UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

DANIEL SOUZA BATISTA

RETIFICADOR BOOST *INTERLEAVED* COM CORREÇÃO DO FATOR DE POTÊNCIA PARA UM CARREGADOR DE BATERIAS DE UM VEÍCULO ELÉTRICO FÓRMULA SAE

> PONTA GROSSA 2023

DANIEL SOUZA BATISTA

RETIFICADOR BOOST INTERLEAVED COM CORREÇÃO DO FATOR DE POTÊNCIA PARA UM CARREGADOR DE BATERIAS DE UM VEÍCULO ELÉTRICO FÓRMULA SAE

Boost Interleaved Rectifier with Power Factor Correction for a Formula SAE Electric Vehicle Battery Charger

Trabalho de conclusão de curso de graduação apresentado como requisito para obtenção do título de Bacharel em Engenharia Elétrica da Universidade Tecnológica Federal do Paraná (UTFPR).

Orientador: Prof. Dr. Carlos Henrique Illa Font

PONTA GROSSA

2023

Esta licença permite download e compartilhamento do trabalho desde que sejam atribuídos créditos ao(s) autor(es), sem a possibilidade de alterá-lo ou utilizá-lo para fins comerciais. Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

DANIEL SOUZA BATISTA

RETIFICADOR BOOST INTERLEAVED COM CORREÇÃO DO FATOR DE POTÊNCIA PARA UM CARREGADOR DE BATERIAS DE UM VEÍCULO ELÉTRICO FÓRMULA SAE

Trabalho de conclusão de curso de graduação apresentado como requisito para obtenção do título de Bacharel em Engenharia Elétrica da Universidade Tecnológica Federal do Paraná (UTFPR).

Data de aprovação: 30/junho/2023

Carlos Henrique Illa Font Doutorado Universidade Tecnológica Federal do Paraná

Fernanda Cristina Corrêa Doutorado Universidade Tecnológica Federal do Paraná

Max Mauro Dias Santos Doutorado Universidade Tecnológica Federal do Paraná

PONTA GROSSA

2023

AGRADECIMENTOS

Agradeço a Deus por ter me guiado todos estes anos amparando-me em todos os momentos para que eu conseguisse concluir meus objetivos. Agradeço ao meu orientador Prof. Dr. Carlos Henrique Illa Font pela sabedoria com que me guiou nesta trajetória. Agradeço também a minha família por todo apoio dado para que nunca desviasse do caminho a ser trilhado, principalmente para uma pessoa que foi e sempre será a mais importante, minha mãe.

RESUMO

Sistemas dependentes de baterias vêm cada vez mais se tornando presentes no cotidiano das pessoas através de inúmeras aplicações, tais como em veículos elétricos e em sistemas de armazenamento de energia para fontes renováveis. Tipicamente, os carregadores de baterias são compostos por dois estágios de conversão de energia, a saber: estágio de conversão CA-CC e estágio de conversão CC-CC. Esse trabalho tem como objetivo estudar o primeiro estágio de conversão de um carregador de baterias, sendo este implementado por um retificador Boost Interleaved com correção de fator de potência. Com correção do fator de potência, o carregador de baterias proporciona elevada qualidade de energia para a rede elétrica, mitigando o problema da distorção harmônica presente nos tradicionais retificadores a diodos. São apresentados estudos para o dimensionamento dos estágios de potência e de controle do retificador. Por fim, são apresentados resultados de simulação numérica considerando um retificador operando no modo de condução contínuo e com as seguintes especificações de projeto: tensão de entrada de 220 V, frequência da tensão de entrada de 60 Hz, tensão de saída de 400 V, potência de 5 kW e frequência de comutação de 50 kHz.

Palavras-chave: Carregador de baterias; Correção do fator de potência; *Boost Interleaved*, Retificador.

ABSTRACT

Battery-dependent systems are increasingly becoming present in people's daily lives through numerous applications, such as electric vehicles and energy storage systems for renewable sources. Typically, battery chargers are composed of two energy conversion stages, namely: the AC-DC conversion stage and the DC-DC conversion stage. This work aims to study the first stage of conversion of a battery charger, which is implemented by a Boost Interleaved rectifier with power factor correction. With power factor correction, the battery charger provides high energy quality to the power grid, mitigating the problem of harmonic distortion present in traditional diode bridge rectifiers. Theoretical studies are presented for dimensioning the power and control stages of the rectifier. Finally, numerical simulation results are presented considering a rectifier operating in continuous conduction mode and with the following design specifications: input voltage of 220 V, input voltage frequency of 60 Hz, output voltage of 400 V, rated power of 5 kW, and switching frequency of 50 kHz.

Keywords: Battery Charger; Boost Interleaved; Power Factor Correction; Rectifier.

LISTA DE ILUSTRAÇÕES

Figura 1 - Bateria de Bagdá	16
Figura 2 - Bateria de Chumbo-Ácido	17
Figura 3 - Formas construtivas das células de bateria:a)cilíndrico;b)prismátio	CO
e c)bolsa ou pouch	18
Figura 4 - Circuito conversor CC-CC	20
Figura 5 - Circuitos equivalentes	20
Figura 6 - Conversor CC-CC e razão cíclica	21
Figura 7 - Topologia do conversor CC-CC Boost	22
Figura 8 - Topologia do retificador Boost	22
Figura 9 - Etapas de operação para o retificador Boost	24
Figura 10 - Topologia do conversor Boost interleaved	25
Figura 11 - Estrutura do controle de corrente	26
Figura 12 - Diagrama de blocos do controle da corrente	26
Figura 13 - Produção dos pulsos PWM	27
Figura 14 - Estrutura básica controle de Tensão	28
Figura 15 - Circuito elétrico equivalente para o projeto do capacitor	33
Figura 16 - Malha de corrente: diagramas de Bode das funções de	
transferência da planta, do compensador e de laço aberto	36
Figura 17 - Malha de tensão: diagramas de Bode das funções de transferênc	cia
da planta, do compensador e de laço aberto	38
Figura 18 - Diagrama esquemático do circuito simulado	39
Figura 19 - Formas de onda da tensão e da corrente de entrada do retificado	r40
Figura 20 - Formas de onda da tensão e da corrente da saída	41
Figura 21 - Formas de onda da corrente de entrada retificada e das correntes	3
nos indutores	41
Figura 22 - Detalhe da ondulação da tensão de saída	42
Figura 23 - Detalhe da ondulação da corrente no indutor L1	42
Figura 24 - Formas de onda da corrente de saída, da tensão e da corrente de	
entrada	43

Fotografia 1 - Foto veículo retirada em uma exposição Parque Ambiental PG 10

Quadro 1 - Linha do tempo das baterias elétricas	17
--	----

LISTA DE TABELAS

Tabela 1 - Especificações de projeto

29

LISTA DE ABREVIATURAS E SIGLAS

CA	Corrente alternada
CC	Corrente contínua
EUA	Estados Unidos da América
VE	Veículos elétricos
GTO´s	Gate Turn-off Thyristor
IGBT´s	Insulated Gate Bipolar Transistor
MCC	Modo Condução Contínuo
MCCr	Modo de Condução Crítico
MDC	Modo de Condução Descontínuo
PWM	Pulse-Width Modulation
SAE	Sistema de Armazenamento de Energia
UTFPR	Universidade Tecnológica Federal do Paraná

LISTA DE VARIÁVEIS

Tensão de saída
Período
Tempo de condução
Frequência
Razão cíclica
Tensão de entrada
Indutor do Boost
Capacitor de saída
Frequencia de comutação
l ensão de saída de referência
Ganho de corrente de referência
Corrente de entrada
Frequência da rede
Potência de saída
Ondulação corrente do Indutor
Ondulação tensão do capacitor
Tensão de fase pico
Tensão de fase eficaz
Corrente de fase pico
Corrente de fase eficaz
Corrente de saída
Resistência de saída
Razão cíclica mínima
Número de <i>interleaved</i>
Tensão de entrada com variação no tempo
Ondulação de corrente normalizada
Tensão de entrada
Corrente no capacitor
Reatância do capacitor
Tensão do capacitor pico a pico
Ganho
Tensão do transistor
Tensão do Diodo
Corrente Média do diodo
Tensão máxima do capacitor

SUMÁRIO

1	INTRODUÇÃO	10	
1.1	Contexto		
1.2	Problema		
1.3	Objetivo Geral		
1.4	Objetivos Específicos		
1.5	Estrutura do Trabalho		
2	FUNDAMENTAÇÃO TEÓRICA		
2.1	Veículos Elétricos		
2.2	Veículos Elétricos no Brasil		
2.3	Baterias para Veículos Elétricos	15	
2.3.1	História das Baterias	15	
2.3.2	Tipos de Baterias	16	
2.3.3	Modo de Recarga	19	
2.4	Conversores Estáticos		
2.4.1	Conversor CC-CC Básico	19	
2.4.2	Conversor CC-CC Boost		
2.5	Retificador Boost		
2.5.1	Etapas de Operação do Retificador Boost	23	
2.6	Retificador Boost Interleaved	24	
2.7	Estratégia de Controle	25	
2.7.1	Controle de Corrente	26	
2.7.2	Controle de Tensão		
3	PROJETO E DIMENSIONAMENTO	29	
3.1	Projeto do Sistema de Potência	29	
3.1.1	Cálculos Preliminares	29	
3.1.2	Projeto do Retificador Boost Interleaved	31	
3.1.2.1	Cálculo do Indutor	31	
3.1.2.2	Cálculo do Capacitor	33	
3.2	Projeto do Sistema de Controle	34	
3.2.1	Projeto do Compensador de Corrente	35	
3.2.2	Projeto do Compensador de Tensão	37	
4	RESULTADOS DAS SIMULAÇÕES NUMÉRICAS	39	
4.1	Operação em Regime Permanente	39	

4.2	Operação com Transitório de Carga	42
5	CONSIDERAÇÕES FINAIS	44
6	REFERÊNCIAS	45

1 INTRODUÇÃO

1.1 Contexto

Esse trabalho foi desenvolvido em função da necessidade de um carregador de baterias para um veículo elétrico, desenvolvido pelo projeto de extensão chamado UTForce da UTFPR Campus Ponta Grossa. Em razão dessa grande utilização de baterias recarregáveis, com aplicações em diversas e variadas necessidades, as baterias têm um processo de carga que é realizado por duas etapas e que os carregadores devem ser capazes de controlar.

A UTForce foi fundada em setembro de 2015 por acadêmicos do curso de Engenharia Eletrônica da UTFPR, Câmpus Ponta Grossa. Trata-se de um projeto multidisciplinar, contando com membros de diversos cursos do campus, tais como: Engenharia Elétrica, Engenharia Mecânica, Engenharia de Produção, Engenharia Química e Análise de Sistemas.

Esse projeto tem como objetivo central, construir um veículo de alta performance do tipo fórmula para competir na Fórmula SAE Elétrico. Essa equipe está entre as pioneiras no sul do Brasil, contribuindo diretamente para o desenvolvimento de novas tecnologias atreladas à mobilidade elétrica. Na Fotografia 1 está uma foto do carro tirada no ano de 2017.

Fotografia 1 - Foto do veículo retirada em uma exposição no parque Ambiental de Ponta Grossa

Fonte: Autoria própria (2017)

Tipicamente, os carregadores de baterias são compostos por dois estágios de conversão de energia, a saber: estágio de conversão CA-CC e estágio de conversão CC-CC. Os conversores estáticos utilizados em carregadores de baterias têm como principais características fazer a compatibilidade entre os níveis de tensão da entrada CA (rede de alimentação) e da saída CC (bateria). Além disso, devem ter a função de controlar a corrente de carga da bateria.

O estágio de conversão CA-CC é implementado por um retificador com ou sem correção do fator de potência (FP). Quando este estágio apresenta correção do fator de potência, proporciona elevada qualidade de energia para a rede elétrica, mitigando o problema da distorção harmônica presente nos tradicionais retificadores a diodos.

O estágio de conversão CC-CC é responsável por isolar eletricamente a carga (bateria) da rede de alimentação e proporcionar o controle de carga da bateria. Para a carga da bateria, inicialmente, controla-se a corrente de carga. Então, a tensão da bateria cresce lentamente até um valor pré-definido. Nesse momento, o controle de corrente é desativado e um controle de tensão é ativado, mantendo a tensão na bateria até que a corrente figue próximo de zero, finalizando o processo de carga.

Como topologia para o estágio retificador, adotou-se o retificador *Boost Interleaved* (que também é conhecido como entrelaçado ou intercalado), sendo uma estratégia útil para reduzir os esforços de corrente nos componentes do conversor. Os conversores chamados *interleaved* são equivalentes à versão da combinação paralela entre dois ou mais conversores.

Para a versão de dois conversores em *interleaved*, os interruptores operam com uma defasagem de 180° entre si, consequentemente, produzindo correntes com essa defasagem.

1.2 Problema

Os retificadores convencionais baseados em diodos são robustos e empregam poucos componentes. Entretanto, apresentam elevada taxa de distorção harmônica e, consequentemente, baixo fator de potência. Adicionalmente, as componentes harmônicas da corrente podem causar interferência eletromagnética em equipamentos suscetíveis ligados na mesma rede de alimentação.

Além disso, foi constatado que em muitos locais de competição da Fórmula SAE, não havia a disponibilidade de rede de alimentação trifásica para a conexão do carregador de baterias. Portanto, deve-se buscar uma solução com alimentação monofásica, o que é um desafio para os níveis de potência que se deseja operar.

1.3 Objetivo Geral

Projetar um retificador com elevado fator de potência para ser alimentado a partir da rede de energia elétrica monofásica de 220 V, com níveis de tensão e de potência compatíveis para ser o estágio de entrada de um carregador de baterias.

1.4 Objetivos Específicos

Os objetivos específicos do trabalho são:

- Realizar uma revisão bibliográfica sobre o tema;

- Estudar os conceitos sobre retificadores com elevado fator de potência;

- Analisar o retificador monofásico Boost *Interleaved*, descrevendo o seu princípio de operação;

- Projetar os estágios de potência e de controle do retificador Boost Interleaved;

- Realizar simulações numéricas para verificar o projeto realizado.

1.5 Estrutura do Trabalho

Esse trabalho é estruturado em cinco capítulos, conforme descrito a seguir.

No primeiro capítulo foi feito uma revisão teórica e contextualizado a ideia principal do projeto, colocando tipos de topologias de conversores CC/CC não isolados, que são usados para carregadores de baterias e CA/CC para correção de fator de potência. Também foi apresentada a estrutura que foi usada neste trabalho.

No segundo capítulo é apresentado uma análise estática da topologia, sendo o conversor Boost *Interleaved*, nas versões CC-CC e CA-CC.

No terceiro capítulo são apresentados o projeto e o dimensionamento do circuito de potência do conversor utilizado como estágio de entrada do carregador de

baterias. Ainda neste capítulo é apresentado o projeto dos controladores, dos circuitos de condicionamento de sinal e de comando dos interruptores.

No quarto capítulo são apresentadas as simulações numéricas contendo as principais formas de ondas, comparando com as formas de ondas esperadas pela teoria.

Por fim, no quinto capítulo, apresenta-se as considerações finais sobre o trabalho e as propostas futuras para novos trabalhos.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Veículos Elétricos

Os veículos alimentados de forma total ou parcial com energia elétrica são denominados pelo termo veículo elétrico (VE) (DENTON,2018). Apesar dos veículos elétricos terem tido um destaque recente, comparados ao de combustíveis fósseis, sabe-se que o primeiro veículo elétrico foi fabricado por William Morrison em 1890, no século XX, com 38% dos carros sendo elétricos nos EUA, contra 22% movidos a gasolina e os 40% restantes movidos a vapor (RICHARDSON, 2018).

Com a criação do modelo de produção em série do Ford Model T, criado por Henry Ford no ano de 1908, os veículos elétricos deixaram de ser produzidos pelo fato de o custo dos carros a gasolina diminuir drasticamente, fazendo com que estes dominassem toda a indústria global.

Durante a segunda metade do século XX, ocorreu a segunda era dos VEs, esse interesse passou a aumentar principalmente devido ao aumento do valor do petróleo e dos níveis de poluição. Isso ocasionou em atrasos na chegada de combustíveis aos postos e aumento no preço, novamente estando em pauta a questão do interesse nos VEs (DENTON, 2018).

Apesar de aumentar o foco nas áreas de pesquisas e desenvolvimento relacionadas a essa tecnologia, não houve uma movimentação comercial. No Brasil, por exemplo, foi apresentado pela empresa Gurgel Motores no ano de 1974 o modelo Gurgel Itaipu, sendo o primeiro automóvel elétrico desenvolvido na América Latina. Esse carro tinha baixa autonomia (cerca de 127 km por carga completa) e baixa capacidade de desenvolver velocidade (chegando a no máximo 80 km/h) comparando a outros veículos, tendo em vista também a demora da recarga que poderia chegar até oito horas.

Atualmente, presencia-se a chamada terceira era dos veículos elétricos (século XXI) com o preço do petróleo atingindo valores recordes, o mercado tende-se a se ajustar e passou a receber diversos modelos de carros elétricos de diferentes fabricantes, como o Nissan Leaf (2010), o Chevrolet Bolt (2012) e o Tesla Model S (2014). Assim, observa-se o crescimento significativo da quantidade de veículos elétricos circulando pelo mundo, especialmente na Europa e na China.

2.2 Veículos Elétricos no Brasil

O mercado de VEs está progredindo com passos curtos quando se compara o número de veículos elétricos com o número de veículos à combustão interna vendidos. Ao final de 2018, foi estimado cerca de 10 mil VEs no país, o que representa menos de 0,03% do total de 36 milhões de automóveis (FORBES, 2018). A falta de infraestrutura de recarga e elevados custos são obstáculos para os brasileiros comprarem mais VEs.

Não há falta de interesse por parte dos setores públicos e privados em trazer cada vez mais esse tipo de tecnologia para o Brasil. Como por exemplo, a BMW é uma empresa responsável por financiar o corredor elétrico entre as cidades de São Paulo e Rio de Janeiro, com seis pontos de carregamento rápido. No Paraná foi concebida pela Copel (concessionária de energia elétrica) uma eletrovia que liga as cidades de Paranaguá e Foz do Iguaçu, com oito eletropostos. Então verifica-se que o mercado brasileiro tem grande interesse nos veículos elétricos.

2.3 Baterias para Veículos Elétricos

2.3.1 História das Baterias

As baterias estão presentes no mundo há mais tempo do que se imagina. O primeiro modelo que foi documentado, foi encontrado no ano de 1936 aos arredores da cidade de Bagdá, Iraque, desenvolvido a cerca de um pouco mais de 200 a.C. Nomeada de Bateria de Bagdá, o protótipo constitui de uma jarra de barro cheia de vinagre, na qual era inserida uma barra de ferro rodeada por um cilindro de cobre produzindo uma tensão de até 1,1 V (BUCHMANN, 2011). Estudiosos acreditam que esse objeto, ilustrado na Figura 1, era usado para guardar metais preciosos, como prata ou ouro, em superfícies.

Em 1859 Gaston Planté, um físico Francês, inventou a primeira bateria que era possível recarregar, chamada de bateria de chumbo-ácido, usada até hoje para armazenamento de energia (BUCHMANN, 2011).

Fonte: (BUCHMANN, 2011)

Apenas em 1970 iniciaram os estudos sobre baterias de níquel-metal. Inicialmente, foram notados alguns problemas de instabilidades no processo e posteriormente corrigidos, com a substituição do metal lítio por íons de lítio, originando as baterias Íon-Lítio. Elas são as mais utilizadas atualmente para armazenar energia em equipamentos e sistemas que demandam grandes energias, já que as baterias possuem maior capacidade energética em um pequeno volume comparadas às outras formas de tecnologias, como a de chumbo-ácido.

O Quadro 1 mostra a evolução das baterias no decorrer do tempo.

2.3.2 Tipos de Baterias

Baterias de chumbo-ácido, como apresentado na Figura 2, são classificadas por três tipos principais: automotiva, industrial e selada. Por exemplo, as baterias automotivas são empregadas para alimentar os circuitos elétricos dos automóveis, como ignição, faróis, portas de carregamento, vidros elétricos entre outros (NERILSO BOCCHI, 2000).

Conforme a bateria se descarrega, o ácido sulfúrico é consumido e água é produzida. No carregamento desse tipo de bateria, o sulfato de chumbo é convertido novamente em chumbo no anodo e dióxido de chumbo no catodo (NERILSO BOCCHI, 2000). A tecnologia de chumbo-ácido é pouco utilizada em veículos elétricos uma vez

que, são grandes e precisam de reposição periódica de eletrólitos, sua instalação é obrigatória na vertical, além de estarem sujeitas a soltarem no ar o hidrogênio. Fora essas questões, ainda existe a situação do chumbo ser um metal pesado e extremamente tóxico, podendo causar sérios danos e riscos ao meio ambiente se for descartado de maneira incorreta. A reciclagem desses materiais geralmente é feita de maneira imprópria, levando à contaminação da atmosfera com óxidos de enxofre (NERILSO BOCCHI, 2000).

Ano	Autor	Descrição
1600	Gilbert (UK)	Estudo sobre o princípio da eletrólise.
1791	Galvani (Itália)	Descobrimento da eletricidade em animais.
1800	Volta (Itália)	Invenção da primeira célula de tensão elétrica
1802	Crulkshank (UK)	Primeira bateria elétrica de produção em série.
1820	Ampere (França)	Geração de eletricidade através de magnetismo.
1833	Faraday (UK)	Publicação da lei de Faraday.
1836	Daniell (UK)	Invenção da célula de Daniell.
1839	Grove (UK)	Invenção da célula de combustível.
1859	Planté (França)	Invenção da bateria de chumbo-ácido.
1868	Leclanché (França)	Invenção da célula de Leclanché.
1888	Gassner (USA)	Conclusão da célula seca (sólida).
1899	Jugner (Suécia)	Invenção das baterias de níquel-cádmio.
1901	Edison (USA)	Invenção das baterias de níquel-ferro.
1932	Shlecht e Ackermann (GER)	Invenção da placa de pólo sintetizado.
1947	Neumann (França)	Selado exitoso das baterias de níquel cádmio.
1960	Unlon Carbide (USA)	Desenvolvimento das primeiras baterias alcalinas.
1970	Unlon Carbide (USA)	Desenvolvimentos das baterias de chumbo-ácido com válvula.
1990	Unlon Carbide (USA)	Comercialização das baterias de níquel metal hidreto.
1991	Sony (Japão)	Disponibilização no mercado das baterias de lítio íon.
Fonte: LAFUENTE (2011)		

Quadro 1 - Linha do tempo das baterias elétricas

Fonte: (BOCCHI, 2000)

A bateria de Íon-Lítio é a tecnologia mais utilizada atualmente para armazenamento de energia elétrica onde é possível com um pequeno volume armazenar uma grande quantidade de energia. No caso, essas baterias possuem uma grande densidade energética quando comparadas as de chumbo-ácido. Podem ser encontradas em *packs* de baterias de carros elétricos, aparelhos elétricos sem fios, nos *laptops* entre outros.

Nesse modelo de baterias os eletrodos são formados por compostos que são intercalados, constituído por estruturas elásticas compostas por uma matriz e por espécies convidadas. Usadas com matriz podem mudar suas propriedades físicoquímicas, o grafite por exemplo é o material comumente utilizado no anodo por possuir a estrutura lamelar, permitindo a entrada e saída de íons lítio (NERILSO BOCCHI, 2000).

As baterias de lon-Lítio possuem algumas vantagens, como tamanhos e custos reduzidos, além disso detêm alta densidade energética, suportam grandes descargas e possuem cargas e descargas rápidas.

A Figura 3 apresenta as três principais formas construtivas das células empregadas em baterias de Íon-Lítio.

Figura 3 – Formas construtivas das células de bateria: a) cilíndrica, b) prismática e c) bolsa ou pouch

Fonte: (BUDDE-MEIWES et al., 2013)

As baterias tipos cilíndricas são as mais encontradas no mercado por serem mais robustas entre as outras formas construtivas. As formas *pouch* são leves e mais baratas, mas não apresentam nenhum encapsulamento que as protejam contra

choques mecânicos. A presença de terminais mais robustos permite uma conexão mais eficaz.

2.3.3 Modo de Recarga

De uma forma geral a recarga de baterias precisa se adequar às limitações das baterias impostas pelas células. É possível uma sobrecarga na bateria, efeito ocorrido pela quantidade de corrente inapropriada ou se a bateria receber excesso de carga, podendo afetar sua vida útil, alterando fisicamente a bateria (CIARLINI CHAGAS FREITAS et al, 2016).

Existem diversos tipos de recarga de bateria, sendo a mais conhecida para bateria de Íon-Lítio, o método CC-CV, ou seja, corrente constante-tensão constante (*Constant Current - Constant Voltage*). Para as baterias de chumbo-ácido as técnicas mais utilizadas são: método duplo nível de tensão, método duplo nível de corrente e o método corrente pulsada.

2.4 Conversores Estáticos

O uso de componentes semicondutores empregados em conversores estáticos, sempre estiveram presentes ao desejo de um maior rendimento, ou seja, da diminuição das perdas por condução e por comutação.

"Um conversor estático pode ser definido como um sistema, constituído por elementos passivos, como resistores, indutores e capacitores, e também elementos ativos como diodos, transistores, GTO's, Triacs, MOSFET's e IGBT's, associados segundo uma lei pré-estabelecida" (BARBI, 2000).

2.4.1 Conversor CC-CC Básico

Os conversores CC-CC realizam a conversão de energia entre uma fonte de tensão contínua com uma determinada amplitude, em outra tensão que tem uma amplitude diferente (carga alimentada em corrente contínua). Antes de analisar o conversor CC-CC Boost, considera-se um conversor CC-CC básico, para melhor entendimento da operação desses conversores. Na Figura 4 pode-se observar um

circuito equivalente, com alguns exemplos de tipo de interruptores, sendo eles: Transistor Bipolar de PotÊncia, MOSFET e IGBT.

Fonte: Autoria própria (2023)

Considerando-se que o interruptor S possui dois estados de operação e considerando-se as hipóteses de que o interruptor S é ideal e de que a análise ocorre em regime permanente, a Figura 5 apresenta os dois respectivos circuitos equivalentes da operação do conversor.

Fonte: Autoria própria (2023)

Considera-se que o conversor CC-CC opera com frequência fixa, então o interruptor é comandado a conduzir de forma periódica, com período T. Se for necessário mudar a tensão de saída, basta variar o tempo de condução do transistor no período.

Com isso pode-se definir a razão entre o tempo de condução e o período de condução do transistor, chamada de razão cíclica, onde:

$$D = \frac{t_{on}}{T} \tag{1}$$

$$T = \frac{1}{f} \tag{2}$$

Onde:

D: razão cíclica;

 t_{on} : tempo de condução do transistor;

T: período de comutação;

f: frequência de comutação.

A razão cíclica é uma grandeza adimensional e varia no intervalo de 0 a 1, ou seja 0 < D < 1. Para conversores básicos como o Boost, a razão cíclica está relacionada com a tensão de saída, quanto maior a razão cíclica maior será o valor da tensão, ela é o parâmetro de controle do conversor CC-CC e têm como objetivo controlar o fluxo de potência entre a fonte de alimentação e a carga. Vale ressaltar que isso é válido para os conversores básicos como apresentado na Figura 6.

Fonte: Autoria própria (2023)

2.4.2 Conversor CC-CC Boost

O conversor Boost é considerado com um conversor básico, conhecido como elevador de tensão. É constituído por um transistor operando como um interruptor, um diodo, um indutor e um capacitor. A Figura 7 apresenta a topologia do conversor CC-CC Boost.

Quando este conversor opera no modo de condução contínuo (MCC) a tensão de saída depende da tensão de entrada e da razão cíclica. Este comportamento é descrito, matematicamente, pelo ganho estático do conversor, conforme apresentado a seguir:

Fonte: Autoria própria (2023)

$$\frac{V_o}{E} = \frac{1}{1-D} \tag{3}$$

Onde:

$$V_o$$
: valor médio da tensão de saída;

E: valor médio da tensão de entrada.

2.5 Retificador Boost

O retificador Boost é obtido ao se substituir a fonte CC de entrada pela rede alimentação com um retificador a diodos de onda completa, como apresentado na Figura 8.

Fonte: Autoria própria (2023)

Como deseja-se obter um elevado fator de potência na entrada do retificador, a corrente de entrada (corrente no indutor), deve apresentar uma forma de onda senoidal retificada e estar em fase com a tensão. Para que isso ocorra um sistema de controle de corrente deve ser implementado.

2.5.1 Etapas de Operação do Retificador Boost

Quando o conversor CC-CC Boost opera no MCC, existem duas etapas de operação em um período de comutação. Entretanto, na operação como retificador, haverá quatro etapas de operação, sendo duas para o semiciclo positivo e duas para o semiciclo negativo da tensão da rede de alimentação.

Sendo assim, para descrever essas etapas considera-se apenas o primeiro semiciclo positivo da rede de alimentação; nesse caso haverá a condução dos diodos D_1 e D_4 da ponte retificadora durante todo o semiciclo positivo. As duas possíveis etapas de operações, durante o período de comutação, são apresentadas na Figura 9 e descritas a seguir:

<u>1°Etapa - Etapa de magnetização</u>: nessa etapa de operação o interruptor S encontrase fechado (transistor conduzindo) e o diodo D_{Boost} está bloqueado. O indutor L_{Boost} está armazenando energia proveniente da fonte de entrada $V_{in}(t)$, com a corrente crescendo com uma taxa de variação de $\frac{V_{in}(t)}{L_{Boost}}$. A corrente que passa pelo interruptor S é igual a do indutor L_{Boost} . O diodo D_{Boost} , que está em bloqueio, se encontra polarizado reversamente com a tensão de saída V_0 . Nesta etapa, o componente que está entregando energia para a carga R_0 é o capacitor que está na saída, C_0 . Para passar para a próxima etapa e encerrar a primeira é necessário que o interruptor S seja comandado a bloquear.

<u>2°Etapa - Etapa de desmagnetização:</u> nessa etapa de operação o diodo está conduzindo e o interruptor S está bloqueado. A energia que foi armazenada pelo indutor L_{Boost} na primeira etapa de operação está sendo entregue para a saída, para o capacitor C_0 e a carga R_0 . A tensão sobre o interruptor S é a mesma da tensão de saída V_0 , conforme o indutor vai desmagnetizando sua corrente decresce com uma taxa de variação igual à $\frac{V_0 - V_{in}(t)}{L_{Boost}}$. Essa corrente do indutor vai ser igual a do diodo D_{Boost} , finalizando essa etapa quando o interruptor S for comandado novamente a conduzir.

Figura 9 - Etapas de operação para o retificador Boost

2.6 Retificador Boost Interleaved

O retificador Boost *Interleaved* é empregado nas aplicações onde se deseja dividir os esforços de corrente nos componentes do conversor, com o objetivo de dividir as perdas e melhorar o rendimento. Assim, garante-se também um projeto térmico e mecânico mais adequado.

Em contrapartida, aumenta-se o número de componentes do estágio de potência e a complexidade do circuito modulador.

A topologia do retificador Boost *Interleaved* com dois conversores (duas células) é apresentada na Figura 10. Quando não existe sobreposição dos pulsos de comando dos transistores, haverá quatro etapas de operação no MCC. Entretanto, essas etapas serão iguais as etapas do retificador Boost convencional.

2.7 Estratégia de Controle

Para que a tensão de saída seja constante e o retificador Boost opere com elevado fator de potência, são necessárias duas malhas de controle: malha de corrente e malha de tensão.

Figura 10 - Topologia do Conversor Boost Interleaved

Fonte: Autoria própria (2023)

A malha de tensão tem o objetivo de manter a tensão de saída (tensão CC) constante, ajustando o conversor quando ocorrem variações de carga ou variações na tensão de entrada. Tipicamente, para que opere de forma desacoplada com a malha de corrente, esta malha tem uma resposta lenta.

Por outro lado, a malha de corrente tem a função de reproduzir no indutor uma corrente senoidal retificada de 120 Hz, que estará sincronizada com a tensão de entrada a fim de se obter fator de potência elevado na entrada do sistema. Essa malha

precisa ser suficientemente rápida, para reproduzir a corrente sem grandes distorções.

2.7.1 Controle de Corrente

Após o estudo do conversor, é analisada a maneira de controlar a corrente do indutor, usando a malha de controle de corrente. A corrente na entrada do retificador deve ter formato sinusoidal para possuir baixo conteúdo harmônico e estar em fase com a tensão de alimentação.

Essa malha de corrente será do tipo realimentada, onde o sinal da corrente do indutor será comparado com uma corrente de referência. O sinal de erro resultante dessa comparação será compensado por uma determinada ação de controle, por exemplo do tipo proporcional-integral (PI). O sinal de erro compensado é a tensão de controle, sendo comparada com uma onda dente de serra de frequência f_s e amplitude V_{sr} , usada para a produção dos pulsos de comando dos interruptores. A Figura 11 apresenta um diagrama da estrutura do controle de corrente.

Figura 11 - Estrutura do controle de corrente

Fonte: Autoria própria (2023)

Identificada a estrutura de controle, pode-se descrever o seu diagrama de blocos, como apresentado na Figura 12.

Figura 12 - Diagrama de blocos do controle da corrente

Fonte: Autoria própria (2023)

Onde:

 $H_{(S)}$: modelo por valores médios instantâneos da planta;

 $C_{(S)}$: compensador de corrente;

G_(PWM): ganho do PWM;

 $G_{(SI)}$: ganho do sensor de corrente.

Como observado na Figura 13, na saída do compensador de corrente existe o sinal de controle chamado de tensão de controle. Portanto, precisa-se da "transformação" deste sinal em variável de controle 'd', que é convertida pelo modulador em formas de pulsos para que seja acionado o interruptor. Dessa forma, foi utilizada uma técnica muito conhecida, chamada modulação PWM (*Pulse Width Modulation*).

Fonte: (Apostila Prof. Ivo Barbi, 2015)

2.7.2 Controle de Tensão

Devido às variações de carga e da tensão da rede de alimentação, o valor médio da tensão de saída será alterado. Portanto, é inserida uma malha de controle responsável pelo controle do valor médio da tensão de saída.

Como apresentado na Figura 14, o valor médio da tensão V_0 é comparado com a tensão de referência V_{0Ref} , produzindo um sinal de erro. O sinal de erro é compensado por uma ação de controle e servirá de base para formar a referência I_{Ref} para a malha de controle de corrente, sendo responsável por definir o valor de pico desta referência. Efetivamente, a referência do controle de corrente é obtida pela multiplicação do sinal da malha de tensão com o sinal que dita o formato da corrente desejada, ou seja, senoidal retificado.

Observa-se que as malhas de controle de corrente e de tensão operam em cascata. Para que elas operem de forma desacoplada, deve-se haver o desacoplamento dinâmico entres essas malhas, o que é feito, por exemplo, fazendo com elas tenham frequências de cruzamento muito distintas.

Figura 14 - Estrutura básica do controle de tensão

Fonte: Autoria própria (2023)

3 PROJETO E DIMENSIONAMENTO

Nesse capítulo será apresentado o projeto e dimensionamento de um retificador Boost *Interleaved,* com correção do fator de potência para um carregador de baterias. Será dividido em projeto de potência e projeto do sistema de controle.

3.1 Projeto do Sistema de Potência

A Tabela 1 mostra as especificações do projeto utilizadas para o dimensionamento dos componentes de potência do retificador.

Tabela 1 - Especificações de projeto Valor Grandeza Valor eficaz da tensão da rede (V_{in}) 220 V Frequência da tensão da rede (f_r) 60 Hz Tensão do barramento CC (V_o) 400 V Frequência de comutação (f_s) 50 kHz Potência de saída (P_0) 5 kW Ondulação % da corrente nos indutores (ΔI_I) 20 % Ondulação % da tensão no capacitor de saída (ΔV_C) 1% Número de conversores em *Interleaved* (N_i) 2 Fonte - Autoria própria

Com base em uma pesquisa realizada no banco de dados dos catálogos de alguns fabricantes de carregadores de baterias, observou-se uma unanimidade em carregadores com tensão de entrada a partir de 220 V. Assim, adotou-se como requisito de projeto a tensão 220 V.

3.1.1 Cálculos Preliminares

Para iniciar os cálculos preliminares, calcula-se o valor de pico da tensão da rede elétrica, usando a equação 4.

$$V_{fase_{pk}} = \sqrt{2}. V_{fase_{ef}} = \sqrt{2}. 220 = 311,12 V$$
(4)

Assim, pode-se calcular o valor eficaz da corrente de fase da rede elétrica, usando a razão entre potência de saída com a tensão de fase:

$$I_{fase_{ef}} = \frac{P_0}{V_{fase_{ef}}} = \frac{5000}{220} = 22,72 A$$
(5)

O valor de pico da corrente de fase na rede elétrica é:

$$I_{fase_{pk}} = \sqrt{2}. I_{fase_{ef}} = \sqrt{2}. 22,72 = 32,14 A$$
(6)

Após, obtém-se o valor médio da corrente no barramento CC de saída, com a razão potência de saída e tensão de saída.

$$I_0 = \frac{P_0}{V_0} = \frac{5000}{400} = 12,5 A \tag{7}$$

Na questão da carga, adota-se uma resistência equivalente de carga, a partir dos valores de tensão e potência nominais. Portanto, o cálculo da resistência equivalente de carga fica da seguinte forma:

$$R_0 = \frac{V_0^2}{P_0} = \frac{400^2}{5000} = 32 \,\Omega \tag{8}$$

O cálculo da razão cíclica mínima do retificador Boost é descrito a partir da equação 9.

$$D_{Bmin} = 1 - \frac{V_{fase_{pk}}}{V_0} = 1 - \frac{311,13}{400} = 0,22$$
(9)

A ondulação nominal da corrente nos indutores se dá pela multiplicação da ondulação porcentual estipulada em projeto pela razão da corrente de entrada e o número de conversores utilizado no *Interleaved*.

$$\Delta I_L = \Delta I_{L\%} \cdot \frac{I_{fase_{pk}}}{N_i} = 0.2 \cdot \frac{32.14}{2} = 3.21 A$$
(10)

No entanto, a ondulação nominal da tensão no capacitor de saída é a multiplicação do valor percentual da tensão estipulada em projeto e a tensão de saída.

$$\Delta V_0 = \Delta V_{0\%} V_o = 0.01.400 = 4 V$$
(11)

3.1.2 Projeto do Retificador Boost Interleaved

No projeto proposto serão dimensionados somente os elementos armazenadores de energia, ou seja, os indutores de entrada e o capacitor de saída.

3.1.2.1 Cálculo do Indutor

Para esse cálculo foram consideradas as características necessárias para manter um alto fator de potência, a corrente que passa pelo Indutor precisa acompanhar a tensão da rede elétrica, estando em fase. Ela é composta por uma componente de baixa frequência (com duas vezes a frequência da rede elétrica) e uma de alta frequência (na frequência de comutação) com pequena amplitude. Na condição limite, se a frequência de comutação tender a infinito, a ondulação de alta frequência tende a zero.

A tensão da rede elétrica possui um formato senoidal sendo descrita pela equação 12.

$$v_{in}(t) = V_{fase_{pk}} \cdot sen(\omega, t)$$
(12)

A partir da expressão do ganho estático, apresentado da equação (3), pode-se mostrar que a razão cíclica é variável, uma vez que a tensão de entrada também é variável. Assim:

$$\frac{v_0}{v_{in}(t)} = \frac{1}{1 - d(t)} \to d(t) = 1 - \frac{v_{in}(t)}{v_0}$$
(13)

Também é possível mostrar que a ondulação de corrente no indutor é variável. Analisando a relação entre a tensão e a corrente no indutor, na primeira etapa de operação, tem-se:

$$v_L = L. \frac{di}{dt} \simeq L. \frac{\Delta i}{\Delta t} \to L = \frac{v_L.\Delta t}{\Delta i}$$
 (14)

Onde $v_L = v_{in}(t)$, $\Delta t = t_{on} = d(t)$. $T \in \Delta i = \Delta i(t)$, então:

$$L = \frac{v_{in}(t).d(t).T}{\Delta i(t)} \to \Delta i(t).L.f_s = v_{in}(t).d(t)$$
(15)

Substituindo-se as equações (12) e (13) na equação (15), tem-se:

$$\Delta i(t). L. f_{s} = V_{fase_{pk}}. sen(\omega. t).$$
$$\left[1 - \frac{V_{fase_{pk}}}{V_{0}}. sen(\omega. t)\right]$$
(16)

Nesse caso, como a ondulação de corrente é variável, projeta-se o indutor para satisfazer a máxima ondulação. Para se encontrar a máxima ondulação, basta encontrar os pontos de máximo do lado direito da equação (16).

Para encontrar o ponto de máximo, deriva-se o lado direito da equação (16) e iguala-se a zero. Assim, encontra-se o ponto de máximo em:

$$\omega.t = \arcsin\left(\frac{V_o}{2.V_{fase_{pk}}}\right) \tag{17}$$

Substituindo-se o resultado obtido da equação (17) em (16), tem-se:

$$\Delta i_{max}. L. f_{s} = V_{fase_{pk}}. sen\left(arcsen\left(\frac{V_{o}}{2.V_{fase_{pk}}}\right)\right).$$
$$\left. \left[1 - \frac{V_{fase_{pk}}}{V_{0}}. sen\left(arcsen\left(\frac{V_{o}}{2.V_{fase_{pk}}}\right)\right)\right]$$
(18)

Resolvendo-se a equação (18), chega-se a expressão para o cálculo do indutor, sendo esta apresentada na equação (19).

$$L = \frac{V_o}{4.\Delta i_{max} f_s} \tag{19}$$

Substituindo-se os valores em (19), tem-se:

$$L = \frac{V_o}{4.\Delta i_{max} f_s} = \frac{400}{4.3,214.50000} = 622,25\mu H$$
(20)

O valor da corrente máxima do indutor é:

$$I_{Lpk} = \frac{I_{fase_{pk}}}{N_i} + \frac{\Delta I_L}{2} = \frac{32,14}{2} + \frac{3,21}{2} = 17,68 A$$
(21)

E o valor de corrente eficaz do indutor é:

$$I_{L_{ef}} = \frac{I_{fase_{ef}}}{N_i} = \frac{22,73}{2} = 11,36 A$$
(22)

3.1.2.2 Cálculo do Capacitor

O projeto do capacitor de saída pode ser obtido pelo circuito elétrico equivalente apresentado na Figura 15.

Fonte: Autoria própria (2023)

Com a seguinte relação:

$$V_C = X_C . I_C \to \Delta V_C = X_C . I_C$$
⁽²³⁾

Onde:

$$X_C = \frac{1}{2.\pi.f.C_0}$$
(24)

Pelas características do conversor, pode-se ver que a frequência f é o dobro da frequência de entrada e que a corrente corresponde à corrente de saída. Logo:

$$C_0 = \frac{I_o}{2.\pi . f_r . \Delta V_c} \tag{25}$$

Substituindo-se os valores em (25), tem-se:

$$C_0 = \frac{I_0}{2.\pi . f_r . \Delta V_c} = \frac{12.5}{2.\pi . 60.4} = 8289,32 \ \mu F$$
(26)

O valor máximo da tensão em cima do capacitor de saída é a soma da tensão média da saída com a metade da variação de tensão de saída ΔV_0 .

$$V_{Copk} = V_0 + \frac{\Delta V_0}{2} = 400 + \frac{4}{2} = 402 V$$
(27)

O valor eficaz da corrente foi obtido por simulações numéricas, sendo apresentado em (28).

$$I_{C0_{ef}} = 10,45 A \tag{28}$$

3.2 Projeto do Sistema de Controle

O sistema de controle do retificador Boost *Interleaved* é composto por duas malhas de controle:

 Malha de controle de tensão: para realizar o controle da tensão de saída (tensão CC) frente a perturbações na tensão da rede de alimentação e na potência do processada;

- Malha de controle de corrente: para realizar a correção do fator de potência, impondo que a corrente de entrada seja senoidal e em fase com a tensão.

Esse projeto foi realizado com base em resposta em frequência, através dos diagramas de Bode. Segundo Ogata (2010), obtendo-se uma margem de fase entre 30 e 60 graus para função de transferência de laço aberto (FTLA), o desempenho se torna mais satisfatório do ponto de vista de estabilidade do sistema.

Como as malhas devem operar em cascata, pois deseja-se controlar duas grandezas com uma única variável de controle, elas devem operar de forma desacoplada, para isso o projeto consiste em fazer com que a frequência de cruzamento da malha de tensão seja muito menor que a frequência de cruzamento de ganho da malha de corrente.

3.2.1 Projeto do Compensador de Corrente

Para o projeto do compensador de corrente, é necessário conhecer a planta de corrente. A equação (29) apresenta a planta de corrente, obtida pelo método dos valores médios quase instantâneos das variáveis de estado.

$$G_i(s) = \frac{i_{in(s)}}{d(s)} = \frac{V_o}{L.s} = \frac{6.428.10^5}{s}$$
(29)

Para o sensor de corrente, considera-se uma tensão de referência $Vi_{Ref} = 5V$, sendo a corrente medida com valor máximo igual a 32,14 *A*, sendo atribuída pela análise do sinal a ser comparado. Portanto, o ganho k_i do sensor é:

$$k_i = \frac{V_{Ref}}{I_{ipk}} = \frac{5}{32,14} = 0,156 \tag{30}$$

Considera-se que o modulador PWM será implementado com um sinal dentede-serra com amplitude máxima igual a 1 V. Portanto, o ganho do modulador PWM será igual a:

$$k_{PWM} = \frac{1}{V_{dspk}} = \frac{1}{1} = 1 \tag{31}$$

Para o compensador de corrente escolheu-se o tipo proporcional-integral (PI), cuja função de transferência é apresentada na equação (32).

$$H_i(s) = k_{Hi} \cdot \frac{s + 2\pi \cdot f_{zi}}{s}$$
(32)

A metodologia analítica resposta em frequência do projeto consiste em adotar valores para a frequência de cruzamento e para a frequência do zero e, então, calcular o valor do ganho pela condição de módulo.

Adotando-se a frequência de cruzamento da malha de controle de corrente igual a $f_{ci} = 6250 Hz$ e a frequência do zero $f_{zi} = 600 Hz$, o ganho do compensador será igual a:

$$k_{Hi} = \frac{1}{|G_i(f_{ci})| \cdot |H_{ish}(f_{ci})| \cdot k_i \cdot k_{PWM}} = 0,391$$
(33)

A Figura 16 apresenta os diagramas de Bode das funções de transferência da planta, do compensador e de laço aberto. Observa-se que a margem de fase é de aproximadamente 84 graus.

Fonte: Autoria própria (2023)

3.2.2 Projeto do Compensador de Tensão

Para o projeto do compensador de tensão, é necessário conhecer a planta de tensão. A equação (34) apresenta a planta de tensão, obtida pelo método dos valores médios quase instantâneos das variáveis de estado.

$$G_{\nu}(s) = \frac{\nu_{o(s)}}{i_{in(s)}} = \frac{R_o}{1 + R_o \cdot C_o \cdot s} = \frac{32}{1 + 0.265 \cdot s}$$
(34)

Para o sensor de tensão, considera-se uma tensão de referência $Vv_{Ref} = 5V$, sendo a tensão medida com valor igual a 400 *V*. Portanto, o ganho k_v do sensor é:

$$k_{\nu} = \frac{V_{Ref}}{V_0} = \frac{5}{400} = 0,0125 \tag{35}$$

Para o compensador de corrente escolheu-se o tipo proporcional-integral (PI), cuja função de transferência é apresentada na equação (36).

$$H_{\nu}(s) = k_{H\nu} \cdot \frac{s + 2\pi \cdot f_{Z\nu}}{s}$$
(36)

Considerando-se a mesma metodologia utilizada para projetar o compensador de corrente, adota-se a frequência de cruzamento da malha de tensão de corrente igual a $f_{cv} = 12,5 Hz$ e a frequência do zero $f_{zv} = 3 Hz$. Verifica-se que a frequência de cruzamento da malha de tensão é 500 vezes menor que a frequência de cruzamento da malha de corrente, garantindo-se o desacoplamento dinâmico.

O ganho do compensador, obtido pela condição de módulo, será igual a:

$$k_{H\nu} = \frac{k_i}{|G_{\nu}(f_{c\nu})| \cdot |H_{\nu sh}(f_{c\nu})| \cdot k_{\nu}} = 7,89$$
(37)

A Figura 17 apresenta os diagramas de Bode das funções de transferência da planta, do compensador e de laço aberto. Observa-se que a margem de fase é de aproximadamente 80 graus.

Figura 17 – Malha de tensão: diagramas de Bode das funções de transferência da planta, do compensador e de laço aberto

Fonte: Autoria própria (2023)

4 RESULTADOS DAS SIMULAÇÕES NUMÉRICAS

Nesta seção serão apresentados os resultados obtidos para o retificador Boost *Interleaved*. O diagrama esquemático do circuito utilizado para realizar a simulação computacional está apresentado na Figura 18. As simulações foram realizadas no programa PSIM.

Inicialmente serão apresentados os resultados da operação do retificador em regime permanente. Após, serão apresentados os resultados da operação com transitórios de carga, para que as respostas dinâmicas possam ser avaliadas.

Figura 18 - Diagrama esquemático do circuito simulado

Fonte: Autoria própria (2023)

4.1 Operação em Regime Permanente

Para avaliar a operação do retificador em regime permanente, considera-se a operação em potência nominal e em malha fechada de corrente e de tensão.

A Figura 19 apresenta as formas de onda da tensão e da corrente de entrada do retificador. A tensão de entrada foi dividida por um fator 5 para melhor visualização.

Observa-se na Figura 19 que a corrente tem formato senoidal e está em fase com a tensão de entrada. Utilizando-se as ferramentas de análise do simulador obteve-se uma taxa de distorção harmônica (TDH) da corrente igual a 3,3% o que levou a um FP de 0,998. Para efeito de comparação, um retificador a diodos com filtro capacitivo drena uma corrente com taxa de distorção harmônica na ordem de 150%, obtendo-se um FP de 0,555.

Figura 19 - Formas de onda da tensão e da corrente de entrada do retificador

Fonte: Autoria própria (2023)

As formas de onda da tensão e da corrente de saída são apresentadas na Figura 20. Observa-se que o valor médio da tensão de saída é 400 V e que o valor médio da corrente de saída é 12,5 A. Portanto, o retificador está processando uma potência de saída de 5000 W.

A Figura 21 apresenta as formas de onda da corrente de entrada retificada e das correntes nos indutores. Observa-se que há a divisão de corrente, devido ao *Interleaved*.

Um detalhe da tensão de saída é apresentado na Figura 22, onde se observa uma ondulação de tensão igual a 4 V, conforme especificado no projeto.

Figura 20 - Formas de onda da tensão e da corrente de saída

Figura 21 - Formas de onda da corrente de entrada retificada e das correntes nos indutores

Fonte: Autoria própria (2023)

A Figura 23 apresenta um detalhe da corrente no indutor L1, onde observa-se uma ondulação de 3,12 A, conforme especificação de projeto. A máxima ondulação de corrente ocorre para $\omega t \cong 40^{\circ}$, sendo este o valor onde ocorre a máxima ondulação de corrente, conforme apresentado na equação 17.

Fonte: Autoria própria (2023)

Figura 23 – Detalhe da ondulação da corrente no indutor L1

Fonte: Autoria própria (2023)

4.2 Operação com Transitório de Carga

Para verificar a resposta transitória do retificador, realizou-se dois degraus de carga, sendo um positivo e outro negativo. Dessa forma, o retificador irá operar, inicialmente com metade da potência, após potência nominal e, novamente, metade da potência. Dessa forma, pode-se analisar os dois de comportamentos dinâmicos das variáveis controladas, tanto na inserção quanto retirada de carga.

As formas de onda da corrente de saída, da tensão de saída e da corrente de entrada são apresentadas na Figura 24. Verifica-se que, após os degraus, a tensão de saída varia e retorna ao ponto de operação. Com relação a corrente, verifica-se que esta mantém o formato senoidal mesmo durante os transitórios, garantindo o elevado fator de potência.

Figura 24 - Formas de onda da corrente de saída, da tensão de saída e da corrente de entrada

Fonte: Autoria própria (2023)

5 CONSIDERAÇÕES FINAIS

Este trabalho apresentou o estudo de um retificador monofásico com elevado fator de potência, com a finalidade de ser empregado como estágio de entrada de um carregador de baterias para um veículo elétrico Fórmula SAE.

Como topologia para o estágio retificador, adotou-se o retificador Boost Interleaved (que também é conhecido como entrelaçado ou intercalado), sendo uma estratégia útil para reduzir os esforços de corrente nos componentes do conversor. Os conversores chamados *interleaved* são equivalentes à versão da combinação paralela entre dois ou mais conversores.

Com correção do fator de potência, o carregador de baterias proporciona elevada qualidade de energia para a rede elétrica, mitigando o problema da distorção harmônica presente nos tradicionais retificadores a diodos.

Os resultados de simulação numérica obtidos permitem concluir que o projeto realizado é adequado, pois o retificador operou corretamente tanto do ponto de vista estático quanto dinâmico. Obteve-se uma taxa de distorção harmônica da corrente igual a 3,3% o que levou a um FP de 0,998.

Como trabalho futuro, sugere-se a implementação prática através da construção de um protótipo.

6 REFERÊNCIAS

BARBI, I. Eletrônica de potência. 2. ed. Florianópolis: Do autor, 2000.

BARBI, I; ILLA FONT, C. H.; ALVES, R.L. Projeto físico de indutores e transformadores. Apostila: Projeto físico de componentes magnéticos. Universidade Federal de Santa Catarina (UFSC), Florianópolis, Março, 2002.

BUCHMANN, I. Batteries in a portable world. 3. ed. Canadá: Cadex Electronics Inc, 2011. 361 p. ISBN 978-0-9682118-3-0.

LAFUENTE, C. O. Carregador de baterias monofásico para aplicação em veículos elétricos. 2011. 154 f. Diss. (Mestrado) - Universidade Federal do Ceará, Fortaleza, CE, Brasil.

NERILSO BOCCHI, L.C.F. e S.R.B. Pilhas e Baterias: Funcionamento e impacto Ambiental. Química Nova na Escola, 2000.

ILLA FONT, C. H. Conversores CC-CC não isolados. Notas de aula, Ponta Grossa, n. 1, p. 1-85, Abril, 2019.

EBERLE, W. e W. G. D. An Automotive On-Board 3.3 kW Battery Charger for PHEV Application. The University of British Columbia, 2008.

MAYER, R.; PÉRES, A.; OLIVEIRA, S. V. G. Conversor CC-CC multifásico bidirecional em corrente não isolada aplicado a sistemas elétricos de tração de veículos elétricos e híbridos. Revista Eletrônica de Potência, v. 20, n. 3, ago. 2015.

NUSSBAUMER, T. N e R. K. Design Guidelines for Interleaved Single-Phase Boost PFC Circuits. IEEE Transactions on Industrial Electronics, v. 56, n. 7, jul. 2009.

OGATA, Katsuhiko. Engenharia de controle moderno. 5. ed. São Paulo: Pearson Prentice Hall, 2010.

PINI, Silvia Helena; BARBI, Ivo. A Single-Phase High-Power-Factor Rectifier, Based on a Two-Quadrant Shunt Active Filter. IEEE - Transactions on Power Electronics, v. 26, n. 11, p. 3131-3143, nov. 2011.