UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

GUSTAVO PASINATO FRANCHI

SÍNTESE DA HETEROJUNÇÃO LaMnO3-TiO2 PARA DEGRADAÇÃO FOTOCATALÍTICA DE 4-NITROFENOL EM ÁGUA

PATO BRANCO 2024

GUSTAVO PASINATO FRANCHI

SÍNTESE DA HETEROJUNÇÃO LaMnO3-TiO2 PARA DEGRADAÇÃO FOTOCATALÍTICA DE 4-NITROFENOL EM ÁGUA.

SYNTHESIS OF THE LaMnO₃-TiO₂ HETEROJUNCTION FOR PHOTOCATALYTIC DEGRADATION OF 4-NITROPHENOL IN WATER.

Trabalho de Conclusão de Curso apresentado ao Curso de Química da Universidade Tecnológica Federal do Paraná, *Campus* Pato Branco, como requisito parcial à obtenção do título de Bacharel em Química.

Orientador: Prof. Dr. Rodrigo Brackmann

PATO BRANCO

2024

Esta licença permite download e compartilhamento do trabalho desde que sejam atribuídos créditos ao(s) autor(es), sem a possibilidade de alterá-lo ou utilizá-lo para fins comerciais. Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

Ministério da Educação Universidade Tecnológica Federal do Paraná Pato Branco

Departamento de Química Curso de Bacharelado em Química

Síntese da heterojunção LaMnO₃-TiO₂ para degradação fotocatalítica de 4nitrofenol em água

por

Gustavo Pasinato Franchi

Este Trabalho de Conclusão de Curso (TCC) foi apresentado 20 de junho de 2024 às 08h20 como requisito parcial para a obtenção do título de Bacharel em Química. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho Aprovado.

Rodrigo Brackmann Prof. Orientador

Elidia Aparecida Vetter Ferri Membro titular

Henrique Emilio Zorel Junior Membro titular

Nota: O Documento original e assinado pela Banca Examinadora encontra-se no SEI processo 23064.025031/2024-18 e documento 4225963.

AGRADECIMENTOS

Para alcançar esse objetivo, tive o apoio imensurável da minha mãe, minha companheira que esteve do meu lado desde sempre, meu pilar e minha base para que eu pudesse me tornar quem eu sou hoje. Agradeço ao meu avô Adelmo e minha avó Aparecida, por estarem mais perto que nunca e me ajudarem a passar por esse momento. A minha família do coração, Fátima, Adriana e Elaine que mesmo estando longe sempre se mostraram presentes, mais que minha própria família.

Agradeço a todos os meus amigos que me proporcionaram companhia para que esses anos fossem mais leves, a Isabelli, por me aguentar em momentos complicados e estar ao meu lado para me entregar energias positivas. Ao Alberto, meu melhor amigo durante a graduação, que esteve comigo em todos os momentos, que me ajudou a passar pela pandemia, me ajudou a ser uma pessoa melhor e em todos outros aspectos da minha vida.

Ao Prof. Dr. Rodrigo Brackmann, por me aceitar como orientando e me guiar no decorrer desse trabalho, além de me ensinar muito como pessoa e como professor, muito obrigado por me dar essa oportunidade de trabalhar com você.

A todos os professores que lecionaram para mim durante a graduação.

Agradeço também à Central de Análises da UTFPR campus Pato Branco.

RESUMO

FRANCHI, Gustavo Pasinato. **Síntese da heterojunção LaMnO₃-TiO₂ para degradação fotocatalítica de 4-nitrofenol em água.** Trabalho de conclusão de curso (Bacharelado em Química), Universidade Tecnológica Federal do Paraná (UTFPR). Pato Branco, 2024.

A crescente presença de contaminantes emergentes nos recursos hídricos caracteriza uma problemática para a qualidade da água e a saúde dos seres vivos. O 4-nitrofenol causa doenças dermatológicas e ao sistema nervoso, além de ser resistente à degradação natural, permanecendo no meio. Técnicas de descontaminação que possibilitam a retirada do 4-Nitrofenol são fundamentais, e os Processos Oxidativos Avançados (POAs), tal como a fotocatálise heterogênea vêm ganhando atenção nesse cenário. A técnica consiste em semicondutores na presença de radiação para formar radicais que transformam o contaminante em substâncias menos tóxicas. O dióxido de titânio (TiO₂) é, atualmente, o semicondutor mais utilizado por seu baixo custo, pouca toxidade a saúde humana e alta eficiência fotocatalítica. Heterojuncões que permitem utilizar a eficiência do TiO2 na radiação visível vêm sendo estudadas, com isso o objetivo deste trabalho é avaliar a eficácia fotocatalítica da heterojunção LaMnO₃-TiO₂ na remoção do 4-nitrofenol em água. A perovskita LaMnO₃ foi sintetizada pelo método dos precursores poliméricos, o TiO2 e as heterojunções com porcentagens de 0, 25, 50, 75 e 100 % m/m foram sintetizadas pelo método solvotérmico. Todos os fotocatalisadores foram analisados pela difratometria de raios X e refinados pelo método de Rietveld, no qual resultou nas fases LaMnO₃, Mn₃O₄ e os polimorfos do TiO₂, anatase e bruguita. Observou-se também que a implementação da perovskita no TiO₂ favoreceu a quantidade de bruguita porém diminuiu a eficiência em remover 4-nitrofenol do meio aguoso, com degração máxima de 36% em 6 horas, uma vez que neste estudo o TiO₂ sem heterojunção foi o fotocatalisador que removeu 65,87% em 6 horas de fotocatálise.

Palavras-chave: Fotocatálise heterogênea. Heterojunção. Perovskita. Dióxido de titânio. 4-Nitrofenol.

ABSTRACT

FRANCHI, Gustavo Pasinato. Synthesis of the LaMnO₃-TiO₂ Heterojunction for Photocatalytic Degradation of 4-Nitrophenol in Water. Undergraduate thesis (bachelor's in chemistry), Universidade Tecnológica Federal do Paraná (UTFPR). Pato Branco, 2024.

The growing presence of emerging contaminants in water resources poses a problem for water guality and the health of living beings. 4-nitrophenol causes dermatological and nervous system diseases, in addition to being resistant to natural degradation, remaining in the environment. Decontamination techniques that enable the removal of 4-Nitrophenol are fundamental, and Advanced Oxidative Processes (AOPs), such as heterogeneous photocatalysis, have been gaining attention in this scenario. The technique involves semiconductors in the presence of radiation to form radicals that transform the contaminant into less toxic substances. Titanium dioxide (TiO2) is currently the most used semiconductor due to its low cost. low toxicity to human health and high photocatalytic efficiency. Heterojunctions that allow using the efficiency of TiO₂ in visible radiation have been studied, so the objective of this work is to evaluate the photocatalytic effectiveness of the LaMnO₃-TiO₂ heterojunction in removing 4nitrophenol in water. The LaMnO₃ perovskite was synthesized by the polymeric precursor method, the TiO₂ and the heterojunctions with percentages of 0, 25, 50, 75 and 100% m/m were synthesized by the solvothermal method. All photocatalysts were analyzed by X-ray diffractometry and refined by the Rietveld method, which resulted in the phases LaMnO3, Mn₃O₄ and the polymorphs of TiO₂, anatase and brookite. It was also observed that the implementation of perovskite in TiO2 favored the amount of bruchite but reduced the efficiency in removing 4-nitrophenol, with maximum degradation of 36% in 6 hours, from the aqueous medium, since in this study TiO2 without heterojunction was the photocatalyst that removed 65.87% in 6 hours. of photocatalysis.

Keywords: Heterogeneous photocatalysis. Heterojunction. Perovskite. Titanium dioxide. 4-Nitrophenol.

LISTA DE ILUSTRAÇÕES

Figura 1: Origem dos contaminantes emergentes e seus destinos	.13
Figura 2: Fórmula estrutural do composto 4-nitrofenol.	.14
Figura 3: Mecanismo dos processos oxidativos avançados	.16
Figura 4: Mecanismo da fotocatálise heterogênea do catalisador TiO ₂	. 18
Figura 5: Estrutura do rutilo, bruquita e anatase da esquerda para a direita, respectivamente.	. 19
Figura 6: Estrutura cúbica ideal da perovskita LaMnO3	.21
Figura 7: Representação esquemática da heterojunção LaMnO ₃ /TiO ₂	.23
Figura 8: Fluxograma de atividades a serem desenvolvidas no projeto	.24
Figura 9: Polímero precursor sintetizado pelo método dos precursores poliméricos	.25
Figura 10: Perovskitas LaMnO3 obtidas com diferentes temperaturas de calcinação	.26
Figura 11: Reator solvotermal empregado na síntese do TiO ₂ e das heterojunções LaMnO ₃ /TiO ₂	. 27
Figura 12: Reação envolvidas na síntese do TiO ₂ pelo método sol-gel	.28
Figura 13: Amostras sintetizadas pelo método sol-gel seguido de tratamento solvotermal	.29
Figura 14:Unidade reacional de bancada empregada na degradação fotocatalítica do 4- nitrofenol em água	.32
Figura 15: Perfil de perda de massa (TGA) do polímero precursor da perovskita LaMnO ₃	. 34
Figura 16: Perfis de TGA, DTG e DTA do polímero precursor da perovskita LaMnO ₃	.35
Figura 17: Difratogramas de raios X dos óxidos obtidos a partir da calcinação do polímero precursor em diferentes temperaturas.	.36
Figura 18: Difratogramas de raios X dos materiais sintetizados	.37
Figura 19: Difratograma de raios X do TiO ₂ refinado pelo método de Rietveld	.38
Figura 20: Difratograma de raios X da amostra LaMn25 refinado pelo método de Rietveld.	39
Figura 21: Difratograma de raios X da amostra LaMn50 refinado pelo método de Rietveld.	39
Figura 22: Difratograma de raios X da amostra LaMn75 refinado pelo método de Rietveld.	40
Figura 23: Difratograma de raios X da amostra LaMn100 refinado pelo método de Rietveld	40
Figura 24: Células unitárias das fases presentes nos materiais sintetizados	.42
Figura 25: Espectros de FTIR das amostras sintetizadas	.43
Figura 26: Remoção do 4-nitrofenol empregando heterojunções LaMnO ₃ -TiO ₂ por meio de adsorção por 60 min e fotocatálise por 300 min	.45
Figura 27: Gráfico de ordem zero	.46
Figura 28: Gráfico de primeira ordem	.47
Figura 29: Gráfico de segunda ordem	.47

LISTA DE TABELAS

Tabela 1: Propriedades físicas do 4-nitrofenol.	15
Tabela 2: Exemplos de POAs	17
Tabela 3: Condições de pré-calcinação do polímero	26
Tabela 4: Condições de calcinação	26
Tabela 5: Tamanho de cristalito das fases TiO2 anatase, TiO2 bruquita e LaMnO3	38
Tabela 6: Parâmetros de qualidade dos refinamentos dos difratogramas pelo método de	
Rietveld	41
Tabela 7: Parâmetros de rede das fases identificadas nas amostras sintetizadas	41
Tabela 8: Composição química das amostras em porcentagem mássica	44
Tabela 9: Composição química da manganita de lantânio	44
Tabela 10: Degradação fotocatalítica do 4-nitrofenol após 300 min empregando os diferen materiais sintetizados.	ntes 46

SUMÁRIO

1 INTRODUÇÃO	10
2 OBJETIVOS	12
2.1 Geral	12
2.2 Específicos	12
3 REFERENCIAL TEÓRICO	13
3.1 Contaminantes Emergentes	13
3.1.1 4-Nitrofenol	14
3.2 Processos Oxidativos Avançados	16
3.2.1 Fotocatálise heterogênea	17
3.3 TiO ₂	19
3.4 Perovskitas	20
3.4.1 Manganita de Lantânio (LaMnO ₃)	21
3.5 Heterojunções	22
4 MATERIAIS E MÉTODOS	24
4.1 Síntese dos fotocatalisadores	24
4.1.1 Síntese da Perovskita LaMnO ₃	
4.1.2 Síntese do TiO ₂ e das heterojunções LaMnO ₃ /TiO ₂	
4.2 Caracterização dos materiais	
4.2.1 Análise termogravimétrica	29
4.2.2 Difratometria de raios X (DRX) e refinamento de Rietveld	29
4.2.3 Espectroscopia no infravermelho com transformada de Fourier (FTIR)	31
4.2.4 Fluorescência de Raios X (FRX)	31
4.3 Degradação fotocatalítica do 4-nitrofenol em água	
4.4 Tratamento de resíduos	
5 RESULTADOS E DISCUSSÕES	
5.1 Análise termogravimétrica do polímero precursor da perovskita LaMnO3	
5.2 Difratometria de Raios X (DRX) dos óxidos obtidos a partir da calcinação de polímero precursor em diferentes temperaturas	0 35
5.3 Caracterização dos materiais sintetizados	
5.3.1 Difratometria de Raios X (DRX)	
5.3.1.1 Refinamento de Rietveld	

Esta licença permite download e compartilhamento do trabalho desde que sejam atribuídos créditos ao(s) autor(es), sem a possibilidade de alterá-lo ou utilizá-lo para fins comerciais. Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

5.3.2 Espectroscopia de infravermelho com transformada de Fourier (FTIR)	42
5.3.3 Fluorescência de Raios X (FRX)	44
5.4 Testes Fotocatalíticos	45
6. CONCLUSÃO	
REFERÊNCIAS	

1 INTRODUÇÃO

Os contaminantes emergentes (CEs) são compostos que recebem essa denominação por não serem removidos completamente pelos processos tradicionais utilizados nas estações de tratamento de efluentes (NAVALON; ALVARO; GARCIA, 2008). Nos últimos anos, o aumento do uso e, consequentemente, da produção desses contaminantes é preocupante uma vez que os efeitos a longo prazo que estes podem causar à saúde humana ainda não são devidamente conhecidos (RÜZGAR; KARATAŞ; GÜLCAN, 2023).

Entre os contaminantes emergentes, o grupo dos nitrofenóis aromáticos chama atenção, pois são compostos sintéticos e tóxicos utilizados na fabricação de medicamentos, pesticidas e explosivos (NAGARAJA; TAE HWAN, 2023), sendo o 4-nitrofenol (4NP) um dos representantes desse grupo de compostos.

O 4-nitrofenol foi identificado como um risco à saúde humana (NAGARAJA et al., 2023), por esse motivo se faz necessária a ampliação de novas metodologias capazes de degradar o 4NP em ambientes aquosos. Os Processos Oxidativos Avançados (POAs) são exemplos de técnicas que podem ser empregadas neste cenário.

A fotocatálise heterogênea é um POA que faz uso da irradiação de energia em forma de luz, caracterizando um processo simples e de baixo custo (DONG et al., 2022). Para que a fotocatálise ocorra, se faz necessário o uso de semicondutores, como por exemplo o dióxido de titânio (TiO₂), que é o mais utilizado por conta de suas características, como baixa nocividade, baixo custo e elevada estabilidade química. Mesmo sendo o semicondutor mais empregado, o TiO₂ possui algumas desvantagens, sendo a principal delas a limitação da sua fotoativação ocorrer apenas com radiação ultravioleta, por conta da sua elevada energia de *bandgap* (MAHY et al., 2021; MARIEN et al., 2017; MEIJIE REN, 2015).

A possibilidade de utilizar o dióxido de titânio com radiação visível vem sendo estudado, sendo uma das alternativas a formação de uma heterojunção, que é uma junção de pelo menos dois materiais distintos (DU et al., 2017). Neste contexto, as perovskitas vêm sendoestudadas como um material promissor para a fotocatálise heterogênea, especificamente a manganita de lantânio (LaMnO₃), por conta de sua estabilidade química, baixo custo e fotoativação com radiação visível (ÇOBAN ÖZKAN; TÜRK; CELIK, 2021a; SHATERIAN etal., 2014).

Nesse sentido, o presente trabalho teve como objetivo sintetizar e caracterizar a heterojunção $LaMnO_3/TiO_2$ e investigar a sua atuação na degradação fotocatalítica do contaminante emergente 4-nitrofenol em água sob radiação visível.

2 OBJETIVOS

2.1 Geral

Sintetizar heterojunções LaMnO₃/TiO₂ ativas para degradação fotocatalítica de 4nitrofenol em água sob radiação visível.

2.2 Específicos

- ✓ Sintetizar a perovskita LaMnO₃ pelo método dos precursores poliméricos.
- ✓ Caracterizar a perovskita LaMnO₃.
- \checkmark Sintetizar e caracterizar o TiO₂
- ✓ Preparar as heterojunções LaMnO₃/TiO₂ com diferentes proporções entre os óxidos pelo método sol-gel seguido de tratamento solvotermal.
- ✓ Caracterizar as heterojunções LaMnO₃/TiO₂.
- ✓ Avaliar a atividade fotocatalítica das heterojunções LaMnO₃/TiO₂ na degradação de 4-nitrofenol em água sob radiação visível.
- ✓ Analisar a relação existente entre as composições e propriedades físico-químicas das heterojunções com seu desempenho fotocalítico.
- ✓ Investigar a cinética de degradação fotocatalítica de 4-nitrofenol em água.

3 REFERENCIAL TEÓRICO

3.1 Contaminantes Emergentes

O termo <Contaminantes Emergentes= (CEs) é cedido a compostos sintéticos ou naturais que têm o potencial de contaminar os corpos hídricos e causar efeitos adversos, ecológicos ou à saúde humana, sendo esses efeitos conhecidos ou somente suspeitos (DE LA CRUZ et al., 2012). Além disso, foi comprovado que estas substâncias não são completamente removidas da água pelos métodos tradicionais de tratamento de águas e efluentes (NAVALON; ALVARO; GARCIA, 2008).

Tendo em vista os avanços contínuos de atividades originadas pelo homem, a produção e o uso de materiais químicos conhecidos como <contaminantes emergentes= ou <contaminantes de preocupações emergentes= tem aumentado (PETRIE; BARDEN; KASPRZYK-HORDERN, 2015). Surfactantes, antibióticos, hormônios, protetores solar e pesticidas são alguns exemplos de contaminantes emergentes (VASILACHI et al., 2021), como observa-se na Figura 1, e, com esse aumento na produção, a presença dos contaminantes em águas residuárias tem sido reportada em diversos estudos.

Figura 1: Origem dos contaminantes emergentes e seus destinos.

Fonte: Adaptado de VASILACHI et al., 2021.

Entre os contaminantes emergentes, nitrofenóis são particularmente preocupantes, pois são compostos sintéticos e tóxicos utilizados na fabricação de medicamentos, explosivos e inseticidas (NAGARAJA; TAE HWAN, 2023), e o seu descarte de no meio-ambiente apresenta um risco real para a saúde humana.

3.1.1 4-Nitrofenol

O 4-nitrofenol (Figura 2) é um composto químico intrinsecamente associado a processos industriais, sendo frequentemente gerado na produção de diversos produtos, como medicamentos, pesticidas, explosivos e herbicidas (NAGARAJA et al., 2023). Sua solubilidade em solventes orgânicos amplifica sua disseminação na água, originando-se principalmente de descargas industriais e atividades agrícolas (DUTT et al., 2024). Algumas de suas características estão apresentadas na Tabela 1.

Fonte: Sigma-Aldrich (2018)

Tabela 1: Propriedades físicas do 4-nitrofenol.				
	Cristais amarelados ou			
Cor	esbranquiçados			
Odor	Sem odor			
Densidade	1,5 g mL ⁻¹			
Ponto de fusão	111-116 ℃			
Ponto de ebulição	279 °C			
Ponto de fulgor	169 °C			
Solubilidade em água	1,24 g/100 mL			
Tóxico em amb	ientes aquáticos			
Fonte: (<icsc -="" 0066="" p-1<="" td=""><td>NITROPHENOL=, 1998)</td></icsc>	NITROPHENOL=, 1998)			

A presença do 4-nitrofenol (4-NP) em ambientes aquáticos destaca preocupações ambientais substanciais. Sua resistência à degradação natural (ABDOLLAHI; MOHAMMADIRAD, 2014) prolonga sua permanência nos ecossistemas, resultando em impactos negativos nos ciclos bioquímicos e na biodiversidade aquática.

Além dos impactos ambientais, o 4-NP apresenta desafios à saúde humana. Estudos apontam para exposições prolongadas relacionadas a problemas dermatológicos e possíveis efeitos no sistema nervoso central (RÜZGAR; KARATAŞ; GÜLCAN, 2023), levantando preocupações sobre a qualidade da água para consumo humano. A complexidade das vias de exposição, incluindo ingestão direta e absorção pela pele (ABDOLLAHI; MOHAMMADIRAD, 2014), destaca a necessidade de se compreender melhor os riscos associados a esse contaminante.

No contexto do tratamento da água, torna-se evidente que os métodos convencionais enfrentam limitações significativas na remoção eficaz do 4-NP (NAGARAJA et al., 2023). Sua solubilidade em solventes orgânicos desafia as abordagens tradicionais. Nesse cenário, a pesquisa e implementação de tecnologias avançadas, como processos de oxidação avançada e adsorção em materiais específicos, emergem como áreas críticas para enfrentar esse desafio.

3.2 Processos Oxidativos Avançados

Os Processos Oxidativos Avançados (POAs) podem ser definidos como processos que geram radicais reativos (LI; LUO; LIU, 2023) (especialmente o radical hidroxila) em quantidades suficientes para a purificação da água, geralmente em condições de temperatura e pressão ambiente.

Os POAs vêm sendo aplicados para o tratamento de águas e efluentes visto que apresentam um alto poder oxidativo, possibilitando degradar um grande número de substâncias devido a sua não seletividade (AMETA, 2018). Os radicais hidroxila são o resultado de processos que podem combinar agentes oxidantes, como ozônio (O₃) e peróxido de hidrogênio (H₂O₂), e radiação, ultravioleta (UV) ou visível (Vis), e ainda semicondutores. Os radicais formados são capazes de degradar as moléculas orgânicas por meio da retirada de hidrogênio e a introdução de oxigênio, ou seja, um processo de oxidação (FIOREZE; SANTOS; SCHMACHTENBERG, 2014) (Figura 3).

Fonte: Adaptado de (AMETA, 2018)

Os POAs podem ser classificados de diferentes formas (Tabela 2). Entre os POAs apresentados, destaca-se a fotocatálise heterogênea, pois apresenta baixo custo e elevada eficiência em produzir radicais [•]OH.

Processo	Homogêneo	Heterogêneo
	O ₃ /UV	
Com invodio eão	H ₂ O ₂ /UV	Fotocatálise Heterogênea
Com irradiação	O ₃ /H ₂ O ₂	$(TiO_2/O_2/UV)$
	Foto-Fenton	
	O ₃ /OH	
Sem irradiação	O ₃ /H ₂ O ₂	O ₃ /Catalisador
	Reativo de Fenton	
	Fonte: (MIGUEL DE SOUZA, 201	0)

Tabela 2: Exemplos de POAs.

3.2.1 Fotocatálise heterogênea

Desde a pesquisa inicial de Fujishima e Honda, em 1972, sobre a fotólise da água em H₂ e O₂ utilizando o dióxido de titânio (TiO₂) como catalisador (FUJISHIMA; HONDA, 1972), pesquisadores estão dedicados principalmente na fotocatálise heterogênea, especificamente para a oxidação de poluentes orgânicos em água (FOTEINIS; CHATZISYMEON, 2020; MUGWILI et al., 2023). A fotocatálise heterogênea é definida da seguinte forma (BRASLAVSKY et al., 2011):

> <A mudança na taxa de uma reação química ou sua iniciação sob a ação de radiação ultravioleta, visível ou infravermelha na presença de uma substância, o fotocatalisador, que absorve luz e está envolvido na transformação química dos parceiros da reação=

A fotocatálise consiste na irradiação de um material semicondutor (normalmente TiO₂), que é caracterizado por uma banda de valência (BV) e uma banda de condução (BC), sendo a região entre elas denominada de <bandgap=, como pode ser visualizado na Figura 4.

Figura 4: Mecanismo da fotocatálise heterogênea do catalisador TiO₂.

Fonte: adaptado de (FERREIRA, 2005)

As equações (3.1) a (3.3) descrevem as reações apresentadas na figura 4, quando o semicondutor TiO_2 é fotoexcitado.

Fotoativação da partícula de semicondutor:

a) $TiO_2 + h_V \rightarrow h_{BV^+} + e_{BC}$ (3)	3.	1)
--	----	---	---

Reação entre a lacuna fotogerada e a água adsorvida:

b)
$$h_{BV+} + H_2 O \rightarrow OH$$
 (3.2)

Formação de íon radical superóxido:

c)
$$e_{BC_{-}} + O_2 \rightarrow O_{\overline{2}}$$
 (3.3)

Levando isso em consideração, para um material ser aplicado como fotocatalisador, é necessário que ele possua algumas propriedades, tais como uma estrutura cristalina, a absorção de energia em forma de luz, a capacidade de geração eficiente dos pares elétron-lacuna (e⁻/h⁺) para produção de radicais livres e uma bandgap viável (que possa ser alcançado por comprimentos de onda situados na região do UV-Vis).

Ainda hoje, o catalisador mais empregado na fotocatálise heterogênea é o TiO₂ (MEIJIE REN, 2015). O interesse no composto pode ser justificado por causa de suas propriedades uma vez que possui boa estabilidade, reatividade redox em sua superfície, baixa nocividade à saúde humana e fases cristalinas adequadas para a aplicação em fotocatálise (IBHADON; FITZPATRICK, 2013).

O TiO₂ possui três fases cristalinas naturais: bruquita, anatase e rutilo. A bruquita e a anatase são metaestáveis e se transformam irreversivelmente, de forma exotérmica, para rutilo quando submetidas a temperaturas acima de aproximadamente 750 °C. A unidade estrutural fundamental nos cristais de TiO₂ é [TiO₆], octaedros, mas seus modos de arranjo e ligações são diferentes (MEIJIE REN, 2015).

Figura 5: Estrutura do rutilo, bruquita e anatase da esquerda para a direita, respectivamente.

Fonte: Adaptado (ULLATTIL; PERIYAT, 2017)

A bruquita possui estrutura ortorrômbica com distorção do octaedro conforme a Figura 5. Além disso, a obtenção do composto polimorfo bruquita em sua forma pura não é um processo simples, devido a isso e a sua baixa reatividade sob irradiação de luz, existem poucos estudos sobre a sua atividade fotocatalítica (EL-SHEIKH et al., 2016; LI; CONG; XU, 2014). A bruquita apresenta estrutura cristalina ortorrômbica com 8 átomos de titânio por célula unitária e energia de bandgap igual a 3,27 eV.

A anatase e o rutilo apresentam estrutura cristalina tetragonal, com 4 e 2 átomos de titânio por célula unitária (Z), respectivamente, e a energia de bandgap dessas estruturas é de 3,2 eV e 3,0 eV, respectivamente (SCHNEIDER et al., 2014). Essas possuem propriedades mais interessantes para o emprego em fotocatálise heterogênea.

A fase anatase vem apresentando um melhor desempenho fotocatalítico, o que pode ser explicado por apresentar um maior número se sítios ativos, ou seja, maior capacidade de adsorção. Essa fase também possui uma capacidade de separação de cargas superior ao seu polimorfo mais estável, o rutilo (SCHNEIDER et al., 2014). Portanto, a fase anatase é referida como a melhor fase pura do TiO₂ para aplicação em fotocatálise. No entanto, fotocatalisadores que misturam as fases anatase e rutilo vêm sendo desenvolvidos, e são obtidos com atividades fotocatalíticas superiores quando comparados com os fotocalisadores de fases puras (MA; WANG; LI, 2015; SCHNEIDER et al., 2014). Por conta disto, foi desenvolvido o fotocatalisador P25, um material que mistura as fases anatase e rutilo em uma proporção 80/20 para uma melhor atividade fotocatalítica, o que faz dele um fotocatalisador empregado comercialmente (JINKAI, 2007).

Algumas desvantagens, no entanto, dificultam a aplicação do TiO₂ em processos fotocatalíticos, como é o caso da baixa absorção de radiação visível uma vez que a energia de bandgap é relativamente elevada (3,2 eV) (JINKAI, 2007). Por esse motivo, estudos vêm sendo realizados para modificar o dióxido de titânio com a finalidade de se obter um material que possa ser fotoativado com radiação visível e que mantenha a eficiência original. Estratégias como dopagem do TiO₂ ou formação de heterojunções têm se mostrado adequadas para tal finalidade.

3.4 Perovskitas

Recentemente, os óxidos mistos de estrutura denominada perovskita, com fórmula ABX₃, receberam notável atenção em processos fotocatalíticos em função de sua alta atividade fotocatalítica sob radiação visível. Estas estruturas possuem empacotamento denso de ânions X (normalmente oxigênio), com dois tipos de sítios, um com coordenação seis e outro com coordenação oito ou doze (Figura 6). O sítio A é preenchido por um cátion alcalino, alcalino terroso ou terra-rara nos estados de oxidação I, II III ou IV e iônico, e o sítio B comporta um cátion de transição que, na maioria dos casos, assume os estados de oxidação II, IV e V e covalente (ÇOBAN ÖZKAN; TÜRK; CELIK, 2021a; SHATERIAN et al., 2014; WEI et al., 2021).

Figura 6: Estrutura cúbica ideal da perovskita LaMnO₃.

Fonte: (MEXICANA DE FÍSICA et al., 2015)

Os sítios A e B podem ser substituídos por diversos elementos, possibilitando aformação de perovskitas de fórmulas bastante variadas. Além da estrutura cúbica ideal, as perovskitas podem se apresentar com estrutura romboédrica, tetragonal, monoclínica, triclínica e ortorrômbica. Distorções na estrutura podem gerar alterações significativas nas características físico-químicas do material (SHAFEIE, 2011).

3.4.1 Manganita de Lantânio (LaMnO₃)

Perovskitas baseadas em manganitas estão ganhando atenção devido a suas aplicações em dispositivos para armazenamento e recuperação de informações magnéticas (AHMAD et al., 2006). Esses compostos possuem elevada magnetorresistência e também são populares pelo seu potencial em aplicações como um material para eletrodos.

Perovskitas baseadas em lantânio, por sua vez, possuem propriedades magnéticas e catalíticas, sendo esses materiais preferidos em algumas áreas, como a catálise. Uma dessas aplicações se dá na área de energia, em células solares baseadas em perovskitas de lantânio, devido ao seu baixo custo de produção e toxicidade, além de uma alta eficiência em conversão de energia (ÇOBAN ÖZKAN; TÜRK; CELIK, 2021a).

A manganita de lantânio é uma das perovskitas mais promissoras e eficientes para a degradação fotocatalítica de poluentes orgânicos sob radiação visível pois possui uma baixa

energia de *band gap* e possui elevada estabilidade catalítica (DHINESH KUMAR; THANGAPPAN; JAYAVEL, 2018; GIROIR-FENDLER et al., 2016). No entanto, mesmo com essas características, quando a perovskita LaMnO₃ é fotoexcitada, o par elétron-lacuna tende a se recombinar rapidamente devido a sua forte atração eletroestática. Por esse motivo, algumas alternativas como a formação de heterojunções de tornam necessárias para diminuir a taxa de recombinação das espécies portadoras de cargas (BILGIN SIMSEK; TUNA, 2023).

Vários métodos de preparação têm sido usados para a síntese de perovskitas, como reação em estado sólido, técnica sol-gel, síntese hidrotérmica, co-precipitação e precursores poliméricos (ANSARI; SIDDIQUI; SIDDIQI, 2021; DA CONCEIÇÃO et al., 2013). O método dos precursores poliméricos (PECHINI, 1967) se baseia na formação de um complexo onde os cátions são fixados na estrutura do agente quelante e, posteriormente, com o auxílio de um álcool, um polímero se forma por meio de uma reação de esterificação.

A calcinação acontece com a finalidade de remover a matéria orgânica e o excesso de água que são gerados durante a síntese, além de direcionar, dependendo de sua temperatura, o teor de cristalinidade do material final, bem como sua fase majoritária.

3.5 Heterojunções

A formação de heteroestruturas em semicondutores está sendo amplamente investigada devido ao seu desempenho elevado como fotocatalisadores, sendo que uma heterojunção pode ser definida como uma junção entre dois ou mais materiais distintos (YANG, 2021). A heterojunção LaMnO₃/TiO₂ pode ser compreendida por meio da Figura 7. A banda de valência (BV) do semicondutor A (TiO₂) possui potencial mais positivo do que a do material B (LaMnO₃), já a banda de condução (BC) de B possui potencial mais negativo que a de A. Dessa forma, as reações de oxidação tendem a ocorrer na BV do LaMnO₃ e as reações de redução na BC do TiO₂.

Figura 7: Representação esquemática da heterojunção LaMnO₃/TiO₂.

Fonte: Adaptado de (DU et al., 2017)

A estrutura eletrônica da heterojunção permite que o par elétron-lacuna possa se mover pelo semicondutor, promovendo as reações de oxidação e redução em sítios ativos de semicondutores diferentes. A síntese da heterojunção pode ser realizada por meio do método solvotermal, que se baseia em submeter uma determinada solução à altas temperaturas e pressões com a finalidade de obter um material cristalino.

Por esse motivo, a heterojunção La MnO_3/TiO_2 é interessante uma vez que, teoricamente, os fotocatalisadores poderão manter a eficiência do TiO₂ e ser fotoexcitados na região do visível por conta das propriedades eletrônicas da perovskita.

4 MATERIAIS E MÉTODOS

As etapas a serem seguidas para o desenvolvimento deste projeto são apresentadas na Figura 8.

Figura 8: Fluxograma de atividades a serem desenvolvidas no projeto.

Fonte: Autoria própria (2024).

4.1 Síntese dos fotocatalisadores

4.1.1 Síntese da Perovskita LaMnO3

A perovskita Lantânio-Manganês (manganita de lantânio, LaMnO₃) foi sintetizada pelo método dos precursores poliméricos (Pechini adaptado), no qual consiste no ácido cítrico reagindo com o metal, formando um citrato metálico e esse citrato metálico são submetidos a uma reação de esterificação com o etilenoglico. Os precursores metálicos utilizados foram

nitrato de lantânio hexahidratado (La(NO₃)₃.6H₂O, NEON, 99%) e nitrato de manganês tetrahidratado (Mn(NO₃)₂.6H₂O, SIGMA-ALDRICH, 97%). Com ambos os sais, foram preparadas soluções aquosas com concentrações de 0,5 mol L⁻¹.

As soluções dos nitratos metálicos foram misturadas à temperatura ambiente na proporção estequiométrica (proporção molar La:Mn de 1:1), e, a essa mistura, foi adicionada solução aquosa de ácido cítrico anidro (AC, DINÂMICA, 99,5%) 1,6 mol L⁻¹ e hidróxido de amônio P.A (NH₄OH, SYNTH) vagarosamente, com o auxílio de uma pipeta de Pasteur, até que o pH fosse igual a 4. Essa mistura permaneceu sob agitação por 30 min à temperatura de 60 °C. Em seguida, adicionou-se etilenoglicol P.A. (EG, ÊXODO, 99,9%) na proporção AC:EG de 1,5:1 (m/m) e elevou-se a temperatura a 100 °C. O sistema ficou sob agitação até a formação de um gel viscoso resultante da reação de polimerização.

Figura 9: Polímero precursor sintetizado pelo método dos precursores poliméricos

Fonte: Autoria própria (2024)

O polímero sintetizado foi seco em estufa overnight a 100 °C e então termicamente tratado. O polímero seco foi pré-calcinado de acordo com as condições apresentadas na Tabela 3, resfriado naturalmente até temperatura ambiente, macerado e calcinado nas temperaturas mostradas na Tabela 4. Quatro temperaturas de calcinação foram empregadas: 600, 700, 800 e 900 °C, dando origem, respectivamente aos óxidos identificados como LM600, LM700, LM800 e LM900.

		Temperatura final	Permanência	
Etapa	Taxa de Aquecimento (°C min ⁻¹)	(°C)	(min)	
1	5	120	10	
2	2 2		150	
	Fonte: Autoria própria (2024)		

Tabela 3: Condições de pré-calcinação do polímero.

Tabela 4: Condições de calcinação.

	—	Temperatura final	Permanência
Perovskita	Taxa de Aquecimento (°C min ⁻¹)	(°C)	(min)
LM600	10	600	120
LM700	10	700	120
LM800	10	800	120
LM900	10	900	120

Fonte: Autoria própria (2024)

Figura 10: Perovskitas LaMnO3 obtidas com diferentes temperaturas de calcinação.

Fonte: Autoria própria (2024)

Para síntese das heterojunções, foi empregada a amostra que apresentou a maior pureza em relação ao LaMnO₃. Como algumas amostras apresentaram purezas semelhantes, empregou-se, como critério de escolha, a menor temperatura de calcinação.

4.1.2 Síntese do TiO₂ e das heterojunções LaMnO₃/TiO₂

Inicialmente, o fotocatalisador TiO₂ foi preparado empregando-se o método sol-gel seguido de tratamento solvotérmico, também chamado de solvotermal. Isopropóxido de titânio (SIGMA-ALDRICH, 97 %) foi utilizado como precursor de titânio; água ultrapura, ácido acético glacial (NEON, 99,8 %) e álcool isopropílico (Synth, 99,5 %) como solventes.

O processo de síntese foi baseado no trabalho de (TEMAM et al., 2022), com a proporção molar de água:álcool isopropílico:isopropóxido de titânio:ácido acético de 2:25:1:1. O sol foi formado pela dissolução do isopropóxido de titânio em álcool e água, com agitação constante por 30 min. Após esse período, ácido acético glacial foi adicionado gota a gota, e o sol foi mantido sob agitação por 2 h.

A solução foi transferida para um reator solvotérmico, apresentado na Figura 11, que consiste em um copo de PTFE (politetrafluoretileno) de 300 mL, inserido em um reator de aço inox selado. O reator foi inserido em estufa, sendo mantido a 180 °C durante 20 h. Ao final desse período, a estufa foi desligada e a solução foi então naturalmente resfriada. Após alcançar a temperatura ambiente, o reator foi aberto, e a amostra coletada do reator foi lavada com etanol, seca em estufa por 1h a 80 °C e, por fim, macerada para obtenção do TiO₂ puro.

Figura 11: Reator solvotermal empregado na síntese do TiO₂ e das heterojunções LaMnO₃/TiO₂.

Fonte: Autoria própria (2024)

As reações envolvidas na síntese do TiO_2 pelo método sol-gel são apresentadas na Figura 12. Emprega-se um alcóxido do metal, no caso o isopropóxido de titânio, que, por meio de reações de hidrólise e de condensação, resulta na formação de TiO_2 amorfo. A reação 1 da Figura 12 mostra a reação de hidrólise, enquanto as reações 2 e 3 apresentam as condensações aquosa e alcoólica, respectivamente. Para que o TiO_2 se torne cristalino, deve necessariamente passar por um tratamento térmico, que pode ser a calcinação ou o tratamento solvotermal. Nesse trabalho, o tratamento solvotermal foi empregado.

Figura 12: Reação envolvidas na síntese do TiO₂ pelo método sol-gel.

Fonte: (MAHY et al., 2021)

Para síntese das heterojunções LaMnO₃/TiO₂, foi empregada a mesma metodologia de síntese do TiO₂, com a diferença de que, no momento de se introduzir a mistura no reator solvotermal, juntamente com o sol de TiO₂, foram adicionadas massas pré-determinadas de perovskita LaMnO₃ previamente sintetizada pelo método dos precursores poliméricos de forma a se obter os fotocatalisadores com teores de LaMnO₃ de 25, 50 e 75 e 100% m/m, apresentados na Figura 13, que foram identificados, respectivamente, como LaMn25, LaMn50, LaMn75 e LaMn100.

Figura 13: Amostras sintetizadas pelo método sol-gel seguido de tratamento solvotermal.

Fonte: Autoria própria (2024)

4.2 Caracterização dos materiais

4.2.1 Análise termogravimétrica

A análise termogravimétrica teve como objetivo investigar a decomposição térmica do polímero precursor da perovskita LaMnO₃ e como uma análise para determinar as temperaturas de calcinação. A análise foi realizada em um analisador termogravimétrico (TGA-DTA-DSC), modelo SDT Q600, TA Instruments, no Laboratório Multiusuário Central de Análises da UTFPR campus Pato Branco. Em um porta amostra de α -Al₂O₃, foram inseridos aproximadamente 10 mg de amostra, que foi então submetido a aquecimento da temperatura ambiente a 1000 °C à taxa de 10 °C min⁻¹ sob vazão de 100 mL min⁻¹ de ar sintético.

4.2.2 Difratometria de raios X (DRX) e refinamento de Rietveld

Por meio do emprego da difratometria de raios X (DRX), é possível analisar asestruturas cristalinas da perovskita, do TiO₂ e das heterojunções sintetizadas. O equipamento utilizado, modelo *Miniflex 600*, Rigaku com radiação de cobre (K α - do Cu λ = 0,154 nm), se encontra no Laboratório Multiusuário Central de Análises da UTFPR *campus* Pato Branco.

Os difratogramas foram registrados em intervalo de ângulo de Bragg de $3^{\circ} \le 2\theta \le 90^{\circ}$, com passo de $0,02^{\circ}$ e tempo de contagem fixo de 1 s por passo em modo semicontínuo (*step*

scan). A identificação das fases cristalinas foi realizada por meio da comparação dos difratogramas obtidos experimentalmente com o banco de dados JCPDS (*Joint Committee on Powder Diffraction Standards*).

Os difratogramas de raios X foram refinados pelo método de Rietveld com o intuito de se quantificar as fases presentes nos materiais, bem como para obter parâmetros cristalográficos, como parâmetros de rede e volume da célula unitária. Os refinamentos foram realizados com a utilização do *software* GSAS.

O refinamento de Rietveld baseia-se no método dos mínimos quadrados, de forma que o modelo de aproxime o melhor possível do difratograma obtido experimentalmente (RIETVELD, 1969). A diferença entre a intensidade calculada e a intensidade experimental deve ser a menor possível. A equação dos mínimos quadrados se encontra na Equação 4.1

$$S_{y} = \sum \bar{A} \times (I_{\bar{A}bs} - I_{calc})^{2}$$
(4.1)

Em que I_{obs} é a intensidade observada, e a intensidade calculada é representada por I_{calc} , para cada ponto experimental. S_y é a função de resíduos a ser minimizada e w_i é o fator de ponderação.

Os índices abaixo determinam a qualidade de um refinamento:

$$R_p = 100 \cdot \frac{\sum_{i=1,n} (y_i - y_{c,i})}{\sum_{i=1,n} y_i}$$

$$(4.2)$$

$$\frac{\sum_{i=1,n} \bar{A}_i(y_i - y_{c,i})^2}{R_{\bar{A}p}} \frac{1/2}{\sum_{\substack{k=1,n \\ k \neq i}} \bar{A}_i y^2}$$

$$(4.3)$$

$$R_{\mathbb{E}p} = 100 \cdot \left(\underline{n-p_2} \right)^{1/2} \tag{4.4}$$

 $\sum |\bar{A}| \cdot y|$

em que

 $R_p = fator de perfil$

 R_{wp} = fator de perfil ponderado

 R_{exp} = fator de perfil ponderado esperado

鄙= qui quadrado reduzido

Os graus de liberdade do sistema não representados por n-p, sendo n o número total de pontos usados no refinamento e p o número de parâmetro refinados. Os valores de R_{wp} , que permitem verificar a convergência do refinamento, devem estar na faixa de 2 a 10 % para validarem os resultados do refinamento.

Os tamanhos de cristalito das diferentes fases identificadas foram determinados por meio da equação de Scherrer (LIMA et al., 2018):

$$d = \frac{k \cdot \lambda}{\cos(\phi) \cdot L}$$

em que d é o tamanho médio de cristalito, k (constante de Scherrer), coeficiente que depende da forma do cristalito (assumida como 0,89 neste trabalho), λ representa o comprimento de onda da radiação utilizada, ϕ corresponde ao ângulo de difração dado em radianos e L é a larguraà meia altura do pico de maior intensidade.

4.2.3 Espectroscopia no infravermelho com transformada de Fourier (FTIR)

A técnica de FTIR foi empregada para identificar os grupamentos superficiais presentes nos materiais sintetizados. As análises foram realizadas em equipamento Perkin Elmer Frontier no modo transmitância, utilizando-se pastilhas de KBr (proporção mássica amostra:KBr = 1:99), no intervalo de número de onda de 4000 a 400 cm⁻¹, com resolução de 4 cm⁻¹ e número de acumulações igual a 64. As análises foram realizadas no Laboratório Multiusuário Central de Análises da UTFPR campus Pato Branco.

4.2.4 Fluorescência de Raios X (FRX)

A técnica FRX foi empregada com o objetivo de determinar a composição química global da perovskita e das heterojunções. As amostras foram analisadas em equipamento Rigaku, modelo Primini, no Laboratório de Tecnologias do Hidrogênio (Labtech) da Universidade Federal do Rio de Janeiro (UFRJ)

4.3 Degradação fotocatalítica do 4-nitrofenol em água

Testes de avaliação da atividade fotocatalítica dos materiais sintetizados para degradação do 4-nitrofenol foram conduzidos em uma unidade reacional de bancada do tipo batelada com capacidade de 2 L apresentada na Figura 14.

Figura 14:Unidade reacional de bancada empregada na degradação fotocatalítica do 4-nitrofenol em água.

Fonte: Autoria própria (2024)

O reator é composto por um tubo cilíndrico externo construído em policloreto de vinila (PVC) com diâmetro de 150 mm e um tubo interno de borossilicato com diâmetro de 100 mm. Água percola por entre os dois tubos para manter a temperatura do reator constante. A fonte de radiação visível, uma lâmpada halógena (Osram 3 HQI-T 250 W/D PRO) com emissão na faixa espectral de 300 a 800 nm, fixa na tampa do reator também de PVC, foi posicionada no interior do tubo de borossilicato de tal forma que parte fique imersa no meio reacional líquido.

Os testes fotocatalíticos foram efetuados com volume de solução de 1,5 L e concentração de 4-nitrofenol (DINÂMICA, 98%) de 25 mg L⁻¹ e pH = 3. A concentração do fotocatalisador foi de 0,5 g L⁻¹. Para oxigenação do meio reacional, empregou-se um compressor de ar eletromagnético Resun Aco-002 e um medidor de vazão de ar (rotâmetro) MKB para ajuste da vazão de ar a 3 L min⁻¹. Agitação magnética garantiu a homogeneidade do meio reacional durante os experimentos.

Inicialmente o fotocatalisador foi adicionado ao meio reacional e, sob agitação magnética na ausência de radiação, avaliou-se a capacidade de adsorção do 4-nitrofenol pelos materiais. Alíquotas do meio reacional foram coletadas nos tempos de 0, 5, 10, 15, 20, 30 e 60 min. Após esse período destinado à adsorção, as fontes de radiação e de oxigenação foram acionadas e, dessa forma, se deu início aos testes fotocatalíticos. Alíquotas foram coletadas nos tempos de 0, 5, 10, 15, 20, 30, 60, 90, 120, 150, 180, 240 e 300 min. Com o intuito de se avaliar apenas a eficiência de degradação do contaminante pela fonte de radiação, experimentos foram conduzidos com a mesma metodologia, porém sem catalisador (testes fotolíticos).

Todas as alíquotas coletadas foram filtradas em membranas filtrantes Durapore® de 13 mm e tamanho de poro de 0,22 μ m (Millipore®) de PVDF (fluoreto de polivinilideno) e analisadas em espectrofotômetro UV-Vis Thermo Scientific, modelo Genesys 10S, em modo de varredura, para quantificação do 4-nitrofenol removido do meio reacional, no qual tem seu comprimento de onda máxima em 319 nm (LIU et al., 2017).

4.4 Tratamento de resíduos

Os resíduos líquidos gerados foram devidamente tratados por meio de oxidação com peróxido de hidrogênio (H_2O_2) para garantir que todo o contaminante fosse oxidado. Em seguida foi realizado um ajuste de pH e o descarte. Os resíduos sólidos foram filtrados, secos e armazenados para usos futuros, com a possibilidade de investigação do reciclo do fotocatalisador.

5 RESULTADOS E DISCUSSÕES

5.1 Análise termogravimétrica do polímero precursor da perovskita LaMnO3

O comportamento do polímero precursor da perovskita LaMnO₃ foi avaliado por meio da análise termogravimétrica. Por meio dessa técnica, é possível analisar as faixas de temperatura de decomposição do precursor a partir da curva de TGA, possibilitando a determinação da temperatura ideal para seu tratamento térmico.

A curva referente à perda de massa (TGA) do polímero precursor é apresentado na Figura 15. Observa-se uma perda de massa de 85,94 % no intervalo de temperatura de 30 a 1000 °C.

Figura 15: Perfil de perda de massa (TGA) do polímero precursor da perovskita LaMnO₃.

Fonte: Autoria própria (2024).

Verifica-se que há uma perda significativa de massa, de aproximadamente 25 %, entre 30 e 200 °C, que possivelmente se deve à eliminação de água adsorvida. É possível observar uma segunda etapa de perda de massa, entre 200 e 500 °C, com uma perda de massa de 50 %, que é atribuída à decomposição térmica de componentes orgânicos, precursores adsorvidos ou oxidação de materiais voláteis. No terceiro intervalo de temperatura, acima de 500 °C, observase uma reduzida perda de massa, que não mais se altera após 700 °C. Essa perda pode ser relacionada com materiais inorgânicos que se decompõem em temperaturas elevadas. A Figura 16 apresenta os perfis de TGA, DTG e DTA do polímero precursor da perovskita. Na curva DTG, é possível observar um evento de perda de massa 239 °C associado a um evento endotérmico no perfil de DTA, o que pode corresponder à volatilização de água adsorvida por ligações de hidrogênio (ÇOBAN ÖZKAN; TÜRK; CELIK, 2021b). Ainda no perfil de DTG, é possível identificar dois eventos de perda de massa, em 406 e 431 °C associados a eventos exotérmicos no perfil DTA, o que indica que nessa faixa de temperatura ocorre a combustão da matéria orgânica (ÇOBAN ÖZKAN; TÜRK; CELIK, 2021b).

Figura 16: Perfis de TGA, DTG e DTA do polímero precursor da perovskita LaMnO₃.

Fonte: Autoria própria (2024)

5.2 Difratometria de Raios X (DRX) dos óxidos obtidos a partir da calcinação do polímero precursor em diferentes temperaturas

O polímero precusor foi submetido a diferentes temperaturas de calcinação (Tabela 4). Os óxidos obtidos foram analisados por difratometria de raios X. A Figura 17 apresenta os difratogramas dos materiais obtidos nas temperaturas de calcinação de 600, 700, 800 e 900 °C.

Fonte: Autoria própria (2024)

Observando-se a Figura 17, fica evidente que, com o aumento da temperatura de calcinação, forma-se a perovskita LaMnO₃, caracterizada por picos mais intensos. A partir da análise dos difratogramas e comparando-se com o banco de dados do JCPDS, em todas as amostras obteve-se a manganita de lantânio (JCPDS #75216), identificada principalmente por um pico característico em $2\theta = 32^{\circ}$.

Nos difratogramas, observa-se que, com o aumento da temperatura de calcinação, maior é a quantidade de picos característicos da LaMnO₃. Nas temperaturas de calcinação de 600 e 700 °C, é possível identificar um pico intenso em $2\theta = 32^{\circ}$, porém em 800 e 900 °C, verifica-se um aumento na cristalinidade do material, pois os picos se tornam mais definidos e com intensidade maior (SANTOS, 2015). A temperatura de calcinação escolhida neste trabalho foi de 800 °C em virtude de o material formado nessa temperatura apresentar uma elevada cristalinidade (BESSEGATTO, 2020). Caso fosse calcinado a 900 °C, não haveria mudanças significativas no teor da fase pretendida, e ainda o material obtido poderia ter as propriedades texturais prejudicadas (diminuição de área superficial e porosidade) devido ao fenômeno de coalescência.

5.3 Caracterização dos materiais sintetizados

5.3.1 Difratometria de Raios X (DRX)

Os difratogramas de raios X das amostras sintetizadas são apresentados na Figura 18.

Figura 18: Difratogramas de raios X dos materiais sintetizados.

Fonte: Autoria própria (2024)

Verifica-se que, para a amostra de TiO₂ sem adição de perovskita, houve formação das fases cristalinas anatase (JCPDS #24276) e bruquita (JCPDS #36411). Já a amostra de LaMnO₃ (LaMn100) apresentou picos característicos de perovskita ($2\theta = 32^{\circ}$) (JCPDS #75216) e outros picos que puderam ser identificados por meio da comparação do difratograma experimental com o banco de dados JCPDS como Mn₃O₄ tetragonal (BESSEGATTO, 2020).

Já os difratogramas de raios X das heterojunções LaMnO₃/TiO₂ exibiram picos com intensidade relativa coerentes à porcentagem mássica de perovskita, comprovando a formação das heterojunções. Os tamanhos de cristalito das principais fases cristalinas identificadas foram calculados por meio da equação de Scherrer e estão reportados na Tabela 5.

A 0 0	,	Famanho de cristalito (nm)	
Amostra _	TiO ₂ (anatase)	TiO ₂ (bruquita)	LaMnO ₃
TiO ₂	10,01	15,36	-
LaMn25	8,95	12,97	13,18
LaMn50	9,20	14,14	15,08
LaMn75	13,36	17,78	14,92
LaMn100	-	-	14,92

Tabela 5: Tamanho de cristalito das fases TiO2 anatase, TiO2 bruquita e LaMnO3.

Fonte: Autoria própria (2024)

A Tabela 5 mostra que, inicialmente, com a introdução da perovskita no dióxido de titânio, faz com que o tamanho de cristalito do TiO₂ diminua, porém observa-se um aumento conforme o aumento da concentração da manganita de lantânio, assim como outros estudos de heterojunções (HERNÁNDEZ; SAGREDO; DELGADO, 2015; KANDIEL et al., 2013; SOARES et al., 2022)

5.3.1.1 Refinamento de Rietveld

As Figuras 19, 20, 21, 22 e 23 apresentam os difratogramas de raios X dos materiais sintetizados refinados pelo método de Rietveld.

Figura 19: Difratograma de raios X do TiO₂ refinado pelo método de Rietveld.

Fonte: Autoria própria (2024)

Figura 20: Difratograma de raios X da amostra LaMn25 refinado pelo método de Rietveld.

Fonte: Autoria própria (2024)

Figura 21: Difratograma de raios X da amostra LaMn50 refinado pelo método de Rietveld.

Fonte: Autoria própria (2024)

Figura 22: Difratograma de raios X da amostra LaMn75 refinado pelo método de Rietveld.

Fonte: Autoria própria (2024)

Figura 23: Difratograma de raios X da amostra LaMn100 refinado pelo método de Rietveld.

Fonte: Autoria própria (2024)

É possível observar visualmente que os modelos matemáticos empregados se adequaram aos dados experimentais, o que pode ser verificado pelos valores dos parâmetros dequalidade dos refinamentos apresentados na Tabela 6.

Amostra		Parâmetros de quali	dade do refinamento	
Amostra	R _p (%)	R _{wp} (%)	Rexp (%)	χ^2
TiO ₂	8,96	11,35	9,94	1,30
LaMn25	8,55	11,13	9,42	1,40
LaMn50	7,49	9,85	9,03	1,19
LaMn75	7,42	10,54	8,75	1,45
LaMn100	9,85	13,52	8,99	2,26
			(2024)	

Tabela 6: Parâmetros de qualidade dos refinamentos dos difratogramas pelo método de Rietveld.

Fonte: Autoria própria (2024)

De acordo com a Tabela 6, pode-se observar que os índices de qualidade dos refinamentos encontram-se majoritariamente abaixo de 10 %, com exceção, principalmente, da amostra LaMn100, com R_{wp} igual a 13,52 % e χ^2 de 2,26. Para as heterojunções e para o TiO₂, esse valor ultrapassa ligeiramente os 10%, o que significa que os modelos representam as características estruturais das amostras já que os valores são muito próximos a 10%, ou seja, pode-se afirmar que o refinamento obteve resultados válidos para se avaliar a estrutura das amostras.

A Tabela 7 reporta os parâmetros de rede das fases identificadas nas diferentes amostras. Verifica-se que os parâmetros apresentaram valores muito próximos, para a maioria das fases. Em contrapartida, à medida o teor de LaMnO₃ era aumentado, o parâmetro da fase bruquita também aumentou.

Amostro	Parâmetros de rede						
Amostra	Fase	a (Å)	b (Å)	c (Å)	α (°)	³ (°)	y (°)
TiO	TiO ₂ (anatase)	3,787	3,787	9,488	90	90	90
2	TiO ₂ (bruquita)	9,062	5,436	5,328	90	90	90
	TiO ₂ (anatase)	3,789	3,789	9,451	90	90	90
LaMn25	TiO ₂ (bruquita)	9,284	5,344	5,185	90	90	90
	LaMnO ₃	5,517	5,517	13,30	90	90	120
	TiO ₂ (anatase)	3,791	3,791	9,454	90	90	90
LaMn50	TiO ₂ (rutilo)	10,201	5,456	5,184	90	90	90
	LaMnO ₃	5,508	5,508	13,33	90	90	120
	TiO ₂ (anatase)	3,785	3,785	9,422	90	90	90
LaMn75	TiO ₂ (rutilo)	12,20	4,656	21,74	90	90	90
	LaMnO ₃	5,506	5,506	13,33	90	90	120
LaMn100	3	5,505	5,505	13,33	90	90	120
	MnO_4	5,384	5,384	9,743	90	90	90
		Eanta: A	utorio pró	min (2024)			

Tabela 7: Parâmetros de rede das fases identificadas nas amostras sintetizadas.

Fonte: Autoria própria (2024)

As células unitárias das fases identificadas nas diferentes amostras são apresentadas na Figura 24. A anatase e o rutilo contêm 4 e 8 átomos de titânio por célula unitária, respectivamente. A manganita de lantânio tem 6 átomos de lantânio e 6 átomos de manganês por célula unitária, já o óxido de manganês contém 12 átomos de manganês por célula unitária.

Figura 24: Células unitárias das fases presentes nos materiais sintetizados.

Fonte: Autoria própria (2024)

5.3.2 Espectroscopia de infravermelho com transformada de Fourier (FTIR)

A Figura 25 mostra os espectros de FTIR das amostras sintetizadas. Identifica-se um estiramento em torno de 3403 cm⁻¹ nos espectros de todas as amostras, que é característica de ligações O-H (CHOUGALA et al., 2017). Também é possível observar, em todos os espectros, duas bandas entre 1440 e 1560 cm⁻¹, referentes a ligações O-H (ABDALLA et al., 2022).

A banda em 616 cm⁻¹ é atribuída, na literatura, a ligações de Metal-Oxigênio, nesse caso identificando a ligação de Ti-O com uma largura maior quando comparado com a ligação da perovskita nessa mesma região (ANSARI et al., 2019). A vibração de estiramento Ti-OH, presente em todos os espectros na região de 1623 cm⁻¹ (CHOUGALA et al., 2017), tem a sua intensidade aumentada conforme a porcentagem TiO₂ é aumentada.

Figura 25: Espectros de FTIR das amostras sintetizadas.

5.3.3 Fluorescência de Raios X (FRX)

A composição química global das heterojunções foi determinada por fluorescência de Raios X. Os resultados são apresentados na Tabela 8.

Amostra –	Teor real dos compostos (%)			Teor nominal dos compostos (%)		
	TiO ₂	La ₂ O ₃	MnO	TiO ₂	La ₂ O ₃	MnO
TiO ₂	100	-	-	100		
LaMn25	84	10	6	75	17,42	7,58
LaMn50	50	32	18	50	34,84	15,16
LaMn75	27	47	26	25	52,26	22,74
LaMn100	-	68	32		69,68	30,32

Tabela 8: Composição química das amostras em porcentagem mássica.

Fonte: Autoria própria (2024)

Os resultados indicaram que as sínteses das heterojunções foram bem-sucedidas uma vez que os valores reais se revelaram próximos dos nominais. No entanto, para o caso da perovskita (LaMn100), observa-se um excesso de manganês em relação ao lantânio, conforme evidenciado na Tabela 9. A perovskita deveria apresentar uma proporção molar La:Mn de 1:1, porém observou-se uma proporção de, aproximadamente, 1,09:1 com manganês:lantânio, o que pode ser evidenciado com a fase de Mn₃O₄ na difração de raios X.

La_2O_3	MnO	Ιa	М
		La	win
67,68 g	32,32 g		
,208 mol	0,456 mol	0,416 mol	0,456 mol
	67,68 g 208 mol	67,68 g 32,32 g 208 mol 0,456 mol	67,68 g 32,32 g 208 mol 0,456 mol 0,416 mol

Levando em consideração que em 1 mol de La₂O₃ tem 2 mols de lantânio e 1 mol de MnO tem 1 mol de Manganês, observa-se uma proporção molar de 1,09:1 sendo manganês:lantânio.

5.4 Testes Fotocatalíticos

Os testes de remoção de 4-nitrofenol em água foram conduzidos por 6 h, sendo a primeira hora do processo dedicada à etapa de adsorção, definida do tempo -60 min ao tempo 0 min, já nas 5 h deu-se o processo fotocatalítico. O tempo zero é definido como aquele em que a fonte de radiação foi acionada. Os resultados são apresentados na Figura 26.

Figura 26: Remoção do 4-nitrofenol empregando heterojunções LaMnO₃-TiO₂ por meio de adsorção por 60 min e fotocatálise por 300 min.

Fonte: Autoria própria (2024)

A Figura 26 revela que a etapa de adsorção não apresentou eficiência significativa na remoção do 4-nitrofenol no meio aquoso para nenhuma das amostras sintetizadas. A máxima remoção do contaminante durante 1 h de adsorção foi de 7,73 %. Em contrapartida, após o início do tratamento fotocatalítico, foi registrado um aumento expressivo na degradação do 4-nitrofenol. A máxima porcentagem de degradação foi de 66% após 300 min empregando-se o fotocatalisador TiO₂, no qual foi um valor superior a (SAN et al., 2002) que reportou uma degradação de aproximadamente 59% de 4-nitrofenol usando TiO₂.

A Tabela 10 mostra a degradação do 4-nitrofenol, após 300 min de tratamento fotocatalítico, para todos os materiais sintetizados.

Material	TiO ₂	LaMn25	LaMn50	LaMn75	LaMn100
Degradação (%)	66	36	32	20	19

Tabela 10: Degradação fotocatalítica do 4-nitrofenol após 300 min empregando os diferentes materiais sintetizados.

Fonte: Autoria própria (2024)

Com o objetivo de investigar a cinética da reação e determinar a ordem de reação, foram plotados os gráficos de concentração de 4-nitrofenol ([A]), ln ([A]/[A₀]) e 1/[A] em função do tempo (Figuras 27, 28 e 29, respectivamente). Os gráficos 27, 28 e 29 mostram os r^2 de todas as fotocatálises com o tempo versus concentração, ln da concentração e o inverso da concentração no eixo y. Observa-se que o melhor r^2 é encontrado no gráfico de primeira ordem (Figura 28) para todas as amostras, no qual é comum em processos fotocatalíticos.

A reação considerada de pseudo primeira ordem surge quando há um grande excesso de um dos reagentes, fazendo com que a reação respeite uma equação cinética de primeira ordem. Esse comportamento pode ser observado no gráfico de $\ln([A]/[A_0])$ versus tempo (Figura 28), sendo o reagente em excesso o fotocatalisador, obtêm-se uma reta que possui inclinação igual a -kt, sendo k a constante de velocidade específica e o coeficiente angular.

Figura 27: Gráfico de ordem zero.

Tempo (Minutos)

Fonte: Autoria própria (2024)

Figura 28: Gráfico de primeira ordem.

Fonte: Autoria própria (2024)

Figura 29: Gráfico de segunda ordem

6. CONCLUSÃO

Por meio deste trabalho, foi possível observar que o método de Pechini adaptado foi eficiente na síntese da perovskita LaMnO₃. Ao analisar a Fluorescência de raios X, ficou evidente que o teor estequiométrico tenha sido minimamente maior para o manganês e analisando o difratograma de raios X em conjunto, resultou um uma fase de MnO₄ tetragonal por conta do excesso e uma de LaMnO₃ ortorrômbica.

A síntese do TiO_2 e das heterojunções se mostraram promissoras para novos estudos de degradação fotocatalítica, pois foram identificadas as fases anatase e bruquita, com a heterojunção aumentando a porcentagem da fase bruquita.

Pelas análises de FTIR foi possível identificar as bandas que comprovam a existência de ligações metal-oxigênio e ligações O-H, com bandas intermediárias nas heterojunções, indicando a formação de ligações entre si.

O dióxido de titânio apresentou um desempenho fotocatalítico maior em comparação às heterojunções e a perovskita, porém, como não foi medido a porcentagem de mineralização, não se pode afirmar que o dióxido de titânio seja melhor quando utilizado sozinho. Observa-se que a introdução da perovskita no dióxido de titânio resultou na diminuição do desempenho fotocatalítico e que a cinética da reação foi de pseudo primeira ordem.

Em trabalhos futuros, se sugere que utilize uma concentração menor de fotocatalisador, com a finalidade de diminuir a turbidez do meio reacional, realizar sínteses de heterojunções com menor massa de perovskita. Testar o material calcinado em outras temperaturas para verificação da influência das fases na fotocatálise heterogênea e também realizar testes de reuso do fotocatalisador.

REFERÊNCIAS

ABDALLA, H. et al. Potential of green synthesized titanium dioxide nanoparticles for enhancing seedling emergence, vigor and tolerance indices and DPPH free radical scavenging in two varieties of soybean under salinity stress. **BMC Plant Biology**, v. 22, n. 1, 1 dez. 2022.

ABDOLLAHI, M.; MOHAMMADIRAD, A. Nitrophenol, 4-. Encyclopedia of Toxicology: Third Edition, p. 5753577, 1 jan. 2014.

AHMAD, T. et al. Reverse micellar synthesis and properties of nanocrystalline GMR materials (LaMnO₃, La_{0.67}Sr_{0.33}MnO₃ and La_{0.67}Ca_{0.33}MnO₃): Ramifications of size considerations. **J. Chem. Sci**, v 118, nov. 2006.

AMETA, S. C. Introduction. Advanced Oxidation Processes for Wastewater Treatment. **Emerging Green Chemical Technology**, p. 1312, 1 jan. 2018.

ANSARI, A. A. et al. Physico-chemical properties and catalytic activity of the sol-gel prepared Ce-ion doped LaMnO3 perovskites. **Scientific Reports**, v. 9, n. 1, 1 dez. 2019.

ANSARI, A.; SIDDIQUI, V. U.; SIDDIQI, W. A. Perovskite-type catalytic materials for water treatment. **Hybrid Perovskite Composite Materials: Design to Applications**, p. 1173134, 1 jan. 2021.

BESSEGATTO, T. **OBTENÇÃO DE LaMnO3 POR DECOMPOSIÇÃO TÉRMICA DE 8-HIDROXIQUINOLINATOS**. Pato Branco: Universidade Tecnológica Federal do Paraná, 2020.

BILGIN SIMSEK, E.; TUNA, Ö. Boosting redox cycle and increased active oxygen species via decoration of LaMnO₃ spheres with CeO₂ flowers to promote Fenton-like catalytic degradation of various organic contaminants. **Optical Materials**, v. 137, p. 113564, 2023.

BRASLAVSKY, S. E. et al. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC recommendations 2011). **Pure and Applied Chemistry**, v. 83, n. 4, p. 93131014, mar. 2011.

CHOUGALA, L. S. et al. A simple approach on synthesis of TiO₂ nanoparticles and its application in dye sensitized solar cells. **Journal of Nano- and Electronic Physics**, v. 9, n. 4, 2017.

ÇOBAN ÖZKAN, D.; TÜRK, A.; CELIK, E. Synthesis and characterizations of LaMnO3 perovskite powders using sol3gel method. **Journal of Materials Science: Materials in Electronics**, v. 32, n. 11, p. 15544315562, 1 jun. 2021a.

ÇOBAN ÖZKAN, D.; TÜRK, A.; CELIK, E. Synthesis and characterizations of LaMnO3 perovskite powders using sol3gel method. **Journal of Materials Science: Materials in Electronics**, v. 32, n. 11, p. 15544315562, 1 jun. 2021b.

DA CONCEIÇÃO, L. et al. La_{0.7}Sr_{0.3}MnO₃-coated SS444 alloy by dip-coating process for metallic interconnect supported Solid Oxide Fuel Cells. **Journal of Power Sources**, v. 241, p. 1593167, 1 nov. 2013.

DE LA CRUZ, N. et al. Degradation of 32 emergent contaminants by UV and neutral photofenton in domestic wastewater effluent previously treated by activated sludge. **Water Research**, v. 46, n. 6, p. 194731957, 15 abr. 2012.

DHINESH KUMAR, R.; THANGAPPAN, R.; JAYAVEL, R. Enhanced visible light photocatalytic activity of LaMnO₃ nanostructures for water purification. **Research on Chemical Intermediates**, v. 44, n. 7, p. 432334337, 1 jul. 2018.

DONG, C. et al. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). **Chemosphere**, v. 308, p. 136205, 1 dez. 2022.

DU, H. et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. **Chinese Journal of Catalysis**, v. 38, n. 8, p. 129531306, 2017.

DUTT, S. et al. A reduced graphene oxide-based electrochemical sensing and eco-friendly 4nitrophenol degradation. **Diamond and Related Materials**, v. 141, p. 110554, 1 jan. 2024.

EL-SHEIKH, S. M. et al. Tailored synthesis of anatase-brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV-Vis light. **Chemical Engineering Journal**, v 310, fev. 2017..

FERREIRA, I. V. L.; DANIEL, L. A. Fotocatálise heterogênea com TiO2 aplicada ao tratamento de esgoto sanitário secundário. **Engenharia Sanitaria e Ambiental**, v. 9, n. 4, p. 3353342, dez. 2004.

FIOREZE, M.; SANTOS, E. P. DOS; SCHMACHTENBERG, N. PROCESSOS OXIDATIVOS AVANÇADOS: FUNDAMENTOS E APLICAÇÃO AMBIENTAL. **Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental**, v. 18, n. 1, 7 abr. 2014.

FOTEINIS, S.; CHATZISYMEON, E. Heterogeneous photocatalysis for water purification. Nanostructured Photocatalysts: From Materials to Applications in Solar Fuels and Environmental Remediation, p. 75397, 1 jan. 2020.

FUJISHIMA, A.; HONDA, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. **Nature**, v. 238, n. 5358, p. 37338, 1972.

GIROIR-FENDLER, A. et al. Synthesis of oxide supported LaMnO₃ perovskites to enhance yields in toluene combustion. **Applied Catalysis B: Environmental**, v. 180, p. 29337, 2016.

TEMAM, E. et al. Photocatalytic activity of Al/Ni doped TiO2 films synthesized by sol-gel method: Dependence on thickness and crystal growth of photocatalysts. **Surfaces and Interfaces**, v. 31, p. 102077, 2022.

MEXICANA DE FÍSICA, S. et al. Synthesis and magnetic characterization of LaMnO₃ nanoparticles Synthesis and magnetic characterization of LaMnO₃ nanoparticles. **Revista Mexicana de Física**, v. 61, p. 1663169, 2015.

IBHADON, A. O.; FITZPATRICK, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts. **Multidisciplinary Digital Publishing Institute (MDPI)**, 4 mar.

2013.

JINKAI, Z. Modified Titanium Dioxide (TiO₂) photocatalysts for the degradation of organic pollutants in wastewater. Thesis 4 National University of Singapore, 15 ago. 2007.

KANDIEL, T. A. et al. **Brookite versus anatase TiO₂ photocatalysts: Phase transformations and photocatalytic activities**. Photochemical and Photobiological Sciences. Anais...Royal Society of Chemistry, 2013.

LI, C.; LUO, G.; LIU, Y. Comparison on the Formation and Toxicity for Chlorinated Products during the Oxidation of Acetic Acid (CH₃COOH) by Three Widely Used Advanced Oxidation Processes (AOPs) at the Presence of Cl–. **Journal of Environmental Chemical Engineering**, p. 111501, 23 nov. 2023.

LI, Z.; CONG, S.; XU, Y. Brookite vs anatase TiO₂ in the photocatalytic activity for organic degradation in water. **ACS Catalysis**, v. 4, n. 9, p. 327333280, 5 set. 2014.

LIMA, F. M. et al. Tamanho médio das nanopartículas de dióxido de titânio a partir de uma nova abordagem na equação de scherrer. **Revista Materia**, v. 23, n. 1, 2018.

LIU AC, S. et al. Fabrication of hybrid phase $TiO_2/g-C_3N_4$ heterojunction composite with enhanced adsorption and photocatalytic degradation of MB under visible light. New Journal of Chemistry, 2023.

LIU, S. et al. Polydopamine as a bridge to decorate monodisperse gold nanoparticles on Fe3O4 nanoclusters for the catalytic reduction of 4-nitrophenol. **RSC Advances**, v. 7, n. 72, p. 45545345551, 2017.

MA, Y.; WANG, X.; LI, C. Charge separation promoted by phase junctions in photocatalysts. **Cuihua Xuebao/Chinese Journal of Catalysis**, v. 36, n. 9, p. 151931527, 20 set. 2015.

MAHY, J. G. et al. Eco-friendly colloidal aqueous sol-gel process for TiO₂ synthesis: The peptization method to obtain crystalline and photoactive materials at low temperature. **Catalysts, MDPI**, 1 jul. 2021.

MARIEN, C. B. D. et al. Sol-gel synthesis of TiO2 nanoparticles: effect of Pluronic P123 on particle's morphology and photocatalytic degradation of paraquat. **Environmental Science and Pollution Research**, v. 24, n. 14, p. 12582312588, 23 set. 2016.

REN, M.; FRIMMEL, F.; FRANZREB, M. **TiO₂: Application in Photocatalysis for the Degradation of Organic Pollutants and Aggregation Behavior in Aquatic Systems.** China: Fakultät Für Chemieingenieurwesen Und Verfahrenstechnik, 29 jun. 2015.

MEXICANA DE FÍSICA, S. et al. Synthesis and magnetic characterization of LaMnO₃ nanoparticles Synthesis and magnetic characterization of LaMnO₃ nanoparticles. **Revista Mexicana de Física**, v. 61, p. 1663169, 2015.

MIGUEL DE SOUZA, B.; CERQUEIRA, A.; DEZOTTI, M. Avaliação de Processos Oxidativos Avançados acoplados com carvão ativado granulado com biofilme para reuso **de efluentes de refinaria de petróleo**. Brasil: XIX Simpósio Brasileiro de Recursos Hídricos, 1 dez. 2011.

MUGWILI, M. E. et al. An update on sustainabilities and challenges on the removal of ammonia from aqueous solutions: A state-of-the-art review. **Journal of Environmental Management**, v. 347, 1 dez. 2023.

NAGARAJA, K. et al. Novel, Biosynthesis of Palladium Nanoparticles using Strychnos Potatorum Polysaccharide as a Green sustainable approach; and their effective Catalytic Hydrogenation of 4-Nitrophenol. **International Journal of Biological Macromolecules**, v. 253, p. 126983, 31 dez. 2023.

NAGARAJA, K.; TAE HWAN, O. Green synthesis of Multifunctional Zinc oxide Nanoparticles from Cordia myxa gum; and their Catalytic Reduction of Nitrophenol, Anticancer and Antimicrobial Activity. **International Journal of Biological Macromolecules**, v. 253, p. 126788, 31 dez. 2023.

NAVALON, S.; ALVARO, M.; GARCIA, H. Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β -lactam antibiotics with ClO2. Water **Research**, v. 42, n. 839, p. 193531942, 1 abr. 2008.

PECHINI, M. P. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor., 19 ago. 1964.

PETRIE, B.; BARDEN, R.; KASPRZYK-HORDERN, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. **Water Research**, v. 72, p. 3327, 1 abr. 2015.

RIETVELD, H. A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, v. 2, n. 2, p. 65371, jun. 1969.

RÜZGAR, A.; KARATAŞ, Y.; GÜLCAN, M. Synthesis and characterization of Pd0 nanoparticles supported over hydroxyapatite nanospheres for potential application as a promising catalyst for nitrophenol reduction. **Heliyon**, v. 9, n. 11, p. e21517, 1 nov. 2023.

SAN, N. et al. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates. **Journal of Photochemistry and Photobiology A: Chemistry**, v. 146, n. 3, p. 1893197, jan. 2002.

VANESSA, S. Estudo de perovskitas LaMnO3 como catalisadores para a reação de combustão do metano. **Ufba.br**, 2015.

SCHNEIDER, J. et al. Understanding TiO₂ photocatalysis: Mechanisms and materials. Chemical ReviewsAmerican Chemical Society, , 8 out. 2014. SHAFEIE, S. Structure and property investigations of the $La_2Co_{1+z}(Ti_{1-x}Mg_x)_{1-z}O_6$ perovskite system. 2011.

SHATERIAN, M. et al. Synthesis, characterization and photocatalytic activity of LaMnO₃ nanoparticles. Applied Surface Science. Anais...Elsevier B.V., 1 nov. 2014.

SOARES, F. C. et al. TiO₂/BiVO₄ composite from preformed nanoparticles for heterogeneous photocatalysis. **Materials Chemistry and Physics**, v. 290, 15 out. 2022.

ULLATTIL, S. G.; PERIYAT, P. Sol-Gel Synthesis of Titanium Dioxide. Advances in Sol-Gel Derived Materials and Technologies, p. 2713283, 2017.

VASILACHI, I. C. et al. Occurrence and fate of emerging pollutants in water environment and options for their removal. Water (Switzerland). **MDPI AG**, , 2 jan. 2021.

WEI, K. et al. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. **Chemical Engineering**. Journal Elsevier B.V. 15 jun. 2021.

YANG, H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. **Materials Research Bulletin**, v. 142, p. 111406, 1 out. 2021.