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“Até onde as leis da matemática se referem

à realidade, elas não são certas; e até onde

estão certas, não se referem à realidade.”

(EINSTEIN, 1921, tradução)a.

a “As far as the laws of mathematics refer to reality,
they are not certain; and as far as they are certain,
they do not refer to reality.” (EINSTEIN, 1921)



RESUMO

Trabalhar com dados se tornou algo fundamental e imprescindível no mundo moderno.
Considerando uma economia e indústria mundial globalizada, a análise e visualização
de dados oferece informações esclarecedoras para tomadas de decisão e planejamento
estratégico. Para extrair o máximo valor possível de um conjunto de dados, a ciência de
dados oferece diversos métodos estatísticos e científicos, abrangendo toda a prepara-
ção, limpeza, agregação e manipulação de dados. O Aprendizado de máquina (ML) e
a Inteligência Artificial (AI) vêm juntos para aprender e explorar os dados, descobrindo
coisas que não podem ser vistas apenas com a experiência do analista. O setor automo-
tivo, que possui grande influência na economia e indústria mundial, sofre os impactos de
ser focado em tecnologia e em prazos relativamente curtos. A transformação digital tem
então um efeito disruptivo, considerado como o fenômeno mais importante nos 140 anos
do setor, fazendo com que empresas de automóveis ofereçam produtos personalizados
e otimizados para as necessidades do cliente. Para fazer isso, é necessário trabalhar
extensivamente com dados e ciência de dados. Então, este trabalho traz um estudo
para investigar os métodos de clustering de um conjunto de dados Big Data de uma
companhia de automóveis, realizando uma revisão da literatura, tratando, normalizando
e agrupando usando os métodos pesquisados, e, por fim, comparando e analisando os
resultados. Foi utilizado o método Knowledge Discovery and Data mining para realizar o
processo de mineração, comparando o desempenho dos algoritmos K-Means, Fuzzy C-
Means (FCM) e Mapas Auto-Organizáveis (SOM) por meio de algumas métricas: soma
dos quadrados dentro de clusters (SSW), soma dos quadrados entre clusters (SSB),
índice silhueta (SI) e validação cruzada K-Fold com pontuação de homogeneidade. Para
o parâmetro de inclinação os algoritmos de ML trouxeram uma melhor resposta em geral
quando comparado ao método de classificação por regras chamado GTA, que não é um
algoritmo de aprendizado de máquina, quando analisando as métricas apresentadas.
Dentre os algoritmos de ML implementados, K-Means e Fuzzy C-Means, K-Means é
ligeiramente superior para as métricas SSW e SSB, porém o Fuzzy C-Means é melhor
nas métricas SI e validação cruzada. Quando é analisado o conjunto dos resultados
obtidos, os algoritmos de ML tendem a distribuir mais igualitariamente a população
entre os clusters do que a classificação sem aprendizado e a métrica SI comprova
isso como uma boa decisão. Os métodos trazidos para este trabalho apresentaram
resultados satisfatórios sobre o conjunto de dados, e mostram como a aplicação de
ML pode trazer benefícios à mineração de dados. Com isso, conseguimos responder à
pergunta "Como os dados históricos de uso podem ajudar uma fabricante de caminhões
a melhorar o desenvolvimento de produtos e o consumo de combustível?". O K-Means
é uma boa opção para técnica de agrupamento, enquanto o FCM também se mostrou
uma boa técnica, trabalhando bem principalmente com situações de sobreposição. O
FCM traz também uma interpretação extra da porcentagem de associação do cluster
que pode ajudar os usuários finais a entender ainda mais os dados. Para trabalhos
futuros, também podem ser implementados K-Medoids como método alternativo que
considera um indivíduo como o centro do cluster. Este trabalho pode ser estendido
para outros tipos de conjuntos de dados.

Palavras-chave: big data; machine learning; indústria 4.0; aprendizado não supervisio-
nado; agrupamento; veículos.



ABSTRACT

Working with data has become something fundamental and essential in the modern world.
Considering a globalized world economy and industry, data analysis and visualization
offer enlightening information for decision making and strategic planning. Data science
provides diverse statistical and scientific methods to extract the most value possible from
a data set, covering all the preparation, cleaning, aggregation, and manipulation of data.
Machine Learning (ML) and Artificial Intelligence (AI) come along with it to learn and
explore the data, uncovering things that can not be seen with only the analyst experience.
The automotive sector, which significantly influences the world economy and industry,
suffers from focusing on technology and short-term focus. Digital transformation has a
disruptive effect, considered essential in the sector’s 140 years, causing car companies
to offer customized products optimized for customer needs. To work extensively with
data and data science becomes fundamental. So, this work brings a study to explore
clustering methods in a Big Data dataset of a car company, performing a literature review;
treating, normalizing and grouping using the researched methods; and, finally, comparing
and analyzing the results. The Knowledge Discovery and Data mining method was
used to perform the mining process, comparing the performance of the K-Means, Fuzzy
C-Means (FCM) and Self-Organizing Maps (SOM) algorithm through some metrics: sum
of squares within clusters (SSW), sum of squares between clusters (SSB), silhouette
index (SI) and K-Fold cross-validation with homogeneity score. When evaluating the
vehicle’s distribution of the results obtained, the ML algorithms tend to distribute more
evenly among the clusters than the classification without learning, and the SI metric
proves this as a good decision. The methods brought to this work showed satisfactory
results on the dataset, and demonstrate how the application of ML can bring benefits to
data mining. With this, we managed to answer the question "How can historical usage
data help a truck manufacturer improve product development and fuel consumption?".
K-Means is a good and main clustering technique, while FCM has also proved to be a
good technique, working mainly with overlapping situations. FCM also brings an extra
interpretation of cluster membership percentage that can help end users understand
the data even more. For future works, it can be also implemented K-Medoids as an
alternative method that considers an individual as the center of the cluster. This work
can also be extended to other types of vehicle’s data set.

Keywords: big data; machine learning; industry 4.0; unsupervised learning; clustering;
vehicles.
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1 INTRODUCTION

The analysis and visualization of data, in general, become a fundamental and

differential component in the modern world concerning the new globalized models of the

world economy and industry, offering comprehensive information for decision-making and

strategic planning in the most diverse sectors (APERGIS; FILIPPIDIS; ECONOMIDOU,

2007; WANG, L. et al., 2021; KATZ; BIEM, 2021; OHKUMA et al., 2018; MA et al.,

2020).

However, the historical roots of graphic analysis and visual representations,

which are intertwined with statistical and cartographic analysis, are seen in fields of

science until the 19th century, perhaps connecting with statistical thinking and data

obtained for planning and commerce, extending to the present day with technological

progress in data collection, data storage, image processing, and advances in math-

ematics and statistics (FRIENDLY, 2008). Friendly (2008) further divides the history

of data visualization into milestones that would illustrate the periods and difficulties

encountered: Initial maps and diagrams (the period before the 17th century); Theory

and measurement (17th century); New graphic models (18th century); Early modern

period (first half of 19th century); Golden Age (second half of 19th century); Modern

Dark Ages (first half of 20th century); Rebirth of Data Visualization (second half to the

third quarter of 20th century); High-definition, dynamic and interactive data visualization

(third quarter of 20th century to the present). The development of technologies provides

current evolution for capturing, storing, and processing data that culminate today in Big

Data & Analytics.

Precisely, big data is data that has significant Volume, Velocity, and Variety,

called "The Three V’s of Big Data", which after was extended to five V’s, so including

Veracity and Value. These are larger and more complex data sets that traditional data

processing software cannot manage, but they provide information to solve problems

that were impossible to solve before. In a big data set, it will be necessary to process

volumes of low-density unstructured data, which may still have unknown values, that

use tens or even hundreds of terabytes or petabytes. Of these data, those with the

highest acquisition speed are usually transmitted to memory instead of being written

to disk. Some products operate in real (or near) time, requiring evaluation and action

at the same speed. In addition, handling varied data is necessary, which usually does
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not fit perfectly in a relational database. Unstructured and semi-structured data, such

as text, audio, and video, require additional pre-processing to add value and support

metadata. In other words, big data can provide more complete and faster answers, with

more data reliability (BRASIL, 2021a).

Working with big data is transforming businesses, serving as a cross-functional

capacity for aligning strategies and making decisions according to demands in a space

that companies invest heavily in seeking opportunities to apply data analytics and

overcome competition (JOHNSON; FRIEND; LEE, 2017). The growing interest in the

subject increasingly makes data one of the most valuable organizational resources.

Several studies empirically demonstrate the value that big data and business analytics

bring to organizational agility, their impact on innovation and product development, and

how it benefits competitive performance (CÔRTE-REAL; RUIVO; OLIVEIRA, 2020;

LEHRER et al., 2018; ASHRAFI et al., 2019). Mikalef et al. (2020) in their study, they

assess the increased interest of the scientific community in the subject in the last decade,

denoting an exponential growth of at least 1400% from 2010 to 2018 in the number

of annual publications. Gandomi and Haider (2015) remark as well the frequency

distribution of documents containing the term "big data" rising from 2010 on.

Nonetheless, it is necessary to develop the organizational capacity to identify

areas within the business where it is possible to derive the proper value from big data.

Finding where to benefit from the insights and viewings that data itself brings is a great

challenge to overcome, so then being able to strategically plan and execute data analytics

projects, combining and pooling resources needed to turn data into transformative action

(GUPTA; GEORGE, 2016; VIDGEN; SHAW; GRANT, 2017). Wessel (2016) points out

that big data allows companies to easily adapt to new environments and more quickly

bring disruptive innovations – a term that describes standards-breaking technologies

in general – through three principles: low cost, affordability, and a structured business

model.

Datasets and database developments have their origins around the 1960s and

1970s, with the first data centers. As of 2005, the amount of data from users of online

services and social networks has grown remarkably, also popularizing code structures to

store and analyze large and differentiated data sets, such as NoSQL – non-relational data

structures – and the platform Hadoop, which is capable of processing high workloads,

being highly scalable and flawless (HADOOP, 2021). Such structures become essential
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for the growth of big data, making data storage more manageable and cheaper.

Around this, in Hannover Messe 2011, an event by the German government

to talk about the industry, the term Industry 4.0 appeared, coining the vision of a new

industrial revolution that uses concepts of Big Data & Analytics, Cloud computing, Internet

of Things (IoT) and Cyber-physical Systems, implying in definitions such as additive

and hybrid manufacturing, virtual simulation, intelligent robots, horizontal and vertical

systems’ integration, cybersecurity and augmented reality (PFEIFFER, 2017; RIBEIRO;

ABREU, 2020).

The new era of the industry was triggered by general social, economic, and

political changes, in particular the need to: shorten development and innovation periods,

as the high innovation capability becomes more essential; individualize demand and

products, as buyers can define now conditions on the trade; flexible product develop-

ment, due to the new framework requirements; decentralize, fastening decision-making

to cope with the specified conditions needed; manage resource efficiency on economic

and ecological aspects, maintaining an intense focus on sustainability in industrial con-

texts. Not only that, but there are spread identified comprehensive approaches in a

technology-push that influence industrial environments and daily routine. Further mech-

anization and automation of processes, digitalization and networking on manufacturing

and manufacturing-supporting, and miniaturization of components are some of the

developments that have the potential to turn around industrial practices (LASI et al.,

2014) comprehensively. Overall, this brings on an industrial revolution that relies more

and more on data consistency and its value.

To claim as much value as possible from the data, the area of data science

sees several spotlights opening up for diverse statistical and scientific methods to

shine. Data science covers all the preparation, cleaning, aggregation, and manipulation

of data for further analysis, and its procedures can be divided into Extraction of data,

Manipulation, Visualization, and Maintenance (BRASIL, 2021b). However, most standard

tasks from data scientists can be classified as clustering (or segmentation), anomaly (or

outlier) detection, association rule mining, and predictions (including classifications and

regressions) (KELLEHER; TIERNEY, 2018).

To extract useful value from data sets, algorithms based on Machine Learning

(ML) and Artificial Intelligence (AI) are the most common ones. Machine learning and

artificial intelligence algorithms have open fields to explore the data, learn with it, and
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aid in understanding and seeing things that can not be uncovered with only the analyst’s

experience over the matter.

1.1 Automotive Industry

Vehicles companies have a significant impact on industry and economics. As

once transformed world economy with institutionalized economic models, such as

Fordism and Toyotism, today impacts development of new business models, social and

environmental changes (HILALI, 2015; JANOSKI; LEPADATU, 2013; NIEUWENHUIS;

WELLS, 2015).

In the past thirty years, the automotive industry faced enormous challenges. The

volume production became more unprofitable, the segmented niche markets increased,

and the sustainability of the products and methods of production suffered from regulatory

and social pressure. However, still, it is one of the world’s largest manufacturing sectors

(NIEUWENHUIS; WELLS, 2003, 2015).

The automotive industry is a sector that remarkably suffers from being technology-

focused and relatively short-term focused (NIEUWENHUIS; WELLS, 2015). Its product

life-cycle faces new challenges arising from digital transformation, software-driven inno-

vation, new product functionality, supply chains, and partnering. These challenges are

all linked to the evolution from mechatronic products to innovative connected products

and cyber-physical systems (DENGER; ZAMAZAL, 2020).

The digital transformation generates significant benefits for entrepreneurs, con-

sumers, and society. No different in the automotive industry, it results in a disruptive

effect that authors consider the most important phenomenon in the 140-years of industry

history (LLOPIS-ALBERT; RUBIO; VALERO, 2021).

Digital transformation strategies reflect the changes brought by new technologies

in an organization, seen in companies having to transform traditional and robust business

models to adapt to trends like car-sharing platforms, telematics services, autonomous

driving, mobility as service, etc. (RIASANOW; GALIC; BÖHM, 2017; CHANIAS; HESS,

2016; KOTARBA, 2018).

It has been a constant in the recent three decades the automotive industry trying

to offer personalized products and various vehicle models efficiently, that can share

diverse characteristics yet differ from others, but overall in an optimized way for the
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clients’ needs (BERSCH; AKKERMAN; KOLISCH, 2021). To do so, they have been

working and improving several data science methods in fields like predictive maintenance,

new product development, industrial processes, and many others (MALACA et al., 2019;

WANG, X. et al., 2020; THEISSLER et al., 2021).

The digitization of the vehicle industry will enable the evolution of business-to-

business approaches to a business-to-consumer model, with new ways of engaging

customers and partnerships with suppliers, interacting through data technologies. That

is, the shift from selling a product to now offering value with a focus on the customer

experience (HOFFMANN; ZAYER; STREMPEL, 2019). Mining, collecting and using

historical data information is key to making this happen.

To offer customized product is necessary to understand which type of behavior

matches the client’s needs. Given the environment and conditions of usage, understand-

ing the realistic behavior of vehicles is the most important stage of this process. To do

that, it is needed first to collect vehicles historical usage data long enough, and then

analyse this Big Data data set through data science methods to extract the most value

as possible from it. For this work, we have used clustering algorithms to help understand

behaviors of vehicles in these data sets. By having a complete and clear information,

companies can sell the product specification which has historically been proven to be

the best one for the customer need.

Classifying vehicles into clusters allows for better comparisons, and even more

when different types of data sets are used to do this. Crossing information of slope (the

environment), speed (the response of the vehicle in the environment) and carried weight

(vehicle’s type of usage), when it comes to trucks, it is possible to have full knowledge for

the comparison. This can be used, for example, to track how drivers perform under the

same conditions and which type of driving saves more fuel or requires more maintenance.

According to Hao, Yang, and Zhou (2019), different driving behaviors can cause 7% to

25% of difference in fuel consumption, once the influence of the driving behavior on that

is up to 30%. Through this historical usage and being able to differentiate behaviors,

companies can return customers information about their vehicle’s, offering services and

improvements to their products, which is aggregating value with focus on the experience.
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1.2 Justification

Applying scientific research to industry or business, in general, is not new

at all. Taylorism by itself transformed management models in the 20th century by

proposing that managers should become scientific, study the organization of work and

extract operational efficiency (WARING, 2016). On the same page, nowadays, design

research serves as the spinal dorsal that makes a new paradigm for companies to

succeed (HILALI, 2015). Design research is an interdisciplinary area with social science

orientation aspects that can be divided into research for design, research into design,

and design as research. Briefly, it takes place where one wants to change something

or create something new, whatever it can be, applying science and research-based

knowledge on how to obtain extraordinary and innovative results (DOWNTON, 2003;

BÆRENHOLDT, 2010). Researching is the first step of innovation, and innovation is

what makes the success of a business.

According to Industria (2018), digital technologies in vehicles represent at least

50% of the total vehicle value. Driver connectivity, location-based services, and the type

of driver based on tastes and preferences have contributed to accelerating the process

of digitalization of the automotive sector, which, allied to the integration of software and

hardware, increased cars’ functionalities and complexity (LLOPIS-ALBERT; RUBIO;

VALERO, 2021). That aligns with the interests of cars companies in big data and data

science.

With developments in maintenance modeling fuelled by data-based approaches,

many opportunities are enabled. Predictive maintenance, for instance, is a crucial

approach to secure functional safety over the product life cycle while still limiting mainte-

nance costs, and ML is an ideal candidate for it since modern vehicles have a massive

amount of operating data. That is a field that has seen growing interest in the academic

scenario, and more publicly available data would boost the research activities in the

area (THEISSLER et al., 2021).

Many technologies track vehicle performance and usage. This generates large

data sets with gold information to the automobile industry growth. Insights that could not

be seen before Industry 4.0 now can be exploited and studied for product and features

development. However, each parameter extracted from these big data sets should be

carefully studied and treated to draw every essential information, removing any rubbage
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that may come along.

This work brought a study over three vehicle parameters data sets. With these

data sets we sought to answer the question: How can historical usage data help a truck

manufacturer improve product development and fuel consumption? The goal is to find

the best clustering strategy for each one to extract the most value and understanding

possible from it, helping end-users comprehend trucks’ behavior perfectly. The first

parameter refers to slope conditions tracked on the roadway, which tells about the

vehicle’s inclinations; the second parameter is the measurement of speed throughout

the entire driving life; the third parameter is the weight carried by the vehicle. The data

sets used throughout the work comprehend several years of extensive trucks usage

in the Latin America environment, provided for personal use by a major car company

following General Data Protection Law (GDPL).

Classification methods based on data engineers’ experience were compared with

the most up-to-date methods of clustering, facing the data set with different approaches,

which helped give different sights of the same set.

The objective for each parameter is to group the data set in an optimized number

of clusters that can explain vehicles’ behaviors and differentiate them. Having different

clusters, the company can see how clients’ fleets are performing, so being able to offer

better vehicle specifications for each use. Also, knowing how the product is performing

along the life cycle gives extra knowledge for product development and fuel consumption

reduction.

1.3 Objectives

1.3.1 General Objectives

To investigate the clustering methods of a car company’s Big Data data set,

understand each application and market behavior, and extract maximum value from it.

1.3.2 Specific Objectives

• To review the literature on the subject;

• To model the data for the clustering;
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• Find the best clustering strategy for the problem.

1.4 Work Organization

In the first chapter, an introduction was made, presenting a global view of the

research, including a brief history, importance and justification for the choice of the

theme, delimitation of the subject, formulation of hypotheses and research objectives,

and structure of the work.

The second chapter brings the literature review, committing to the explanations

and definitions around the subjects presented in the work, resuming the importance

of the content and its impacts. Also, the chapter presents an overview of state-of-

art techniques and concepts around the topic, exemplifying general applications and

repercussions. This chapter is divided into three sections: Big data, Machine Learning,

and Automotive applications.

Chapter three presents the implemented models, methodologies employed, error

analysis, and comments. The chapter is divided into Data preprocessing, clustering

algorithms, Evaluation metrics, and Data sets.

The fourth chapter brings the results and analysis for each data set we worked

with, these being the title of each section division: Slope, Speed, Gross Combination

Weight (GCW). Performance evaluation with four metrics compares the proposed ML

methods with a non-ML method. Also, clusters of centroids and population distribution

into clusters are analysed.

In the last chapter, chapter five, the work is summarized, presenting the conclu-

sions and insights obtained with the method developed and the research made. Future

works are also presented, and an expectation for the subject’s future.
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2 LITERATURE REVIEW

This chapter will review the literature, exploring each theme brought on by this

work in depth. Concepts and definitions around the subjects are presented in this

section, alongside the context of where each one is involved and required. Furthermore,

an overview of the applications of the matter is shown, resuming the importance and

deliberate approaches found in scientific literature.

The references chosen to support this work were selected after a review of

the most popular and renamed academic research databases, such as IEEE Xplore,

ScienceDirect, Web of Science, etc.; and worldwide universities research libraries,

sometimes with the ease of Google Scholar search engine. Priority was given to

publications with the most relevance, impact, or citations over the theme, at first, with no

date filtering. Then, the most impactful works in the last three years have been selected,

often searching for different approaches or angles of view among themselves. On the

other hand, some references were selected individually by either being from a significant

company or source of information about the subject, or by presenting clearer and more

profound aspects of information.

2.1 Big Data

Big Data and Analytics is a relatively new term, not yet with a uniform definition,

enabled by recent advances in technologies that support high-velocity data capture,

storage, and analysis. At first, before its trend and even before being labelled, Laney

(2001) proposed a three-fold definition encompassing the three Vs.: Volume, Velocity,

Variety; remarking upon the increasing size of data, the rate that it is produced, and

the increasing range of formats or representations it has. Despite the definition being

entirely anecdotal, Beyer and Laney (2012) expanded alongside IBM’s and NIST’s work

to include Veracity as the fourth V, comprising trust and uncertainty regarding data and

the outcome of its analysis (WARD; BARKER, 2013; GANDOMI; HAIDER, 2015). The

National Institute of Standards and Technology, when defining Big Data, also highlights

the need for a “scalable architecture for efficient storage, manipulation, and analysis”

(NIST, 2015).

De Mauro, Greco, and Grimaldi (2016) notice in the review that definitions of
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Big Data describe their focus according to four themes: Attributes of data, just as the "3

Vs." definition; Technological needs, such as the Microsoft definition that it describes

processes in which serious computing power is applied to massive and often highly

complex sets of information; Thresholds, which are definitions that classify as Big Data

that exceed the processing of conventional databases and alternative approaches are

needed to do so; and Social impact, that highlights the effect of Big Data on the society,

being so cultural, technological and scholar phenomenon. However, still, the authors

propose a definition referring to the nature of the information asset itself: "Big Data

is the Information asset characterized by such High Volume, Velocity, and Variety to

require specific Technology and Analytical Methods for its transformation into value"

(DE MAURO; GRECO; GRIMALDI, 2016).

The NIST (2015) document emphasizes the need for a system architecture

that can scale and achieve the needed performance and cost-efficiency, denoting

vertical scaling and horizontal scaling methods for it. The first implies increasing the

system parameters of processing speed, memory, and storage for more extraordinary

performance. However, this approach is limited by physical capabilities, as this requires

ever more sophisticated hardware and software, whose progress has been tracked and

described by the Moore’s Law (MOORE, 1965). The other method, horizontal scaling,

uses distributed individual resources integrated to behave as a single system, thus laying

down the Big Data paradigm.

The Big Data paradigm distributes data systems across horizontally coupled,
independent resources to achieve the scalability needed for the efficient pro-
cessing of extensive datasets.
This new paradigm leads to several conceptual definitions that suggest Big
Data exists when the scale of the data causes the management of the data to
be a significant driver in the design of the system architecture. (NIST, 2015).

Not explicitly referring to the horizontal scaling, but this Big Data paradigm

fundamentally states a shift in data system architectures from monolithic systems with

vertical scaling into a parallelized system, horizontally scaled in a specific manner, that

uses a loosely coupled set of resources in parallel.

Supercomputers built with large arrays of off-the-shelf CPUs appeared at first

in the late 1990s, trending what became massively parallel processing, which is the

multitude of individual processors working in parallel to execute a program (NIST, 2015).

Parallel computation can speed up the execution, but one must be aware that increasing

the number of processors decreases its efficiency, which is called the cost of parallel
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computation (ROOSTA, 2012). As well, the program structure and memory organization

of a multi-computer system must fulfill a set of conditions that describe whether two

successive portions of a given program can perform in parallel and produce the same

results (BERNSTEIN, 1966).

Another disruptive innovation from the 21st century, and a tool very needed in

this case, is that Big Data invariably resorts to non-relational structure models, referred to

as NoSQL, said logical data models which do not follow relational algebra for storage and

data manipulation. Relational models are beneficial in reliability, flexibility, robustness,

and scalability. However, to answer modern applications’ needs, where that data is

enormous and primarily unstructured, there is the non-relational databases’ genuine

usability (JATANA et al., 2012).

In a high-level overview, a typical data architecture is composed of data sources,

where the data is generated; data storage, where they are stored and processed; and

applications, where the data is shared (KELLEHER; TIERNEY, 2018).

Among different tools, methods, and problems, big data engineers should know

how to extract the due power of each concept and apply it correctly to their problems.

By definition, according to NIST (2015), big data engineering is to include advanced

techniques that use and harness independent resources to build scalable data systems

whenever new architecture is required for efficient storage, manipulation, and analysis.

That, potentially related to new technologies, challenges, and innovation problems, is

what makes Big Data one of the pillars of the Industry 4.0 (PILLONI, 2018).

Industry 4.0 extends itself even to health domains, where IoT, Cloud Computing,

and Big Data technologies revolutionize health and its ecosystem towards what is to

be called Healthcare 4.0. Big Data has immense importance on the matter, followed

by the increase of data that comes from the advanced technologies, just as the stream

processing systems monitor people’s health status in real-time that generates large

amounts of structured and unstructured streamed data, thanks as well to the personal

devices and wireless sensors progress. Moreover, big data techniques open up new

technologies to be exploited on medical tests, images, and descriptions from clinicians,

collected through records that may assume several forms and domination, such as

Electronic Health Records and Electronic Medical Records. Overall, that progress in data

technologies provides insights to reduce inefficiency in clinical operations, public health,

research, and development, yet offering massive potential for prognostic interventions,



25

novel therapies, shaping lifestyle and behavior, and improving cost efficiencies and

sustainability on infrastructure (ACETO; PERSICO; PESCAPÉ, 2020; KAMBATLA et al.,

2014).

Big Data development has changed the method of decision-making from a static

process into one that is dynamic; once indeed, the analysis of the relationships between

many events derived from information data has been replacing the pursuit of traditional

and logical connections (DE MAURO; GRECO; GRIMALDI, 2016).

Özemre and Kabadurmus (2020) use Big Data Analytics methodology, em-

ploying machine learning algorithms, to forecast export volumes and conduct strategic

market analysis on international trades. The method facilitates the strategic decision-

making process, providing insights into global markets in a highly competitive business

environment.

Big Data, new computing methods and data sources have changed economics

and made it a more applied field. Areas like labor and public economics shifted their

focus from theory toward estimating quantities (CURRIE; KLEVEN; ZWIERS, 2020).

This leads to a more precise planning and action from the administration sector.

Large firms have produced more data, which can disproportionately benefit them,

principally financially speaking. Data analysis improves investors’ forecasting ability and

reduces equity uncertainty, which lowers a company’s cost of capital. That is, when

investors can process more data, the investment costs of large companies fall further,

allowing large companies to grow even more (BEGENAU; FARBOODI; VELDKAMP,

2018).

2.2 Machine Learning

Data-intensive science, shortened to data science, consists of three primary

activities: capture, processing, and analysis. It refers to the data analysis guidance

as an empirical science, learning from the data itself. Hey, Tansley, and Tolle (2009)

proclaim data science in its purest form as the fourth paradigm of science, followed by

experiment, theory, and computational sciences. Data science, then, can be defined as

the extraction of litigable knowledge directly from the data through a research process or

hypothesis formulation and hypothesis testing, performing the scientific process directly

on the data (NIST, 2015).
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Machine Learning (ML) is a field of computer science research and focuses

on developing algorithms to match extract valuable patterns from an input data set

(KELLEHER; TIERNEY, 2018). It is designed to emulate human intelligence by learning

from the surrounding environment, with an ability to learn from the current context and

generalize into unseen tasks. It is considered the working horse of the big data era

(EL NAQA; MURPHY, 2015).

According to Bonaccorso (2017), the main goal of machine learning is to study,

engineer, and improve mathematical models that can be trained with context-related data

to make decisions and infer the future without the complete knowledge of all influencing

elements. Using a statistical learning approach to determine the suitable probability

distributions to choose the most likely successful action.

ML algorithms have been applied successfully in fields ranging from pattern

recognition, computer vision, spacecraft engineering, finance, entertainment, computa-

tion biology, biomedical, medical applications, and many others (EL NAQA; MURPHY,

2015).

ML can be divided into supervised learning, unsupervised learning, and re-

inforcement learning. Also, deep learning can be considered a branch of machine

learning.

The supervised learning follows the concept of having guidance, a teacher

or supervisor, whose objective is providing the agent a precise measure of its error.

This can be obtained by a training set of couples: input and expected output. After

each iteration – considering that the algorithm is flexible enough and the data elements

are coherent – the overall accuracy increases, lowering the difference between the

predicted and expected value to zero. However, the system needs to be trained to work

also with samples never seen before, being able to generalize yet avoiding overfitting.

Supervised learning applications can include a predictive analysis based on regression or

categorical classification, spam detection, pattern detection, natural language processing,

sentiment analysis, automatic image classification, automatic sequence processing

(BONACCORSO, 2017).

On the counterpart, the unsupervised approach is based on the absence of a

supervisor (absolute error measures). This approach is practical when it is necessary to

learn how a set of elements can be grouped or clustered according to their similarity.

That clustering should consider the presence of outliers, treat them to increase the
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internal coherence (density) within the cluster, and maximize the separation among clus-

ters. Common unsupervised applications are object segmentation, similarity detection,

automatic labelling (BONACCORSO, 2017).

Another approach also involves using both labelled and unlabelled data, there-

fore called semi-supervised. That technique can be adopted when it is necessary to

categorize an extensive data set with a few labelled examples or when there is needed

some constraints to a clustering algorithm, like assigning some elements to a specific

cluster or excluding from others (BONACCORSO, 2017).

Reinforcement learning is based on the feedback provided by the environment,

even if there are no actual supervisors. In this case, the agent does not have precise

measurements of its error, yet a more qualitative feedback, usually called reward (or

penalty, if negative). That approach is particularly efficient when the environment is

not entirely deterministic, often being very dynamic, and when there is no possibility of

having precise error measure (BONACCORSO, 2017).

Deep Learning (DL) is a branch of machine learning based on Artificial Neural

Networks (ANNs). DL algorithms model high-level abstractions of input data using a

graphical representation that comprises several processing layers; for instance, the

detection and recognition of multiple objects are improved with that technology. It

supports object classification as well and enables recognition and prediction of actions

(FALCINI; LAMI; COSTANZA, 2017). Deep learning can show better performance than

other approaches, even without a context-based model, suggesting that sometimes it is

better to have a less precise decision made with uncertainty than a more precise one

determined by a complex model which is not so fast, according to Bonaccorso (2017).

DL applications include image classification, real-time visual tracking, autonomous car

driving, logistic optimization, bioinformatics, and speech recognition.

Even though there are many ML algorithms, each one is designed for a particular

data-mining task, so knowing the task is essential to define which set of them are

recommended for doing it. However, it does not tell exactly which one to use. The data

scientist should study the data set and the problem to identify which is the best one to

approach it (KELLEHER; TIERNEY, 2018). Finding out if the data has a minimal cluster

structure is vital to completely understand the contents of a data set, when clustering is

considered (ALHONIEMI et al., 1999).

A good ML algorithm should be able to generalize, which is the ability to perform
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well on previously unobserved data. For this, Goodfellow, Bengio, and Courville (2016)

assume that the samples in each data set are independent of each other and that the

train set and the test set are identically distributed, drawn from the same probability

distribution of each other. Within the algorithm, the perfect capacity should be weighted

to fit a variety of functions without causing underfitting, which happens when the model

is not able to perform with a sufficiently low error value on the training, and without

occurring overfitting, which happens when there is a large gap between training error

and test error.

It all comes to how well the model can learn and, therefore, predict. Prediction

estimates the value for a given instance based on the values of input attributes of that

instance. For example, predicting the target attribute for new instances that are not in

the training data set are solved by supervised ML algorithms that generate prediction

models (KELLEHER; TIERNEY, 2018).

In prediction models, prediction errors can be due to bias error or variance

error. Understanding these types of errors can help diagnose model results and avoid

overfitting or underfitting. The error due to bias is the error taken as the difference

between the expected average prediction of the model and the correct value trying

to be predicted, that is, how far off, in general, the models’ predictions are from the

correct value. The error due to variance is the one taken as the variability of a model

prediction for a given data point, that is, how much the predictions for a given point can

vary between different iterations. In Figure 1 the bias and variance results are illustrated

on a bulls-eye diagram, where at the center is the perfect model with correct predictions

(FORTMANN-ROE, 2015).

2.3 Automotive applications

This section will discuss applications of methods and strategies related to ma-

chine learning, artificial intelligence, and data science overall on vehicles and the auto-

motive sector found in the literature.

Bersch, Akkerman, and Kolisch (2021) develop a mathematical linear program-

ming model describing the decision problem on the timing of introduction of new products

to the market based on the resource-constrained project scheduling problem. With the

tool, it can be decided the start of production date for vehicle models, variants, engines,
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Figure 1 – Graphical illustration of high and low bias and variance

Source: Fortmann-Roe (2015)

and the assignment of engines to the given variants, taking into consideration different

conflicting objectives, new and existing products that rely on shared resources, and

also the use of platforms that create interactions between different vehicles through

shared modules. The model can analyze trade-offs and efficiently evaluate courses of

action in this multi-criteria approach, using real data from a major European company

for computational studies.

Countries and enterprises worldwide are investing in automated driving and

intelligent vehicles, seeing this ever-increasing urban mobility and modern logistics

sector demand. According to Li, Cheng, Guo, et al. (2018), advanced AI techniques

can solve problems such as traffic congestion, traffic accidents for human errors, road

safety, and environmental pollution problems.

Also, for autonomous driving, clustering is highly used to exploit the advantages

of multidimensional object size estimation and object classification for automotive radar

sensors technologies, usually used as a preprocessing step for classification of the

measured data, sometimes in a form of multi-stage clustering (SCHEINER et al., 2019;

SCHUBERT et al., 2015; STOLZ et al., 2018).

Theissler et al. (2021) analyzed papers from application and ML perspectives

and concluded that the majority of papers have relied on supervised methods that require

labelled data; that combining multiple data sources can improve accuracy; and that

the use of deep learning methods will increase, but it needs efficient and interpretable

methods, as well as a large amount of labelled data.

There is already an awareness of the need to integrate deep-learning-based
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development with traditional development approaches in the automotive software engi-

neering community. It is growing at the technical, methodological, and cultural levels

of companies, already being considered a mature and viable technology (FALCINI;

LAMI; COSTANZA, 2017). From image analysis to natural language processing, deep

learning algorithms power many innovative products, such as safety or parking assist,

self-driving cars, and autonomous emergency braking. Areas like virtual sensing for

vehicle dynamics, vehicle health monitoring, automated driving, and data-driven product

development are expected to attract the most attention from these algorithms (SINGH;

ARAT, 2019).

Unsupervised learning, however, has a more established place, being heavily

applied in clustering tasks necessary in many moments in the industry. In the work of

Kargari and Sepehri (2012), clustering was used for automotive spare-parts distribution

to reduce transportation costs, achieving a cost reduction of 32% with the proposed

method, that used K-means in a 3-year data considering three factors in the similarity

function: euclidean distance, lot size, order concurrency.

Altintas and Trick (2014) present a study of a data mining and classification

analysis of forecasting patterns in a supply chain, where auto manufacturers provide

forecasts for future orders and the supplier uses them to plan production in advance.

With clustering and pattern recognition analysis, the authors could provide a framework

to analyze the forecast performance of the customers.

Yi et al. (2019) have used polynomial regression mixture clustering in individual

drivers trajectories for learning in-depth driving behaviors, which could discover more

than manually defined maneuver due to the ability in accounting for both spatial and tem-

poral information, providing promising intention prediction performance with also being

adaptive to different drivers. Also in order to avoid manually designed metrics, Wei Wang

et al. (2021) proposed to employ network representation learning to achieve accurate

vehicle trajectory clustering, where, with learned vehicle vectors, vehicle trajectories are

clustered, achieving better performance than baseline methods.

Analyzing driver behavior characteristics is also an aspect of investigation for

automotive control, once the driver is the controller and evaluator of the quality of the

vehicle path-following. It can be made based on certain pattern recognition provided by

simulation or field test data. But, foremost, the driver behavior characteristics need to be

classified before identified and, for that, clustering algorithms are generally used, such
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as Fuzzy and K-means algorithms (LIN et al., 2014). Analyzing potentially dangerous

driving behaviors of commercial truck drivers, Zhou and Zhang (2019) used principal

component analysis with Density-based Spatial Clustering of Applications with Noise

(DBSCAN) to extract variation properties of speeding behavior, showing that at least

40% of the drivers tended to drive in a substantially dangerous way, which contributes to

the development of safety education programs and countermeasures.

To evaluate whether a driving behavior is fuel-efficient, Hao, Yang, and Zhou

(2019) proposed a method that uses K-means clustering combined with DBSCAN to

cluster four characteristic parameters, which are related to fuel consumption, into three

driving behaviors: low, medium and high fuel consumption. With that, authors could

have a fuel consumption-oriented driving behavior evaluation model that can evaluate

online and give an estimation of whether the driving behavior is fuel-efficient.

Wang and Wang (2020) propose a clustering algorithm based on Genetic Fuzzy

C-Means (GFCM) to cluster driving behaviors for hazardous material transportation.

The authors used the GFCM algorithm to cluster driving behavior data collected from

real-time GPS monitoring devices into different categories, and evaluated the clustering

results using various criteria such as within-cluster distance and separation between

clusters. They found that GFCM was effective in identifying similar driving behaviors

and reducing the impact of outliers. The authors suggest that the proposed algorithm

can be used to identify hazardous driving behaviors and provide feedback to drivers to

improve safety.

Qi et al. (2015) discuss the importance of accurately understanding driving

behavior for advanced driving assistant systems. To achieve this, the authors propose

using clustering and topic modeling to extract latent driving states from longitudinal driving

behavior data collected by instrumented vehicles. The authors employ data mining

techniques, including ensemble clustering using the kernel fuzzy C-means algorithm

and a modified latent Dirichlet allocation model, to handle the large dataset and extract

valuable knowledge. The authors identify three driving states, including aggressive,

cautious, and moderate, and develop a quantified structure for driving style analysis.

Overall, this approach can provide insight into the common and individual characteristics

of driving behavior and improve the development of driving assistant systems.

The article by Lee and Jang (2019) proposes a framework consisting of four

steps: data preprocessing, feature extraction, behavior identification, and behavior
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evaluation, which can be used to evaluate aggressive driving behaviors using data

collected from in-vehicle driving records. The authors used various machine learning

algorithms, including decision tree, random forest, and Self-Organizing Map (SOM), to

identify aggressive driving behaviors. They found that SOM was particularly effective

in identifying complex driving behaviors that could not be easily captured by other

algorithms. The authors suggest that this framework can be used to develop personalized

driver training programs and improve road safety.

Investigating if trucks are used as intended by the manufacturer, since their

usage might impact the longevity, efficiency and productivity, Dahl et al. (2020) compared

customers’ behaviors using logged data with vehicle configurations presets. To do so,

they have used Gaussian Mixture Models to cluster and classify behaviors, and then

applied Rule-based Machine Learning to examine whether the real behavior of the

vehicle matches what was the intended use. With the study, authors were able to identify

outliers that should be analyzed.

2.4 Clustering Algorithms

To extract the knowledge from the data, clustering was made with the algorithms

presented in this section. It is the essential part of extracting the value of the dataset,

and therefore, various techniques have been implemented with different approaches

from each other.

According to Jain, Murty, and Flynn (1999), clustering is the unsupervised

classification of patterns into groups (clusters), including observations, data items, or

feature vectors. It is the partitioning of unlabeled observations into clusters so that

points in a group are similar to each other and different from the ones in other groups,

according to some similarity criteria (DINLER; TURAL, 2016).

Clustering problems are considered optimization problems and are solved by

exact algorithms, approximation methods, or heuristics. According to Dinler and Tural

(2016), clustering methods can be broadly represented by these categories: hierarchical

and partitional methods.

Hierarchical clustering, which has its roots back in the 1960s and 1970s and

is continuously explored, is the algorithm that builds nested clusters by agglomerating

or dividing clusters successively (DINLER; TURAL, 2016). They were developed to
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overcome some disadvantages of flat or partitional based clustering methods, such as

the predefined number of clusters and the non-deterministic nature of the solution, so

being the more deterministic and flexible mechanism for clustering (REDDY; VINZAMURI,

2018). Traditional agglomerative hierarchical clustering mentioned are single linkage

(nearest neighbor), complete link, group average, McQuitty’s method, median method,

centroid, and Ward’s method; while modern techniques can be classified as random

sampling, data condensation, density-based approaches, grid-based approaches, divide

and conquer, incremental learning (MURTAGH; CONTRERAS, 2012).

In partition-based clustering, approached in this work, the data is divided into

different groups based on similarities and dissimilarities. Standard similarity measures

are distance-based, pattern-based, and density-based. In distance-based similarity

measures, the relative position of a data element inside a cluster is calculated by a

distance function to the center of the cluster, called centroid. To improve the quality of

the clusters, the position of the centroid is changed during different iterations, trying

to minimize the intra-cluster distance and maximize the inter-cluster distance as an

objective function, that is, maximize similarities and minimize dissimilarities (ALAM et al.,

2014).

For discovering the underlying structure of unlabeled data objects, prior knowl-

edge about the data can be used in the form of labels or constraints to extract value, as

ignoring it may result in drawing irrelevant information for the user (DINLER; TURAL,

2016). For this work, we have used the vehicle’s specification as information to help on

what to expect and investigate from clusters’ outputs, such as knowing what weight the

vehicle is built to carry.

For this particular work, partitional methods are the focus. From hierarchical

clustering, Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN) was implemented on the initial testing stage of the work and did not perform

well within the range of number of clusters that we are interested in, that is from 2 to 10

clusters, having density problems on recognizing few number of clusters. So, we have

decided to guide the work towards partitional methods, which have returned good results

with reasonable number of clusters. According to Pinto and Engel (2015), Gaussian

Mixture Models have time complexity 𝑂 (𝑁𝐾𝑑3), where N is the number of samples, K

is the number of Gaussian components (clusters) and D is the number of dimensions.

The high time complexity makes the algorithm prohibitive for high-dimensional tasks
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and thus of limited use.

The algorithms chosen were: K-means, for this being the most important parti-

tional method; Fuzzy C-means, that stands out as one of most widely used soft-clustering

method; and Self-Organizing Maps, that is a neural network technique able to give a

spatial grouping with different base-method than the other ones (LEE; YUN, et al.,

2019; MELIN et al., 2020). The hyper-parameters for these algorithms were adjusted

empirically.

2.4.1 K-Means

K-means clustering was proposed by Macqueen (1967) and is the superior

technique and one of the foundations of the partitional approaches (JAIN; MURTY;

FLYNN, 1999). The algorithm divides the data set creating convex clusters, which are

clusters that, basically, all straight lines between data points within it lie within the cluster.

The data is divided into pre-defined K clusters in K-means with a distance

measure calculation. The clusters centers are as far as possible, and each data point

within a cluster is most similar to each other as possible. The algorithm starts by assigning

each data to a particularly close cluster centroid; then, new centers are calculated

considering its points. This process repeats until the centroids remain unchanged in

successive iterations or a stop condition is reached, the number of iterations, time,

or limitation imposed. However, it is essential to note that the first cluster centroid is

positioned randomly and then updated successively after the distance calculation to each

data point has been calculated. Partitional approaches are efficient, but the randomness

of the initialization, along with the need to specify the number of clusters in advance,

affects the quality of the solution that so depends on the domain knowledge (ALAM et al.,

2014). These are significant factors that can impact the performance of the algorithm

(REDDY; VINZAMURI, 2018).

K-means is well known for converging fast to local optimum, having its results

depending even more on the initialization process (the positioning of the centers). To

overcome the high dependency, the algorithm should be initialized with different sets of

initial centers for multiple iterations, randomly or not – i.e. using initialization heuristic

with searching for a good set of initial centers (CELEBI; KINGRAVI, 2015). Al-Shboul

and Myaeng (2009), for instance, use a Genetic Algorithm – a bio-inspired evolutionary
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algorithm – to solve that dependency problem by finding the best initialization parameter.

Another alternative to avoid poor local solutions that might have few points or empty

clusters is adding constraints of minimum points in it. That can be applied to data sets

that have 10 or more dimensions, and it is desired 20 or more clusters (BRADLEY;

BENNETT; DEMIRIZ, 2000).

The algorithm, for a given dataset 𝑋 ⊂ R𝑑, aims to minimize the objective

function Φ, called Sum of Squared Error or inertia, shown in Equation 1, where 𝑋 (𝑧) =

{𝑥 ∈ 𝑋 : 𝑧 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧∈𝑍 ∥𝑥 − 𝑧∥2}, and produce a set of cluster centers 𝑍 = {𝑧1,...,𝑧𝐾}.

After initializing, each center 𝑧 ∈ 𝑍 is updated following Equation 2, and then each 𝑋 (𝑧)

assignment is updated using the proximity or similarity method defined (MALLE, 2021).

Φ =
∑︁
𝑧∈𝑍

∑︁
𝑥∈𝑋 (𝑧)

∥𝑥 − 𝑧∥2 (1)

∀𝑧 ∈ 𝑍 : {𝑧 :=
1

|𝑋 (𝑧) |
∑︁
𝑥∈𝑋 (𝑧)

𝑥} (2)

The algorithm convergence towards a minimum is proofed by the fact that 𝑐 ∈ R𝑑

minimizing ∑
𝑥∈𝐶 ∥𝑥 − 𝑐∥2 is the center of cluster 𝐶, for any subset that 𝐶 ⊂ 𝑋. When

the algorithm is uniformly randomly initialized, there is no guarantee of closeness to the

global optimum, given the objective function (MALLE, 2021).

To deal with the initialization problem of falling into local minima, K-means was

executed 20 times with different centroid seeds. The best output in terms of the objective

function result, which is the distance between each data point to its centroid, was picked

as the solution of the run.

The K-means algorithm can be summarized in the basic steps shown in the

pseudocode 1. A single iteration of K-means has a time complexity equal to 𝑂 (𝑑𝑁𝐾),

where 𝑁 is the number of samples, 𝐾 is the number of clusters, and 𝑑 is the number of

dimensions (DINLER; TURAL, 2016).

Algorithm 1 – K-Means
Require: 𝐾 // Number of clusters defined
Ensure: 𝑋 = {𝑥1,𝑥2,...,𝑥𝑁 } // Set of elements

1: Assign initial position for clusters center 𝑧1, 𝑧2, ...𝑧𝐾
2: while Convergence criteria is not met do
3: Assign 𝑥𝑖 to the closest center of 𝑍
4: Calculate new mean for each cluster center
5: end while

Source: Mohd et al. (2012).
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2.4.2 Fuzzy C-Means

Hard clustering is the clustering method that assigns each data point to one, and

only one, of the clusters, assuming that boundaries between the clusters are well-defined.

However, real data sets most likely do not have very defined boundaries. They might be

fuzzy, requiring a more nuanced analysis of the object’s affinity to the clusters (GATH;

GEVA, 1989).

The Fuzzy C-Means (FCM) algorithm was first introduced by Dunn (1973), who

highlights that it can deviate less easily to uninteresting locally optimal partitions. That

algorithm was improved principally by the work of James Bezdek (1981).

Fuzzy sets are defined by indicator functions, in which case they are called

membership functions. On hard clustering, it can be said that the data is assigned to

the cluster with a degree of membership equal to one, as presented on the indicator of

Equation 3, which presents the fuzzy partition matrix. On Fuzzy C-Means, that indicator

can have continuous values in between the interval [0,1]; that is, each data point can

belong to more than one cluster with a given membership degree (GATH; GEVA, 1989;

LI; CHENG; LIN, 2008).

𝐼𝑍 𝑗 (𝑥) =


1 if 𝑥 ∈ 𝑍 𝑗
0 if 𝑥 ∉ 𝑍 𝑗

(3)

According to Gath and Geva (1989), there are three major difficulties during

fuzzy clustering of real data:

• The clusters number can not always be pre-defined, having to find a cluster

validity criterion to determine the optimal number;

• Initial guesses have to be made, as the character and location of centroids

are not necessarily known a priori;

• There is much variability in cluster shapes, sizes, and variations in densities

in each cluster.

The algorithm, given a dataset 𝑋 ⊂ R𝑑, with a number of centers 𝐾 ∈ N and a

hyperparameter 𝑚 > 1 , 𝑚 ∈ R, tries to minimize the objective function 4 producing a set

of centers 𝑍 = {𝑧1, ..., 𝑧𝐾} with corresponding membership functions `1, ..., `𝐾 (MALLE,

2021).
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Φ(`1,..., `𝐾 ,𝑧1, ...,𝑧𝐾) =
∑︁
𝑥∈𝑋

𝐾∑︁
𝑗=1

` 𝑗 (𝑥)𝑚 | |𝑥 − 𝑧 𝑗 | |2 (4)

Knowing that there is the condition ∑𝐾
𝑗
` 𝑗 = 1 and applying a Lagrange multiplier,

it is found that repeating the redefinitions 5, that update each 𝑧 𝑗 , 𝑗 ∈ {1, ..., 𝐾} to become

the ` 𝑗 -weighted center of 𝑋, and 6, that updates each ` 𝑗 , 𝑗 ∈ {1, ..., 𝐾}, provides a local

minimum of Φ as an output (MALLE, 2021).

∀ 𝑗 ∈ {1, ..., 𝐾} : {𝑧 𝑗 :=
∑
𝑥∈𝑋 ` 𝑗 (𝑥)𝑚𝑥∑
𝑥∈𝑋 ` 𝑗 (𝑥)𝑚

} (5)

` 𝑗 (𝑥) :=
[∑𝐾

𝑘=1

(
| |𝑥−𝑧 𝑗 | |
| |𝑥−𝑧𝑘 | |

) 2
𝑚−1

]−1
(6)

The hyperparameter 𝑚 can be called fuzzifier since it controls how fuzzy the

clustering will be. From that, it can be assumed the asymptotic results that, for 𝑚 → ∞,

the fuzziest state, all ` 𝑗 are equal, and the representatives coincide at the center of 𝑋;

and that, for 𝑚 → 1, the FCM returns into a K-Means, where the membership functions

give 3. According to Bezdek, Ehrlich, and Full (1984), the useful range of 𝑚 seems to

be close to [1, 30] and, for most data, 1.5 ≤ 𝑚 ≤ 3.0 gives good results. For this study it

was set 𝑚 = 2.

The Fuzzy-c-means algorithm can be summarized in the basic steps shown

in the Algorithm 2. A single iteration of FCM has a time complexity equal to 𝑂 (𝑑𝑁𝐾2),

where 𝑁 is the number of samples, 𝐾 is the number of clusters, and 𝑑 is the number of

dimensions (KUMAR; SIROHI, 2010; KOLEN; HUTCHESON, 2002).

Algorithm 2 – Fuzzy C-Means Algorithm
Require: 𝐾 // Number of clusters defined
Ensure: 𝑋 = 𝑥1,𝑥2,...,𝑥𝑁 // Set of elements

1: Assign initial position for clusters center 𝑧1, 𝑧2, ...𝑧𝐾
2: while Convergence criteria is not met do
3: Update membership matrix with Equation 6
4: Calculate new cluster centers with Equation 5
5: Calculate the new objective function with 4
6: end while

Source: Alia, Mandava, and Aziz (2011).
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2.4.3 Self-Organizing Map

The Self-Organizing Maps (SOM) is a neural network model introduced in the

1980s by Kohonen, that is adjusted using unsupervised learning (KOHONEN, 2001).

Mostly, the SOM is applied for pattern recognition, but it can also be applied as unsuper-

vised learning and dimensionality reduction (BAÇÃO; LOBO; PAINHO, 2005).

SOM, or also Kohonen neural network, is a good method to analyze and visualize

high dimensional, multivariable data, and also when there is a significant amount of

unknown values, being able to learn and cluster the data, recognizing different patterns

(JUNTUNEN et al., 2013; ALHONIEMI et al., 1999). This method has advantages when

it becomes of dealing with non-linearity of a system, where there is noisy, irregular or

missing information, and can be easily and quickly used with visualization resources

(HONG; ROSEN, 2001).

The SOM network combines an input layer and competitive layer of processing

neurons, which is normally organized as a two-dimensional grid of neurons or cells

arranged on a rectangular or hexagonal sheet. A regular 𝑀 = 𝑚×𝑛 neuron matrix, where

𝑚 = 𝑛, is presented in Figure 2. The 𝑚2 neurons map a high-dimensional input vector

𝑋 (𝑡) = [𝑥1(𝑡),𝑥2(𝑡),...,𝑥𝑁 (𝑡)] ∈ R𝑑 into a two-dimensional plane, but through different

weight vectors 𝑤𝑖 (𝑡) = [𝑤1(𝑡),𝑤2(𝑡),...,𝑤𝑊 (𝑡)] ∈ R𝑑, with size 𝑊 = 𝑀 × 𝑑, (ZHANG; LI,

1993). Each input 𝑥𝑖 is connected to each neuron in the matrix, while each synaptic

weight 𝑤𝑖 𝑗 is connected to the 𝑖th input component and associated to the 𝑗 th neuron.

The algorithm progresses in two stages, the similarity matching phase and

weight adaptation phase. In the beginning, weights are randomly defined, a first pattern

for the input nodes is introduced, and then the euclidean distance between the input and

the weights associated with the output are calculated. The neuron 𝑤∗ with the shorter

distance is chosen, along with its geographic neighborhood 𝐵(𝑤∗), as according to

Equation 7. The input weights of the chosen node and its neighbors are updated following

the Equation 8, where 𝛼(𝑡) is the learning rate function that decreases exponentially

over the iterations, as presented in Equation 9, being 𝛼0 the initial learning rate set

and 𝑇 the number of iterations defined. The function that defines the neighborhood

order 𝐵(𝑡), given an initial neighborhood topology 𝑏0, is presented in Equation 10

(GHASEMINEZHAD; KARAMI, 2011).



39

Figure 2 – Basic structure of SOM neural network

Source: Ghaseminezhad and Karami (2011).

𝐷𝑚𝑖𝑛 (𝑡) = 𝑚𝑖𝑛{𝐷𝑖 (𝑡)} = 𝑚𝑖𝑛
{∑︁ (

𝑥 𝑗 (𝑡) − 𝑤𝑖 𝑗 (𝑡)
)2
}

(7)

𝑤𝑖 (𝑡 + 1) = 𝑤𝑖 (𝑡) + 𝛼(𝑡) × (𝑥 − 𝑤𝑖 (𝑡)),∀𝑖 ∈ 𝐵 𝑗 (8)

𝛼(𝑡) = 𝛼0𝑒
−𝑡
3𝑇 (9)

𝐵(𝑡) = 𝑏0𝑒
−𝑡
3𝑇 (10)

The SOM algorithm can be summarized in the steps shown in the Algorithm

3. A single iteration of SOM has a time complexity equal to 𝑂 (𝑀𝑑), where 𝑀 is the

neuron matrix size 𝑀 = 𝑚 × 𝑛 and 𝑑 is the number of dimensions of the input vector 𝑋

(MORAES et al., 2012).
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Algorithm 3 – Self-Organizing Map Algorithm
Require: 𝐾 // Number of clusters defined
Ensure: 𝑋 = 𝑥1,𝑥2,...,𝑥𝑁 // Set of elements

1: Create initial set of neuron prototypes 𝑊 = 𝑤1, 𝑤2, ...𝑤𝑊
2: while Convergence criteria is not met do
3: Select 𝑥 ∈ 𝑋 randomly
4: Get 𝑤∗ with shorter distance with Equation 7
5: for all 𝑤 ∈ 𝐵(𝑤∗) do
6: Updates 𝑤 with Equation 8
7: end for
8: Decrease learning rate 𝛼 according to Equation 9
9: end while

Source: Günter and Bunke (2002).

2.5 Evaluation Metrics

Evaluation methods help compare the performance of different clustering al-

gorithms and determine the optimal number of clusters on algorithms that do not have

an internal estimation. It is often unclear which quality index to use in which case,

since there is no unifying protocol for clustering evaluation (TOMAŠEV; RADOVANOVIĆ,

2016).

In general, the cluster number is unknown, but validity indices can be used to find

the best number. In the literature many indices had been proposed, such as Silhouette

Width (SW), Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC),

Dunn’s index (DI), Davies-Bouldin Index (DB), Calinski and Harabasz Index (CH), Gap

statistic, Generalized Dunn’s Index (DNg) and Modified Dunn’s index (DNs) (SINAGA;

YANG, 2020).

An estimator should exhibit low bias, the expected deviation from the true value,

and relatively low variance, which measures the deviation from the estimator value that

any data sampling is likely to cause. Analyzing a Bernoulli distribution, the variance

of the estimator decreases as a function of the number of examples in the dataset

(GOODFELLOW; BENGIO; COURVILLE, 2016).

While working with high-dimensional data, some problems arise, denoted by

Bellman (1961) as the "Curse of Dimensionality". The increase in dimensionality induces

an increase in the containing volume that leads to sparsity. It makes the data difficult

to handle and is harder to obtain reliable density estimates, requiring more data to

derive statistically sound estimates. Usually, not even the big datasets for large-scale

industrial applications have enough data to overcome these problems (TOMAŠEV;
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RADOVANOVIĆ, 2016).

Standard clustering methods designed for low-dimensional data can be applied

in conjunction with subspace methods to perform partitioning in lower-dimensional

feature subspace to perform well in many dimensions, since high-dimensional data

exhibit different properties than low-dimensional data. These methods include hybrid

approaches such as density-based techniques, K-means, and decision trees. Hubness-

based clustering has been successfully applied for high-dimensional clustering problems

like document clustering (TOMAŠEV; RADOVANOVIĆ, 2016).

A lot of internal validity indices were introduced in the late ’50s and ’60s as

clustering popularity grew, some of them as an objective function for pattern classification

methods (BALL; HALL, 1965; KRZANOWSKI; LAI, 1988). Gower (1967) compares

and evaluate the most renowned by the time, and even analyze ones derived by these

different methods, showing that the clustering criteria of all of those are defined in terms

of distance between centroids of clusters.

Determining the number of clusters 𝐾 is a cluster validity key problem. To get

the optimal number, 𝐾 is optimized by validity criteria. According to Zhao and Fränti

(2014), given a data set 𝑋 = 𝑥1,...,𝑥𝑁 , a clustering algorithm and a fixed range of number

of clusters [𝐾𝑚𝑖𝑛,𝐾𝑚𝑎𝑥], the optimal cluster number can be determined with the following

procedure:

• Repeat the clustering process for the number of clusters predefined from 𝐾𝑚𝑖𝑛

to 𝐾𝑚𝑎𝑥;

• With the clustering results, calculate index values with validity methods;

• Select the 𝐾 that is the best result according to criteria: minimum, maximum,

or knee point;

• Use that with external information, that not feeds the model, to compare and

validate.

The maximum and minimum values criteria are more straightforward methods.

However, when using a knee, or inflection, that process can be called the Elbow Method,

which essentially is the scan for the number of clusters that increase no longer returns

much better results for the validity index analyzed. That inflection point resembles an

elbow, so giving the method’s name. Some methods help to find the knee point, such as

the L-method, which checks for the closest boundary between the pair of straight lines

that fit the curve (ZHAO; FRÄNTI, 2014).
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In this work, three internal validity indices were used to analyze clustering

methods: Sum of Squares Within Clusters (SSW), Sum of Squares Between Clusters

(SSB), and Silhouette Index (SI), presented in the following sections; and one algorithm

quality metric to evaluate the clustering algorithm’s performance: k-Fold Cross-Validation.

These are simple, direct, and practical methods, well known for determining the best

number of clusters (KRZANOWSKI; LAI, 1988). The first two serve as the base for

many quality indices and are more stable than min-max functions, according to Zhao

and Fränti (2014). SSW and SSB can also be used to maximize clustering initialization

performance (GUPTA; CHANDRA, 2019).

According to Tomašev and Radovanović (2016), other clustering quality indexes

recommended as an alternative are: Dunn’s index, Davies-Bouldin index, inverted

Davies-Bouldin index, Isolation index, 𝐶-index, 𝐶
√
𝐾 index, Calinski-Harabasz index,

Fowlkes-Mallows index, Goodman-Kruskal index, 𝐺+ index, Hubert’s Γ statistic, McClain-

Rao index, PBM index, Point-biserial index, RS index, Rand index, SD index, 𝜏 index.

Of these, Dunn’s index, inverted Davies-Bouldin index, Hubert’s statistic, PBM

index, and point-biserial index are notable for having the estimated clustering quality

increasing as increases the dimensionality of the data, becoming more precise. Also,

for many-dimensional problems, better handling of hub points may increase overall

clustering quality (TOMAŠEV; RADOVANOVIĆ, 2016).

2.5.1 Sum of Squares Within Clusters (SSW)

The first, Sum of Squares Within clusters (SSW), also known as Sum of Squared

Error, is an index that measures the squared average distance of all points within a

cluster to the cluster centroid, as shown in Equation 11, where 𝑁 are dimensional points,

𝑍 = {𝑧1,...,𝑧𝐾} are centroids of clusters, 𝐾 the number of clusters and 𝑧𝑖 is the 𝑖th cluster.

Since it is not a normalized metric, the more compact the cluster is, or the lower the

𝑆𝑆𝑊 value, the better because it tells that the cluster has few outliers and much more

similarities within the group. Also called "inertia", it can be recognized as a measure

of the internal coherence of clusters and works better with convex clusters, poorly

responding to elongated clusters or with irregularly shaped clumps (ZHAO; FRÄNTI,

2014).
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𝑆𝑆𝑊 =
∑︁
𝑧∈𝑍

∑︁
𝑥∈𝑋 (𝑧)

∥𝑥 − 𝑧∥2 (11)

2.5.2 Sum of Squares Between Clusters (SSB)

The second evaluation metric chosen is the Sum of Squares Between clusters

(SSB), which measures the average squared distance between all centroids by finding

the Euclidean distance from any cluster centroid 𝑧𝑖 to all the other cluster centroids. This

calculation is made for all the clusters and summed, as shown in the Equation 12, where

�̄� is the center of the entire data set, just as Equation 13 presents (ZHAO; FRÄNTI,

2014).

A considerable value indicates that clusters are spread out, as the opposite

shows that they are close to each other. For this metric, a higher value is desired, which

represents that the clusters have more external separation, that is, are more different

from each other.

𝑆𝑆𝐵 =
𝐾∑︁
𝑖=1

| |𝑧𝑖 − �̄� | |2 (12)

�̄� =
𝑁∑︁
𝑖=1

𝑥𝑖

𝑁
(13)

2.5.3 Silhouette Index

The Silhouette Index (SI) is a clustering quality score that gives punctuation

for each point and calculates the final score as an average of the point-wise quality

estimates. As shown in Equation 14, each point-wise estimate for an 𝑥𝑝𝜖𝑧𝑖 in space is

derived from 𝑎𝑖,𝑝 e 𝑏𝑖,𝑝, presented in Equation 15, which respectively are the average

distance to other points within its own cluster and the minimal average distance to points

from other different cluster (TOMAŠEV; RADOVANOVIĆ, 2016).

𝑆𝐼 =
1
𝑁

𝑁∑︁
𝑝=1

𝑎𝑖,𝑝 − 𝑏𝑖,𝑝
𝑚𝑎𝑥(𝑎𝑖,𝑝,𝑏𝑖,𝑝)

(14)


𝑎𝑖,𝑝 =

1
|𝑧𝑖 |−1

∑
𝑥𝑞𝜖 𝑧𝑖 ,𝑞≠𝑝

𝑥𝑞 − 𝑥𝑝
𝑏𝑖,𝑝 = 𝑚𝑖𝑛 𝑗 𝜖{1...𝐾},𝑖≠ 𝑗 ( 1

|𝑧 𝑗 |
∑
𝑥𝑞 𝜖 𝑧 𝑗

𝑥𝑞 − 𝑥𝑝) (15)
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The time complexity of this index criterion is 𝑂 (𝑑𝑁2), which is a high demand

on computational cost, being a problem to scale to large data sets. To avoid problems

like lack of memory or exorbitant time to calculate it, there is the Simplified Silhouette

Index, which is an approximation of the standard Silhouette Index that uses intra-cluster

inter-cluster distances as distances to the respective cluster centroids. It can speed up sig-

nificantly the coefficient calculation, with overall time complexity of 𝑂 (𝑑𝑁𝐾) (TOMAŠEV;

RADOVANOVIĆ, 2016).

The usual construction of SI is not applicable directly to fuzzy partitions, once it

requires crisp cluster boundaries to compute average distances. SI can validate a fuzzy

partition after being defuzzified by setting the maximum membership degree to one and

the rest to zero. This practice discards cluster overlapping and is not the best way to

deal with the problem (RAWASHDEH; RALESCU, 2012).

However, Campello and Hruschka (2006) introduced an extension that integrates

within silhouettes the fuzzy values into an average silhouette-based index by computing

a weighted mean that weights each silhouette by the difference of the two highest fuzzy

membership values of the respective associated point. This reveal those regions with

high data densities, once it increases the importance of points concentrated in the vicinity

of the cluster and reduce the importance of objects that lie in overlapping areas. The

proposal is shown in Equation 16, where `𝑝𝑥 𝑗 and `𝑞𝑥 𝑗 are the first and second-largest

elements of the fuzzy partition matrix of the data point 𝑥 𝑗 , 𝑆𝐼𝑥 𝑗 is its Silhouette Index score

and 𝛼 is a weighting coefficient that levels the impact of the membership calculation

in the SI score. The particular case of 𝛼 = 0 results in 𝐹𝑆 = 𝑆𝐼, while increasing the

coefficient moves 𝐹𝑆 away from 𝑆𝐼, by reducing the relative importance of data objects

in overlapping areas, and also tends to reveal sub-clusters with higher data densities, if

they exist. In the present work, it was defined 𝛼 = 1, taking into consideration the work

of the index author.

𝐹𝑆 =

∑𝑁
𝑗=1(`𝑝𝑥 𝑗 − `𝑞𝑥 𝑗 )

𝛼 · 𝑆𝐼𝑥 𝑗∑𝑁
𝑗=1(`𝑝𝑥 𝑗 − `𝑞𝑥 𝑗 )𝛼

(16)

Overall, points around cluster centers have higher weights since they are closer

to cluster centers, while the opposite happens to distant or outliers points. Because

of that, when analyzing the difference between FS and SI results, we can see how

much overlapping the clusters have, since a high difference means that there is more
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overlapping data points. So, even not being thorough in considering overlapping regions,

that Fuzzy Silhouette (FS) calculation tends to return a fairer silhouette value than the

regular one for the FCM case.

2.5.4 k-Fold Cross-Validation

To evaluate the performance of fitted models, the prediction error calculation

is necessary. For that, cross-validation is widely used, which in case the k-Fold cross-

validation, from a computational standpoint, may be preferred (FUSHIKI, 2009). Other

procedures that can be mentioned are Resubstitution Validation, Hold-Out Validation,

Leave-One-Out Cross-Validation, Repeated k-Fold Cross-Validation (REFAEILZADEH;

TANG; LIU, 2016).

Using k-Fold cross-validation, a data set partition is formed by dividing it into 𝑘

non-overlapping equally, or nearly equally, sized subsets. Then, by taking the average

test error over 𝑘 trials, the test error can then be estimated. In the trial 𝑖, the 𝑖-th subset

of data is used as the test set, and the rest of the data is used as the training set

(GOODFELLOW; BENGIO; COURVILLE, 2016).

To track the performance of each learning algorithm for each fold, an evaluation

metric of accuracy needs to be determined. This will lead to 𝑘 values of the evaluation

metric that need to be aggregated, for example, by averaging or using these samples in

a statistical hypothesis test that shows which algorithm is superior. In data mining and

machine learning, the most used is a tenfold cross-validation, 𝑘 = 10, since making pre-

dictions using 90% of the data is a good percentage to be generalizable to the complete

data and measuring the accuracy of the rest 10% is acceptable, taking into consideration

that a statistically sound experimental design must provide for the algorithm performs

many independent measurements that are sufficiently sizeable (REFAEILZADEH; TANG;

LIU, 2016).

The k-Fold Cross Validation is also used to estimate the generalization error

of a learning algorithm when the data set is too small for a simple training/testing or

training/validation division to produce an accurate estimation of the generalization error

(GOODFELLOW; BENGIO; COURVILLE, 2016). The cross-validation method has

also been used for model selection, but a better estimate of prediction error does not

necessarily provide a better criterion for model selection (FUSHIKI, 2009).
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The cross-validation was first used as a clear statement on the work of Mosteller

and Wallace (1963) and was further employed as a means for choosing proper model

parameters by Geisser (1975) and Stone (1974). However, it was in the work of Larson

(1931) that the idea was originated, using one sample for regression and a second for

prediction.

2.5.4.1 Homogeneity Score (HS)

According to Rosenberg and Hirschberg (2007), to satisfy homogeneity, all

clusters of a clustering result may contain only data points members of a single class. The

distribution of class within each cluster must be inclined to a single class, resulting in zero

entropy. By examining the conditional entropy 𝐻 (𝐶1 |𝐶2) – presented in Equation 17 – of

the group distribution with identified classes 𝐶1 and clusters 𝐶2, it can be determined how

close a given clustering solution is to the ideal, wherein the perfectly homogeneous case

𝐻 (𝐶1 |𝐶2) is 0. However, the size of this value for not perfect situations depends on the

size 𝑁 (number of data points) of the dataset and the class sizes distribution 𝑛. That value

is then normalized by the maximum reduction in entropy available, 𝐻 (𝐶1), presented in

Equation 18. When the overall class distribution is equal to the class distribution within

each cluster, which means that the clustering brings no new information, the 𝐻 (𝐶1 |𝐶2)

is maximal and equals 𝐻 (𝐶1). Considering a degenerate clustering solution that there is

only a single class type, where 𝐻 (𝐶) = 0, the homogeneity is 1. When assigning each

data point to a different cluster, or simply when all clusters contain only members of a

single class, the 𝐻 (𝐶1 |𝐶2) is 0, and there is a perfectly homogeneous clustering.

𝐻 (𝐶1 |𝐶2) = −
|𝐶2 |∑︁
𝑘=1

|𝐶1 |∑︁
𝑐=1

𝑎𝑐𝑘

𝑁
𝑙𝑜𝑔

𝑎𝑐𝑘∑|𝐶1 |
𝑐=1 𝑎𝑐𝑘

(17)

𝐻 (𝐶1) = −
|𝐶1 |∑︁
𝑐=1

∑|𝐶2 |
𝑘=1 𝑎𝑐𝑘

𝑛
𝑙𝑜𝑔

∑|𝐶2 |
𝑘=1 𝑎𝑐𝑘

𝑛
(18)

To make the Homogeneity Score (HS) adheres to the convention of 1 being the

desired value and 0 undesirable, the homogeneity is defined in Equation 19.

𝐻𝑆 =


1 if 𝐻 (𝐶) = 0

1 − 𝐻 (𝐶 |𝐾) |)
𝐻 (𝐶) else

(19)
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Since in this work is made an unsupervised approach, not having the true labels

to identify class types, we have considered the data trained with 100% of it as the true

class (𝐻 (𝐶1)) and the k-Fold trained data as the clustering result 𝐻 (𝐶2). The final HS is

calculated as an average of the obtained homogeneity score of the 𝑘 trials. With this, we

can measure the consistency of each algorithm on returning coherent clustering given

non-trained data. This is important since the size of the data sets are subject to constant

changes while new vehicles are introduced to them. The lower are the values presented

in this index, the more it will be necessary to retrain the data set as it increases.

2.5.5 Coefficient of Variation

To analyze the dispersion of the solutions in terms of the evaluation metrics

proposed, the Coefficient of Variation (CV) is measured for every number of cluster

𝐾 tested in the algorithms. With the CV we are able to see the extent of variability in

relation to the mean of the result, where the higher the CV, the greater is the dispersion.

The CV is presented in Equation 20, where 𝑆𝐷 is the standard deviation and 𝑀

is the mean of the input, which in this case are the results for each metric running 10

times for every number of cluster K. So, for example, when 𝐾 = 4, every algorithm is

executed 10 times, returning 10 values for every metric. Then, for each metric, SSW

for instance, is calculated the CV of the 10 results found. Finally, these CVs results are

presented in a table, where the dispersion and consistency of each algorithm result are

discussed.

𝐶𝑉 =
𝑆𝐷

𝑀
(20)
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3 MATERIAL AND METHODS

This chapter will describe all the development of algorithms and methods, with

examples and explanations. The chapter presents the methodologies employed, the

models implemented, error analysis, and comments. All the algorithms were imple-

mented and executed on Python 3.9 using available libraries (PEDREGOSA et al., 2011;

DIAS, 2019).

Aimed at achieving the objectives defined, the following steps have been estab-

lished:

• To review the literature on the subject;

• To treat, normalize and cluster the data sets using the methods researched;

• To compare the results found using plots and figures, highlighting the bests

results for each parameter;

• To approve or disapprove proposed methods;

• To understand the impact of the work and what contributions it made.

Fayyad, Piatetsky-Shapiro, Smyth, et al. (1996) call Knowledge Discovery and

Data mining (KDD) the process of automatically searching large volumes of data for

previously unknown, but exciting and informative patterns, using modern information

exploration techniques, but also statistics, machine learning, and pattern recognition

(ALAM et al., 2014). Analyzing the data from various angles and categorizing and

summarizing it are the basic principles of data mining (SINGHAL; JENA, 2013).

The KDD process, presented in Figure 3, starts with data selection, specifying the

scope of the data. Then it is analyzed and preprocessed to enhance its reliability, remove

irrelevant data, handle missing values, and often remove outliers observations. In the

third phase, it is transformed, including sampling and feature selection. The transformed

data then is exploited by data mining methods and post-processed, extracting informative

patterns, such as clusters, classification and association rules, sequential patterns, or

prediction models. Finally, the interpretation and evaluation of the results are made.

Before starting building any ML models, it is recommended to understand the

data entirely, the goals of the project, and how it will be deployed, considering any

limitations that need to be addressed and what has already been done in the research

field. Talking to domain experts, surveying the literature, and exploring the data can

help. Looking at the data is crucial since it can give insights to help model. However, it
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Figure 3 – Illustration of KDD process

Source: Alam et al. (2014)

is even more critical that any not tested or untestable assumptions that eventually are

made do not feed into the model. Also, the data scientist should avoid looking closely

at any test data in the initial exploratory stage, because, consciously or unconsciously,

these assumptions made can limit the generality of the model (LONES, 2021).

For this project, the data path can be resumed in the Figure 4. A database is fed

with informations constantly measured on vehicles, where we can extract some of them,

such as the slope data that each vehicle has been through. This data set is cleaned

and normalized to ensure quality, to then be clustered correctly. For the slope data set

exemplified, the proposal is to change a ruled-based method named GTA Classification

to a machine learning method with the aid of clustering evaluation techniques.

3.1 Data preprocessing

Real-world data are primarily dirty, incomplete, and noisy. Incomplete in terms of

lacking attributes, values, or attributes of interest; noisy on containing errors, outliers, and

inconsistencies on names or values; and dirty for having hardware, software, or human

errors, as data entry errors may occur. Missing values, impossible data combinations, of

the range values are problems that can produce misleading results. Data preprocessing
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Figure 4 – The whole data path

Source: Own authorship (2022).

is the way to solve those problems with cleaning, normalization, transformation, feature

extraction, feature selection, etc., delivering a final and clean training set (SINGHAL;

JENA, 2013). Notably, preprocessing can be very helpful in image processing since,

despite the extra computational complexity cost, it can alleviate the deteriorating effects

of inherent artifacts (JOSEPH; OLUGBARA, 2022).

According to Singhal and Jena (2013), data preprocessing can be divided into

a few steps: Data cleaning, Data integration, Data transformation, and Data reduction.

Cleaning, the first step, is removing incorrect values and checking the consistency of

the data. With the dirty removed, data integration is the step to combining the data

from databases, files, and different sources. Then, in Data transformation, the data is

modified to fit the output system. Finally, the last step is to reduce the data to a smaller

size but with the same analytical results. An additional step inside the Data reduction

that can be mentioned is the data discretization, which refers to converting or partitioning

continuous attributes to discretized, which is useful when creating probability mass

functions.

Considering certain independent variables that have little or zero effect on the

dependent variables and have no importance for the data itself, it is wise to remove

them from the model as it is bound to increase the cost of data collection observation

and, therefore, model application. Applying feature extraction can bring cost efficiency,

paying with a decline in the accuracy of estimation and prediction (YANG et al., 2018).

According to Han, Kamber, and Pei (2012b), data normalization attempts to

give equal weight to attributes from a feature. It comes in handy for classification



51

algorithms that involve neural network or distance measurements like clustering and

nearest-neighbor classification. In practice, for example, the normalization process on

distance-based methods can help prevent attributes that have initially large ranges from

outweighing those with smaller ranges; also, normalizing the input for neural network

back-propagation algorithm for classification mining will help speed up the learning

phase.

In general, normalization is an essential process of data mining and is very

useful when there is no prior knowledge of the data. Gavali and Banu (2019) answer the

question "why normalization should be performed" by exemplifying that this is related to

activation functions as, for example, a sigmoid function that makes an input value range

from 0 to 1 as output. According to Patel and Thakral (2016), a normalized data needs

lesser number of iteration and offers better outcome compared to non-normalized data,

in most of the cases.

Some normalization techniques are Linear normalization (also called linear

scaling or Min-Max), which is used when the feature is close to a uniform distribution

across a fixed range; Clipping, which is suitable to remove extreme outliers; Log Scaling

or decimal scaling when the feature is conformed to power-law; Z-Score, useful when the

distribution does not contain extreme outliers (DEVELOPERS, 2021; AKANBI; AMIRI;

FAZELDEHKORDI, 2015; JAVAHERI; SEPEHRI; TEIMOURPOUR, 2014).

3.2 The addressed datasets

3.2.1 Slope

The first data set to be treated refers to road slope conditions for nearly, 70000

vehicles. The data set has years of storage, tracking all the road inclination that vehicles

have been through. With that data clustered, it is expected to see the different environ-

ment applications of the vehicles, which, intertwined with other information, can deliver

excellent knowledge of the usage and product development. Nevertheless, to work with

this data, some preprocessing must be done.

The data set has 32 features, which represent the number of kilometers spent

on each range of inclination, that varies from the range [−∞,−20%], in dimension 1, to

[−1,0%], in dimension 16; and from [0,1%], in dimension 17, to [20%,∞], in dimension
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32. That is, the negative ranges, dimension 1 to 16, are the same, in module, as the

positive ranges, dimension 17 to 32, as presented in the Table 1.

Table 1 – Slope dimensions
Very high slope High slope Medium slope Low slope

Negatives 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Positives 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

Source: Own authorship (2022).

The first job is to clean the data and eliminate rows with empty values. After, the

data is transformed into a tabular shape, where each row is a vehicle and each column

a feature. To better comprehend the data, each feature value 𝑣𝑖 is then transformed

to a percentage of the total driving distance, following the Equation 21, where 𝑑 is the

number of dimensions. In the end, for every vehicle vector, each of the attributes is

represented as its percentage of the total travelled distance; that is, each data point is

turned into a weight representation.

𝑣𝑖 =
𝑣𝑖∑𝐷
𝑖
𝑣𝑖

(21)

In this work, a Min-max normalization is performed. That method executes a

linear transformation on the data, preserving the relationships between the original data

values. The normalization is presented on Equation 22, where 𝑚𝑎𝑥(𝑋𝑖) and 𝑚𝑖𝑛(𝑋𝑖) is

respectively the highest and lowest value for each 𝑖 attribute (dimension) in the data set

(HAN; KAMBER; PEI, 2012b,a).

𝑥𝑖 =
𝑥𝑖 − 𝑚𝑎𝑥(𝑋𝑖)

𝑚𝑎𝑥(𝑋𝑖) − 𝑚𝑖𝑛(𝑋𝑖)
(22)

As a result, a complete normalized data set is ready to be clusterized. In the

figure 5, it is shown an example of a final normalized vehicle row, where in the X-axis are

the dimensions, each one an interval of inclination, and in the Y-axis are the percentage

of the total traveled time. This vehicle presented, for example, around 15% of the traveled

distance in the slope dimension 15 and 16, which are the flat intervals -1% to 0% and

0% to 1%.

The data is then submitted to the clustering process. At that stage, the data is

clusterized with 𝐾 clusters varying from 2 to 10, so that an Elbow Curve can be used to

evaluate the algorithms used, K-Means, FCM and SOM. Those and other results are

presented in the next chapter.
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Figure 5 – Example of a vehicle’s slope vector

Source: Own authorship (2022).

3.2.1.1 Correlation analysis

Once studying the data, we’ve seen that vehicles behave similarly in the same

negative and positive ranges, i.e. [-1%, 0%] and [0%, 1%] (dimension 16 and 17). The

individual data as a whole, just as shown in figure 5, may look horizontally mirrored in

the center of X-axis, or, looking at the table 1, in between dimension 16 and 17, so that

each relative positive and negative dimension would behave the same way.

To verify this assumption, a correlation analysis is made. If the hypothesis is

proven, we can sum each related dimension values, which will reduce dimensionality

from 32 to 16. It can help the performance of clustering algorithms, since reducing

dimensions avoid the curse of dimensionality problem (AGGARWAL; REDDY, 2013).

For this analysis, it was used the Pearson correlation coefficient (PCC), devel-

oped by Pearson (1895), to measure the linear correlation between two sets of data. It

will essentially measure the ratio between the covariance and the product of the standard

deviations of two variables 𝑎 and 𝑏, as presented in Equation 23, where 𝐸 (𝑎𝑏) is the

cross-correlation expectation between 𝑎 and 𝑏, presented in Equation 24, while 𝜎𝑎 and

𝜎𝑏 is the standard deviation of a random particle 𝑎 and 𝑏 (BENESTY et al., 2009). In

Equation 24, 𝑣1, ..., 𝑣𝑁 are the possible outcomes of a random variable 𝑣, and 𝑒1,...,𝑒𝑁
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are the respectively probability. 𝐸 (𝑎𝑏) is considered a weighted average of the 𝑣𝑖, given

their probabilities (weights) 𝑒𝑖, since it satisfy 𝑒1,...,𝑒𝑁 = 1 (BILLINGSLEY, 1995).

𝜌(𝑎,𝑏) = 𝐸 (𝑎𝑏)
𝜎𝑎𝜎𝑏

(23)

𝐸 (𝑎,𝑏) =
𝑁∑︁
𝑖=1

𝑣𝑖𝑒𝑖 (24)

Figure 6 presents the result of the PCC applied to the slope data set. In both

axis, X and Y are the dimensions that we are looking for correlation in between. In the

right of the graphic, there is the gradient color legend: red for high positive correlation

and blue for high negative correlation, while 0 is white for no correlation. A positive

correlation indicates that the two variables tend to move in the same direction, and a

negative correlation indicates that the variables tend to move in opposite directions. For

this study, we have considered the grades above 0.7 as high correlation, being these

labeled in the graph.

Analyzing the results, we see some areas of high correlation detected. The

first are dimensions that are side-by-side, which may have obvious correlation just as

no correlation happens when comparing a high inclination to a low inclination, as, for

example, 1 (very high inclination) with 15 (very low inclination). Also, we see a high

inverse correlation happening between dimensions 16 and 17, which are the closest to

0 % of inclination, with dimensions 10 to 15 and 18 to 23 that are medium and low, but

not the lowest, inclinations. That information means that vehicles that leaves very flat

terrains, decreasing the values in dimensions 16 and 17, mostly go to those pre-mid and

mid-slope levels, increasing the values in the respective dimensions, and vice versa.

This is important information to be analyzed further in the clusters.

The third area of high correlation is the region that we are interested in: the

relative positive and negative inclinations, 1 to 16 with 17 to 32. To better analyze this

region, marked in the Figure 7(a), we take a closer look as presented in the Figure 7(b).

With that, we see that the relatives dimension scores, in the diagonal, have very high

positive correlation, the majority above 0.95 of correlation.

With the confirmation of the hypothesis, we join the relatives dimensions, so

that we have 16. The new values for each new dimension are the sum of the values

of the previous dimensions. The example showed in Figure 5 would turn into the data
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Figure 6 – Pearson correlation of slope data set

Source: Own authorship (2022).

presented in Figure 8. In the next chapter, this transformed data set is then compared

with the original to finally confirm the gain on reducing the number of dimensions.

3.2.2 Speed

The second data set analyzed refers to speed log data. Different speed profiles

may come from distinct product specifications, from weight carried, from road inclination,

or just driving aspect. With that data set clustered, we are able to see closely which trucks

work on same speed conditions, or also, when placed in parallel with other specifications,

which truck works different from what is expected.

The data comes distributed in 20 ranges of speed, that start from [0 Km/h, 5

Km/h], in dimension 1, and end in [119 Km/h,∞], in dimension 20, as presented in

Table 2. The first position is the range that the vehicle is idle or starting it, then we have

the low speed ranges, medium speed ranges, high speed, and finally very high speed
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Figure 7 – Pearson correlation of slope data set zoom

(a) Region of interest

(b) Region of interest correlation score

Source: Own authorship (2022).
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Figure 8 – Example of a vehicle’s slope vector post dimensionality reduction

Source: Own authorship (2022).

dimensions. For every dimension, or range of speed, there are respective values of

percentage of time spent on that speed range, considered all the vehicle log.

Table 2 – Speed dimensions
Idle Low speed Medium speed High speed Very high speed

Dimension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Source: Own authorship (2022).

The first job is to clean the data and eliminate rows with empty values. After, the

data is transformed into a tabular shape, where each row is a vehicle and each column

a feature. To better comprehend the data, each feature value 𝑣𝑖 is then transformed

to a percentage of the total driving distance, following the Equation 21, where 𝐷 is the

number of dimensions. In the end, for every vehicle vector, each of the attributes is

represented as its percentage of the total travelled distance; that is, each data point

is turned into a weight representation. That is the input data for the problem. But,

before start clustering, a normalization stage must be done, scaling individual samples

to have a unit norm to make sure the data looks like standard normally distributed data,

which helps the clustering algorithm performance (HAN; KAMBER; PEI, 2012b,a). The

normalization is made with Min-max, presented in Equation 22.

As a result, a complete normalized data set is ready to be clusterized. No

processing of data reduction, feature extraction or selection was made since the most
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complete and precise data set is needed to predict the best clustering for each individual

in the group. In Figure 9, it is shown an example of a final normalized vehicle row, where

in the X-axis are the dimensions, each one an interval of speed, and in the Y-axis are

the percentage of traveled time in each range. This vehicle presented, for example, has

the mode in the dimension 10 with around 0.3 of value (already normalized).

Figure 9 – Example of a vehicle’s speed vector

Source: Own authorship (2022).

At the clustering stage, the data is clusterized with 𝐾 clusters varying from 2

to 10, so that an Elbow Curve can be used to evaluate the algorithms used, K-Means,

FCM and SOM. Those and other results are presented in the next chapter.

3.2.3 Gross Combination Weight (GCW)

The third data set analyzed refers to the logged data of the combined gross

weight carried by the vehicle. Different Gross Combination Weight (GCW) values may

vary by the truck’s own weight and the weight of the load, which can be grains, solids,

manufactured products, foods, etc. With that data set clustered, we are able to see

closely which trucks work with the same load condition.

The data comes distributed in 29 ranges of weight, that start from [0 T, 3.5 T],

in dimension 1, and end in [200 T,∞], in dimension 29, as presented in Table 3. Each
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dimension will have values of distance traveled in each referred GCW range, given the

vehicle’s travel distance. The region from 1st to 9th range has low weights such that,

most of the time, it can be considered that the values in these positions refer to empty

loads, that is, the weight of the truck only. Dimensions 10 to 12 are considered low

weight ranges. Dimensions 13 to 17 have ranges of medium weights, while 18 to 23 are

considered high weights. Dimensions 23 to 29 have been considered very high weight.

This initial classification is only an initial exploration step and should not be considered

as ground truth; even more, these are hard-thresholded limits that may differ for different

applications, although they are the general case scenario.

Table 3 – GCW dimensions
Empty Low

1 2 3 4 5 6 7 8 9 10
Low Medium High

11 12 13 14 15 16 17 18 19 20
High Very high -

21 22 23 24 25 26 27 28 29 -
Source: Own authorship (2022).

The first job is to clean the data and eliminate rows with empty values. After,

the data is transformed into a tabular shape, where each row is a vehicle and each

column a feature. To better comprehend the data, each feature value 𝑣𝑖 is transformed

to a percentage of the total driving distance, following the Equation 21, where 𝐷 is the

number of dimensions. In the end, for every vehicle vector, each of the attributes is

represented as its percentage of the total travelled distance; that is, each data point

is turned into a weight representation. That is the input data for the problem. But,

before start clustering, a normalization stage must be done, scaling individual samples

to have a unit norm to make sure the data looks like standard normally distributed data,

which helps the clustering algorithm performance (HAN; KAMBER; PEI, 2012b,a). The

normalization is made with Min-max, presented in Equation 22.

As a result, a complete normalized data set is ready to be clusterized. No

processing of data reduction, feature extraction or selection was made since the most

complete and precise data set is needed to predict the best clustering for each individual

in the group. In the figure 10, it is shown an example of a final normalized vehicle

row, where in the X-axis are the dimensions, each one an interval of GCW, and in the

Y-axis are the percentage of traveled distance in each range. This vehicle presented,
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for example, has the mode in the dimension 23 with a value close to 0.18 (already

normalized).

Figure 10 – Example of a vehicle’s GCW vector

Source: Own authorship (2022).

At the clustering stage, the data is clusterized with 𝐾 clusters varying from 2 to

10, so that an Elbow Curve can be used to evaluate the algorithms used, which are:

K-Means, FCM and SOM. Those and other results are presented in the following chapter.
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4 RESULTS AND ANALYSIS

This chapter presents the results of algorithms, and further analyses are made.

The results are presented following the sequence: SSW Elbow Curve, SSB Elbow

Curve, Silhouette, k-Fold Homogeneity, final metrics comparison, clusters average for

each algorithm, and clusters average comparison. For every algorithm presented in the

previous chapter, it is looked for the best number of cluster 𝐾 by varying it from [2, 10]

and analyzing the evaluation metrics.

4.1 Slope

For the slope data set, the results are compared with those obtained by the

classification method called GTA, which is built with extensive engineering knowledge

analyzing slope conditions, that is, with no machine learning method. This classification

clusters the data set into four groups: Flat, Predominantly Flat, Hilly, and Very Hilly. We

then try to relate these groups from the empirical classification with the clusters found

by the clustering algorithms and evaluate.

The results presented in the following sections are the ones got with the dimen-

sionality reduction proposed, since it has returned better results. The SSW and SSB

metrics can not be compared between data sets of different dimensional sizes, but the

Silhouette, which is actually the most important one to use as reference when comparing

validation performance, we are able to use. So, Graph 1 presents the silhouette result

for all the algorithms proposed, comparing the 16 dimension and 32 dimension data

sets. With the box plot, the median is represented as the center line of the box, while

the mean is the cross close to it. The top of the box is the upper quartile, the bottom

is the lower quartile, and outside of the box, in the top and bottom, are the respective

maximum and minimum of the data. By analyzing the data with this type of graphic, we

are able to see not only the mean, maximum and minimum, but also the deviation of the

data. For that, the closer the quartiles are from the median, less deviation there is in the

data.

Through the box plot, we can see that reducing the number of dimensions does

not degenerate the result and even give a better result. The mean silhouette score

increased from 0.45 to 0.51, while still increasing the maximum, minimum, and reducing
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Graph 1 – Silhouette comparison between original 32 dimension and transformed 16 dimension
data sets

Source: Own authorship (2022).

the quartiles sizes a bit.

4.1.1 Performance evaluation

Some metrics were used to evaluate each algorithm’s performance to choose

the best number of clusters that describe the slope data set. To have some greater

insight over each metric, they are presented as an elbow curve, which is, changing the

number of clusters, in this case, from 2 clusters to 10 clusters. The results presented

below are the average got after 10 iterations.

4.1.1.1 SSW

For the first metric, the SSW (Sum of Squares Within Clusters) that is presented

in the Graph 2, the lowest value is supposed to be the best result, which is the tightest

cluster. However, on this analysis, it is sought for the inflection point. This point means

that increasing the number of clusters does not bring huge gains on the current metric

further from this point. Crossing that information with the other metrics will give a better
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view of the best number of clusters for the problem.

Graph 2 – SSW Slope Elbow Curve

(a) SSW Elbow Curve

(b) Adjusted SSW Elbow Point

Source: Own authorship (2022).

The SOM methodology (green line) returned the best result for every cluster

number 𝐾 compared with the other algorithms, with the K-Means in second place. FCM

(red line) has a close result to K-Means overall, but the GTA classification (cyan dot) –

which only classifies with 𝐾 = 4 – is far from the machine learning methodologies.
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Sometimes it is difficult to get a clear elbow point. To facilitate that, on Graph

2(b), two trend lines help indicate this value, where the inflection point is the cross of

the two lines. The first trend line is a straight line drawn from the first point of the elbow

curve, following the trend for at least 3 periods. The second trend line comes in the

opposite way, from the last point in the elbow curve, following backwards the elbow

curve for at least 3 periods, until it crosses the first line. With that we can locate the

virtual elbow point, the point of inflection of the tendency. Throught that method, for

K-Means and SOM, the elbow point could be considered 𝐾 = 5, as it is closer to that 𝐾.

For FCM the elbow point is 𝐾 = 4.

4.1.1.2 SSB

The second evaluation metric is the SSB (Sum of Squares Between Clusters),

which measures how far clusters are from each other, so the highest value is the best

result. A good SSB value says that the clusters are well defined. Just as in the SSW

analysis, two trend lines help indicating which is the best number of clusters. The results

are shown in Graph 3.

SOM again returned the best result for every cluster number 𝐾 compared with

the other algorithms. The FCM algorithm has often a close result to K-Means, but the

GTA classification – which only classifies with 𝐾 = 4 – is another time far from the

machine learning methodologies. Analyzing the elbow point with the help of trend lines,

the inflection point for K-Means and SOM can be considered 𝐾 = 5, while for FCM the

elbow point is 𝐾 = 4.

4.1.1.3 Silhouette

The third and most important metric for this study, Silhouette Index (SI), is an

internal validation measurement. It is a normalized score, from −1.0 to 1.0, which the

closer to 1, the better the data is classified. Figure 11 illustrates the results considering

the average SI score of the data set for each number of clusters 𝐾. For this index, SI

values from 0.5 to 1.0 are considered a good result (green region on the figure), from

0.2 to 0.5 a fair result (yellow region), and from −1.0 to 0.2 a poor clustering (red region)

(KAUFMAN; ROUSSEEUW, 2009).



65

Graph 3 – SSB Slope Elbow Curve

(a) SSB Elbow Curve

(b) Adjusted SSB Elbow Point

Source: Own authorship (2022).
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Figure 11 – SI Slope Elbow Curve

Source: Own authorship (2022).

When comparing all the algorithms, FCM returned the best result for most cluster

numbers except when 𝐾 = 3, which in case K-Means returned a better result. FCM for

every 𝐾 has SI above 0.5, which is considered a good result; K-Means algorithm results

from 𝐾 = 2 to 𝐾 = 6 are good results, higher than 0.5, but from 𝐾 = 7 to 𝐾 = 10 the SI

value fell to a consider fair result, from 0.2 to 0.5; and for GTA, with 𝐾 = 4, the SI value

lies between 0.2 and 0.5, standing for what is considered a fair clustering. SOM brings

good results only when 𝐾 = 2 returns a fair clustering.

The Silhouette Elbow Curve is not analyzed looking for an elbow point, but now,

crossing the information with the previous metrics, it is easier to pick which should be

the best number of clusters.

For FCM, SSW and SSB showed that a good clustering should have at least 4

clusters. Using the SI to validate that with 𝐾 = 4 or higher, the algorithm can return a

good clustering in terms of validity; the best 𝐾 for this method is 𝐾 = 4. That way, it is

ensured to have good SSB (separation) and SSW (compactness) values while choosing

the number of clusters that can better classify the data set.

Analyzing SOM and K-Means clustering, SSW and SSB presented that a good

clustering should have at least 5 clusters. Validating with SI, the best 𝐾 for these methods

is 𝐾 = 5 since it returns the best Silhouette result with the least, but sufficiently better,
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SSW and SSB.

4.1.1.4 Homogeneity

The last metric, k-Fold Homogeneity, is an algorithm performance consistency

validation. In the same way as the SI, it is a scaled score from 0 to 1.0, where 1.0 is a

perfectly homogeneous clustering. The results for each cluster are presented in figure

12.

Figure 12 – k-Fold Homogeneity Slope Elbow Curve

Source: Own authorship (2022).

The K-Means algorithm shows more consistency than the others when 𝐾 = 2 to 8.

FCM has more homogeneity when 𝐾 is 9 and 10. For the GTA classification method, as

it is a classification that follows the rules, it will return the same result for every iteration,

considering that this is an unsupervised clustering. Hence, using a k-Fold method, each

result is compared with another that will be the same result, so the k-Fold Homogeneity

result is always 1. For that, GTA has the highest consistency when 𝐾 = 4.

In the region that is understood to have the best 𝐾 number – 4 and 5 –, K-Means

has highest consistency, where, overall, the algorithms with more than 0.5 are considered

to have a good consistency.
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4.1.1.5 Coefficient of variation

In the Table 4, we can see how our algorithms have performed through 10

iterations each according to every metric for every number of clusters from 2 to 10. With

the CV calculation, we can see the mean variation for the performance measures.

In the K-Means algorithm, the CV values are very low, except for the HS, which

has values from 3.25% to 13.77%, which means that the grade for this score may vary a

bit more on a different initialization, while the others will remain very close to be the same

score always since the CV is close to zero. The K-Means problem of the randomness of

initialization that would affect the quality of the solution could be mitigated once, looking

at the SSW, SSB, and SI metrics, we had close to zero variation in the performance

results. This was done by executing 20 times with different centroid seeds in each

iteration and selecting the best solution in terms of distance between each data point to

its centroid. The algorithm, however, suffers a bit on the consistency of the HS metric,

which shows that its prediction error may vary but will not impact the performance quality.

For the FCM algorithm, the results for SSW, SSB, and SI are even closer to

zero, if not it. The CV is also very low for HS, varying from 0.95% to 2.30%. Therefore,

it is seen that FCM is less dependent on the initialization than K-Means and has more

performance consistency.

Analyzing the SOM CV results, we see that this algorithm suffered more in

performance consistency. Especially, the SSW CVs have values from 12.20% to 80.45%,

while SSB have values from 0.16% to 2.83%, SI from 3.10% to 7.61% and HS from

1.73% to 16.68%. SOM algorithm has more consistency problems with compactness

(SSW), mainly when it has 5 clusters or higher as the target, than the other algorithms.

In general, Table 4 presented an analysis of the consistency of algorithms for

quality measurements across many startups. FCM showed more consistency than the

others, less dependent on the initialization aspect.

4.1.2 Summary of results

Having a closer look at the results presented, Figure 13 compares each metric

evaluation value for GTA, K-Means, FCM and SOM, where it was understood to be the

best number of clusters.
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Table 4 – Slope Coefficient Variation table
K-Means FCM SOM

K SSW SSB SI HS SSW SSB SI HS SSW SSB SI HS
2 0.05% 0.03% 0.03% 8.95% 0.00% 0.00% 0.00% 1.58% 19.24% 2.83% 4.37% 16.68%
3 0.01% 0.01% 0.02% 10.17% 0.00% 0.00% 0.00% 1.64% 14.82% 1.65% 3.34% 8.16%
4 0.10% 0.03% 0.08% 13.77% 0.00% 0.00% 0.00% 2.30% 12.20% 0.76% 4.05% 6.14%
5 0.08% 0.01% 0.97% 11.05% 0.03% 0.66% 0.00% 1.40% 80.45% 2.16% 3.83% 2.69%
6 0.12% 0.02% 0.08% 11.54% 0.00% 0.00% 0.00% 1.07% 43.44% 1.70% 5.21% 3.02%
7 0.05% 0.63% 0.02% 11.59% 0.00% 0.00% 0.00% 0.94% 46.16% 0.52% 3.10% 2.66%
8 0.26% 0.03% 0.06% 5.39% 0.01% 0.20% 0.00% 1.12% 54.65% 0.78% 5.28% 3.07%
9 0.06% 0.56% 0.04% 9.72% 0.05% 0.52% 0.00% 1.02% 35.09% 0.40% 6.04% 1.73%
10 0.05% 0.47% 0.06% 3.25% 0.01% 5.95% 0.00% 0.95% 27.16% 0.16% 7.61% 4.37%

Source: Own authorship (2022).

For SSW, presented on a scale of red to green from worst to best, SOM with 5

clusters has presented the best result. For SSB, presented with the same color scale,

SOM with 5 clusters had the best result also. Regarding k-Fold Homogeneity, presented

on a scale of white to green from worst to best, GTA classification has the highest

homogeneity consistency. The lack of reproducibility by the ML methods, seen with that

Cross-Validation Homogeneity Score, means that this data set should be retrained more

frequently, according to the increase in the number of samples.

Moreover, for SI, following the previous color rule presented in Figure 11, the

FCM algorithm had the best results, but K-means also has a "good" result, above 0.5,

while GTA and SOM have considered "fair" result. The best SI score is from FCM with 4

clusters.

Figure 13 – Slope Detailed metrics comparison

Source: Own authorship (2022).

The SOM methodology has presented the most compact and distinct groups and

GTA the least. First, there should be a reminder that for FCM’s SSW, SSB, and k-Fold

Homogeneity, it is considered only the cluster with the highest membership value, that is,

the Hard C-Means way, since there is no specific calculation that can include the fuzzy

aspect the same way there is for SI, presented on equation 16 of the previous chapter.

It undoubtedly impacts the grade obtained for each index. Despite that disclaimer, FCM

algorithm had the best clustering performance when looking at the SI results, which

present the impact of the soft-clustering consideration on this data set. We can interpret
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that this data set has a lot of overlapping situations.

Before analyzing the centroids of the clusters, it is necessary to look into the

silhouette of each cluster for all algorithms, presented in Table 4.1.2. For GTA, the Flat

cluster has the highest SI score with 0.84, but the lowest, PFlat, has -0.01, which is a

lousy classification score. The FCM cluster with the highest SI score is the Flat, with

0.78, but VHilly has the lowest with 0.46, which is a "fair" score. K-Means, however, has

a much more equal score between clusters: the highest value is 0.53 for K4 and K5,

and the lowest is 0.51 for K2, all considered "good" classification. The highest cluster

of SOM has a SI of 0.54, and the lowest is 0.25. Even though FCM has the highest SI

score, the K-Means’ SI score has more consistency between clusters, which may impact

the classification of some samples.

Table 5 – Average silhouette of Slope clusters
GTA Average of SILHOUETTE FCM Average of SILHOUETTE
FLAT 0.84 F-FLAT 0.78
HILLY 0.43 F-HILLY 0.69
PFLAT -0.01 F-PFLAT 0.58
VHILLY 0.36 F-VHILLY 0.46
K-MEANS Average of SILHOUETTE SOM Average of SILHOUETTE
K1 0.52 S1 0.33
K2 0.51 S2 0.54
K3 0.52 S3 0.50
K4 0.53 S4 0.43
K5 0.53 S5 0.25

Source: Own authorship (2022).

4.1.3 Centroids of the clusters

To see how the clusters’ shapes are, a line graph shows the center of clusters,

represented as the mean value of members within the cluster for each dimension. In

this section, the results for 4 and 5 clusters will be presented since they showed to be

the best numbers of clusters.

For methods that have 4 clusters, we used the same labels as from the GTA

classification – Flat, Predominantly Flat (named "PFlat"), Hilly, and Very Hilly (named

"VHilly") – but with a prefix "K" for K-Means, "F" for FCM and "S" for SOM to differentiate

them. For methods presented with 5 clusters, it was not given any particular label, just

numbered from 1 to 5.
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Graph 4 presents the clusters’ centroids of the GTA classification method. In

the graph, the Y-axis is the percentage of time spent on the respective slope interval

presented on the X-axis.

The first cluster from top to bottom is the Flat cluster, represented by the cyan

color. It restricts data points that have a high presence on dimensions 14 to 16, that

are low inclinations, with an average peak of above 85% of a lifetime spent on the 16th

dimension, and never passed dimensions lower than the 9th, which are high inclinations.

Then, in the blue color, the Predominantly Flat (PFlat) has an average peak close to

55% on dimension 16 and will not have values on dimension 3 or lower, which are very

high slopes. The orange cluster is labeled Hilly, with an average peak close to 35% on

dimension 16, and will eventually have few values in high and very high dimensions.

The last, Very Hilly (VHilly) in purple color, with a peak around 25% on the flat dimension

16, will have lower values than the others on low and medium slopes but higher values

on high and very high slopes regions.

Graph 4 – GTA clusters average

Source: Own authorship (2022).

Graph 5 presents the average of clusters for FCM in the same color sequence

and suffix as GTA, but with the prefix "F" for each label. The F-Flat cluster centroid has

a dimension 16 value of 77%, lower than GTA’s. For the Predominantly Flat cluster,

F-PFlat, the peak on the 16th dimension is 45%, lower than GTA’s. The 16th dimension
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value for F-Hilly is 35%, close to GTA’s Hilly. For F-VHilly, which has a flat slope peak of

26%, which is also very close to the GTA VHilly.

Graph 5 – Slope clusters average from FCM with 4 clusters

Source: Own authorship (2022).

However, Graph 5 presents the average based only on the Hard C-Means part of

the method, considering only the cluster of highest membership grade for every vehicle.

With the membership grades, we can have deeper information on the clustering of a

sample, as presented in Graph 6, that has the membership values for the FCM clustering

of the vehicle presented previously in Graph 8. We see that this vehicle has 72% on

belonging to cluster F-VHilly, on purple, but also 23% of membership value in cluster Hilly

(orange), 4% in PFlat (blue), and 1% in Flat (cyan). Since this data set has more than 3

dimensions and cannot be spatially plotted, with membership values, in an overlapping

data set, we can detect outliers and to which clusters a data point is closest.

Graph 7 shows the average of the clusters found by K-Means, presented with

the same color sequence as GTA’s clusters. The first cluster, ordering from flattest to

steepest, is the K1 with a peak value on the 16th of 78%. The second cluster, K2, has a

peak of 47% on dimension 16, while K3 has a value of 35% on that same slope range.

K4 presented a value of 26% on that initial flat position. The new fifth cluster is a little bit

different from the others, with a high presence in the very hilly region, dimensions 1 to 7,

and the lowest of all clusters in the flat dimension 16 with 18%. This cluster could be
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Graph 6 – Example of membership grades of a vehicle in Slope data set

Source: Own authorship (2022).

a cluster only of vehicles working at very high elevation jobs, such as mine extraction

vehicles.

Graph 7 – Clusters average from K-Means with 5 clusters

Source: Own authorship (2022).

Graph 8 shows the centroid of the clusters found by SOM, presented in the

same color sequence. From flattest to steepest, the first cluster is the S1 with a peak

value on the 16th of 67%. The second cluster, S2, has a peak of 43% on dimension 16,

while S3 has a value of 36% on that same slope range. S4 presented a value of 29% on

that initial flat position. The new fifth cluster, just as K-means’, has a high presence in the

very hilly region, dimensions 1 to 7, and the lowest of all clusters in the flat dimension

16 with 21%, tracking those vehicles working at very high elevation jobs only.

For all algorithms, from the first to the fourth cluster, for dimensions 13 to 1,
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Graph 8 – Slope clusters average from SOM with 5 clusters

Source: Own authorship (2022).

they reverse the order of values seen in dimension 16: now, the highest value for each

dimension is from the steepest cluster, while the flattest has the lowest value. This

fact complements the initial correlation analysis, where we saw a negative correlation

for these points, mainly for dimensions 13 to 10, with the 16th dimension. For those

algorithms with a fifth cluster, that last one did not follow this rule, but it was noticed that

these clusters are a part of the others as a cluster of exceptional, very hilly situations.

Comparing similar clusters from different algorithms, the Flat for GTA is the

flattest of all, with a value of 87% on dimension 16, followed by K-means’ K1 with 78%,

FCM’s F-Flat with 77%, and SOM’s S1 with 67%. For PFlat, GTA has 55%, while the

others are close to each other with 43% to 47% (K2, F-PFlat, S2). Comparing the GTA

Hilly with K3, S3, and F-Hilly, all of them have a value close to 35% in dimension 16, just

as the VHilly with K4, S4, and F-VHilly, which have around 26%. We can see that, except

for GTA’s first and second flattest clusters, all of the clusters found by the algorithms are

close to each other in terms of the centroids.
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4.1.4 Vehicle distribution in clusters

Analyzing all the samples as a whole, we show in Graph 9 how the data set is

clustered for each algorithm.

For GTA in Graph 9(a), with 45.99%, HILLY had the most significant cluster and

was 2.062.16% bigger than FLAT, which had the lowest number of vehicles with 3.02%.

The HILLY cluster was followed by VHILLY, PFLAT, and FLAT in size. GTA’s Flat is very

restrictive since only a few vehicles could be classified as Flat, while the Hilly cluster

comprises more than half the population. PFlat and VHilly are clusters of very compact

size.

For FCM in Graph 9(b), with 40.74%, F-HILLY had the highest count of vehicles,

followed by F-PFLAT, F-VHILLY, and F-FLAT. F-HILLY was 355.70% bigger than F-FLAT,

which had the lowest number of samples, with 8.94% of the total. For FCM on these

graphs, it was considered for each vehicle only the cluster with the highest membership

degree for calculation purposes, transforming into the Hard C-Means result.

For K-Means in Graph 9(c), with 45.99%, K3 had the highest number of samples

and was 1.482.98% more prominent than K5, which had the lowest count, with 2.91%

of the total.

For SOM in Graph 9(d), with 30.27%, S3 had the highest number of vehicles

and was 361.79% bigger than S5, which had the lowest count, with 6.56%.

Analyzing average cases and some outliers, we could see that the classifications

made by the proposed methods generally make more sense with the reality than the GTA

classification made by engineering experience. Reducing the size of the Hilly population

and increasing the size of the others brought great benefits to the clustering and directly

impacted the Silhouette grade of the clustering methods. The K5 and S5 cluster become

a cluster of trucks that work mainly in mines and environments with more than 8%

of inclination; Very Hilly (or K4 and S4) clusters would include only trucks that spend

more time in the hilly and very hilly ranges, dimension 8 to 13, which are recognized

as mountain highways; Hilly (K3 and S3) turns into an intermediate cluster from Very

Hilly and Predominantly Flat; while Predominantly Flat is a cluster that describes an

environment that is mainly flat but sometimes crosses mountain highways; and the Flat

cluster has included mainly trucks that work inside cities or that work from one factory

to another close one. Vehicles that work through mountain highways are vehicles that
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Graph 9 – Slope clusters data set distribution

(a) Samples distribution in GTA clusters

(b) Samples distribution in FCM clusters

(c) Samples distribution in K-Means clusters

(d) Samples distribution in SOM clusters

Source: Own authorship (2022).
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transport production between ports and cities. With the GTA classification, we did not

have a clear definition since different applications were in the same cluster, as seen in

Graph 9(a), where the Hilly cluster is massive and Flat, too restrictive.

4.2 Speed

We did not have a non-ML method for the speed data set, so all methods are

compared using the elbow curve changing from 𝐾 = 2 to 𝐾 = 10.

4.2.1 Performance evaluation

Some metrics were used to evaluate the algorithm’s performance and choose

the best number of clusters that describe the speed data set. SSW, SSB, SI score, and

HS are presented, followed by their CVs and a summary of the evaluation metrics. The

centroids and the vehicle distribution of the clusters found by the best algorithm for each

method will be presented.

4.2.1.1 SSW

The SSW (Sum of Squares Within Clusters), presented in Graph 10, has the

lowest value as the best result, representing the tightest cluster. In this analysis, it is

sought for the inflection point, the point that, from it, increasing the number of clusters

will no longer bring huge gains. Crossing that information with other metrics will give a

better view of the best number of clusters for the problem.

The K-Means methodology (blue line) returned the best result for every cluster

𝐾 compared with the other algorithms, followed mainly by the FCM. To get the elbow

point, in Graph 10(b), two trend lines help indicate where the inflection point is across

them. The first trend line is a straight line drawn from the first point of the elbow curve,

following the trend for 5 periods. The second trend line comes oppositely, from the

last point in the curve (𝐾 = 10), following backward the elbow curve for 5 periods until

it crosses the first line. The increase from 3 to 5 periods, compared with the slope’s

elbow method, is because, in this case, the tendency change more smoothly and with 3

periods, the elbow point would be too far from the curve, losing the relationship with it.
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Graph 10 – SSW Speed Elbow Curve

(a) SSW Elbow Curve

(b) Adjusted SSW Elbow Point

Source: Own authorship (2022).
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With the virtual elbow point allocation, we see that the best number of clusters would be

with at least 𝐾 = 6.

4.2.1.2 SSB

The second evaluation metric is the SSB (Sum of Squares Between Clusters),

which measures how far clusters are from each other, so the highest value is the best

result. A good SSB value says that the clusters are well defined. As in the SSW analysis,

two trend lines help indicate the best number of clusters. The results are shown in Graph

11.

K-Means again returned the best result for every cluster number 𝐾 compared

with the other algorithms, followed most of the time by FCM. Analyzing the elbow point

with the help of trend lines, the inflection point for K-Means and SOM can be considered

𝐾 = 6, while for FCM the elbow point is closer to 𝐾 = 5.

4.2.1.3 Silhouette

The third and most important metric for this study, Silhouette Index (SI), is an

internal validation measurement. It is a normalized score, from −1.0 to 1.0, which the

closer to 1, the better the data is classified. Graph 12 illustrates the results considering

the average SI score of the data set for each number of clusters 𝐾. For this index, SI

values from 0.5 to 1.0 are considered a good result (green region on the graph), from

0.2 to 0.5 a fair result (yellow region), and from −1.0 to 0.2 a poor clustering (red region)

(KAUFMAN; ROUSSEEUW, 2009).

When comparing all the algorithms, FCM returned the best result for most cluster

numbers except when 𝐾 = 7, which in case K-Means returned a better result. All the

clustering methods returned "fair" results according to the definition, except for FCM and

K-Means when 𝐾 = 2, which returned a "good" classification.

The Silhouette Elbow Curve is not analyzed looking for an elbow point, but now,

crossing the information with the previous metrics, it is easier to pick which should be the

best number of clusters. We have seen with SSW and SSB that a compact and distinct

clustering result should have at least 6 clusters. Analyzing the SI results in Graph 12,

the best number of clusters with 𝐾 higher than 6 is 8 for FCM, 7 for K-Means, and 7 for
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Graph 11 – SSB Speed Elbow Curve

(a) SSB Elbow Curve

(b) Adjusted SSB Elbow Point

Source: Own authorship (2022).
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Graph 12 – SI Speed Elbow Curve

Source: Own authorship (2022).

SOM.

4.2.1.4 Homogeneity

The last metric, the k-Fold Homogeneity Score, is an algorithm performance

consistency validation. In the same way as the SI, it is a scaled score from 0 to 1.0, where

1.0 is a perfectly homogeneous clustering. The results for each cluster are presented in

Graph 13.

The K-Means algorithm shows more consistency than the others, with an average

score close to 0.83, followed by FCM with 0.75 on average. SOM had the worst results,

with an average score of around 0.6. K-Means has the highest consistency, particularly

for the region that is understood to have the best number of clusters.

4.2.1.5 Coefficient of variation

In the Table 4, we can see how our algorithms have performed through 10

iterations each according to every metric for every number of clusters from 2 to 10. With

the CV calculation, we can see the mean variation for the performance measures.
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Graph 13 – k-Fold Homogeneity Speed Elbow Curve

Source: Own authorship (2022).

In the K-Means algorithm, the CV values are very low, except for the HS, which

has values from 3.25% to 12.31%, which means that the grade for this score may vary a

bit more in different initializations, while the others will remain very close to be the same

score always since the CV is close to zero. The K-Means problem of the randomness of

initialization that would affect the quality of the solution could be mitigated once; looking

to the SSW, SSB and SI metrics, we had close to zero variation in the performance

results. The algorithm, however, suffers a bit on the consistency of the HS metric, which

shows that its prediction error may vary but will not impact the performance quality.

For the FCM algorithm, the results for SSW, SSB and SI are also close to zero,

if not. The CV is also very low for HS, varying from 0.92% to 3.53%. Therefore, it

is seen that FCM is less dependent on the initialization than K-Means and has more

performance consistency.

Analyzing the SOM CV results, we see that this algorithm suffered more in the

consistency of the performance. Values may vary from 1.13% and 3.94% for SSW,

0.94% and 10.89% for SSB, 1.95% and 8.50% for SI, 2.21% and 39.95% for HS. Despite

the high values for 𝐾 = 2 and 𝐾 = 3, for most of the 𝐾s the scores have less variation.

In general, Table 6 presented an analysis of the consistency of algorithms for

quality measurements across many startups. FCM showed more consistency than the
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others, which means less dependence on the initialization aspect.

Table 6 – Speed Coefficient Variation table
K-Means FCM SOM

K SSW SSB SI HS SSW SSB SI HS SSW SSB SI HS
2 0.00% 0.00% 0.01% 3.25% 0.00% 0.00% 0.00% 3.53% 3.00% 10.89% 8.50% 39.95%
3 0.00% 0.00% 0.01% 12.31% 0.00% 0.00% 0.00% 1.49% 3.94% 6.69% 5.79% 9.59%
4 0.00% 0.00% 0.00% 10.25% 0.00% 0.00% 0.06% 1.73% 1.22% 1.61% 1.95% 4.93%
5 0.00% 0.00% 0.02% 9.11% 0.01% 0.01% 0.03% 1.32% 1.47% 1.58% 2.83% 5.70%
6 0.00% 0.00% 0.03% 4.94% 0.20% 0.18% 0.09% 0.92% 1.13% 1.11% 3.73% 4.50%
7 0.00% 0.00% 0.14% 6.68% 0.58% 0.51% 1.39% 1.45% 1.67% 1.37% 4.48% 2.90%
8 0.00% 0.00% 0.06% 7.57% 0.42% 0.32% 2.87% 2.04% 2.31% 1.81% 3.99% 4.21%
9 0.03% 0.01% 1.36% 10.00% 0.72% 0.53% 1.60% 1.66% 1.28% 0.94% 2.93% 2.75%
10 0.00% 0.00% 0.01% 7.70% 1.13% 0.80% 1.72% 1.95% 1.78% 1.16% 2.70% 2.21%

Source: Own authorship (2022).

4.2.2 Summary of results

Having a closer look at the results presented, Figure 14 compares each metric

evaluation value for K-Means, FCM, and SOM, where it was understood to be the best

number of clusters.

For SSW and SSB, presented on a scale of red to green from worst to best,

K-means with 7 clusters presented the best result. Regarding k-Fold Homogeneity,

presented on a scale of white to green from worst to best, K-Means also has the best

result. Low grades in the Cross-Validation Homogeneity Score mean that this data set

should be retrained more frequently, according to the increase in the number of samples

in the data set. For SI, following the previous color rule presented in Graph 12, the FCM

algorithm had the best result with 0.38, but K-means had a close result with 0.37.

Figure 14 – Speed detailed metrics comparison

Source: Own authorship (2022).

The K-Means methodology has presented the most compact and distinct groups,

SOM the least. First, there should be a reminder that for FCM’s SSW, SSB, and k-Fold

Homogeneity, it is considered only the cluster with the highest membership value, that is,

the Hard C-Means way, since there is no specific calculation that can include the fuzzy

aspect the same way there is for SI, presented on Equation 16 of the previous chapter.
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It undoubtedly impacts the grade obtained for each index. FCM algorithm had the best

clustering performance looking to the SI result but was only 0.01 ahead of K-means,

which had tighter and more distinct clusters.

Before analyzing the centroids of the clusters, it is necessary to look into the

silhouette of each cluster for all algorithms, presented in Table 7. The FCM cluster

with the highest SI score is the number 2, with 0.53, but the lowest has a 0.22 score.

K-Means, however, has a much more equal score between clusters: the highest value is

0.39, and the lowest is 0.33. The highest score of SOM has a SI of 0.29, and the lowest

0.22. Even though FCM has the highest SI score, K-Means has an equal classification

score between clusters.

Table 7 – Average silhouette of Speed clusters
FCM Average of SILHOUETTE K-Means Average of SILHOUETTE SOM Average of SILHOUETTE
0 0.51 0 0.39 0 0.28
1 0.42 1 0.33 1 0.26
2 0.53 2 0.36 2 0.27
3 0.35 3 0.37 3 0.27
4 0.37 4 0.39 4 0.28
5 0.36 5 0.28 5 0.22
6 0.24 6 0.39 6 0.29
7 0.22 - - - -

Source: Own authorship (2022).

4.2.3 Centroids of the clusters

To see the clusters’ shapes, a line graph shows the center of clusters, repre-

sented as the mean value of members within the cluster for each dimension. In this

section, the results of Graph 12 are presented since they showed to be the best numbers

of clusters for each algorithm.

Graph 14 presents the average of clusters for FCM ordered by mode value

when not considering dimension 1 (idle). With that order, we can recognize cluster 0 as

the slowest and 7 as the fastest. According to what was presented in Table 2, clusters

0 and 1 are the most representative in the region that we understand as low speeds;

while in the medium speed ranges, clusters 2 and 3 are the most representative; and

cluster 5, 6 and 7 are the ones with the highest mode for high-speed profiles. Cluster 4,

which has the mode in dimension 9, is not the most representative in any speed range,

being a cluster of vehicles that travel in many speed ranges.
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Being the most representative cluster of a range of speed means that vehicles

that work most of the time in that profile will be classified in that respective cluster.

Considering clusters that are the most representative of the same speed profile, we can

see differences between them. For example, considering a profile that works most of

the time in medium speed ranges but rarely in high-speed ranges, it can be classified in

cluster 3, since, of the most representative clusters in the medium speeds, cluster 3 is

the one that has the lowest values in high-speed profiles.

Graph 14 – Speed clusters centroids for FCM with 8 clusters

Source: Own authorship (2022).

However, Graph 14 presents the average based only on the Hard C-Means part

of the method, that is, considering only the cluster of highest membership grade for

every vehicle. With the membership grades, we can have deeper information on the

clustering of a sample, as presented in Graph 15, that has the membership values for

the FCM clustering of the vehicle presented previously in Graph 9. We see that this

vehicle has 42% belonging to cluster 3, on purple, and 16% of membership value in

cluster 5 and 15% in cluster 2. Since this data set has more than 3 dimensions and

cannot be spatially plotted, with membership values, in an overlapping data set, we can

detect outliers and to which clusters a data point is closest. In this example, we can

interpret that this vehicle, when driving in low-speed ranges, may be closer to cluster 2

behaviors, such as it is closer to cluster 5 at high speeds, while most of the time, it is
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part of cluster 3 at medium speed profiles.

Graph 15 – Example of membership grades of a vehicle in Speed data set

Source: Own authorship (2022).

Graph 16 shows the centroids of the clusters found by K-Means, presented with

the same order rule as FCM’s clusters. Clusters 0 and 2 are the most representative

clusters in the low-speed ranges. The medium speed is defined mainly by clusters 3

and 4, while clusters 5 and 6 represent the most high-speed profiles. Cluster 1, despite

having the mode in the low-speed ranges, is primarily an intermediate cluster between

all speed ranges.

Graph 16 – Speed clusters average from K-Means with 7 clusters

Source: Own authorship (2022).

Graph 17 shows the centroid of the clusters found by SOM, presented following

the same sequence of lowest mode to highest. Clusters 0 and 1 are the ones that most
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represent low-speed profiles, while clusters 2, 3, and 4 are the most defining clusters of

medium speed, and clusters 5 and 6 are the most representative of high-speed ranges.

Graph 17 – Speed clusters average from SOM with 7 clusters

Source: Own authorship (2022).

The clusters found by all the algorithms are similar to each other to a certain

extent. We see a pattern of recognizing at least two clusters in low-speed ranges, two

for medium speeds, two for high-speed profiles, and one not well defined in any speed

range, with equal values in different speed regions. For the clusters that are well defined,

the first cluster of low ranges constantly has the mode speed in dimension 4, while the

second has the mode in dimension 5. In the medium-speed clusters, the first has the

highest value in dimension 11 and the second cluster in dimension 9. For the high-speed

profiles, the first cluster has the mode in dimension 13 and the second in dimension 14

or 15.

There were some overlapping situations in the clusters found by the algorithms,

but even though we can differentiate them for some aspects of analyzing the centroids.

This considerable overlap in the data set directly impacts the grades returned by the SI

score since it considers the distance to its cluster and the closest one being so close

that the SI score has dropped hard.

The first and slowest cluster is present in the low-speed ranges, with close to

zero values in the others. This type of vehicle drives slow and is usually identifying a
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cluster related to high load or high inclination jobs only, perhaps without traveling too

much on highways. The second cluster of low-speed ranges, though, has higher values

in middle ranges, which are often related to highways or empty load, but most of the

time, a vehicle in this cluster will drive slow.

The medium-speed range clusters can be identified as vehicles on highways

facing traffic, high or low inclination, with average load sizes. The second cluster most

present in medium speed ranges has higher values at high speeds. It can be for more

time driving empty load or the driver profile.

The high-speed clusters are made of vehicles that travel in the medium speed

range, but most of the time, they are at high speed. Low slope percentages, good road

conditions, or low load duty can be related to low slope percentages. This profile has

to do much with the driver’s behavior; once this data is sensitive, high-speed driving is

significantly related to the driver’s characteristics.

The intermediate cluster may be related to travels on highways with additional

traffic and slope conditions or with a non-constant weight carried by the vehicle, since

each time it carries different loads, the vehicle will drive with different speed limits. We

see in this cluster prominent values in high speeds, which are most feasible when the

vehicle is empty, but also some values in slower ranges that may represent traffic or full

load conditions.

To identify what the vehicles in the cluster are mostly doing by only looking

at the speed without the product specification is very difficult since there are different

product types for different speed dynamics. Even so, the specification of a product will

not ensure that it will work to the specification it was designed to, just as we can not be

sure that a driving profile will be assumed to be a specific product type, even more than

the driver profile itself is a thing. For that, it is fascinating to cross the information with

other data sets to discover more about the clusters, but for now, all these analyses are

initial hypotheses that we can infer with only the speed clustering information.

4.2.4 Vehicle distribution in clusters

Analyzing all the samples as a whole, we show in Graph 18 how the data set is

clustered for each algorithm.

For FCM in Graph 18(a), cluster 3, with 19.49%, had the highest number of
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samples, which is 175.83% higher than cluster 0, which had the lowest with 7.07%. In

terms of size, cluster 3 is followed by clusters 5, 6, 4, 2, 7, and 0. For FCM on these

graphs, it was considered for each vehicle only the cluster with the highest membership

degree for calculation purposes, transforming into the Hard C-Means result. For FCM

the largest cluster is the cluster that is most present in medium range speeds, with low

values in high speed, and the smallest cluster is the slowest.

For K-Means in Graph 18(b), cluster 4 of K-Means had 41.95% of the samples

and was 1.386.13% bigger than 5, which had the lowest count, with 2.82%. Cluster 3 is

the second largest, followed by clusters 2, 6, 1, 0, 5.

In Graph 18(c), for SOM, cluster 3 had 20.10% of the samples and was the

highest count, 183.85% higher than cluster 5, which had the lowest number, with 7.08%.

Cluster 3 was followed by clusters 2, 4, 0, 1 and 5 in size.

In K-Means and SOM cluster, the cluster that has intermediate values in most of

the dimensions is the largest one. For these clustering algorithms, principally K-Means,

most of the population drive in different speed ranges throughout its life.

4.3 Gross Combination Weight (GCW)

For the GCW data set, we did not have a non-ML method to compare with, so

all methods are compared using the elbow curve changing from 𝐾 = 2 to 𝐾 = 10.

4.3.1 Performance evaluation

Some metrics were used to evaluate the algorithm’s performance and choose

the best number of clusters that describe the GCW data set. SSW, SSB, SI score and

HS are presented, followed by its CVs and a summary of the evaluation metrics. The

centroids and the vehicle distribution of the clusters found by the best algorithm for each

method will be presented.

4.3.1.1 SSW

The SSW (Sum of Squares Within Clusters), presented in Graph 19, has the

lowest value as the best result, representing the most compact cluster. In this analysis, it
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Graph 18 – Speed clusters data set distribution

(a) Samples distribution in FCM clusters

(b) Samples distribution in K-Means clusters

(c) Samples distribution in SOM clusters

Source: Own authorship (2022).

is sought for the inflection point, the point that, from it, increasing the number of clusters

will no longer bring huge gains. Crossing that information with other metrics will give a

better view of the best number of clusters for the problem.

The K-Means methodology (blue line) returned the best result for every cluster 𝐾,

followed by FCM. To get the elbow point, in Graph 19(b), two trend lines help indicating

where the inflection point is the cross them. The first trend line is a straight line drawn

from the first point of the elbow curve, following the trend for 5 periods. The second

trend line comes oppositely, from the last point in the curve (𝐾 = 10), following backward

the elbow curve for 5 periods until it crosses the first line. The increase from 3 to 5

periods, compared with the slope’s elbow method, is because, in this case, the tendency
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Graph 19 – SSW GCW Elbow Curve

(a) SSW Elbow Curve

(b) Adjusted SSW Elbow Point

Source: Own authorship (2022).
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change more smoothly, and with 3 periods, the elbow point would be too far from the

curve itself, losing the relationship with it. With the virtual elbow point allocation, we see

that the best number of clusters would be with at least 𝐾 = 6.

4.3.1.2 SSB

The second evaluation metric is the SSB (Sum of Squares Between Clusters),

which measures how far clusters are from each other, so the highest value is the best

result. A good SSB value says that the clusters are well defined. As in the SSW analysis,

two trend lines help indicate the best number of clusters. The results are shown in Graph

20.

K-Means returned the best result for every cluster number 𝐾, followed by FCM.

Analyzing the elbow point with the help of trend lines, the inflection point for all the

algorithms can be considered 𝐾 = 6.

4.3.1.3 Silhouette

The third and most important metric for this study, Silhouette Index (SI), is an

internal validation measurement. It is a normalized score, from −1.0 to 1.0, which the

closer to 1, the better the data is classified. Graph 21 illustrates the results considering

the average SI score of the data set for each number of clusters 𝐾. For this index, SI

values from 0.5 to 1.0 are considered a good result (green region on the graph), from

0.2 to 0.5 a fair result (yellow region), and from −1.0 to 0.2 a poor clustering (red region)

(KAUFMAN; ROUSSEEUW, 2009).

When comparing all the algorithms, FCM returned the best result until 𝐾 = 5,

in case K-Means becomes the best algorithm. FCM until 4 clusters, K-Means until 6

clusters, and SOM with 2 clusters returned "good" results. Except for FCM with 9 clusters

that returned a "poor" result, all the other results are in the "fair" region.

The Silhouette Elbow Curve is not analyzed looking for an elbow point, but now,

crossing the information with the previous metrics, it is easier to pick which should be the

best number of clusters. We have seen with SSW and SSB that a compact and distinct

clustering result should have at least 6 clusters. Analyzing the SI results in Graph 21,

the best number of clusters with 𝐾 higher then 6, is 6 for all algorithms.
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Graph 20 – SSB GCW Elbow Curve

(a) SSB Elbow Curve

(b) Adjusted SSB Elbow Point

Source: Own authorship (2022).
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Graph 21 – SI GCW Elbow Curve

Source: Own authorship (2022).

4.3.1.4 Homogeneity

The last metric, k-Fold Homogeneity Score, is an algorithm performance con-

sistency validation. In the same way as the SI, it is a scaled score from 0 to 1.0, where

1.0 is a perfectly homogeneous clustering. The results for each cluster are presented in

Graph 22.

Graph 22 – k-Fold Homogeneity GCW Elbow Curve

Source: Own authorship (2022).
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The K-Means algorithm shows more consistency than the others, except in 𝐾 = 2

to 𝐾 = 5, with an average score close to 0.93, followed by FCM, the best when 𝐾 = 2 to

𝐾 = 5, with 0.90 average. SOM had the worst results, with an average score of around

0.78. K-Means has the highest consistency, particularly for the region that is understood

to have the best number of clusters.

4.3.1.5 Coefficient of variation

In the Table 4, we can see how our algorithms have performed through 10

iterations each according to every metric for every number of clusters from 2 to 10. With

the CV calculation, we can see the mean variation for the performance measures.

In the K-Means algorithm, the CV values are very low; almost all zeroed, except

for HS, which has values from 0.12% to 1.50%. The K-Means problem of the randomness

of initialization that would affect the quality of the solution could be mitigated once; looking

at the SSW, SSB, and SI metrics, we had zero variation in the performance results.

If not, the FCM algorithm results for SSW, SSB, and SI are also close to zero.

For HS, the CV is also very low, varying from 0.11% to 2.06%, which means that the

grade for this score may vary a bit more in different initializations, while the others will

remain very close to the same score always since the CV is close to zero.

Analyzing the SOM CV results, we see that this algorithm suffered more in the

consistency of the performance. Values may vary from 0.31% and 6.62% for SSW,

0.50% and 5.14% for SSB, 0.50% and 7.34% for SI, 1.71% and 7.90% for HS. This

algorithm suffers a bit more than the others in the consistency of the performance.

In general, Table 8 presented an analysis of the consistency of algorithms for

quality measurements across many startups. K-means showed more consistency than

the others, which means less dependence on the initialization aspect, when analyzing

the first three indexes, and, for k-Fold HS, we see that the algorithm is more reliable

than the others when there is more non-trained data.

4.3.2 Summary of results

Having a closer look at the results presented, Figure 15 compares each metric

evaluation value for K-Means, FCM, and SOM, which was understood to be the best
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Table 8 – GCW Coefficient Variation table
K-Means FCM SOM

K SSW SSB SI HS SSW SSB SI HS SSW SSB SI HS
2 0.00% 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.11% 0.31% 0.50% 0.50% 1.96%
3 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.00% 0.34% 0.99% 1.10% 2.06% 7.90%
4 0.00% 0.00% 0.00% 0.37% 0.00% 0.00% 0.00% 0.30% 5.57% 5.14% 5.13% 7.52%
5 0.00% 0.00% 0.00% 1.50% 0.00% 0.00% 0.00% 0.40% 2.54% 1.60% 3.32% 6.36%
6 0.00% 0.00% 0.00% 0.33% 0.00% 0.00% 0.00% 0.28% 5.95% 3.33% 5.51% 7.05%
7 0.00% 0.00% 0.00% 0.36% 0.05% 0.02% 0.10% 0.52% 1.79% 0.82% 2.50% 2.37%
8 0.00% 0.00% 0.00% 0.61% 0.09% 0.04% 0.00% 2.06% 4.67% 2.02% 3.63% 3.26%
9 0.00% 0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 0.40% 6.62% 2.69% 7.34% 1.71%
10 0.00% 0.00% 0.00% 0.23% 2.72% 0.94% 0.00% 0.67% 4.91% 1.80% 5.33% 2.94%

Source: Own authorship (2022).

number of clusters.

For SSW and SSB, presented on a scale of red to green from worst to best,

K-means with 6 clusters presented the best result. Regarding k-Fold Homogeneity,

presented on a scale of white to green from worst to best, K-Means also has the best

result. Low grades in the Cross-Validation Homogeneity Score mean that this data set

should be retrained more frequently, according to the increase in the number of samples

in the data set. For SI, following the previous color rule presented in Graph 21, the

K-means algorithm had the best result with 0.54, followed by SOM with 0.44 and FCM

with 0.41.

Figure 15 – GCW detailed metrics comparison

Source: Own authorship (2022).

The K-Means methodology has presented the most compact and distinct groups,

SOM the least. First, there should be a reminder that for FCM’s SSW, SSB, and k-Fold

Homogeneity, it is considered only the cluster with the highest membership value, that

is, the Hard C-Means way, since there is no specific calculation that can include the

fuzzy aspect the same way there is for SI, presented on Equation 16 of the previous

chapter. It undoubtedly impacts the grade obtained for each index. K-means also had

the best clustering performance looking to the SI result, in the "good" region, while the

others are in the "fair" region.

Before analyzing the centroids of the clusters, let us look into the silhouette of

each cluster for all algorithms presented in Table 9. The FCM cluster with the highest
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SI score is 1 and 5, with 0.46, while the lowest is cluster 0, with 0.36. K-Means, with

the highest SI, have clusters 4 and 5 with 0.68 and 0.61, while the lowest value is for

cluster 0, with 0.42. The highest score of SOM had a SI of 0.48, and the lowest 0.40.

SOM showed closer scores between the clusters, but K-Means had good results for the

heaviest clusters, which put the SI average of the algorithm high above SOM.

Table 9 – Average silhouette of GCW clusters
FCM Average of SILHOUETTE K-Means Average of SILHOUETTE SOM Average of SILHOUETTE
0 0.36 0 0.42 0 0.43
1 0.46 1 0.46 1 0.45
2 0.40 2 0.46 2 0.48
3 0.41 3 0.45 3 0.44
4 0.37 4 0.68 4 0.46
5 0.46 5 0.61 5 0.40

Source: Own authorship (2022).

4.3.3 Centroids of the clusters

To see the clusters’ shapes, a line graph shows the center of clusters, repre-

sented as the mean value of members within the cluster for each dimension. In this

section, the results of Graph 21 are presented since they showed to be the best numbers

of clusters for each algorithm.

Graph 23 presents the average of clusters for FCM, ordered by mode value.

With that order, we can recognize cluster 0 as the lightest and cluster 5 as the heaviest.

According to what was presented in Table 3, cluster 0 represents the low weight region,

with the mode in dimension 13; cluster 1, the medium weight, with the mode in the 16th

range; and cluster 2, 3, 4 and 5 are the ones representing high weights, with the mode in

dimension 18, 19, 23 and 23, respectively. Despite not having a cluster with the highest

presence in very high weights, clusters 4 and 0 have values in these ranges.

Cluster 2, which has a mode in the high-weight region, has more values in the

medium than the high area, which shows that this initial separation of dimensions states

a very blurry line that can only be taken as more of an explanatory rule of the dimensions,

not as a classification, given the hardness of it. Cluster 2, then, can be considered a

cluster with mid-high weights, just as clusters 4 and 5 are on the borderline of high and

very high.

However, Graph 23 presents the average based only on the Hard C-Means



98

Graph 23 – GCW clusters centroids for FCM with 6 clusters

Source: Own authorship (2022).

part of the method, considering only the cluster of highest membership grade for every

vehicle. With the membership grades, we can have deeper information on the clustering

of a sample, as presented in Graph 24, that has the membership values for the FCM

clustering of the vehicle presented previously in Graph 10. We see that this vehicle has

49% on belonging to cluster 1, on blue, but also 29% of membership value in cluster 3.

Since this data set has more than 3 dimensions and cannot be spatially plotted, with

membership values, in an overlapping data set, we can detect outliers and to which

clusters a data point is closest. In this example, this vehicle usually carries medium

weight but tends to have closeness (similarities) to cluster 3, the intermediate cluster of

high GCW ranges.

Graph 24 – Example of membership grades of a vehicle in GCW data set

Source: Own authorship (2022).
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Graph 25 shows the centroids of the clusters found by K-Means, presented with

the same order rule as FCM’s clusters. Cluster 0 is the lightest cluster representing low

GCWs, and cluster 1 represents medium weights, while cluster 2 is in the middle of

high and medium weights, with the mode in dimension 18. Clusters 3 and 4 represent

the high weights, cluster 3 the lighter high GCWs, with the mode in dimension 19, and

cluster 4 the heavier, with the mode in dimension 23. Cluster 5 is the one that represents

very high weights. Compared to FCM’s clusters, K-means clusters 4 and 5 are better

defined and separated from each other.

Graph 25 – GCW clusters average from K-Means with 6 clusters

Source: Own authorship (2022).

Graph 26 shows the centroid of the clusters found by SOM, presented following

the same sequence of lowest mode to highest. Cluster 0 defines the low GCW region,

while cluster 1 represents medium weights, and cluster 2 is in the middle of high and

medium weights. Cluster 3, which has the mode in dimension 22, represents the high

ranges alongside cluster 4, which has the mode in dimension 23. Cluster 5 is the

one defining very high weight ranges. In this algorithm, we see clusters 3, 4, and 5

overlapping each other a bit more, mainly for cluster 3, that in the other algorithms is not

so present in dimension 23.

The clusters found by all the algorithms are similar to each other to a certain

extent. We see a pattern in recognizing at least one cluster for low weight ranges, two for
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Graph 26 – GCW clusters average from SOM with 6 clusters

Source: Own authorship (2022).

medium GCWs, and one for high GCW profiles. K-means and SOM have also predicted

a cluster for very high ranges, while FCM has kept one more cluster in the high region.

Clusters 0, 1, and 2 are close to being the same in all algorithms; cluster 4 of SOM and

K-means are the same as cluster 5 of FCM. Cluster 3 of FCM and K-means define the

same region, but in SOM, that area is defined by cluster 2 only, while cluster 3 represents

slightly heavier dimensions that match the area that FCM’s cluster 4 represents.

There were some overlapping situations in the clusters found by the algorithms,

but even though we can differentiate them for some aspects of analyzing the centroids.

This overlap in middle ranges and dimension 23 directly impact the grades returned by

the SI score since it considers the distance to its cluster and the closest one, and, being

that short, the SI score drops hard.

4.3.4 Vehicle distribution in clusters

Analyzing all the samples as a whole, we show in Graph 27 how the data set is

clustered for each algorithm.

For FCM in Graph 27(a), with 21.03%, 5 had the highest count of vehicles and

was 107.11% higher than 3, which had the lowest count with 10.15%. Cluster 5 was
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followed by clusters 4, 0, 1, 2, and 3. For FCM in these graphs, it was considered for each

vehicle only the cluster with the highest membership degree for calculation purposes,

transforming into the Hard C-Means result. For FCM the most significant cluster is the

cluster that represents high GCW ranges, with the highest mode in dimension 23, and

the smallest cluster is the lighter high, weight cluster. The presence of 2 significant

clusters in the same area, clusters 4 and 5, around dimension 23, results in a small

close cluster.

For K-Means in Graph 27(b), with 37.66%, cluster 4 is the largest and was

1.022.82% higher than 5, the smallest, with 3.35% of the data. Cluster 4 was followed by

clusters 1, 0, 2, 3, and 5. The largest cluster is again the one that defines dimension 23,

and the smallest is the cluster of very high GCW ranges. K-means could concentrate

better on the vehicles in cluster 4 and separate well the very high in cluster 5, which is

proven in Table 9, where clusters 4 and 5 had the highest silhouette score.

In Graph 27(c), for SOM, cluster 4, with 28.52% of the samples, had the highest

number and was 624.05% higher than 5, which had the lowest, with 3.94%. Cluster 4

was followed by clusters 1, 2, 0, 3, and 5. The clusters with the most and fewest samples

are defining the same region as from K-means, but poorly, since these clusters have a

lower grade than the ones of K-means, according to Table 9.

4.4 Example of classification

It is necessary to get the arbitrary vehicle that we have been presenting as an

example since Graph 5 and analyze which clusters for all presented data set it will fall

into. Graph 28 brings the cluster of the slope, speed, and GCW for this given vehicle,

using the algorithms with the highest SI, after elbow analysis, for each data set.

The first data set, in Graph 28(a), presents the FCM clustering of the slope

conditions this example vehicle has been through, considering the algorithm with 4 clus-

ters. The membership values of this classification are presented in Graph 6, where this

sample belongs 72% to cluster F-VHilly and 23% to cluster F-Hilly. Graph 28(b) presents

the FCM clustering (considering 8 clusters) of the speed profile vehicle has accumulated

throughout its life. The membership values of this classification are presented in Graph

15, where this sample belongs 42% to cluster 3, 16% to cluster 5, and 15% to cluster 2.

Graph 28(c) presents the K-means clustering (considering 6 clusters) of the GCW this
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Graph 27 – GCW clusters data set distribution

(a) Samples distribution in FCM clusters

(b) Samples distribution in K-Means clusters

(c) Samples distribution in SOM clusters

Source: Own authorship (2022).

vehicle has been working with, which is part of cluster 3.

So, this vehicle, being part of the F-VHilly, is supposed to be working across

mountain ranges highways, which matches the drive speed it has presented, in the

medium speed cluster 3, which is continuously not fast, but not too slow, representing

highways with inclinations. We can speculate that the low-speed values in dimension 5

are traffic issues and city speed limits since the vehicle does not carry such heavyweights

that would enforce low-speed driving. This vehicle was clustered in the low GCW ranges,

which also matches the medium speed profile since if it were a vehicle carrying much

weight uphill, it would most likely have slow speed profiles. Thus, we can infer that this

vehicle type of work is traveling across cities, passing through mountain ranges, and
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Graph 28 – Example of classification

(a) Example of slope data clustered by FCM

(b) Example of speed data clustered by FCM

(c) Example of GCW data clustered by K-means

Source: Own authorship (2022).
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carrying low charges, often entering traffic areas.

Without the clustering being made, we would hardly assume these hypotheses,

and if it was the case, probably not be so sure about the conclusions since we would

not have references to measure the behavior with different ones. A scientific approach

can give confidence in the conclusions and decisions once everything is measured and

all reliable methods. By having reference profiles for each data set and being able to

classify vehicles accordingly, the industry can harvest the benefits of clustering, which

are, for example, offering value to customers with specialized services and products

given the application since we can perfectly detect different work niches and its behaviors;

product design and development that can innovate in market deficiencies, such as by

knowing the usage of vehicles for different operation than it was designed to, for lacking

appropriate vehicle; for commercial support, by selling appropriate vehicle given the

desired application that the clusters can bring an average profile; etc.
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5 CONCLUSION

Companies must be aware and prepare for changes and challenges, and that is

for this time, the Big Data, Industry 4.0, and the digital transformation. Technologies

have the power to disrupt unprepared companies and mutate the market share ultimately.

Every corporation should be cautious that to survive strongly, it needs to become much

closer to the software and services industry, and for that, working with data is essential.

The earlier that is realized, the greater the chances to survive, just like stated by Kay

(2008), "the best way to predict the future is to invent it".

The machine learning research goal is not the seek a universal learning algorithm

or the absolute best of them. Instead, it is to understand what kinds of distributions

are relevant to real-world applications and what kinds of ML algorithms perform well on

essential data drawn distributions (GOODFELLOW; BENGIO; COURVILLE, 2016).

As an interesting alternative tool to extract functional patterns from data sets,

machine learning can be divided into supervised learning, unsupervised learning, and

reinforcement learning. The unsupervised approach can be advantageous to learn how

elements in a data set can be clustered based on their similarities. This can be applied

in many instances in the modern industry, considering how much data can be collected

from processes and products that need to be better understood.

ML is already being used worldwide to help managers’ decision-making on

automated driving and intelligent vehicles developments in the automotive sector. This

work was brought a study over some vehicle data that comprehend years of extensive

usage on Latin America’s roads, provided by a major vehicle company for personal use.

The datasets have parameters that can be used in product development, predictive

maintenance, and many other environments of growth and development.

To extract most of those parameters and in a way to better comprehend the

data, clustering that information is needed. Classifying the data in groups, for example,

can help engineers understand how the vehicle’s behavior compares to others with the

same characteristics. Unsupervised clustering was used to execute the task; especially

three methods were implemented: K-Means, Fuzzy C-Means and Self Organizing Maps.

The first parameter refers to the records of the slope conditions that each vehicle

went through throughout its life. Before the clustering process itself, that parameter

must pass through a data preprocessing since real-world data have dirty, noises, or are
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often incomplete. That stage cleans, transforms, and normalizes the data to be better

clusterized. The algorithms’ results are compared with those provided by a non-ML

classification, built with extensive empirical knowledge, using performance metrics.

The performance evaluation is made with Sum of the Squares Within Clusters

(SSW), Sum of the Squares Between Clusters (SSB), Silhouette Index (SI), and K-Fold

Cross-Validation using Homogeneity Score. These methods helped visualize the best

number of clusters for each algorithm and compare the performance between them to

choose the best algorithm. The first ones, SSW and SSB, were used to pre-define a

minimum optimal region to then pick the best result with SI. The last metric was used to

check if any of the methods were not reliable enough.

SOM with 5 clusters returned the best result in terms of compactness (SSW),

but despite having also the best result in SSB, the best algorithm in terms of silhouette is

FCM with 4 clusters. For the Cross-Validation Homogeneity Score, the most consistent

method is the GTA classification, while K-Means is the most consistent among the ML

methods most of the time.

Overall, the ML methods have presented a better clustering performance than

the non-ML method, GTA classification. K-Means and FCM with 4 and 5 clusters were

considered to have a "good" classification, while GTA and SOM with 5 clusters were

considered to have a "fair" performance. The lack of reproducibility by the ML methods,

seen with the Cross-Validation Homogeneity Score, means that the data set should be

retrained more frequently, according to the increase of the number of samples.

After the clustering we could separate the data set into, at least, a cluster

that retains very flat slopes, a cluster that has few values in higher inclinations, one

that has more presence high inclinations, and another that is even more present in

high inclinations. With these clusters well defined, we were able to speculate some

environments that would be the case for each one. Introducing a new cluster for K-

Means and SOM brought interesting results, mainly for K-Means that could keep a

"good" silhouette, above 0.5. The new 5th cluster separates a specific application of

very high jobs only, like mine extraction, from the 4th cluster, which are vehicles that

work a lot through mountain highways. FCM and GTA couldn’t detect this new cluster,

even when increasing to 𝐾 = 5 on FCM case.

FCM has the benefit of bringing a soft-clustering analysis, which means that a

vehicle can be classified into different clusters with a degree of membership. SOM (in
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this project) and K-Means, however, are hard-clustering methods, so a data point can

belong to just one single cluster. This particularity of FCM gives an extra insight for the

analyst to understand the vehicle behavior, since we can know that, despite being part

of one cluster, the data point may be closer to a specific one than the other clusters.

Analyzing different average working cases and some outliers, we could see that

the classifications made by the proposed methods, in general, make more sense with

the reality than the GTA classification could get. Reducing the size of the Hilly population

and increasing the size of the others, brought great benefit to the clustering and have

direct impact on the Silhouette grade of these clustering methods. The non-ML method

was very restrictive in the Flat cluster, while the Hilly was too much comprehensive,

including a lot of different applications into one cluster. The ML methods could well read

that from the data and return more reasonable and well identified clusters.

The second data analyzed refers to speed profiles that vehicles have gone

through throughout their lives. The data set was cleared, normalized and then clusterized

by the proposed algorithms: K-Means, Fuzzy C-Means and Self Organizing Maps. The

performance evaluation is made with Sum of the Squares Within Clusters (SSW), Sum of

the Squares Between Clusters (SSB), Silhouette Index (SI), and K-Fold Cross-Validation

using Homogeneity Score. These methods helped visualize the best number of clusters

for each algorithm and compare the performance between them to choose the most

appropriated one.

K-Means with 7 clusters has returned the best result in terms of compactness

(SSW), but despite having also the best result in SSB, the best algorithm in terms of

silhouette is FCM with 8 clusters. All algorithms had a "fair" performance in terms of SI.

For the Cross-Validation Homogeneity Score, the most consistent method is K-Means.

Low grades in this metric means that the data set should be retrained more frequently

as the number of samples increases. SOM had the worst performance in all metrics.

With the clustering, we were able to define at least two cluster for each speed

profile region (low speed ranges, medium speed ranges and high speed ranges) and

one cluster that would be an intermediate between all speed ranges.

The speed clustering alone can not give clear information about the working

profile. The data is very sensible to driver behavior, weight carried, slope conditions, road

conditions, etc. It would be interesting to cross the clustering with product specifications

to be able to have some clearer conclusion about the clusters. However, in the other way
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around, the clustering of speed profiles can help other data sets to be interpreted and

understood. By clustering vehicles by speed, companies are able to analyze different

usage of vehicles, that may share or not same characteristics, and further analyze part

performance in different speed clusters, looking to maintenance needs and product

design, or help customers to buy the vehicle specification that fits the desired speed

profile knowing the average outcome of the product characteristics, when looking to the

commercial purposes that information can give.

The third data analyzed refers to Gross Combination Weight (GCW) profiles

that vehicles have carried throughout their lives. The data set was cleared, normalized

and then clusterized by the proposed algorithms, while the performance evaluation is

made with Sum of the Squares Within Clusters (SSW), Sum of the Squares Between

Clusters (SSB), Silhouette Index (SI), and K-Fold Cross-Validation using Homogeneity

Score. These methods helped visualize the best number of clusters for each algorithm

and compare the performance between them to choose the most appropriated one.

K-Means with 6 clusters returned the best result in terms of compactness (SSW),

distinctness (SSB), grouping validity (SI) and homogeneity (HS). K-Means result had a

"good" performance in terms of SI, while FCM and SOM’s best had a "fair" clustering.

For the Cross-Validation Homogeneity Score, the most consistent method is K-Means

and the least is SOM.

With the clustering, we were able to clearly define at least one cluster for low

weights, two clusters for medium and one for high GCW profiles. K-means and SOM

also introduced a cluster for very high GCW ranges, while FCM add one more to high

region. The clusters were well defined, making evident the main working weights in the

data set, especially for K-Means, which managed to well classify the high GCW area. By

clustering vehicles by weight, companies are able to analyze different usage of vehicles

and further analyze part performance in GCW clusters, looking to maintenance needs,

product efficiency, product design, etc.

Working with ML methods can help analysts to better comprehend big data

sets and clarify individual behavior. A scientific approach can give confidence in the

conclusions, once everything is measured and all methods are reliable, and theoretical

basis for decision making. With clustering, trucks that have similar working pattern

of usage can be found and compared in a sea of data where they would be hardly

put side by side. This comparison can help on offering personalized products, on fuel
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consumption analysis, on understanding the maintenance needs for each behavior and,

of course, for product development. With this, we managed to answer the initial question

"How can historical usage data help a truck manufacturer improve product development

and fuel consumption?" and help the company that supported this work to aggregate

and increase value of data.

Trucks are the main means of transport for logistics in many countries. In

China, for example, they are responsible for 76% of the national logistics. With a good

data extraction and well-defined clusters, works like this can help drivers improve their

fuel efficiency, saving up not just liters of fuel and money for companies, but reducing

the impact of logistics on the environment. The best truck driver in efficiency, when

compared to an average driver in a same class, can save, for example, 3285 liters a

year, which is 10282.05 Kg of CO2 considering diesel as the fuel (HAO; YANG; ZHOU,

2019) (SCALA JUNIOR, 2013).

For future works, other clustering methodologies and metrics could be imple-

mented and used to compare with the present methods. This work can also be extended

to other types of vehicle’s data set, which will lead to a even more precise comparison

of vehicles. Also, given the analysis that the soft-clustering FCM brought to the study,

we can also implement something similar for the hard-clustering methods by calculating

for each sample the distance to its own cluster and to the other clusters. This could help

to see if a sample is an outlier or is close to its center, such as the membership degrees

could help understand the belonging to each cluster. The adjustment of clustering meth-

ods’ hyper-parameters can be optimized with optimization techniques exploring other

fields of computational intelligence, such as evolutionary computing (BEZDEK, J. C.,

1994).
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