simples Inundados (EDS-I)

O primeiro estágio de EDS-I, teve a inundação 24 horas após aplicação da tensão de 43,6 kPa. Os valores obtidos no final de cada ciclo de carga estão mostrados na Tabela 4.6.

	Tabela 4.6 - Resultados do EDS - I para inundação a 43,60 kPa					
Duração	Tensão	ΔH	∆Hac	Hf	Índice de vazios	Porosidade
(h)	(kPa)	(mm)	(mm)	(mm)	(e)	(ŋ)
24	21,8	-0,188	-0,188	19,835	1,842	64,81%
24	43,6	-0,121	-0,309	19,714	1,824	64,59%
24	43,6	0,003	-0,306	19,717	1,825	64,60%
Fonte: Autor (2019)						

Neste caso, houve um sensível aumento no índice de vazios, ou seja, uma leve expansão do solo após a inundação.

A Figura 4.5 ilustra a curva de compressão edométrica. Percebe-se que, na escala apresentada, torna-se imperceptível a visualização da expansão. De fato, a deformação expansiva observada é quase nula, dado que houve um aumento de apenas 0,001 no índice de vazios.

Já no segundo ensaio inundado, sob tensão de 98,10 kPa, acima de σ_{vm} , foram observadas deformações verticais superiores às do primeiro, especialmente após aplicação da tensão de umedecimento. Os resultados constam na Tabela 4.7.

T	Tabela 4.7 - Resultados do EDS - I para inundação a 98,10 kPa						
Duração	Tensão	ΔH	∆Hac	Hf	Índice de vazios	Porosidade	
(h)	(kPa)	(mm)	(mm)	(mm)	(e)	(η)	
24	21,8	-0,397	-0,397	19,626	2,081	67,55%	
24	43,6	-0,300	-0,697	19,326	2,034	67,04%	
24	98,1	-0,702	-1,399	18,624	1,924	65,80%	
24	98,1	-0,169	-1,568	18,455	1,898	65,49%	
Fonte: Autor (2019)							

Neste ensaio notou-se um aumento na deformação vertical do corpo de prova, decorrente da inundação nesta tensão, visível na Figura 4.6.

O terceiro ensaio, de tensão de umedecimento de 207,10 kPa, pode ser utilizado para determinação da gravidade do problema de colapso, através do critério proposto por Jennings & Knight (1975), dado que fora esta tensão de inundação estabelecida pelos autores. A Tabela 4.8 exibe os resultados deste EDS-I.

Duração (h)	Tensão (kPa)	∆H (mm)	∆Hac (mm)	Hf (mm)	Índice de vazios (e)	Porosidade (ŋ)
24	21,8	-0,185	-0,185	19,838	1,874	65,21%
24	43,6	-0,153	-0,338	19,685	1,852	64,94%
24	98,1	-0,321	-0,659	19,364	1,806	64,36%
24	207,1	-0,829	-1,488	18,535	1,685	62,76%
24	207,1	-0,411	-1,899	18,124	1,626	61,92%
			Eastar A.	tom (2010)		

Tabela 4.8 - Resultados do EDS - I para inundação a 207,10 kPa

Fonte: Autor (2019)

A deformação vertical provocada pela inundação foi maior do que o dobro da experimentada no ensaio anterior, ocasionando uma maior redução na porosidade e no índice de vazios do solo. É possível perceber esta deformação de forma clara na Figura 4.7.

Figura 4.7 - Curva de compressão edométrica - EDS-I a 207,10 kPa

Fonte: Autor (2019)

No último ensaio realizado, com inundação da amostra a 425,10 kPa de tensão, a variação de altura acumulada após estabilização desta chegou a quase 4 milímetros. Cabe relembrar que a altura total do corpo-de-prova é de 20 milímetros. Ainda assim, como se observa na Tabela 4.9, houve aumento no recalque devido ao aumento na umidade do solo.

Duração (h)	Tensão (kPa)	∆H (mm)	∆Hac (mm)	Hf (mm)	Índice de vazios (e)	Porosidade (ŋ)
24	21,8	-0,322	-0,322	19,701	1,947	66,07%
24	43,6	-0,277	-0,599	19,424	1,906	65,58%
24	98,1	-0,479	-1,078	18,945	1,834	64,71%
24	207,1	-1,113	-2,191	17,832	1,667	62,51%
24	425,1	-1,795	-3,986	16,037	1,399	58,31%
24	425,1	-0,298	-4,284	15,739	1,354	57,53%
			Eanta: A	$\frac{1}{2010}$		

Tabela 4.9 - Resultados do EDS - I para inundação a 425,10 kPa

Fonte: Autor (2019)

Nota-se uma significativa diminuição na porosidade desta amostra ao final da estabilização da tensão de 425,10 kPa em relação ao valor inicial. Dessa maneira, se deduz que a estrutura interna do solo caminha para um rearranjo e as partículas tendem a ocupar a maior

parte dos vazios presentes. Por isso se vê, na Figura 4.8, em uma menor proporção o recalque provocado pela inundação.

Figura 4.8 - Curva de compressão edométrica - EDS-I a 425,10 kPa

Fonte: Autor (2019)

4.3.2.1 Comparação das curvas de compressão edométricas normalizadas

Com efeito de visualizar, em mesma escala, as curvas de compressão, de maneira que permita uma comparação entre elas, realizou-se uma normalização, em que se divide o índice de vazios de cada carregamento pelo respectivo índice inicial do ensaio, exibidos na Tabela 4.4.

A Figura 4.9 ilustra a comparação normalizada das curvas de compressão dos EDS-I e também com a do EDS-N. Em teoria, as linhas deveriam coincidir seus caminhos até imediatamente antes da inundação, porém sabe-se que pela moldagem dos corpos-de-prova podem ocorrer variações que, mesmo sensíveis, influenciam nos Índices Físicos. Contudo, as curvas mostram que tendem para um mesmo comportamento de adensamento do EDS-N, como esperado.

Do gráfico, notam-se as variações de altura ocasionadas pela inundação nas diferentes tensões, sendo que a maior delas é vista a 207,10 kPa. Ressalta-se novamente que na tensão de 43,60 kPa a deformação ocorrida é insignificante ou "negligenciável", como denomina Gutierrez (2005).

Figura 4.9 - Comparação normalizada das curvas de compressão edométricas

Fonte: Autor (2019)

4.4 CRITÉRIOS DE IDENTIFICAÇÃO DE SOLOS COLAPSÍVEIS

A maneira mais usual de realizar a identificação de solos colapsíveis, segundo Lollo (2008), é através da aplicação dos critérios existentes na literatura. Sendo assim, serão exibidos os resultados dos critérios de colapsibilidade baseados em Índices Físicos, obtidos nos ensaios de caracterização, e os baseados em ensaios de laboratório, com os dados provenientes dos ensaios edométricos inundados.

4.4.1 Critérios Teóricos Baseados em Índices Físicos

Para os critérios teóricos, dividiu-se a exposição dos resultados em duas etapas, de acordo com as coletas de amostras, como apresentadas em 3.2.1. Cabe ressaltar que estes critérios foram elaborados em regiões distintas do Planeta e, consequentemente, com solos diferentes ou não dos analisados neste trabalho.

4.4.1.1 Análise primária: Amostras Deformadas

A terminação de cada critério, além da forma que cada autor denomina o coeficiente e estipula os intervalos para que o solo analisado seja denominado colapsível encontra-se na Tabela 4.10, para as amostras deformadas. Salienta-se que os cálculos e intervalos estão descritos em 2.5.4.1.

1	abcia		Countados p				mostras u	citi ina	uas
0.44		Amostra							
Criteri	0	Α		B 1		B2		С	
DENISOV	K	1,18	Argilas não Colapsível	0,86	Colapsível	0,85	Colapsível	1,28	Argila não Colapsível
Código Construção URSS	λ	-0,1	Colapsível	0,1	Colapsível	0,1	Colapsível	-0,2	Não Colapsível
FEDA	K	0,46	Não Colapsível	1,92	Colapsível	1,83	Colapsível	-0,08	Não Colapsível
GIBSS & BARA	R	0,8	Não Colapsível	1,2	Colapsível	1,2	Colapsível	0,8	Não Colapsível
Código de obras da URSS	CI	-0,11	Não se aplica (Sr > 80%)	0,09	Colapsível	0,1	Colapsível	-0,16	Não se aplica (Sr > 80%)
				Fantas	Austan (2010)	`			

Tabela 4.10 - Resultados por critérios teóricos – Amostras deformadas

Fonte: Autor (2019)

Os resultados se mostraram coesos nas amostras B1 e B2, porém divergentes para A e C. De fato, todos os solos analisados possuem características físicas muito semelhantes e, consequentemente, esperava-se maior conformidade entre os resultados. Em contrapartida, a forma de coleta de cada amostra supostamente pode ter influenciado nos resultados, já que as amostras A e C foram coletadas praticamente na superfície do terreno.

Ainda, por se tratar de critérios internacionais, os tipos de solos utilizados para análise são diferentes e, portanto, os critérios podem não possuir aplicabilidade aos solos tropicais brasileiros. Dessa forma, cabe uma sugestão às metodologias de análises teóricas de colapsibilidade a necessidade de trabalhar com coletas de amostras menos superficiais.

4.4.1.2 Análise secundária: Bloco de amostra indeformada

Da mesma maneira que para as amostras deformadas, a Tabela 4.11 exibe os resultados dos critérios teóricos para a amostra indeformada.

		00 000110	
Critério	Coe	ficiente	Avaliação
DENISOV	Κ	1,02	Argila não colapsível
Código Construção URSS	λ	-0,02	Colapsível
FEDA	Κ	0,89	Colapsível
GIBBS & BARA	R	0,97	Não Colapsível
Código de Obras URSS	CI	-0,02	Colapsível
<u>Г</u> ((0010)	

Tabela 4.11 - Resultados por critérios teóricos - Amostra indeformada

Fonte: Autor (2019)

Mais uma vez os resultados se mostraram heterogêneos, o que permite a conclusão de que os critérios teóricos não representam uma maneira totalmente confiável de determinar a colapsibilidade de solos argilosos tropicais, especialmente nesta região. Portanto, tornam-se necessários estudos mais completos e detalhados, como os ensaios de laboratório, que serão abordados a seguir.

4.4.2 Critérios baseados em ensaios edométricos simples

Os valores de coeficientes de colapso, como já referenciado anteriormente em 2.5.3, são calculados sempre de forma análoga, utilizando-se dos parâmetros de índice de vazios inicial e inundado ou diretamente os valores de variação de altura do corpo-de-prova. O que varia na literatura são os chamados critérios e como são interpretados por cada autor.

Nos ensaios realizados foi possível avaliar o solo a partir dos critérios propostos por Vargas (1978) e Jennings & Knight (1988), exibidos na Tabela 4.12.

Tabela 4.12 - Resultados por critérios baseados em ensaios edométricos simples					
Tensão de	Crit	tério (coeficiente)	Avalia aão / Duchlama		
Inundação (kPa)	Vargas (i)	Jennings & Knight (PC)	Avallação/ Problema		
43,6	-0,0002	-	Não colapsível		
98,1	0,0091	-	Não colapsível		
207,1	0,2220	2,22%	Colapsível/Moderado		
425,1	0,1860	-	Não colapsível		

Fonte: Autor (2019)

Estes resultados permitem entender, de forma mais aprofundada, que o solo pode ter comportamento colapsível ou não, a depender da tensão que está experimentando no momento que sofre o umedecimento brusco.

De fato, para tensões de inundação na ordem próxima de 200 kPa, o Nitossolo vermelho é considerado como colapsível pelos critérios baseados em ensaios edométricos, além de poder apresentar problemas moderados em edificações, segundo o critério de Jennings & Knight (1975), apresentado por Souza Neto (2004).

4.5 POTENCIAL DE COLAPSO

A realização dos quatro ensaios edométricos simples inundados (EDS-I) e o cálculo dos coeficientes de colapso possibilitaram uma relação do comportamento colapsível, entre potencial do solo em se desestruturar pela tensão que sofre a inundação. Os valores de potencial de colapso estão na Tabela 4.13 e a curva que ilustra os valores na Figura 4.10.

 Tabela 4.13 - Valores de colapso conforme tensão de inundação

 Tanção do Inundação (I/Do)

 Potencial do Colapso

Tensão de Inundação (kPa)	Potencial de Colapso
43,6	-0,02%
98,1	0,91%
207,1	2,22%
425,1	1,86%
Fonte: A	Autor (2019)

Figura 4.10 - Curva de Potencial de Colapso versus Tensão de Inundação

Os valores permitem analisar um crescimento do potencial de colapso com o aumento da tensão de inundação até a ordem próxima de 200 kPa, em que atinge um ponto máximo (pico), seguido de uma suave diminuição que tende a estabilização, ao se aumentar o carregamento.

5 CONCLUSÕES

A realização deste estudo abasteceu de forma pertinente a região de Apucarana, no sentido de caracterização dos solos argilosos, comportamento mecânico, parâmetros e, especialmente, como alerta de existência de solos colapsíveis na região.

Os objetivos propostos foram alcançados, desde as coletas de amostras até a realização dos ensaios indicados para tais fins. Da mesma forma, os resultados encontrados foram coerentes com os esperados, indicando predominância de solos residuais no município, com grandes quantidades de finos, majoritariamente de argila.

No que se refere a colapsibilidade, os critérios teóricos não apresentaram um grau de confiança para comprovar a ocorrência do fenômeno, apesar de alguns deles terem alertado para um possível potencial de colapso. Assim, é recomendado utilizá-los para uma pré-avaliação, tomando-se as devidas precauções de comparar todos os critérios, uma vez que ao analisar apenas um critério individualmente, sujeita-se ao risco de obter uma conclusão imprecisa. Por isso, deve-se apoiar em resultados de ensaios mais aprofundados, como os edométricos simples para determinar a colapsibilidade.

Tendo em vista resultados encontrados por Gutierrez (2005) durante a realização de ensaios semelhantes, para a tensão de 43,60 kPa, pode-se dizer que o potencial de colapso, mesmo que de expansão, é insignificante. Ainda assim poderia se considerar um resultado coerente, como observaram Vilar e Ferreira (2015), elucidando a possibilidade de expansão de solos argilosos quando inundados sob uma tensão inferior à de pré-adensamento.

A respeito do Potencial de Colapso, o comportamento obtido nos ensaios foi o mesmo encontrado por Gutierrez (2005) para o mesmo solo (Nitossolo vermelho), no município de Maringá, como já ilustrado na Figura 2.13. Além disso, corrobora com a conclusão da autora de que os Nitossolos são suscetíveis ao colapso, mas com valores de coeficientes menores do que os Latossolos, nos horizontes de solos lateríticos do Norte do Paraná.

Dessa forma, conclui-se que os Nitossolos vermelhos de Apucarana apresentam comportamentos colapsíveis para tensões bruscas de inundação na ordem próxima de 200 kPa, no primeiro metro de profundidade. Para tensões superiores ou inferiores a 200 kPa, os valores de potencial de colapso não permitem dizer que o solo é colapsível, porém cabe dizer que os valores são muito próximos ao limite de 2% em que o fenômeno ocorre. Adendo que a tensão de pré-adensamento depende da profundidade analisada, os potenciais de colapso para perfis mais profundos devem ser analisados.

Propõe-se como sugestão de pesquisas a realização de análises dos mesmos comportamentos para os demais solos existentes na região. Além disso, sugerem-se ensaios edométricos simples com valores de tensão de inundação diferentes, quantidades maiores e uma análise do potencial de colapso para amostras coletadas em profundidades distintas.

Finalmente, é imprescindível a realização de estudos que desenvolvam ou melhorem soluções viáveis e acessíveis para esta problemática, já que está diretamente ligada à segurança e conforto de toda a sociedade que convive diariamente em edificações assentadas sobre estes solos.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6122: Projeto e execução de fundações. Rio de Janeiro, 2019.

_____. ABNT NBR 6457: Amostras de solo: Preparação para ensaios de compactação e ensaios de caracterização. Rio de Janeiro, 2016.

_____. **ABNT NBR 6458:** Grãos de pedregulho retidos na peneira de abertura 4,8 mm - Determinação da massa específica, da massa específica aparente e da absorção de água. Rio de Janeiro, 2016.

_____. ABNT NBR 6459: Solo — Determinação do limite de liquidez. Rio de Janeiro, 2016.

_____. ABNT NBR 6502: Rochas e solos. Rio de Janeiro, 1995.

_____. ABNT NBR 7180: Solo — Determinação do limite de plasticidade. Rio de Janeiro, 2016.

_____. ABNT NBR 7181: Solo — Análise granulométrica. Rio de Janeiro, 2016.

_____. **ABNT NBR 9604:** Abertura de poço e trincheira de inspeção em solo, com retirada de amostras deformadas e indeformadas — Procedimento. Rio de Janeiro, 2016.

_____. ABNT NBR 9813: Solo — Determinação da massa específica aparente in situ, com emprego de cilindro de cravação. Rio de Janeiro, 2016.

AGNELLI, N. **Comportamento de um solo colapsível inundado com líquidos de diferentes composições químicas**. 1997. 205p. Tese – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1997.

AMERICAN SOCIETY FOR TESTING AND MATERIALS **ASTM D2435 / D2435M-11:** Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, PA, 2011, www.astm.org.

BERALDO, F. R. **Plano Diretor ampliou áreas de verticalização em Apucarana.** 2018. Disponível em: http://www.apucarana.pr.gov.br/site/plano-diretor-ampliou-areas-de-verticalizacao-de-apucarana/. Acesso em: 22 fev. 2019.

BRASIL, Ministério do Planejamento, Orçamento e Gestão, Instituto Brasileiro de Geografia e Estatística. **Mapas do Brasil.** 2017. Disponível em: https://www.ibge.gov.br/geociencias/downloads-geociencias.html. Acesso em: 02 out. 2019.

BRASIL, Ministério do Planejamento, Orçamento e Gestão, Instituto Brasileiro de Geografia e Estatística. **Mapa de Clima do Brasil.** IBGE. Rio de Janeiro, 2002.

BRASIL, Ministério do Planejamento, Orçamento e Gestão, Instituto Brasileiro de Geografia e Estatística. **Panorama das Cidades do Brasil.** IBGE. 2019. Disponível em: https://cidades.ibge.gov.br/brasil/pr/apucarana/panorama. Acesso em: 29/08/2019.

BRASIL, Ministério da Agricultura, Departamento Nacional de Pesquisa Agropecuária. Divisão de Pesquisa Agropecuária, Divisão de Pesquisa Pedológica. Levantamento de Reconhecimento dos Solos do Paraná. 1984.

CINTRA, J. C. A. Fundações em solos colapsíveis. São Carlos. Serviço Gráfico da EESC/USP. 1998.

DAS, Braja. M. Fundamentos de Engenharia Geotécnica. São Paulo. Cengage Learning. 2014.

EMPRESA BRASILERA DE PESQUISA AGROPECUÁRIA (EMBRAPA). Sistema Brasileiro de Classificação dos Solos. 5ed. Brasília, 2018.

FEDA, J. Structural Stability of Subsident Loess Soil from Praha-Dejvice. **Engineering Geology.** Amsterdam, v.1, n.3, p. 201-219,1966.

GONÇALVES, R.L. Estudo do comportamento de estacas apiloadas em solo colapsível da região de Londrina/Pr. Dissertação (Mestrado em Engenharia de Edificações e Saneamento) – Universidade Estadual de Londrina, Londrina, 2006.

GUTIERREZ, N.H.M. Influências de aspectos estruturais no colapso de solos do norte do **Paraná.** 2005. 311p. Tese (Doutorado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2005.

IAPAR, Instituto Agronômico do Paraná. **Médias Históricas de Apucarana.** Disponível em: <<u>http://www.iapar.br/arquivos/Image/monitoramento/Medias_Historicas/Apucarana.htm></u>. Acesso em 25 fev. 2019.

ISSMGE (Org.). What is Geotech. Disponível em: <www.whatisgeotech.org/>. Acesso em: 08 jun. 2019.

LODI, P. C. Origem dos Solos. In: LOLLO, J. A. D. (Org.). Solos Colapsíveis – Identificação, comportamento, impactos, riscos e soluções tecnológicas. São Paulo: Cultura Acadêmica: Universidade Estadual Paulista, 2008, p. 11-45.

LOLLO, J. A. D. (Org.). Solos Colapsíveis – Identificação, comportamento, impactos, riscos e soluções tecnológicas. São Paulo: Cultura Acadêmica: Universidade Estadual Paulista, 2008.

LUIZ, A. M. F.; FERNANDES, M. A. **Perfilagem do subsolo no município de Apucarana-PR com base em dados de sondagens de simples reconhecimento com SPT.** In: XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica – COBRAMSEG. Salvador, 2018.

LUIZ, A. M. F.; GUTIERREZ, N. H. M. Utilização de dados de sondagens de Simples Reconhecimento com SPT para perfilagem do subsolo na cidade de Maringá-Brasil. In: X
SIMPÓSIO DE PRÁTICA DE ENGENHARIA GEOTÉCNICA DA REGIÃO SUL – GEOSUL. Maringá, 2015.

MAACK, R. Breves notícias sobre a geologia dos estados do Paraná e de Santa Catarina. Arquivos de Biologia e Tecnologia. Arquivos de Biologia e Tecnologia, v. 2, pp. 63-154. Curitiba, 1947.

MANOSSO, F.C. **O estudo da paisagem no município de Apucarana – PR: as relações entre a estrutura geoecológica e organização do espaço. 2005**. Dissertação (mestrado). Departamento de Geografia do Centro de Ciências Humanas, Letras e Artes. Universidade Estadual de Maringá. Maringá, 2005.

MIGUEL, M.G.; BELINCANTA, A. Influência da colapsibilidade do solo de Londrina/PR na capacidade de carga de estacas escavadas com tardo manual. In: SIMPÓSIO BRASILEIRO DE SOLOS NÃO SATURADOS, 5., 2004. São Carlos. Anais... São Carlos: AMBS/EESC, 2004a. p. 369-375.

OWNTEC. **Aparelho De Cisalhamento Direto Do Solo** – **Eletrônico.** 2018. Disponível em: <<u>http://www.owntec.com.br/produto/cisalhamento-direto-do-solo-eletronico/></u>. Acesso em: 02 Out. 2019.

PARANÁ. Instituto Agronômico do Paraná. **Médias Históricas de Apucarana.** IAPAR. 2002. Disponível em: <http://www.iapar.br/arquivos/Image/monitoramento/Medias_Historicas/Apucarana.htm>. Acesso em: 06 fev. 2019.

PINTO, C. S. **Curso básico de Mecânica dos Solos em 16 aulas**. São Paulo: Oficina de Textos, 367 p. 2006.

RODRIGUES, R.A. **Modelação das deformações por colapso devidas à ascensão de lençol freático.** São Carlos, 262p. Tese (Doutorado em Geotecnia) – Escola de Engenharia de São Carlos, Universidade de São Paulo, 2007.

RODRIGUES, R. A.; LOLLO, J. A. D. Identificação dos Solos Colapsíveis. In: LOLLO, J. A. D. (Org.). Solos Colapsíveis – Identificação, comportamento, impactos, riscos e soluções tecnológicas. São Paulo: Cultura Acadêmica: Universidade Estadual Paulista, 2008. p. 129-150.

SEGANTINI, A. A. D. S. Consequências do Processo de Colapso. In: LOLLO, J. A. D. (Org.). Solos Colapsíveis – Identificação, comportamento, impactos, riscos e soluções tecnológicas. São Paulo: Cultura Acadêmica: Universidade Estadual Paulista, 2008, p. 119-128.

SOUZA NETO, J. B. **Comportamento de um solo colapsível avaliado a partir de ensaios de laboratório e campo, e previsão de recalques devidos à inundação (colapso).** 2004, 432 p. Tese – Universidade Federal do Rio de Janeiro, COPPE, Rio de Janeiro, 2004.

TOLEDO, M. C. M.; OLIVEIRA, S. M. B.; MELFI, A. J. **Intemperismo e Formação do Solo.** Teixeira *et al.* (editores). Decifrando a Terra, 2^a ed., Cap. 8, USP, São Paulo, 2003. TERZAGHI, K. E.; PECK, R. B. Soil Mechanics in Engineering Practice. John Wiley & Sons Inc., Nova York, 1996.

VARGAS, M. Introdução à Mecânica dos Solos. 2ª Edição, Mc Graw-Hill do Brasil, São Paulo, 1981, 509p.

VILAR, O. M.; FERREIRA, S. R. M. Solos colapsíveis e expansivos. Solos não saturados no contexto geotécnico, cap. 15. v. 1, 2015.

APÊNDICE A: ENSAIO EDOMÉTRICO SIMPLES NATURAL (EDS-N)

Estágios de Carga

Г

]	ESTAGIO	: Carga	Tensão 40,88 kPa	
Data (2019)	Hora	Tempo (min)	Leitura (mm)	Altura (mm)
28/set	11:26:00	0	-0,259	19,764
28/set	11:26:08	0,125	-0,757	19,266
28/set	11:26:15	0,25	-0,765	19,258
28/set	11:26:30	0,5	-0,770	19,253
28/set	11:27:00	1	-0,779	19,244
28/set	11:28:00	2	-0,783	19,240
28/set	11:30:00	4	-0,788	19,235
28/set	11:34:00	8	-0,797	19,226
28/set	11:41:00	15	-0,805	19,218
28/set	11:56:00	30	-0,809	19,214
28/set	12:26:00	60	-0,810	19,213
28/set	13:26:00	120	-0,821	19,202
28/set	15:26:00	240	-0,821	19,202
28/set	19:26:00	480	-0,821	19,202
29/set	11:26:00	1440	-0,833	19,190
V	/ARIAÇÃ	O DA ALTUR	A (mm)	-0,574

Quadro A.1 – EDS-N - Estágio de Carga: 40,88 kPa

	ESTÁGIO	Carga	Tensão 9	8,10 kPa
Data (2019)	Hora	Tempo (min)	Leitura (mm)	Altura (mm)
29/set	11:30:00	0	-0,833	19,190
29/set	11:30:08	0,125	-1,487	18,536
29/set	11:30:15	0,25	-1,510	18,513
29/set	11:30:30	0,5	-1,534	18,489
29/set	11:31:00	1	-1,557	18,466
29/set	11:32:00	2	-1,577	18,446
29/set	11:34:00	4	-1,591	18,432
29/set	11:38:00	8	-1,603	18,420
29/set	11:45:00	15	-1,613	18,410
29/set	12:00:00	30	-1,622	18,401
29/set	12:30:00	60	-1,628	18,395
29/set	13:30:00	120	-1,633	18,390
29/set	15:30:00	240	-1,638	18,385
29/set	19:30:00	480	-1,644	18,379
30/set	11:30:00	1440	-1,663	18,360
V	/ARIAÇÃ	O DA ALTUR	A (mm)	-0,830

Quadro A.2 – EDS-N - Estágio de Carga: 98,10 kPa

	ESTÁGIO	Carga	Tensão 20)7,10 kPa
Data (2019)	Hora	Tempo (min)	Leitura (mm)	Altura (mm)
30/set	11:30:00	0		18,360
30/set	11:30:08	0,125	-2,900	17,123
30/set	11:30:15	0,25	-2,949	17,074
30/set	11:30:30	0,5	-2,984	17,039
30/set	11:31:00	1	-3,013	17,010
30/set	11:32:00	2	-3,036	16,987
30/set	11:34:00	4	-3,063	16,960
30/set	11:38:00	8	-3,082	16,941
30/set	11:45:00	15	-3,095	16,928
30/set	12:00:00	30	-3,104	16,919
30/set	12:30:00	60	-3,116	16,907
30/set	13:30:00	120	-3,128	16,895
30/set	15:30:00	240	-3,133	16,890
30/set	19:30:00	480	-3,142	16,881
01/out	11:30:00	1440	-3,156	16,867
V	/ARIAÇÃ	O DA ALTUR	A (mm)	-1,493

Quadro A.3 – EDS-N - Estágio de Carga: 207,10 kPa

-	ESTÁGIO	Carga	Tensão 42	25,10 kPa
Data (2019)	Hora	Tempo (min)	Leitura (mm)	Altura (mm)
01/out	11:30:00	0		16,867
01/out	11:30:08	0,125	-4,545	15,478
01/out	11:30:15	0,25	-4,581	15,442
01/out	11:30:30	0,5	-4,612	15,411
01/out	11:31:00	1	-4,636	15,387
01/out	11:32:00	2	-4,660	15,363
01/out	11:34:00	4	-4,677	15,346
01/out	11:38:00	8	-4,694	15,329
01/out	11:45:00	15	-4,704	15,319
01/out	12:00:00	30	-4,713	15,310
01/out	12:30:00	60	-4,724	15,299
01/out	13:30:00	120	-4,733	15,290
01/out	15:30:00	240	-4,736	15,287
01/out	19:30:00	480	-4,749	15,274
02/out	11:30:00	1440	-4,768	15,255
V	'ARIAÇÃ	O DA ALTUR	A (mm)	-1,612

Quadro A.4 – EDS-N - Estágio de Carga: 425,10 kPa

	ESTÁGIO	Carga	Tensão 77	9,35 kPa
Data (2019)	Hora	Tempo (min)	Leitura (mm)	Altura (mm)
02/out	11:30:00	0		15,255
02/out	11:30:08	0,125	-5,602	14,421
02/out	11:30:15	0,25	-5,644	14,379
02/out	11:30:30	0,5	-5,683	14,340
02/out	11:31:00	1	-5,725	14,298
02/out	11:32:00	2	-5,757	14,266
02/out	11:34:00	4	-5,787	14,236
02/out	11:38:00	8	-5,806	14,217
02/out	11:45:00	15	-5,822	14,201
02/out	12:00:00	30	-5,833	14,190
02/out	12:30:00	60	-5,847	14,176
02/out	13:30:00	120	-5,858	14,165
02/out	15:30:00	261	-5,871	14,152
02/out	19:30:00	480	-5,883	14,140
03/out	11:30:00	1440	-5,905	14,118
V	'ARIAÇÃ	O DA ALTUR	A (mm)	-1,137

Quadro A.5 – EDS-N - Estágio de Carga: 779,35 kPa

Estágios de Descarga

ESTÁGIO: Descarga			Tensão 534,10 kPa	
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
03/out	11:30:00	0		14,118
03/out	11:30:08	0,125	-5,886	14,137
03/out	11:30:15	0,25	-5,886	14,137
03/out	11:30:30	0,5	-5,886	14,137
03/out	11:31:00	1	-5,886	14,137
03/out	11:32:00	2	-5,885	14,138
03/out	11:34:00	4	-5,885	14,138
03/out	11:38:00	8	-5,885	14,138
03/out	11:45:00	15	-5,885	14,138
03/out	12:00:00	30	-5,885	14,138
03/out	12:30:00	60	-5,885	14,138
03/out	13:30:00	120	-5,887	14,136
03/out	15:30:00	261	-5,886	14,137
03/out	19:37:00	487	-5,887	14,136
04/out	11:30:00	1440	-5,894	14,129
VA	RIAÇÃO I	DA ALTURA	(mm)	0,011

Quadro A.6 – EDS-N - Estágio de Descarga: 534,10 kPa

ESTÁGIO: Descarga			Tensão 207,10 kPa	
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
04/out	11:30:00	0		14,129
04/out	11:30:08	0,125	-5,885	14,138
04/out	11:30:15	0,25	-5,843	14,180
04/out	11:30:30	0,5	-5,842	14,181
04/out	11:31:00	1	-5,842	14,181
04/out	11:32:00	2	-5,842	14,181
04/out	11:34:00	4	-5,841	14,182
04/out	11:38:00	8	-5,837	14,186
04/out	11:45:00	15	-5,836	14,187
04/out	12:00:00	30	-5,831	14,192
04/out	12:30:00	60	-5,826	14,197
04/out	13:30:00	120	-5,819	14,204
04/out	15:30:00	261	-5,81	14,213
04/out	19:30:00	480	-5,805	14,218
05/out	11:30:00	1440	-5,805	14,218
VA	RIAÇÃO I	DA ALTURA	(mm)	0,089

Quadro A.7 – EDS-N - Estágio de Descarga: 207,10 kPa

EST	ESTÁGIO: Descarga			Tensão 98,10 kPa	
Data	Hora	Tempo	Leitura	Altura	
(2019)	1101a	(min)	(mm)	(mm)	
05/out	11:30:00	0		14,218	
05/out	11:30:08	0,125	-5,845	14,178	
05/out	11:30:15	0,25	-5,843	14,180	
05/out	11:30:30	0,5	-5,842	14,181	
05/out	11:31:00	1	-5,842	14,181	
05/out	11:32:00	2	-5,842	14,181	
05/out	11:34:00	4	-5,841	14,182	
05/out	11:38:00	8	-5,837	14,186	
05/out	11:45:00	15	-5,836	14,187	
05/out	12:00:00	30	-5,831	14,192	
05/out	12:30:00	60	-5,826	14,197	
05/out	13:30:00	120	-5,819	14,204	
05/out	15:30:00	261	-5,81	14,213	
05/out	19:30:00	480	-5,805	14,218	
06/out	11:30:00	1440	-5,805	14,218	
VA	RIAÇÃO I	DA ALTURA	(mm)	0,000	

Quadro A.8 – EDS-N - Estágio de Descarga: 98,10 kPa

APÊNDICE B: ENSAIO EDOMÉTRICO SIMPLES INUNDADO (EDS-I) 1

Tensão de Inundação a 43,60 kPa.

ESTÁGIO: Carga			Tensão 21,80 kPa	
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
6/out	11:30:00	0	-0,046	19,977
6/out	11:30:08	0,125	-0,121	19,902
6/out	11:30:15	0,25	-0,123	19,900
6/out	11:30:30	0,5	-0,124	19,899
6/out	11:31:00	1	-0,126	19,897
6/out	11:32:00	2	-0,128	19,895
6/out	11:34:00	4	-0,130	19,893
6/out	11:38:00	8	-0,132	19,891
6/out	11:45:00	15	-0,135	19,888
6/out	12:00:00	30	-0,148	19,875
6/out	12:30:00	60	-0,162	19,861
6/out	13:30:00	120	-0,188	19,835
6/out	15:30:00	240	-0,217	19,806
6/out	19:30:00	480	-0,225	19,798
7/out	11:30:00	1440	-0,234	19,789
VA	RIAÇÃO E	DA ALTURA	(mm)	-0,188

Quadro B.1 – EDS-I - Estágio de Carga: 21,80 kPa

ES	ESTÁGIO: Carga			3,60 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
07/out	11:32:00	0	-0,234	19,789
07/out	11:32:08	0,125	-0,325	19,698
07/out	11:32:15	0,25	-0,326	19,697
07/out	11:32:30	0,5	-0,326	19,697
07/out	11:33:00	1	-0,326	19,697
07/out	11:33:00	2	-0,327	19,696
07/out	11:36:00	4	-0,328	19,695
07/out	11:40:00	8	-0,329	19,694
07/out	11:47:00	15	-0,330	19,693
07/out	12:02:00	30	-0,336	19,687
07/out	12:32:00	60	-0,338	19,685
07/out	13:32:00	120	-0,339	19,684
07/out	15:32:00	240	-0,339	19,684
07/out	19:32:00	480	-0,349	19,674
08/out	11:32:00	1440	-0,355	19,668
VA	RIAÇÃO E	DA ALTURA	(mm)	-0,121

Quadro B.2 – EDS-I - Estágio de Carga: 43,60 kPa

ESTA	ESTÁGIO: Inundação			3,60 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
08/out	11:30:00	0		19,668
08/out	11:30:08	0,125	-0,350	19,673
08/out	11:30:15	0,25	-0,350	19,673
08/out	11:30:30	0,5	-0,350	19,673
08/out	11:31:00	1	-0,350	19,673
08/out	11:32:00	2	-0,350	19,673
08/out	11:34:00	4	-0,350	19,673
08/out	11:38:00	8	-0,350	19,673
08/out	11:45:00	15	-0,350	19,673
08/out	12:00:00	30	-0,349	19,674
08/out	12:30:00	60	-0,348	19,675
08/out	13:30:00	120	-0,347	19,676
08/out	15:30:00	240	-0,344	19,679
08/out	19:30:00	480	-0,341	19,682
09/out	11:30:00	1440	-0,352	19,671
VA	RIAÇÃO E	DA ALTURA	(mm)	0,003

Quadro B.3 – EDS-I - Estágio de Inundação: 43,60 kPa

APÊNDICE C: ENSAIO EDOMÉTRICO SIMPLES INUNDADO (EDS-I) 2

Tensão de Inundação a 98,10 kPa.

ES	ESTÁGIO: Carga			Tensão 21,80 kPa	
Data	Hora	Tempo	Leitura	Altura	
(2019)	1101a	(min)	(mm)	(mm)	
09/out	12:00:00	0	-0,254	19,769	
09/out	12:00:08	0,125	-0,581	19,442	
09/out	12:00:15	0,25	-0,586	19,437	
09/out	12:00:30	0,5	-0,591	19,432	
09/out	12:01:00	1	-0,597	19,426	
09/out	12:02:00	2	-0,603	19,420	
09/out	12:04:00	4	-0,610	19,413	
09/out	12:08:00	8	-0,616	19,407	
09/out	12:15:00	15	-0,619	19,404	
09/out	12:30:00	30	-0,624	19,399	
09/out	13:00:00	60	-0,627	19,396	
09/out	14:00:00	120	-0,628	19,395	
09/out	16:00:00	248	-0,628	19,395	
09/out	20:00:00	480	-0,637	19,386	
10/out	12:00:00	1440	-0,651	19,372	
VA	RIAÇÃO E	DA ALTURA	(mm)	-0,397	

Quadro C.1 – EDS-I - Estágio de Carga: 21,80 kPa

ES	ESTÁGIO: Carga			3,60 kPa
Data	Horo	Tempo	Leitura	Altura
(2019)	Пога	(min)	(mm)	(mm)
10/out	12:02:00	0		19,372
10/out	12:02:08	0,125	-0,868	19,155
10/out	12:02:15	0,25	-0,880	19,143
10/out	12:02:30	0,5	-0,888	19,135
10/out	12:03:00	1	-0,895	19,128
10/out	12:04:00	2	-0,904	19,119
10/out	12:06:00	4	-0,911	19,112
10/out	12:10:00	8	-0,921	19,102
10/out	12:17:00	15	-0,924	19,099
10/out	12:32:00	30	-0,927	19,096
10/out	13:02:00	60	-0,929	19,094
10/out	14:02:00	134	-0,931	19,092
10/out	16:02:00	240	-0,932	19,091
10/out	20:02:00	480	-0,939	19,084
11/out	12:02:00	1440	-0,951	19,072
VA	RIAÇÃO I	DA ALTURA	(mm)	-0,300

Quadro C.2 – EDS-I - Estágio de Carga: 43,60 kPa

ES	ESTÁGIO: Carga			8,10 kPa
Data	Uoro	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
11/out	12:00:00	0		19,072
11/out	12:00:08	0,125	-1,485	18,538
11/out	12:00:15	0,25	-1,514	18,509
11/out	12:00:30	0,5	-1,539	18,484
11/out	12:01:00	1	-1,555	18,468
11/out	12:02:00	2	-1,572	18,451
11/out	12:04:00	4	-1,585	18,438
11/out	12:08:00	8	-1,597	18,426
11/out	12:15:00	15	-1,604	18,419
11/out	12:30:00	30	-1,613	18,410
11/out	13:00:00	60	-1,621	18,402
11/out	14:00:00	120	-1,627	18,396
11/out	16:00:00	240	-1,631	18,392
11/out	20:00:00	480	-1,645	18,378
12/out	12:00:00	1440	-1,653	18,370
VA	RIAÇÃO I	DA ALTURA	(mm)	-0,702

Quadro C.3 – EDS-I - Estágio de Carga: 98,10 kPa

ESTÁGIO: Inundação			Tensão 9	8,10 kPa
Data	Uoro	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
12/out	12:00:00	0	-1,653	18,370
12/out	12:00:08	0,125	-1,653	18,370
12/out	12:00:15	0,25	-1,653	18,370
12/out	12:00:30	0,5	-1,654	18,369
12/out	12:01:00	1	-1,654	18,369
12/out	12:02:00	2	-1,654	18,369
12/out	12:04:00	4	-1,655	18,368
12/out	12:08:00	8	-1,657	18,366
12/out	12:15:00	15	-1,667	18,356
12/out	12:30:00	30	-1,706	18,317
12/out	13:00:00	60	-1,747	18,276
12/out	14:00:00	120	-1,774	18,249
12/out	16:00:00	240	-1,799	18,224
12/out	20:00:00	480	-1,809	18,214
13/out	12:00:00	1440	-1,822	18,201
VA	RIAÇÃO I	DA ALTURA	(mm)	-0,169

Quadro C.4 – EDS-I - Estágio de Inundação: 98,10 kPa

APÊNDICE D: ENSAIO EDOMÉTRICO SIMPLES INUNDADO (EDS-I) 3

Tensão de Inundação a 207,10 kPa.

ESTÁGIO: Carga			Tensão 21,80 kPa	
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
21/out	10:30:00	0		20,023
21/out	10:30:08	0,125	-0,149	19,874
21/out	10:30:15	0,25	-0,150	19,873
21/out	10:30:30	0,5	-0,152	19,871
21/out	10:31:00	1	-0,156	19,867
21/out	10:32:00	2	-0,159	19,864
21/out	10:34:00	4	-0,161	19,862
21/out	10:38:00	8	-0,162	19,861
21/out	10:45:00	15	-0,163	19,860
21/out	11:00:00	30	-0,170	19,853
21/out	11:30:00	60	-0,179	19,844
21/out	12:30:00	120	-0,181	19,842
21/out	14:30:00	240	-0,182	19,841
21/out	18:30:00	480	-0,182	19,841
22/out	10:30:00	1440	-0,185	19,838
VAI	RIAÇÃO E	A ALTURA	(mm)	-0,185

Quadro D.1 – EDS-I - Estágio de Carga: 21,80 kPa

ES	ESTÁGIO: Carga			3,60 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	Hora	(min)	(mm)	(mm)
22/out	10:30:00	0		19,838
22/out	10:30:08	0,125	-0,299	19,724
22/out	10:30:15	0,25	-0,300	19,723
22/out	10:30:30	0,5	-0,300	19,723
22/out	10:31:00	1	-0,300	19,723
22/out	10:32:00	2	-0,302	19,721
22/out	10:34:00	4	-0,303	19,720
22/out	10:38:00	8	-0,311	19,712
22/out	10:45:00	15	-0,314	19,709
22/out	11:00:00	30	-0,316	19,707
22/out	11:30:00	60	-0,320	19,703
22/out	12:30:00	129	-0,322	19,701
22/out	14:30:00	240	-0,322	19,701
22/out	18:30:00	480	-0,323	19,700
23/out	10:30:00	1440	-0,338	19,685
VA	RIAÇÃO E	DA ALTURA	(mm)	-0,153

Quadro D.2 – EDS-I - Estágio de Carga: 43,60 kPa

ES	ESTÁGIO: Carga			8,10 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	11010	(min)	(mm)	(mm)
23/out	10:30:00	0		19,685
23/out	10:30:08	0,125	-0,552	19,471
23/out	10:30:15	0,25	-0,563	19,460
23/out	10:30:30	0,5	-0,575	19,448
23/out	10:31:00	1	-0,585	19,438
23/out	10:32:00	2	-0,592	19,431
23/out	10:34:00	4	-0,599	19,424
23/out	10:38:00	11	-0,614	19,409
23/out	10:45:00	15	-0,615	19,408
23/out	11:00:00	30	-0,618	19,405
23/out	11:30:00	60	-0,628	19,395
23/out	12:30:00	120	-0,629	19,394
23/out	14:30:00	240	-0,631	19,392
23/out	18:30:00	480	-0,637	19,386
24/out	10:30:00	1440	-0,659	19,364
VA	RIAÇÃO E	DA ALTURA	(mm)	-0,321

Quadro D.3 – EDS-I - Estágio de Carga: 98,10 kPa

ES	ESTÁGIO: Carga)7,10 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
24/out	10:30:00	0		19,364
24/out	10:30:08	0,125	-1,248	18,775
24/out	10:30:15	0,25	-1,279	18,744
24/out	10:30:30	0,5	-1,327	18,696
24/out	10:31:00	1	-1,374	18,649
24/out	10:32:00	2	-1,394	18,629
24/out	10:34:00	4	-1,408	18,615
24/out	10:38:00	8	-1,417	18,606
24/out	10:45:00	15	-1,434	18,589
24/out	11:00:00	30	-1,445	18,578
24/out	11:30:00	60	-1,446	18,577
24/out	12:30:00	120	-1,452	18,571
24/out	14:30:00	240	-1,452	18,571
24/out	18:30:00	480	-1,465	18,558
25/out	10:30:00	1440	-1,488	18,535
VA	RIAÇÃO E	DA ALTURA	(mm)	-0,829

Quadro D.4 – EDS-I - Estágio de Carga: 207,10 kPa

EST	ESTÁGIO: Inundação)7,10 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
25/out	10:30:00	0		18,535
25/out	10:30:08	0,125	-1,489	18,534
25/out	10:30:15	0,25	-1,489	18,534
25/out	10:30:30	0,5	-1,489	18,534
25/out	10:31:00	1	-1,489	18,534
25/out	10:32:00	2	-1,489	18,534
25/out	10:34:00	4	-1,491	18,532
25/out	10:38:00	8	-1,683	18,340
25/out	10:45:00	15	-1,779	18,244
25/out	11:00:00	30	-1,813	18,210
25/out	11:30:00	60	-1,825	18,198
25/out	12:30:00	120	-1,833	18,190
25/out	14:30:00	305	-1,837	18,186
25/out	18:30:00	610	-1,849	18,174
26/out	10:30:00	1440	-1,899	18,124
VA	RIAÇÃO E	DA ALTURA	(mm)	-0,411

Quadro D.5 – EDS-I - Estágio de Inundação: 207,10 kPa

APÊNDICE E: ENSAIO EDOMÉTRICO SIMPLES INUNDADO (EDS-I) 4

Tensão de Inundação a 207,10 kPa.

ESTÁGIO: Carga			Tensão 21,80 kPa	
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
26/out	10:40:00	0	-0,053	19,970
26/out	10:40:07	0,125	-0,290	19,733
26/out	10:40:15	0,25	-0,298	19,725
26/out	10:40:30	0,5	-0,304	19,719
26/out	10:41:00	1	-0,309	19,714
26/out	10:42:00	2	-0,314	19,709
26/out	10:44:00	4	-0,320	19,703
26/out	10:48:00	8	-0,326	19,697
26/out	10:55:00	15	-0,330	19,693
26/out	11:10:00	30	-0,341	19,682
26/out	11:40:00	60	-0,348	19,675
26/out	12:40:00	120	-0,349	19,674
26/out	14:40:00	240	-0,355	19,668
26/out	18:40:00	480	-0,367	19,656
27/out	10:40:00	1440	-0,375	19,648
VAI	RIAÇÃO E	DA ALTURA	(mm)	-0,322

Quadro E.1 – EDS-I - Estágio de Carga: 21,80 kPa

ES	ESTÁGIO: Carga			3,60 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
27/out	10:40:00	0		19,648
27/out	10:40:07	0,125	-0,580	19,443
27/out	10:40:15	0,25	-0,585	19,438
27/out	10:40:30	0,5	-0,589	19,434
27/out	10:41:00	1	-0,593	19,430
27/out	10:42:00	2	-0,598	19,425
27/out	10:44:00	4	-0,604	19,419
27/out	10:48:00	8	-0,609	19,414
27/out	10:55:00	15	-0,614	19,409
27/out	11:10:00	30	-0,619	19,404
27/out	11:40:00	60	-0,623	19,400
27/out	12:40:00	120	-0,626	19,397
27/out	14:40:00	240	-0,63	19,393
27/out	18:40:00	480	-0,638	19,385
28/out	10:40:00	1440	-0,652	19,371
VA	RIAÇÃO E	DA ALTURA	(mm)	-0,277

Quadro E.2 – EDS-I - Estágio de Carga: 43,60 kPa

ES	ESTÁGIO: Carga			8,10 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
28/out	10:40:00	0		19,371
28/out	10:40:07	0,125	-1,001	19,022
28/out	10:40:15	0,25	-1,024	18,999
28/out	10:40:30	0,5	-1,039	18,984
28/out	10:41:00	1	-1,050	18,973
28/out	10:42:00	2	-1,061	18,962
28/out	10:44:00	4	-1,065	18,958
28/out	10:48:00	8	-1,078	18,945
28/out	10:55:00	15	-1,081	18,942
28/out	11:10:00	30	-1,088	18,935
28/out	11:40:00	60	-1,094	18,929
28/out	12:40:00	120	-1,102	18,921
28/out	14:40:00	249	-1,116	18,907
28/out	18:40:00	480	-1,124	18,899
29/out	10:40:00	1440	-1,131	18,892
VA	RIAÇÃO E	A ALTURA	(mm)	-0,479

Quadro E.3 – EDS-I - Estágio de Carga: 98,10 kPa

ES	ESTÁGIO: Carga)7,10 kPa
Data	Hora	Tempo	Leitura	Altura
(2019)	1101a	(min)	(mm)	(mm)
29/out	10:40:00	0		18,892
29/out	10:40:07	0,125	-1,998	18,025
29/out	10:40:15	0,25	-2,025	17,998
29/out	10:40:30	0,5	-2,063	17,960
29/out	10:41:00	1	-2,088	17,935
29/out	10:42:00	2	-2,117	17,906
29/out	10:44:00	4	-2,143	17,880
29/out	10:48:00	8	-2,164	17,859
29/out	10:55:00	15	-2,180	17,843
29/out	11:10:00	30	-2,194	17,829
29/out	11:40:00	60	-2,206	17,817
29/out	12:40:00	120	-2,209	17,814
29/out	14:40:00	240	-2,214	17,809
29/out	18:40:00	480	-2,226	17,797
30/out	10:40:00	1440	-2,244	17,779
VA	RIAÇÃO E	DA ALTURA	(mm)	-1,113

Quadro E.4 – EDS-I - Estágio de Carga: 207,10 kPa

ESTÁGIO: Carga			Tensão 425,10 kPa	
Data	Hora	Tempo	Leitura	Altura
(2019)		(min)	(mm)	(mm)
30/out	10:40:00	0		17,779
30/out	10:40:07	0,125	-3,756	16,267
30/out	10:40:15	0,25	-3,789	16,234
30/out	10:40:30	0,5	-3,828	16,195
30/out	10:41:00	1	-3,860	16,163
30/out	10:42:00	2	-3,885	16,138
30/out	10:44:00	4	-3,909	16,114
30/out	10:48:00	8	-3,931	16,092
30/out	10:55:00	15	-3,941	16,082
30/out	11:10:00	30	-3,954	16,069
30/out	11:40:00	60	-3,967	16,056
30/out	12:40:00	155	-3,981	16,042
30/out	14:40:00	243	-3,987	16,036
30/out	18:40:00	486	-4,001	16,022
31/out	10:40:00	1440	-4,039	15,984
VA	-1,795			

Quadro E.5 – EDS-I - Estágio de Carga: 425,10 kPa

ESTÁGIO: Inundação			Tensão 425,10 kPa	
Data	Hora	Tempo	Leitura	Altura
(2019)		(min)	(mm)	(mm)
31/out	10:40:00	0		15,984
31/out	10:40:07	0,125	-4,039	15,984
31/out	10:40:15	0,25	-4,039	15,984
31/out	10:40:30	0,5	-4,039	15,984
31/out	10:41:00	1	-4,040	15,983
31/out	10:42:00	2	-4,042	15,981
31/out	10:44:00	4	-4,087	15,936
31/out	10:48:00	8	-4,175	15,848
31/out	10:55:00	15	-4,238	15,785
31/out	11:10:00	30	-4,288	15,735
31/out	11:40:00	60	-4,290	15,733
31/out	12:40:00	120	-4,307	15,716
31/out	14:40:00	240	-4,31	15,713
31/out	18:40:00	480	-4,321	15,702
01/nov	10:40:00	1440	-4,337	15,686
VA	-0,298			

Quadro E.6 – EDS-I - Estágio de Inundação: 425,10 kPa

