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Victory is to cleanse your mind of discord within yourself. 
That is, fully accomplish what you are here to do. 

This is not mere theory. Practice it. 
Then you will accept the great power of unity with nature. 

 
Morihei Ueshiba 



 

 Abstract 

In dealing with rigid body three-dimensional rotational motion, one is 

inevitably led to face the fact that rotations are not vector quantities. They 

may, however, be treated as such when the angle of rotation is (very) small. 

In this context, i.e. the infinitesimal case analysis, the time derivatives of the 

rotation variables hold simple (sometimes vector-like) relationships to the 

components of the angular velocity vector. Conventionally, this distinctive 

characteristic cannot be associated with general moderate-to-large rotations. 

 

In this thesis, it is demonstrated that the kinematical differential relationship 

between the rotation vector and the angular velocity vector may, in fact, be 

expressed in terms of a mere time derivative, provided that the angle of 

rotation is kept within moderate bounds. The key to achieve such simplicity 

in the kinematical equation (linear attitude kinematics) within moderate 

angles of rotation is a judicious choice of the basis from which the time 

derivative is observed. This result is used to advantage within a generalised 

version of Euler’s motion equations to construct a simple control law, which 

nominally realises both linear attitude tracking and linear angular velocity 

tracking (nominal linear attitude state tracking), within moderate attitude 

tracking errors.  

 

The analytical work presented here is unique in the sense that it combines 

attitude kinematics, dynamics and control in such a way that nominal 

linearity between the attitude state error variables is achieved within 

moderate attitude tracking errors. For the first time, an attitude control law 

explicitly enables the nominal closed-loop attitude state error dynamics to be 

chosen and motivated by useful physical concepts from linear control theory. 

The text also includes numerical simulations that validate and illustrate the 

theoretically achieved results. 

 

 



 

 Resumo 

No tratamento do movimento rotacional tridimensional de corpos rígidos é 

inevitável lidar-se com o fato de que rotações não são quantidades vetoriais. 

Elas podem, no entanto, ser tratadas como tais quando o ângulo de rotação é 

(muito) pequeno. Neste contexto, ou seja, o da análise infinitesimal, as 

derivadas temporais das variáveis de rotação mantêm um relacionamento 

simples (às vezes mesmo do tipo vetorial) com os componentes do vetor 

velocidade angular. Convencionalmente, esta distinta característica não pode 

ser associada a rotações grandes, nem mesmo medianas. 

 

Nesta tese é demonstrado que a relação diferencial entre o vetor rotação e o 

vetor velocidade angular pode, na realidade, ser expressa em termos de uma 

simples derivada temporal, desde que o ângulo de rotação seja mantido 

numa faixa moderada. O artifício permitindo tal simplicidade na equação 

cinemática (cinemática linear de atitude) com um ângulo de rotação 

moderado é a escolha criteriosa da base a partir da qual a derivada temporal 

é observada. Este resultado é utilizado vantajosamente em conjunto com 

uma versão generalizada das equações de movimento de Euler na construção 

de uma lei de controle simples. Essa lei realiza, concomitantemente, o 

rastreamento linear nominal de atitude e o rastreamento linear nominal de 

velocidade angular (rastreamento linear nominal de estado rotacional), 

dentro de uma faixa moderada de erro de rastreamento de atitude. 

 

O trabalho analítico apresentado é único no sentido em que este combina 

cinemática rotacional, dinâmica rotacional e controle de forma tal que 

linearidade nominal entre as variáveis de erro de estado é atingida mesmo 

para erros moderados de rastreamento de atitude. Pela primeira vez, uma lei 

de controle permite explicitamente que a dinâmica de erro de estado 

rotacional em malha fechada seja escolhida e motivada por conceitos físicos 

úteis da teoria linear de controle. O texto também inclui simulações 

numéricas que validam e ilustram os resultados teóricos obtidos.  
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C h a p t e r  1  

Chapter 1 Introduction 

This chapter introduces the reader to the problems faced in this thesis and 

signposts the corresponding solutions. Comparisons with existing techniques, 

and a summary of the ensuing chapters are also provided. 

 The attitude control of a rigid body has long been considered an important 

and challenging problem. With the advent of the space exploration in the 

1950’s, this problem took a larger dimension, and has been made since then 

subject of a substantial body of literature. Nowadays, attitude control is 

employed in a multitude of dynamical systems, which may be exemplified 

with aircrafts, robot manipulators, and underwater and space vehicles  

(see Wen & Kreutz-Delgado, 1991, for a comprehensive review). 

 

The research reported in this thesis is motivated primarily by the recent work 

of Xing & Parvez (2001), which focuses on the non-linear attitude state 

tracking (position and velocity tracking) control of a rigid body. The thesis is 

also closely related to the works of Schaub et al. (2001) and Paielli & Bach 

(1993), whose approach to attitude control yields a system closed-loop 

dynamics with linear performance in the attitude tracking error. 

 

This thesis discusses a new linear vector-like approach to the nominal 

attitude state tracking (position and velocity tracking) control of a rigid body. 

The approach proposed here incorporates features of the three above-

mentioned works, but avoids their main problems, as far as the nominal 

system is concerned. These problems will be discussed in detail and may be 

summarised as follows: (a) high control law complexity and nominal closed-

loop non-linearity, in the case of Xing & Parvez (2001); and (b) nominal 
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linearity restricted to the attitude tracking error (position only), in the case of 

Schaub et al. (2001) and Paielli & Bach (1993). 

 

It is convenient, in the name of simplicity, to select right from the outset the 

body’s centroid as the point about which the sum of moments is taken. For 

this choice, the translational motion can be found from particle dynamics, 

and the body’s rotational motion examined in an independent fashion. Thus, 

the body’s centroid location becomes irrelevant in the context, and will no 

longer be considered in this thesis (see Pars, 1965, p. 216; Mortensen, 1968; 

or Whittaker, 1927, p. 127-28). 

 

In order to be scrupulously clear as to the meaning of the terms used, it is 

useful to emphasise that the rigid body attitude state tracking control 

problem consists in the specification of an attitude control law, i.e. a torque 

formulation. The peculiarity of this control law is that it should enforce not 

only the attitude, but also the angular velocity of the controlled body to 

approximate the commanded/reference attitude and angular velocity 

respectively (see Xing & Parvez, 2001). 

 

When the commanded and the actual/body angular motion (path + velocity) 

are not the same, an error exists and the question arises as to how to specify 

this error. Evidently, the definition should be suitable for automatic control 

applications. Since angular velocity is a vector, the angular velocity tracking 

error is easily specified as the difference between the commanded and the 

actual angular velocities.  

 

On the other hand, the specification of the attitude tracking error is more 

involved, and lends itself to many possibilities (see, e.g., Shuster, 1993a). 

Attitude cannot be represented by a single true vector. It is, however, 

necessary to decide at any instant of time how near the actual attitude is to 

the desired attitude. In other words, it is necessary to furnish somehow a 

notion of magnitude and direction for the attitude tracking error. The 

adopted and most natural choice is, of course, the one suggested by Euler’s 
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theorem: the Euler angle/axis variables, whose product results in the so-

called rotation vector (see Shuster, 1993a, p. 452).  

 

The definition of the attitude state tracking error variables is an important 

step and may, in fact, contribute decisively to the design and analysis of the 

attitude control law. This is because the ease with which a given problem can 

be solved depends strongly on the underlying mathematical structure. It is 

therefore desirable to introduce as much structure at the outset as possible.  

 

To the case at hand, the referred mathematical structure is determined by 

the properties of three-dimensional rotations and corresponding kinematical 

differential relationships, which are ultimately dependent upon the chosen 

attitude variables (attitude tracking error variables). Those properties, 

relationships and implications in the attitude state tracking control problem 

are analysed throughout the main text and next summarised.  

 

Finite three-dimensional rotations are rigorously represented by orthogonal 

tensors. They may, however, be treated as vectors when the angle of rotation 

is (very) small. Rotations combine geometrically as though they were vectors 

only to the first-order of approximation (linear approximation) of the angle of 

rotation (see Goodman & Warner, 1964, p. 344-46; Argyris, 1982, p. 85; 

Crouch, 1981, p. 18-20; or Shuster, 1993a, p. 453, 460).  

 
 

   
2 2

sin sin sin
2 2

cos 1 cos 1 cos 1
2 2 8

φ φ
φ φ φ φ

φ φ φ
φ φ

≈ ≈ ≈

≈ ≈ − ≈ −

 

 

Although prominently useful, small angle first-order approximations are far 

too restrictive for a large number of practical/engineering applications. As a 

consequence, a totally linear approach to attitude control is ordinarily 

employed only in specific situations, e.g. Kaplan (1976, p. 240-45). 

small angle linear 
approximations 

small angle quadratic 
approximations 

small half angle quadratic 
(moderate) approximations 
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In the infinitesimal case analysis, where first-order approximations are 

appropriate, the time derivatives of the rotation variables hold simple 

(sometimes vector-like) relationships to the components of the angular 

velocity vector (see Hughes, 1986, p. 27-29). Conventionally, this distinctive 

characteristic cannot be associated with general moderate-to-large rotations 

(see section 7.4 for more on moderate angle approximations). 

 

A direct consequence of the non-vector/non-linear nature of moderate-to-

large rotations is that the well-established and convenient methods from 

linear control theory cannot, in general, be used in the definition of the 

system closed-loop attitude state error dynamics. Conventionally, it is 

difficult to impose system closed-loop qualities whenever the attitude 

tracking error is larger than just a few degrees. The notable exceptions are 

stability and homogeneous (unforced) attitude error dynamics (see Xing & 

Parvez, 2001; Schaub et al., 2001; and Paielli & Bach, 1993). 

 

A control system must not only be stable, but also be reasonably stiff to 

disturbances. It must respond quickly to commands - position and velocity in 

the case - and must not require excessive torques, velocities, or power (see 

Meyer, 1966). These additional qualities are typically difficult to impose when 

the system closed-loop dynamics is non-linear. The reason is very simple: 

there are no fundamental principles available to the non-linear case (see 

Schaub et al., 2001; or Meyer, 1971).  

 

The above-mentioned additional qualities may, however, be partially achieved 

via feedback linearisation, a technique that has received considerable 

attention in the last decade or so. This technique transforms the non-linear 

coupled rotational dynamics into an equivalent linear uncoupled system (see 

section 1.2 for a brief description). Possibly, the most recent and 

sophisticated strategy employing the feedback linearisation concept to 

control the attitude of a rigid body is the one offered by Schaub et al. (2001). 

The strategy they propose yields linear homogeneous (unforced) closed-loop 

dynamics in the attitude error without the need to restrict its size. 
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Although Schaub and his colleagues should be commended for their 

excellent paper, their control strategy is limited in the sense that it totally 

ignores its effects on the body’s angular velocity. Quality attitude tracking, 

however, does not necessarily imply quality angular velocity tracking ! 

Conventionally, the relationship between the attitude state tracking error 

variables is complex whenever the size of the attitude tracking error prevents 

small angle first-order approximations. 

 

Although restricted to the useful moderate attitude tracking error case, the 

work presented here solves this deficiency. The proposed control law 

increases, therefore, the number of qualities that can be imposed to the 

system nominal closed-loop rotational dynamics. In a single paragraph, the 

objective of this thesis and corresponding relevance may be stated as follows: 

 

The objective of this thesis is to develop a controller that nominally 

implements both linear attitude tracking and linear angular velocity tracking, 

i.e. a controller that implements nominal linear attitude state tracking within 

moderate attitude tracking errors. The relevance of this objective is twofold: 

(1) the unusual possibility of choosing the system nominal non-homogeneous 

closed-loop attitude state error dynamics by useful physical concepts from 

linear control theory, and (2) the potential practical/engineering significance 

of the proposed control law owing to the admissible moderate magnitude of 

the attitude tracking error vector. 

 

As above established, the domain of validity of the control law should not be 

restricted to a small / infinitesimal neighbourhood of the commanded 

(reference) attitude. It should be valid in a moderate one. As a consequence, 

ordinary linearisation procedures about the target states are precluded  

(see Hughes, 1986, p. 129). This problem is considerably difficult from an 

analytical standpoint, since the system describing equations are inherently 

non-linear, and any attempt to linearise them about the target states is likely 

to produce meaningless results. 
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Two pertinent general techniques for dealing with the finite error attitude 

tracking problem have been found in the literature: the Liapunov’s method 

and the already-mentioned feedback linearisation (see sections 1.1 and 1.2 

for a brief description). Nevertheless, the control laws constructed from these 

two techniques do not customarily realise linear closed-loop attitude state 

tracking (see Xing & Parvez, 2001; Schaub et al., 2001; Paielli & Bach, 1993, 

or Wen & Kreutz-Delgado, 1991). 

 

In the analysis of non-linear mechanical systems, a set of fundamental 

modelling issues surrounds the choice of the coordinates used to describe 

the system kinematics/dynamics. These decisions have a direct impact on 

the design and synthesis of (attitude) controllers. This is so because a given 

physical system may be described by equivalent sets of differential equations, 

whose degree of non-linearity depends strongly on the selected coordinates 

(see Junkins, 1997). 

 

The present work proposes a different method of attack on the rigid body 

attitude state tracking control problem. The method makes full use of the 

idea discussed in the last paragraph (judicious choice of coordinates) to 

linearise the attitude kinematics and the corresponding system nominal 

closed-loop attitude state error dynamics. The only imposed restriction is 

that the attitude tracking error should be kept within moderate bounds. It is 

also assumed perfect knowledge of the system parameters and states 

(nominal case). Robustness is an issue left for future work.  

 

In this thesis, it is analytically demonstrated that the kinematical differential 

relationship between the rotation vector (equivalent Euler/attitude vector) 

and the angular velocity vector may, in fact, be expressed in terms of a mere 

time derivative, provided that the Euler angle of rotation is kept within 

moderate bounds. The key to achieve such simplicity in the kinematical 

equation (linear attitude kinematics) within moderate angles of rotation is a 

judicious choice of the basis from which the time derivative is observed.  
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This new kinematical result is used to advantage within an also new 

generalised geometric version of Euler’s motion equations. The outcome is a 

simple control law that nominally realises both linear attitude tracking and 

linear angular velocity tracking (nominal linear attitude state tracking), 

within moderate attitude tracking errors. It should be mentioned in passing 

that the new kinematical result gives per se a physical interpretation on 

quasi-coordinates (see Meirovitch, 1970, p. 139). 

 

Clarity, simplicity and linearity are the order of the day. The experienced 

reader will notice the clarity with which complex multi-frame formulae are 

developed throughout the text. This is achieved thanks to a tailor-made 

explicit notation, which integrates in a single continuum both kinematical 

and dynamical concepts. It is the author’s opinion that the difficulty 

frequently associated with rotational kinematics and dynamics has a 

considerable component on the lack of a proper ergonomically designed 

explicit notation. In fact, the often-advocated minimal notations may even 

present a hindrance for deeper understanding. 

 

Simplicity and linearity are achieved by questioning the well established form 

of representation of a few important results in rigid body kinematics and 

dynamics. There is a widespread tendency of regarding as complete and 

immutable the works of the great patriarchs of the past, such as Euler, 

Rodriguez, Hamilton, and Cayley. Nonetheless, the last few decades have 

seen an explosion of new work, and this way of thinking should be re-

evaluated (see Junkins & Shuster, 1993). 

 

This thesis fits within this new work context. The aforementioned novel 

kinematical result, along with the also novel form of the equations of 

rotational motion, leads to a sui generis linear solution for the attitude state 

tracking control problem. The corresponding control law discloses what 

seems to be unique simplicity and linearity in the nominal closed-loop 

dynamics, within moderate attitude tracking errors.  
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The nature of, and the linearity achieved between the attitude state tracking 

error variables make certain a precise interpretation of both results and 

developed formulation. Feedback of attitude (rotation vector) and angular 

velocity errors is intuitively analogous to feedback of position and velocity 

errors to provide stiffness and damping in a linear position controller.  

 

This clear physical equivalence is not observed in the other available control 

strategies that disclose some kind of linearity in the nominal closed-loop 

dynamics. Schaub et al. (2001) and Paielli & Bach (1993), for example, define 

their nominal linear closed-loop error dynamics employing some set of less 

intuitive attitude variables and respective time derivatives. A better 

understanding of the system dynamical behaviour can be attained, however, 

when the control strategy is linear in the attitude states rather than linear in 

the attitude variables and their time derivatives. 

 

To finalise this section, it should still be mentioned that the development 

presented is typically analytical and coordinate-free. The former is in 

accordance with the well-known fact that intuition is not completely reliable 

in dealing with three-dimensional rotational motion. The latter allows 

representation of the resulting control law in any coordinate frame, 

depending only on convenience. Whenever possible, some geometrical 

mechanism is proposed for additional reinforcement in understanding. 

 

The next two sections give a brief description of the Liapunov’s and the 

feedback linearisation methods when applied to the development of attitude 

control laws. Closing the chapter, it is also provided an outline of the thesis. 
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1.1. Liapunov’s Method 

This method is applied directly to the non-linear rotational dynamics. 

Basically, the attitude feedback control law is determined by first defining a 

candidate Liapunov function, and then extracting the corresponding 

stabilising non-linear control.  

 

The most important step in applying a Liapunov approach to control system 

design is the selection of the candidate function, which measures the errors 

from the target states. The selection of the Liapunov function is, however, 

based on intuition rather than fundamental principles.  

 

Another drawback of the technique is that the resulting system closed-loop 

dynamics is generally non-linear. As a consequence, very important concepts 

from linear control theory, such as closed-loop damping and bandwidth, are 

simply not well defined.  

 

To achieve the desired closed-loop behaviour, the control system designer 

has to choose between (1) heuristic methods and (2) linearisation of the 

closed-loop dynamics about the reference motion in order to use linear 

control theory techniques to pick the feedback gains. It should be noted that 

whichever method is followed the chosen behaviour will be realised only 

within a reduced neighbourhood of the reference attitude path. 

 

Hughes (1986, p. 504-10) explains the method. A summary of the main 

concepts and theorems with examples of application are provided by Roskan 

(1979, p. 678-82). Further general commentaries and/or applications can be 

found, among many others, in Schaub et al. (2001), Junkins (1997), Paielli & 

Bach (1993), Wen & Kreutz-Delgado (1991), Wie & Barba (1985), Debs & 

Athans (1969), and Mortensen (1968). The last reference presents a 

particularly elegant and pertinent application of Liapunov’s method. 
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1.2. Feedback Linearisation 

This technique transforms the non-linear coupled system dynamics into an 

equivalent linear uncoupled system. This is achieved via non-linear state 

transformations and feedback laws.  

 

The procedure may be divided into two steps. The first linearisation step 

reduces the tri-inertial rigid body rotational dynamics into a simpler 

isoinertial form. The second step reduces the equations even further to a 

minimal representation in the form of an uncoupled double integrator. The 

resulting regulator problem can then be easily solved with linear methods. 

 

The transformations involved are exact, as opposed to an ε-close in an  

ε-neighbourhood, but they arise robustness issues due to the cancellation of 

the non-linear terms. As a result, adaptive control strategies are often 

considered. A drawback associated with the full application of this technique 

is that the corresponding linearising control laws are, potentially, very 

complex.  

 

Wen & Kreutz-Delgado (1991) describe this technique. The same idea is 

nicely presented/applied by Bennett et al. (1994, section IV-A). Junkins 

(1997) draws a number of enlightening commentaries. Slotine & Li (1991, 

chapter 6) provide a more general description of the method, its use and 

limitations. 

1.3. Outline of the Thesis 

The chapters of this thesis have been arranged to give the reader an 

integrated view of the problems faced and the mathematical apparatus 

needed for their solution. A considerable number of footnotes, appendixes, 

and figures have been provided. Their intent is twofold: (1) facilitate 

understanding, and (2) make the thesis accessible to readers with varying 
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degrees of expertise. The appendixes and footnotes are not essential to the 

main text, and may be disregarded by the more experienced reader. The text 

is organised as follows: 

 

Chapter 2: Notation  

Describes the notation adopted in this thesis and outlines its design process.  

Chapter 3: Angular Position  

Reviews the issue of rigid body orientation in three-dimensional space.  

Chapter 4: Angular Velocity 

Develops the expressions for the angular velocity in both direction cosines 

(orientation coordinate free) and Euler angle/axis variables. 

Chapter 5: Equations of Rotational Motion  

Presents a few different possibilities, both conventional and generalised 

geometric (novel), of expressing the equations of motion for a rotating rigid 

body.  

Chapter 6: Nominal Attitude Control Command Law 

Defines the form of the attitude control law using the (novel) generalised 

geometric equations of rotational motion and partial feedback linearisation. 

Chapter 7: Nominal Attitude Stability Analysis 

Finishes the construction of the control law using a novel kinematical 

differential relationship between attitude variables and angular velocity, 

determines the corresponding system nominal closed-loop transfer functions, 

and analyses the rigid body nominal attitude stability for the assumed 

control law.  

Chapter 8: Kinematical Theorem Numerical Validation  

Devises a method of validation for the theoretically achieved nominal results, 

in particular the novel kinematical relationship, constructs a model in 

Simulink/Matlab, and illustrates the validation method with numerical 

examples. 
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Chapter 9: Discussion and Conclusion 

Compares the results of the thesis with the pertinent literature, states the 

contributions to the field, and proposes a few possible themes for future 

research based on those results.  

Appendix A: Notational Examples 

Provides a number of examples of utilisation of the adopted notation. 

Appendix B: The Transformation Matrix 

Overviews the transformation matrix, its properties and forms of 

representation. 

Appendix C: The Rotation Matrix 

Establishes a general (novel) relationship of equivalence between the rotation 

matrix and the transformation matrix, and derives the finite rotation formula. 

Appendix D: Skew-Symmetric Form of the Vector Product  

Shows how to represent the vector cross product in algebraic skew-

symmetric form. 

Appendix E: Invariance of the Antisymmetry Property  

Demonstrates the invariance of the matrix antisymmetry property under 

orthogonal similarity transformations. 

Appendix F: Approximated Trigonometric Functions 

Exemplifies numerically the relative accuracy of small angle approximations. 

 

 



 
 

 
 
C h a p t e r  2  

Chapter 2 Notation 

This chapter describes the notation adopted in the thesis. Firstly, the need for 

such an unusual notation is clarified. Secondly, the symbols and identifiers 

utilised in the notation are defined, and their relative location specified. Lastly, 

lists containing details, formats and examples of all notational elements are 

provided.  

 The important issue of notation is given due attention in this thesis. The 

notation has been designed for easy reading, while still allowing the freedom 

to interchange between forms (geometric & algebraic) and bases of 

representation. 

 

Such freedom implies flexibility in formulae manipulation, and is particularly 

important to this work, since neither the bases nor the direction of the 

transformations involved are self-evident, making the explicit mention of 

these necessary. 

 

The notational structure, diagrammatically depicted in figure 1, specifies the 

relative location of all possible notational elements. Specific quantity 

representations may include, therefore, only part of the elements depicted in 

figure 1 (see page 18 for a few illustrative examples). 

 

Appendix A offers a comprehensive list of examples of utilisation of the 

notation, and may therefore be complementary to its description (the other 

appendices may also be helpful). The notational elements are defined in 

section 2.1. Lists containing details, formats and examples of all notational 

elements are provided in section 2.3. 
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Figure 1: Notational Structure 

 

Two graphical techniques contributed to the achievement of the above-

referred ease of reading: notational element disposition and colour coding. 

The use of both techniques is supported by ergonomic guidelines. They 

increase informational distinctiveness, therefore minimising the likelihood of 

perceptual/description errors1 (see Mayhew, 1992, p. 521 and Lansdale & 

Ormerod, 1994, p. 133). Next paragraphs describe briefly how these two 

techniques have been applied in designing the notation. 

 

The quantity identifier, the component identifier and the basis of 

representation notational elements (see figure 1) have all been located on the 

same side (right) of the corresponding quantity symbol. This disposition 

implies immediate and unambiguous identification of the quantity to which 

each notational element refers, even in a long succession of symbols in 

complex formulae 

                                          
1 Perceptual/description errors are failures in the detection of important information caused by insufficient 
perceptual cues. 
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Basis recognition is of fundamental importance to this work. Each of the four 

employed bases has been assigned a particular colour (see figure 2). This 

coding conveys the necessary information more vividly, facilitating therefore 

formulae reading and interpretation. The choice of the colours considered the 

requirement for visual efficiency. 

 

The selected colours, namely black, red, dark blue and dark green, provide 

adequate visual contrast over the white background (paper). This selection is 

recommend by Woodson (1987, p. 235).  

 

Another point considered in the choice of the colours is how spaced they are 

with respect to the visible spectrum. Colours are easier to discriminate 

between the further apart they are along the colour spectrum (see Mayhew, 

1992, p. 495-96). Given the above contrast requirement, the colours selected 

comprise a good option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Bases of Representation 
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The notation as devised emphasises explicitness. In fact, the notation is 

virtually self-explanatory, facilitating understanding and avoiding lengthy 

explanations about each term in the formulae. Related quantities and 

corresponding representations are "built" via simple adaptation of standard 

symbols, as opposed to the recurrent assignment of new symbols. As a 

result, the number of symbols utilised in the text is relatively small. 

 

It should be remarked that although the notation is thoroughly 

comprehensive and consistent, it is concise only in terms of the total number 

of symbols employed. The symbolic representation of individual quantities is 

complex when compared to the more conventional methods (generally one 

letter + one subscript). This drawback is somehow compensated by the 

notation’s improved readability. 

 

Another advantage of the proposed notation is that it stresses the relative 

nature of kinematic quantities. This is achieved by the definition of these 

quantities in terms of orthonormal bases (measurement basis and with 

respect to basis ), without regarding them as inertial or non-inertial frames of 

coordinates. In the realm of kinematics this distinction is not even necessary, 

and such consideration is called upon only when dynamic effects have to be 

considered. 

 

Although the proposed notation may seem peculiar to some, it has been 

adopted for good reasons. It is awkward (at least) to proceed with formulae 

manipulation within conventional notations when 

(a) The number of bases utilised is greater than two (four in the case of this 

work); 

(b) The time derivatives of the employed quantities are not always observed 

from the same basis; and  

(c) The quantities are not only treated as single entities, but also as arrays 

of components/elements, which are sometimes individually used. 
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Hughes (1986, p. 78-79, 522-34) also highlights the complexity of the 

situation and emphasises the need to choose the notation carefully. He 

proposes the use of vectrices when dealing with multi-frame problems. 

Vectrices formalise in an appropriate way the relationship between geometric 

and algebraic representations (see also Shuster, 1993a, p. 505-07). Although 

this notational device has a number of virtues, it has been considered 

unnecessary to the work carried out in this thesis. Thus, for the sake of 

simplicity, it has not been included in the notation. 

 

Junkins & Turner (1986, p. 6) also recognise the difficulty when facing multi-

frame problems. They even pointed out that a very large fraction of errors 

committed in formulating dynamical equations are of kinematic origin2. The 

notation they adopt is also very explicit. Follows the definitions of the 

notational elements presented in figure 1, a few illustrative examples of their 

relative location and utilisation, and the notational element lists. 

2.1. Notational Element Definitions 

Quantity Symbol - symbol that denotes a physical or mathematical quantity. 

Basis of Representation - dextral orthonormal basis along whose axes the 

quantity is represented. 

Array Symbols - symbols that denote the quantity in its algebraic form, i.e 

the quantity is expressed as an array of elements, one or two-

dimensional, which correspond to the particular representation of the 

quantity in the basis of representation. 

Component Identifier - one or two-digit number that identifies a single 

element of the quantity when this is represented in the basis of 

representation. 

                                          
2 The engineering note of Churchyard (1972), and the corresponding errata Churchyard (1973), constitute a 
pertinent example for this difficulty/problem. 
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Special Symbols - symbols that specify certain forms of representation of the 

quantity: the geometric (basis-free, vectors/dyadics), and the algebraic 

skew-symmetric (basis-dependent, column vectors).  

 

Quantity Identifier - sequence of letters and/or numbers that identifies 

1. The rigid body whose quantity is measured; 

2. The measurement basis - dextral orthonormal basis where the 

quantity is measured. 

3. The with respect to basis - dextral orthonormal basis with respect 

to where the quantity is measured.  

4. The special conditions associated to the quantity, or discriminates 

the quantity from similar ones. 

2.2. Illustrative Examples 

 

Geometric Representation                                             δϑω  

 

 
 
 
 
 

Algebraic Column-Vector Representation              { }ξ
ϑδω  

 
 

 

 

Algebraic Skew-Symmetric Representation          
ξ
δϑω⎡ ⎤⎣ ⎦  

 

Array Symbol  
(1-dimensional) 

Basis of 
Representation 

Special Symbol  
(vector symbol) Quantity Symbol  

(angular velocity) 

Quantity Identifier  
(measurement basis) 

Quantity Identifier  
(with respect to basis) 

Special Symbol  
(skew-symmetric) 

Array Symbol  
(2-dimensional) 

Basis of 
Representation 
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2.3. Notational Element Lists 

 

Basis of 
Representation symbols and names orthogonal 

axes 
unit 

vectors 

δ delta black 1 2 3δ δ δ, ,  1 2 3
ˆ ˆ ˆδ δ δ, ,  

ϑ alt. theta blue 1 2 3ϑ ϑ ϑ, ,  1 2 3
ˆ ˆ ˆϑ ϑ ϑ, ,  

λ lambda red 1 2 3λ λ λ, ,  1 2 3
ˆ ˆ ˆλ λ λ, ,  

res. Greek letters 
lower-case δ, ϑ, λ, ξ 

italic 

ξ xi green 1 2 3ξ ξ ξ, ,  1 2 3
ˆ ˆ ˆξ ξ ξ, ,  

 

 

 

Array Symbols notation examples 

1-dimensional array 
algebraic /column vector braces ( )( ){ }..  

2-dimensional array 
matrix brackets ( )( )..⎡ ⎤

⎣ ⎦  

 

 

 

Component Identifier notation examples 

components of an  
1-dimensional array 
components of an 
algebraic/column  vector 

one digit 
Times N. Roman 
regular 

( )( ){ }
( )( )

( )( )

( )( )

1

2

3

.

. .

.

.

. .

.

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

components of a  
2-dimensional array 
elements of a matrix 

two digits 
Times N. Roman 
regular 

( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

11 12 13

21 22 23

31 32 33

. . .

. . . .

. . .

. . .

. . . .

. . .

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 



Chapter 2: Notation 

  20 

 

Special Symbols notation examples 

vector arrow  ( ).  

unit vector  hat   ( ).̂  

dyadic double-arrow   ( ).  

skew-symmetric 
representation of a 
vector 

tilde  
(inside brackets) ( )( )

( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )( )

3 2

3 1

2 1

. .

. . .

. .

. .

. . 0 .

. . 0

0⎡ ⎤−
⎢ ⎥

⎡ ⎤ ⎢ ⎥= −⎣ ⎦ ⎢ ⎥
−⎢ ⎥⎣ ⎦

+

+

+

 

 
 

Quantity Identifier notation examples 

Rigid Body  
upper-case letters 
Times New Roman 
italic 

B 

Measurement Basis 
reserved Greek letters 
lower-case δ, ϑ, λ, ξ 
italic 

, , ,δ ϑ λ ξ  

With Respect  
to Basis 

reserved Greek letters 
lower-case δ, ϑ, λ, ξ 
italic 

, , ,δ ϑ λ ξ  

Special Conditions  
or Discriminators 

Times New Roman 
regular 

cm: centre of mass 

ic: initial condition 

ext: external torque 

m: measured/estimated 

1st: first-order of approx. 

2nd: second-order of approx. 

3rd: third-order of approx. 

C: control torque 

P: perturbing torque 

numbers: 1, 2, 3 

letters: a, b, c 
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Quantity Symbol notation examples 

angular velocity 
reserved Greek letter 
lower-case ω omega 
italic 

{ }, ,λ
ξ ξ
λ λϑ ϑ ϑω ω ω⎡ ⎤⎣ ⎦  

Laplace transform of  
the angular velocity 
(component) 

reserved Greek letter 
upper-case Ω omega 
italic 

31 2, ,ϑ ϑ
ξξ ξ

δ δλ λΩ Ω Ω  

geometric angle  
lower-case 
Greek letter 
italic 

ϕ 
ψ 
θ 
γ 

alt. phi 
psi  
theta 
gamma 

, , ,ϕ θ ψ γ  

Euler angle of rotation 
magnitude of rotation vector 

reserved Greek letter 
lower-case φ phi 
italic 

, ,λ λ ξϑδϑφ φ φ  

Euler axis of rotation 
unit vector along axis of 
rotation 

lower-case n 
Times New Roman 
italic 

{ }ˆ , ,n n nλ λ λ
ξϑ

ϑ ϑ ϑ⎡ ⎤⎣ ⎦  

rotation vector  
reserved Greek letter 
lower-case φ phi 
italic 

{ }, ,λ
ξ ϑ
λ λϑ ϑ ϑφ φ φ⎡ ⎤⎣ ⎦  

Laplace transform of  
the rotation vector 
(component) 

reserved Greek letter 
upper-case Φ phi 
italic 

1
λϑ
ξΦ  

generic vector  
lower-case r, u, v, w 
Times New Roman 
italic 

{ }1 2, , ,r u v wϑδ ⎡ ⎤⎣ ⎦  

transformation matrix  
upper-case T  
Times New Roman  
italic 

, ,T T T δ
δ ξϑ

λ λ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

rotation tensor 
upper-case R  
Times New Roman  
italic 

,R Rϑ ϑ
λ

δ δ⎡ ⎤⎣ ⎦  

moment of inertia tensor 
upper-case I  
Times New Roman  
italic 

, ,B B BI I I ξ
ϑ ϑ⎡ ⎤⎣ ⎦cm  
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Quantity Symbol 
(continuation) notation examples 

identity tensor 
number 1  
Times New Roman  
italic 

1 1⎡ ⎤⎣ ⎦,  

null tensor 
number 0  
Times New Roman  
italic 

0 0⎡ ⎤⎣ ⎦,  

angular momentum 
upper-case H  
Times New Roman  
italic 

{ }cm , ,B B BH H Hϑ
δ

δ δ δϑ  

moment of force  
upper-case M  
Times New Roman  
italic 

{ }C  xt e,B BM M ϑ
ξ

ϑ  

scalar constant lower-case  
italic , , ,nk c µ ζ  
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Vector/Array 
Operations notation examples 

cross product cross-product  ( ) ( ). .×  

scalar product  dot-product  
( ) ( )

( ) ( )

. .

. .

•

•

 

vector magnitude 
Euclidean norm double vertical bars ( ).  

matrix transpose 
superscripted upper-case T  
Times New Roman  
italic 

( ) ( )..
T

⎡ ⎤
⎣ ⎦  

matrix inverse 
superscripted 1−   
Times New Roman  
regular 

( ) ( )
1..
−

⎡ ⎤
⎣ ⎦  

vector/dyadic 
time derivative 

vector/dyadic quantity preceded by the 
time derivative subscripted by the basis 
symbol, or 

vector/dyadic quantity over-scripted by 
the basis symbol  

(basis from where the time derivative of the 
vector/dyadic quantity is observed)  

( ) ( )

( ) ( )

. .

. .

d
dt

d
dt

ϑ

ϑ

δ

δ

≡

≡

 

array time 
derivative  

array symbol preceded by the  
time derivative, or  

array symbol over-scripted by a bullet  

(basis implicit) 

( ) ( ){ } ( )( ){ }

( )( ) ( )( )

. .

. .

. .

. .

d
dt

d
dt

•

•

≡

⎡ ⎤ ⎡ ⎤≡⎣ ⎦ ⎣ ⎦

 

array time 
integral  

array symbol preceded by the integral 
symbol and succeeded by the time 
increment  

(basis implicit) 

( ) ( ){ }
( )( )

.

.

.

.

dt

dt⎡ ⎤
⎣ ⎦

∫

∫
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Chapter 3 Angular Position 

In this chapter, the issue of rigid body orientation in three-dimensional space is 

reviewed. The chapter begins with the matter of determining the angular 

position of a rigid body based on 3D translational data. Subsequently, the 

discussion is confined to the exploration of the transformation matrix, the 

rotation matrix, the non-vector nature of finite rotations, and the related variety 

of orientation methods. The chapter continues commenting on the direction 

cosine redundancy, and presenting an expression relating the transformation 

matrix and the 3-1-3 body-fixed set of orientation angles. Some remarks on 

minimal attitude representations conclude the chapter. 

 In confronting the general question of how to describe the three-dimensional 

angular position of a rigid body3, one realises that all points in the body may 

be located relative to a coordinate system (basis) fixed in the body. As a 

consequence, the three-dimensional angular position of a rigid body with 

respect to a certain frame δ  can be described as the orientation, in that 

frame, of a single basis ϑ  attached to the body (see Goldstein, 1980, p. 129; 

or Nikravesh, 1988, p. 153-54). 

 

The unit vectors associated to that body-fixed basis, namely 1 2 3
ˆ ˆ ˆϑ ϑ ϑ, , , may 

be obtained from the coordinates (translational data) of three known non-

collinear body points. The corresponding procedure, with slight variations, is 

described by Osborne & Tolson (1996, p. 3-4), Nikravesh (1988, p. 164-66), 

and Griffin & French (1991, p. 310-12) 

 

 

                                          
3 The hypothesis of rigidity basically says that the distance between any two points in the body is unchangeable 
(see Rosenberg, 1977, p. 61; or Goldstein, 1980, p. 128). 
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The components of those three unit vectors in basis δ can be readily 

recognised as the cosines of the angles formed by the unit vectors themselves 

and the axes of basis δ . Such components are aptly termed direction cosines 

(see Appendix B).  

 

These nine direction cosines (three components for each unit vector) can now 

be arranged column-wise forming a 3x3 matrix Tϑ
δ⎡ ⎤⎣ ⎦ , which gives the relative 

orientation of the two frames, ϑ and δ . This matrix might be employed, for 

example, to convert/transform the component resolution of a vector quantity 

v  from basis ϑ  to basis δ . This matrix is named most commonly in the 

literature as the transformation matrix 4 (see Appendix B). 

 

{ } { }v T vδ ϑ
ϑ
δ= ⎡ ⎤⎣ ⎦  (3.1) 

 

Similarly, the inverse transformation matrix T δ
ϑ⎡ ⎤⎣ ⎦ , i.e. the matrix that 

converts the resolution of a vector quantity from basis δ  to basis ϑ , can be 

obtained by simply rearranging the direction cosines into a row-wise fashion. 

The simplicity of this operation stems from the fact that the transformation 

matrix is orthogonal; thus its inverse equals the transpose5 (see Appendix B). 

 
1TT T Tδ δ ϑ

ϑ δϑ
−

= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3.2) 

 

The transformation matrix Tϑ
δ⎡ ⎤⎣ ⎦  can, in fact, be interpreted in two distinct 

ways: first as a frame transformation matrix, and second as a rotational 

operator. In the former interpretation (the one alluded to in the previous 

paragraphs), the transformation matrix is not dependent on the vector 

                                          
4 Depending on the use, interpretation and/or author’s preference, the transformation matrix might be named as 
direction cosine matrix, rotation matrix, rotational transformation matrix, transformation rotation matrix, 
orthogonal transformation matrix, matrix of linear vector transformation, orthonormal transformation matrix, 
attitude matrix, orientation matrix, attitude operator, orthonormal rotational transformation matrix, coordinate 
transformation matrix and so forth. 
5 This crucial result that inverse equals the transpose holds only for orthogonal matrices (see Arfken & Weber, 
1995, p. 187). 
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quantity being frame-transformed. Similarly, in the latter interpretation, it is 

not dependent on the vector quantity being rotated (see Appendix C).  

 

This dual interpretation can be used to establish a relationship of 

equivalence between the transformation matrix and the rotation matrix 

(coordinate representation of the rotation tensor). There are several lines of 

approach to deriving this relationship6. An elegant one considers Euler’s 

theorem, which states that the general rotation of a rigid body/frame is 

equivalent to a single rotation about a fixed axis (see Pars, 1965, p. 90-94; 

Whittaker, 1927, p. 2-3). Following the example of Grubin (1970) and Hughes 

(1986, p. 17), the unit vector n̂ϑδ  along this axis of rotation and the 

corresponding angle of rotation δϑφ  will be called Euler axis/angle variables7 

in this thesis (see Appendix C). 

 

It is interesting to note that the transformation matrix Tϑ
δ⎡ ⎤⎣ ⎦  can be equated 

to the rotation tensor      whether its basis of representation is the from  

basis ϑ or the to basis δ . Equivalently, one could have stated that the 

transformation matrix  Tϑ
δ⎡ ⎤⎣ ⎦  can be equated to the rotation tensor        

whether its basis of representation is the measurement basis ϑ or the with 

respect to basis δ  (see Appendix C). 

 

( )sin 1 cosT R 1 n n nδ
δ δ δ
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ δ δ δϑ ϑ ϑφ φ= = + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3.3) 

 

( )sin 1 cosT R 1 n n nδ δ δ δ δ
δ δ δ δ δ δϑ ϑ ϑ ϑ ϑ ϑ ϑφ φ= = + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3.4) 

 

 

 

                                          
6 This result is commonly referred to as the Rodriguez Formula (see Shabana, 1994, p. 438-39; Shabana, 1998, 
p. 31-33; or Rosenberg, 1977, p. 82-84). 
7 One can find in the literature several denominations for this axis, among which are: Euler axis, eigenaxis, unit 
eigenvector, effective axis of rotation, orientational axis of rotation, principal line, principal axis, equivalent 
rotation axis, unit equivalent axis and so forth. The denomination of the corresponding angle follows similarly. 

R δϑ  

R δϑ  
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The arbitrariness of the basis of representation of the rotation tensor R δϑ  

when equated to the transformation matrix  Tϑ
δ⎡ ⎤⎣ ⎦   may, in fact, be extended 

to any basis ξ  whose Euler axis n̂ξδ  is parallel to n̂ϑδ , i.e.  { } { } { }n n nδ
δ δξ δ

ξ ξ
ϑ ϑ= = . 

Conversely, the corresponding Euler angle δξφ  has no restrictions, and can 

therefore assume any value. This gives rise to a third, more general and not 

normally quoted form for the relationship of equivalence (see Appendix C): 

 

( )sin 1 cosT R 1 n n nδ
δ δ δ
ξ ξ

δ δ δϑ
ξ

ϑ ϑ
ξ

ϑ ϑ ϑ ϑφ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3.5) 

 

The extraction of the Euler angle/axis variables from a given transformation 

matrix can be found discussed in a number of works, among which are: 

Hughes (1986, p. 13-14), Gelman (1969), Junkins & Turner (1986, p. 26-28), 

Craig (1989, 51-53), Paul (1986, 25-32), and Shuster (1993a, 451-52). 

3.1. Alternative Parameterisations and Commentaries 

The direction cosines and the Euler angle/axis variables are only two 

methods for specifying the spatial angular position of a rigid body/frame. A 

review of the pertinent literature reveals a wide variety of orientation 

methods. Important examples used in engineering and technological 

applications, inter alia, are: Euler angles, Bryant angles, Cardan angles, 

Euler parameters, Rodriguez parameters, quaternions and the various body 

and space orientation angles.  

 

Possibly, the most comprehensive survey of attitude representation is the one 

offered by Shuster (1993a). For detailed explanations refer to Hughes (1986, 

p. 6-30), Kane et al. (1983, p. 1-38), Nikravesh (1988, p. 153-162, 347-52), 

Junkins & Turner (1986, p. 16-39), Shabana (1994, p. 442-47), Shabana 

(1998, p. 28-86), Wie (1998, p. 307-20), Adade Filho (2001, p. 39-55), and 

Wertz (1980, p. 410-20, 758-66). For summaries refer to Trindade & Sampaio 

(2000), Betsch et al. (1998, p. 275-78), Spring (1986, p. 366-67), and Rooney 
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(1977). The last reference compares some not mentioned rotational 

representations used in theoretical physics.  

 

The Euler, Bryant and Cardan angles are, in fact, particular definitions of the 

more generic classifications body and space orientation angles (see Kane 

1983, p. 30-38). All these methods rely upon the idea that the finite rotations 

are performed in precise sequences and/or over specific axes. This is 

connected to the fact that finite rotations do not commute8 (they do not 

satisfy the vector parallelogram addition law), and therefore they cannot be 

represented by a single true vector. For general discussions concerning these 

points, refer to Goldstein (1980, p. 167), Rosenberg (1977, p. 63-65), or Lewis 

& Ward (1989, p. 305-307); for pertinent examples of utilisation, see Roskam 

(1979, p. 24-31)9. 

 

Although the non-vector nature of finite rotations is undeniable and evident, 

one should realise that by virtue of Euler’s theorem any rotation can indeed 

be parameterised with the components of a single vector defined as 

n̂ϑ ϑ ϑδ δ δφ φ= , and most commonly called rotation vector10. In terms of the 

components of δϑφ , and its norm δϑφ , the transformation/rotation matrix can 

be obtained directly from equations 3.3 and 3.4: 

 

2

sin 1 cos
T R 1 ϑ ϑϑ ϑδ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ

ϑ

δδ
δ δ δ δ

δ ϑδ

φ φ
φ φ φ

φ φ

⎛ ⎞−⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
 (3.6) 

 

2

sin 1 cos
T R 1 δ δδ δ δ δ δ

δ δ δ δ
δ

ϑ ϑ
ϑ ϑ ϑ ϑ ϑ

ϑ ϑδ

φ φ
φ φ φ

φ φ

⎛ ⎞−⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
 (3.7) 

 

                                          
8 Regardless of the fact that finite rotations do not commute, infinitesimal rotations do commute (see Smith, 
1982, p. 442-45; or Konopinsky, 1969, p. 234-39). 
9 For a more specialised literature in the subject of finite/large rotations, refer to the seminal work of Argyris 
(1982). 
10 The terminology and notation concerning rotations found in the literature is not universal. Argyris (1982), for 
example, refers to a finite rotation as a rotational pseudovector, while Ibrahimbegovic (1997) refer to the same 
quantity as a rotation vector. The interested reader may refer to Angeles (1997, p. 20-21) for an axiomatic 
description of vectors, and Goldstein (1980, p. 171-72) for a concise explanation differentiating polar vectors and 
axial vectors (pseudovectors). 
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One driving motive for the existence of orientation methods apart from the 

simple direction cosines is the fact that these nine components of the 

transformation matrix are not independent (a rigid body has only three 

rotational degrees of freedom)11. There is a minimum set of six equations 

relating them, which are called collectively conditions of orthogonality. These 

conditions may be interpreted and stated in several different ways (see 

Arfken & Weber, 1995, p. 184-87; or Tai, 1997, p. 8-14).  

 

One intuitively appealing way of interpreting the orthogonality conditions is 

to regard them as the scalar products of the unit vectors of either from basis 

or to basis, the columns and rows of the transformation matrix respectively 

(see Appendix B). An alternative set of orthogonality conditions has been 

given by Gelman (1968). 

 

In the case of ADAMS12, which implements the Lagrangian formulation in 

building its equations of motion, an independent set of parameters is 

required, rather than the redundant direction cosines13. The one such set 

utilised internally by ADAMS is the 3-1-3 Euler angles14, i.e. the body-fixed  

3-1-3 set of orientation angles (see Blundell, 1997, p. 39; or Wielenga, 1987, 

p. 2-3). 

 

The relationship between this set of orientation coordinates and the 

transformation matrix is attained via three successive orthogonal 

transformations15, corresponding to the three body-fixed rotations. The 

derivation of such a matrix can be found in a number of advanced books in 

the subject, e.g. Goldstein (1980, p. 143-48); Nikravesh (1988, p. 348); 

                                          
11 In spatial kinematics, the unconstrained motion of a rigid body is described using six independent coordinates 
or DOF (degrees of freedom). Three of these DOF represent the translations, and the remaining three the 
rotations. Therefore, the orientation of a rigid frame can be completely defined in terms of three independent 
variables (see Shabana, 1998, p. 34; Goldstein, 1980, p. 128-29; or Bottema & Roth, 1979, p. 149). 
12 ADAMS (an acronym for Automatic Dynamic Analysis of Mechanical Systems) is a leading computer software 
package on the field of mechanical system simulation. 
13 The unduly redundancy of the nine direction cosines demands excessive computational effort when compared 
to other methods (see Rheinfurth & Wilson, 1991, p. 97; or Shuster, 1993, p. 498-99). 
14 The definition of the Euler Angles is not unique in the literature. Some authors choose the second rotation to 
be about the y-axis, whereas others consider any body-fixed sequence (see Shuster, 1993, p. 454).  
15 The resulting matrix of a successive product of orthogonal matrices is also orthogonal. 
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Shabana (1994, p. 363) and Bottema & Roth (1979, p. 153-56). For 

completeness, the end result is shown below (see figure 3).   

 

cos cos sin cos sin sin cos cos cos sin sin sin
cos sin sin cos cos sin sin cos cos cos sin cos

sin sin cos sin cos
T δ
ϑ

ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ θ ψ
ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ θ ψ

ϕ θ ϕ θ θ

− − −⎡ ⎤
⎢ ⎥= + − + −⎡ ⎤⎣ ⎦ ⎢
⎢⎣ ⎦

+

⎥
⎥
 (3.8) 

 

This relationship can be employed either to calculate Tϑ
δ⎡ ⎤⎣ ⎦  from the 3-1-3 

Euler angles, or to calculate 3-1-3 Euler angles from Tϑ
δ⎡ ⎤⎣ ⎦  by solving a set of 

transcendental equations (see Paul, 1986, p. 65-71; or Adade Filho, 2001, 

p. 41-44). In fact, any set of orientation coordinates such as Euler angles, 

Euler parameters, Rodriguez parameters, and so on can be extracted from a 

given transformation matrix by solving a set of transcendental equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Euler Angles 

 

It should be perceived, however, that the representation of the 

transformation matrix with Euler angles, equation 3.8, may not be well 

defined (singularities may occur) at certain orientations of the rigid 

coordinate frame in space. In fact, this disadvantage is not a particular case, 

3ϑ̂  

2δ  

3δ  

1δ  

2ϑ̂  

1ϑ̂  
θ ψ 

ϕ 
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but proceeds from any three-variable representation of the transformation 

matrix. This suggests that a four parameters representation, such as the 

Euler parameters is sometimes recommended. These points are discussed by 

many authors, among whom are Stuelpnagel (1964), Klumpp (1976), 

Shabana (1994, p. 373, 444), Shabana (1998, p. 34, 84-85), Nikravesh (1988, 

p. 39, 153, 162, 349), Paul (1986, p. 65-70), Pfister (1996), Betsch et al. (1998, 

p. 278, remark 1), or Rheinfurth & Wilson (1991, p. 82-85, 97-98).  

3.2. Remark on Minimal Attitude Representations 

Although minimal attitude representations (three-parameter only) inevitably 

incur singularities, the domain of validity of the parameterisation depends, of 

course, on the parameterisation itself. Recent research has addressed the 

problem of singular orientations, and new parameterisations have been 

proposed. These new parameterisations move the inherent singularity far 

away from the origin. It is now possible to achieve a globally non-singular 

minimal attitude parameterisation for all possible 360± degrees rotations. The 

excellent work of Tsiotras et al. (1997) shows in a unified fashion how to 

generate such representations. Junkins (1997) comments and compares 

some of the results. Tsiotras (1996) and Crassidis & Markley (1996) use such 

parameterisations in the construction of attitude control laws. 

 

 



 
 

 
 
C h a p t e r  4  

Chapter 4 Angular Velocity 

This chapter focuses on the development of expressions for the angular 

velocity. Initially, the derivation process considers the transformation matrix as 

a generic symbol, representing any set of orientation coordinates. The resulting 

general relationships are subsequently specialised to the case where the 

orientation coordinates are the Euler angle/axis. 

 In the previous chapter various methods of defining the orientation of a rigid 

body/frame in three-dimensional space were examined. Considering the 

number of methods available and their relative merits, one realises that care 

must be taken when choosing a parameterisation for finite spatial rotations. 

 

In this manner, it is expedient to regard the transformation matrix as a 

generic symbol, i.e. avoiding explicit use of any particular set of orientation 

coordinates, when deriving related kinematic quantities. The virtue of this 

approach is that it leads to not only more general, but also simpler 

expressions for the angular velocity matrix (skew-symmetric expansion of the 

angular velocity vector). 

 

These orientation coordinate-free expressions are commonly demonstrated by 

differentiation of the orthogonality condition of the transformation matrix. 

The result, a skew-symmetric matrix, is then defined as the corresponding 

angular velocity matrix (see Bottema and Roth, 1979, p. 20-21; Angeles, 

1997, p. 83; Shabana, 1994, p. 364-67; Shabana, 1998, p. 85-86; Corben & 

Stehle, 1994, p. 141-42, Nikravesh, 1988, p. 172-74; Kane et al., 1983, p. 47-

48; and Meyer, 1966)16.  

                                          
16 Bradbury (1968, p. 416-22), Junkins & Turner (1986, p. 11-13), Hughes (1986, p. 22-24) and Beggs (1983, 
p. 55-58) propose different versions for the derivation of the general expressions for the angular velocity matrix. 
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Although this method of demonstration is fairly simple, it looses track of the 

intuitive concept of the angular velocity vector. The somewhat unusual and 

more enlightening demonstration that follows is almost as simple as the one 

just referred, but it employs the fundamental relationship (transport 

theorem) between the time derivatives of a vector v  as seen from two bases ϑ  

and δ  that rotate with respect to each other:  
 

v v vϑ

δ

δ

ϑ

ω= + ×  (4.1) 

 

 
 

This relationship is, in fact, the result of a geometric argumentation that 

considers solely the relative angular velocity17 between the two referred bases 

(see Smith, 1982, p. 334-36). Much of the formulae development in this thesis 

makes direct or indirect use of this relationship. 

4.1. Angular Velocity Matrix 

Consider a vector r  fixed on basis ϑ , which rotates with respect to basis δ 

(see figure 4 for an illustration). In this case, the ϑ - observed derivative of r  

is clearly time invariant, thus given simply by  

 

{ } { }r 0 r 0
ϑ

ϑ
•

= ⇔ =  (4.2) 

 

The differentiation law (transport theorem) reduces in the case to 

 

r rϑ

δ

δω= ×  (4.3) 

                                          
17 The angular velocity can be treated as a vector field, and thought of as a property of the corresponding rigid 
body/frame. The reason substantiating this assertion is that the angular velocity vector is a function of time only, 
i.e. at a given instant of time it has the same value at all points of the body (see Bradbury, 1968, p. 418, 
Goodman & Warner, 1964, p. 346; Greenwood, 1965, p. 32; or Roskam, 1979, p. 14). 

angular velocity vector of  
basis ϑ  with respect to basis δ 
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Figure 4: Illustration 

 

 

As a vector equation, this result has no dependence on the particular basis 

selected to represent it, and can, therefore, be resolved using any set of base 

vectors that span the space, for instance  

 

( ) ( ) ( )31 23 31 2 1 2
1 2 3 1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆd r r r r r r
dt

δδ δδ δδ δ δ δ
δ δϑ ϑ

δ
ϑ δδ δ δ ω δ ω δ ω δ δ δ δ+ + = + + × + +  (4.4) 

 

The resolution onto basis δ  is particularly convenient in the case since  

 

1

2

3

ˆ

ˆ

ˆ

d 0
dt

d 0
dt

d 0
dt

δ

δ

δ

δ

δ

δ

=

=

=

 
, ,δ δ δ1 2 3  are constant vectors 

with respect to basis δ 

 

rigid body 

basis ϑ 

 basis δ 

2ϑ  

3ϑ  

1ϑ  

2δ  

3δ  

1δ  

r  



Chapter 4: Angular Velocity 

  35 

Considering yet that  

 

1 1 1

2 2 2

3 3 3

d dr r r
dt dt

d dr r r
dt dt

d dr r r
dt dt

δ δ δ

δ

δ δ δ

δ

δ δ δ

δ

•

•

•

= =

= =

= =

 

time derivatives of scalar 

quantities are independent of the 

frame of observation 

 

equation 4.4 can be simplified to 

 

( ) ( )31 23 31 2 1 2
1 2 3 1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆr r r r r rδδ δδ δδ δ δ δ
δ δϑ δϑ ϑδ δ δ ω δ ω δ ω δ δ δ δ

•• •

+ + = + + × + +  

 

which is readily expressible in algebraic format as (see Appendix A for the 

various forms of representation of the vector cross product) 

 

{ } { }r rδ δ δ
δϑω

•

= ⎡ ⎤⎣ ⎦  (4.5) 

 

The procedure utilised between equations 4.3 and 4.5, i.e. the resolution of a 

vector (or vector-dyadic) equation onto the basis of observation of the time 

derivative, is very useful and will be called upon repeatedly in this text. The 

key fact to keep in mind is that the vector     is the time derivative of v  as 

observed from a basis in which               are fixed. 

 

The geometrical method used in the derivation of equation 4.5 naturally 

brought forth the already mentioned angular velocity matrix18. A second 

relation for        may be attained by time differentiation of the relationship 

                                          
18 Skew-symmetric matrix associated with the angular velocity vector, and representing the matrix counterpart of 
the vector cross product. The tilde placed over the quantity symbol indicates that the components of the 
associated vector (for instance, the angular velocity vector) are used to generate the skew-symmetric matrix. This 
convention is fairly common in the literature, and will be used again in this work to represent analogous matrices 
associated with vectors other than the angular velocity one.  

v
ξ

 

1 2 3
ˆ ˆ ˆ, ,ξ ξ ξ  

{ }r δ
•
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between the δ - resolution and the ϑ - resolution of vector r , i.e. the 

transformation equation given by19 

 

{ } { }r T rδ ϑ
ϑ
δ= ⎡ ⎤⎣ ⎦  (4.6) 

 

So, taking the time derivative of both sides of equation 4.6, and remembering 

that the elements of  { }rϑ   are time invariant (equation 4.2), the next relation 

emerges  

 

{ } { } { }

{ }

r T r T r

T r

ϑδ δ δ

δ

ϑ
ϑ ϑ

ϑ
ϑ

• • •

•

= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ⎡ ⎤⎣ ⎦

 (4.7) 

 

Using equation 4.7 in conjunction with equations 4.5 and 4.6, one arrives at 

the following relation  

 

{ } { }T r T rδ δ δ
δ

ϑ ϑ
ϑ ϑ ϑω
•

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

which reduces immediately to  

 

T Tδ δ δ
δϑ ϑ ϑω

•

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (4.8) 

 

Now, making use of the orthogonality property of the transformation matrix, 

i.e.    1 TT Tδ δ
ϑ ϑ

−
=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦     (see Appendix B), the final result is achieved 

 

TT T

T T

δ δ δ
δϑ ϑ

ϑ
δϑ

δ

ϑω
•

•

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (4.9) 

                                          
19 One way of interpreting the transformation matrix is to think of it as relating the “appearance” of the vector in 
two different bases. 
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The expansion of this matrix relation leads to two different, but equivalent 

scalar equations for each component of the angular velocity vector when 

resolved onto basis  δ  (to basis ).  

 

The second resolution of interest is the one in terms of the unit vectors of the 

from basis ϑ . This can be attained by first observing that the matrix property 

of antisymmetry is invariant under orthogonal similarity transformations20 

(see Appendix E), thus 

 
T TT T T Tϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ
δ δ δ δ δ δ
δ δ δ δω ω ω ω= ⇒ =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

which after substitution of equation 4.9 leads to 

 

TT T

T T

δϑ
ϑ ϑ ϑ

ϑ
ϑ

δ
δ

δ
δ

ω
•

•

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (4.10) 

 

This equation can also be written as 

 

T T ϑ
ϑ ϑ ϑ
δ δ

δω
•

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (4.11) 

4.2. Time Dependence of the Euler Angle/Axis Variables 

The angular velocity expressions developed in section 4.1 have been 

formulated without the use of any particular set of orientation coordinates. 

So far, the transformation matrix has been considered a collection of 

direction cosines giving the relative orientation of two coordinate systems. 

 

                                          
20 The similarity transformation is an operation that shows how a representation (matrix) that depends on the 
basis (there are directions associated with the matrix) would change with a change in the basis itself (see Arfken 
& Weber, 1995, p. 190-92; or Strang, 1988, p. 304-07).  
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Direction cosines are not the only means – indeed, in many circumstances 

far from the most useful means – for specifying a rigid rotation (relative 

orientation). Another possibility, suggested by Euler’s theorem, is the 

specification of the orientation with the axis about which the rotation takes 

place and the respective angle of rotation, the Euler axis/angle variables. The 

quantities in this system are, of course, related to the direction cosines, and 

the relationships between the two systems are given by equations 3.3 and 3.4 

 

These two equations are particularly important to this work, since they 

comprise the departure points to the derivation of the relationships between 

the angular velocity and the time development of the orientation when the 

orientation is parameterised with the Euler angle/axis variables. Such 

derivations are shown next. 

 

The transformation matrix Tϑ
δ⎡ ⎤⎣ ⎦  can always be expressed in terms of δϑφ  and 

n̂ϑδ , as implied by Euler’s theorem (equation 3.3): 

 

( )

( )

ˆ,

sin 1 cos

T R R n

1 n n n

ϑ ϑ
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ
ϑ

δ
δ δ δ

δ δ δ δϑ ϑ ϑ ϑδ

φ

φ φ

= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

whose transpose and time derivative are respectively 

 

( )sin 1 cosTT 1 n n nϑ ϑ ϑ
ϑ ϑ
δ

δ δϑ ϑ ϑδϑδ δφ φ= − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

( )

cos sin sin

1 cos

T n n n n

n n n n

δ
δ δ δ δ

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑ ϑδ δ δ δ δ

δ δ δ

ϑ ϑ ϑ

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑδ δϑ

φ φ φ φ φ

φ

• •• •

• •

= + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎛ ⎞
+ − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠
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Substitution of these two results into equation 4.10, along with a few 

cancellations, simplifications and the following identities 

 

4 2 3n n n 0 n n n nϑ ϑ ϑ ϑ
δ

ϑ ϑ
δ δ δ δ δ

ϑ
ϑ ϑ ϑ ϑ ϑ ϑδϑ

•

= = − = −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

reduce the resulting expression to 

 

( )sin 1 cosn n n n n nϑ ϑ ϑ ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑδ δ δ δ δ δ δ δ δϑδ ϑω φ φ φ

• • •• ⎛ ⎞
= + − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠
 (4.12) 

 

Observing that the last term in parenthesis is the skew-symmetric 

representation of a vector cross product (see Appendix D), it follows 

immediately that  

 

{ } { } { } ( ) { }sin 1 cosn n n nϑ ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑδ δ δ δ δ δ δ δϑ ϑ ϑ ϑω φ φ φ

• ••

= + − − ⎡ ⎤⎣ ⎦  (4.13) 

 

It is important to observe that several quantities in equation 4.13 are now 

enclosed with braces (column matrices), which must clearly distinguish them 

from the corresponding quantities in the anterior equation 4.12 enclosed with 

brackets (skew-symmetric matrices). In geometric notation, equation 4.13 

becomes 

 

( )ˆ ˆ ˆ ˆsin 1 cosn n n n
ϑ ϑ

ϑ ϑ ϑ ϑ ϑδ δ δ δ δ δϑ ϑδ ϑδω φ φ φ
•

= + − − ×  (4.14) 

 

The δ - resolution counterpart of equation 4.13 can be derived in a similar 

fashion. The first step is the observation that the relationship of equivalence 

between the transformation matrix and the rotation matrix can also be 

expressed as (equation 3.4): 

 

( )

( )

ˆ,

sin 1 cos

T R R n

1 n n n

ϑ ϑ ϑ ϑ

ϑ

δ δ δ
δ δ δ

δ δ δ
δ ϑ ϑ ϑ ϑδ δ δ δ

φ

φ φ

= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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whose transpose and time derivative are respectively 

 

( )sin 1 cosTT 1 n n nϑ ϑ
δ δ δ δ

δ δ δ δϑ ϑ ϑ δϑφ φ= − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

( )

cos sin sin

1 cos

T n n n n

n n n n

δ δ δ δ δ
δ δ δ δϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

δ δ δ δ δ

δ δ δ δ
δ δ δ δ δϑ ϑ

φ φ φ φ φ

φ

• •• •

• •

= + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎛ ⎞
+ − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠

 

 

Substitution of these two results into equation 4.9, along with a few 

cancellations, simplifications and the following identities 

 

4 2 3n n n 0 n n n nδ δ δ δ δ δ δ
δ δ δ δ δ δϑ ϑ ϑ ϑ ϑ ϑδϑ

•

= = − = −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

reduce the resulting expression to 

 

( )sin 1 cosn n n n n nϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ
δ δ δ δ δ δ δ
δ δ δ δ δ δ δ δ δ δω φ φ φ

• • •• ⎛ ⎞
= + + − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠
 

 

The matrix identity described in Appendix D may be used once more to 

rewrite this expression as a column matrix relationship: 

 

{ } { } { } ( ) { }sin 1 cosn n n nϑ ϑ ϑ ϑ
δ δ δ δ δ
δ δ δ δ δ δ δ δϑ ϑ ϑ ϑω φ φ φ

• ••

= + + − ⎡ ⎤⎣ ⎦  (4.15) 

 

In geometric notation, equation 4.15 becomes 

 

( )ˆ ˆ ˆ ˆsin 1 cosn n n nϑ ϑ ϑ ϑ ϑ ϑ

δ δ

δ δ δ δ δ δ δϑ ϑδω φ φ φ
•

= + + − ×  (4.16) 

 

The kinematical differential relationship between the angular velocity and the 

Euler angle/axis variables is also analysed by Shabana (1998, p. 51-55), 

Shabana (1994, p. 440), Hughes (1986, p. 24-25), Angeles (1997, p. 89-90) 
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and Meyer (1966, Appendix B). Gelman (1971) provides an alternative 

derivation for this relationship, along with an interesting geometrical 

interpretation. 

 

The simple and general relationships for the angular velocity matrix achieved 

in this chapter, namely 4.9 and 4.10, can be usually found in advanced 

books of the pertinent literature. Although not so often found, equations 4.14 

and 4.16 are also part of the standard literature (see, e.g., Shuster, 1993a, 

p. 478). There are several lines of approach to deriving and expressing these 

relationships. Authors utilise methods that are somewhat different from each 

other. The development proposed here also fits in this context.  

 

 

 



 
 

 
 
C h a p t e r  5  

Chapter 5 Equations of Rotational Motion 

This chapter presents a few different possibilities of expressing the equations 

of motion for a rotating rigid body. Starting with the basic moment-of-

momentum relationship, the derivation of these equations follows a simple, 

concise and somewhat unusual geometric procedure (basis-free), which 

evidences the usefulness of the adopted notation and leads to the desired 

general results. 

 Last chapter addressed the matter of evaluating the relative angular velocity 

between two dextral orthonormal bases when the corresponding attitude 

history is given, equation 4.9 or 4.10. In the derivation process, the 

transformation matrix was considered as a generic symbol, representing 

whichever attitude variables.  

 

On the other hand, if the relative angular velocity history is known, the 

scalar counterparts for either 4.8 or 4.11 can be integrated to find the relative 

attitude history21. 

 

Hitherto, only geometric aspects of the rigid body/frame rotational motion 

have been considered. This chapter introduces expressions relating applied 

torques and rotational motion, i.e. the dynamical equations of motion for a 

rotating rigid body.  

 

There are many dynamical formulations available for deriving the motion 

equations. The two principally employed are the Lagrangian formulation and 

the Newton-Euler formulation. 

                                          
21 Kane (1973) offers an approximate analytical solution to this difficult problem. 
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In Lagrange’s method, the equations of motion are inherently second-order, 

and well suited for use only when the required generalised coordinates 

(rotational variables) are independent. 

 

Considering that (a) the choice for rotational variables is often a difficult one, 

(b) many rotation parameter sets are redundant, and (c) momentum-based 

differential equations are first-order, it seems that the vector mechanics 

formulation (Newton-Euler) is a better general choice22. 

 

In fact, Junkins & Turner (1986, p. 68) and Hughes (1986, p. 39-40, 51-52) 

conclude that there is no demonstrable advantage of Lagrangian methods 

over Newton-Euler methods when dealing with a single rigid-body. 

 

Moreover, in vector mechanics the equations of motion are formulated in 

vector-dyadic terms. This means that the choice of the basis where these 

equations are represented can be deferred. This possibility makes the 

Newton-Euler formulation particularly attractive to this work, since it 

provides a basis-free mathematical apparatus to the problems faced in the 

next chapters. 

 

So, within the framework of vector mechanics, a formal procedure for 

obtaining the equations of rotational motion for a rigid body results from 

employing the basic moment-of-momentum relationship, which states that 

(see, for example, Smith, 1982, p. 470-72 and Bradbury, 1968, p. 442-43):  
 

The sum of the moments about the centre of mass of a 

rigid body due to both external forces and couples equals 

the time rate of change of the angular momentum taken 

about the body’s centre of mass as measured by 

observers in an inertial coordinate system. 

                                          
22 In the Newton-Euler formulation, the solution of the dynamical differential equations does not require a prior 
choice of the rotational variables. In this formulation, dynamical and kinematical differential equations are 
considered separately. 
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In order to represent symbolically this dynamical relationship within the 

notation adopted in this text, it is now necessary to specify certain 

requirements to the bases in use. The first of these requirements is that one 

of the bases has to be inertial. 

 

The reader should note that the explicit use of this and other soon-to-be-

defined requirements is only necessary when dynamical effects have to be 

considered. If the concern is only with kinematical issues, such 

considerations are simply unnecessary. Defining δ  as the inertial frame, the 

above stated dynamical relationship may be expressed as 

 

( )
cm ext cm

cm

B B

B B

M H

d I
dt

δ

δ

δ
δ

ω•

=

=

∑
 (5.1) 

 

 

 
 
The moment of inertia tensor (second-moment-of-inertia dyadic) represents 

the resistance the body offers to changes on its rotational motion. It depends 

entirely on the body’s mass distribution with respect to the point where it is 

taken. Therefore, it can be understood as a property of the rigid body.  

 

One of the interpretations that can be given to the moment of inertia tensor 

is that of an (linear) operator, since it assigns a value to the angular 

momentum vector for any given value of the angular velocity vector. In other 

words, the angular momentum vector is a linear vector function of the angular 

velocity vector. 

 

The geometric representation (basis-free) of the moment of inertia tensor 

used above involves the notion and related properties/operations of dyadics 

in a Cartesian three-dimensional space (orthonormal basis system). An 

outstanding advantage of using this representation is that the familiar 

 δ inertial  

moment of inertia tensor 
of body B taken about 

its centre of mass 

angular velocity 
vector of body B with 

respect to basis δ 
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methods of vector manipulation can still be employed. The interested reader 

may consult Goodbody (1982, p. 152-53), Reddy & Rasmussen (1982, p. 107-

21), Meirovitch (1970, p. 126-30, 494-96), or Goldstein (1980, p. 192-98), 

being the first of these references particularly comprehensive in the subject. 

The short appendix A of Shuster (1993) may also be helpful. 

 

Due to simplifying considerations, the sum of the moments in equation 5.1 

was taken at the body’s centre of mass, and so it was the body’s moment of 

inertia tensor. In this case, it is convenient to define the body-fixed frame ϑ 

as centroidal (located at centre of mass of the body). Recalling yet that the 

angular velocity vector is not dependent on position (see footnote 17 on page 

33), one may write 

 

cm

cm ext ext

cm

B B

B B

B B

B

H H

M M

I I

δ δ

δ δ

δ

ϑ

ϑ

ϑ

ϑδω ω

=

=

=

=

 

 
thus 
 

( )
 extB B

B

M H

d I
dt

δ

δ

δ

ϑ ϑ

ϑ ϑ
δ

ω•

=

=

∑
 (5.2) 

5.1. Euler’s Motion Equations in Body-Fixed Coordinates 

The physical relationship expressed in equation 5.2 holds for any orientation 

of the basis of representation (basis-free). Although this is palpably true 

(vector-dyadic equation), one eventually has to resolve it onto some set of 

specific directions in order to proceed with detailed analysis of the system 

motion, and evaluate the torque components.  

 ϑ body-fixed + centroidal  
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Bearing in mind that the moment of inertia matrix of a rigid body is a 

constant quantity when expressed along the axes of a body-fixed frame, a 

considerable simplification will be gained if the basis of observation of the 

time derivative appearing in equation 5.2 is shifted from the inertial δ  basis 

to the body-fixed ϑ  basis. 

 

Making use of the transport theorem, the time derivatives of the angular 

momentum vector as seen from these two bases ( δ  and ϑ ) can be related as: 

 

( ) ( )

( )

B B B

B B

B B B

H H H

d I I
dt

I I I

δ

δ δ δ δ

δ δ δ

ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ
ϑ

ϑ
ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑδ δ δ δ

ω

ω ω ω

ω ω ω ω

• •

• • •

= + ×

= + ×

= + + ×

 

 

Since under the rigid body hypothesis  BI 0
ϑ

ϑ =    (time invariant as seen from 

basis ϑ ), the above relationship reduces to 

 

( ) extB B BM I I
ϑ

ϑ ϑ ϑδ δϑ ϑ ϑδω ω ω• •= + ×∑  (5.3) 

 

which may be directly resolved onto the body-fixed ϑ  basis as  

 

{ } { } { } extB B BM I Iϑ ϑ ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑδ δ δω ω ω

•

= +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑  (5.4) 

 

The scalar expansion of this matrix relation leads to the celebrated Euler’s 

equations of motion23. Relationship 5.4 is, in fact, one way of expressing the 

equations of motion for a rotating rigid body. There are several other ways of 

expressing the motion equations, which might be more advantageous  

                                          
23 Most authors refer to the three corresponding scalar equations as the Euler’s equations of motion only when 
the basis of representation is body-fixed and principal axes. 
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depending on the circumstances of the problem. Further examples can be 

found in Meirovitch (1970, p. 139-40, p. 157-62), and Rheinfurth & Wilson 

(1991, p. 128-30). 

5.2. Euler’s Motion Equations in Inertial Coordinates 

Before heading towards a more general and appropriate relationship to the 

case at hand, it is worth mentioning a second particular representation of 

Euler’s rotational equations of motion that is sometimes used/referred in 

textbooks. Firstly, consider once more the transport theorem. The 

relationship between the δ - observed and the ϑ - observed time derivatives of 

the angular velocity vector δϑω  is given simply by 

 
ϑ

ϑ ϑ ϑ

δ

δ δ δ ϑ

δ

δϑ

δω ω ω ω

ω

= + ×

=

 (5.5) 

 

The reader should note that this result is valid under these exceptional 

circumstances. The time derivatives of the angular velocity vector as observed 

from two bases that rotate with respect to each other are equal only when 

these two bases are the measurement basis and the with respect to basis of 

the angular velocity vector itself24 (compare to Shames, 1998, p. 919; Crouch, 

1981, p. 34; and Goodman & Warner, 1964, p. 353-54). 

 

In order to be scrupulously clear as to the meaning of this important result, 

it should be noted that in general                     . Equation 5.5 says only that 

the vector       can be equated to the vector       . At this point, it is also worth 

presenting the matrix counterpart of equation 5.5. To derive this expression, 

consider the transformation equation relating the δ - resolution and the  

ϑ - resolution of vector δϑω : 

                                          
24 The same result ensues, of course, if two other bases with the same relative angular velocity are used instead. 

{ } { }ϑ ϑ
δ
δ

ϑ
δω ω

• •

≠  
ϑ

δϑω  
δ

δϑω  
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{ } { }T ϑ
ϑ ϑ ϑ
δ δ
δ δω ω= ⎡ ⎤⎣ ⎦  (5.6) 

 

Taking the time derivative of both sides of this equation 

 

{ } { } { }T Tϑ ϑ
ϑ ϑ ϑ
δ

δ ϑδ δϑ
δ δω ω ω

• • •

= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 

and substituting equation 4.11 into the above result, yields 

 

{ } { } { }T Tϑ ϑ ϑ
ϑ ϑ ϑ
δ δ

ϑδ δϑδ ϑ
δ

δω ω ω ω
• •

= +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

but   { } { }0 0ϑ ϑ
ϑ ϑ ϑ ϑδ δ δ δω ω ω ω= ⇔ × =⎡ ⎤⎣ ⎦ ,  thus 

 

{ } { }T ϑ
ϑ ϑ
δ
δ δϑ

δω ω
• •

= ⎡ ⎤⎣ ⎦  (5.7) 

 

which clearly shows that in general { } { }ϑ ϑ
δ
δ

ϑ
δω ω

• •

≠ . Having clarified the role of 

the terms in the formulae, one can proceed by substituting equation 5.5 into 

equation 5.3, yielding 

 

( ) extB B BM I Iϑ ϑ ϑ

δ

δ δϑ ϑ ϑδω ω ω• •= + ×∑  (5.8) 

 

which may be resolved directly onto the inertial δ  basis 

 

{ } { } { } extB B BM I Iϑ ϑ ϑ ϑ ϑ ϑ
δ δ δ δ δ δ

δ δ δω ω ω
•

= +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑  (5.9) 

 

The moment of inertia tensor in relationship 5.9 has been expressed in the 

inertial δ  basis. In this situation, its components, the moments and products 

of inertia, will evolve continuously as the body rotates. Conversely, the same 

quantities when expressed in the body-fixed ϑ  basis are time independent 



Chapter 5: Equations of Rotational Motion 

  49 

and can be directly evaluated. In view of this point, it is expedient to find an 

expression relating these two resolutions.  

 

When the bases of representation are orthonormal, a tensor transforms from 

one set of components at a certain point (centre of mass in the case) to 

another set of components at the same point via an orthogonal similarity 

transformation (see, for example, Arfken & Weber, 1995, p. 192); accordingly 

 
T

B BI T I Tϑδ δ δ
ϑ ϑ ϑ ϑ=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (5.10) 

 

The equivalent form of Euler’s rotational equations of motion for a rigid body 

shown in equation 5.9 is often omitted in the literature. A few authors such 

as Bradbury (1968, p. 445), Corben & Stehle (1994, p. 149-51), Shabana 

(1994, p. 415) and Nikravesh (1988, p. 215-219) make use of this 

representation. Among all the works referred/consulted in this thesis, it is 

only in Bradbury’s book that such representation is actually discussed. 

5.3. Euler’s Motion Equations in Arbitrary Coordinates 

For an arbitrary basis of observation ξ , however, the transformation law for 

the time derivatives of the angular velocity vector is not as simple as it is in 

equation 5.5. The proper relationship can be attained employing the 

transport theorem once again: 

 
ξϑ

ϑ ϑδ δ ϑ ϑδξω ω ω ω= + ×  (5.11) 

 

which after substitution into equation 5.3 and a little rearrangement yields 

 

( ) ( ) extB B B BM I I Iϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑδ ϑξ δ

ξ

δ δω ω ω ω ω• • •= + × + ×∑  (5.12) 
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This third and more general form of the equations of motion for a rotating 

rigid body is of paramount importance to this work. It shows how these 

equations are expressed in geometric terms (basis-free) when the time 

derivative of the angular velocity vector δϑω  is observed from a basis that is 

not necessarily body-fixed or inertial. To the best of the author’s knowledge, 

the concept of writing the motion equations in this general geometric form 

has not been previously explored, and is certainly not normally quoted in the 

literature.  

 

In contrast, the simpler form shown in equation 5.3 can often be found in 

advanced books of the pertinent literature. Notational conventions usually 

demand, however, lengthy explanations (sometimes confusing) to clarify the 

roles of the terms in that equation. The interested reader is referred to Reddy 

& Rasmussen (1982, p. 109), Rheinfurth & Wilson (1991, p. 70-73), 

Groesberg (1968, p. 161-62), or Goodbody (1982, p. 199). 

 

In the same way as in the case of equations 5.3 and 5.8 (and also equations 

4.3-4.5) equation 5.12 may be directly resolved onto the basis from where the 

time derivative is observed, accordingly 

 

{ } { } { } { } extB B B BM I I Iξ ξ ξ
ϑ

ξ ξ ξ ξ ξ
δ δ δϑ ϑ ϑ ϑ ϑ ϑ

ξ
ϑ ϑδξω ω ω ω ω

•

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑  (5.13) 

 

where the moment of inertia tensor expressed in the arbitrary basis ξ  is 

given by 

 
T

BBI T I Tϑξ ξ ξ
ϑϑ ϑ ϑ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (5.14) 

 

Although the elegant geometric formulation 5.12 has oddly enough never 

been to the writer’s knowledge quoted in the literature, Meirovitch (1970, 

p. 161) provides an expression for the equations of motion referred to an 

arbitrary system of axes. His development leads, however, to a Lagrangian 



Chapter 5: Equations of Rotational Motion 

  51 

form in terms of quasi-coordinates, which still demands lengthy 

manipulations in order to derive a matricial expression equivalent to 5.13.  

 

The general geometric representation for Euler’s equations of motion, namely 

5.12, has a further advantage to this work: it explicitly shows the 

independence of the form of the three equation terms when the basis of 

observation of the time derivative is changed. Equivalently, one may say that 

equation 5.12 implicitly shows the independence of the form of the three 

equation terms when the basis of representation of the corresponding matrix 

equation 5.13 is changed. 

 

This same point is not straightforwardly perceived in the more conventional 

approach where the equations of motion are presented in either scalar or 

matrix forms. The above-discussed independence of the form of the three 

equation terms will be used to advantage in the design of an attitude 

controller in the next chapter. 

 



 
 

 
 
C h a p t e r  6  

Chapter 6 Nominal Attitude Control Command Law 

The present chapter focuses on the design and analysis of a torque controller 

built upon the analytical apparatus developed so far. As a beginning, a few 

key points are drawn from the previous chapters and the problem to be 

examined is clearly stated. A torque formulation, the attitude control command 

law, is then proposed such that the resulting system of equations governing the 

rotational motion of the controlled body is nominally uncoupled and linear. 

 In the previous chapter, it was demonstrated that the equations for the 

attitude motion of a rigid body in response to external torques have exactly 

the same form whether all quantities are expressed in the body-fixed ϑ  basis 

or in the inertial δ  basis, respectively equations 5.4 and 5.9. 

 

In geometric terms, this is equivalent to stating that the vector-dyadic 

equation of rotational motion for a rigid body has the same form whether the 

time derivative is observed from the body-fixed ϑ  basis or from the inertial δ 

basis, respectively equations 5.3 and 5.8. 

 

All these equations were developed under the assumption that the body's 

centre of mass is the point about which the sum of external moments is 

taken. This point can in fact be arbitrary, provided that an additional term is 

included in the originating angular momentum vector equation (see Kaplan, 

1976, p. 174-75; or Smith, 1982, p. 470). 

 

In a similar manner, this arbitrariness may be extended to the basis from 

which the vector time derivative is observed. It does not need to be restricted 

to the body-fixed ϑ  nor the inertial δ  bases, provided that an additional term 
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is included in equation 5.3 or 5.8. The implementation of this concept gave 

rise to equation 5.12.  

 

The appearance of this additional term is intimately connected to the 

breakdown of the simple transformation law for the time derivative of the 

angular velocity vector when the basis of observation is arbitrary, i.e. the 

basis of observation itself might have a nonzero angular velocity with respect 

to both ϑ  and δ  (compare equations 5.5 and 5.11). 

 

Throughout this chapter, the focus is on the design and analysis of an 

attitude control command law making use of equation 5.12. In a single 

paragraph, the problem may now be stated as follows: 

 

There is a rotating frame, namely the driver basis  λ (reference), 

whose attitude and angular velocity time histories are not 

necessarily smooth, nor their details necessarily known 

beforehand. The rigid body (follower) under consideration should 

follow the rotational motion of basis  λ . The objective is, therefore, 

to develop a torque formulation (the attitude control command law), 

which would enable the rigid body to nominally track the 

(reference) angular motion of basis  λ automatically, stably and 

linearly within moderate attitude tracking errors. 

 

Holding this objective in mind, it is sensible to begin the design process by 

realising/stressing a couple of important points drawn from the theory 

enclosed in the preceding chapter: 
 

(a) The equation of rotational motion for a rigid body as given by 5.12 is in 

geometric form, and the vector time derivative appearing in this equation 

is observed from an arbitrary basis ξ . This basically means that the 

scalar expansion of this equation can be done in terms of components 

resolved in any basis ξ with origin at the body's centre of mass. 

Nevertheless, the choice for basis ξ  will be postponed.                               
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Deferring the choice of the reference frame in which to express a vector-

dyadic relationship is simply a matter of keeping one's options open as 

long as possible. In the case, this option will prove to be a wise strategy.  

 

(b) The terms on the right-hand side of equation 5.12 transform 

independently. This implies that these terms can be treated as three 

independent torques, specifically, inertial torques. As a consequence, 

equation 5.12 can be rewritten in a more convenient fashion as            

 

( ) ( ) extB B B BM I I I
ξ

ξϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑδ δ δ δω ω ω ω ω• • •− × − × =∑  (6.1) 

 

where the terms on the left-hand side of this equation may be interpreted 

as the acting/applied torques25. For easy of later reference, it is opportune 

to represent symbolically the two inertial torques transferred to the left-

hand side as                                                                                              

 

( )

( )
1

P2

 

 

PB B

B B

M I

M I

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

δ

δ

ξ

δ

ω ω

ω ω

•

•

− ×

− ×
                   yielding                                                

 

  ext P1 P2 B B B BM M M I δϑ ϑ ϑ ϑ

ξ

ϑ ω•+ + =∑  (6.2) 

6.1. Control Law Selection 

A major complication of the problem under examination is that the size of the 

attitude tracking error should be kept within moderate bounds. In other 

words, the validity of the control law formulation should not be limited to a 

small/infinitesimal neighbourhood of the commanded/reference angular 

                                          
25 The careful reader will note that this simple rearrangement of terms is not some sort of (partial) "application" of 
D'Alembert's principle (see Rosenberg, 1977, p. 124-25). 
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motion. It should be valid in a moderate one. Linearisation procedures about 

the target states are therefore precluded (see Hughes, 1986, p. 129).  

 

In terms of attitude variables, equation 5.12, or its equivalent 6.1, consists of 

a set of three scalar highly non-linear coupled second-order differential 

equations. Automatic control theory does not provide exact analytical 

solutions nor design procedures for such plants (refer to Sidi, 1997, p. 113, 

152-53).  

 

In face of the insufficiency of the theory, some less usual method of attack is 

required. The equation of motion must be somehow transformed into a more 

easily treatable form if standard automatic control techniques are to be used. 

 

Assuming that the control torque is the dominant external moment acting on 

body B, i.e.  ext CB BM Mϑ ϑ=∑ , one may tackle this problem by regarding26 

1 PBM ϑ  and 2 PBM ϑ  as computable disturbances (from directly measurable 

quantities), and then making use of some strategy of compensation.  

 

Because the control law is intended for the tracking of dynamical commands, 

it accepts feedforward commands. These commands force the controller to 

respond instantly rather than merely letting it react to the errors. 

 

Of course, in order to stabilise and attain automatic attitude control, the 

formulation should also contain terms that are function of the attitude 

tracking error and, for improved stability, terms that are function of the 

angular velocity error (compare to Sidi, 1997, p. 113). So, within this line of 

reasoning, a torque (acting at the centre of mass) that would enforce the rigid 

body B to track the angular motion (path + velocity) of the rotating reference 

frame  λ  may be defined as the sum of three terms27: 

 

                                          
26 The subscript P stands for perturbing torque (see definition on page 20). 
27 The subscript m stands for measured/estimated (see definition on page 20). 
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 C  C1  C2  C3B B B BM M M Mϑ ϑ ϑ ϑ= + +  (6.3) 

 

where ( )C1 m m mB BM I ϑ ϑ ϑξϑ δω ω• ×  (6.3a) 

 ( )C2 m m mB BM Iδ δϑ ϑ ϑ ϑω ω•×  (6.3b) 

 3 CBM K C ϑλϑ ϑλφ ω• •+  (6.3c) 

 

In order to bring the text language closer to the control terminology, a few 

denominations are now in demand: 
 

 λ   driver frame (rotating reference) 

 ϑ   follower frame (body-fixed + centroidal) 

 δ   inertial frame 

 ξ   arbitrary frame 

δλω  driver’s inertial angular velocity vector (reference) 

δϑω  body's inertial angular velocity vector 

ϑλω  angular velocity error vector 

ϑλφ  attitude tracking error vector (rotation vector) 

 
The ideas flashed in the last paragraphs raised the question of the feasibility 

of defining the control law in such a way that the equations governing the 

rigid body rotational motion would nominally uncouple and linearise. In that 

being the case, it would be possible to Laplace transform the dynamical 

equations, thus gaining the important advantage of using linear control 

theory.  

 

This is in fact not only possible, but also remarkably straightforward to 

achieve if one (a) fully understands equation 5.12, and (b) assumes that the 

quantities   BI λ λϑ ϑ ϑδϑφ ω ω  and or,  can be measured within a relatively high 

degree of accuracy in some convenient basis. 
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How this is achievable is the subject now on focus. For the sake of clarity, 

the discussion has been partitioned. The ensuing concentrates on the first 

and second control torque terms, 1 CBM ϑ and 2 CBM ϑ , and certain engineering 

realities associated with their particular definitions. The third control torque 

term, 3 CBM ϑ , and the important issue of stability will be subsequently 

addressed. 

6.2. The Open-Loop Scheme 

What has being effectively done with the proposed control torque formulation 

is to regard 1 PBM ϑ and 2 PBM ϑ as disturbances of a known nature, whose 

undesirable effects on the system output are sought to be cancelled. In 

reality, the compensation for these two terms is only approximately achieved, 

since the scheme proposed is open-loop28 (feedforward scheme), and thus 

relies heavily on the certainty of the parameters/variables in use (see 

figure 5). 

 

Strictly speaking, it is not proper to use the control terminology without 

referring to the system transfer function block diagram29. Be that as it may, 

such terminology is going to be used in the next paragraphs. The advantage 

is the evident analogy between the present situation and the technique 

known in control engineering as disturbance-feedforward control, which the 

interested reader may consult in the works of Ogata (1997, p. 700-03), Kuo 

(1995, p. 775-77) and Palm (1998, 592-95). The same principles can also be 

appreciated in a more sophisticated application in Halyo (1996, p. 1-7).  

 

Further references are Wie (1998, p. 406) and Wie & Lu (1995), two works 

found in the literature that employ a similar non-linear feedforward scheme 

in a control logic. In these two recent works, the authors use control torques 

                                          
28 A control system in which the output has no effect on the control decision is called open-loop control system.  
29 Transfer functions are input-output descriptions of the behaviour of a system/subsystem, and may be defined 
only when the system/subsystem is linear and stationary (see Dorf & Bishop, 1998, p. 48). 
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to directly counteract 2 PBM ϑ , the inertial torque term due to the centrifugal 

forces in Euler’s motion equation (equation 5.3)30.  

 

The objective of those authors is to provide a rigid spacecraft (rigid body) with 

three-axis large-angle rest-to-rest reorientation manoeuvrability about an 

inertially fixed axis. In the same works, the control logic is subsequently 

adapted to perform the reorientation manoeuvre about an inertially fixed axis 

in minimum time, and within the saturation limits of sensors and actuators.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Block Diagram 

 
Although an open-loop scheme may sound powerful in that it is able to 

eliminate (in practice greatly reduce) the supposedly deleterious effects of 

                                          
30 The inertial torque term 2 PBM ϑ can be found in the literature under different denominations. Rheinfurth & 
Wilson (1991, p. 69), for example, name it the centrifugal torque. Wie (1998, p. 406) and Wie & Lu (1995), on the 
other hand, refer to this torque term as the gyroscopic term of Euler’s motion equations. A third denomination is 
the one used by Wen & Kreutz-Delgado (1991), they name it the Coreolis torque term. There are even other 
denominations: Meyer (1966) call it gyroscopic acceleration, while Wie et al. (1989) gyroscopic coupling torque. 
The inertial torque term 1 PBM ϑ has not been found referred in the literature 
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computable/measurable disturbances before they materialise in the output31, 

it has a limited functional accuracy. This limitation is due to the above-

mentioned susceptibility of the method to parameter variation. In fact, any 

drift in the parameter values would result in imperfect compensation, 

therefore demanding the inclusion of a closed-loop scheme (feedback-loop 

scheme) in the control system. In the proposed formulation, the closed-loop 

scheme is provided by the third term, the restoring torque 3 CBM ϑ . 

 

In this work, it is assumed that the perturbing torques 1 PBM ϑ and 2 PBM ϑ can 

be computed with an accuracy that makes valid the following relations 

 

C1 P1

C2 P2

  

  

B B

B B

M M

M M

ϑ ϑ

ϑ ϑ

= −

= −

m

m

m

B BI Iϑ ϑ

ϑξ ξϑ

ϑ ϑδ δ

ω ω

ω ω

=

⇔ =

=

 (6.4) 

 

Within the limits of this assumption, i.e. (near) perfect plant knowledge and 

state estimation (nominal case), the terms on the left-hand side of equation 

6.1 simplify, reducing the equation of motion to 

 

C3 B BM Iϑ ϑ ϑδ

ξ

ω•=  (6.5) 

 

In this way, the system dynamical equation is greatly simplified. In a 

practical scenario, however, one should always bear in mind that there is a 

compromise between the closed-loop gains, the rigid body gyric32 stability, 

and the accuracy with which the state variables and parameters used in the 

open-loop scheme can be actually measured. The secular perturbing torques 

resulting from the inevitably imperfect compensation for 1 PBM ϑ and 2 PBM ϑ have 

 

                                          
31 A usual feedback control system is inherently reactive, i.e. the corrective action starts only after the output has 
already been affected (there is no command control when the state has no current errors). 
32 The word gyroscopic is normally used here. Nevertheless, Hughes (1986, p. 511, footnote) points out that this 
term is defective, and coins the more accurate and appropriate tem gyric. 
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to be dealt with by the feedback loop. This clearly constrains the choice of 

individual control parameters, and ultimately restricts the dynamic 

performance of the whole system. 

 

So, the proposed attitude control command law provides a solution for the 

problem by separating the objectives for the feedforward control from those 

related to the feedback control. Accordingly, it becomes possible to 

compensate perfectly (zero error) for 1 PBM ϑ and 2 PBM ϑ when the system model 

parameters are perfectly known and the state variables are measured without 

bias or random noise. On the other hand, the tracking objective is achieved 

without a corresponding deterioration of the feedback control objectives  

(no high loop gains), such as noise attenuation, random disturbance 

accommodation or, particularly, the serious matter of system stability. This 

last and most important point is going to be discussed in Chapter 7. 

6.3. The Closed-Loop Scheme 

In the present system, both feedforward and feedback controls are 

simultaneously in operation. In terms of system dynamical analysis, this 

concomitant operation splits the difficult problem of solving equation 6.1 into 

two much simpler ones: 

1. The solution of equation 6.5  (feedback control); and 

2. The parallel computation of 1 CBM ϑ and 2 CBM ϑ (feedforward control). 

 

Taking into consideration that step 2 uses the results of step 1 to generate 

1 CBM ϑ and 2 CBM ϑ ,  all system dynamical attributes are interconnected with 

equation 6.5. In fact, the success of the proposed nominal control law 

depends entirely upon the dynamics of this equation. In terms of the 

definition 6.3c, equation 6.5 is written as 

 

BK C Iλ ϑλϑ ϑ ϑδ

ξ

φ ω ω• • •+ =  (6.6) 
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In this expression, the quantity BI ϑ

ξ

ϑ δω•  is equated to a vector-valued 

function of vectors33 ϑλφ  and ϑλω . The usefulness of this definition, i.e. a 

linear vector function of ϑλφ  and ϑλω  rather than the vectors themselves, is 

that the tensors K  and C  may now be defined in such a way that equation 

6.6 would simplify. This is achieved by defining these two tensors as λϑφ   

 

B

B

K k I

C c I

ϑ

ϑ

=

=
  ( )B BI k c Iϑ ϑ ϑ ϑλ

ξ

λ ϑδφ ω ω• •⇒ + =  

 

which reduces the system equation to the following especially simple form34 

 

k c δλϑ ϑλ ϑ

ξ

φ ω ω+ =  (6.7) 

 

The definitions given to K  and C  have an interesting physical interpretation. 

To arrive at this interpretation, one should first note that the corrective 

torque 3 CBM ϑ is provided by a visco-elastic-like connection between the driver 

frame λ (reference) and the follower frame ϑ  (body). The proportionality to the 

inertia tensor makes this connection anisotropic, i.e. the stiffness of the 

connection between driver and follower is not necessarily the same in all 

directions (see figure 6).  

 

The main effect of the above definition is that the gains k and c can now be 

chosen regardless of the physical characteristics of the rigid body B, i.e. they 

can be chosen without direct consideration to the body’s moment of inertia 

tensor. Effectively, the simplified feedback control loop - equation 6.7 - sees 

the body as inertially spherical. This basically means that any rotation, 

whichever direction this is, can be thought of as a rotation about a principal 

                                          
33 For mathematical (tensor) related definitions, refer to Goodbody (1982, p. 66). 
34 It is fundamentally important to note that, in the general case, the kinematical differential relationship between 
the angular velocity error vector and the rotation error vector is complex and depends on the basis from which 
the time derivative is observed (compare to equations 4.14 and 4.16). 
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axis, since any axis is principal. Therefore, the problem of solving equation 

6.6 reduces to the simpler isoinertial case. 

 

The reader may find illustrative to compare the flexible connection as above 

defined to Cauchy's ellipsoid of inertia. This ingenious geometric 

interpretation of the inertial properties of a given rigid body is, in essence, a 

plot of the body's moment of inertia as a function of the direction of the axis 

of rotation. Therefore, it can be helpful in the visualisation of the anisotropic 

nature of the connection as a function of the direction of the attitude error 

vector (see Rheinfurth & Wilson, 1991, p. 109-111; Rosenberg, 1977, p. 96-

97; Smith, 1982, p. 462-65; or Greenwood, 1965, p. 306-09). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6: Flexible Connection 
 
 
Another important characteristic of the proposed closed-loop scheme is that 

the finite (moderate) angular displacement between the driver and the 

follower frames has been represented by the corresponding rotation vector, 

the attitude error vector ϑλφ . Although no useful distinction can be made 

between rotation parameter sets when the rotations are infinitesimal, for 
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finite rotations the parameterisation should be done with care (see Hughes, 

1986, p. 29-30; or Sidi, 1997, 152-58). 

 

The choice of the rotation vector components as attitude variables has a 

number advantages, a few of which are: 

1. The rotation vector components comprise the most physically significant 

set of attitude variables one can choose. 

2. The set has as many parameters as there are degrees of freedom (a rigid 

body has three rotational degrees of freedom). 

3. For first and second-order analysis the trigonometric functions associated 

with these variables vanish, and the set becomes suitable for numerical 

computation (see Hughes, 1986, p. 27, 38/ex. 2.25). 

4. The angular path traversed by the controlled body is minimised in 

manoeuvres about an inertially fixed axis. This is so because equation 6.7 

enables the body's rotational motion to be about this inertially fixed axis, 

i.e. the corresponding attitude error vector axis (compare to Sidi, 1997, 

p. 155; Klumpp, 1976; Wie et al., 1989; or Wie, 1998, p. 406). 

 

It should be remarked, however, that the use of the rotation vector in the 

parameterisation of finite rotations does not lead to a universally acceptable 

solution, since the mapping between this parameterisation and the intrinsic 

nine-parameter one (orthogonal tensor) ceases to be a bijection when the 

norm of the rotation vector (Euler angle of rotation) is 2 nπ , where 1 2 3 ...n = , , . 

 

In fact, this problem does not arise from a particular situation: it is 

topologically impossible to have a global three-variable representation of the 

rotation matrix without singular points (see Ibrahimbegovic et al., 1995; 

Ibrahimbegovic, 1997; Pfister, 1996; or Stuelpnagel, 1964).  
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The strategy adopted here for dealing with this difficulty is simply to consider 

the Euler angle ϑλφ  between frames  λ  and ϑ  smaller than 2π radians. This is 

very much the case, since the size of the attitude error (Euler angle) is 

hypothesised moderate. 

 

Although the just listed advantages of the parameterisation are highly 

relevant, the most significant one has not been mentioned yet: the form of 

the kinematical differential relationship between the attitude error vector 

n̂λ λ λϑ ϑ ϑφ φ= , and the corresponding angular velocity error vector ϑλω . The form 

of this relationship is in general complex and depends, of course, on the 

frame from which the time derivative is observed. This concept is going to be 

explored in the ensuing chapter in order to simplify the analysis of attitude 

stability. The definition of the time derivative observer will also define the still 

pending term ϑξω in equation 6.3. 

6.4. Remark on the Control Law Definition 

The approach of transforming equation 5.12 into 6.7 via control torque is 

similar to the first step of the so-called feedback linearisation method when 

conventionally applied to the rigid body attitude control problem. The basic 

difference is that here the linearising control torque (equation 6.3) has a 

further term in the feedforward path, namely C1 .BM ϑ  The worthiness of such 

apparent additional complexity will become evident shortly in the ensuing 

chapter.  

 

The feedback linearisation method is normally used with Euler’s motion 

equations, and may be divided into two steps. The first linearising step 

transforms the tri-inertial rigid body rotational dynamics into a simpler 

isoinertial form. As above-mentioned, the process is similar to the one used 

in the transformation of equation 5.12 into 6.7. The second linearising step 

(not employed here) considers the complex kinematical differential 
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relationship between the body’s inertial angular velocity, the driver’s inertial 

angular velocity, and the chosen attitude tracking error variables. It is only 

after a series of transformations and feedback/feedforward compensations 

that unforced (homogeneous) closed-loop linearity is achieved in the attitude 

tracking error dynamics.  

 

Provided that the formulation/parameterisation does not become singular, 

the three-axis rigid body attitude dynamics is placed via this technique on a 

simple uncoupled double integrator form in terms of the chosen attitude 

tracking error variables.  

 

The interested reader may refer to Paielli & Bach (1993), which possibly is 

the most relevant found reference. The work of Schaub et al. (2001) is also an 

appropriate one. Further references may be found  in section 1.2.  

 

 

 



 
 

 
 
C h a p t e r  7  

Chapter 7 Nominal Attitude Stability Analysis 

This chapter concentrates on the analysis of the nominal rigid body attitude 

stability for the assumed control law. Firstly, the attitude stability problem is 

stated. Secondly, the importance of the choice of the arbitrary basis is clarified. 

Thirdly, the relationship between attitude variables and angular velocity is 

examined and a novel and simpler form derived. Lastly, the nominal closed-

loop transfer functions for the assumed control law are determined and the 

stability problem analysed. Some remarks on the formulation close the chapter.  

 Stability is of utmost importance for control systems. Rigid body attitude 

dynamics and attitude stability, even in the infinitesimal/linear case 

analysis, is a subject far from straightforward, whose practical and 

pedagogical relevance has prompted a considerable body of literature. A fairly 

complete discussion on the subject, exposing the magnitude of its complexity 

in different guises, can be found in Hughes (1986, p. 93-129). 

 

Basically, there is no general analytical solution for Euler's motion equations, 

let alone equation 5.13, when arbitrary torques are acting. The presence of 

the non-linear terms, and the functional dependence of the torque 

components on body attitude have posed an analytical challenge for 

centuries.  

 

For most purposes, this highly coupled non-linear set of ordinary differential 

equations can be integrated only numerically. Nonetheless, there are a few 

special cases that render analytical progress. Examples can be found in 

Hughes (1986, p. 124-29), Rimrott (1989, p. 256-62) and Rheinfurth & Wilson 

(1991, p. 126-39). More recent literature includes the articles of Gick et al. 

(2000) and Livneh & Wie (1997). 
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In the particular case in focus, however, matters are greatly simplified with 

the already discussed attitude control command law. Although at the 

expense of some added complexity, the proposed control law may provide 

nominal linear attitude stabilisation if basis ξ is suitably chosen. The 

development that ensues proves this point via kinematical arguments and 

elementary linear control theory.  

 

The only analytical approximations utilised, namely  ( )2 2sin λϑ λϑφ φ≈   and 

( ) 22 1 8cos ϑλ λϑφ φ≈ −  , are completely plausible within the moderate attitude 

tracking error hypothesis, making certain a precise interpretation of the 

results. The underlying idea allowing such simplicity is the use of equation 

5.12 in place of 5.3. The inclusion of 1 CBM ϑ in the feedforward path of the 

control law has, therefore, a pivotal role in the body's attitude stability. 

7.1. Definition Criteria for the Arbitrary Basis 

Before the discussion of stability is properly initiated, it is mandatory to 

assure the understanding of two points. The first point is that the control law 

has been predicated on the assumption that 1 PBM ϑ and 2 PBM ϑ are computable. 

This assumption will be normally satisfied as long as ϑξω  is expressible in 

terms of the measurable system variables, i.e. , ϑλϑ λφ ω  and/or δϑω . In 

practical terms, this means that basis ξ  should be defined in such a way 

that the corresponding ϑξω  is an amenable function of , ϑλϑ λφ ω  and/or δϑω . 

 

The second point to be clarified concerns the eventual resolution of the 

governing system equation in order to proceed with detailed solution for 

motion and stability. In converting equation 6.7 to its scalar equivalents, one 

rule is inviolable: every term in a vector (or vector-dyadic) equation must be 

expressed in the same frame. The selection of the coordinates sometimes 

proves of crucial importance to both analytical complexity and interpretation 

of results. Hence, the choice of the frame where to express the governing 
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system equation (basis ξ ) may have a drastic effect on the complexity of the 

analysis of the system dynamical behaviour.  

 

Although the three scalar equations corresponding to the vector equation 6.7 

are seemingly uncoupled and linear in the way they stand, they are not, a 

priori, independent (see footnote 34 on page 61) ! The attitude state dynamics 

requires an auxiliary set of kinematical differential equations relating the 

chosen attitude coordinates, namely the components of the attitude error 

vector ϑλφ , and the components of the angular velocity error vector ϑλω . 

 

The form of these kinematical differential scalar (or matrix) equations 

depends, of course, on the chosen basis of resolution. Equivalently, if these 

equations are expressed in geometric notation, one may state that the form of 

the kinematical differential relationship between ϑλφ  and ϑλω  will depend on 

the choice of the basis from which the time derivative is observed. This 

dependence has already been (partially) examined in section 4.2 for δϑφ  and 

δϑω , and will be further developed to ϑλφ  and ϑλω  in sections 7.2 and 7.3. 

 

For now, the important point is the understanding that the form of the 

kinematical differential relationship between ϑλφ  and ϑλω  depends on the 

basis from which the time derivative is observed. In the case, this basis is the 

to-be-defined ξ . As a consequence, both the governing system equation 6.7 

and the corresponding kinematical differential relationship between ϑλφ  and 

ϑλω  should be expressed in  ξ  coordinates, whichever these may be. 

 

From the two points above discussed, it becomes apparent that the definition 

of basis ξ  influences the control law analysis in at least three distinct ways:  

1. It determines how 
ξ

δϑω  is evaluated; 

2. It defines ϑξω , and in so doing the form of 1 CBM ϑ ; and 

3. It dictates the form of the kinematical differential relationship between 

the rotation error vector ϑλφ  and the angular velocity error vector ϑλω . 
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In short, the definition of basis ξ  is indeed the cornerstone for the entire 

formulation. If judiciously chosen, it can facilitate the system dynamical 

analysis by advantageously dictating the relationship between ϑλφ  and ϑλω . 

Thus, the objective now is to choose a definition for basis ξ  in such a way 

that equation 6.7 is most easily evaluated, and ϑξω  is expressible as an 

amenable function of ϑλφ , ϑλω  and/or δϑω . 

7.2. Kinematical Differential Relationships 

The vector kinematical differential relationship between the angular velocity 

vector and the Euler angle/axis variables has already been analysed in 

section 4.2. This previous analysis considered the cases where the time 

derivative is observed from either the measurement basis ϑ or the with 

respect to basis δ  of the rotation vector n̂ϑ ϑ ϑδ δ δφ φ= , equations 4.14 and 4.16 

respectively. Using these two equations as parent equations, the kinematical 

differential geometric relationship between ϑλω  and n̂λ λ λϑ ϑ ϑφ φ= , when the time 

rate of change is observed from bases  λ  and ϑ , is given respectively by 

 

( )ˆ ˆ ˆ ˆsin 1 cosn n n n
λ λ

λ λ λ λ λϑ ϑ ϑ ϑ ϑ ϑλ λϑ λϑω φ φ φ
•

= + − − ×  (7.1) 

 

( )ˆ ˆ ˆ ˆsin 1 cosn n n nλ λ λ λ λ λ

ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑλ λϑω φ φ φ
•

= + + − ×  (7.2) 

 

In order to obtain an expression where the time rate of change is observed 

from an arbitrary basis  ξ , consider the transport theorem: 

 

ˆ ˆ ˆn n n
ξ

ξλ λ λ

ϑ

ϑ ϑ ϑ ϑω= + ×  
 

Substituting this relation into 7.2 yields the desired form 

 

( )ˆ ˆ ˆ ˆ ˆ ˆsin 1 cosn n n n n nϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑλ λ λ λ λ λ λ λ λ λ

ξ ξ

ϑξ ξϑω φ φ ω φ ω
• ⎛ ⎞ ⎛ ⎞= + + × + − × + ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (7.3) 
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Equation 7.3 can now be used to derive the kinematical differential 

relationship between ϑλω  and n̂λ λ λϑ ϑ ϑφ φ=  when the time derivative is observed 

from the inertial δ basis35. Noting that ˆ ˆn nλδ ϑ ϑ ϑδϑ λω ω× = × , and making 

momentarily the arbitrary basis ξ δ= , one easily finds that 

 

( )ˆ ˆ ˆ ˆ ˆ ˆsin 1 cosn n n n n nλ λ λ λ λ λϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑλ λ λ λϑ

δ δ

δ δϑω φ φ ω φ ω
• ⎛ ⎞ ⎛ ⎞= + + × + − × + ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (7.4) 

 

In view of the complexity shown by these equations, it is not surprising that 

the components of the angular velocity vector are generally taken as 

nonintegrable combinations of the time derivatives of the angular 

displacements (see Konopinsky, 1969, p. 239; Meirovitch, 1970, p. 139; 

Shabana, 1994, p. 370; Angeles, 1997, p. 90; Corben & Stehle, 1994, p. 144; 

and Goldstein, 1980, p. 169, 175 - footnotes). 

 

The nonintegrable relationship between the components of the angular 

velocity vector and the orientation coordinates takes different format 

according also to the chosen set of orientation coordinates. A few examples 

can be found in Shabana (1998, p. 54, 66) and Nikravesh (1988, p. 350, 352). 

Hughes (1986, p. 22-31) provides a more comprehensive exposition of 

alternative parameterisations. Kane et al. (1983, p. 427-31) tabulate the 

kinematical relationships associated with the various body/space orientation 

angles. Shuster (1993a, p. 477-86) presents briefly the kinematical relations 

for most of the currently employed sets of orientation coordinates. 

 

Bottema and Roth (1979, p. 154-55) have even shown that it is fundamentally 

impossible to find rotation quantities expressed in terms of 3-1-3 Euler 

angles, such that their time derivatives would equal the components of the 

angular velocity vector. Rimrott (1989, 20-21) and Corben & Stehle (1994, 

p. 141-42) offer a similar result. 

 

                                          
35 Equations 7.1-7.4 show the strong non-vector nature of three-dimensional rotations.  
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The same kind of mathematical complexity appears when one attempts to 

integrate the angular velocity vector with respect to time. Although this 

integral is a vector quantity and has dimensions of angular displacement, it 

cannot be directly related to the true finite rotations (see Goodman & Warner, 

1964, p. 348; and Greenwood, 1965, p. 365). Even for those cases in which 

small angle approximations are assumed, there will be a residual angular 

displacement of geometric origin, which must be considered (see Goodman & 

Robinson, 1958).  

 

Based upon the results shown and works surveyed in this section, one may 

conclude that the components of the angular velocity vector cannot be easily 

treated as just time derivatives of simply definable orientation coordinates. 

The only exception is, of course, the plane motion case, where the rotational 

motion is about a fixed axis. 

7.3. Changing the Paradigm 

The works quoted in section 7.2 have at least two points in common. The first 

point is evident: all these works recognise the complexity of the kinematical 

differential relationship between the attitude variables and the angular 

velocity components. The second point is more subtle: all these works take 

the time derivative as observed from bases that could always be associated 

with  λ ,  ϑ  or  δ .  

 

This second and seemingly picayune point is in fact crucial. Stated as it is, it 

indicates that while the basis of observation of the time derivative is 

restricted to be  λ ,  ϑ  or  δ , no easy form is achievable for ϑλω , regardless of 

the chosen parameterisation. In situations like this in which particular 

choices of a frame of reference lead to terms that are difficult to evaluate, it is 

advantageous to consider using a different definition to work out the 

problem, i.e. a change in the paradigm.  
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Using this approach, the pointed mathematical complexity may be 

surmounted by defining the orientation of basis ξ as a sort of average 

orientation of bases  λ  and ϑ . Symbolically, this definition translates into the 

following (see figure 7): 

 

1
2ξ ξϑ ϑλ λφ φ φ= =               ⇒                (7.5) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Bases 

 

This somewhat surprising definition for basis ξ  was originally envisioned and 

motivated by the form of equations 7.1 and 7.2, which is exactly the same 

except for the sign of the cross-product term. This sign change accompanying 

the time derivative observer change suggests that the cross-product term 

would nullify if the ξ - observer is oriented as above defined. 
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Such definition enables indeed further simplification of the kinematical 

differential relationship between ϑλω  and n̂λ λ λϑ ϑ ϑφ φ= . In order to achieve this 

simpler relationship, one may first obtain an expression relating ϑξω  and 

n̂λ λ λϑ ϑ ϑφ φ= , and then substitute it into equation 7.3. Taking 7.1 as a parent 

equation, the relationship between ϑξω  and n̂ξ ξ ξϑ ϑ ϑφ φ=  is readily obtained as 

 

( )ˆ ˆ ˆ ˆsin 1 cosn n n n
ξ ξ

ξ ξ ξ ξ ξϑ ϑ ϑ ϑ ϑ ϑξ ξϑ ξϑω φ φ φ
•

= + − − ×  (7.6) 

 

Since 1
2ξϑ ϑλφ φ=  and ˆ ˆn n ϑξϑ λ= , equation 7.6 can be rewritten as  

 

1 ˆ ˆ ˆ ˆ1
2 2 2

sin cosn n n n
ξ

λ λ
λ λ

ξ

ξ
ϑ ϑ

ϑ ϑ ϑ ϑ ϑλ λ ϑλ

φ φ
ω φ

• ⎛ ⎞
= + − − ×⎜ ⎟

⎝ ⎠
 (7.7) 

 

Substitution of the above relation into equation 7.3, along with the following 

vector identities 

 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0n n n n n n 0 n nλ λ λ λ λϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑξλ

ξ

ξλ λω ω• •= = × = × = − ×  
 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆn n n n n n n nϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑλ λ λ λ λ λϑξ ξ ξ ξ ξϑ ϑ ϑ ϑλ λω ω ω ω ω• • •× × = − = −  
 

( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆn n n n n n n n n nλ λ λ λϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑλ λ λ λ λϑ

ξ

ϑλ

ξ ξ ξ

• •
⎛ ⎞ ⎛ ⎞× × = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )ˆ ˆ ˆ ˆ ˆ ˆ 0n n n n n nϑ ϑ ϑ ϑ ϑλ λ λ λ λ

ξ

λ ϑ

ξ

• •
⎛ ⎞× = × =⎜ ⎟
⎝ ⎠

 

 

reduce the resulting expression to 

 

1 2

1

2

ˆ ˆ ˆ ˆC C

C sin cos sin sin cos
2 2 2

C cos cos cos sin sin
2 2 2

n n n nλ λ λ λ λ λ

λ λ

ϑ ϑ ϑ ϑ ϑ

λ
λ λ

λ λ λ
λ

ϑ

ϑ ϑ ϑ
ϑ ϑ

ϑ ϑ

ξ

ϑ
ϑ ϑ

ξ

λ

ω φ

φ φ φ
φ φ

φ φ φ
φ φ

•

= + + ×

= − +

= − −
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Noting yet that the trigonometric expressions in the two coefficients can be 

manipulated to 

 

1

2

C sin cos sin sin cos sin sin 2sin
2 2 2 2 2 2

C cos cos cos sin sin cos cos 0
2 2 2 2 2

ϑ ϑ ϑ ϑ ϑ ϑ
ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ
ϑ ϑ ϑ

λ λ λ λ λ λ
λ λ λ

λ λ λ λ λ
λ λ λ

φ φ φ φ φ φ
φ φ φ

φ φ φ φ φ
φ φ φ

⎛ ⎞= − + = + − =⎜ ⎟
⎝ ⎠

⎛ ⎞= − − = − − =⎜ ⎟
⎝ ⎠

 

 

the resulting expression simplifies to its desired form: 

 

ˆ ˆ2
2

sinn nϑ
ϑ ϑ ϑ

λ
ξ

λ λ λ λϑ

φ
ω φ

•

= +  (7.8) 

 

In order to obtain a complete and useful description of the system 

kinematics, it is still necessary to express ϑξω  in terms of system states, as it 

was discussed in section 7.1. To proceed towards this objective, one may 

eliminate       from equation 7.7 in favour of ϑλφ  and ϑλω . This can be easily 

achieved by first rewriting this equation as  

 

( )
( )

1 ˆ ˆ ˆ ˆ1
2 2 2

1 21 ˆ ˆ ˆ ˆ ˆ2 2
2 2 2 2 2

sin cos

cos
sin sin

sin

n n n n

n n n n n

λ λ
λ λ λ λ λ

λλ

ϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑ

ϑϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ

λ
λ λ λ λ λ λ

ξ

ξ

ξ

λ
λ

ξ

ξ

φ φ
ω φ

φφ φ
φ φ

φ

•

• •

⎛ ⎞= + − − ×⎜ ⎟
⎝ ⎠

−⎛ ⎞⎛ ⎞ ⎛ ⎞= + − × +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

and substituting equation 7.8 into the above. This yields the second desired 

result  

 

( )
( )

1 21 ˆ
2 2 2

cos
sin

nϑ
ϑ ϑ ϑ ϑ

ϑ

λ
λ λ λ

λ
ξ

φ
ω ω ω

φ
−⎛ ⎞

= − ×⎜ ⎟
⎝ ⎠

 (7.9) 

 

Observing yet the trigonometric identity 

 

ˆ ˆn n 0ϑλ λϑ× =  

n̂λϑ

ξ
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( )
( )

2

1 2 4
2 4

4 4

2 sincos
tan

sin 2 sin cos

λ

λ λ

ϑ

ϑ ϑ

λ λλ ϑ ϑϑ

φ
φ φ

φ φφ

⎛ ⎞
⎜ ⎟− ⎝ ⎠= =  

 

Equation 7.9 simplifies even further to the following canonical form 

 

1 ˆ
2 4

tan nϑλ
λ λξ λϑ ϑ ϑ ϑ

φ
ω ω ω⎛ ⎞= − ×⎜ ⎟

⎝ ⎠
 (7.10) 

 

This last and elegant result is in accordance with the criteria for the 

definition of basis  ξ  discussed in section 7.1. 

7.4. Moderate Angle Approximations 

The trigonometric functions sine and cosine are expandable as infinite 

alternating sums of ascending powers of the angle, namely γ . Such 

expansions converge for any value of γ , and can be obtained by direct 

application of the Maclaurin's series (see Kreyszig, 1999, p. 751-57; or Arfken 

& Weber, 1995, p. 313-19): 

 
3 5 7

sin ...
3! 5! 7!
γ γ γ

γ γ= − + − + −  (7.11) 

2 4 6

cos 1 ...
2! 4! 6!
γ γ γ

γ = − + − + −  (7.12) 

 

When the angle γ  is small and measured in radians, these series converge 

quite quickly, and the following approximations are adequate for many 

engineering applications 

 

sinγ γ≈  (7.13) 
2

cos 1
2
γ

γ ≈ −  (7.14) 

γ < ∞  

small angle second-order 
approximations 
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In fact, these approximations are surprisingly good up to relatively large 

angles, and are known as the small angle second-order (quadratic) 

approximations (see Appendix F for pertinent numerical examples). The same 

designation “small angle” is given, however, to the first-order (linear) 

approximations often used in attitude kinematics and attitude dynamics. 

These linear approximations are generally taken as infinitesimal rotations 

and may be expressed as 

 

sinγ γ≈  (7.15) 

cos 1γ ≈  (7.16) 

 

In order to avoid confusion, and considering the corresponding relative 

accuracy with respect to the size of the angle of rotation, it has been decided 

to refer in this work to the following small half angle second-order 

approximations as moderate angle approximations: 

 

sin
2 2
γ γ

≈  (7.17) 

2

cos 1
2 8
γ γ

= −  (7.18) 

 

Making λϑγ φ=  and substituting these formulae into equations 7.8 and 7.9, 

yields the remarkable results: 

 

{ } { }ˆ ˆn nλ λ λ λ λϑ ϑ ϑ ϑ

ξ

λ λ λϑ
ξ

ϑ ϑ

ξ
ξ
ϑω φ φ φ ω φ

••

≈ + = ⇒ ≈  (7.19) 

 
1 1
2 8ϑ ϑ ϑ ϑξ λ λ λω ω φ ω≈ − ×  (7.20) 

 

These two results are kinematic in nature. The information they convey is per 

se valid within the moderate angle hypothesis. Their utilisation demands, of 

course, flexibility on the choice of the basis of observation of the time 

derivative. It cannot be emphasised too strongly that this flexibility has been 

small angle first-order 
approximations 

small half angle second-
order approximations 

moderate angle 
approximations ⇔
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made possible in the case only because equation 5.12 was chosen in place of 

the simpler Eulerian form, equation 5.3.  

 

If one had chosen at the onset Euler's motion equations, and followed steps 

analogous to those taken in the design of the control law, the resulting 

governing equation would characterise just another complicated way of 

stating the problem! The kinematical differential relationship between ϑλω  

and n̂λ λ λϑ ϑ ϑφ φ=  would then be given by equation 7.2. Consequently, such an 

approach would not represent a relevant reduction in the complexity of the 

solution to the problem. 

 

The inclusion of 1 CBM ϑ in the feedforward path of the control law is, therefore, 

the fundamental step towards a simple solution to the nominal rigid body 

stability problem. It enables the shift of the basis of observation of the time 

derivative, which has been used to reduce the somewhat complicated 

kinematics of finite (moderate) rotations to congruity with simple vector-like 

operations. Observed from basis ξ and within moderate angles of rotation, 

the angular velocity error vector ϑλω  is just the time derivative of the attitude 

error vector ϑλφ , equation 7.19. 

7.5. Nominal Transfer Functions and Stability of Motion 

The chief advantage of shifting the basis of observation of the time derivative 

from basis ϑ  to basis ξ  is that the angular velocity error vector ϑλω  can now 

be directly integrated to obtain the attitude error vector ϑλφ , within moderate 

attitude tracking errors. From equation 7.19, it readily follows that 

 

{ } { } { }icdtϑ ϑλ
ξ

λ ϑ
ξ

λ
ξω φ φ≈ +∫  (7.21) 
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For the purpose of evaluating nominal stability, { }ic
ξ
λϑφ  can be taken as zero. 

Thus, resolving equation 6.7 onto basis ξ , and using 7.21, yields 

 

{ } { } { }k dt cξ ξ ξ
ϑδϑλ λϑω ω ω
•

+ ≈∫  (7.22) 

 

Since   { } { } { }δϑ ϑ
ξ ξ

δλ λ
ξω ω ω= − , equation 7.22 can be rewritten as 

 

{ } { } { } { } { }k dt c k dt cδ δ δ λϑ ϑ δ
ξ ξ ξ ξ

ϑ δ
ξ
λω ω ω ω ω

•

+ + ≈ +∫ ∫  (7.23) 

 

The expansion of this matrix relation leads to three linear uncoupled 

constant-coefficient second-order differential equations. Thus, the three-axis 

non-linear rigid body attitude dynamics has been transformed into an 

equivalent linear set of three one-axis second-order dynamical equations. 

Such simplified dynamical equations representing the nominal closed-loop 

system can be analysed uni-dimensionally with the convenient transfer 

function36 approach. 

 

The system's transfer function is obtained by taking the Laplace transform37, 

with zero initial conditions, of the differential equation describing the system 

itself. Using arbitrarily the first vector component (observe the subscript 1), 

the Laplace transform of equation 7.23 is  

 

1 1 1 1 1

1 1 1 1 1+ +

k dt c k dt c

k kc s c
s s

δ δ δ δ δ
ξ ξ ξ ξ ξ

δ

ϑ ϑ

ξ ξ ξ
δ δ

ϑ

ϑ ϑ ϑ
ξ
δ

λ λ

λ λ
ξ
δ

ω ω ω ω ω

Ω Ω Ω Ω Ω

•⎛ ⎞ ⎛ ⎞+ + ≈ +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⇒ + ≈

∫ ∫L L
 (7.24) 

 

                                          
36 The transfer function of a linear time invariant system (constant parameter) is defined as the ratio of the 
Laplace transform of the output variable to the Laplace transform of the input variable, with all initial conditions 
assumed to be zero. The transfer function of a system represents the relationship describing the dynamics of the 
system under consideration (see Dorf & Bishop, 1998, p. 48). 
37 The Laplace transform is a transformation of a function ( )f t  from the time domain into the complex frequency 
domain yielding ( )F s  (see Dorf & Bishop, 1998, p. 42). 
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From which the nominal closed-loop transfer function is easily found 

 

( )
1

1 2

c s k
G s

s c s k

ξ

ξ
δ

Ω
ϑ

λδ

Ω
Ω

+
= ≈

+ +
 (7.25) 

 

The same relationship (same k and c ) holds if the second or third vector 

component is used in place of the first one, giving rise to the ratios 
2 2

ϑδ
ξ ξ

λδΩ Ω   and 3 3
ϑδ
ξ ξ

λδΩ Ω , respectively. It is opportune to rearrange38 

algebraically the transfer function ( )G sΩ  so that it could be expressed in a 

more general and standardised notation for second-order systems:  

 

( )
1

1

2

2 2

2

2
n n

n n

s
G s

s s

ξ
δ

Ω
ϑ
ξ
δλ

Ω µ µ
Ω µ µ

+
= ≈

+ +

ζ
ζ

 (7.26) 

 

where  n kµ =  system's natural frequency 
 

2
c

k
=ζ  system's damping ratio 

 

One of the conveniences of transfer functions is that they enable the 

manipulation of the system’s model to obtain expressions for several 

quantities of interest. In the case, there are three such quantities: the above-

defined ratio 1 1
ϑδ
ξ ξ

λδΩ Ω  and the error ratios 1 1
λϑ
ξ ξ

λδΦ Ω  and 1 1
λϑ
ξ ξ

λδΩ Ω .  

 

These three ratios provide the means to analyse the effects of a specified39 
1

λδ
ξω  on the body’s rotational motion, 1

ϑδ
ξω , 1

λϑ
ξφ  and 1

λϑ
ξω  respectively. The ratio 

1 1
λϑ
ξ ξ

λδΦ Ω  may be obtained by first taking the Laplace transform with zero 

initial conditions of equation 7.21 (first component) 

 

                                          
38 The standard control notation employs the Greek letter ω  to denote frequency. Since this symbol has already 
been adopted to represent the angular velocity, µ is used instead. 
39 For the purpose of system analysis and design, the input signal is generally specified as a simple function of 
time, such as step, ramp, or sinusoidal (test input signal). 
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( ) ( )
1

1 1 1dt
s
ϑ

ϑ
λ

λ λ
ξ ξ

ϑ

ξ
ξ
ϑ λ

Ω
φ ω Φ≈ ⇒ =∫L L  (7.27) 

 

and then proceeding as follows: 

 

( ) ( )1
1 1 1 1

11 G s
s s s
ϑ

ϑ ϑ
Ω

δ δ δ
λ

λ λ

ξ
ξ ξ ξ

λ
ξΩ

Φ Ω Ω Ω
−⎛ ⎞

= = − = ⎜ ⎟
⎝ ⎠

 

 

Substitution of equation 7.26 into the above relationship, along with a slight 

rearrangement, yields the first/position error ratio describing the system’s 

nominal non-homogeneous closed-loop attitude state error dynamics 

 

( )
1

1 2 22E

n n

sG s
s s

ξ

ξ
ϑ

δ

λ

λ
Φ

Φ
Ω µ µ

= ≈
+ +ζ

 (7.28) 

 

Using once again equation 7.27 and substituting it into 7.28, yields the 

second/velocity desired error ratio describing the system’s nominal non-

homogeneous closed-loop attitude state error dynamics 

 

( )
1

1

2

2 22E

n n

sG s
s s

ξ

ξ
λ

Ω
λδ

ϑΩ
Ω µ µ

= ≈
+ +ζ

 (7.29) 

 

The attitude stability for such linear time invariant system (equation 7.28) 

can be investigated via the Routh-Hurwitz criterion (see Dorf & Bishop, 1998, 

p. 299-301; or Bishop, 1997, p. 105-111). The technique provides an answer 

to the question of stability by considering the characteristic equation of the 

system (system's transfer function denominator). For the system under 

consideration, second-order type, the requirement for stability is simply that 

the coefficients of the characteristic equation must be all positive or all 

negative. Given that the coefficients of the characteristic equation 2
nk µ=  and 

2 nc µ= ζ  are scalars and supposedly positive, the stability of the nominal 

closed-loop system is guaranteed. 
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After establishing that the nominal closed-loop system is stable, the next 

logical step would be the design of the control system, i.e. the selection of the 

control parameters nµ  and ζ  so that the three one-axis control systems 

about the axes of basis ξ would have the desired dynamic characteristics. 

Keeping in mind the saturation limits of sensors and actuators, this choice 

can be made at the discretion of the control-system designer, depending on 

which performance criteria are most important in a given circumstance.  

 

This issue is, however, out of the scope of this thesis. The transfer functions 

of interest are second-order with numerator dynamics (equations 7.26, 7.28 

and 7.29). The design procedures for such control systems are well 

documented in the literature. The interested reader may refer to Palm (1998, 

p. 194-96, 522-25, 566-69), Dorf & Bishop (1998, p. 240-45, 716-17), 

Mutambara (1999, p. 188-93), or Clark (1962, p. 112-25).  

 

In any case, the decision on which test input signal, design criteria or 

performance index to use is ultimately dependent upon the form of the input 

the system will be most frequently subjected to under normal operation  

(see Ogata, 1997, p. 134-35). This most frequent system input has been 

regarded as a general angular velocity profile (driver’s inertial angular 

velocity). Further specification for system mission and system input signal 

would be necessary for proper selection of the control parameters. 

 

Thus, given the assumptions employed so far, namely: 

1. The control torque can be considered the dominant external moment, 

i.e.  ext C B BM Mϑ ϑ=∑ ; 

2. The system states and parameters can be measured in such a way 

that the perturbing torques 1 PBM ϑ and 2 PBM ϑ are either nullified or well 

approximated by 1 CBM ϑ and 2 CBM ϑ respectively (nominal case); and 

3. The attitude tracking error ϑλφ  is kept small enough to enable 

moderate angle approximations. 
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it is now possible to analyse, design and optimise the attitude control system 

with linear methods along the axes of basis ξ . 

7.6. Formulation Remarks 

Remark 1 

The control torque - equation 6.3 - has been defined as an algebraic (no time 

derivatives) vector-dyadic relationship. As a consequence, it can be directly 

resolved onto any basis, not necessarily ξ . Good candidate bases are, of 

course, the ones in which BI ϑ  is a constant quantity.  

 

The most obvious option is a basis that is centroidal and principal axis. This 

option would normally imply the simplest form for the control torque 

components, since in this case BI ϑ  is represented by a diagonal matrix. In 

terms of components resolved along the axes of basis ϑ  and using equation 

7.20, the control torque can be written as 

 

{ } { } { } { }

{ } { }

{ } { }

{ } { } { }

    

 

 

 

C C1 C2 C3

C1

C2

C3

1 1
2 4

B B B B

B B

B B

B B

M M M M

M I 1

M I

M I k c

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ

λ

λ

δ

δ δ

λ

λ

ω φ ω

ω ω

φ ω

= + +

⎛ ⎞⎡ ⎤= − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎛ ⎞
= +⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠

 (7.30) 

 

or, more compactly, 

 

{ } { } { } { }C

1 1=
2 8

B B BM I k P I

P c 1

δ δ

δ δ

λ
ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ

λ

λ

φ ω ω ω

ω ω φ

⎛ ⎞= + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤− +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (7.31) 
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The torque terms may now be studied in order to determine their relative 

contribution. Depending on the expected input data, i.e. the inertial angular 

velocity of the driver frame δλω , some of these terms might prove to be 

negligible when compared to the others. In that being the case, 

simplifications are possible.  

 

There are several instances in which the inertial torque term 2 PBM ϑ  due to 

the centrifugal forces is assumed negligible when compared to the total 

control torque (see, Byers & Vadali, 1993; or Wie et al., 1989). 

 

Remark 2 

The parameterisation of the error in attitude between the driver frame λ  and 

the follower frame ϑ  has been made in terms of the corresponding rotation 

vector ϑλφ . The idea of using a vector-like parameterisation (three parameter 

only) for finite rotations is not new, and has been exploited, for example, in 

the recent papers of Aicardi et al. (2000), Ibrahimbegovic (1997), 

Ibrahimbegovic et al. (1995).  

 

Nevertheless, it is in the strapdown inertial literature where this 

parameterisation is most used. Examples are: Waldmann (2001), Savage 

(1998a), Savage (1998b), Savage (1998c), Musoff & Murphy (1995), Ignagni 

(1994), Jiang & Lin (1992), Jiang (1991), Lee et al. (1990), Ignagni (1990), 

Miller (1983) , Nazaroff (1979) , Bortz (1971) and Jordan (1969).  

 

Parameterising a rotation with the components of the rotation vector has a 

number of virtues, some of which have been commented in section 6.3. To 

this work, the most notable one is the possibility of reducing the somewhat 

complicated kinematics of finite (moderate) rotations to congruity with simple 

vector-like operations, equation 7.19. 
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Although equation 7.19 is in the desired form, i.e. in terms of the rotation 

vector ϑλφ , the analytical work in producing it undertook an indirect route. 

The rotation variables employed were n̂λϑ  and ϑλφ , rather than ϑλφ  and ϑλφ  

(see sections 4.2, 7.2, 7.3 and 7.4). It is possible, however, to attain 

expressions for the transformation matrix and the angular velocity in terms 

of the rotation vector. Equations 3.6 and 3.7 exemplify the former.  

 

The expressions for the transformation matrix when parameterised with the 

rotation vector components and its norm can be found discussed in Argyris 

(1982, 85-88) and Stuelpnagel (1964). Accordingly, discussions concerning 

the derivation of expressions for the angular velocity when parameterised 

with the rotation vector can be found in Ibrahimbegovic (1997), 

Ibrahimbegovic et al. (1995), Pfister (1996), Ignagni (1994), Shuster (1993b). 

and Bortz (1971). 

 

Considering that both the transformation matrix and the angular velocity can 

be expressed in terms of the rotation vector components and its norm, it 

should be possible to take the direct route to develop equation 7.19. 

Nevertheless, this approach should also imply more involved derivations. 

Since the end result (equation 7.19) must be the same, such an approach has 

not been attempted here. 

 

 



 
 

 
 
C h a p t e r  8  

Chapter 8 Kinematical Theorem Numerical Validation 

This chapter focuses on the numerical validation and illustration of the main 

theoretically achieved results of this thesis, particularly the kinematical 

theorem. Firstly, a procedure for this result validation is devised. Secondly, the 

detailed implementation of the proposed procedure into Simulink/Matlab is 

described. Thirdly, numerical examples illustrating the validation procedure 

are provided.  

 This chapter describes procedures for validating the main theoretically 

achieved results of this thesis, particularly the kinematical theorem, equation 

7.8, when the angle of rotation (attitude tracking error) is kept within 

moderate bounds. The idea is to test approximation 7.19 when utilised within 

equation 6.7 via a model built in Simulink. It is assumed, of course, perfect 

plant knowledge and state estimation (nominal case). 

 

One way of testing approximation 7.19 is by comparing the components of 

{ }ξ
ϑδω , the ξ - resolution of the follower’s inertial angular velocity vector, when 

evaluated via two different methods: the integral method and the derivative 

method.  

 

In the integral method, { }ξ
ϑδω  is evaluated via straightforward time 

integration of equation 7.22, i.e. this method assumes valid the linear 

relationship between the angular velocity error vector ϑλω  and the rate of 

change of the attitude error vector ϑλφ  when observed from basis ξ  

(equation 7.19). 
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In the derivative method, { }ξ
ϑδω  is evaluated via the conventional algebra of 

rotations. This method involves, therefore, time differentiation of the 

corresponding transformation matrix. 

 

The integral and the derivative methods should produce very closely related 

results as long as the attitude error ϑλφ  is kept within moderate bounds. It 

should be noticed, however, that the derivative method calls for some kind of 

numerical derivative (noisy operation), whereas the integral method is 

encoded as an integrating only loop. This point is discussed in subsection 

8.2.3.  

 

The details of the two methods are explained throughout section 8.1, along 

with the topology of the Simulink model. Section 8.2 numerically illustrates 

the procedure of validation as above devised. 

8.1. Simulink Model 

The Simulink model is composed of three main elements: feedback loop, 

subsystem-1 and subsystem-2, which are described in subsections 8.1.1, 

8.1.2 and 8.1.3 respectively. 

 

The model also contains two scopes, which can be seen on the top part of 

figure 8. The left-hand side scope compares { }ξ
ϑδω  when produced in the 

feedback loop (integral method), and when produced in the subsystems 

(derivative method). The right-hand side scope monitors the corresponding 

attitude error ϑλφ . The curves displayed by these scopes, i.e. the time 

histories for 31 2
δ δ

ξξ
ϑδ

ξ
ϑ ϑω ω ω, ,  and ϑλφ , have been named validation curves.  

 

The symbols employed in the Simulink model - figures 8, 9, and 10 - are 

recognised as follows: 
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Arb_k input port 1 (subsystem-1) { }ξ
λϑφ  

Wrg_r input port 2 (subsystem-1) { }λ
λδω  

Wbg_k output port 1 (subsystem-1) { }ξ
ϑδω  

Wrg_k output port 2 (subsystem-1) { }ξ
λδω  

Trk input port 1 (subsystem-2) T λ
ξ⎡ ⎤⎣ ⎦  

Wrb_k output port 1 (subsystem-2) { }ξ
λϑω  

 

8.1.1. Feedback Loop 

The feedback loop is the main element in the Simulink model. Basically, it 

solves equation 7.22, which can be represented as a closed-loop feedback 

control system (see figure 8). The input for this loop is the driver's inertial 

angular velocity when expressed in ξ  coordinates, { }ξ
λδω . 

 

There are two integrators in the loop. The right-hand side integrator outputs 

{ }ξ
λϑφ , while the left-hand side integrator outputs { }ξ

ϑδω . For the sake of 

simplicity, the initial conditions { }ic
ξ
λϑφ  and { }ic

ξ
λϑω  have been set to zero. This 

means that the driver frame  λ  and the follower frame ϑ  are initially aligned 

and have the same initial angular velocity.  

 

The output of the right-hand side integrator { }ξ
λϑφ , along with the model’s 

reference signal { }λ
λδω  (From Workspace block), is fed into subsystem-1 for 

further processing. 
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Figure 8: Feedback Loop 

 

8.1.2. Subsystem One  

In the preceding subsection, the central issue was the solution of equation 

7.22 and the production of the components of the attitude error vector when 

expressed in ξ coordinates, { }ξ
λϑφ . These objectives were fulfilled with the 

feedback loop implemented as a Simulink model, assuming that the quantity 

{ }ξ
λδω  is available for integration. 

 

The main goal here is the parallel computation of { }ξ
λδω  employing the 

results of the feedback loop and the model’s input signal { }λ
λδω . This is 

achieved using a two-step procedure: 

(1) estimate the elements of T λ
ξ⎡ ⎤⎣ ⎦  via a routine that employs the attitude 

error vector components as output from the feedback loop, and then 

(2) use this matrix to transform the representation of the model’s input 

signal { }λ
λδω  from basis  λ  to basis  ξ , that is 

 
 { } { }T λ

λ λ
ξ

λδ
ξ

δω ω⎡ ⎤= ⎣ ⎦  (8.1) 

Arb_k 

Wrg_r 

Wbg_k 

Wrg_k [A] 

[A] [B] 

[B] 

R2D sqrt 

s 
1 s 

1 

C 
K 

[t,Wrg_r] 
From Workspace 

_ 

+ 

Subsystem 1 

+ 

+ 
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The transformation matrix Tλ
ξ⎡ ⎤⎣ ⎦  can be obtained as follows 

 

( ) ( )1
2ˆ ˆ, ,

1
2 2

sin cos

T R R n R n

1 n n n

ξ ξ ξ ξ
λ λ λ λ λ λ

λ λ
λ

ξ ξ ξ

ξ ξ ξ

ϑ ϑ

ϑ
ϑ λϑλ

ϑ
ϑ

φ φ

φ φ

⎡ ⎤⎡ ⎤ = ⎡ ⎤ = = ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎛ ⎞= + ⎡ ⎤ + − ⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 (8.2) 

 

where equations 3.4 and 7.5 have been used. Subsystem-1 is mostly devoted 

to the implementation of equations 8.1 and 8.2.  

 

 

 

 

 

 

 

 

Figure 9: Subsystem One 

 

8.1.3. Subsystem Two 

Subsystem-2 evaluates the components of the angular velocity error vector 

resolved onto basis ξ ( 31 2
ϑ ϑ

ξξ
λϑ

ξ
λ λω ω ω, , ) from the rotation matrix ( )1

2
ˆ,R nϑ ϑλ

ξ
λφ⎡ ⎤⎣ ⎦   

and its time derivative. There are different ways of achieving this result. One 

possibility is by first expanding { }ξ
λϑω  into a skew-symmetric matrix and then 

employing equations 4.9 and 4.10 as parent equations to produce the 

following expression: 

 

T T
T T T T

λ λ

λ

ξ ξ ξ
ξ ξ

ξ ξ
ξ ξ

ϑ ϑ

ϑ
λ

ϑ

ω ω ω
• •

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= + ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (8.3) 

2 
Wrg_k 

1 
Wbg_k 

3x1 

3x3 
u 

u 

U 
V  U * V 

U 
V  U * V 

sqrt 0.5 

-1 

2 
Wrg_r 

1 
Arb_k 

X 
X 

_ 

+ 

_ 

+ 
Trk Wrb_k 0 

sin 

cos 

1 

Subsystem 2 

+ 

+ 

+ 
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The relationship between Tλ
ξ⎡ ⎤⎣ ⎦  and ( )1

2
ˆ,R nϑ ϑλ

ξ
λφ⎡ ⎤⎣ ⎦  has already been 

established in equation 8.2. The relationship between the Tξ
ϑ⎡ ⎤⎣ ⎦  and 

( )1
2

ˆ,R nϑ ϑλ
ξ

λφ⎡ ⎤⎣ ⎦  can be obtained in a similar fashion: 

 

( ) ( )1
2ˆ ˆ, ,

1
2 2

sin cos

T R R n R n

1 n n n

ξ ξ ξ
λ λ

λ λ
λ λ

ϑ
ϑ ϑ ϑ ϑ ϑ

ϑ ϑ

ξ ξ ξ ξ

ξ
ϑ
ξ

ϑ ϑ
ξ
λ

φ φ

φ φ

⎡ ⎤= ⎡ ⎤ = =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎛ ⎞= + ⎡ ⎤ + − ⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 (8.4) 

 

where equations 3.3 and 7.5 have been used. Subsystem-2 (figure 10) 

implements equation 8.3 and extracts { }ξ
λϑω  from the resulting ξ

ϑλω⎡ ⎤⎣ ⎦ . 

 

 

 

 

 

 

 

Figure 10: Subsystem Two 

 

In order to attain { }ξ
ϑδω  via this alternative (and longer) route, it is still 

necessary to subtract the output of subsystem-2, { }ξ
λϑω , from the quantity 

{ }ξ
λδω  produced in subsystem-1: 

 

{ } { } { }δ δ
ξ ξ
ϑ λ λϑ

ξω ω ω= −  (8.5) 

 

The implementation of this equation can be seen in the far right side of 

figure 9. The result is then sent to the left-hand side scope for comparison. 

 
1 

 U.' 

 U.' U 
V  U * V 

U 
V  U * V 

du/dt 1 
Trk + 

+ 

Wrb_k 
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8.2. Numerical Study 

For the purpose of illustration of the validation procedure, the attitude of the 

driver frame λ relative to the inertial frame δ  is prescribed in terms of Euler  

3-2-1 angles. The kinematical differential relationship between these attitude 

variables and the angular velocity is, consequently, also prescribed.  

 

The table that follows shows (a) the three rotations as explicit functions of 

the time, (b) the corresponding time derivatives, and (c) the corresponding 

angular velocity components when expressed along the axes of the driver 

frame λ . 

 

Attitude Variables Body 3-2-1 orientation angles 

First Rotation - ϕ  
sin 3 cos5

3cos3 cos5 5sin 3 sin 5

t t

t t t t

ϕ

ϕ
•

=

= −
 

Second Rotation - θ  
0.4 sin 5

2 cos5

t

t

θ π

θ π
•

=

=
 

Third Rotation - ψ  
( )

( ) ( )

3

3 2

0.5cos5 0.1 sin 3

2.5sin 5 0.1 sin 3 4.5cos5 cos3 0.1 sin 3

t t

t t t t t

ψ

ψ
•

= +

= − + + +
 

Angular Velocity 

1

2

3

sin

cos sin cos

cos cos sin

λ
λδ

λ
λ

λ
λ

δ

δ

ω ϕ θ ψ

ω ϕ θ ψ θ ψ

ω ϕ θ ψ θ ψ

• •

••

••

= − +

= +

= −

 

 (adapted from Kane et al., 1983, p. 428, Body-three: 3-2-1) 

 
The time functions defining the Body 3-2-1 orientation angles ϕ θ ψ, ,  are 

inspired in the work of Junkins (1997). The corresponding angular velocity 

components ( 31 2
δ δ

λλ
λδ

λ
λ λω ω ω, , ) seem generic enough to justify their utilisation as 
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validation curves. The time histories for these components are depicted in 

figures 11-13. 
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Figure 11: Driver’s Inertial Angular Velocity – first component 
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Figure 12: Driver’s Inertial Angular Velocity – second component 
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Figure 13: Driver’s Inertial Angular Velocity – third component 

 

 

The M-file40 used to generate the input data for the Simulink model, along 

with a number of commentaries, is presented in page 94. In terms of system 

parameter definitions, two cases have been considered: the underdamped 

( 0.7 10nµ= =,ζ ) and the overdamped ( 1.6 10nµ= =,ζ ). The model’s reference 

input ( 31 2
δ δ

λλ
λδ

λ
λ λω ω ω, , ) for these two cases is used exactly as prescribed  

(noise-free, 0n = , see M-file).  

 

The results for the underdamped and the overdamped cases are presented in 

subsections 8.2.1 and 8.2.2 respectively. Subsection 8.2.3 considers the case 

in which the input signal is not noise-free ( 1n = , see M-file), and the 

corresponding effects on the validation method. 

 

 

 

                                          
40 M-files are files that contain Matlab language code. They can be functions that accept and produce output, or, 
as in this case, they can also be scripts that execute a series of Matlab statements (see The MathWorks, 1999, 
p. 10-2). 

3
λδ
λω

(rad/s)
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% This M-file generates the input data for the Simulink model 
% The solver options are the default ones. 
 
clear                       % clears the workspace 
freq = 1000;                % data frequency  
sim_time = 10;              % stop time (simulation parameter) 
t = [0:1/freq:sim_time]';   % output times (simulation parameter)  
 
% Control parameters  
fn = 10;         % system's natural frequency 
zeta = 1.6;      % system's damping ratio (0.7 or 1.6) 
K = fn^2;        % stiffness coefficient 
C = 2*zeta*fn;   % damping coefficient 
 
% Artificial noise 
n = 0;         % "1" turns noise on, "0" turns noise off 
noise = n*0.3*(1-2*rand(sim_time*freq+1,3)); 
 
% First rotation and time derivative 
phi = sin(3*t).*cos(5*t);  
Dphi = 3*cos(3*t).*cos(5*t) - 5*sin(3*t).*sin(5*t);  
 
% Second rotation and time derivative 
theta = 0.4*pi*sin(5*t); 
Dtheta = 2*pi*cos(5*t); 
 
% Third rotation and time derivative 
A = 0.1 + sin(3*t); 
psi = 0.5*cos(5*t).*(A.^3); 
Dpsi = 4.5*cos(3*t).*cos(5*t).*(A.^2) -2.5*sin(5*t).*(A.^3); 
 
% Driver's inertial angular velocity.    
% Components along the axes of the driver frame. 
% The orientation angles are assumed Euler 3-2-1. 
w1 = -Dphi.*sin(theta)           + Dpsi ; 
w2 =  Dphi.*cos(theta).*sin(psi) + Dtheta.*cos(psi); 
w3 =  Dphi.*cos(theta).*cos(psi) - Dtheta.*sin(psi); 
Wrg_r = [w1 w2 w3] + noise; 
 
% Cleaning 
clear Dphi Dtheta Dpsi psi phi theta w1 w2 w3 fn zeta n A noise 
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8.2.1. Numerical Results for the Underdamped Case 

The results presented next show that, for the nominal system, there is no 

appreciable difference between the integral method and the derivative method 

for the parameters ( 0.7 10 0n nµ= = =, ,ζ ), scale, and data frequency (1000/s) 

utilised in the simulation of the underdamped case.  

 

Figures 14-16 depict the time histories for the three components of the body’s 

inertial angular velocity vector when resolved onto basis ξ  ( 31 2
δ δ

ξξ
ϑδ

ξ
ϑ ϑω ω ω, , ),  

and evaluated by both methods. One validation curve is superimposed onto 

the other (for each component), even though the corresponding attitude 

tracking error time history ϑλφ  shows values as high as 25 degrees (figure 17).  
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Figure 14: Validation Curves – first component, underdamped case 
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Figure 15: Validation Curves – second component, underdamped case 
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Figure 16: Validation Curves – third component, underdamped case 
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Figure 17: Validation Curves – attitude error, underdamped case 

 

 

8.2.2. Numerical Results for the Overdamped Case 

The results presented next show that, for the nominal system, there is no 

appreciable difference between the integral method and the derivative method 

for the parameters ( 1.6 10 0n nµ= = =, ,ζ ), scale, and data frequency (1000/s) 

utilised in the simulation of the overdamped case.  

 

Figures 18-20 depict the time histories for the three components of the body’s 

inertial angular velocity vector when resolved onto basis ξ  ( 31 2
δ δ

ξξ
ϑδ

ξ
ϑ ϑω ω ω, , ), 

and evaluated by both methods. One validation curve is also superimposed 

onto the other (for each component) in this case, whereas the corresponding 

attitude tracking error time history ϑλφ  is less than 15 degrees (see figure 21).  
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Figure 18: Validation Curves – first component, overdamped case 
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Figure 19: Validation Curves – second component, overdamped case 
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Figure 20: Validation Curves – third component, overdamped case 
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Figure 21: Validation Curves – attitude error, overdamped case 
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8.2.3. Effect of Noise in the Input Data 

The integral method does not have recourse to numerical derivatives in 

determining the time history for { }ξ
ϑδω . Differentiation of a signal always 

decrease the signal-to-noise ratio, and should be avoided whenever possible. 

Integrators, on the other hand, increase this important ratio.  

 

This decrease of the signal-to-noise ratio observed in operations of 

differentiation is related to the fact that noise generally fluctuates more 

rapidly than the commanded signal (see, for example, Kaplan, 1976, p. 218; 

or Ogata, 1997, p. 813). 

 

The derivative method, however, does have recourse to numerical derivatives 

in determining the time history for { }ξ
ϑδω . It is expected, therefore, that any 

noise content in the model’s input signal { }λ
λδω  would jeopardise the output 

of the derivative method. As a consequence, any noise content in the input 

signal should also jeopardise the validation procedure as devised. 

 

Although the frequency of input data is high (1000/s), a considerable 

difference in the output signal quality can be appreciated when noise is 

present in the input signal. This difference would be much larger if higher 

derivatives (e.g. angular acceleration) were considered. Figure 22 shows a 

detail of figure 20 when noise is artificially added to the input signal  

( 1n = , see M-file).  
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Figure 22: Noise Effect – third component, overdamped case (detail) 

8.2.4. Numerical Study Conclusion 

So far as the nominal system is concerned, the results achieved in 

subsections 8.2.1 and 8.2.2 showed an excellent agreement between the time 

histories for { }ξ
ϑδω  when this quantity is evaluated via the integral method 

and the derivative method. Even when noise is present in the input signal 

(subsection 8.2.3), the analysis showed a strong bound between the 

validation curves.  

 

These numerical results reinforce the validity of the linear approximation 

between the angular velocity error vector ϑλω  and the time rate of change of 

the attitude tracking error vector ϑλφ  when observed from basis ξ (equation 

7.19), provided that the attitude tracking error ϑλφ  is kept within moderate 

bounds. These results also reinforce the validity of equation 7.22 within 

moderate attitude errors, and the consequent possibility of using linear 

control theory in the study of the nominal rigid body attitude state tracking 

control problem. 
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C h a p t e r  9  

Chapter 9 Discussion and Conclusion 

This chapter closes the thesis. Initially, an overview of the attitude control 

problem and some of its peculiarities are given. Subsequently, the analytical 

development undertaken in this thesis is compared with the pertinent 

literature, and the corresponding contributions to the field clearly stated. 

Finally, a few possible themes for future research based on the results of the 

thesis are also proposed. 

 Attitude kinematics, dynamics and control have matured rapidly over the 

past few decades. In spite of the significant advances, there still is plenty of 

possibility for new development. The pertinent literature still bursts with a 

constant production of papers and related material. This thesis is just one 

more example of this continuing progress. 

 

Undoubtedly, the dynamical behaviour of rotating bodies is a fascinating and 

challenging subject. The fact that finite rotations do not obey the vector 

parallelogram addition law poses distinct difficulties. The most notable of 

them is that the angular velocity of a rigid body/frame cannot in general be 

simply integrated to give the corresponding attitude (see section 7.2).  

 

Vector mechanics makes possible to circumvent this difficulty in a 

straightforward manner. In this formulation, dynamical and kinematical 

differential equations are considered separately. The structure of the system 

of equations has a cascade form: the control input drives the angular velocity 

via the dynamical motion equations, and the resulting angular velocity drives 

the attitude parameters via the kinematical equations. Conventionally, there 

is no direct connection between the control input and the attitude 
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parameters (see section 7.1, or footnote 22 on page 43 in this thesis; 

alternatively, the reader may refer to Tsiotras, 1996). 

 

The analytical development undertaken in the previous chapters showed that 

this cascade interconnection of the system of equations is not strictly 

necessary. Within moderate angle rotations, the angular velocity can indeed 

be directly integrated to obtain the corresponding attitude (equation 7.21). To 

the best of the author’s knowledge, this result has not been previously 

quoted in the literature. The ample number of books, articles and other 

material surveyed has not generated any parallel to this kinematical result.  

 

The proposed control law (equation 7.30 or 7.31) has been constructed from 

this kinematical result and the general geometric form of the equations of 

motion for a rotating rigid body (equation 5.12). The anticipation of using the 

kinematical result 7.19 is what suggested to the author in the first place the 

need for a general geometric form of the equations of motion. Similarly, it 

also imparted the form of the linearising control law (equation 6.3).  

 

The general geometric form of the equations of rotational motion 5.12 has 

neither been found in the literature. Hence, it constitutes the second major 

original contribution of this work. Since both the kinematical and the 

dynamical differential equations used do not appear to have been previously 

published in the open literature, it is not surprising that the corresponding 

linearising control law discloses what seems to be a unique form. This form is 

remarkably simple and results in what also seems to be a unique nominal 

system closed-loop dynamics. 

 

Stability, and consequently the domain of validity of the nominal formulation, 

has been established only for moderate attitude tracking errors. Within this 

domain, the proposed control law nominally realises both linear attitude 

tracking and linear angular velocity tracking, i.e. it realises nominal linear 

attitude state tracking (section 7.5). This seems to be in marked contrast to 

the other available control strategies, and it is in accordance with the 
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objectives posed in the introduction of the thesis (Chapter 1). The proposed 

control law constitutes, therefore, the third major contribution of this work. 

 

Although less important when compared to the other three original results, 

the adopted notation (Chapter 2) also constitutes an original contribution to 

the field. There is a clear need for standardisation, and minimal notations 

simply do not suffice in many situations. The ergonomically designed explicit 

notation developed and adopted in this thesis comprises a step forward in 

this direction. 

 

The very recent work of Xing & Parvez (2001) has perhaps the closest 

connection to this thesis. The controller they propose also implements 

attitude state tracking, but the resulting nominal closed-loop dynamics is 

highly non-linear and their nominal control law much more complex than the 

one proposed here. This non-linearity of the system dynamics tends to make 

it difficult to specify certain important system requirements, such as closed-

loop damping and bandwidth. These quantities are not well defined when the 

system dynamics is non-linear. 

 

The proposed control law realises nominal linear non-homogeneous closed-

loop attitude state error dynamics (section 7.5). Although limited to the useful 

moderate attitude tracking error case, this characteristic contrasts sharply 

with the available literature. The published works reporting some kind of 

linearity in the nominal closed-loop dynamics propose control laws that 

realise linear homogeneous (unforced) closed-loop attitude error dynamics only. 

Among these works are Schaub et al. (2001), Bennett et al. (1994, section IV-

A), Paielli & Bach (1993), Wen & Kreutz-Delgado (1991) and Dwyer (1984). 

 

The nominal control laws these works report vary substantially in 

complexity, performance, parameterisation and domain of validity. 

Nevertheless, all of them are position control only, and are constructed via 

the same two-step procedure: 
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(1) prescribe a linear stable homogeneous (unforced) closed-loop dynamics 

for the attitude error (regulation of the attitude tracking error), and then 

(2) compute the nominal non-linear control law that enforces the prescribed 

dynamics via a feedback linearisation (-like) approach. 

 

The procedure adopted in this thesis to construct the control law is fairly 

similar to the one above (Chapter 6). However, the proposed control law along 

with the kinematical result 7.19 enables one to prescribe nominal linear non-

homogeneous closed-loop attitude state error dynamics in place of simply 

nominal linear attitude tracking error regulation. The use of the kinematical 

result 7.19 is the stepping-stone to achieve that.  

 

It should be remarked that the discussed advantages and validity of the 

proposed control law apply to the moderate attitude tracking error case only. 

In essence, the proposed control law trades domain of validity with analytical 

simplicity and linearity. The moderate attitude tracking error condition 

should, however, be amenable to a large number of practical/engineering 

applications. 

 

Stability in the controller’s non-linear region (large attitude tracking error 

case) has not been analysed. Such an analysis is left for future work. The 

issue of robustness in face of inertia and/or state uncertainty is also left for 

future work. This issue is important and should therefore be addressed 

before a practical implementation of the proposed control law is attempted. 

Examples of other possible themes for future research based on the results of 

this thesis are: 

(a) similar analytical development using other orientation parameterisations;  

(b) examination of other definitions for the arbitrary basis; 

(c) in depth ergonomic analysis and development of the notation; 

(d)  extension of the theory to the multi-body case; and 

(e) examination of other potential applications, such as inertial navigation 

systems, robotics and non-linear dynamical beam theory. 



 
 

 
 
Append ix  A  

Appendix A Notational Examples  

The aim of this appendix is to exemplify the utilisation of the notation adopted 

in this thesis.  

 Component Resolution of Vectors 

 
(a) Geometric Representation 

31 2

31 2

1 2 3

1 2 3

ˆ ˆ ˆ

ˆ ˆ ˆ

v v v v

v v vδδ δ

λλ λλ λ λ

δ δ δ

= + +

= + +
 

 

(b) Algebraic Representation 

{ } { }
1 1

2 2

3 3

v v
v v v v

v v

λ δ

δδλλ

δλ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪

= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

  (column vector) 

 

3 32 2

3 31 1

2 1 2 1

0 0
0 0

0 0

v v v v
v v v v v v

v v v v

δ δ

δ δ

λ λ

δ

δ δ

λ λλ

λ λ

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥

= − = −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (skew-symmetric) 

 

 

 

Vector Magnitude/Length 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

31 2

31 2

31 2

22 2

22 2

22 2

u u u u u

u u u

u u u

ϑϑ

λλ λ

δδ δ

ϑ

= = + +

= + +

= + +
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Vector Scalar Product 

 
( )

3 31 1 2 2

3 31 1 2 2

3 31 1 2 2

cos , cosu v u v u v u v

u v u v u v

u v u v u v

u v u v u v

λ λλ λ λ λ

ϑ ϑ

δ δδ δ δ δ

ϑ ϑ ϑ ϑ

β• = =

= + +

= + +

= + +

 

 

 

 

Vector Cross Product 

 
(a) Geometric Representation 

( ) ( ) ( )3 3 3 32 2 1 1 1 2 2 1
1 2 3

ˆ ˆ ˆ

w u v

u v u v u v u v u v u vλ λ λ λλ λ λ λ λ λ λ λλ λ λ

= ×

= − + − + −
 

 

(b) Algebraic Representation 

{ } { }
3 3 32 2 21

3 3 31 2 1 1

2 1 3 1 2 2 1

0
0

0

w u v

u u u v u vv
u u v u v u v
u u u v u vv

λ λ λ

λ λ λλ λ λλ

λ λ λλ λ λ λ

λ λ λ λ λ λ λ

= ⎡ ⎤⎣ ⎦

⎡ ⎤ ⎧ ⎫− −⎧ ⎫
⎢ ⎥ ⎪ ⎪⎪ ⎪

= − = −⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎩ ⎭⎣ ⎦ ⎩ ⎭

  (column vector) 

 

 

( )
( )

( )

3 31 2 2 1 1 1

3 31 2 2 1 2 2

3 3 3 31 1 2 2

0

0

0

w u v v u

u v u v u v u v

u v u v u v u v

u v u v u v u v

λ λ λ λ λ

λ λλ λ λ λ λ λ

λ λλ λ λ λ λ λ

λ λ λ λλ λ λ λ

= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− − −
⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 (skew-symmetric) 

 

β 
u  

v  
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Component Resolution of Unit Vectors 

 

(a) Geometric Representation 

31 2

1 1 2 3

1 1 1 2 1 3

ˆ ˆ ˆ ˆ1 0 0
ˆ ˆ ˆδδ δ

λ λ λ λ

δλ δ δλ λ

= + +

= + +
 

31 2

3 1 2 3

3 1 3 2 3 3

ˆ ˆ ˆ ˆ0 0 1
ˆ ˆ ˆδδ δ

λ λ λ λ

δλ δ δλ λ

= + +

= + +
 

31 2

2 1 2 3

2 1 2 2 2 3

ˆ ˆ ˆ ˆ0 1 0
ˆ ˆ ˆδδ δ

λ λ λ λ

δλ δ δλ λ

= + +

= + +
 

31 2

31 2

1 2 3

1 2 3

ˆ ˆ ˆˆ
ˆ ˆ ˆ

n n n n

n n n

λλ λ
λ λ λ λ

λ λ λ

ϑ ϑ ϑ ϑ

ϑ
δδ

ϑ
δ

ϑ

λ λ λ

δ δ δ

= + +

= + +
 

 

 

 

(b) Algebraic Representation 

{ }1

1
0
0

λλ
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 { }2

0
1
0

λλ
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 { }3

0
0
1

λλ
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 { }
1

2

3

n

n n

n

λ
λ
λλ

λ λ
λ

ϑ ϑ

λ

ϑ

ϑ

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 

{ }
1

2

3

1

1 1

1

δ

δδ

δ

λ

λ λ

λ

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 { }
1

2

3

2

2 2

2

δ

δδ

δ

λ

λ λ

λ

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 { }
1

2

3

3

3 3

3

δ

δδ

δ

λ

λ λ

λ

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 { }
1

2

3

n

n n

n

δ

δδ

δ
λ ϑ

λ

λϑ

λ

ϑ

ϑ

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 

(column vector)

 

 

1

0 0 0
0 0 1
0 1 0

λλ
− − −
− −
−

⎡ ⎤
⎢ ⎥⎡ ⎤ = −⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦− −

 2

0 0 1
0 0 0
1 0 0

λλ
⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥−

− − −
− −

− − ⎦

−

⎣

 

3

0 1 0
1 0 0
0 0 0

λλ
− −
− − −
−

−⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦− −

 
3 2

3 1

2 1

1 1

1 1 1

1 1

0

0

0

δ δ

δ δδ

δ δ

λ λ

λ λ λ

λ λ

⎡ ⎤−
⎢ ⎥

⎡ ⎤ = −⎢ ⎥⎣ ⎦
⎢ ⎥−⎢

−

−⎣ ⎦

−

⎥

 

3 2

3 1

2 1

0

0

0

n n

n n n

n n

λ λ
λ λ

λ λλ
λ λ λ

λ λ

ϑ ϑ

ϑ ϑ ϑ

ϑλ λϑ

⎡ ⎤−
⎢ ⎥

= −⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥−⎢

−

− ⎥⎣ ⎦

−

 

3 2

3 1

2 1

0

0

0

n n

n n n

n n

δ δ

δ δδ

δ δ

ϑ ϑ

ϑ ϑ ϑ

λ λ

λ λ λ

λϑλ ϑ

⎡ ⎤−
⎢ ⎥

= −⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥−⎢

−

− ⎥⎣ ⎦

−

(skew-symmetric)
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Matrix Elements 

 

 

1311 12

2321 22

31 32 33

R R R

R R R R

R R R

ϑϑ ϑ
ϑ ϑ ϑ

ϑϑ ϑϑ
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ
ϑ ϑ

δ δ δ

ϑ

δ δ δ δ

δ δ δ

⎡ ⎤
⎢ ⎥

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 (Rotation Matrix) 

 

 

13 311 12 2

23 321 22 1

31 32 33 2 1

0
0

0

v v v v v
v v v v v v

v vv v v

δ δδ δ δ

δ δδ δ δδ

δ δ δ δ δ

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥

= = −⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (Skew-Symmetric Matrix) 

 

 

1311 12 1 1 1

2321 22 2 2 2

31 32 33 3 3 3

1 2 3

1 2 3

1 2 3

T T T

T T T T

T T T

ϑϑ ϑ ϑ ϑ ϑ

ϑϑ ϑ ϑ ϑ ϑϑ

ϑ ϑ ϑ ϑ

λ

ϑ

λ λ

λ λ λ λ

λ λ
ϑ

λ

λ λ λ

λ λ λ

λ λ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= =⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (Transformation Matrix) 

 

 

 

Basis Transformation 

 

{ } { }v T vδ λ
λ
δ= ⎡ ⎤⎣ ⎦  T λ

δ⎡ ⎤⎣ ⎦   transformation matrix  
from basis λ to basis δ 

{ } { }v T vλ δ
δ
λ= ⎡ ⎤⎣ ⎦  T δ

λ⎡ ⎤⎣ ⎦  transformation matrix  
from basis δ to basis λ 

T
B BI T I Tϑδ δ δ
ϑ ϑ ϑ ϑ=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  orthogonal similarity transformation 

T
T Tϑ ϑ ϑ

ϑ ϑ
λ

λ λ λ λω ω=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
invariance of the matrix antisymmetry
property under an orthogonal similarity
transformation  
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Vector and Array Time Derivatives 

 
d dr r r r r r

dt dt

δ

δ δ

λ

λ λ
λδ

ω ω= + × ⇔ = + ×  

 

 
{ } { }

{ } { }

dr T r
dt

T r T r

δ δ

δ δ

λ
λ

λ λ
λ λ

•

• •

⎛ ⎞
= ⎡ ⎤⎜ ⎟⎣ ⎦

⎝ ⎠

= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

 

 

T
B B

T T T
B B B

dI T I T
dt

T I T T I T T I T

ϑ
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ
ϑ ϑ ϑ ϑ

δ δ δ

δ δ δ δ δ δ
ϑ ϑ ϑ ϑ ϑ

•

•• •

⎛ ⎞
=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠

= + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

 

 

Array Time Integrals 

 

 { }

1
1

2 2

3
3

r dtr
r dt r dt r dt

r r dt

δ
δ

δ δδ

δ
δ

⎧ ⎫
⎧ ⎫ ⎪ ⎪
⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪

⎩ ⎭

∫
∫ ∫ ∫

∫

 

 

 

3 2
3 2

3 31 1

2 1
2 1

00

0 0

0 0

dt dt

dt dt dt dt

dt dt

ϑ ϑ
ϑ ϑ

ϑ ϑ ϑ ϑ ϑ

ϑ ϑ

ξ ξ
ξ ξ

ξ

λ λ
λ λ

λ λ λ λ λ

λ λ
λ λ

ξξ ξξ

ξ ξ
ξ ξ
ϑ ϑ

ω ωω ω

ω ω ω ω ω

ω ω ω ω

⎡ ⎤− −−

− −

− −

⎡ ⎤− ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ = − = −⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

∫ ∫
∫ ∫ ∫ ∫

∫ ∫
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Appendix B The Transformation Matrix 

The aim of this appendix is to derive some forms of representation of the 

transformation matrix and demonstrate its orthogonality.  

 Consider the component resolution of a geometric vector v  onto two dextral 

orthonormal bases  λ  and ϑ  

 

31 2
1 2 3

ˆ ˆ ˆv v v v λλ λλ λ λ= + +  (B.1) 

31 2
1 2 3

ˆ ˆ ˆv vv v ϑϑ ϑϑ ϑ ϑ= + +  (B.2) 
 

The unit vectors of basis λ , namely 1 2 3
ˆ ˆ ˆλ λ λ, , , can also be resolved in a 

number of ways, for instance onto basis ϑ  

 

31 2

31 2

31 2

1 1 1 1 2 1 3

2 2 1 2 2 2 3

3 3 1 3 2 3 3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ϑϑ ϑ

ϑϑ ϑ

ϑϑ ϑ

λ λ λ λ

λ λ λ λ

λ λ λ

ϑ ϑ ϑ

ϑ

λ

ϑ ϑ

ϑ ϑ ϑ

= + +

= + +

= + +

 

 

Substitution of these three relationships into expression B.1 (vector 

resolution onto basis λ ), followed by a little rearrangement yields 

 

( ) ( ) ( )3 3 31 1 1 2 2 23 3 31 2 1 2 1 2
1 2 3 1 1 2 3 2 1 2 3 3

ˆ ˆ ˆv v v v v v v v v vλ λ λλ λ λ λ ϑ ϑ ϑϑ ϑ ϑ λ λϑ ϑ ϑϑ ϑλ λ λ λ λ λ λ λ λ ϑ= + + + + + + + +  

 

Comparing the above result with expression B.2 (vector resolution onto 

basis ϑ ), one readily concludes that 
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1 1 1 31 1 2

2 2 2 32 1 2

3 3 33 31 2

1 2 3

1 2 3

1 2 3

v v v v

v v v v

v v v v

ϑ ϑ ϑϑ

ϑ ϑ ϑ

λλ λ

λλ λ

λλ λ

ϑ

ϑ ϑ ϑϑ

λ λ λ

λ λ λ

λ λ λ

= + +

= + +

= + +

 

 

The last three equations can be conveniently represented in algebraic 

notation as 

 

{ } { } { } { } { }
1 1 11 1

2 2 22 2

3 3 3 3 3

1 2 3

1 2 3 1 2 3

1 2 3

v v
v v v v
v v

ϑ ϑ ϑϑ

ϑ ϑ ϑϑ ϑ ϑ ϑ ϑ

ϑ ϑ λϑ

λ

λ λ

ϑ

λ λ λ

λ λ λ λ λ λ

λ λ λ

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪

⎡ ⎤= ⇔ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎣ ⎦
⎪ ⎪ ⎪ ⎪⎢ ⎥

⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

 

 

The quantity that appears in brackets, a matrix, is clearly converting 

(transforming) the component resolution of vector v  from basis λ to basis ϑ , 

and is most commonly denominated transformation matrix.  

 

Observing yet that the elements of this matrix are nothing more than the 

components of the unit vectors of basis λ when resolved onto basis ϑ 

(arranged column-wise), it is expedient to symbolise it as T λ
ϑ⎡ ⎤⎣ ⎦  within the 

notational conventions adopted in this thesis. Therefore 

 

{ } { }
1 1 1

2 2 2

3 3 3

1 2 3

1 2 3

1 2 3

v T v T

ϑ ϑ ϑ

ϑ ϑ ϑϑ ϑ ϑ

ϑ ϑ
λ

ϑ

λ
λ

λ λ λ

λ λ λ

λ λ λ

⎡ ⎤
⎢ ⎥

= =⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

where  

 

This important matrix can, in fact, be represented in several ways. Three of 

these are directly obtainable from the definition of scalar product. Recalling 

that (a) unit vectors have length one, and (b) the orthogonal projection of a 

vector along another vector equals the vector length times the cosine of the 

angle between them, one has 
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( )
( ) ( )

( ) ( )

( ) ( )

1 1

1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆcos ,

ˆ ˆ ˆ ˆ1 1 cos , cos ,

ˆ ˆ ˆ ˆcos , 1

ˆ ˆ ˆ ˆcos , 1λ λ

ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ

λ λ λ

λ λ

λ λ λ λ

λ

ϑ

λ

ϑ

ϑ ϑ ϑ ϑ

• =

= ∗ ∗ =

⎛ ⎞= = ∗ =⎜ ⎟
⎝ ⎠

⎛ ⎞= = ∗ =⎜ ⎟
⎝ ⎠

 

 

Employing the same procedure to the other pair combinations of unit 

vectors, one finds the following set of equalities 

 

( )
( )
( )
( )
( )
( )
( )

1 1

2 1

3 1

1 2

2 2

3 2

31

1 1 1 1 1 1

1 2 1 2 1 2

1 3 1 3 1 3

2 1 2 1 2 1

2 2 2 2 2 2

2 3 2 3 2 3

3 1 3 1 3 1

3

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ

cos

cos

cos

cos

cos

cos

cos

ϑ

ϑ

ϑ

ϑ

ϑ

λ

λ

λ

ϑ

ϑ

λ

λ

λ

λ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ

ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ

λ

ϑ λ ϑλ

•

•

•

•

•

•

•

•

= = =

= = =

= = =

= = =

= = =

= = =

= = =

( )
( )

32

3 3

2 3 2 3 2

3 3 3 3 3 3

ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

cos

cos

ϑ

ϑ

λ

λ

ϑ ϑ ϑ

ϑ

λ λ

λ λ λϑ ϑ•

= = =

= = =

 

 

which can now be used to construct the aforementioned representations of 

the transformation matrix: 
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representation in terms of 
the components of the unit 
vectors of the from basis λ 

representation in terms of 
the components of the unit 
vectors of the to basis ϑ 

representation in terms of 
the scalar products of the 
unit vectors 

( )

1 1 1

2 2 2

3 3 3

31 2

31 2

31 2

1 2 3

1 2 3

1 2 3

1 1 1

2 2 2

3 3 3

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

1 1 2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ, ,cos cos

T

ϑ ϑ ϑ

ϑ ϑ ϑϑ

ϑ ϑ
λ

λλ λ

λ λ

ϑ

λλ λ

λ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

λ

ϑ

λ λ

λ λ λ

λ

ϑ ϑ

λ λ

λ λ λ

λ

ϑ

λ λ

λ λ λ

λ λ

• • •

• • •

• • •

⎡ ⎤
⎢ ⎥

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆ ˆ ˆ, , ,

cos

cos cos cos

cos cos cos

λ

λ λ λ

λ λ λ

ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

representation in terms of 
the cosines of the angles 
between the unit vectors 
(direction cosines) 

 

The last representation of the transformation matrix evidences why it is also 

referred to as the direction cosine matrix. 

 

Possibly, the most significant property of the transformation matrix is the 

orthogonality, i.e. the inverse of this matrix equals its transpose: 

 
1 T

T Tϑ ϑ
λ λ

−
=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (B.3) 

 

There are many ways of demonstrating this property. A simple and intuitively 

plausible one is by first considering the scalar product of the unit vectors of 

the from basis λ with themselves (scalar product of two columns of the 

transformation matrix), and the corresponding component resolutions onto 

the to basis ϑ .  

 

These unit vectors are, by hypothesis, mutually perpendicular (dextral 

orthonormal basis), which leads to the following relationships 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

31 2

31 2

31 2

3 31 1 2 2

3 31 1 2 2

3 31 1 2 2

22 2

1 1 1 1 1

22 2

2 2 2 2 2

22 2

3 3 3 3 3

1 2 1 2 1 2 1 2

1 3 1 3 1 3 1 3

3 2 3 2 3 2 3 2

ˆ ˆ 1 1

ˆ ˆ 1 1

ˆ ˆ 1 1

ˆ ˆ 0 0

ˆ ˆ 0 0

ˆ ˆ 0

ϑϑ ϑ

ϑϑ ϑ

ϑϑ ϑ

ϑ ϑϑ ϑ ϑ ϑ

ϑ ϑϑ ϑ ϑ ϑ

ϑ ϑϑ ϑ ϑ ϑ

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

•

•

•

•

•

•

= ⇒ + + =

= ⇒ + + =

= ⇒ + + =

= ⇒ + + =

= ⇒ + + =

= ⇒ + + = 0

 

 

These six relationships can now be employed to demonstrate that the 

transformation matrix is indeed orthogonal. Recalling that by definition the 

inverse of a matrix is the one that multiplied by the matrix equals the 

identity matrix, 1
1 T Tϑ

λ
ϑ

λ

−
=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , one may simply replace the inverse by 

the transpose in this relationship, and carry out the appropriate 

multiplications and substitutions, that is 

 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

31 2 1 1 1

31 2 2 2

31 2

1

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 1 1 1 2 3

2 2 2 1 2

3 3 3

T

T

1 T T T Tϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ

ϑϑ ϑ ϑ ϑ ϑ

ϑϑ ϑ ϑ ϑ

ϑϑ ϑ

λ λ λ λ

λ λ λ λ λ λ
λ λ λ λ λ λ
λ λ λ λ λ λ

λ λ λ λ λ λ
λ λ λ λ λ λ
λ λ λ

−
= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

( ) ( ) ( )
( ) ( ) ( )

2

3 3 3

3 3 3 3 31 2 1 1 2 2 1 1 2 2

3 3 3 3 31 1 2 2 1 2 1 1 2 2

3 31 1 2 2 1 1

3

1 2 3

22 2
1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

22 2
1 2 1 2 1 2 2 2 2 3 2 3 2 3 2

1 3 1 3 1 3 3 2

ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑϑ ϑ ϑ ϑ ϑ ϑ

λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+ + + + + +

= + + + + + +

+ + + ( ) ( ) ( )3 3 32 2 1 2
22 2

3 2 3 2 3 3 3

1 0 0
0 1 0
0 0 1

ϑ ϑ ϑϑ ϑ ϑ ϑλ λ λ λ λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Q.E.D 
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The definition of the inverse of the transformation matrix used above was the 

left one. The right inverse is equally valid. In fact, both are the same, and the 

existence of one implies the other (see Apostol, 1997, p. 154). The 

relationship making use of the right inverse, i.e. 1
1 T Tϑ

λ
ϑ

λ

−
=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , can be 

demonstrated in a similar fashion by considering the scalar product of the 

unit vectors of the to basis ϑ (instead of the from basis λ ), and the second 

presented representation of the transformation matrix, i.e. the one in terms 

of the components of the unit vectors of the to basis ϑ . 

 

There certainly are other ways of presenting orthogonal transformation 

matrices and their properties. The one utilised here meets the objectives of 

the appendix within the formalism and level of generality common to this 

thesis. The interested reader may refer to Arfken & Weber (1995, p. 181-94), 

or Kreyszig (1999, p. 382-84) for other approaches. An alternative, but 

equivalent set of orthogonality conditions has been given by Gelman (1968). 

Junkins & Turner (1986, p. 10) offers an elegant demonstration of the 

orthogonality property of transformation matrices. 

 

 



 
 

 
 
A p p e n d i x  C  

Appendix C The Rotation Matrix 

In this appendix the relationship of equivalence between the rotation matrix 

and the transformation matrix is established. Subsequently, the finite rotation 

formula and the angle/axis representation of the transformation matrix are 

derived. 

 The orientation of an orthonormal basis with respect to another one may 

always be described by a transformation matrix. In many circumstances, 

however, the direction cosines (elements of the transformation matrix) are 

not the most suitable means, and alternative possibilities should be 

considered. One such possibility, suggested by Euler’s theorem, is the 

specification of the orientation with the axis about which the equivalent 

rotation takes place (Euler axis of rotation), and the respective angle of 

rotation (Euler angle of rotation). The quantities in this system are, of course, 

related to the direction cosines, and the relationships between the two 

systems are now to be examined. 

 

Active and Passive Points of View 

A change in orientation of a vector quantity when operated by Tϑ
δ⎡ ⎤⎣ ⎦  may be 

interpreted from two points of view: the passive and the active. In the passive 

point of view, Tϑ
δ⎡ ⎤⎣ ⎦  may be thought as relating the components of a single 

undisturbed vector in two coordinate systems, i.e. Tϑ
δ⎡ ⎤⎣ ⎦  is functioning as a 

frame transformation matrix. Conversely, in the active point of view, Tϑ
δ⎡ ⎤⎣ ⎦  

may be thought as relating two vectors of same length expressed in only one 

coordinate system, i.e. Tϑ
δ⎡ ⎤⎣ ⎦  is functioning as a rotational operator. 
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The algebra is the same when either of the two points of view is followed. 

Figures 23 and 24, and accompanying derivations depict these ideas when 

the rotation is about the 3δ  axis. Further discussion on the subject can be 

found in Shuster (1993a, p. 494-95), Nikravesh (1988, p. 157-58), Arfken & 

Weber (1995, p. 190-92), Konopinsky (1969, p. 265-66) and Bottema & Roth 

(1979, p. 13). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Passive point of view 

 
1 1 2

2 1 2

3 3

cos sin

sin cos

v v v

v v v

v v

δ δ
δ δ

δ δ
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ϑ ϑ
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ϑ ϑ
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3 3

cos sin

sin cos

v v v
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ϑ ϑ
ϑ ϑ

ϑ ϑ
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δ ϑ

φ φ

φ φ
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=

 

1 1

2 2

3 3

cos sin 0
sin cos 0

0 0 1

v v
v v
v v

δ
δ δ

δ
δ δ

δ

ϑ
ϑ ϑ

ϑ
ϑ ϑ

ϑ

φ φ
φ φ

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥= −⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎩

−
−

⎭

−
 

 1 1

2 2

3 3

cos sin 0
sin cos 0

0 0 1

v v
v v
v v

δ
δ

ϑ
ϑ ϑ

ϑ
ϑ ϑ

δ
δ

δ δ
δ ϑ

φ φ
φ φ+

⎧ ⎫ ⎧ ⎫−⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭

 

{ } { }v T vϑ δ
δ
ϑ= ⎡ ⎤⎣ ⎦   { } { }v T vδ ϑ

ϑ
δ= ⎡ ⎤⎣ ⎦  

δϑφ  

2vδ  

v  

Positive right-handed rotation of basis ϑ
with respect to basis  δ  about  3̂n̂ϑδ δ=  2ϑ  

1ϑ  

2δ  

1δ  

2vϑ  

1vϑ  

1vδ  

δϑφ  
1sin vϑ
δ

δφ  

2sin vϑ
δ

δφ  

1cos vϑ
δ

δφ  

2cos vϑ
δ

δφ  
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Figure 24: Active point of view 

 

( ) ( ) ( )

( ) ( ) ( )

1 1 2

2 1 2

3 3

1

1

1 1

cos cos cos sin sin cos sin

sin sin cos cos sin sin cos

v v v v v v

v v v v v v

v v

δ δ δ
δ δ δ δ δϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ
δ δ δ

δ δ δ δϑ

δ

ϑδ

δ

φ ϕ φ ϕ φ ϕ φ φ

φ ϕ φ ϕ φ ϕ φ φ

= + = − = −

= + = + = +

=

 

 

{ } { }
1 1

2 2

3 3

1

1 1

1

cos sin 0
sin cos 0

0 0 1

v v
v v v R v

vv

δ δ
δ δ

δ δ δ δ δ
δ δ δ

ϑ ϑ

ϑ ϑ ϑ
δ δ

φ φ
φ φ

⎧ ⎫ ⎧ ⎫−⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥= ⇔ = ⎡ ⎤⎨ ⎬ ⎨ ⎬ ⎣ ⎦⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭⎩ ⎭

+  

 

Hence, by comparing the results for the passive and active points of view one 

concludes that 

 

( )ˆ,T R R nδ δ
ϑ ϑ ϑ ϑ

δ
δ δ δφ= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (C.1) 

 

 

ϕ  

δϑφ  

1v  

v  

2δ  

1δ  

2vδ  

1vδ  

2
1vδ  

1
1vδ  

Positive right-handed rotation of vector 1v  
with respect to vector v  about   3̂n̂ϑδ δ=  

1v v v= =  



Appendix C: The Rotation Matrix 

  120 

The foregoing has shown that the linear relations that give the components of 

a fixed vector on a rotating frame may be reinterpreted as giving the 

components of a rotating vector on a fixed frame. These linear relations are in 

precisely the same form when the matrix operating the change in the frame 

orientation is defined as the transformation from the rotating frame ϑ   

(from basis ) to the original/primary frame δ  (to basis ). Corresponding results 

hold for the three-dimensional case (see figure 25).  

 

The dual interpretation for the transformation matrix is very fortunate within 

the context of this discussion. It is now possible to obtain an equivalent 

expression for the transformation matrix by direct employment of the active 

point of view. This will give rise to the desired relationship between the 

direction cosine and the Euler angle/axis representations. 

 
 
 

The Finite Rotation Formula 

The derivation of an equation for the finite displacement of a point of a rigid 

body turning about a fixed line is not only a challenging exercise, but it also 

has a broad practical applicability. As a consequence, its construction has 

attracted the interest of many writers and one can find in the pertinent 

literature several versions and proofs of the rotation formula.  

 

Without troubling to list any of the early works by Euler, Chasles and others 

responsible for the classical origins of the theory of rigid body motion (these 

writers used scalar methods), the following list gives an idea of the plethora 

of available literature related to the derivation of the finite rotation formula: 
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Authors who used mainly vector procedures41: 

Shabana (1998, p. 29-31) Shabana (1994, p. 438-40) 

Williams (1996, p. 688-90) Goldstein (1980, p. 164-65) 

Angeles (1997, p. 30-33) Konopinsky (1969, p. 234-36) 

Mathews (1976) Lewis & Ward (1989, p. 304-07) 

Kozik (1976) Bottema & Roth (1979, p. 56-60) 

Grubin (1970) Rosenberg (1977, p. 63-64, 82-84) 

Grubin (1962) Nikravesh (1988, p. 158-59) 

Beatty (1963)  Junkins & Turner (1986, p. 13-15,26-28) 

Argyris (1982, p. 87-88) Rheinfurth & Wilson (1991, p. 86-87) 

Torkamani (1998) Battin (1987, p. 86-89) 

Amirouche (1992, p. 22-26) Shuster (1993a, p. 450-51) 

 

Authors who used mainly matrix procedures: 

Hughes (1986, p. 10-13) Craig (1989, p. 51-53) 

Smith (1982, p. 436-38) Paul (1986, p. 25-31) 

Wie (1998, p. 312–15)  

 

Classical references:  

Whittaker (1927, p. 8) provides a scalar version for the problem 

Pars (1965, p. 95-97) provides three separate proofs illustrating 
various lines of approach 

 

Reviews:  

Beatty (1977)  - until the end of the 1970s 

Cheng & Gupta (1989) 

Argyris & Poterasu (1993, p. 22-25) 

Rooney (1977) 

 

                                          
41 The development of the rotation formula proposed by Grubin (1962) and Battin (1987, p. 86-88) differs quite 
substantially from the ones proposed by the other authors, since it is based on the solution of a differential vector 
equation. 
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For ease of understanding and completeness, a commonly used formal proof 

that establishes the rotation formula by a straightforward geometrical 

argument is briefly recapitulated below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Diagrams for the Rotation Formula 

(a) Coordinate system rotation (positive right-handed – anticlockwise) 

(b) Vector diagram for derivation of the finite rotation formula  

(c) Plane normal to the axis of rotation – geometric relations 

 

 

Referring to the above figure, the following proceeds  

 

( ) ( )
1

ˆ ˆ ˆsin 1 cos

v v w u

v n v n n vδ δϑ ϑ ϑ ϑ ϑδ δ δφ φ

= + +

= + × + − × ×
 

 

 

 

 

Euler angle of rotation 
of basis ϑ  with respect 

to basis δ 

transformed/ 
rotated vector 

Euler axis of rotation 
of basis ϑ  with respect 

to basis δ 
original 
vector 

δϑφ  

2ϑ  

3ϑ  

1ϑ  

2δ  

3δ  

1δ  

n̂ϑδ  
1v  

v  

w  

u  

(a)  (b) 

(c) 

δϑφ  
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In Cartesian three-dimensional space, this geometrical relationship may be 

rewritten as (compare to Shuster, 1993a, p. 503-05; Ibrahimbegovic, 1997; 

Ibrahimbegovic et al., 1995; and Pfister, 1996) 

 

( ) ( )( ) ( )
( ) ( )( ) ( )( )

1 ˆ ˆ ˆsin 1 cos

ˆ ˆ ˆsin 1 cos

v 1 v n 1 v n 1 n 1 v

1 n 1 n 1 n 1 v

ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

δ δ δ δ δ

δ ϑδ δ δ δ

φ φ

φ φ

• • • •

• •

= + × + − × ×

= + × + − × ×
 

 

The quantity enclosed in the outer parenthesis transforms the vector v  into 

the vector 1v . This tensor must represent, consequently, a finite rotation of 

arbitrary magnitude δϑφ  and direction n̂ϑδ :  

 

( ) ( )( ) ( )ˆ ˆ ˆsin 1 cosR 1 n 1 n 1 n 1δ δ δ δ δ δϑ ϑ ϑ ϑ ϑ ϑφ φ •= + × + − × ×  (C.2) 

 

Relation C.2 is one of the various forms of the finite rotation formula42. As a 

vector-dyadic equation, it has no dependence on the particular coordinate 

system selected to represent it, and can, therefore, be resolved using any 

Cartesian set of base vectors. For instance, expressing the corresponding 

quantities onto basis δ   (with respect to basis) and using matrix algebraic 

notation, one may write: 

 

( )sin 1 cosR 1 n n nϑ ϑ
δ δ δ δ
δ δ δ δ δ δϑ ϑ ϑ ϑφ φ= + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (C.3) 

 

As already discussed, there is a relationship of equivalence between the 

rotation matrix  Rϑ
δ
δ⎡ ⎤⎣ ⎦   and the transformation matrix  Tϑ

δ⎡ ⎤⎣ ⎦ ,  equation C.1: 

 

( )sin 1 cosT R 1 n n nδ δ δ δ δ
δ δ δ δ δ δϑ ϑ ϑ ϑ ϑ ϑ ϑφ φ= = + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (C.4) 

                                          
42 There is some disagreement in the literature about who the first contributor to the derivation of the finite 
rotation formula was (see Goldstein, 1980, p. 165, footnote). This formula is usually referred to as the Rodriguez 
Formula (see Shabana, 1994, p. 438-40; or Shabana, 1998, p. 31), but Cheng & Gupta (1989) claim, based on 
historical sources, that it should be ascribed to Leonhard Euler (1707-1783) and, therefore, called Euler’s Finite 
Rotation Formula (see also Shuster, 1993, p. 451, 496). 
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This is the desired angle/axis representation of the transformation matrix. 

The reader should note in the symbolism of the rotation matrix the presence 

of a superscript denoting the basis where the rotation tensor has been 

resolved (basis of representation).  

 

As shown above, a finite three-dimensional rotation may be rigorously 

described by a tensor (dyadic), i.e. a basis-free form of representation. The 

rotation matrix is the coordinate representation of such a tensor. When the 

rotation matrix is equated to the transformation matrix as in equation C.4, 

the basis of representation of the rotation tensor is dictated by the 

transformation matrix itself (compare to Angeles, 1997, p. 30-33, 48-51).  

 

It is interesting to note that the above-mentioned basis of representation is 

not unique. This point is conventionally shown considering a single 

alternative, but equally important resolution of the rotation tensor     : the 

one in terms of components along the axes of the measurement basis ϑ , as it 

is demonstrated in the ensuing argumentation. 

 

According to Euler’s theorem, any vector lying along the axis of rotation 

remains invariant under the rotation. For that reason, the components of the 

rotation vector possess a fascinating characteristic: they must at any time 

coincide in both original and rotated coordinate systems. This statement can 

be verified in several different ways; one possibility is as follows (compare to 

Angeles, 1997, p. 27; Nikravesh, 1988, p. 160; Shabana, 1994, p. 22; 

Ibrahimbegovic et al., 1995; or Grubin, 1970, p. 1262)  

 

{ } { }

{ }

{ } { } ( ) { }

{ }

1

sin 1 cos

T

T

R

n n n n n

ϑ
ϑ ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ

δ δ
δ δ

δ δ
δ δ

δ δ δ δ δ δ
δ δ δ δ δ δ δ δ δ δ

δ
δ

ϑ ϑ ϑ ϑ

ϑ

φ φ

φ

φ φ φ φ φ

φ

−
= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

= − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

 

 

R δϑ  
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where  the orthogonality property  
1 T

T T Tδ δ
δ
ϑ

ϑ ϑ
−

= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ; 

 the relationship  { } { }nϑ ϑ
δ δ
δ δ ϑδφ φ= ;   

 the identity  { } { }n n 0δ δ
δ δϑ ϑ =⎡ ⎤⎣ ⎦ ; and 

 equation C.4 have all been used. 

 

With this property in mind, it becomes evident that  { } { }n nϑ
ϑ
δ
δ ϑδ= , which is a 

intuitively plausible result. As a consequence, the relationship of 

equivalence, equation C.4, can be alternatively expressed as { }nδ
ϑδ  

 

( )sin 1 cosT R 1 n n nδ
δ δ δ
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ δ δ δϑ ϑ ϑφ φ= = + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (C.5) 

 

The arbitrariness of the basis of representation of the rotation tensor R δϑ  

when equated to the transformation matrix  Tϑ
δ⎡ ⎤⎣ ⎦   may, in fact, be extended 

to any basis ξ  whose Euler axis n̂ξδ  is parallel to n̂ϑδ , i.e.  { } { } { }n n nδ
δ δξ δ

ξ ξ
ϑ ϑ= = . 

Conversely, the corresponding Euler angle δξφ  has no restrictions, and can 

therefore assume any value. Thus, it follows a more general form for the 

relationship of equivalence: T δ
ϑ⎡ ⎤⎣ ⎦  

 

( )sin 1 cosT R 1 n n nδ
δ δ δ
ξ ξ

δ δ δϑ
ξ

ϑ ϑ
ξ

ϑ ϑ ϑ ϑφ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (C.6) 

 

This third and more general form for the relationship of equivalence, where 

the basis of representation of the rotation tensor is not necessarily its own 

measurement basis ϑ , nor its own with respect to basis δ , has not been found 

in the literature. 

 

 

N.B.  One can find works in the literature where the authors do not 

differentiate between transformation and rotation matrices. There is, 

however, a significant conceptual difference between them. As defined 
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here, a transformation matrix is a collection of direction cosines 

relating the orientation of two frames of coordinates. On the other 

hand, a rotation matrix (coordinate representation of the rotation 

tensor) is an operator that transforms/rotates vector quantities. 

Clearly, only the latter involves a tensorial transformation. Therefore, 

it is only when interpreted from the active point of view that a 

transformation matrix may be called a tensor (see Arfken & Weber, 

1995, p. 192). 

 

 

 



 
 

 
 
A p p e n d i x  D  

Appendix D Skew-Symmetric Form of the Vector Product 

The aim of this appendix is to show how to represent the vector cross product 

in algebraic skew-symmetric form. 

 Consider two vectors u  and v , their cross product w , and the corresponding 

component resolutions onto a dextral orthonormal basis λ : 

 

31 2

31 2

1 2 3

1 2 3

ˆ ˆ ˆ

ˆ ˆ ˆ

u u u u

v v v v

λλ λ

λλ λ

λ λ λ

λ λ λ

= + +

= + +
 

 

( ) ( ) ( )3 3 3 32 2 1 1 1 2 2 1
1 2 3

ˆ ˆ ˆ

w u v

u v u v u v u v u v u vλ λ λ λλ λ λ λ λ λ λ λλ λ λ

= ×

= − + − + −
 

 

The associated skew-symmetric matrices for these three vectors are 

respectively 

 
3 2

3 1

2 1

0
0

0

u u
u u u

u u

λ λ

λ λλ

λ λ

⎡ ⎤−
⎢ ⎥

= −⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥−⎣ ⎦

 

 
3 2
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2 1

0
0
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v v
v v v

v v

λ λ
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( )

( )
( )

3 31 2 2 1 1 1
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0

0

0
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λ λλ λ λ λ λ λ

λ λλ λ λ λ λ λλ

λ λ λ λλ λ λ λ

⎡ ⎤− − −
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= − − −⎢ ⎥⎡ ⎤⎣ ⎦
⎢ ⎥
− − −⎢ ⎥⎣ ⎦
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By direct matrix multiplication, one obtains 

 

( )
( )

( )

3 32 2

3 31 1

2 1 2 1

3 3 32 2 2 1 1

3 3 31 2 1 1 2

3 31 2 2 2 1 1

0 0
0 0

0 0

u u v v
u v u u v v

u u v v

u v u v u v u v

u v u v u v u v
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⎢ ⎥ ⎢ ⎥

= − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
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⎢ ⎥

= − +⎢ ⎥
⎢ ⎥

− +⎢ ⎥⎣ ⎦

 

 
and 
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( )

( )

3 32 2
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3 3 32 2 1 2 1
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v v u u
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u v u v u v u v

λ λλ λ
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⎢ ⎥ ⎢ ⎥

= − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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⎢ ⎥

= − +⎢ ⎥
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From which immediately follows that 

 

( )
( )

( )

3 31 2 2 1 1 1

3 31 2 2 1 2 2

3 3 3 31 1 2 2

0

0

0

u v u v u v u v

u v v u u v u v u v u v

u v u v u v u v

λ λλ λ λ λ λ λ

λ λλ λ λ λ λ λλ λ λ λ

λ λ λ λλ λ λ λ
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⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 

 

Comparing this result with the skew-symmetric expansion of vector w , i.e. 

w λ⎡ ⎤⎣ ⎦ , it becomes evident that  

 

w u v v uλ λ λ λ λ= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

The above expression shows, therefore, how to represent the vector cross 

product in algebraic skew-symmetric form. 

Q.E.D. 
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This very same identity can be found in Nikravesh (1988, p. 25, eq. 2.52) and 

Argyris (1982, p. 99, eq. 72). It is also proposed as an exercise/problem by 

Shabana (1998, p. 358, ex. 11) and Shabana (1994, p. 79, ex. 21), and 

introduced in Beggs (1983, p. xv) and Shuster (1993a, p. 446).  

 

 



 
 

 
 
A p p e n d i x  E  

Appendix E Invariance of the Antisymmetry Property 

The aim here is to demonstrate that the matrix antisymmetry property is 

invariant under orthogonal similarity transformations. 

 Consider the following vector cross product and corresponding resolutions 

onto the dextral orthonormal bases  λ  and ϑ  

 

 { } { }w u vλ λ λ= ⎡ ⎤⎣ ⎦  (E.1) 
w u v= × ⇒  
 { } { }w u vϑ ϑ ϑ= ⎡ ⎤⎣ ⎦  (E.2) 
 

Pre-multiplying by Tλ
ϑ⎡ ⎤⎣ ⎦  both sides of equation E.1 (resolution of the vector 

product onto basis λ ), one obtains 

 

{ } { }

{ }

{ }T

T w T u v

T u 1 v

T u T T v

λ λ λ
λ λ

λ λ
λ

ϑ ϑ

ϑ

λ ϑ λ
λ λ

ϑ
λ

ϑ

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

where the property of orthogonality of the transformation matrix has been 

used, T
T T 1ϑ ϑ
λ λ =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

 

Observing yet that 

 

{ } { }w T wϑ λ
λ
ϑ= ⎡ ⎤⎣ ⎦        and that       { } { }v T vϑ λ

λ
ϑ= ⎡ ⎤⎣ ⎦  
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it immediately follows 

 

{ } { } { } { }T T
T w T u T T v w T u T vϑ ϑ ϑ ϑ ϑ ϑλ λ λ λ

λ λ λ λ λ
ϑ ϑ
λ= ⇔ =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

Comparison of this last result and equation E.2 (resolution of the vector 

product onto basis ϑ ) leads to the desired relationship 

 
T

u T u Tλ ϑ
λ

ϑ
λ
ϑ=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

This relationship clearly shows that the matrix property of antisymmetry is 

invariant under orthogonal similarity transformations. 

Q.E.D. 

 

 

 

Alternative demonstrations can be found in Nikravesh (1988, p. 172, 

eq. 6.89); Meirovitch (1970, p. 109-10) and Crouch (1981, p. 23). It is also 

proposed as an exercise by Arfken & Weber (1995, p. 193, ex. 3.3.11) and 

Shabana (1998, p. 87, ex. 11), and introduced in Shuster (1993a, p. 466). 
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Appendix F Approximated Trigonometric Functions 

The aim of this appendix is to provide the reader with numerical-based 

examples for the relative accuracy of small angle approximations. 

 Table F1: Sine (definitions) 
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( )

( )
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Table F2: Cosine (definitions) 
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Table F1: Sine 

 

angle sine 
degrees radians exact 1st order error (%) 3rd order error (%) 

0 0.0000 0.0000 0.0000 0.00% 0.0000 0.00% 
1 0.0175 0.0175 0.0175 0.01% 0.0175 0.00% 
2 0.0349 0.0349 0.0349 0.02% 0.0349 0.00% 
3 0.0524 0.0523 0.0524 0.05% 0.0523 0.00% 
4 0.0698 0.0698 0.0698 0.08% 0.0698 0.00% 
5 0.0873 0.0872 0.0873 0.13% 0.0872 0.00% 
6 0.1047 0.1045 0.1047 0.18% 0.1045 0.00% 
7 0.1222 0.1219 0.1222 0.25% 0.1219 0.00% 
8 0.1396 0.1392 0.1396 0.33% 0.1392 0.00% 
9 0.1571 0.1564 0.1571 0.41% 0.1564 0.00% 

10 0.1745 0.1736 0.1745 0.51% 0.1736 0.00% 
11 0.1920 0.1908 0.1920 0.62% 0.1908 0.00% 
12 0.2094 0.2079 0.2094 0.73% 0.2079 0.00% 
13 0.2269 0.2250 0.2269 0.86% 0.2249 0.00% 
14 0.2443 0.2419 0.2443 1.00% 0.2419 0.00% 
15 0.2618 0.2588 0.2618 1.15% 0.2588 0.00% 
16 0.2793 0.2756 0.2793 1.31% 0.2756 -0.01% 
17 0.2967 0.2924 0.2967 1.48% 0.2924 -0.01% 
18 0.3142 0.3090 0.3142 1.66% 0.3090 -0.01% 
19 0.3316 0.3256 0.3316 1.86% 0.3255 -0.01% 
20 0.3491 0.3420 0.3491 2.06% 0.3420 -0.01% 
21 0.3665 0.3584 0.3665 2.27% 0.3583 -0.02% 
22 0.3840 0.3746 0.3840 2.50% 0.3745 -0.02% 
23 0.4014 0.3907 0.4014 2.74% 0.3906 -0.02% 
24 0.4189 0.4067 0.4189 2.99% 0.4066 -0.03% 
25 0.4363 0.4226 0.4363 3.25% 0.4225 -0.03% 
26 0.4538 0.4384 0.4538 3.52% 0.4382 -0.04% 
27 0.4712 0.4540 0.4712 3.80% 0.4538 -0.04% 
28 0.4887 0.4695 0.4887 4.09% 0.4692 -0.05% 
29 0.5061 0.4848 0.5061 4.40% 0.4845 -0.06% 
30 0.5236 0.5000 0.5236 4.72% 0.4997 -0.07% 
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Table F2: Cosine  

 

angle cosine 
degrees radians exact 1st order error (%) 2nd order error (%) 

0 0.0000 1.0000 1.0000 0.00% 1.0000 0.00% 
1 0.0175 0.9998 1.0000 0.02% 0.9998 0.00% 
2 0.0349 0.9994 1.0000 0.06% 0.9994 0.00% 
3 0.0524 0.9986 1.0000 0.14% 0.9986 0.00% 
4 0.0698 0.9976 1.0000 0.24% 0.9976 0.00% 
5 0.0873 0.9962 1.0000 0.38% 0.9962 0.00% 
6 0.1047 0.9945 1.0000 0.55% 0.9945 0.00% 
7 0.1222 0.9925 1.0000 0.75% 0.9925 0.00% 
8 0.1396 0.9903 1.0000 0.98% 0.9903 0.00% 
9 0.1571 0.9877 1.0000 1.25% 0.9877 0.00% 

10 0.1745 0.9848 1.0000 1.54% 0.9848 0.00% 
11 0.1920 0.9816 1.0000 1.87% 0.9816 -0.01% 
12 0.2094 0.9781 1.0000 2.23% 0.9781 -0.01% 
13 0.2269 0.9744 1.0000 2.63% 0.9743 -0.01% 
14 0.2443 0.9703 1.0000 3.06% 0.9701 -0.02% 
15 0.2618 0.9659 1.0000 3.53% 0.9657 -0.02% 
16 0.2793 0.9613 1.0000 4.03% 0.9610 -0.03% 
17 0.2967 0.9563 1.0000 4.57% 0.9560 -0.03% 
18 0.3142 0.9511 1.0000 5.15% 0.9507 -0.04% 
19 0.3316 0.9455 1.0000 5.76% 0.9450 -0.05% 
20 0.3491 0.9397 1.0000 6.42% 0.9391 -0.07% 
21 0.3665 0.9336 1.0000 7.11% 0.9328 -0.08% 
22 0.3840 0.9272 1.0000 7.85% 0.9263 -0.10% 
23 0.4014 0.9205 1.0000 8.64% 0.9194 -0.12% 
24 0.4189 0.9135 1.0000 9.46% 0.9123 -0.14% 
25 0.4363 0.9063 1.0000 10.34% 0.9048 -0.17% 
26 0.4538 0.8988 1.0000 11.26% 0.8970 -0.20% 
27 0.4712 0.8910 1.0000 12.23% 0.8890 -0.23% 
28 0.4887 0.8829 1.0000 13.26% 0.8806 -0.27% 
29 0.5061 0.8746 1.0000 14.34% 0.8719 -0.31% 
30 0.5236 0.8660 1.0000 15.47% 0.8629 -0.36% 
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