
FEDERAL UNIVERSITY OF TECHNOLOGY - PARANÁ

OFFICE OF RESEARCH AND GRADUATE STUDIES

GRADUATE PROGRAM IN COMPUTER SCIENCE

HELBERT DA ROCHA

AN MQTT-SN-BASED PROTOCOL FOR QOS ADAPTATION IN
WIRELESS SENSOR NETWORKS

MASTER’S THESIS

PONTA GROSSA
2018

HELBERT DA ROCHA

AN MQTT-SN-BASED PROTOCOL FOR QOS ADAPTATION IN
WIRELESS SENSOR NETWORKS

Master’s Thesis presented to Graduate Program
in Computer Science of the O�ce of Research
and Graduate Studies at Federal University of
Technology - Paraná - Campus Ponta Grossa,
as a partial requirement to obtain the title of
Master in Computer Science.
Concentration Area: Information Systems and
Computing

Advisor: Prof. Ph.D. Tania Lucia Monteiro

PONTA GROSSA
2018

Ficha catalográfica elaborada pelo Departamento de Biblioteca
da Universidade Tecnológica Federal do Paraná, Campus Ponta Grossa
n.59/18

Elson Heraldo Ribeiro Junior. CRB-9/1413. 30/11/2018.

R672 Rocha, Helbert da

An MQTT-SN-BASED protocol for QoS adaptation in wireless sensor

networks. / Helbert da Rocha, 2018.
48 f. : il. ; 30 cm.

Orientadora: Profa. Dra. Tania Lucia Monteiro

Dissertação (Mestrado em Ciência da Computação) - Programa de Pós-

Graduação em Ciência da Computação. Universidade Tecnológica Federal do
Paraná, Ponta Grossa, 2018.

1. Internet. 2. Mensagens eletrônicas. 3. Rede de computador - Protocolos.
4. Sistemas de comunicação sem fio. 5. Detectores. I. Monteiro, Tania Lucia. II.
Universidade Tecnológica Federal do Paraná. III. Título.

CDD 004

	

	
	

Ministério	da	Educação	
UNIVERSIDADE	TECNOLÓGICA	FEDERAL	DO	PARANÁ	CÂMPUS	PONTA	GROSSA	

Diretoria	de	Pesquisa	e	Pós-Graduação	
Programa	de	Pós-Graduação	em	Ciência	da	Computação	

	

	
	

FOLHA DE APROVAÇÃO

Título de Dissertação Nº 7/2018

AN MQTT-SN-BASED PROTOCOL FOR QOS ADAPTATION IN WIRELESS SENSOR
NETWORKS

Por

Helbert da Rocha

Esta dissertação foi apresentada às 13 horas 30 minutos de 08 de novembro de 2018, na

Q204 / UTFPR - Reitoria, como requisito parcial para a obtenção do título de MESTRE EM

CIÊNCIA DA COMPUTAÇÃO, Programa de Pós-Graduação em Ciência da Computação. O

candidato foi arguido pela Banca Examinadora, composta pelos professores abaixo

assinados. Após deliberação, a Banca Examinadora considerou o trabalho APROVADO.

Prof. Dr. Marcelo Eduardo Pellenz
(PUCPR)

 Prof. Dr. Augusto Foronda (UTFPR)

 Profª. Drª. Tânia Lúcia Monteiro
(UTFPR) – Orientador e presidente da

banca

 Visto da Coordenadora:

 Profª. Drª. Sheila Morais de Almeida
 Coordenadora do PPGCC
 UTFPR – Câmpus Ponta Grossa

A Folha de Aprovação assinada encontra-se na Coordenação do Programa

To my family.

ACKNOWLEDGMENTS

I wish to thank my family that is always by my side supporting me in all of the remark-
able moments of my life, especially to my mother Neura, my father Neuri, my brothers Marcelo,
Marcio, and Helder who contributed significantly to the person that I became.

A special thanks to my advisor Prof. Ph.D. Tania Lucia Monteiro for the guidelines and
long hours of discussions that resulted in the development and conclusion of this thesis.

I would like to thank all the professors who make it possible to get here by sharing
knowledge throughout the process, for the personal and professional growth.

Finally, to thank all my few and good friends and to all the other people who contributed
in some form for the development of this thesis.

Sincerely,
Helbert da Rocha

“It all seems impossible
until it is done.”
Nelson Mandela

ABSTRACT

Rocha, Helbert da. An MQTT-SN-BASED Protocol for QoS Adaptation in Wireless Sensor
Networks. 2018. 48 p. Master’s Thesis (Master in Computer Science) - Federal University of
Technology - Paraná. Ponta Grossa, 2018.

The Internet of Things (IoT) remains a concept that is being increased in the last few years. The
principal idea is to connect smart devices through a network solution. In the next few years,
IoT will be present in everyday objects, in people’s life, almost everything will communicate
through the Internet. The economic impact of IoT solution is expected to be, annually, billions
of dollars. To provide data exchange from smart devices, some protocols are being used. The
Message Queuing Telemetry Transport (MQTT) is one of the most common application pro-
tocols for IoT and Machine-to-Machine (M2M) communications. The MQTT implements the
publish/subscribe paradigm that provides three Quality of Service (QoS) to ensure message ex-
change between the devices. However, MQTT protocol is developed over TCP stack and im-
plements the TCP protocol to communicate. There is a version of MQTT for Sensor Network
(SN), named of MQTT-SN, developed specially for exchanging messages in Wireless Sensors
Networks (WSNs). As many smart devices will be connected on the same WSN, the network can
be overloaded and the links may become unstable. This study presents a method to optimize the
exchange messages and to increase message delivery during a communication process, between
a publisher and a broker or between a publisher and the middleware, implementing the MQTT-
SN protocol. The QoS Dynamic Adaptation Method (DAM) for sensor networks was developed
on the publisher’s side. It was focused to select the best Quality of Service between the three
QoS levels implemented in the MQTT-SN protocol, based on network latency. The QoS DAM
showed good performance in wireless networks, kept message delivery during the communica-
tion process, and it showed an impressive performance when compared with the normal QoS
implemented in the MQTT-SN protocol.

Key-words: Internet of Things. MQTT-SN. QoS. Publish/Subscribe Paradigm. Adaptive
QoS Method.

RESUMO

Rocha, Helbert da. Um Protocolo Baseado em MQTT-SN para Adaptação da QoS em Re-
des de Sensores Sem Fio. 2018. 48 p. Dissertação (Mestrado em Ciência da Computação) -
Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2018.

A Internet das Coisas (Internet of Things - IoT) é um conceito que vem crescendo nos últimos
anos. A ideia principal é conectar dispositivos inteligentes por meio de uma solução utilizando à
Internet. Nos próximos anos, a IoT estará presente nos objetos do dia-a-dia, na vida das pessoas,
quase tudo irá se comunicar por meio da Internet. O impacto econômico da solução utilizando
IoT, será de bilhões de dólares anualmente. Para promover a troca de mensagens entre os dis-
positivos inteligentes, alguns protocolos estão sendo utilizados. O Message Queuing Telemetry
Transport (MQTT) é um dos protocolos mais comuns para a IoT e comunicação entre máquinas
(Machine-to-Machine - M2M). O MQTT utiliza o paradigma publish/subscribe que provê três
Qualidades de Serviço (Quality of Service - QoS) para garantir a troca de mensagens entre os
dispositivos. Entretanto, o protocolo MQTT foi desenvolvido sobre a pilha de protocolos TCP
e utiliza o protocolo TCP para realizar a comunicação. Há uma versão do protocolo MQTT
para Redes de Sensores (Sensor Network - SN), chamado de MQTT-SN, desenvolvido especial-
mente para a troca de mensagens em Redes de Sensores Sem Fio (Wireless Sensor Networks
- WSNs). Como muitos dispositivos inteligentes poderão ser conectados na mesma WSN isso
pode ocasionar que a rede fique sobrecarregada e com links instáveis. Este estudo apresentou
um método para otimizar a troca de mensagens e aumentar o número de mensagens entregues
durante um processo de comunicação entre um publisher e um broker ou entre o publisher e
um agente intermediário. O Método de Adaptação Dinâmica da Qualidade de Serviço (QoS
Dynamic Adaptation Method - QoS DAM) para redes de sensores foi desenvolvido no lado do
publisher com o foco de selecionar a melhor Qualidade de Serviço, baseando-se na latência da
rede. O método QoS DAM apresentou boa performance em redes sem fio, mantendo a entrega
das mensagens durante o processo de comunicação, também apresentou uma boa performance
quando comparado com a implementação normal da Qualidade de Serviço presente no protocolo
MQTT-SN.

Palavras-chaves: Internet das Coisas. MQTT-SN. QoS. Publish/Subscribe Paradigma. Método
adaptativo da QoS.

LIST OF FIGURES

Figure 1 – The overall picture of IoT emphasizing the vertical markets and the hori-
zontal integration between them . 18

Figure 2 – MQTT architecture . 19
Figure 3 – At most once - QoS 0 . 19
Figure 4 – At least once - QoS 1. 20
Figure 5 – Exactly once - QoS 2 . 20
Figure 6 – MQTT-SN architecture . 22
Figure 7 – Transparent and Aggregating Gateways . 23
Figure 8 – Packet Transmission QoS Levels . 24
Figure 9 – QoS Dynamic Adaptation Method . 31
Figure 10 – Test scenario . 33
Figure 11 – Comparison of the tests using QoS provided by the original MQTT-SN . . . 35
Figure 12 – Comparison between MQTT-SN QoS 1 and QoS DAM beginning with

QoS 1 . 36
Figure 13 – Comparison between MQTT-SN QoS 1 and QoS DAM beginning with

QoS 2 . 37
Figure 14 – Class diagram of the client application . 44
Figure 15 – Initial screen to publish a message to a topic . 45
Figure 16 – Subscription screen and message receiver . 45
Figure 17 – Screen with information about the broker . 46
Figure 18 – Log screen and information about exchange messages. 46
Figure 19 – Files in the .txt, .csv, and .json formats . 47
Figure 20 – Graph of the message exchanged based on a chosen the QoS 48
Figure 21 – Smartphone client tool . 48

LIST OF TABLES

Table 1 – Comparison between the IoT Application Protocols. 16
Table 2 – Di�erence between MQTT and MQTT-SN . 22
Table 3 – Best practice values for timers and counters . 25
Table 4 – Time to transfer messages according to the QoS level selected 29
Table 5 – Latency interval for each scenario . 30
Table 6 – Devices specifications . 32

LIST OF ABBREVIATIONS AND ACRONYMS

AES Advanced Encryption Standard

API Application Programming Interface

DAM Dynamic Adaptation Method

DDS Data Distribution Service

CBC Cipher Block Chaining

CoAP Constrained Application Protocol

CPU Central Process Unit

dBm Decibel-milliwatt

dBi Decibel-isotropic

DNS Domain Name System

ETSI European Telecommunication Standards Institute

GB Gigabyte

GHz Gigahertz

GUI Graphical User Interface

GW Gateway

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

LLSec Link-Layer Security

M2M Machine-to-Machine

Mbps Megabits per second

MQTT Message Queuing Telemetry Transport

MQTT-SN Message Queuing Telemetry Transport for Sensor Networks

MS Millisecond

OS Operating System

PDR Packet Delivery Ratio

QoS Quality of Service

REST Representational State Transfer

RSMB Really Small Message Broker

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

RTO Retransmission Timeout

S Second

SAs Sensors and Actuators

SMTP Simple Mail Transfer Protocol

SSL Secure Sockets Layer

TCP Transmission Control Protocol

DTLS Datagram Transport Layer Security

UDP User Datagram Protocol

UML Unified Modeling Language

XML eXtensible Markup Language

XMPP Extensible Messaging and Presence Protocols

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

LIST OF SYMBOLS

n Number of messages

pt Time of PUBLISH message

mt Time of confirmation messages

TABLE OF CONTENTS

1 INTRODUCTION . 13
1.1 MOTIVATION . 14
1.2 OBJECTIVES . 14
1.2.1 General Objective . 14
1.2.2 Specific objectives . 15
1.3 CONTRIBUTIONS . 15
1.4 OUTLINE OF THIS THESIS . 15
2 BACKGROUND . 16
2.1 APPLICATION LAYER . 16
2.2 INTERNET OF THINGS (IOT) . 17
2.3 MESSAGE QUEUING TELEMETRY TRANSPORT (MQTT). 17
2.4 MESSAGE QUEUING TELEMETRY TRANSPORT FOR SENSOR NETWORK

(MQTT-SN) . 21
2.5 REALLY SMALL MESSAGE BROKER (RSMB). 24
2.6 RELATED WORKS. 25
3 METHODOLOGY . 28
3.1 IPERF . 28
3.2 WIRESHARK . 28
3.3 PROBLEM STATEMENT . 28
4 SOLUTION PROPOSED . 30
4.1 TEST SCENARIO EVALUATION. 32
4.2 TEST SCENARIO IMPLEMENTATION . 32
5 RESULTS . 35
5.1 RESULTS WITH THE ORIGINAL MQTT-SN . 35
5.2 RESULTS WITH QOS DAM – QOS 1 . 36
5.3 RESULTS WITH QOS DAM – QOS 2 . 37
6 CONCLUSIONS. 39
6.1 FUTURE WORKS . 39
REFERENCES . 42
APPENDIX A - Developed Tools . 43
6.2 CLIENT ECLIPSE MOSQUITTO . 43
6.3 SMARTPHONE CLIENT TOOL . 47

13

1 INTRODUCTION

The concept to communicate smart devices, through the Internet is named Internet of
Things (IoT). It is a topic composed of technical, social and economic significance (ROSE;
ELDRIDGE; CHAPIN, 2015). The smart devices can see, hear, think, talk to each other and
exchange information to coordinate decisions (AL-FUQAHA et al., 2015; TORRES; ROCHA;
SOUZA, 2016). Many areas are using connected sensors through the Internet, e.g., environ-
mental forecasting and monitoring, medical, military, transportation, crisis management, indus-
trial automation, and others (ULLAH et al., 2013). The worldwide impact of IoT and Machine-
to-Machine (M2M), is related to connection of 100 billion devices, resulting in a global eco-
nomic impact between $3.5 and $11 trillion by 2025 (ROSE; ELDRIDGE; CHAPIN, 2015;
MANYIKA, 2015).

Currently, the appropriate protocol to exchange messages in the IoT and M2M commu-
nications is the Message Queuing Telemetry Transport (MQTT). It is capable to provide routing
for small, cheap, low power and low memory devices working inside the vulnerable and low
bandwidth networks (AL-FUQAHA et al., 2015).

The MQTT protocol was developed in 1999 by Andy Clark of IBM and Arlen Nip-
per (Eurotech), it was standardized in 2013 at the OASIS (AL-FUQAHA et al., 2015; BANKS;
GUPTA, 2014). The MQTT protocol uses the publish/subscribe paradigm that provides a com-
munication mechanism (one-to-one, one-to-many, and many-to-many) built on top of the TCP
protocol. In this paradigm, the publisher publishes to a topic in the middleware named broker.
A subscriber subscribes to a topic of his interest in the broker. When the publisher publishes a
message to this topic inside the broker, the broker transfers the message from the topic to the
subscriber. The messages are delivered using one of the three Quality of Service (QoS): QoS 0
sends a message without confirmation (fire or forget), the QoS 1 sends a message with a con-
firmation message, but duplicate messages can arrive, and QoS 2 sends exactly one message
with three confirmation messages. There is a version of MQTT developed specially for Wireless
Sensors Network (WSN) named of MQTT-SN (STANFORD-CLARK; TRUONG, 2013).

The MQTT-SN was developed by the IBM Company for networks with extremely spe-
cific purposes, e.g., WSNs. A typical WSN consists of a massive number of devices equipped
with a limited amount of storage and processing capabilities. For this environment, it is signifi-
cant a wireless communication between devices. This protocol can be used for networks where
the devices may fail and be replaced frequently (STANFORD-CLARK; TRUONG, 2013).

The MQTT protocol requires underlying protocols, for example, TCP/IP which is un-
necessarily complex for a simple, small footprint and low-cost devices as sensors. The MQTT-SN
is a di�erent protocol that uses the publish/subscribe paradigm. It was designed to be as close
as possible of MQTT, adapted to the particularities of wireless communication environments.
MQTT-SN was developed properly to work in low bandwidth and high link failures networks, it

14

uses short length messages (STANFORD-CLARK; TRUONG, 2013).

The proposed method had the goal to optimize the process of exchange messages be-
tween a publisher and a broker or between a publisher and the middleware, e.g., a Gateway.
Using the Message Queuing Telemetry Transport for Sensor Network (MQTT-SN) protocol.
The method was developed on the publisher side of the communication. The user selects one
of the three QoS provided by the MQTT-SN and the method will select the best QoS according
to the network latency. The developed method, made possible an increase of message delivery
compared with the original MQTT-SN without any special QoS treatment during the communi-
cation.

1.1 MOTIVATION

As an emerging modern technology, the Internet of Things (IoT) will provide the con-
nectivity of billions or trillions of smart things in the following years. An important protocol
that can be used in the application layer of communication is the Message Queuing Telemetry
Transport (MQTT). The MQTT is a lightweight, open, simple, and with easy implementation
developed by Andy Stanford-Clack of IBM and Arlen Nipper of Arcom (now Eurotech) in 1999.
However, the MQTT protocol is too complex to communicate small, low bandwidth and battery
devices like sensors and actuators (SAs)(LOCKE, 2013).

The alternative for Wireless Sensor Networks (WSNs) is the MQTT-SN protocol. The
MQTT-SN was developed to be close as possible to MQTT, but adapted for sensors and actuators.
It was designed to the particularities of the wireless communications environment. Moreover,
it is adapted for limited bandwidth and high link failure. The optimization of the Quality of
Service (QoS) from the MQTT-SN protocol to increase the network performance is essential.
It is a significant advantage of this technology mainly by the fact that at the end of 2020 are
expected more than 213 billion smart devices (GANTZ; REINSEL, 2012). Probably, the MQTT-
SN protocol will be one of the solutions to interconnect many of them in WSNs.

1.2 OBJECTIVES

1.2.1 General Objective

The general objective of this work is to develop a Quality of Service Dynamic Adaption
Method (QoS DAM) for the Message Queuing Telemetry Transport for Sensor Network (MQTT-
SN) protocol.

15

1.2.2 Specific objectives

The specific objectives are:

• To study and understand the network behavior by each one of the three qualities of service,
provided by MQTT and MQTT-SN in a proper environment;

• To develop tools that help to understand the protocols;

• To estimate a proper latency interval for QoS DAM;

• To provide a better network performance without overload the network using a proper
QoS;

• To decrease message loss in WSNs implementing the MQTT-SN protocol.

1.3 CONTRIBUTIONS

This Thesis presents a new QoS Dynamic Adaptation Method to ensure message deliv-
ery and reduce packet loss implementing the MQTT-SN protocol. Furthermore, it presents two
developed tools that can be used to comprehend how the Quality of Service, latency, and signal
strength can a�ect the communication process by the MQTT protocol. The tools and the QoS
DAM can be adapted for each environment with other variables and necessities.

1.4 OUTLINE OF THIS THESIS

The organization of the rest of the Thesis is structured as follows. Section 2 discusses the
background and related works. The problem formulation is presented in Section 3. The solution
proposed is presented in Section 4. The results are shown in Section 5. Finally, conclusions and
future works are exposed in Section 6.

16

2 BACKGROUND

This Section presents some tools that were utilized to develop the method to reduce
packet loss, the QoS Dynamic Adaptation Method for MQTT-SN protocol. The method was
developed with the Python (ROSSUM; others, 2007) and C (SCHILDT, 1990) as program-
ming languages to generate scripts for the environment of the test. Furthermore, a client called
Mosquito from the author in (LIGHT, 2017) was utilized to receive messages from the broker.

2.1 APPLICATION LAYER

The Message Queuing Telemetry Transport for Sensor Networks is an application pro-
tocol. The application layer is defined as a layer that allows the user (human or software), to
access the network. The main function of this layer is to provide services to final users. Some
services provided are: e-mail service, access and transfer achieve, access system resources, surf
the Web and network management (FOROUZAN, 2009).

The application layer has the own support protocols, to allow the application to work
properly, e.g., DNS (Domain Name System), SMTP, MQTT, and others (TANENBAUM; WETHER-
ALL; TRANSLATIONS, 2011).

Some IoT standards are proposed to help developers and service providers in the appli-
cation layer. In addition, various groups created standards to support IoT protocols, e.g., World
Wide Web Consortium (W3C), Internet Engineering Task Force (IETF), EPCglobal, Institute
of Electrical and Electronics Engineers (IEEE) and the European Telecommunication Standards
Institute (ETSI) (AL-FUQAHA et al., 2015). Table 1 shows the most important protocols and
their di�erences defined by these groups.

Table 1 – Comparison between the IoT Application Protocols

Application Protocols RE
ST

Fu
l

Tr
an

sp
or

t

Pu
bl

ish
/S

ub
sc

rib
e

Re
qu

es
t/R

es
po

ns
e

Se
cu

rit
y

Q
oS

H
ea

de
rS

iz
e

(B
yt

e)

COAP V UDP V V DTLS V 4
MQTT - TCP V - SSL V 2

MQTT-SN - UDP / Others (e.g. ZigBee) V - SSL V 2
XMPP - TCP V V SSL - -
AMQP - TCP V - SSL V 8
DDS - TCP / UDP V - SSL / DTLS V -

HTTP V TCP - V SSL - -
Source: Adapted from (AL-FUQAHA et al., 2015; CRAGGS, 2015)

17

2.2 INTERNET OF THINGS (IOT)

The Internet of Things represents a paradigm of rapidly growing, corresponding to
the integration of several technologies and communication solutions, identification and tracking
technologies. Used to connected small, tiny, limited bandwidth everyday life objects, through
the Internet, creating a synergy between diverse fields of knowledge, e.g., telecommunication,
informatics, electronics, and social science. This technology will enable smart devices exchange
information between them. Many areas will utilize the IoT, e.g., home appliances, surveillance
cameras, monitoring sensors, actuators, displays, vehicles, etc (ATZORI; IERA; MORABITO,
2010; AL-FUQAHA et al., 2015).

The Internet of Things will allow the connection of billion or trillion of smart devices
through the Internet. Probably in 10 or 20 years, many operations will be possible to be done
remotely, like a doctor examining a patient in another city, seeing the real-time health status
information, e.g., blood pressure, heart rate, etc (LAMPKIN et al., 2012).

It is being expected that IoT will connect 212 billion smart objects around the world
by the end of 2020. Figure 1 presents the application that can be developed, and the vertical
market the objects will be connected (AL-FUQAHA et al., 2015). The US National Intelligence
Council includes the IoT in one of the "Disruptive Civil Technologies", presenting that: "by 2025
Internet nodes may reside in everyday things – food packages, furniture, paper documents, and
more” (ATZORI; IERA; MORABITO, 2010).

The IoT is already present today, many places and objects contain sensors. There are
some examples: buildings have sensors to save energy. Many homes are already autonomous,
cars, taxis, and public lights have devices to improve safety and transportation. People have
useful apps on their smartphones, also, many industries are currently connected to the Inter-
net. Health care services are being used with home sensing to support medicines and wellness
(STANKOVIC, 2014).

2.3 MESSAGE QUEUING TELEMETRY TRANSPORT (MQTT)

The MQTT message protocol was developed by Andy Stanford-Clack of IBM and Arlen
Nipper of Arcom (now Eurotech) in 1999, and only in 2013 was standardized at OASIS (LOCKE,
2013). The MQTT allows the connection between embedded devices with networks applica-
tions and middleware. In addition, the MQTT is open and easy to implement because it uses
the publish/subscribe pattern (BOYD et al., 2014). The protocol was built on top of the TCP
protocol. There are large specifications of MQTT: MQTT v3.1 and MQTT-SN (LOCKE, 2013).
The MQTT-SN specification was defined specially for sensors networks and establishes a UDP
mapping of MQTT. The benefits of the MQTT o�ers are (BOYD et al., 2014, p. 6):

18

Figure 1 – The overall picture of IoT emphasizing the vertical
markets and the horizontal integration between them

Source: (AL-FUQAHA et al., 2015)

• To allow more connectivity to smart devices;

• To o�er more options of connectivity optimized for sensors and remote devices;

• To deliver relevant data;

• To allow the scalability and management of solutions.

The MQTT protocol provides telemetry technology to meet the information challenges
of the Internet users.

The telemetry technology enables to measure and monitor things from a distance. The
improvements in this technology, at this time, made possible to interconnect measure and mon-
itor devices inside of other locations, so it reduces the costs of developing applications that can
run on smart devices to make them more useful (BOYD et al., 2014; LAMPKIN et al., 2012).

The telemetry is used on smart devices by people, business, and governments to interact
smartly with their works. The information can help user decision, e.g., a person that is shopping
groceries and wants to know what products there are at the moment in its pantry at home. The
information comes from a variety of smart devices.

There are some challenges using telemetry technologies and communications protocols
to transmit and receive information. A challenge is to get information from devices and deliver
this information to people and application that want to use this information. At the time, it is
important to allow the people or application to reply to the device with current instructions and

19

requests. The challenge can increase with the devices distributed geographically, or if they have
limited storage or computational abilities (BOYD et al., 2014).

The MQTT consists of three components, subscribers, publishers, and brokers. Figure
2 illustrates the architecture of MQTT. To communicate, the device will register as a subscriber
to a specific topic of its interest in the broker. When the publishers publish to the topic, the broker
delivers the information to one or more subscribers (STANFORD-CLARK; TRUONG, 2013).
Many applications use MQTT e.g., health care, monitoring, energy meter, Facebook notification
(WANG, 2011). Furthermore, the MQTT represents one of the appropriate messaging protocol
for IoT and M2M communications because provides routing for small, cheap, limited power and
memory devices that belong to vulnerable and low bandwidth networks (BOYD et al., 2014;
AL-FUQAHA et al., 2015).

Figure 2 – MQTT architecture
SubscribersBrokerPublishers

Topics

Source: Author

The MQTT implements the communication between the broker and the publishers and
the broker with the subscribers. To start a communication a CONNECT packet is sent from
the client (publisher or subscriber) to the server (broker) to start the connection, the server re-
sponses with a CONNACK packet. To finish the communication, the client sends a DISCON-
NECT packet. During the communication process three Quality of Service (QoS) levels may be
used(LOCKE, 2010):

QoS 0 (At most once): the message is sent using the best e�ort on the TCP/IP network,
the answer is not expected and the message is not sent again. The message can arrive at the server
or not. The sender sends a PUBLISH packet as presented in Figure 3.

Figure 3 – At most once - QoS 0

PUBLISH QoS 0

BrokerMQTT

Source: Author

QoS 1 (At least once): it is the default mode of message transfer (LOCKE, 2010). The
message arrives at least once to the receiver, to ensure delivery at least once. If a failure is

20

identified, there may be a failure on the communication link, or the message is not received after
a specified period of time, the message will be resent by the sender. It allows the recipient to
receive the message multiple times. After the message is processed, it is deleted from the receiver.
The sender using QoS 1 sends a PUBLISH packet containing the Packet Identifier. The Publish
packet retains a state of unacknowledged until the sender, receives the PUBACK packet from
the broker/receiver. (LOCKE, 2010). Figure 4 shows message exchange between a publisher and
broker using QoS 1 technique. After deleting the message the receiver sends the acknowledgment
to the sender. The same occurs with the sender after receiving the acknowledgment from the
receiver. Both sender and receiver delete the message after the communication.

Figure 4 – At least once - QoS 1

PUBLISH QoS 1

Broker

PUBACK

MQTT

Source: Author

Qos 2 (Exactly once): Duplicate messages and losses are not acceptable (LOCKE,
2010). It increases the network tra�c, but it is acceptable because the QoS 2 is used to send
relevant messages, it is the highest Quality of Service (LOCKE, 2010). This technique guar-
antees that a message is received once, when the receiver confirms the message has arrived.
The QoS 2 PUBLISH packet involves two-step process. The PUBLISH packet is treated as un-
acknowledged until the sender receives the corresponding PUBREC packet from the receiver.
The sender sends a PUBREL packet and waits from the receiver, the corresponding PUBCOMP
packet. The PUBREL packet is treated as unacknowledged until the PUBCOMP packet recep-
tion. (LOCKE, 2010). Figure 5 represents messages exchange between a publisher and broker
using QoS 2 technique.

Figure 5 – Exactly once - QoS 2

PUBLISH QoS 2

Broker

PUBREC

PUBCOMP

PUBREL

MQTT

Source: Author

The MQTT specification (LOCKE, 2013) do not present parameters to be set in order
to define an interval, and how many times the messages may be retransmitted.

21

2.4 MESSAGE QUEUING TELEMETRY TRANSPORT FOR SENSOR NETWORK (MQTT-
SN)

The Message Queuing Telemetry Transport for Sensor Network (MQTT-SN) protocol
was developed specially for Wireless Sensor Networks (WSNs), normally made up of low cost
and easy developed environments. Typically, a WSN has a large number of sensors and actuators,
from di�erent device types, that present a limited amount of storage and processing capabilities.
The devices are developed to detect and notify events through wireless links, used habitually
in monitoring environment, tra�c and building management, battlefield surveillance, and home
automation (DAVIS; AUGé, 2018; STANFORD-CLARK; TRUONG, 2013).

Some problems like addressing schemes between the networks may be involved. For
example, how to communicate an application residing on a TCP/IP-based network and a device
running on a ZigBee-based wireless network? (STANFORD-CLARK; TRUONG, 2013)

The problem can be solved using data-centric communication approach. An excellent
example of data-centric communication is the “Publish/Subscribe” message system, that is scal-
able and support dynamic network topology. A protocol that can be used is the MQTT protocol,
optimized for communication with low bandwidth or networks with intermittent connection.
However, the MQTT protocol requires an underlying network, e.g., TCP/IP, and in some situ-
ations, the protocol is unnecessarily complex for the very simple, small footprint and low-cost
devices (STANFORD-CLARK; TRUONG, 2013).

The propose of the MQTT-SN is to be a publish/subscribe protocol for wireless sen-
sor network, considering a version of MQTT that best applies to the particularities of wire-
less communication environment. Furthermore, it is optimized for implementation on low-cost,
battery-operated devices with limited processing and storage resource (STANFORD-CLARK;
TRUONG, 2013). The MQTT-SN was developed to not rely on network services. In addition,
the MQTT-SN can be supported for any network which provides a bi-directional data exchange
service between any node and a particular broker or gateway.

Some features of the MQTT-SN are (STANFORD-CLARK; TRUONG, 2013):

• To work with short message length and limited transmission bandwidth in a wireless net-
work, the "topic name" in PUBLISH message is replaced for a two-byte “topic-id”. The
clients register their topic name in the server/gateway and obtain the corresponding topic
id;

• “Pre-defined” topic ids and “short” topic names are introduced. The short topics presents
a length of two octets, so they are shorter enough for being carried simultaneously with
data in PUBLISH messages;

• The discovery procedure is used to assist clients that do not know the server/gateway’s
address to discover the network address;

22

• A new o�ine keep-alive procedure is defined to support sleeping clients. The battery-
operated devices can go to a sleeping state, all messages designed to them are bu�ered at
the server/gateway and delivered later when they wake up.

The di�erences between the MQTT and MQTT-SN protocols are presented in Table 2.

Table 2 – Di�erence between MQTT and MQTT-SN
Characteristic MQTT MQTT-SN

Transport TCP UDP / Other(ZigBee)
Replace topic for an Id - V
Pre-defined topics Id - V
Discovery procedures - V

Support for sleeping clients - V
Source: Author

The architecture of the MQTT-SN is illustrated in Figure 6. The classic architecture is
composed of the MQTT-SN client (publisher), the MQTT-SN Gateway (GW), and the MQTT-
SN forwarder. The MQTT-SN protocol transfer messages between an MQTT-SN client and a
broker using an MQTT-SN GW as the middleware. The function of an MQTT-SN GW is to
translate messages from MQTT to MQTT-SN or vice-versa, if it is a stand-alone topology. The
MQTT-SN Forwarder is configured when the MQTT-SN GW is not present in the same network
(STANFORD-CLARK; TRUONG, 2013).

Figure 6 – MQTT-SN architecture

MQTT
Broker

MQTT­SN
Client

MQTT­SN

MQTT­SN
Client

MQTT­SNMQTT­SN
Client

MQTT­SNMQTT­SN
Client

MQTT
MQTT­SN
Gateway

MQTT­SN
Gateway

MQTT­SN
MQTT­SN
Forwarder

Source: Adapted from (STANFORD-CLARK; TRUONG, 2013)

To access a MQTT-SN GW that is not attached in the same network topology is used
a MQTT-SN forwarder. The forwarder encapsulates the MQTT-SN frames when receives them
from the gateway and sends to the clients. There are two types of GWs to translate frames (make a
syntax translation) between MQTT and MQTT-SN, and vice versa. They are named Transparent
and Aggregating GWs (STANFORD-CLARK; TRUONG, 2013).

The Transparent and Aggregating Gateways are shown in Figure 7. The Transparent
GW will setup and maintain a connection from each MQTT-SN client to the MQTT server. The

23

MQTT connection is reserved exclusively for the end-to-end connections, and almost transpar-
ent message exchange between the client and the server. The Transparent GW will perform a
“syntax” translation between the two protocols. All function and features implemented by the
server can be o�ered to the client (STANFORD-CLARK; TRUONG, 2013).

Figure 7 – Transparent and Aggregating Gateways

Source: Adapted from (STANFORD-CLARK; TRUONG, 2013)

The implementation of Transparent GW is simpler, when compared to the Aggregating
GW, because it requires the MQTT server to support a separate connection for each active client.
However, the MQTT server might impose a limitation on the number of supported concurrent
connections.

Aggregating GW will retain only one MQTT connection to the server. The Aggregating
GW will decide which information will be given later to the server. This implementation is more
complex if compared with the Transparent GW, but an Aggregating GW can be used with WSNs
with a considerable number of Sensors and Actuators (SAs) because it reduces the number of
MQTT connections (STANFORD-CLARK; TRUONG, 2013).

The MQTT-SN protocol was developed to be as close as possible to the MQTT pro-
tocol. However, it is adapted to the particularities of the WSNs. The messages are sent from
a publisher to a topic in the middleware named broker. The broker transfers the messages to
the subscripted subscribers to this topic in the broker. To transfer the messages both protocols,
MQTT and MQTT-SN start with CONNECT message from the client to the server. The server
responses with a CONNACK message. To finish the communication, the client sends a DIS-
CONNECT message to the server. During the communication, three levels of Quality of Service
are used to exchange the messages (BANKS; GUPTA, 2014; BOYD et al., 2014; LAMPKIN et
al., 2012; LEE et al., 2013).

The QoS 0 (at most once) sends a PUBLISH message according to network capabilities.
There is no retransmission if a sent message is lost. The message arrives once at the receiver or
not at all (BANKS; GUPTA, 2014).

The QoS 1 (at least once) keeps the message in the client, sends a PUBLISH message
and waits for a PUBACK from the broker, that is the message/packet confirmation. In the case the

24

message does not arrive, a PUBLISH message will be sent until a PUBACK message is received,
or the time to retransmit is over. This QoS ensures the message arrives at the subscriber/receiver
at least once. However, duplicate messages can arrive at the receiver until the subscribe/client
receives the confirmation message (PUBACK) (BANKS; GUPTA, 2014).

The QoS 2 (exactly once) keeps the message in the publisher, sends a PUBLISH mes-
sage and waits for a PUBREC message. When the PUBREC message arrives, the publisher
discards the message and keeps the PUBREC message, sends a PUBREL message and waits for
a PUBCOMP message and finally discards the PUBREL message. It is the highest QoS level
and appropriated to use when neither loss nor duplication messages are acceptable in the com-
munication. This QoS promotes an increase of overhead (BANKS; GUPTA, 2014; BOYD et al.,
2014).

The QoS levels are illustrated in Figure 8.

Figure 8 – Packet Transmission QoS Levels

BrokerPublisher/Subscriber
Client

PUBLISH

BrokerPublisher/Subscriber
Client

PUBLISH

PUBACK

Broker Publisher/Subscriber
Client

PUBLISH

PUBREC

PUBREL

PUBCOMP

QoS 0 QoS 1 QoS 2

Source: Author

There is a specific QoS, named QoS Level-1, implemented in the MQTT-SN. The
QoS Level-1 is defined to be used with simple devices that do not support any other QoS
(STANFORD-CLARK; TRUONG, 2013). The QoS level-1 do not have the operations: con-
nection setup; disconnect; registration; nor subscription. The client sends a PUBLISH message
to a GW without knowing the GW address, also do not care if the GW address is correct, if it is
alive, or if the message arrives at the GW.

The MQTT-SN specification defines best practices that can be adopted when the MQTT-
SN is implemented. The best practices are presented in Table 3.

2.5 REALLY SMALL MESSAGE BROKER (RSMB)

The Really Small Message Broker (RSMB) was developed by Ian Craggs, that is a soft-
ware engineer at the IBM. The RSMB is a small server with 80 KB of storage that can run with
200 KB of memory. Moreover, it uses lightweight MQTT publish/subscribe protocol to distribute
messages between applications (CRAGGS, 2014). The reduced size of the RSMB enables mes-

25

Table 3 – Best practice values for timers and counters
Description Timer/Counter Recommended value
Time ADVERTISE message. The ADVERTISE
message is broadcasted periodically by a gate-
way to advertise its presence

TADV greater than 15 minutes

Number of ADVERTISE message NADV 2 - 3
The SEARCHGW message. The SEARCHGW
message is broadcasted by a client when it
searches for a GW

TSEARCHGW 5 seconds

The GWINFO message. A GWINFO message
is sent as a response to a SEARCHGW

TGWINFO 5 seconds

A client should wait for a time TWAIT before
restarting the registration procedure

TWAIT greater than 5 minutes

The time to retry a message starts when a client
sends a message and stops when the expected
GW’s reply. In the case of the message times out
and the expected GW’s reply is not received, the
client retransmits the message until it is received

Tretry 10 - 15 seconds

The Number of retries to send a message. In
the case of the number of retransmissions end,
the client aborts the procedure and assumes its
MQTT-SN connection to the gateway is discon-
nected

Nretry 3 - 5

Source: Adapted from (STANFORD-CLARK; TRUONG, 2013)

saging from very small devices like sensors and actuators in networks with low bandwidth. It
allows publishers to send messages to the broker and the broker transfers the messages to sub-
scribers, who want to receive those messages. Furthermore, the RSMB can run in embedded
systems to provide infrastructure in remote installations.

The RSMB transfers messages between applications over TPC/IP network connections.
The data can be exchanged from a variety of sources (applications, other brokers, sensors, etc).
The broker was written in C language, and it has a straightforward internal design and external
features. Moreover, it provides MQTT clients in C and Java languages. The broker was developed
to execute on some platforms (Linux for Intel-32-bit, Linux for Intel-64-bit, Linux on IBM,
Linux for ARM XScale, Windows XP, and MacOSX).

2.6 RELATED WORKS

There are some related works in the literature which proposes publish/subscribe ap-
proaches for WSNs. The proposed papers satisfy the QoS reliability and others timeliness re-
quirements. Some authors provide a comparison of the MQTT with other protocols.

In (DAVIS; AUGé, 2018) the authors presented a mechanism that establishes various
QoS levels using the publish/subscribe model for wireless networks to provide reliable delivery

26

of packet and timeliness. The authors proposed three QoSs: the QoS 2 and QoS 3 are based
on the QoS 1. The QoS 1 calculates the Retransmission Timeout (RTO) and adjusts the RTO
depending on the Packet Delivery Ratio (PDR). The QoS 2 provides data aggregation to reduce
network congestion. The QoS 3 promotes the timeliness on the delivery packet. The propose of
the QoS developed by the authors is to adapt to the di�erent application requirements.

An implementation of the MQTT-SN protocol in an end-to-end e-health system was
presented in (GOVINDAN; AZAD, 2015). The study promoted an end-to-end delay assurance
and su�cient probability of content delivery in WSN and IoT systems. The sensors are simulated
that are mounted on the human body to transfer data using the MQTT-SN protocol and a gateway.

The authors in (CHEN et al., 2014) presented a survey with the technologies that are
being used to connect Machine-to-Machine (M2M) networks. The authors examined the typical
architectures of M2M home networks and discuss the performance of the present designs. In
this survey is covered QoS, energy e�ciency and security issues.

The author in (TONG; NGAI, 2012) presented a publish/subscribe platform for ubiq-
uitous data access to mobile phones and sensors. The mobile phones are being used as mobile
mules to relay subscriptions and to publish data between the Internet and the sensors. Also, the
platform support data access from the mobile phones and sensors without any network infras-
tructure.

A simulation of the publish/subscribe model using OMNETT++ based on the Castalia
simulator is presented in (TEKIN; SAHINGOZ, 2016). The simulation showed that the publish/-
subscribe model decreases the number of messages transmitted, as a result, decrease the power
consumption.

The author in (KATSIKEAS, 2016) implemented the MQTT for Wireless Sensors
Nodes using the simulator Contiki OS to evaluate the security used on the IoT world with a real
hardware platform. The study concluded that AES-CBC and LLSec are better implementations
to provide security for MQTT.

In the literature, there is compassion between MQTT and other protocols. The authors
in (HE�I; äPEH; äARABOK, 2017) compared the MQTT protocol and the CoAP (Constrained
Application Protocol) for communication Machine-to-Machine and communication devices in
the IoT world. The protocols are compared in alternative scenarios, and they concluded that
MQTT is suitable for battery run devices and for applications that require massive updates with
data that contains the same value.

The authors in (LEE et al., 2013) analyzed the three QoS levels implemented on the
MQTT protocol in wired and wireless networks using various sizes of payload. The authors
analyzed the delay and message loss. The conclusion was that the delay and message loss main-
tained a direct relationship with the QoS level which was chosen to transfer the messages. The
QoS 2 had the highest delay but had the least loss of messages. While the QoS 0 received the
lowest delay and highest message loss.

27

The method developed in this work is distinctive from the other authors because it is
focused on communication between the publisher and broker, it monitors the network latency
and selects the proper QoS according to the network conditions.

28

3 METHODOLOGY

This Section presents the problem and the QoS Dynamic Adaptation Method using
MQTT-SN as a solution. Two di�erent tools were developed to understand how the QoSs work
with MQTT. The tools are presented in APPENDIX A. The iPerf and Wireshark are network
tools used to develop the QoS DAM method.

3.1 IPERF

The iPerf was originally developed by NLAND/DAST. However, the iPerf version 3
was developed by ESnet/Lawrence Berkeley National Laboratory. The iPerf is a tool used for
measurements of the IP networks bandwidth. There are some protocols supported (TCP, UDP,
SCTP with IPv4 and IPv6) (TIRUMALA et al., 2006). Also, iPerf supports parameters related
to timing and bu�ers. The tests provided by iPerf generate reports with the information about
the bandwidth, loss and others parameters.

The iPerf tool is a cross-platform (Windows, Linux, Android MacOSX, FreeBSD,
OpenBSD, NetBSD, Solaris). Some features are measured bandwidth, packet loss, delay, jit-
ter, and multicast capable. The client and server can connect simultaneously, handling multiple
connections, the tools can be configured to run at a specific time (TIRUMALA et al., 2006).

3.2 WIRESHARK

The Wireshark is a network protocol analyzer. The project was started by Gerald Combs
in 1998 and has been contributed by many networking experts around the globe (COMBS, 2006).
The features of the Wireshark are a deep inspection of hundreds of protocols, live capture, and of-
fline analyses. The analyzer is a multi-platform (Windows, Linux, macOSX, Solaris, FreeBSD).
It is possible to use a GUI or a TTY-mode with TShark utility to capture network behavior, the
output can be exported to XML, PostScript, CSV, or plain text.

3.3 PROBLEM STATEMENT

Regarding the IoT network solution, a massive part of the smart devices will be con-
nected through Wireless Sensor Networks (WSNs). A suitable option to transfer messages in the
IoT and Machine-to-Machine networks is the Message Queuing Telemetry Transport (MQTT)
(AL-FUQAHA et al., 2015). However, MQTT uses TCP/IP protocols that provide a complex

29

kind of communication for extremely simple devices, not allowing connection to sensors that
use other protocols like ZigBee (STANFORD-CLARK; TRUONG, 2013). Therefore, the MQTT
for Sensor Networks (MQTT-SN) was developed to work in sensor networks with limited band-
width, high link failures, and short message length.

Both protocols MQTT and MQTT-SN provide three Quality of Service (QoS) levels to
transfer the messages. Each QoS level guarantees di�erent level of message delivery. The QoS
0 does not provide a guarantee at all, if a message is lost it is not sent again. The QoS 1 ensures
that the message arrives once, but duplicate messages may arrive. Finally, The QoS 2 guarantees
that only a message will arrive, there will no be duplicated messages.

The impact of the QoS level in the communication is presented by the equations in
Table 4.

Table 4 – Time to transfer messages according to the QoS level selected
Abbreviation Description QoS pt mt Equation

pt Time to send PUBLISH message 0 1 0 n · pt
n Number of messages 1 1 1 n · (pt+mt)

mt
Confirmation messages
(PUBACK, PUBREC, PUBREL,
and PUBCOMP)

2 1 3 n · (pt+ 3mt)

Source: Adapted from (BOYD et al., 2014; LAMPKIN et al., 2012)

Considering a number of 10 messages, the time for pt equals 1s and time for mt equals
0.4s. The QoS 0 requires 10 seconds to transfer 10 messages. The QoS 1 takes 40% more time
to transfer the corresponding number of messages, while QoS 2 takes about 120%. When com-
paring QoS 2 and QoS 1 it is possible to see that QoS 2 takes 80% more time to send the
corresponding number of messages.

The developed method chooses the proper QoS based on the network environment. By
getting the latency value for specific intervals, it is calculated the median latency. Using this
information the method chooses the best QoS, concerning to the original QoS chosen by the
user.

30

4 SOLUTION PROPOSED

The goal of the developed method is to improve and guarantees the number of messages
delivered in a WSN with unreliable wireless links and heavy tra�c load. The latency intervals
presented in Table 5 are proposed for testing the solution using the median latency (ML) varia-
tion. The latency intervals can be adapted for di�erent wireless network environments. There are
three scenarios proposed to select the best QoS based on the current performance of the WSN.

The latency intervals for the solution were based in the studies of the latency on wire-
less networks in (PATRO; GOVINDAN; BANERJEE, 2013; SUI et al., 2016; SYED; HEIDE-
MANN; others, 2006). The method gets information about the latency in the network and decides
which QoS is proper for the current moment.

The method works on the publisher’s side. The user informs which QoS level wants to
use to communicate. The method gets network latency values for a period of time and calculates
the median latency variation to select the best QoS to consider. The median latency is calculated
as in (SHRIVASTAVA et al., 2004). Based on the calculated value, the method returns which
are the best QoS to transfer the messages in a network environment, adapting it if necessary.

When the method changes the QoS of one or more messages, it will transfer all these
messages to the new selected choice, until the latency is measured again. Based on the new value
of the median latency the method can assign or not a new QoS level. That kind of operation will
be processed until all messages are delivered to the broker.

According to the median latency value and the intervals presented in Table 5, the net-
work status is considered. If it is considered as “Good”, the method changes the QoS selected by
the publisher, if the initial one was QoS 1 or QoS 2 to QoS 0. Meaning that this change continues
to guarantee messages delivery without overload the network. It is important to note that even
with this change, the message will be delivered once.

If the network is considered as "Unstable", the initial QoS selected by the user to pub-
lish is changed to QoS 0. The idea is to reduce the network load. To this unstable moment, by
choosing QoS 0 the method o�ers more chances the message be delivered if compared to QoS 1
and QoS 2 choices. In the case of message of confirmation is lost and the time to retransmit the
message is over, the client aborts the procedure and assumes that the gateway is disconnected
(STANFORD-CLARK; TRUONG, 2013).

Table 5 – Latency interval for each scenario
Latency Interval Good Normal Unstable

1 ML  10 ms 10 ms < ML  20 ms 20 ms < ML
2 ML  15 ms 15 ms < ML  30 ms 30 ms < ML
3 ML  30 ms 30 ms < ML  60 ms 60 ms < ML

QoS selected QoS 0 QoS selected by the user QoS 0
Source: Author

31

Figure 9 – QoS Dynamic Adaptation Method

Source: Author

When median latency is in the interval considered as “Normal”, the method returns the
current QoS to the original one, selected by the user to publish at the beginning of the commu-
nication. For example, if the user initially chooses QoS 2 to transfer the messages, and along
with the communication process the network condition is classified as “Good” or “Unstable”
the method changes the QoS 2 to QoS 0. When the network condition returns to “Normal” the
method returns to use QoS 2. In case of the user initially selects QoS 0, the method does not
realize any change. The state machine diagram is presented in Figure 9.

The method calculates which QoS will be used every time a new median latency is
calculated. Hence, the goal is not to overload the network providing message delivery by the

32

QoS DAM.

4.1 TEST SCENARIO EVALUATION

The architecture scenario is composed of the devices presented in Table 6, a computer
as an MQTT-SN publisher MacBook Air connected to a single broker. The broker MQTT-SN
is installed in a Raspberry. The method was developed to work between the publisher and a
broker. The Raspberry was configured as MQTT-SN GW to a subscriber that was a Mosquitto
client tool. One more Raspberry was used to overload the network using the software iPerf with
10 Mbits/s of UDP packets. Finally, the last component of the test environment is a Wireless
Router D-LINK DIR-611 with 300 Mbps configured with 25 % of its capacity, that represents
1.25 dBi antenna power gain. The test scenario is illustrated in Figure 10.

Table 6 – Devices specifications
Device Processor Memory Wireless Storage S.O.

MacBook
Air (13-inch,
Mid 2013)

1,3 GHz Intel
Core i5

4 GB DDR3
(1600MHz)

AirPort
Extreme/
Broadcom
BCM43xx
1.0 802.11
a/b/g/n/ac

251 GB
APPLE SSD

SM0256F

macOS High
Sierra

10.13.4

Raspberry PI
3 Model B

Quad Core
1.2 GHz

Broadcom
BCM2837
64 bit CPU

1 GB
LPDDR2

(900 MHz)

2.4 GHz
802.11.b/g/n

Wireless

microSDHC
C4 16 GB

NOOBS

Raspberry PI
3 Model B

Quad Core
1.2 GHz

Broadcom
BCM2837
64 bit CPU

1 GB
LPDDR2

(900 MHz)

2.4 GHz
802.11.b/g/n

Wireless

microSDXC
C10 16 GB

NOOBS

D-LINK
DIR-611

2.4 GHz
802.11.b/g/n

Wireless
Source: Author

4.2 TEST SCENARIO IMPLEMENTATION

The tests were performed in a real network topology. The architecture scenario consid-
ers a computer connected to a single MQTT-SN broker. The position of the devices was fixed.
The broker works as an MQTT-SN gateway and MQTT-SN broker. The method was developed

33

Figure 10 – Test scenario

Publisher
MQTT-SN

iPerf
Server

Broker
MQTT-SN

Gateway
MQTT-SN

Subscriber
MQTT

iPerf
Client

HardwareSoftware

Computer

Raspberry PI 3
Raspberry PI 3

D-LINK 2.4 GHz (B+G+N)

30 m

30 cm

5 m

Wireshark

Source: Author

to select the best QoS to send messages from the publisher to a broker. The scenario was con-
structed to simulate a network with links lossy by reducing the antenna power gain (dBi) and
heavy tra�c using iPerf to overload the network.

The radio signal strength is measured in dBm or decibel milliwatt that is a real continu-
ous signal, whereas the signal strength indicator (RSSI) is implemented for each developer com-
pany (KAEMARUNGSI, 2006). Experiments conducted by the authors in (KAEMARUNGSI,
2006) and additional analysis of measurements done in all WLAN cards, from the scenario, lead
to a considered dBm interval between -70 dBm and -80 dBm, representing a lower sensitivity
condition in the test topology. The values are chosen to represent a topology with smart devices
far from the router. It was considered a distance of 30 meters from the MQTT-SN publisher and
the wireless router (SIBONI; SHABTAI; ELOVICI, 2018). A distance of 30 centimeters was
considered from the second Raspberry and the wireless router. In this equipment was simul-
taneously executed the software iPerf to generate UDP tra�c with 10 Mbits/s, to overload the
network environment. The test script was written using Python language provided by the client
library to RSMB (CRAGGS, 2014). A Mosquitto client tool (LIGHT, 2017) is used to receive
messages implementing the MQTT protocol when the RSMB is used as an MQTT-SN gateway
and MQTT broker at the same time.

The test was conducted, by transmitting 10 groups of 5,000 messages, by each of the
three QoS levels implemented by MQTT-SN protocol. Each message has a specified size of 64
bytes. Every 100 messages the method estimate the latency using a ping command between the
publisher and the broker. It was chosen 100 messages to generate a window where the method
will adapt and do no lost time to publish the messages. The time to publish is measured, it

34

concerns to the time taken to send 5,000 from the publisher to the broker considering the time
to get the latency. The system computes the median latency. This median latency value was
compared with the values presented in Table 5. At this point, the method chooses the best QoS
to transfer the messages. When the median latency value is in the interval considered as "Normal"
in Table 5, the QoS used in the communication is the QoS selected by the user. In case of the
median latency value is classified as "Good" or "Unstable" the initial QoS changes to QoS 0.

The test scenario includes some specific procedures. As presented in Figure 10, all the
connections were wireless. To manage the machines remotely it was established a connection
between the Raspberries and the computer, using SSH protocol (YLONEN; LONVICK, 2005).
The following step was to start the MQTT-SN RSMB broker in the Raspberry that is fixed 5m
from the wireless router. In the other Raspberry was started the iPerf server tool to overload the
network with 10 Mbits/s UDP packets. While the communication process occurs, the tra�c in
the background increases the latency and generates packet loss. In a sequence 5,000 messages
are sent, using the MQTT-SN protocol without the method and later the MQTT-SN protocol
using the developed method, QoS DAM, from the publisher to the broker. The data about the
communication process was collected and analyzed. The steps are briefly listed:

1. To start the MQTT-SN in RSMB broker localized a 5 m of the wireless router through a
SSH remote connection.

2. To start the iPerf server tool using SSH remotely.

3. To start the iPerf client tool, to overload the network with 10 Mbits/s UDP packets.

4. To start the Wireshark tool in the publisher computer.

5. To send 5,000 messages using the MQTT-SN protocol to the broker.

6. To get the number of messages implementing the Mosquitto client tool to manage the
messages that arrive in the broker.

7. To stop Wireshark.

8. To stop iPerf.

9. To save the information from the publisher, subscribe and Wireshark. To extract the time
interval to publish all the messages.

The goal of the test scenario was to verify how the proposed QoS DAM works under
high tra�c and latency variation.

35

5 RESULTS

This Section presents the experimental results and discusses about the performance of
the proposed method. Section 5.1 presents the results the original QoS mechanism provided by
the MQTT-SN protocol. Sections 5.2 and 5.3 show the results for the proposed method.

5.1 RESULTS WITH THE ORIGINAL MQTT-SN

The average results obtained without using the QoS DAM are presented in Figure 11.
The tests were repeated 10 times for each level of MQTT-SN QoS (QoS 0, QoS 1, and QoS 2).
Figure 11 shows that initially using QoS 0 and QoS 1 the percentage of delivered messages were
99%. However, initially using QoS 2 the results showed merely 41% of messages delivered.

Figure 11 – Comparison of the tests using QoS provided by the
original MQTT-SN

QoSs MQTT-SN

-80

-60

-40

-20

0

20

40

60

80

100

120

Message Delivery
Ratio (%)

Average RSS
(dBm)

Average Latency
(ms)

Time to Publish
(s)

QoS 0

QoS 1

QoS 2

Source: Author

The RSS is the same for all the QoS (-80 dBm). Even with more latency during the com-
munication process (latency of 70 ms) the MQTT-SN using QoS 0 delivered the same percentage
of messages than the MQTT-SN using QoS 1 (latency of 62 ms). Although, the MQTT-SN using
QoS 2 presented the lowest latency, the number of delivered messages was worse. The time to
publish 5,000 messages was closer for all QoS techniques, approximately 114 seconds for QoS
1, and QoS 2. The time to publish all the messages using QoS 0 was 115 seconds.

36

It is possible to conclude the QoS 0 and QoS 1 presents a similar performance in the ex-
perimental scenario. The QoS 2 which requires a more complex communication process presents
a reduced e�ciency in terms of delivered messages.

5.2 RESULTS WITH QOS DAM – QOS 1

Figure 12 presents the results considering messages exchange from MQTT-SN, without
any changes, and the results from the three di�erent latency intervals in Table 5, considering QoS
DAM method. Where QoS 1 was initially considered. The proposed method uses the median
latency to select the best QoS to communicate. In this scenario, the method changes QoS 1 to
QoS 0 if the median latency is considered “Good or Unstable” and return to the original one,
QoS 1, if the network returns to latency values considered "Normal".

Figure 12 – Comparison between MQTT-SN QoS 1 and QoS DAM
beginning with QoS 1

QoS 1 Latency Interval - Dynamic Adaptation

-80

-60

-40

-20

0

20

40

60

80

100

120

Message Delivery
Ratio (%)

Average RSS
(dBm)

Average Latency
(ms)

Time to Publish
(s)

QoS 1 Without Latency Interval

QoS 1 Latency Interval 1

QoS 1 Latency Interval 2

QoS 1 Latency Interval 3

Source: Author

When considered latency intervals 1 and 2 it was delivered 100% of the messages.
The intervals presented the lowest signal strength average (-74 dBm) because of the variation
of signal strength during the communication process. The latency average (23 ms) and time to
publish all the messages (106 s and 105 s, respectively) were also lower.

Considering Table 5 - latency interval 3 by the QoS DAM and MQTT-SN using initially
QoS 1, the same percentage of messages delivered (99%) was presented. Also, the identical time
to publish all the messages. However, latency interval 3 presented the best performance because

37

the QoS DAM kept the percentage of messages delivered about 99%, with a higher latency (100
ms).

The QoS DAM using Table 5 - latency interval 3 had the best performance if compared
with MQTT-SN and the two other latency intervals in Table 5. To the most pessimistic scenario
QoS DAM maintained the performance.

5.3 RESULTS WITH QOS DAM – QOS 2

The method changes from QoS 2 to QoS 0 in case of the latency interval is classified
as "Good" or "Unstable”. It returns from QoS 0 to QoS 2 when the latency interval returns to be
classified as "Normal".

Figure 13 presents the results for the MQTT-SN protocol using QoS 2. Without any
change during all the communication process, and the QoS DAM considering Table 5 - latency
intervals.

Figure 13 – Comparison between MQTT-SN QoS 1 and QoS DAM
beginning with QoS 2

QoS 2 Latency Interval - Dynamic Adaptation

-80

-60

-40

-20

0

20

40

60

80

100

120

Message Delivery
Ratio (%)

Average RSS
(dBm)

Average Latency
(ms)

Time to Publish
(s)

QoS 2 Without Latency Interval

QoS 2 Latency Interval 1

QoS 2 Latency Interval 2

QoS 2 Latency Interval 3

Source: Author

The QoS DAM obtained a better performance when processing messages of QoS 2.
Table 5 - latency intervals 1 and 2 maintained the performance in messages delivering (98% and
100% respectively). Moreover, the intervals got the lower latency (32 ms and 16 ms), and signal
strengths (-76 dBm and -74 dBm), and the lowest time to publish all the messages (107 s and
105 s), respectively.

38

The Table 5 - latency interval 3 presented the worst latency but delivered about 74% of
the messages with a signal strength average of -80 dBm and average latency of 68 ms. The time
to publish was 113 s.

The MQTT-SN using QoS 2 presented the worst performance. It had 41% of the mes-
sages delivered. The signal strength average is the same as Table 5 - latency interval 3 (-80 dBm),
however, the messages delivered that can be seen in Figure 13 for MQTT-SN using QoS 2 was
33% lower compared with QoS 2 latency interval 3. Also, MQTT-SN using QoS 2 had the worst
time to publish all messages (114 s).

39

6 CONCLUSIONS

The goal of this study was to develop a method that can be used in Wireless Sensor Net-
work (WSN) to keep the message delivery in networks with unstable connections and overload.
The Quality of Service Dynamic Adaptation Method (QoS DAM) was developed to improve the
message exchange process and the messages delivery time. It was chosen as the main network
parameter, the latency interval.

We have performed an experimental and theoretical study of wireless sensors’ commu-
nication, implementing the protocol Message Queuing Telemetry Transport for Sensor Networks
(MQTT-SN). The tests showed that considering latency intervals, to adjust QoS levels, the com-
munication process may be improved in overloads networks. The number of messages delivered,
mainly by QoS 2 the one that most penalizes the performance of the network, can be improved
in overloaded networks.

The tests also showed that with a higher latency the QoS DAM method keeps the mes-
sage delivery using the QoS 1 when it is compared with QoS 1 from the MQTT-SN.

6.1 FUTURE WORKS

There are some features that can be explored to improve the QoS DAM for the MQTT-
SN also for MQTT:

• To explore more latency intervals.

• To implement the test on simulators.

• To employ Radio Signal Strength (RSS) interval to adapt the QoS.

• To use RSSI combined with latency to determine the interval to select the QoS.

• To implement the method in others protocols that use the paradigm publish/subscribe.

• To implement the method to set the Retransmission Timeout (RTO) and increase or de-
crease the window interval for message timeout.

• To exercise artificial intelligence to select the best latency interval to be considered when
necessary to make a dynamic adaptation. Also, we want to study the implementation of
artificial intelligence to select QoS based on the position of the sensors, as an example of
the authors in (KARABOGA; OKDEM; OZTURK, 2012), producing a cluster in WSN
using Artificial Bee Colony Algorithm.

40

REFERENCES

AL-FUQAHA, Ala et al. Internet of things: A survey on enabling technologies, protocols, and
applications. v. 17, n. 4, p. 2347–2376, 2015.

ATZORI, Luigi; IERA, Antonio; MORABITO, Giacomo. The internet of things: A survey.
Computer networks, Elsevier, v. 54, n. 15, p. 2787–2805, 2010.

BANKS, Andrew; GUPTA, Rahul. MQTT version 3.1. 1. v. 29, 2014.

BOYD, B. et al. Building Real-time Mobile Solutions with MQTT and IBM MessageSight.
IBM Redbooks, 2014. ISBN 978-0-7384-4005-7. Available at: <https://books.google.com.br/
books?id=R3tNBQAAQBAJ>.

CHEN, M. et al. A survey of recent developments in home m2m networks. v. 16, n. 1, p.
98–114, 2014. ISSN 1553-877X.

COMBS, Gerald. Wireshark. 2006. Available at: <http://www.wireshark.org>.

CRAGGS, Ian. Really small message broker. 2014. Available at: <https://www.ibm.com/
developerworks/community/alphaworks/tech/rsmb>.

. Conference, MQTT-SN: MQTT for UDP, ZigBee and Other Transports |
EclipseCon NA 2015. 2015. Available at: <https://www.eclipsecon.org/na2015/session/
mqtt-sn-mqtt-udp-zigbee-and-other-transports.html>.

DAVIS, Ernesto García; AUGé, Anna M Calveras. Publish/subscribe protocol in wireless
sensor networks: improved reliability and timeliness. v. 12, n. 4, p. 1527–1552, 2018.

FOROUZAN, Behrouz A. Comunicação de dados e redes de computadores. [S.l.]: AMGH
Editora, 2009.

GANTZ, John; REINSEL, David. The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. v. 2007, n. 2012, p. 1–16, 2012.

GOVINDAN, K.; AZAD, A. P. End-to-end service assurance in IoT MQTT-SN. In: 2015 12th
Annual IEEE Consumer Communications and Networking Conference (CCNC). [S.l.:
s.n.], 2015. p. 290–296.

HE�I, I; äPEH, I; äARABOK, A. IoT network protocols comparison for the purpose of IoT
constrained networks. In: Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2017 40th International Convention on. [S.l.]: IEEE, 2017. p.
501–505.

KAEMARUNGSI, Kamol. Distribution of WLAN received signal strength indication for
indoor location determination. In: Wireless Pervasive Computing, 2006 1st International
Symposium on. [S.l.]: IEEE, 2006. p. 6–pp.

KARABOGA, Dervis; OKDEM, Selcuk; OZTURK, Celal. Cluster based wireless sensor
network routing using artificial bee colony algorithm. v. 18, n. 7, p. 847–860, 2012. ISSN
1572-8196. Available at: <https://doi.org/10.1007/s11276-012-0438-z>.

KATSIKEAS, S. A lightweight and secure MQTT implementation for wireless sensor nodes.
2016.

https://books.google.com.br/books?id=R3tNBQAAQBAJ
https://books.google.com.br/books?id=R3tNBQAAQBAJ
http://www.wireshark.org
https://www.ibm.com/developerworks/community/alphaworks/tech/rsmb
https://www.ibm.com/developerworks/community/alphaworks/tech/rsmb
https://www.eclipsecon.org/na2015/session/mqtt-sn-mqtt-udp-zigbee-and-other-transports.html
https://www.eclipsecon.org/na2015/session/mqtt-sn-mqtt-udp-zigbee-and-other-transports.html
https://doi.org/10.1007/s11276-012-0438-z

41

LAMPKIN, Valerie et al. Building smarter planet solutions with mqtt and ibm websphere
mq telemetry. [S.l.]: IBM Redbooks, 2012.

LEE, Shinho et al. Correlation analysis of MQTT loss and delay according to QoS level. In:
Information Networking (ICOIN), 2013 International Conference on. [S.l.]: IEEE, 2013.
p. 714–717.

LIGHT, Roger A. Mosquitto: server and client implementation of the MQTT protocol. v. 2,
n. 13, 2017.

LOCKE, Dave. Mqtt v3. 1 protocol specification. International Business Machines
Corporation (IBM) and Eurotech, p. 42, 2010.

. MQTT: Enabling the Internet of Things. 2013. Available at: <https://www.ibm.
com/developerworks/community/blogs/c565c720-fe84-4f63-873f-607d87787327/entry/tc_
overview?lang=en>.

MANYIKA, James. The Internet of Things: Mapping the value beyond the hype. [S.l.]:
McKinsey Global Institute, 2015.

PATRO, Ashish; GOVINDAN, Srinivas; BANERJEE, Suman. Observing home wireless
experience through wifi aps. In: Proceedings of the 19th annual international conference on
Mobile computing & networking. [S.l.]: ACM, 2013. p. 339–350.

ROSE, Karen; ELDRIDGE, Scott; CHAPIN, Lyman. The internet of things: An overview. p.
1–50, 2015.

ROSSUM, Guido Van; others. Python programming language. In: USENIX Annual Technical
Conference. [S.l.: s.n.], 2007. v. 41, p. 36.

SCHILDT, Herbert. C: The complete reference. [S.l.: s.n.], 1990.

SHRIVASTAVA, Nisheeth et al. Medians and beyond: New aggregation techniques for sensor
networks. In: Proceedings of the 2Nd International Conference on Embedded Networked
Sensor Systems. ACM, 2004. (SenSys ’04), p. 239–249. ISBN 1-58113-879-2. Available at:
<http://doi.acm.org/10.1145/1031495.1031524>.

SIBONI, Shachar; SHABTAI, Asaf; ELOVICI, Yuval. Leaking data from enterprise
networks using a compromised smartwatch device. In: Proceedings of the 33rd Annual
ACM Symposium on Applied Computing. ACM, 2018. (SAC ’18), p. 741–750. ISBN
978-1-4503-5191-1. Available at: <http://doi.acm.org/10.1145/3167132.3167214>.

STANFORD-CLARK, Andy; TRUONG, Hong Linh. Mqtt for sensor networks (mqtt-sn)
protocol specification. v. 1, 2013.

STANKOVIC, John A. Research directions for the internet of things. v. 1, n. 1, p. 3–9, 2014.

SUI, Kaixin et al. Characterizing and improving wifi latency in large-scale operational
networks. In: Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services. [S.l.]: ACM, 2016. p. 347–360.

SYED, A�an A; HEIDEMANN, John S; others. Time synchronization for high latency acoustic
networks. In: Infocom. [S.l.: s.n.], 2006. v. 6, p. 1–12.

https://www.ibm.com/developerworks/community/blogs/c565c720-fe84-4f63-873f-607d87787327/entry/tc_overview?lang=en
https://www.ibm.com/developerworks/community/blogs/c565c720-fe84-4f63-873f-607d87787327/entry/tc_overview?lang=en
https://www.ibm.com/developerworks/community/blogs/c565c720-fe84-4f63-873f-607d87787327/entry/tc_overview?lang=en
http://doi.acm.org/10.1145/1031495.1031524
http://doi.acm.org/10.1145/3167132.3167214

42

TANENBAUM, A.S.; WETHERALL, D.J.; TRANSLATIONS, O. Redes de computadores.
PRENTICE HALL BRASIL, 2011. ISBN 9788576059240. Available at: <https://books.
google.com.br/books?id=fnfwkQEACAAJ>.

TEKIN, Y.; SAHINGOZ, O. K. A publish/subscribe messaging system for wireless
sensor networks. In: 2016 Sixth International Conference on Digital Information and
Communication Technology and its Applications (DICTAP). [S.l.: s.n.], 2016. p. 171–176.

TIRUMALA, Ajay et al. Iperf. 2006. Available at: <https://iperf.fr/>.

TONG, X.; NGAI, E. C. H. A ubiquitous publish/subscribe platform for wireless sensor
networks with mobile mules. In: 2012 IEEE 8th International Conference on Distributed
Computing in Sensor Systems. [S.l.: s.n.], 2012. p. 99–108.

TORRES, Andrei BB; ROCHA, Atslands R; SOUZA, José Neuman de. Análise de desempenho
de brokers mqtt em sistema de baixo custo. In: Anais do XXXVI congresso da sociedade
brasileira de computaç ao. Sociedade Brasileira de Computaçao. [S.l.: s.n.], 2016.

ULLAH, Mohammad Hasmat et al. A collaboration mechanism between wireless sensor
network and a cloud through a pub/sub-based middleware service. In: The Fifth International
Conference on Evolving Internet. [S.l.]: Citeseer, 2013. p. 38–42.

WANG, Lucy. Building Facebook Messenger. 2011. Available at: <https://www.facebook.
com/notes/facebook-engineering/buildingfacebook-messenger/10150259350998920>.

YLONEN, Tatu; LONVICK, Chris. The secure shell (SSH) protocol architecture. 2005.

https://books.google.com.br/books?id=fnfwkQEACAAJ
https://books.google.com.br/books?id=fnfwkQEACAAJ
https://iperf.fr/
https://www.facebook.com/notes/facebook-engineering/buildingfacebook-messenger/10150259350998920
https://www.facebook.com/notes/facebook-engineering/buildingfacebook-messenger/10150259350998920

43

APPENDIX A - DEVELOPED TOOLS

Two tools were developed to understand how the Quality of Service works with the
MQTT protocol and MQTT-SN protocol.

6.2 CLIENT ECLIPSE MOSQUITTO

The Eclipse Mosquitto Broker is written in C language, however, the author provides
an API, for developers, to develop client applications to Eclipse Mosquitto broker. This API was
used to develop new functionalities needed for testing the Mosquitto broker in our proposal.

There are client applications that allow the user to test the Mosquitto broker e.g., (MQTT.fx1,
mqtt-spy2, MQTT inspector3, MyMQTT4, HiveMQ WebSocket Client5, MQTT Lens6, and mosquitto_tools7).
However, these applications do not product statistics about the message exchange process. So,
arises the need to create a tool to have these information.

The Client Eclipse Mosquitto tool was developed based on the Eclipse Mosquitto API
for C++ developers. The new tool has some features to improve the management and provide a
better comprehension of how the MQTT works. One of the main features, that was implemented,
was a graphical presentation that allows the comparison of the QoS techniques. This tool is
di�erent from the others because is focused on the improvement of the QoS.

It was used Unified Modeling Language (UML) to prototype the project and create
classes to allow the development of the tool, using the language C++ and Eclipse Mosquitto for
C++ developers. Figure 14 presents the Class Diagram for the software that was developed to test
the Eclipse Mosquitto API. The Diagram represents the mosquittopp, that is the API provided
by the Eclipse Mosquitto broker. The class Mosquitto API uses the mosquittopp functions by
heritance. The BrokerStatus, Publish, and Subscribe classes, are associated with the Mosquitto
API class to use its functions: to get the broker status, publish and subscribe to a topic. Also,
the same classes are associated with Window class, responsible to show the information. The
Window class has the information to generate the graph about the time wasted to messages
exchange. The Mosquitto API creates logs about any operation executed on the program. The
logs are saved in three di�erent formats, they are .txt, .csv8, and .json9.
1 http://www.jensd.de/apps/mqttfx/
2 http://kamilfb.github.io/mqtt-spy/
3 https://itunes.apple.com/us/app/mqttinspector/id758868884?mt=8
4 https://play.google.com/store/apps/details?id=at.tripwire.mqtt.client
5 http://www.hivemq.com/demos/websocket-client/
6 https://chrome.google.com/webstore/detail/mqttlens/hemojaaeigabkbcookmlgmdigohjobjm
7 http://mosquitto.org/download/
8 Comma-separated value (CSV), text format regulated by the RFC 4180
9 JavaScript Object Notation (JSON), low format to exchange data.

44

Figure 14 – Class diagram of the client application

Source: Author

The developed software either presents a client interface to access the Eclipse Mosquitto
API. The features available for the software are:

1. To provide the graphics interface to the user to configure the connection with the Mosquitto
API. Figure 15 shows the graphic interface. This interface allows the user to set the broker
address (local or remote), and the port that is used to connect.

2. To connect the Mosquitto API. It is shown in Figure 15.

3. To allow a client to publish to send messages to a topic that is inside the broker, and select
the QoS that the message needs to be exchanged, also in Figure 15.

To allow the client subscribes to a topic to receive messages from a specific topic present
in the broker. Also, the user is able to visualize a list of the messages inside the broker, to access
the content of the messages and information, such as date and messages content. The user can
select the QoS to receive the messages. Figure 16 presents the functionality.

To access information about the broker status by the graphic interface, as shown in
Figure 17. The information about the broker is obtained subscribing to predefined topics inside
the broker.

To show the time during the message exchanging and to provide a log of the of the
messages exchanged. The functionality is presented in Figure 18.

45

Figure 15 – Initial screen to publish a message to a topic

Source: Author

Figure 16 – Subscription screen and message receiver

Source: Author

To save logs in three di�erent formats; .txt, .csv, and .json. The files allow doing com-
parisons about the performance of exchanging messages using a chosen QoS technique. Figure

46

Figure 17 – Screen with information about the broker

Source: Author

Figure 18 – Log screen and information about exchange messages

Source: Author

19 presents the data saved in di�erent formats.

To show by a graphic the variation time, to exchange messages, between the broker and

47

Figure 19 – Files in the .txt, .csv, and .json formats

Source: Author

the clients, considering the number of bytes in a message. The time used for the QoS 0 is cal-
culated when a client publisher sends a PUBLISH message and receive the broker answer. The
time for QoS 1 is calculated when a client publisher sends a PUBLISH message and the broker
sends a PUBACK message to info that the message arrived correctly. The time for QoS 2 is cal-
culated when a client publisher sends PUBLISH message, the broker sends a PUBREC message
to inform that the message arrived, the client sends a PUBREL message to inform that received
the confirmation and the broker sends a PUBCOMP message to inform that receives a confir-
mation that the message arrived correctly to the client. Figure 20 shows a graph to understand
the time wasted based on bytes transmitted in milliseconds.

6.3 SMARTPHONE CLIENT TOOL

There was a tool developed using WebSockets to connect an MQTT broker. The library
Eclipse Paho JavaScript Client 10 is under Eclipse Foundation. The tool was developed to execute
in Smartphone devices making possible to connect an MQTT broker, to send, and to receive
MQTT messages. Also, the tool made the measurement of the device signal strength in dBm
and the measurement of the latency. The tool was developed to study this two variables. The
functionalities are presented in Figure 21.

10 https://www.eclipse.org/paho/clients/js/

48

Figure 20 – Graph of the message exchanged based on a chosen the QoS

Source: Author

Figure 21 – Smartphone client tool

Source: Author

	Title page
	Dedication
	Acknowledgments
	Epigraph
	Abstract
	Resumo
	LIST OF FIGURES
	LIST OF TABLES
	List of abbreviations and acronyms
	List of symbols
	TABLE OF CONTENTS
	Introduction
	Motivation
	Objectives
	General Objective
	Specific objectives

	Contributions
	Outline of this thesis

	Background
	Application Layer
	Internet of Things (IoT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport for Sensor Network (MQTT-SN)
	Really Small Message Broker (RSMB)
	Related Works

	Methodology
	iPerf
	Wireshark
	Problem Statement

	Solution Proposed
	Test Scenario Evaluation
	Test Scenario Implementation

	Results
	Results with the Original MQTT-SN
	Results With QoS DAM – QoS 1
	Results With QoS DAM – QoS 2

	Conclusions
	Future Works
	Client Eclipse Mosquitto
	Smartphone Client Tool

