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RESUMO

Ainda permanece um mistério como as interações sociais podem ser aprendidas tão cedo

no processo de desenvolvimento humano. Procurando entender melhor como as interações

sociais funcionam e como elas emergem na infância, Bruner (1983) apresentou o conceito de

Pragmatic Frame (PF) (enquadramento pragmático, em tradução livre), uma forma de descrever

e estudar as interações sociais. Este trabalho aborda parte do mistério de aprender um PF,

propondo uma taxonomia e uma representação computacional de PFs, que são usadas em

uma solução para um agente artificial aprender uma parte específica de um PF através de

FAMA (Aineto, Jiménez Celorrio e Onaindia (2019), Aineto, Jiménez e Onaindia (2019)), uma

abordagem de aprendizado de modelo de ação. Esta solução é implementada e testada com

experimentos que tentam verificar sua viabilidade.

Palavras-chave: pragmatic frames; representação de pragmatic frame; aprendizado de prag-

matic frame; aprendizado de modelo de ação.



ABSTRACT

It still remains a mystery how social interactions can be learned so early in the human

development process. Trying to understand better how social interactions work and how they

emerge in infancy, Bruner (1983) presented the concept of a Pragmatic Frame (PF), a way to

describe and study social interactions. This work addresses part of the mystery of learning a

PF, proposing a taxonomy and a computational representation of PFs, which are used in a

solution for an artificial agent to learn a specific part of a PF through FAMA (Aineto, Jiménez

Celorrio e Onaindia (2019), Aineto, Jiménez e Onaindia (2019)), an action model learning

approach. This solution is implemented and tested with experiments that try to assess its viability.

Keywords: pragmatic frames; pragmatic frame representation; pragmatic frame learning; action

model learning.
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1 INTRODUCTION

Human social skills are very complex, but also very useful. They can be used for learning,

for practicing skills, for collaborative work, and are an end by themselves. Language and culture

could not be possible without them, and most human technologies are a product of social collab-

oration. That’s not a surprise that humans develop social skills very early on in their development

process, as they are distinctive features of our species, although it still remains a mystery how

such complex skills can be learned at such early age. Trying to understand better how social

interactions work and how they emerge in infancy, Bruner (1983) presented the concept of a

Pragmatic Frame (PF), a way to describe and study social interactions between infants and their

caretakers. This concept is so useful that it has since been generalized to describe all types of

social interactions, between all types of agents.

Although the theory of PFs is very useful to study social interactions, it lacks a more for-

mal representation, necessary for a more precise analysis of the dynamics of social interactions.

Vollmer et al. (2016) presents a taxonomy for them, which goes some length to address that,

but it is limited in what types of PFs it can classify and which aspects it can represent. Trying to

address the mystery of how humans can learn PFs, this work proposes another taxonomy, com-

plementary to the one presented in Vollmer et al. (2016), and a computational representation of

PFs, which is used to show a way that some parts of a PF could be learned.

1.1 Motivation

Of all human cognitive skills, learning is certainly one of the most important, second to

social skills. Contemporary research on motor learning in infants and early toddlers has shed

a light on how unsupervised learning can take place in an open environment, with computer

simulations mimicking several key aspects of this type of learning.

On social learning, which becomes the main type of learning in late infancy/toddlerhood,

there has also been quite an advancement, mainly on learning in a social environment. Psycho-

logical theories such as PFs (Bruner (1983), Rohlfing et al. (2016)) and, more recently, Words

As social Tools (WAT) (BORGHI et al., 2019), have enabled the understanding of how abilities

like simple language (with concrete words and unambiguous syntax) and solo actions, or even

more complex ones, like abstract words and joint actions and goals, can be learned in a social

context.

But little has been done to understand how this social context is formed and how social

interactions and skills are learned. As these interactions and skills form the background against

which all social learning takes place, it is critical to thoroughly understand their learning.
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1.2 Goals

1.2.1 Main goal

The main goal of this work is to provide computational representations of social interac-

tions described by the theory of PFs, and use them to show how a specific part of a PF can be

learned. It is hoped that the computational representations and the method presented to learn

PFs could be valuable to other areas of Cognitive Sciences, helping to further the understanding

of the internal representations of PFs in the mind and how humans learn social interactions.

1.2.2 Specific goals

• To understand the central elements that make up a PF, and how such elements could

be learned;

• To understand the relevant dimensions for classifying PFs and how they are learned;

• To propose a method for learning specific elements of a PF;

• To evaluate the computational performance of the proposed method, making use of an

experimental scenario that involves more than one PF of the same type and comparing

their learning rates and transfer-learning capabilities.

1.3 Approached questions

Some of the questions approached, discussed, or at least related to this work are: How

PFs are learned? What are the relevant dimensions to classify how a PF is learned? How can

those dimensions affect learning a PF? Can a PF be computationally modeled? Can a robot

learn a PF? Is the learning approach used by the robot consistent to how a human learns PFs?

What is the performance of this learning approach?

1.4 Contributions

The most important contribution of this work is the computational modeling of PFs, which

is essential to the study of PFs in Computing and Robotics contexts, but is also important to other

areas of Cognitive Sciences, since there aren’t many representations of PFs in those areas ei-

ther. A taxonomy for PFs, especially one that focuses on the conditions in which a PF is learned,

is also a big contribution, shedding a light on PFs and their internals that will enable further in-

vestigation in several areas of Cognitive Sciences. Last but not least, an approach that allows

learning parts of a PF is a proof-of-concept contribution that can be developed further, with a
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big potential to not just improve the autonomy and adaptability of robots, but also to understand

better how humans learn and develop social interactions.
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2 THEORETICAL CONCEPTS

Some concepts touched by this work come from areas outside Computing, and some

come from more specific areas of Computing, all of which a non-specialist researcher or pro-

fessional might not be familiar with. To enable the understanding of this work, they are briefly

covered here, but for a deeper dive into them, further reading of the bibliography is encouraged.

2.1 Agent

An agent is anything that can be viewed as perceiving its environ-
ment through sensors and acting upon that environment through ac-
tuators. (RUSSELL; NORVIG, 2020, p. 36)

According to Russell e Norvig (2020, p. 40), the agent will always try to select actions

that are expected to yield the best result in some internal or external performance measure (its

motivation), based on sensory information and its prior knowledge.

2.2 Environment

From the definition of an agent, it can already be understood the concept of an environ-

ment, and the nature of their connection:

[. . . ] the part that affects what the agent perceives and that is affected
by the agent’s actions. (RUSSELL; NORVIG, 2020, p. 36)

An environment provides the means for learning (as a search/exploration space), com-

munication (determining how the information is encoded and being the channel where it travels

through) and social interaction.

2.3 Goal

The notion of goal adopted by Castelfranchi (2014) is that it is:

• A mental representation;

• An alternative description of the world, not necessarily reflecting what it currently is;

• Multimodal, encompassing different levels of abstraction and different cognitive func-

tions;

• Used as reference by the agent when modifying the world.
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On that notion, a goal is not always directly pursued. It can be dropped in favor of other

goals, or even be unpursuable, due to lack of preconditions, means or skills; it can just be used

as a reference to evaluate how close/far the world is from it, producing no action to actually

modify the world; it can be pursued by doing nothing, except waiting, wishing or hoping; or it can

already have been achieved.

2.4 Planning

Planning is the art and practice of thinking before acting (HASLUM,
2006, p. 1)

According to Haslum (2006, p. 1), planning involves determining the applicable actions in

a certain state, being able to predict their outcomes, and using this information to find an optimal

action plan to achieve specific goals.

Following the definitions presented by Aineto, Jiménez Celorrio e Onaindia (2019), a

planning frame, which determines the exploration space of a planning task, consists of a set

of logical fluents (or propositional variables) F , used to express the agent’s beliefs about the

environment (i.e. its state), and a set of actions A, that limits the possible actions the agent can

apply to the environment. The fluents of F are instantiated from predicates about the objects

present in the environment. The actions of A are instantiated from action schemas that, much

like predicates, receive the objects present in the environment as parameters.

The actions of A have preconditions and effects defined as partial assignments of

values to the fluents of F . Therefore, an action can only be applied if all of its preconditions are

met in the current state, and when it is applied, its effects are applied to the current state.

When combined with an initial state I and a goal condition G, a planning frame be-

comes a planning problem, for which a plan (a sequence of actions from A) can actually be

computed. Such plan solves this problem when G is satisfied at its end.

2.4.1 Action model learning

Most problems in Computing consist of input data and a program as inputs, for which an

output must be found. But action model learning, much like any other machine learning problem,

consists of input data (the initial state and the goal condition) and its respective output (the plan,

or rather a plan trace) as inputs, for which a program (the actions, their preconditions and effects)

must be found.

According to Aineto, Jiménez Celorrio e Onaindia (2019), a plan trace is an observation

of a plan execution, containing a sequence of applied actions and its state trajectory. Both action

sequence and state trajectory can have different degrees of observability in a plan trace, for

which different approaches might be required. The action sequence can be:
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• Fully-Observable (FO), when all the actions applied in the plan execution are observ-

able in the plan trace.

• Partially-Observable (PO), when some (but not all) of the actions applied in the plan

execution are observable in the plan trace.

• Non-Observable (NO), when none of the actions applied in the plan execution are

observable in the plan trace.

The state trajectory can be:

• Fully-Observable (FO), when all of the states reached in the plan execution are fully-

observable (i.e. all are full assignments of values to the fluents of F ) in the plan trace.

• Partially-Observable (PO), when some (possibly none) of the states reached in the

plan execution are fully-observable (i.e. some are partial assignments of values to the

fluents of F ) in the plan trace.

– Partially-Observable* (PO*), when all of the states reached in the plan exe-

cution are at least partially-observable (i.e. none are empty) in the plan trace.

– Non-Observable (NO), when none of the states reached in the plan execution

are at least partially-observable (i.e. all are empty) in the plan trace.

A STanford Research Institute Problem Solver (STRIPS) action model is an action

schema that contains the action name, its parameters, its preconditions (pre(⇠)), positive

(add(⇠)) and negative (del(⇠)) effects. Such model must meet three requirements: a predicate

can only become false if it originally was true (del(⇠) ✓ pre(⇠)); a predicate cannot become

both false and true (del(⇠) \ add(⇠) = ?); and a predicate can only become true if it originally

was false (pre(⇠) \ add(⇠) = ?).

The set of action models learned by an agent constitutes a domain model. Combining

an initial domain model M with a set of plan traces T results in a learning task, which produces

a new domain model M0, consistent with M and T .
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3 PRAGMATIC FRAMES AND ACTION MODEL LEARNING: TAXONOMIES AND COMPU-

TATIONAL MODELS

A format is a standardized, initially microcosmic interaction pattern
between an adult and an infant that contains demarcated roles that
eventually become reversible. (BRUNER, 1983, p. 120)

Pragmatic Frames (PFs), also known as interactional formats or frames (BRUNER, 1983,

pp. 121, 122), determine the communication between the adult and the infant, and how such

communication provides information to parameterize their actions1. They have a script-like

structure, containing the sequence of actions to take, the selection of which actions to take,

and how/when actions should be repeated.

Much like a language, a PF has a deep structure, that is the invariant structure of the

interaction, and a surface structure, that comprises all the different forms that the deep struc-

ture can be realized as. According to Rohlfing et al. (2016), a PF also consists of syntax, that

accounts for its apparent structure, and meaning, that encompasses all the cognitive functions

involved in it.

PFs are emergent by nature, requiring repetitive exposure to be learned. As the infant

gets more familiar with them, they become more stable, only varying in their learning content,

such that the infant can very quickly identify the learning content and extract it. Once learned,

they can be used as modules to compose more complex social interactions, or abstracted and

applied to a broader range of situations where they were never observed before, serving as

powerful tools to scaffold an infant’s development.

Due to their emergent nature, PFs provide powerful means to learn from social interac-

tions, framing the learning content in a stable practical structure (hence the name). An infant

can leverage this structure to ground their knowledge of language, constraining its use in a

familiar syntactic structure and extracting its meaning from an also familiar semantic structure,

all realized in a practical interaction experience.

A classical example of PF is the book reading frame, given by Bruner (1983). In such

a frame, a parent reads a picture book to their child, teaching labels for the pictures. First, the

parent points to a picture and says, "Look!", directing the child’s attention to it. Then they say,

"What’s that?", indicating a label for the picture is expected. Depending on their maturity and

engagement, the child might attempt an answer, but either way the parent will provide feedback

of the respective label, by saying "Yes, it’s a..." or "No, it’s a...".

Although the definition of a PF was originally applied to the adult-infant interaction, due to

its great potential of representing social interactions, it has since been generalized to interactions

between any types of agents, be it adult-adult, adult-infant, infant-infant, human-human, human-

robot or even robot-robot.
1 Actions should not be interpreted only as physical, as it may encompass calculations, reasoning, imag-

ination etc., all of which may well be internal to the agent’s mind.
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One example of a human-robot PF is a cooperative construction frame, given by Lallee

et al. (2010) and studied by Vollmer et al. (2016). In such a frame, both human and robot have

to build a table together, with the human screwing the parts together and the robot holding the

structure and handing the required parts. First, the robot signals it is ready to start. Then the

human tells it to start learning, provides a sequence of commands, and ends with a respective

signal. For each command in the sequence, the robot asks confirmation, and the human can

correct it if it’s wrong. After a command is confirmed, the robot executes it and waits for the

next. Once the sequence of commands is finished, the robot stores it so it can be reused when

requested by the human.

To further the understanding of PFs, as well as the PFs proposed in this work, a taxonomy

for PFs is presented here. Another taxonomy is also proposed in section 4.1. The action model

learning approach chosen for this work is also presented here, covering the motivation of such

choice and how it works.

3.1 Taxonomy of Vollmer et al. (2016)

This taxonomy is appropriate for this work for three reasons. First, it is intended for PFs

for learning, which is the type of PFs this work is interested in. Second, it encompasses human-

robot interactions, fundamental for a modern computational perspective of PFs. Third, although

it does not provide dimensions to classify how learning a PF takes place, it was developed with

that in mind.

The two main aspects that this taxonomy aims to categorize are the interactional char-

acteristics of a PF for learning (THOMAZ; BREAZEAL, 2006) and its underlying learning mech-

anisms (CUAYÁHUITL, 2015).

Thomaz e Breazeal (2006) categorized the interactional characteristics from a human-

robot interaction perspective, which fits well with this work but needs some adaptation for a

proper human-human interaction analysis. They propose three dimensions (their names are

adapted for this work): training explicitness ("Is the system passively observing the perfor-

mance of a human or is a human teacher teaching the robot?", Vollmer et al. (2016)), interaction

leading (Is the robot or the human who leads the interaction?) and exploration autonomy (Is

there a human guiding the robot’s exploration?).

Cuayáhuitl (2015) proposes only one dimension (which in this work is called learning

modality) with four possible values: supervised learning, reinforcement learning, unsuper-

vised learning and active learning. Vollmer et al. (2016) regroups them differently, from a more

human-robot interaction perspective:

• Passive learning, where the robot observes the human’s behavior, without querying

the human for information. It includes both supervised and unsupervised learning.
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• Exploration learning, where the robot explores the environment to learn. It includes

reinforcement learning, and can be divided into two overlapping subcategories:

– With initial tutor demonstration, where the reward function is initialized from

observation of the human’s behavior.

– With tutor refinement, where the rewards originate from the feedback pro-

vided by the human.

• Active learning, where the robot queries the human for information, trying to maximize

its information gain.

To exemplify how this taxonomy is used and what its dimensions mean, two examples of

PFs classified by this taxonomy were selected from Vollmer et al. (2016).

3.1.1 Classification of Akgun et al. (2012)

In this PF, a robot learns goal-oriented and means-oriented movements in an unsuper-

vised manner, where the human tutor moves the robot’s arm to show key positions of a de-

sired movement. The tutor can start a new demonstration or review the previous one, navigating

through the recorded key positions, modifying them, adding new ones and removing existing

ones.

Respective to the interactional characteristics, this PF’s training is explicit, as the human

tutor is explicitly teaching the robot how to perform the desired movement; its interaction is led

by the human, who starts, ends and makes all decisions in the interaction; the robot does not

have any autonomy to explore, as it only learns from explicit tutor demonstrations. Respective to

the learning mechanisms, this PF’s learning modality is passive, as the learning is unsupervised

and the robot neither explores the environment nor queries the human tutor to learn.

3.1.2 Classification of Grizou, Lopes e Oudeyer (2013), Grizou et al. (2014)

These works present two similar PFs, hence they are analyzed together. In the first one,

the robot learns to stack blocks. In the second, the robot learns how to move in a grid world

based on Electroencephalogram (EEG) signals. In both cases, a sequential task and a feedback-

to-meaning mapping is learned. First, the robot explores the environment, then the human tutor

provides feedback. The feedback can be either human-led, when the tutor notices the robot is

doing something wrong, or robot-led, when the robot requests feedback after it finished exploring.

The words used to provide feedback are not known a priori by the robot, so it needs to learn how

to associate them to the known meanings.

Respective to the interactional characteristics, these PF’s training is explicit, as the hu-

man tutor is explicitly providing feedback to the robot; its interaction can be led by either the



23

human or the robot; the robot has autonomy to explore, but the feedback from the tutor might

restrict it. Respective to the learning mechanisms, these PF’s learning modality is exploration

with tutor refinement, as the robot explores the environment to learn but also depends on the

tutor’s feedback.

This example is interesting because, much like this work, it shows PFs which the robot

does not know entirely a priori, having to learn some of their aspects as the interactions develop.

3.2 Action model learning with FAMA

The chosen approach for action model learning was FAMA (Aineto, Jiménez Celorrio

e Onaindia (2019), Aineto, Jiménez e Onaindia (2019)), as it allows learning STRIPS action

models even when there is minimal observability of both states (NO) and actions (NO). It does

so by compiling the action model learning problem into a classical planning problem. Then a

regular planner can solve it, and the learned action models be extracted.

The compilation process starts by encoding all the predicates that can be inserted into

each action model as propositional variables. Each variable encodes in its name the action name,

the predicate name along with its parameters, and whether it is to be inserted as a precondition, a

positive or a negative effect of said action. For example, if there was an action named move with

parameters v1, v2 and a predicate topleft(v1), inserting it as a precondition could be encoded

as pre_move_topleft_v1. If there was another predicate bottomright(v2), inserting it as a

negative effect could be encoded as del_move_bottomright_v2. Each of those propositional

variables are used to encode how an action model is being built, and FAMA uses them to extract

the action models at the end of the process.

For each pair of action model and predicate, two actions are added to the domain

model that insert the respectively encoded propositional variables into the current state,

one for the precondition and one for the effects. Their preconditions and effects ensure the

STRIPS requirements are met for the action models being built. In the examples above,

an action insert_pre_move_topleft_v1 would insert pre_move_topleft_v1, and an ac-

tion insert_eff_move_bottomright_v2 would insert either del_move_bottomright_v2 or

add_move_bottomright_v2, depending on the STRIPS requirements met in the current state.

Those actions allow the planner to explore the search space of domain models to find a candi-

date M0.

After finding a candidate domain model, the planner needs to be able to validate it, that

is, to ensure that it satisfies the initial model M and the set of plan traces T . For this, one action

is added to the domain model for each action model learned, which applies the respective action

model to the current state, respecting its preconditions and effects. In the examples above, an

action apply_move would apply the learned action model for move. For each observed state in

T , an action is also added to validate that the applied actions produce the respective observed
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state. If there were 3 observed states in T , validate_0, validate_1 and validate_2 would vali-

date each of them respectively.

The planner is only able to reach the end goal of this planning problem if, after proposing

a candidate domain model M0, it is able to reproduce the traces in T , validating all observed

states when applying all observed actions (other actions might be added to the solution, as

long as the observed states are validated). Otherwise, the planner will have to propose another

candidate model, and this repeats until a model is found that can be validated.

3.3 Moving forward

Given a proper explanation of what PFs are, their structures, their features, how they

enable learning and how to classify them, along with an understanding of how the FAMA action

model learning approach works, a solution to the problem of learning PFs can be proposed.



25

4 SOLUTION PROPOSAL: A PRAGMATIC FRAME REPRESENTATION

In this work, in addition to using a taxonomy already available in the literature, a new

taxonomy for PFs is also proposed. To be able to propose a computational solution to the problem

of learning a PF, a computational model for PFs is proposed, as well as an example PF, which

is used in the solution implementation and experiments. Then the solution to learning a PF is

proposed, integrating all the concepts, taxonomies and models presented so far.

4.1 Proposed taxonomy

This taxonomy mostly serves the same purposes as the others available in the literature

(listed below), but it focuses on aspects of a PF that are relevant to this work. Neither of those

taxonomies are comprehensive, and they are complementary to each other. In future work, they

should be expanded for a more complete description of PFs.

4.1.1 Rationale

Creating a taxonomy for PFs serves 5 main purposes:

• To improve their understanding and explaining, furthering their study in an orderly and

systematic fashion;

• To enable their direct comparison, allowing the understanding of the implications of

each difference or similarity between them, which otherwise would be impractical;

• To enable their identification, which is essential in a multi-interaction context such as an

open environment, where the agents must be able to identify which interaction they are

engaging in, as well as their role in it, so they can play it;

• To enable their building in contexts where creativity, adaptability or flexibility are re-

quired, such as open environments or when humans are involved;

• To enable their learning, which takes the agent’s adaptability and flexibility to a whole

new level, improving their social skills while leveraging them to share knowledge.

The proposed solution was developed taking only one type of PF into account, but it could

be adapted to leverage this taxonomy to be able to potentially learn any kind of PF.

4.1.2 Dimensions

In this proposed taxonomy, there are 4 main dimensions considered important to classify

a PF: Interaction purpose/goal, which encodes the (meta-)purpose of the interaction; Interaction
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development stage, which encodes how well developed is the interactional structure; Interaction

competence balance, which encodes how distant or how close are the interaction levels of com-

petence of the agents; and Interaction dynamics, which encodes how the interaction structure

changes over time.

The Interaction purpose/goal dimension has 5 possible values: Learning, which means

learning not related to social dynamics; Skill practicing, which means to practice the already-

learned skills (not related to social dynamics); Social dynamics assertion/role playing, which

means to learn or to practice the social dynamics of a social group; Social bonding, which

means to establish or to maintain social bonds; and Joint task execution, which means to ex-

ecute coordinated actions to reach a common goal, not related to learning, skill practicing or

social activities.

The Interaction development stage dimension has 4 possible values: Emerging, which

means it is being built by the agents and there is no clear definition or consensus; Negotiat-

ing, which means its definition is becoming clearer and consensus is being built between the

agents; Exchanging, which means it is already well defined and reached wide consensus, being

transmitted to new agents; and Established, which means all the interacting agents reached high

competence in the interaction, with transmission to other agents no longer being necessary.

The Interaction competence balance dimension has 2 possible values: Symmetrical,

which means their competence levels are very close; and Asymmetrical, which means their

competence levels are very distant.

The Interaction dynamics dimension has 4 possible values: Static, which means it does

not change; Scaffolding, which means it increases its level of complexity/difficulty but does not

increase its size too much; Branching, which means it opens up more paths of relatively the

same level of complexity; and Sidetracking, which means it transitions to different (but related)

PFs or sub-PFs.

When the Interaction purpose/goal is Learning, 5 additional dimensions are considered:

Learning modality, which encodes the domain, type or modality of the knowledge to be learned;

Abstraction level, which encodes the level of abstraction of the knowledge to be learned (VIL-

LANI et al., 2019); Knowledge type, which encodes the type of the knowledge to be learned,

expressed as an association pair between two of the three corners of the semiotic triangle (OG-

DEN; RICHARDS, 1989), depicted in Figure 1; Knowledge development stage, which encodes

how mature is the knowledge to be learned; and Knowledge competence balance, which en-

codes how distant or how close are the knowledge levels of competence of the agents.

The Learning modality dimension has 8 possible values: Sensory, which means the sen-

sory modality; Motor, which means the motor modality; Social, which means the social domain;

Cultural/religious, which means the cultural and religious domain; Linguistic, which means the

linguistic type; Technical, which means the technical type; Scientific, which means the scientific

type; and Mathematical/logical, which means the mathematical and logical type.
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The Abstraction level dimension has 5 possible values: Concrete, which refers directly to

sensory and motor experience; Physical, Spatio-Temporal and Quantitative (PSTQ), which refers

to physical notions, quantifiable bodily sensations, quantities, numbers and operations, quantifi-

able temporal concepts and spatial concepts; Emotional and Inner state (EI), which refers to

emotions, at different levels of complexity, mental states, emotionally connoted social situations

and characteristics of the self with respect to others; Self and Sociality (SS), which refers to

psychological and physical characteristics of the self, mainly with a positive connotation, of so-

cial situations regulated by norms, together with concepts related to social institutions, and to

social situations characterized by the presence of more people; and Philosophical/Spiritual (PS),

which refers to imagery entities, religious words, principles, disciplines, concepts linked to ar-

gumentation, reasoning and decision making, and mainly negatively connoted words, related to

characteristics of the self.

The Knowledge type dimension has 6 possible values: Symbol-referents, which means

the referents associated to a symbol; Symbol-concepts, which means the concepts associated

to a symbol; Referent-symbols, which means the symbols associated to a referent; Referent-

concepts, which means the concepts associated to a referent; Concept-symbols, which means

the symbols associated to a concept; and Concept-referents, which means the referents associ-

ated to a concept.

Figure 1 – Semiotic triangle for system interoperability

Source: Turnitsa e Tolk (2008).

The Knowledge development stage dimension has 3 possible values: Emerging, which

means it is being built by the agents and there is no clear definition or consensus; Negotiating,

which means its definition is becoming clearer and consensus is being built between the agents;

and Exchanging, which means it is already well defined and reached wide consensus, being

transmitted to new agents.

The Knowledge competence balance dimension has 2 possible values: Symmetrical,

which means their competence levels are very close; and Asymmetrical, which means their

competence levels are very distant.
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When the Learning modality is Linguistic, 1 additional dimension is considered: Part of

speech, which encodes the part of speech the knowledge plays the role of. The Part of speech

dimension has 10 possible values: Noun, Verb, Adjective, Adverb, Pronoun, Preposition, Con-

junction, Interjection, Numeral and Determiner.

When the Interaction dynamics is Scaffolding, 1 additional dimension is considered: Scaf-

folding reason, which encodes what scaffolding is used for. The Scaffolding reason dimension

has 2 possible values: Easing, which means to assess and to synchronize the levels of compe-

tence between the agents; and Teaching/learning, which means to transmit an interaction to a

new agent.

Figure 2 has a graphical representation of all the dimensions, their values and how they

relate to each other. To exemplify how this taxonomy is used and what its dimensions mean,

the same two examples of PFs presented in section 3.1 were selected to be classified by this

taxonomy, allowing the two taxonomies to be compared. The classifications of the other PFs

presented in Vollmer et al. (2016) are available in Appendix A.
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Figure 2 – Dimensions and values of the proposed taxonomy

Source: Own authorship (2022).
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4.1.3 Classification of Akgun et al. (2012)

The interaction purpose/goal is learning. The interaction development stage is estab-

lished, as both robot and tutor have high competence in the interaction. The interaction com-

petence balance is symmetrical, as robot and tutor have the same level of competence in the

interaction. The interaction dynamics is sidetracking, as the interaction is divided into two sepa-

rate but related PFs, one where a new demonstration is added and another where the previous

demonstration is reviewed.

The learning modalities are motor and technical, as the robot not only learns the motor

positions required to perform a movement, but also which goals and means can be achieved

by it. The abstraction levels are concrete and PSTQ, as it refers directly to motor experience

(the key positions of each movement), as well as physical notions and spatial concepts (the

positions are relative to each other). The knowledge type is symbol-referents, as the robot learns

how to physically realise a movement (the referent) it already has a symbol for. The knowledge

development stage is negotiating, as the tutor already has a notion of the desired movement, but

only reasons about how to physically realise it once they actually use the robot’s arm to perform

it. The knowledge competence balance is asymmetrical, as the robot does not know a priori

anything about the desired movements.

4.1.4 Classification of Grizou, Lopes e Oudeyer (2013), Grizou et al. (2014)

The interaction purpose/goal is learning. The interaction development stage is exchang-

ing, as the robot needs to learn the syntax of the feedback signals chosen by the tutor. The

interaction competence balance is asymmetrical, as the robot does not know a priori anything

about the syntax of the feedback signals. The interaction dynamics is scaffolding, as the robot

initially not knowing some aspects of the PF forces the interaction to be simpler, getting more

complex as the robot learns them.

The learning modality is technical, as the robot learns how (the techniques) to achieve

established goals. The abstraction level is PSTQ, as it refers to physical notions, quantities (how

many blocks are in the stack, how many blocks can be stacked, how far the goal is), operations

(add/remove a block to/from the stack, move in a direction) and spatial concepts (which block

is on top of which, which direction the goal is in). The knowledge type is symbol-referents, as

the robot learns how to physically realise a movement (the referent) to achieve a given goal

(the symbol). The knowledge development stage is exchanging, as the tutor has it well defined

and only transmits it to the robot through feedback. The knowledge competence balance is

asymmetrical, as the robot does not know a priori anything about the desired movements.

The scaffolding reason is teaching/learning, as the robot needs to learn the syntax of the

feedback signals.
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Figure 3 – Classification of the PF in Akgun et al. (2012)

Source: Own authorship (2022).
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Figure 4 – Classification of the PFs in Grizou, Lopes e Oudeyer (2013), Grizou et al. (2014)

Source: Own authorship (2022).
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4.2 Computational model of Pragmatic Frames

As PF is a theory from Psychology and this work approaches it from a Computing per-

spective, modeling the relevant aspects of such theory to a language understandable by Com-

puter researchers and professionals is essential. Only once a computational model is available

that a proper understanding of the problem for which this work proposes a solution is possible.

4.2.1 Pragmatic Frames as state machines

In this work, when modeling a PF as a state machine, some restrictions are imposed:

• The interaction must be between two agents;

• Each agent must perform a single role throughout the entire interaction;

• The agents must take turns to perform their actions;

Those restrictions greatly simplify the state machine, making the problem of learning

some of its components much more tractable. In such machine, each state transition represents

an action that, as long as its preconditions are met, can be performed by a specific agent in a

specific state of the interaction, producing effects and moving the interaction to another state.

Each state then represents a moment in the interaction where one of the agents decides which

action to take next.

4.2.2 Pragmatic Frames as planning frames

Turning the state machine previously described into a planning frame is quite straightfor-

ward. Each action represented by a state transition can be directly modeled as an action in the

planning frame, with its preconditions and effects expressed in terms of propositional variables

describing the environment. The state of the interaction can then be expressed in terms of those

same variables. Once a PF is modeled as a planning frame, learning the actions in such frame

can be done using action model learning methods.

4.3 Proposed Pragmatic Frame

This work presents two complementary PFs, each modeling a part of a two-part inter-

action. In such interaction, the robot learns names of objects present in the environment by

interacting with a human. In the first part, the robot wants to learn the name of an object that

both agents see. In the second part, it wants to know other objects that have the same names

it already learned. In this interaction, one agent plays the role of learner (robot) and the other,
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the role of teacher (human, or rather a simulation of one). They interact by text, with the syntax

described in Frame 1 and Frame 2. The interaction has in total 17 actions, whose algorithms are

presented in Appendix B.

Frame 1 – First part of the interaction
Action Current

Agent
Syntax Information

Slot
Depends
On

Description

Transmit Refer-
ent (TR)

Learner Integer oi1 It tries to establish a common ref-
erent by representing the index of
an object in the environment.

Request Refer-
ent Confirma-
tion 1 (RRC1)

Teacher Integer
+ “?”

oi oi1 It requests confirmation through
feedback (repeating the index and
appending a question mark).

Request Refer-
ent Confirma-
tion 2 (RRC2)

Learner oi2 oi, oi1 It confirms in case the referent
is successfully established, other-
wise returns to action TR.

Confirm Refer-
ent (CR)

Learner “True” It confirms the referent was suc-
cessfully established.

Transmit Word
(TW)

Teacher String w1 oi It represents a word that corre-
sponds to the referent.

Request Word
Confirmation 1
(RWC1)

Learner String
+ “?”

w w1 It requests confirmation through
feedback (repeating the word and
appending a question mark).

Request Word
Confirmation 2
(RWC2)

Teacher w2 w, w1 It confirms in case the word is
successfully repeated, otherwise
returns to action TW.

Confirm Word 1
(CW1)

Teacher “True” It confirms the word was success-
fully repeated.

Confirm Word 2
(CW2)

Learner oi1, w It adds the pair hoi1, wi to its
knowledge base.

Source: Own authorship (2022).

The first part of the interaction, with an example shown in Figure 7, starts with the refer-

ent loop, whose purpose is to establish a common referent between the two agents. This loop

execution is determined by whether or not the referent information was successfully transmitted.

If it was, the interaction continues. If not, the loop repeats. It works as such because the rest of

the interaction depends on that information, allowing or prohibiting it to continue. The loop ends

when the information transmission is confirmed.

The interaction continues with the word loop, whose purpose is to establish a common

word to name the referent. It can only proceed once the referent is already established, since the

teacher needs that information to choose a word. This loop execution is determined by whether

or not the word information was successfully transmitted. Once both the referent and the word

are established, the interaction can continue for the association of the two to be learned.

The second part of the interaction, with an example shown in Figure 8, starts with the

referent loop, whose purpose is the same as in the first part. The interaction continues with the

word loop, whose purpose is also the same as in the first part. The teacher needs to decide
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Frame 2 – Second part of the interaction
Action Current

Agent
Syntax Information

Slot
Depends
On

Description

Transmit Induced
Referent (TIR)

Learner Integer oi1 It tries to establish a common
referent by representing the in-
dex of an object in the environ-
ment.

Request Induced
Referent Confir-
mation 1 (RIRC1)

Teacher Integer
+ “?”

oi oi1 It requests confirmation
through feedback (repeat-
ing the index and appending a
question mark).

Request Induced
Referent Confir-
mation 2 (RIRC2)

Learner oi2 oi, oi1 It confirms in case the referent
is successfully established, oth-
erwise returns to action TIR.

Confirm Induced
Referent (CIR)

Learner “True” It confirms the referent was
successfully established.

Request Induc-
tion Confirmation
1 (RIC1)

Learner String
+ “?”

w It requests confirmation of the
hypothesis that the referent can
be referred to by some word
it already knows, by represent-
ing the word and appending a
question mark.

Request Induc-
tion Confirmation
2 (RIC2)

Teacher w2 w, oi It confirms in case the hypothe-
sis is true, otherwise it starts a
new interaction (first part) from
action TW.

Confirm Induction
1 (CI1)

Teacher “True” It confirms the hypothesis was
true.

Confirm Induction
2 (CI2)

Learner oi1, w It adds the pair hoi1, wi to its
knowledge base.

Source: Own authorship (2022).

whether the chosen word can be used to refer to the referent. This loop execution is determined

by whether or not the word matches the referent, and if that is not the case, the word loop of the

first interaction is used instead.

4.3.1 Classification by the taxonomy of Vollmer et al. (2016)

Respective to the interactional characteristics, this PF’s training is explicit, as the human

teacher (or a simulation) explicitly provides the robot learner with the words for each object; its

interaction is led by the robot, who starts, ends and makes most decisions in the interaction;

the learner has autonomy to explore, as the learner chooses autonomously which information to

learn next. Respective to the learning mechanisms, this PF’s learning modality is exploration with

initial tutor demonstration in the first part of the interaction, and tutor refinement in both parts.
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4.3.2 Classification by the proposed taxonomy

The interaction purpose/goal is learning. The interaction development stage is exchang-

ing, as the learner needs to learn the actions of the interaction. The interaction competence

balance is asymmetrical, as the learner does not know a priori most things about the actions of

the interaction. The interaction dynamics are scaffolding and sidetracking, as the learner initially

not knowing some aspects of the PF forces the interaction to be simpler, getting more complex

as the learner learns them, and as the interaction is divided into two separate but related parts,

one where new words for objects are learned and another where new objects for already known

words are learned.

The learning modality is linguistic, as the learner learns the association between words

and objects. The abstraction level is concrete, as the words refer directly to sensory experience

(the objects perceived in the environment). The knowledge types are referent-symbols in the

first part of the interaction and symbol-referents in the second part, as in the first part new

words (the symbols) for objects (the referents) are learned and in the second part new objects

(the referents) for already known words (the symbols) are learned. The knowledge development

stage is exchanging, as the teacher has it well defined and only transmits it to the learner through

initial demonstration and refinement. The Knowledge competence balance is asymmetrical, as

the learner does not know a priori anything about the words and their association to the objects.

The part of speech is noun, as all words used to refer to objects are simple nouns.

The scaffolding reason is teaching/learning, as the learner needs to learn the actions of the

interaction.
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Figure 5 – Classification of the proposed PF

Source: Own authorship (2022).
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4.4 Learning Pragmatic Frames with FAMA

Now that a way to model a PF as a planning frame and an approach to action model

learning were presented, a solution to the problem of learning a PF’s state transitions can be

proposed. By modeling the PF as a planning frame, each interaction round can be turned into a

plan trace, as observed by the learning agent. Since such agent does not know the action models

a priori, the plan trace can have PO or even NO action sequences/state trajectories, which FAMA

is ideal for. From the plan traces, FAMA can be leveraged to learn the action models, and thus

the PF’s state transitions.

Algorithm 1 and Algorithm 2 show the algorithms for the main loop of the robot and human

agents, respectively. These loops provide the base for a synchronous interaction between two

agents, with the synchronization represented by the notify(agent) and wait(agent) functions.

This synchronization is also used to inform the current action of the robot agent to the human

agent, so that it can adapt itself accordingly, compute the robot’s score or kill the robot when an

illegal action transition is attempted.

Algorithm 1 – Robot main loop, where the action synchronization is simplified and learning is
omitted.

Input: robot agent gr, human agent gh, starting action As, initial action Ai, interaction i, model M
1: a

0
r  As {Previous action of robot}

2: ar  Ai {Current action of robot}
3: loop
4: notify(gh) {Wait for human reaction}
5: wait(gh)

{Check for a message in the message queue}
6: if poll(gh) then
7: mh  recv(gh)
8: ap  possible_actions(mh, i) {Guess current action based on received message}
9: ar  guess_next_action(M, a

0
r, i, ap)

10: notify(gh) {Wait for human reaction}
11: wait(gh)
12: else if agent(ar) = gr then
13: run(ar)
14: end if
15: a

0
r  ar

16: ar  guess_next_action(M, ar, i,?)
17: end loop

Source: Own authorship (2022).

possible_actions returns the subset of the human agent’s actions that match the corre-

sponding message’s syntactic structure. Its algorithm is shown in Algorithm 20.

Two different algorithms are used to implement the guess_next_action function, Algo-

rithm 21 and Algorithm 22. The first one is a greedy one, that determines, based solely on the

model learned so far and the current action, the best action to execute next. The second one is a

Limited-Depth Depth-First-Search (LD-DFS) one, that besides leveraging the learned model and
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Algorithm 2 – Human main loop, where the action synchronization is simplified and the check for
the interaction’s action transition limit is omitted.

Input: robot agent gr, human agent gh, starting action As, robot action ar, interaction i

1: a
0
h  As {Previous action of human}

2: ah  As {Current action of human}
3: loop
4: wait(gr)
5: a

0
h  ah

6: if agent(next_action(ah, i)) = gh then
7: ah  next_action(ah, i)
8: run(ah)
9: notify(gr) {Wait for robot reaction}

10: wait(gr)
11: if can_be_next(a0h, i, ar) then
12: ah  ar

13: else
14: kill_robot()
15: end if
16: else
17: if can_be_next(ah, i, ar) then
18: ah  ar

19: if agent(ah) = gh then
20: run(ah)
21: notify(gr) {Wait for robot reaction}
22: wait(gr)
23: if can_be_next(a0h, i, ar) then
24: ah  ar

25: else
26: kill_robot()
27: end if
28: end if
29: else
30: kill_robot()
31: end if
32: end if
33: notify(gr) {Wait for robot reaction}
34: end loop

Source: Own authorship (2022).

the current action, also explores the possible future trajectories and chooses the next action that

leads to the best overall trajectory. Both algorithms are non-deterministic, allowing for exploration

of the search space.

next_action returns the next typical action, as shown in Frame 1 and Frame 2 (when not

explicitly said, the next action is the one in the next row).

After each interaction step, the robot uses the information it has available (exchanged

messages and local variables) to encode the performed action and the resulting state using the

Planning Domain Definition Language (PDDL), adding them to the plan trace being built. When

the interaction round ends, the robot adds its plan trace to T and updates M using FAMA.
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4.5 Moving forward

Given the proposed solution to the problem of learning PFs, a way to classify them from

the PF learning perspective, how to model them as a Computing problem, along with a PF to be

used in the experiments, it is important to understand how those solutions and representations

were developed.
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5 MATERIALS AND METHODS

This chapter describes how the development of this work took place. It covers the mo-

tivations for choosing the example PF presented in section 4.3, the process of creating a com-

putational and a taxonomic representation for PFs, how and why the part to be learned in a

PF was chosen for this work, the literature review process employed to propose a solution, the

implementation of the solution and the design choices for the experiments.

5.1 Designing an example Pragmatic Frame

Language is one of the most important elements of a people’s culture, as it reflects and

shapes their way of seeing the world. It also determines their structures of social interaction, as

it greatly contributes to the construction of a sense of identity. When an individual comes into

contact with a culture different from their own, language is the first barrier of interaction, but also

the most important, since once overcome, it will immensely catalyze cultural exchange. Seeking

to understand the role of language in this exchange process, the interaction scenario chosen

for this work portraits the specific form of interaction that takes place during the learning of a

language when a linguistic-cultural context is not available.

This interaction is fundamentally different from the one that occurs in traditional language

learning, where learning resources and teachers are available, in addition to a broad cultural

repertoire to learn from. While in the later the interlocutor interacts with people with greater

knowledge of the language in question, who will make use of the most varied linguistic resources

to facilitate his/her learning and understanding, in the former the people with whom the interlocu-

tor will interact know as little about his/her language as he/she does about theirs.

The taxonomy proposed in this work can be used to describe several types of social

interaction, but the ones where linguistic learning takes place are described in more detail.

5.2 Developing an initial model for Pragmatic Frames

Until a solution involving planning was developed, a model of PFs as state machines

was developed to enable the initial reasoning about the proposed example PF in a Computing

context. The state machine approach was chosen for its simplicity and expressive power, being

able to represent the complexity that PFs can present in a manner easy to read. It also fits well

with the stateful, turn-taking nature of most human interactions.
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5.3 Finding and developing taxonomies for Pragmatic Frames

In the literature review of PFs, the works of Rohlfing et al. (2016), Vollmer et al. (2016)

and others from the same research group were found as making up the foundations of the

modern study of PFs, building on the initial work of Bruner (1983) but expanding it to Computing

and Robotics. They are essential to the understanding of PFs, especially the taxonomy for PFs

presented in Vollmer et al. (2016), but it became clear that to dive deeper into how a PF could

be learned, another taxonomy had to be created with that in mind.

5.4 Choosing which part of a Pragmatic Frame to learn

Since the focus of this work is in how a PF can be learned, there are a few of its different

parts that could be learned individually, each with its own peculiarity:

• The agents’ roles;

• The syntax:

– The messages exchanged;

– The states;

– The state transitions/actions;

– The action transitions.

• The meaning:

– The goal;

– The execution of the actions;

– The information slots.

Due to the complexity and time constraints of this work, only the state transitions were

chosen to be learned, with all the other parts given a priori. The syntax of the state transitions

are very often sparse and ambiguous, which already makes their learning hard enough.

5.5 Proposing a solution

To propose a solution to learning PFs, a literature review was conducted to find pro-

gresses already made on this subject. Since the study of PFs has only regained interest over

the last decade, no work could be found specifically about learning PFs, and the review had

to be expanded to other related topics, such as language acquisition, human-robot interaction,

pragmatics, social learning and action learning. Reading the work of Aineto, Jiménez Celorrio e
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Onaindia (2019) showed that an approach involving planning could be viable, as long as learn-

ing a PF could be modeled as a planning problem. Given the initial modeling of PFs as state

machines, modeling them as planning frames proved to be considerably simpler.

5.6 Implementing the solution

The implementation is organized in two large packages (as shown in Figure 6),

agent_core – responsible for implementing everything related to the agents, such as the

agents’ main interaction loops, the action executions and syntactic parsing of messages –, and

learning_core – responsible for implementing everything related to the robot’s learning of the

interaction, such as the translation of the interaction to the equivalent actions and states in the

PDDL model, building the plan trace from actions and states, learning the model from the obser-

vations and choosing the next action in the interaction from the learned model.

In the agent_core package, the Agent module centralizes all the common code of the

two agents, such as their communication, synchronization and the simulation parameters. The

RobotAgent module implements the robot agent, its main loop, action executions and the con-

nection to the Learner module. The HumanAgent module implements the human agent, its

main loop, action executions, computing of the robot’s score and logging of the simulation re-

sults.

In the learning_core package, the ObservationBuilder module implements the build-

ing of the plan trace from individual actions and states, interfacing with FAMA’s package,

meta_planning. The Learner module implements the creation of the PDDL actions and

states from the interaction’s actions and variables, respectively, builds the plan trace using

ObservationBuilder, learns the PDDL model using meta_planning’s LearningTask and

chooses the next action using the appropriate algorithm and parameters.

The implementation of the proposed solution, as well as the example PF and everything

needed to perform the experiments are available at <https://github.com/natanjunges/TCC>.

5.7 Moving forward

Once the development process of this work is understood, the only things left to under-

stand are how the experiments work, their hypotheses, objectives, theses, expected results, the

results obtained and what they mean to this work.

https://github.com/natanjunges/TCC
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Figure 6 – The functional map of the experimental artifact, where packages are represented as
rectangles, modules as ellipses, interfaces between modules and other modules or
packages as double-arrowed lines, and features are listed for each relevant module
or interface.

Source: Own authorship (2022).
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6 EXPERIMENTS AND RESULTS

To evaluate how well the proposed solution works and what effects different algorithms

and parameter values have in its performance, some experiments are proposed using the exam-

ple PF provided in section 4.3. Different metrics are used to evaluate the solution’s performance,

each accounting for a specific aspect considered relevant to this work.

6.1 Experimental setup

This work proposes two experiments, each with a part of the interaction. The general

goals of the experiments are to analyze the completeness (space exploration) of the proposed

solution, its ability to generalize and solve ambiguities. The experiments are divided into rounds.

If the learner chooses an illegal action transition, there are too many action transitions (there

might be an infinite loop) or if the interaction reaches its end (actions CW2 or CI2, depending

on which part of the interaction), the round ends. Then the teacher computes a score to rate the

learner’s performance in that round.

The metrics used to assess the performance of the learner agent are as follows:

• Action transition coverage (T1, T2): The number of unique legal action transitions cov-

ered by the agent divided by the total number of possible unique action transitions. This

measures the exploration the learning agent will perform to learn the PF.

• Average performance score (S1̄, S2̄): The average of the performance score of all exe-

cuted rounds, described by Equation 1 and Equation 7. This measures how successful

the agent is at performing the interaction after learning the PF.

• Syntactic evaluation score (F1,1, F1,2): A syntactic comparison between the learned

model and the reference model, described in Aineto, Jiménez Celorrio e Onaindia

(2019).

The algorithms for actions RIRC1, RRC1 and RWC1 of the proposed PF have a param-

eter p that controls the probability of the received messages to mutate, simulating a communica-

tion noise. This parameter is fixed at p = 10% for all the experiments.

The two algorithms for guess_next_action have two parameters that can be used to

fine-tune their distributions:

• Exploration factor (x): Controls how frequently an action that can be applied (according

to the learned model) is chosen instead of one that cannot. The proportion is x : 1.

• Goal-drivenness factor (g): Controls how frequently a goal action is chosen instead of

a non-goal one. The proportion is g : 1.
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In the experiments, both algorithms are compared performance-wise with different values

for the parameters x and g. For the greedy one, five values are used for x (x 2 {2, 4, 8, 16, 32}),

and only one value is used for g (g = 1). For the LD-DFS one, four values are used for x

(x 2 {2, 5, 10, 20}) with g fixed (g = 2), and five values are used for g (g 2 {2, 5, 10, 20, 50})

with x fixed (x = 2).

For each combination of part of experiment, action-choosing algorithm and value of pa-

rameters, 21 robots are simulated: 7 learn for 1000 rounds before being evaluated, 7 are evalu-

ated without learning anything (the null model), and 7 are evaluated using the reference model.

They are all evaluated for 1000 rounds.

6.1.1 Hypotheses

The interactions are turn-taking, with only one agent executing an action each turn, but

they do not necessarily alternate each turn. In each interaction there are only two agents: a

robot/learner and a human/teacher, each with a well defined role. The robot leads the interaction,

choosing after each turn which should be the next action. The human plays along the robot’s

choices, but it can disapprove them if they are illegal, by either ignoring them and choosing the

next action by itself or aborting the interaction entirely.

• The human agent is an oracle. It knows:

– The name and parameters of the actions used in the interactions;

– The initial actions;

– The goal actions;

– Which actions are its own and which are the robot’s;

– How to execute its own actions;

– How to parse the syntactic type of the received messages;

– How the exchanged information is extracted and which variables it is stored in;

– Which robot action actually sent a received message;

– Whether or not the robot agent executed a hidden action;

– The variables needed to store the information exchanged in the interactions;

– The type of the variables;

– The value of all the variables;

– Which variables and message types are relevant to each action;

– How the variables and message types are logically connected to each action;

– When to approve or disapprove the robot’s decision of action transition; and
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– Which actions can or cannot be executed in a certain moment of the interac-

tions.

• The robot agent knows a priori :

– The name and parameters of the actions used in the interactions;

– The initial actions;

– The goal actions;

– Which actions are its own and which are the human’s;

– How to execute its own actions;

– How to parse the syntactic type of the received messages;

– How the exchanged information is extracted and which variables it is stored in;

– Which human actions can send a message of the same syntactic type as a

received one;

– The variables needed to store the information exchanged in the interactions;

– The type of the variables;

– The value of some of the variables;

– Which variables and message types are relevant to each action; and

– How to detect whether or not the human agent approves its decision of action

transition.

• The robot agent does not know a priori :

– How to execute the human’s actions;

– Which human action actually sent a received message;

– Whether or not the human agent executed a hidden action;

– The actual value of all the variables;

– How the variables and message types are logically connected to each action;

and

– Which actions can or cannot be executed in a certain moment of the interac-

tions.

6.1.2 Objectives

The robot agent is expected to learn:
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• Whether or not the human agent executed a hidden action;

• How the variables and message types are logically connected to each action; and

• Which actions can or cannot be executed in a certain moment of the interactions.

6.1.3 Thesis and expected results

In the first experiment, the robot is expected to cover all legal action transitions (T1 = 1.0)

in the learning phase. The robot is expected to present a better average performance score than

the null model (S1̄ > S0̄) in the evaluation phase. The robot’s learned model is expected to have

a good syntactic evaluation score (F1,1 > 0.5) when compared to the null and reference models

(F1,0 = 0.0, F1,ref = 1.0). In the second experiment, the robot is also expected to cover all

legal action transitions (T2 = 1.0), and perform better, both in average performance score and

learned model syntactic evaluation score, than in the first experiment (S2̄ > S1̄, F1,2 > F1,1).

6.1.4 First experiment

In this experiment, the learner performs only the first part of the interaction each round.

For this part of the interaction, the limit of action transitions is 28 (twice as much as the First

Simple Detour (FSD) interaction execution, to account for longer and more complex interactions).

It starts with no knowledge, neither about the names of the objects around it, nor about the legal

action transitions in the interaction. Over the rounds, the learner is expected to explore all action

transitions, figuring out which ones are legal and which are illegal, choosing the legal ones over

the illegal ones. The learner is expected to use the information acquisition to guide its learning

of the correct ordering of the parts of the interaction.

The experiment aims at analyzing the completeness of the solution, by measuring the

learner’s exploration space coverage and average performance with different action-choosing

algorithms. The learner’s performance in a given round is measured by the score the teacher

gives it at its end. This score is computed by verifying whether the interaction meets the following

criteria:

• Equation 2: The final action (f , with each action represented as an integer, starting

from 2 and increasing 1 each action, in the order shown in Frame 1) should be the last

action of the interaction (in this case, CW2, f = 10);

• Equation 3: The last action transition (l) should be legal;

• Equation 4: The number of action transitions (n) should not exceed the limit imposed to

the interaction (in this case, n  28);
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• Equation 5: The agent should perform all legal action transitions in the interaction (in

this case, t = 22).

Each criterion not met implies a penalty over the score. The formula to compute the score

is Equation 1:

S1(f, l, n, t) = a1(f)b1(l)c1(n)d1(t) (1)

a1(f) = 0.02f + 0.8 (2)

b1(l) =

8
><

>:

1, if l 2 L1

0.84, otherwise
(3)

c1(n) =

8
><

>:

1, if n  28

0.84, otherwise
(4)

d1(t) = 0.0072t+ 0.84 (5)

Where L is the set of legal action transitions. Notice the linear behavior of a1(f). It

reflects the linear and progressive disposition of the actions. As the resultant score is computed

as the product of the partial scores for each criteria, it could be zero if at least one of its partials

were zero. To prevent that, the partials were chosen so that the minimum resultant score is

approximately 0.5.

The FSD interaction execution is one where all actions in the first part of the interaction

are executed at least once, following the standard sequence of actions but taking all the detours

once:

FSD = hTR,RRC1, RRC2, TR,RRC1, RRC2, CR,

TW,RWC1, RWC2, TW,RWC1, RWC2, CW1, CW2i
(6)

This execution is illustrated in Figure 7. It is relevant because it contains all the actions

and main action transitions, without having any infinite loops. It is reasonable to consider it an

upper limit to how long a typical interaction execution could be, with longer executions being up

to twice as long.
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Figure 7 – The FSD execution, where the referent and word loops are each repeated once.

Source: Own authorship (2022).

6.1.5 Second experiment

In this experiment, the learner can also perform the second part of the interaction, com-

bining both parts as desired. For the second part of the interaction, the limit of action transitions

is 20 (twice as much as the Second Simple Detour (SSD) execution). It already starts with knowl-

edge from the first experiment, both about the names of the objects around it and about the legal

action transitions in the first part of the interaction. Over the rounds, the learner is expected

to perform better than in the first experiment, learning faster by reusing the knowledge already

acquired in the first experiment.

The experiment aims at analyzing the ability of the solution to generalize and solve ambi-

guities, by measuring the learner’s exploration space coverage and average performance (com-

puted in a way similar to the first experiment) and comparing them to the first experiment. The

learner’s performance score is computed by verifying whether the interaction meets the following

criteria:

• Equation 8: The final action (f , with each action represented as an integer, starting from

2 and increasing 1 each action, or 2 from CIR to RIC1, in the order shown in Frame 2;

when actions from the first interaction are used, their values are the same of the ones

used in that interaction) should be the last action of the interaction (in this case, CW2

or CI2, f = 10);
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• Equation 9: The last action transition (l) should be legal;

• Equation 10: The number of action transitions (n) should not exceed the limit imposed

to the interaction (in this case, n  20);

• Equation 11: The agent should perform all legal action transitions in the interaction (in

this case, t = 70).

The formula to compute the score is Equation 7:

S2(f, l, n, t) = a2(f)b2(l)c2(n)d2(t) (7)

a2(f) = 0.02f + 0.8 (8)

b2(l) =

8
><

>:

1, if l 2 L2

0.84, otherwise
(9)

c2(n) =

8
><

>:

1, if n  20

0.84, otherwise
(10)

d2(t) = 0.0022t+ 0.84 (11)

The SSD interaction execution is the equivalent of FSD for the second part of the execu-

tion. This execution is illustrated in Figure 8.

SSD = hTIR,RIRC1, RIRC2, T IR,RIRC1, RIRC2, CIR,

RIC1, RIC2, CI1, CI2i
(12)
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Figure 8 – The SSD execution, where the referent loop is repeated once.

Source: Own authorship (2022).

6.2 Analysis of results

All raw results of the experiments are available at <https://github.com/natanjunges/

TCC-data>, but a summary of them is also available in this document as a collection of graphs

for easier visualization. In this section, 5 of the graphs considered more relevant are analysed,

and the other ones are in Appendix D.

As can be seen in Graph 1, the action transition exploration seems to decrease as the

exploration factor (x) increases, especially when the greedy algorithm is used. This result is

counter-intuitive at first, but it might be an evidence of early abortion by the human agent. As the

exploration factor increases, so does the chance of the robot choosing an illegal action transition,

and thus being aborted by the human. If the abortion happens too early, the robot might not have

the chance to explore valid action transitions.

When comparing the action transition exploration between the two experiments, it is sig-

nificantly lower in the second experiment than in the first. The increased number of possible

actions and action transitions in the second experiment could be making early abortions much

more frequent.

Relative to the initial thesis, the robot was not capable of covering all the action transitions

in either experiment. Even though, the results were good, with the average action transition

exploration higher than 0.5 most of the time.

https://github.com/natanjunges/TCC-data
https://github.com/natanjunges/TCC-data
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Graph 1 – Action transition exploration for greedy action-choosing.

Source: Own authorship (2022).

As can be seen in Graph 2, the performance score of the reference model seems to

drastically decrease as the exploration factor (x) increases when using LD-DFS in the first ex-

periment, while the performance scores of the null model and the learned model don’t seem to

be affected by it.

As can be seen in Graph 3, the performance score of the learned model seems to in-

crease when using LD-DFS in the second experiment, especially as the goal-drivenness factor

(g) increases.

As can be seen in Graph 4, the overall performance score of the learned model seems

to increase slowly but steadily as the goal-drivenness factor (g) increases when using LD-DFS

in both experiments.

When comparing the performance score of the learned model between the two experi-

ments, it is in general higher in the second experiment than in the first. This might be due to the

knowledge acquired in the first experiment being reused in the second.

Relative to the initial thesis, the learned model presented a better, or at least similar,

average performance than the null model in the first experiment, although the difference was not

great. The performance in the second experiment was mostly higher than in the first.
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Graph 2 – Performance score for LD-DFS action-choosing over x, first experiment.

Source: Own authorship (2022).

Graph 3 – Performance score for LD-DFS action-choosing over g, second experiment.

Source: Own authorship (2022).

As can be seen in Graph 5, the syntactic evaluation score seems to increase when LD-

DFS is used, especially as the exploration factor (x) increases.
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Graph 4 – Performance score of learned model with LD-DFS action-choosing over g.

Source: Own authorship (2022).

When comparing the syntactic evaluation score between the two experiments, it is con-

siderably lower in the second experiment. This can be an evidence of the actions learned in the

first experiment being preferred over the ones introduced in the second experiment, prevent-

ing the novel actions from being learned. But this could also mean that the increased number of

possible actions and action transitions in the second experiment make the learning more difficult.

Relative to the initial thesis, the robot’s learned model did not have an average syntac-

tic evaluation score higher than 0.5 in the first experiment and in the second experiment the

syntactic evaluation score was even lower.
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Graph 5 – Syntactic evaluation score for LD-DFS action-choosing over x.

Source: Own authorship (2022).
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7 FINAL CONSIDERATIONS

The results obtained in the experiments show that, although there are many opportuni-

ties for improvement, this work successfully reached its main goal of providing computational

representations of PFs. The goal of showing how a specific part of a PF can be learned was also

reached, again with opportunities for improvement.

Combining the definition of PFs and the taxonomy provided by Vollmer et al. (2016) with

the computational representation and the taxonomy provided by this work helped getting closer

to understanding the central elements of a PF and how they could be learned. The taxonomies

used in this work also helped getting closer to understanding the relevant dimensions for classi-

fying PFs and how they are learned.

Evaluating the performance of the proposed solution was mostly done successfully, al-

though the performance score doesn’t seem to measure very accurately how successful was

an interaction execution, and the syntactic evaluation score could be replaced by the semantic

evaluation score, also proposed by Aineto, Jiménez Celorrio e Onaindia (2019), which evaluates

better how well a model was learned when there are syntactic ambiguities.

Since the action-choosing algorithm determines how the agent explores the space of

valid action transitions, it is essential to guide the learning of the PF in a scenario where the

agent doesn’t get any explicit feedback. In that regard, the results obtained in the experiments

show that both action-choosing algorithms are not very good, since most interactions are aborted

too early, preventing any significant learning.

Since the action-choosing algorithm also determines how the agent follows the learned

model, the results obtained in the experiments also show that both action-choosing algorithms

are not very good, since even the reference model didn’t perform well in the interactions.

7.1 Future work

In future works, other psychological theories, such as WAT, could be combined with PFs,

expanding the possibilities of abstraction, generalization, transfer learning and overall complexity

of the PFs analysed.

The understanding of the central elements of a PF and how they could be learned could

be furthered. Different parts of a PF could also be considered for learning, exploring the power

and limitations of the proposed solution to learn them and exploring new solutions.

An expansion to the proposed taxonomy could also be beneficial to future works, being

able to classify a wider number of PFs in a larger number of dimensions. A taxonomy compre-

hensive enough could also be employed to build novel PFs on demand, and potentially learn a

PF with zero knowledge a priori about it.

Better options for action-choosing algorithms, especially the ones already used for plan-

ning could be explored and developed. Intrinsic motivations could be integrated into the action-
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choosing algorithms, allowing for an automatic, life-long learning curriculum building and thus

learning in an optimal pace.

A better performance score, and the semantic evaluation score for evaluating the learned

model could be used, and other experimental metrics could be included for a more detailed

analysis of the solution.



59

BIBLIOGRAPHY

AINETO, D.; JIMÉNEZ, S.; ONAINDIA, E. Learning STRIPS action models with classical
planning. CoRR, abs/1903.01153, 2019. Disponível em: http://arxiv.org/abs/1903.01153.

AINETO, D.; Jiménez Celorrio, S.; ONAINDIA, E. Learning action models with minimal
observability. Artificial Intelligence, v. 275, p. 104–137, 2019. ISSN 0004-3702. Disponível
em: https://www.sciencedirect.com/science/article/pii/S0004370218304259.

AKGUN, B. et al. Keyframe-based learning from demonstration. International Journal
of Social Robotics, v. 4, n. 4, p. 343–355, Nov 2012. ISSN 1875-4805. Disponível em:
https://link.springer.com/article/10.1007/s12369-012-0160-0.

BORGHI, A. M. et al. Words as social tools: Language, sociality and inner grounding in abstract
concepts. Physics of Life Reviews, v. 29, p. 120–153, 2019. ISSN 1571-0645. Disponível em:
https://www.sciencedirect.com/science/article/pii/S1571064518301271.

BRUNER, J. Child’s talk: Learning to use language. London: Oxford University Press, 1983.
Disponível em: https://archive.org/details/childstalklearni0000brun.

CAKMAK, M.; THOMAZ, A. L. Designing robot learners that ask good questions. In:
Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot
Interaction. New York, NY, USA: Association for Computing Machinery, 2012. (HRI ’12), p.
17–24. ISBN 9781450310635. Disponível em: https://dl.acm.org/doi/10.1145/2157689.2157693.

CALINON, S.; BILLARD, A. Teaching a humanoid robot to recognize and reproduce
social cues. In: ROMAN 2006 - The 15th IEEE International Symposium on Robot
and Human Interactive Communication. IEEE, 2006. p. 346–351. Disponível em:
https://ieeexplore.ieee.org/document/4107832/.

CALINON, S. et al. Learning and reproduction of gestures by imitation. IEEE Robotics &
Automation Magazine, v. 17, n. 2, p. 44–54, 2010. Disponível em: https://ieeexplore.ieee.org/
document/5480475.

CASTELFRANCHI, C. Intentions in the light of goals. Topoi, v. 33, n. 1, p. 103–116, 2014. ISSN
1572-8749. Disponível em: https://link.springer.com/article/10.1007/s11245-013-9218-3.

CUAYÁHUITL, H. Robot learning from verbal interaction: A brief survey. In: AISB Convention
2015. Canterbury: Society for the Study of Artificial Intelligence and the Simulation of Behaviour,
2015. Disponível em: https://www.cs.kent.ac.uk/events/2015/AISB2015/proceedings/hri/
14-Cuayahuitl-robotlearningfrom.pdf.

GIENGER, M.; MüHLIG, M.; STEIL, J. J. Imitating object movement skills with robots — a
task-level approach exploiting generalization and invariance. In: 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2010. p. 1262–1269. Disponível em:
https://ieeexplore.ieee.org/document/5649990/.

GRIZOU, J. et al. Interactive learning from unlabeled instructions. In: Proceedings of the
Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI). AUAI Press, 2014.
Disponível em: http://infoscience.epfl.ch/record/205138.

GRIZOU, J.; LOPES, M.; OUDEYER, P.-Y. Robot learning simultaneously a task and how
to interpret human instructions. In: 2013 IEEE Third Joint International Conference on

http://arxiv.org/abs/1903.01153
https://www.sciencedirect.com/science/article/pii/S0004370218304259
https://link.springer.com/article/10.1007/s12369-012-0160-0
https://www.sciencedirect.com/science/article/pii/S1571064518301271
https://archive.org/details/childstalklearni0000brun
https://dl.acm.org/doi/10.1145/2157689.2157693
https://ieeexplore.ieee.org/document/4107832/
https://ieeexplore.ieee.org/document/5480475
https://ieeexplore.ieee.org/document/5480475
https://link.springer.com/article/10.1007/s11245-013-9218-3
https://www.cs.kent.ac.uk/events/2015/AISB2015/proceedings/hri/14-Cuayahuitl-robotlearningfrom.pdf
https://www.cs.kent.ac.uk/events/2015/AISB2015/proceedings/hri/14-Cuayahuitl-robotlearningfrom.pdf
https://ieeexplore.ieee.org/document/5649990/
http://infoscience.epfl.ch/record/205138


60

Development and Learning and Epigenetic Robotics (ICDL). IEEE, 2013. p. 1–8. Disponível
em: https://ieeexplore.ieee.org/document/6652523.

GROLLMAN, D. H.; BILLARD, A. Donut as i do: Learning from failed demonstrations. In: 2011
IEEE International Conference on Robotics and Automation. IEEE, 2011. p. 3804–3809.
Disponível em: https://ieeexplore.ieee.org/document/5979757/.

HASLUM, P. Admissible Heuristics for Automated Planning. 2006. 164 p. Tese (Doutorado)
— Linköping University, KPLAB - Knowledge Processing Lab, The Institute of Technology, 2006.

KAPLAN, F. et al. Robotic clicker training. Robotics and Autonomous Systems, v. 38,
n. 3, p. 197–206, 2002. ISSN 0921-8890. Advances in Robot Skill Learning. Disponível em:
https://www.sciencedirect.com/science/article/pii/S0921889002001689.

LALLEE, S. et al. Human-robot cooperation based on interaction learning. In: .
From Motor Learning to Interaction Learning in Robots. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010. p. 491–536. ISBN 978-3-642-05181-4. Disponível em: https:
//link.springer.com/chapter/10.1007/978-3-642-05181-4_21.

LOPES, M.; MELO, F. S.; MONTESANO, L. Affordance-based imitation learning in robots. In:
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2007.
p. 1015–1021. Disponível em: https://ieeexplore.ieee.org/document/4399517/.

MÜHLIG, M.; GIENGER, M.; STEIL, J. J. Interactive imitation learning of object movement
skills. Autonomous Robots, v. 32, n. 2, p. 97–114, Feb 2012. ISSN 1573-7527. Disponível em:
https://link.springer.com/article/10.1007/s10514-011-9261-0.

NICOLESCU, M.; MATARIC, M. J. Task learning through imitation and human-robot interaction.
Models and mechanisms of imitation and social learning in robots, humans and
animals: behavioural, social and communicative dimensions, Citeseer, p. 407–424,
2005. Disponível em: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
8ad46327b735ddc3576ad962509733d57eac601e.

OGDEN, C.; RICHARDS, I. The Meaning of Meaning. San Diego: Harcourt Brace Jovanovich,
1989.

ROHLFING, K. J. et al. An alternative to mapping a word onto a concept in language acquisition:
Pragmatic frames. Frontiers in Psychology, v. 7, 2016. ISSN 1664-1078. Disponível em:
https://www.frontiersin.org/article/10.3389/fpsyg.2016.00470.

RUSSELL, S.; NORVIG, P. Artificial intelligence: A Modern Approach. 4. ed. Hoboken:
Pearson, 2020.

SAUNDERS, J.; NEHANIV, C. L.; DAUTENHAHN, K. Teaching robots by moulding behavior
and scaffolding the environment. In: Proceedings of the 1st ACM SIGCHI/SIGART
Conference on Human-Robot Interaction. New York, NY, USA: Association for
Computing Machinery, 2006. (HRI ’06), p. 118–125. ISBN 1595932941. Disponível em:
https://dl.acm.org/doi/10.1145/1121241.1121263.

STEELS, L.; KAPLAN, F. Aibo’s first words: The social learning of language and meaning.
Evolution of Communication, John Benjamins, v. 4, n. 1, p. 3–32, 2000. ISSN 1387-5337.
Disponível em: https://www.jbe-platform.com/content/journals/10.1075/eoc.4.1.03ste.

THOMAZ, A. L.; BREAZEAL, C. Reinforcement learning with human teachers: Evidence of
feedback and guidance with implications for learning performance. In: Proceedings of the 21st

https://ieeexplore.ieee.org/document/6652523
https://ieeexplore.ieee.org/document/5979757/
https://www.sciencedirect.com/science/article/pii/S0921889002001689
https://link.springer.com/chapter/10.1007/978-3-642-05181-4_21
https://link.springer.com/chapter/10.1007/978-3-642-05181-4_21
https://ieeexplore.ieee.org/document/4399517/
https://link.springer.com/article/10.1007/s10514-011-9261-0
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8ad46327b735ddc3576ad962509733d57eac601e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8ad46327b735ddc3576ad962509733d57eac601e
https://www.frontiersin.org/article/10.3389/fpsyg.2016.00470
https://dl.acm.org/doi/10.1145/1121241.1121263
https://www.jbe-platform.com/content/journals/10.1075/eoc.4.1.03ste


61

National Conference on Artificial Intelligence. Boston: AAAI Press, 2006. p. 1000–1005.
ISBN 9781577352815. Disponível em: https://www.aaai.org/Papers/AAAI/2006/AAAI06-157.pdf.

THOMAZ, A. L.; CAKMAK, M. Learning about objects with human teachers. In: Proceedings
of the 4th ACM/IEEE International Conference on Human Robot Interaction. New York, NY,
USA: Association for Computing Machinery, 2009. (HRI ’09), p. 15–22. ISBN 9781605584041.
Disponível em: https://dl.acm.org/doi/10.1145/1514095.1514101.

TURNITSA, C.; TOLK, A. Knowledge representation and the dimensions of a multi-model
relationship. In: . [s.n.], 2008. p. 1148–1156. Disponível em: https://www.researchgate.net/
publication/221525084_Knowledge_representation_and_the_dimensions_of_a_multi-model_
relationship.

VILLANI, C. et al. Varieties of abstract concepts and their multiple dimensions. Lan-
guage and Cognition, Cambridge University Press, v. 11, n. 3, p. 403–430, 2019.
Disponível em: https://www.cambridge.org/core/journals/language-and-cognition/
article/abs/varieties-of-abstract-concepts-and-their-multiple-dimensions/
85D1BB9A35E0C3A041C73DFE35D3E0FF.

VOLLMER, A.-L. et al. Pragmatic frames for teaching and learning in human–robot interaction:
Review and challenges. Frontiers in Neurorobotics, v. 10, 2016. ISSN 1662-5218. Disponível
em: https://www.frontiersin.org/article/10.3389/fnbot.2016.00010.

YAMASHITA, Y.; TANI, J. Emergence of functional hierarchy in a multiple timescale neural
network model: A humanoid robot experiment. PLOS Computational Biology, Public Library
of Science, v. 4, n. 11, p. 1–18, 11 2008. Disponível em: https://journals.plos.org/ploscompbiol/
article?id=10.1371/journal.pcbi.1000220.

https://www.aaai.org/Papers/AAAI/2006/AAAI06-157.pdf
https://dl.acm.org/doi/10.1145/1514095.1514101
https://www.researchgate.net/publication/221525084_Knowledge_representation_and_the_dimensions_of_a_multi-model_relationship
https://www.researchgate.net/publication/221525084_Knowledge_representation_and_the_dimensions_of_a_multi-model_relationship
https://www.researchgate.net/publication/221525084_Knowledge_representation_and_the_dimensions_of_a_multi-model_relationship
https://www.cambridge.org/core/journals/language-and-cognition/article/abs/varieties-of-abstract-concepts-and-their-multiple-dimensions/85D1BB9A35E0C3A041C73DFE35D3E0FF
https://www.cambridge.org/core/journals/language-and-cognition/article/abs/varieties-of-abstract-concepts-and-their-multiple-dimensions/85D1BB9A35E0C3A041C73DFE35D3E0FF
https://www.cambridge.org/core/journals/language-and-cognition/article/abs/varieties-of-abstract-concepts-and-their-multiple-dimensions/85D1BB9A35E0C3A041C73DFE35D3E0FF
https://www.frontiersin.org/article/10.3389/fnbot.2016.00010
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000220
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000220


62

APPENDIX A – Classification of Pragmatic Frames from Vollmer et al.

(2016)
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Figure 9 – Classification of the PF in Lallee et al. (2010)

Source: Own authorship (2022).
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Figure 10 – Classification of the PF in Saunders, Nehaniv e Dautenhahn (2006)

Source: Own authorship (2022).
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Figure 11 – Classification of the PF in Nicolescu e Mataric (2005)

Source: Own authorship (2022).
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Figure 12 – Classification of the PF in Thomaz e Cakmak (2009)

Source: Own authorship (2022).



67

Figure 13 – Classification of the PF in Yamashita e Tani (2008)

Source: Own authorship (2022).
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Figure 14 – Classification of the PF in Calinon et al. (2010)

Source: Own authorship (2022).
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Figure 15 – Classification of the PFs in Mühlig, Gienger e Steil (2012) and Gienger, Mühlig e Steil
(2010)

Source: Own authorship (2022).



70

Figure 16 – Classification of the PF in Grollman e Billard (2011)

Source: Own authorship (2022).
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Figure 17 – Classification of the PF in Lopes, Melo e Montesano (2007)

Source: Own authorship (2022).
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Figure 18 – Classification of the PF in Kaplan et al. (2002)

Source: Own authorship (2022).
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Figure 19 – Classification of the PF in Steels e Kaplan (2000)

Source: Own authorship (2022).
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Figure 20 – Classification of the PF in Calinon e Billard (2006)

Source: Own authorship (2022).
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Figure 21 – Classification of the PF in Cakmak e Thomaz (2012)

Source: Own authorship (2022).
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APPENDIX B – Algorithms for the actions of the proposed Pragmatic

Frame
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B.1 First part of the interaction

Algorithm 3 – TR
Input: objects O, human agent gh
Output: chosen object index oi1

1: oi1  index(choose(O))
2: send(gh, oi1)

Source: Own authorship (2022).

Algorithm 4 – RRC1, with probability p of mutating oi.
Input: objects O, robot agent gr
Output: received object index oi

1: oi  recv(gr)
2: oi  mutate(oi, {index(o0)|8o0 2 O}, p)
3: send(gr, oi [ ”?”)

Source: Own authorship (2022).

Algorithm 5 – RRC2
Input: human agent gh, chosen object index oi1

Output: robot action ar, confirmed object index oi2

1: oi2  recv(gh)� ”?”
2: if oi1 = oi2 then
3: ar  CR

4: else
5: ar  TR

6: end if
Source: Own authorship (2022).

Algorithm 6 – CR
Input: human agent gh
1: send(gh, ”True”)

Source: Own authorship (2022).

Algorithm 7 – TW
Input: objects O, robot agent gr, received object index oi

Output: chosen word w1

1: w1  choose(names(o0 2 O|index(o0) = oi))
2: send(gr, w1)

Source: Own authorship (2022).
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Algorithm 8 – RWC1, with probability p of mutating w.
Input: human agent gh
Output: received word w

1: w  recv(gh)
2: w  mutate(w, p)
3: send(gh, w [ ”?”)

Source: Own authorship (2022).

Algorithm 9 – RWC2
Input: robot agent gr, chosen word w1

Output: human action ah, confirmed word w2

1: w2  recv(gr)� ”?”
2: if w1 = w2 then
3: ah  CW1
4: else
5: ah  TW

6: end if
Source: Own authorship (2022).

Algorithm 10 – CW1
Input: robot agent gr
1: send(gr, ”True”)

Source: Own authorship (2022).

Algorithm 11 – CW2
Input: knowledge base Kb, chosen object index oi1, received word w

1: Kb  Kb [ {hoi1, wi}
Source: Own authorship (2022).

B.2 Second part of the interaction

Algorithm 12 – TIR
Input: objects O, human agent gh
Output: chosen object index oi1

1: oi1  index(choose(O))
2: send(gh, oi1)

Source: Own authorship (2022).

Algorithm 13 – RIRC1, with probability p of mutating oi.
Input: objects O, robot agent gr
Output: received object index oi

1: oi  recv(gr)
2: oi  mutate(oi, {index(o0)|8o0 2 O}, p)
3: send(gr, oi [ ”?”)

Source: Own authorship (2022).
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Algorithm 14 – RIRC2
Input: human agent gh, chosen object index oi1

Output: robot action ar, confirmed object index oi2

1: oi2  recv(gh)� ”?”
2: if oi1 = oi2 then
3: ar  CIR

4: else
5: ar  TIR

6: end if
Source: Own authorship (2022).

Algorithm 15 – CIR
Input: human agent gh
1: send(gh, ”True”)

Source: Own authorship (2022).

Algorithm 16 – RIC1
Input: knowledge base Kb, human agent gh
Output: chosen word w

1: w  choose(
S

ho0,w0i2Kb
{w0})

2: send(gh, w [ ”?”)

Source: Own authorship (2022).

Algorithm 17 – RIC2
Input: objects O, robot agent gr, received object index oi

Output: human action ah, confirmed word w2

1: w2  recv(gr)� ”?”
2: if w2 2 names(o0 2 O|index(o0) = oi) then
3: ah  CI1
4: else
5: ah  TW

6: end if
Source: Own authorship (2022).

Algorithm 18 – CI1
Input: robot agent gr
1: send(gr, ”True”)

Source: Own authorship (2022).

Algorithm 19 – CI2
Input: knowledge base Kb, chosen object index oi1, chosen word w

1: Kb  Kb [ {hoi1, wi}
Source: Own authorship (2022).
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APPENDIX C – Algorithms for the robot main loop
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Algorithm 20 – possible_actions that match the message’s syntactic structure.
Input: message m, interaction i

Output: set of possible actions ap

if is_integer(m) and ends_with(m, ”?”) then
if i = FirstInteraction then

ap  {RRC1}
else if i = SecondInteraction then

ap  {RRC1, RIRC1}
end if

else if is_string(m) and not ends_with(m, ”?”) then
ap  {TW}

else if m = ”True” then
if i = FirstInteraction then

ap  {CW1}
else if i = SecondInteraction then

ap  {CW1, CI1}
end if

end if
Source: Own authorship (2022).

Algorithm 21 – guess_next_action greedily, with probabilities proportional to parameter x.
Input: current model M, current action ac, interaction i, possible actions ap

Output: next action an

1: if ap = ? then
2: ap  {TR,RRC1, RRC2, CR, TW,RWC1, RWC2, CW1, CW2}
3: if i = SecondInteraction then
4: ap  ap [ {TIR,RIRC1, RIRC2, CIR,RIC1, RIC2, CI1, CI2}
5: end if
6: end if
7: for all a 2 ap do
8: if can_apply(M, ac, i, a) then
9: p(a|M,ac,i) x {Probability proportional to x}

10: else
11: p(a|M,ac,i) 1 {Probability proportional to 1}
12: end if
13: end for
14: normalize(p(|M,ac,i)) {Make all probabilities sum up to 1}
15: an  choose(ap, p(|M,ac,i))

Source: Own authorship (2022).
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Algorithm 22 – guess_next_action performing a LD-DFS, with probabilities proportional to param-
eters x and g.

Input: current model M, current action ac, interaction i, possible actions ap
Output: next action an

An  {TR,RRC1, RRC2, CR, TW,RWC1, RWC2, CW1, CW2} {Set of possible next actions for each step in the
trajectory}
if i = SecondInteraction then

An  An [ {TIR,RIRC1, RIRC2, CIR,RIC1, RIC2, CI1, CI2}
end if
if ap = ? then

ap  An

end if
for all a 2 ap do

As  h{a}i {Stack of unexplored next actions for each step in the trajectory}
Ws  hh0, 0ii {Stack of accumulated weights for unexplored next actions for each step in the trajectory}
ts  haci {Current trajectory}
while |As| > 0 do

as  pop(top(As))
{Check if as is a goal action}
if as 2 {CW2, CI2} then

if can_apply(M, top(ts), i, as) then
top(Ws) top(Ws) + hx⇥ g, 1i {Probability proportional to x⇥ g}

else
top(Ws) top(Ws) + hg, 1i {Probability proportional to g}

end if
else if can_apply(M, top(ts), i, as) then

push(As, An) {Expand subtree}
push(Ws, h0, 0i)
push(ts, apply_action(top(ts), as))
continue

else
top(Ws) top(Ws) + h1, 1i {Probability proportional to 1}

end if
{End of subtree}
while |As| > 0 and |top(As)| = 0 do

pop(As)
ws  pop(Ws)
if ws[2] > 0 then

xs  x⇥ws[1]
ws[2]

{Probability proportional to the average of probabilities of its children trajectories,
multiplied by x}
if |Ws| > 0 then

top(Ws) top(Ws) + hxs, 1i
else

push(Ws, xs) {Final weight for a}
end if

end if
pop(ts)

end while
end while
{Final weight for a}
if |Ws| > 0 then

p(a|M,ac,i) pop(Ws)
else

p(a|M,ac,i) 1 {Probability proportional to 1}
end if

end for
normalize(p(|M,ac,i)) {Make all probabilities sum up to 1}

an  choose(ap, p(|M,ac,i))

Source: Own authorship (2022).
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APPENDIX D – Graphs of results
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Graph 6 – Action transition exploration for LD-DFS action-choosing over g.

Source: Own authorship (2022).

Graph 7 – Action transition exploration for LD-DFS action-choosing over x.

Source: Own authorship (2022).
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Graph 8 – Action transition exploration of first experiment.

Source: Own authorship (2022).

Graph 9 – Action transition exploration of second experiment.

Source: Own authorship (2022).
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Graph 10 – Performance score for LD-DFS action-choosing over g, first experiment.

Source: Own authorship (2022).

Graph 11 – Performance score for greedy action-choosing, first experiment.

Source: Own authorship (2022).
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Graph 12 – Performance score of learned model, first experiment.

Source: Own authorship (2022).

Graph 13 – Performance score for LD-DFS action-choosing over x, second experiment.

Source: Own authorship (2022).
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Graph 14 – Performance score for greedy action-choosing, second experiment.

Source: Own authorship (2022).

Graph 15 – Performance score of learned model, second experiment.

Source: Own authorship (2022).
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Graph 16 – Performance score of learned model with LD-DFS action-choosing over x.

Source: Own authorship (2022).

Graph 17 – Performance score of learned model with greedy action-choosing.

Source: Own authorship (2022).
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Graph 18 – Syntactic evaluation score for LD-DFS action-choosing over g.

Source: Own authorship (2022).

Graph 19 – Syntactic evaluation score for greedy action-choosing.

Source: Own authorship (2022).
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Graph 20 – Syntactic evaluation score of first experiment.

Source: Own authorship (2022).

Graph 21 – Syntactic evaluation score of second experiment.

Source: Own authorship (2022).
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