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RESUMO

BUENO, Felipe Augusto Dutra. MIMO Massivo: protocolos de acesso aleatório baseados em
técnicas de inferência estatística e aprendizagem de máquina. 2022. 141 f. Dissertação

(Mestrado em Engenharia Elétrica) – Universidade Tecnológica Federal do Paraná. Cornélio

Procópio, 2022.

O número de dispositivos da quinta geração (5G) de redes celulares está crescendo em um

ritmo sem precedentes. A tecnologia 5G é caracterizada pela capacidade de prover três serviços

essenciais: banda larga móvel aperfeiçoada (eMBB do inglês: enhanced Mobile Broadband),

comunicação ultra-confiável e com baixa latência (URLLC do inglês: Ultra-Reliable Low-
Latency Communication), e comunicação máquina-máquina (MTC do inglês: Machine-To-
Machine) em massa (mMTC do inglês: massive MTC). Para suprir essas demandas, diversas

tecnologias de suporte para o 5G e seus sucessores (B5G do inglês: Beyond 5G) estão sendo

desenvolvidas nos últimos anos. Entre essas tecnologias estão as superfícies refletoras inteligentes

(IRS do inglês: Intelligent Reflecting Surface), acesso múltiplo não ortogonal (NOMA do inglês:

Non-Orthogonal Multiple Access), ondas milimétricas (mmWave do inglês: Millimeter-wave)

e múltiplas entradas e múltiplas saídas (MIMO do inglês: Multiple-Input Multiple-Output)
massivo. Entre todas essas tecnologias, o MIMO massivo é a mais bem sucedida. A tecnologia

MIMO massivo é um dos grandes facilitadores da implementação de tecnologia mMTC, cujos

dispositivos estarão disponíveis em quantidade massiva e deverão exigir baixo consumo de

energia e alta conectividade. Entretanto, visto que os recursos de tempo e frequência fornecidos

pelas estações de base (BSs do inglês: base-station) são escassos, e a quantidade de dispositivos

continua aumentando, é provável que no futuro haverá falta de sinais piloto para atender a

todos os dispositivos de uma rede, gerando possíveis gargalos de desempenho no sistema. Para

resolver esse problema, alguns protocolos de acesso aleatório vêm sendo desenvolvidos. Este é o

caso do protocolo de resolução de colisão de usuário mais forte (SUCRe do inglês: Strongest-
User Collision Resolution), um protocolo baseado em concessão de acesso (GB do inglês:

grant-based). Outros protocolos livres de concessão de acesso (GF do ingês: grant-free) mais

adequados ao suporte de sistemas mMTC também são propostos. Nete trabalho, três protocolos

de acesso aleatório foram propostos. O primeiro é baseado no protocolo SUCRe e tem por

objetivo otimizar a etapa de decisão deste protocolo através de um classificador Bayesiano. Este

primeiro protocolo apresenta resultados superiores ao SUCRe e de maneira interessante, o efeito

de utilizar o classificador Bayesiano somente troca o critério de decisão do protocolo para um

mais efetivo. O segundo protocolo é similar ao primeiro, porém utiliza um classificador baseado

em uma rede neural perceptron de múltiplas camadas ao invés de um classificar Bayesiano,

apresentando resultados ligeiramente superiores. O terceiro protocolo é do tipo GF e utiliza o

algoritmo de aprendizado por reforço chamado Q-Learning para guiar os dispositivos em direção

a sinais piloto que estejam menos congestionados. Os níveis de congestionamento são obtidos

em um cenário de simulação de um sistema MIMO massivo onde os efeitos de propagação

realísticos são considerados. O algoritmo se destacou em relação aos métodos tradicionais e

às referências de comparação, apresentando melhores resultados nas métricas de taxa de dados

de rede, taxa de dados por usuário e latência. Os três protocolos apresentados demonstraram

robustez em relação a variação de alguns parâmetros, reafirmando sua eficácia.

Palavras-chave: MIMO Massivo. Acesso Aleatório. Método de Bayes. Q-Learning. B5G.



ABSTRACT

BUENO, Felipe Augusto Dutra. Massive MIMO: random access protocols based on
statistical inference and machine learning techniques. 2022. 141 p. Dissertation (Master’s

Degree in Electrical Engineering) – Universidade Tecnológica Federal do Paraná. Cornélio

Procópio, 2022.

The number of fifth-generation (5G) cellular network devices is growing at an unprecedented rate.

5G technology is characterized by the ability to provide three types of essential services: enhanced

Mobile Broadband (eMBB), Ultra-reliable Low Latency Communication (URLLC), and massive

MTC (mMTC). These services support many types of applications such as virtual reality,

augmented reality, traffic control, Internet of Things (IoT), industrial IoT, and others. To meet

these demands, several technologies to support 5G and beyond (B5G) have been developed in

recent years. Among these technologies are Intelligent Reflecting Surfaces (IRS), non-orthogonal

multiple access (NOMA), millimeter-wave (mmWave), and massive multiple-input multiple-

output (MIMO). Of all these technologies, massive MIMO is the most successful. Massive

MIMO is a major enabler for the implementation of mMTC technology, whose devices will be

available in massive numbers and will require low power consumption and high connectivity.

However, since the time and frequency resources provided by Base stations (BSs) are scarce, and

the number of devices keeps increasing, it is likely that in the future, there will be a lack of pilot

signals to serve all devices in the network, leading to a performance bottleneck in the system.

To solve this problem, some random access protocols have been developed. This is the case

of the strongest-user collision resolution (SUCRe) protocol, a grant-based (GB) protocol that

grants access to network resources only to users that are the strongest contender for a particular

pilot. Other protocols of the grant-free (GF) type, which is more suitable for supporting mMTC

systems, are also proposed. In this work, three random access protocols are proposed. The first

one is based on the SUCRe protocol and aims to optimize the decision step of the SUCRe

protocol through a Bayesian classifier. This first protocol shows better results than SUCRe,

and, interestingly, the effect of using the Bayesian Classifier (BC) only changes the decision

criteria of the protocol to a more effective one. The second protocol is similar to the first but

uses a classifier based on a Multilayer perceptron (MLP) Neural Network (NN) instead of a

Bayesian classifier, presenting slightly better results. The third protocol is a GF Random-Access

(RA) procedure and uses a reinforcement learning algorithm called Q-Learning to guide devices

toward pilot signals that are less congested. The congestion levels are obtained in a massive

MIMO simulation scenario with the realistic propagation effects considered. The algorithm stood

out compared to traditional methods and comparison references, showing better results in metrics

such as network throughput, per-user throughput, and latency. The three protocols presented also

showed robustness in relation to variations of some parameters, reinforcing their efficacy.

Keywords: Massive MIMO. Random Access. Bayes’ method. Q-Learning. B5G.
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ji (t) The synaptic weight between the j-th neuron of the output layer

(l + 1) and the i-th neuron of layer l.

u
(l)
ji (t+ 1) Updated version of u

(l)
ji (t).

Ui Set of all UEs in cell i.
v Beamforming vector.

V Precoded Downlink (DL) pilot signal matrix .

W Complex-valued detector matrix.

wi i-th row vector of the matrix W.

x Complex-valued signal or data vector.

xR
d d-Dimensional random vector.

xd d-Dimensional signal or data vector.

xul Complex-valued uplink signal vector.

xdl Complex-valued downlink signal vector.

x̂iul i-th symbol received by the BS.

yul Complex-valued uplink signal vector received by the BS.

ydl Complex-valued downlink signal vector received by the T terminal

antennas.

ŷdlk Signal received by the k-th terminal antenna.

Xp Complex-valued matrix of pilot signal sent by the terminals.

x̂ul Uplink signal vector estimation.

x̂iul i-th received symbol at the BS.

Y Complex-valued received signal matrix.

Yd Complex-valued received data signal matrix.

Yp Complex-valued matrix of pilot signal received by the BS.

yt Correlation of the signal Yp received by the BS with pilot ψt.

Y′
p Correlation matrix of Yp with the pilot sequences.

[Y′
p]mk (m,k)-th element of Y′

p.

zk τp × 1 complex-valued signal received by the k-th UE or device

during downlink stage of the SUCRe protocol.



zk Correlation of zz with the pilot ψt chosen by the UE or device k.

αt Sum of the signal strengths and interference received by the BS

for each pilot t.
α̂t,k Estimator for the sum of the signal strengths and interference

received by the BS for each pilot t estimated by k-th UE or device.

βk Large-scale fading coefficient of the k-th uplink channel.

γ Q-Learning discount factor.

γul
k Uplink signal to interference plus noise ratio of UE or device k.

δ Number of standard deviations.

εk Bias parameter of the SUCRe protocol associated with the decision

conditions of UE k.

ηT
k Noise signal with distribution CN (0,σ2Iτp), received during down-

link stage of the SUCRe protocol.

ηk Effective receiver noise during downlink stage of the SUCRe pro-

tocol, with distribution CN (0, σ2).
θ Power allocation vector.

ϑ Path loss exponent.

κ Learning rate.

λ Wavelength. [m]
μ Mean value.

ν Devices’s velocity. [m/s]
νT
k Complex-valued intercell-interference vector term perceived by the

k-th UE or device during downlink stage of the SUCRe protocol.

ξ Training precision.

π Greedy policy.

ρ Uplink channel SNR [dBm]
ρul Uplink transmit power. [dBm]
ρi Power of transmission of a pilot signal by an UE or device i.
ρt,k Transmit power of the member k ∈ S interf

t .

ρsnr SNR at the receiver side.

σ Standard deviation.

σ2 Variance.

σsf Shadow fading standard deviation.

τc Number of coherence blocks. [samples]
τp Number coherence blocks dedicated to pilots. [samples]
τdl Number coherence blocks dedicated to downlink data. [samples]
τdl,p Number coherence blocks dedicated to downlink pilots. [samples]
τul Number coherence blocks dedicated to uplink data. [samples]
τul,p Number coherence blocks dedicated to uplink pilots. [samples]
φk Proportion of the signal strength of the k-th UE among the pilot

contenders.



Φ Scalar gain.

ϕ Shadow fading.

ψi i-th pilot sequence.

Ψ Matrix of pilot sequences (as its columns).

ω Interference.

Ωk The class state of the UE k.

Ω̂k Estimator of Ωk.

NOTATIONS

C Space of complex-valued numbers.

R Space of real-valued numbers.

XT The transpose of a matrix X.

XH The conjugate-transpose of a matrix X.

X∗ The conjugate of a matrix X.

IM M ×M identity matrix.

Da Diagonal matrix with elements of vector a as its diagonal elements.

a ∝ b a is proportional to b .

a > b a is greater than b .

a � b a is much greater than b .

a ≥ b a is greater than or equal to b .

a < b a is less than b.
a ≤ b a is less than or equal to b.
A ⊆ B A is a subset of B.

f(x) Functionf : X −→ Y with x ∈ X .

f ′(x) Derivative of function f(x).
λ(·) Loss function.

max(f(x)) The maximum value of the function f(x).
max(a,b) Return a if a ≥ b or b if b ≥ a.

min(f(x)) The minimum value of the function f(x).
min(a,b) Return a if a ≤ b or b if b ≤ a.

sig(·) Sigmoid function.

B(Nt,Ps) Binomial distribution, where Nt is the number of trials and Ps is

the success probability of each trial.

Q(s,a) Cummulative reward function of an agent in the state s taking an

action a.

Q(s,a) Cummulative reward function of an agent in the state s taking an

action a.

E[·] The expectation with respect to a random variable.

V[·] The variance with respect to a random variable.

x̄k Normalization of scalar xk.



x̄k Normalization of vector xk.

N (μ, σ2) Gaussian distribution, with mean μ and standard deviation σ.

CN (μ, σ2) Circularly-symmetric complex Gaussian distribution. Such that, if

x ∼ CN (μ, σ2) implies that x ∼ N (μR,
σ2

2
) + i · N (μI ,

σ2

2
), with

μ = μR + i · μI .

|a| The magnitude a ∈ C or cardinality of a if a is a set.

‖·‖ The 2-norm.

Γ(·) The Gamma function.

logb(·) Log base b function.

ln(·) Natural log function.

det(A) The determinant of matrix A.

P (A) Probability of event A occurring.

P (A|B) Conditional probability. The probability of event A occurring given

that event B has occurred.

P (A,B) Joint probability of A and B.

R(a|b) Conditional risk of a given b.
px(x) Probility density function (PDF) of a continuous random variable

x.

px(x|y) Conditional PDF of a continuous random variable x given y.

{F\G} {f ∈ F|f �∈ G}
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1 INTRODUCTION

Compared to previous generations, the number of fifth-generation (5G) mobile commu-

nication devices has been increasing rapidly all over the world (ERICSSON, 2022). By the end of

2021, more than 20 service providers had launched public 5G standalone networks, and this num-

ber is expected to double in 2022 (ERICSSON, 2022). The number of 5G subscribers is estimated

to exceed one billion devices in 2022 and reach 4.4 billion by the end of 2027 (ERICSSON,

2022). It is anticipated that by 2023, there will be 13.1 billion mobile devices connected, with

1.4 billion of those ready for 5G networks (CISCO, 2020). According to Mahmood et al. (2020,

p. 3), the Internet of Things (IoT) connected device count is projected to increase three-fold,

from approximately 11 billion in 2019 to 30 billion by 2030. The fast expansion of machine type

communications (MTC) devices is being driven by new market trends, including Smart Cities,

Industry 5.0, and Artificial Intelligence (AI) aided Autonomous mobility (MAHMOOD et al.,

2020).

The growing demand for applications such as high-definition video streaming, edge

computing, virtual reality, and MTC systems requires 5G and beyond (B5G) technologies to offer

services like enhanced Mobile Broadband (eMBB), Ultra-reliable Low Latency Communication

(URLLC) and massive MTC (mMTC). To meet these requirements, disruptive technologies

like millimeter-wave (mmWave) spectrum, Intelligent Reflecting Surfaces (IRS), and massive

multiple-input multiple-output (MIMO) have been developed, as discussed in (AL-FALAHY;

ALANI, 2017; WU; ZHANG, 2019). Among the B5G technologies, massive MIMO is widely

recognized as a key component (BJÖRNSON et al., 2019). This technology benefits from the

channel hardening effect, which occurs when uncorrelated noise and fast fading disappear due to

an increase in the number of transmitting antennas to infinity (NGO; LARSSON, 2017). Theoret-

ical studies have shown that such systems can significantly improve wireless network connection

reliability, transmission energy, and spectral efficiency (MARZETTA, 2010; LARSSON et al.,

2014). Empirical studies using measured data support these predictions, demonstrating that

similar results can be achieved in physical propagation channels (GAO et al., 2015).

B5G systems must also be ready to provide crowded Mobile Broadband (cMBB)

services, which becomes necessary when the Base station (BS) cannot serve all devices within

the cell, at the same time, due to the lack of orthogonal training signals (pilots) (AFSHAR;

VAKILI, 2021; BJÖRNSON et al., 2017a). This scenario gives rise to performance issues,
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especially pilot collision, which is a problem that occurs when two or more devices choose the

same pilot to access the BS resources (BJÖRNSON et al., 2017a). Establishing a Random-Access

(RA) policy has been mandatory to address this issue. A RA protocol can be established in

two principal forms, either as grant-free (GF) or a grant-based (GB) handshake procedure. In a

GB handshake procedure, the device must be granted permission to access the BS and then be

allowed to send payload data through an exclusive communication channel. Thus, GB protocols

are preferable for eMBB systems since their latency requirements are moderate (NOMEIR et

al., 2021). On the other hand, in a GF process, the device will send a pilot only for channel

estimation, followed by its payload data. If the BS successfully decodes the payload data, then it

informs the device that the transmission succeeded. This approach is better for URLLC systems

and devices that usually send small amounts of data, like sensors, as the signaling overhead is

lower (FEHRENBACH et al., 2018).

In Björnson et al. (2017a), the strongest-user collision resolution (SUCRe) protocol is

introduced. This protocol is a GB, 4-steps RA procedure whose idea is to grant access, to the BS

resources, only to the strongest pilot contender each time. The SUCRe protocol accomplishes

this by exploring the massive MIMO channel properties to estimate the sum of all devices’

signal strength. In numerical Monte-Carlo simulations, the SUCRe protocol has been shown

to be very successful, solving about 90% of all collisions. Other works such as (HAN et al.,

2017a; MARINELLO; ABRÃO, 2019; HAN et al., 2017b; MARINELLO et al., 2020) present

proposals for optimization of the SUCRe protocol showing promising results. In (BAI et al.,

2021), a GF approach that exploits the massive MIMO hardening effect and favorable propagation

characteristics are proposed to decode signals even when a pilot collision between 2 or 3 pilot

signals occurs. Other GF RA protocols are proposed in (HAN et al., 2020; DING et al., 2019;

DING; CHOI, 2020; YU et al., 2020) with promising results in terms of reduced signaling

overhead for the devices and the BS at the cost of potential collisions.

Machine learning (ML) approaches are another promising area of research for B5G and

other communication technologies. Because of their extremely versatile nature, ML techniques

can be applied to a wide range of problems. ML algorithms are classified into three main types:

Supervised Learning (SLe), Unsupervised Learning (ULe), and Reinforcement Learning (RLe).

In (ZHOU et al., 2018), a SLe approach, specifically, the supervised version of deep learning, is

used for traffic control in 5G Ultra Dense Networks (UDN), outperforming conventional methods.

Other studies such as (HUANG et al., 2018; WEN et al., 2018; CHUN et al., 2019; HUANG et
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al., 2019) apply RLe-based algorithms in the context of massive MIMO systems, with remarkable

results in a variety of areas, including channel estimation, resource assignment, and precoding.

RLe based techniques are also an important research topic since they allow systems to learn from

the environment without the need for a data training set. An important RLe algorithm called

Q-Learning has gained attention for its simplicity and has been successfully used in works such

(SHARMA; WANG, 2019; BELLO et al., 2014) for reducing pilot collisions in GF RA protocols.

In (SANTOS et al., 2022), the Q-Learning algorithm is applied in a multi-cellular massive

MIMO system for power and pilot allocation showing promising performance and complexity

trade-off results in more than one use case scenario. Another interesting SLe approach is the

Bayesian method, also known as Bayesian Classifier (BC). The Bayesian method is a classical

Statistical Inference (SI) tool that compares the weighted PDFs of various classes and their

associated costs and then chooses the class with the highest probability of being true (HASTIE

et al., 2009). Many works have successfully applied the Bayesian method to wireless network

problems, including (OROZA et al., 2021; SEO et al., 2021; TAO et al., 2021) and others.

1.1 OBJECTIVES

The primary objective of this work is to design and compare GF and GB RA protocols

for resolving pilot collisions in massive MIMO systems. To accomplish this goal, the following

specific objectives have been set:

• Simulate massive MIMO systems in numerical simulation software, considering realistic

propagation effects based on valid mathematical models.

• Minimize the occurrence of pilot collision by applying GF and GB protocols to massive

MIMO systems.

• Investigate the use of different ML and SI approaches.

• Examine how different approaches affects performances metrics such as throughput, per-

user throughput, latency, average number of access attempts, and fraction of failed access

attempts and propose ways to optimize these metrics.
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1.2 JUSTIFICATION

The global demand for innovative B5G technologies continues to grow as the fields of

MTC and machine learning continues to advance and expand for both industrial and academic

applications (ERICSSON, 2022). Among these technologies, massive MIMO has already proven

successful in commercial applications and is a critical component of B5G (BJÖRNSON et al.,

2019). In Brazil, the use of 5G radio frequencies was officially granted to companies through

a government auction in December 2021, with the requirement for nationwide coverage by

2029 (CIVIL HOUSE, 2021). To meet this demand, the National Telecommunications Agency

of Brazil, from portuguese: Agência Nacional de Telecomunicações (ANATEL) estimates that

operators will invest R$ 51 billion over 20 years (Ministry of Communication, 2021). Therefore,

there is a local and global necessity for research, such as this work, that proposes optimization

techniques for B5G networks.

1.2.1 Related Works

To support this work, three articles were prepared for submission to peer-reviewed

journals. Each article proposes a RA protocol as described below:

• In the first article (Appendix A), the proposed protocol is a GB RA approach. In this

protocol, a BC is developed to estimate, in a decentralized way, the likelihood of a device

being the strongest contender for a particular pilot signal. The proposed BC is trained with

data collected through Monte-Carlo realizations of the SUCRe protocol (BJÖRNSON

et al., 2017a) and then applied in the third step of the SUCRe protocol. The proposed

method differs from the original SUCRe protocol as the number of false-negative cases

is highly diminished. The first article, titled "A Random Access Protocol for Crowded

Massive MIMO Systems Based on a Bayesian Classifier" is now published in the IEEE

Wireless Communications Letters journal (BUENO et al., 2022).

• In the second article (Appendix B), the proposed protocol implements a Q-Learning

algorithm designed to minimize the number of pilot collisions in a GF RA scenario mainly

developed for mMTC systems. The implemented protocol is based on the collaborative

multi-agent algorithm proposed in (SHARMA; WANG, 2019). However, the implemented

protocol is applied in a scenario where realistic propagation effects such as multipath
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fading, shadowing, path loss, thermal noise, and Inter-cellular interference (ICI) are

considered. The second article was submitted to the journal "Computer Networks" (JCR =

5.493), published by Elsevier, on November 17, 2022, and is currently under revision state

R0.

• In the third article (Appendix C), a Neural Network (NN) GB RA protocol is proposed.

This protocol is similar to the BC classifier presented in the first article (BUENO et al.,

2022). However, a Multilayer perceptron (MLP) NN is employed instead of a BC classifier

for predicting the condition of a device being the strongest contender. Similarly to the

protocol presented in (BUENO et al., 2022), this protocol is also trained with data collected

through Monte-Carlo realizations of the SUCRe protocol (BJÖRNSON et al., 2017a). It

differs from the BC as it presents slightly better results. The third article is currently being

prepared for the first submission.
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2 LITERATURE REVIEW

This chapter reviews the main topics related to massive MIMO systems, random ac-

cess protocols, and the application of machine learning and statistical inference tools in these

protocols.

2.1 5G AND B5G SYSTEMS

The reuse of frequency spectrum at spatially separated locations, made possible by the

power fall over distance, is the most significant advantage of cellular networks (GOLDSMITH,

2005). As a result, a BS can be placed in the center of a cell to serve a given region. The

cells of first-generation (1G) mobile networks were giant, capable of covering extensive areas

(GOLDSMITH, 2005). In 1G networks, the BSs transmitted analog signals at extremely high

power levels, making BS installation prohibitively expensive. Given that digital systems were

cheaper and easier to implement than analog systems, the second-generation (2G) introduced

them to the cellular networks (GOLDSMITH, 2005). The third-generation (3G) introduced

Wideband code division multiple access (W-CDMA) and were able to provide much faster

data rates than the previous generations (GOLDSMITH, 2005). The fourth-generation (4G) of

mobile networks established the Long Term Evolution (LTE) standard, promising to improve

the provided data rates even further. To achieve this goal, 4G systems implemented MIMO

and Orthogonal Frequency Division Multiplexing (OFDM) technologies. One of the first steps

towards making 5G the new mobile communication standard was taken in 2012 by the European

Unioun (EU) that officially launched the mobile and wireless communications enables for the

2020 information society (METIS) project to conduct research on 5G mobile communication

networks (WANG; MA, 2019). In 2013, the European Commission launched the Public Private

Partnership on 5G (5G PPP) to conduct research in 5G (5G PPP, 2013). Countries such as United

Kingdom (UK), South Korea, and China have also established their own 5G research projects.

Nowadays, 5G is already considered the new global mobile communication standard (WANG;

MA, 2019).

There are three main usage scenarios envisioned for 5G systems: eMBB, URLLC, and

mMTC. To provide these services, 5G systems must meet a whole new set of requirements. The

main user experience requirements of 5G systems are presented in (NGMN, 2015) and summa-
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rized in Table 1. B5G system research aims to improve the previously mentioned services even

further while also considering future challenges by developing new and disruptive technologies

such as the IRS, mmWaves, and others. Currently, the most successful B5G technology is the

massive MIMO which has not only been the subject of many research works but has also found

a lot of industrial applications, including in mMTC use cases (BJÖRNSON et al., 2019).

Table 1 – User Experience Requirements
Use case category User Experienced Data Rate E2E Latency Mobility
Broadband access in
dense areas

DL: 300 Mbps

UL: 50 Mbps
10 ms

On demand,

0-100 km/h

Indoor ultra-high
broadband access

DL: 1 Gbps

UL: 500 Mbps
10 ms Pedestrian

Broadband access in
a crowd

DL: 25 Mbps

UL: 50 Mbp
10 ms Pedestrian

50+ Mbps everywhere DL: 50 Mbps

UL: 25 Mbps
10 ms 0-120 km/h

Ultra-low-cost broadband
access for low ARPU areas

DL: 10 Mbps

UL: 10 Mbps
50 ms

on demand:

0- 50 km/h

Mobile broadband in
vehicles (cars, trains)

DL: 50 Mbps

UL: 25 Mbps
10 ms

On demand, up

to 500 km/h

Airplanes connectivity DL: 15 Mbps per user

UL: 7.5 Mbps per user
10 ms Up to 1000 km/h

Massive lowcost , long-range
and low-power MTC Low (typically 1-100 kbps) Seconds to hours

On demand:

0- 500 km/h

Broadband MTC See the requirements for the Broadband access in dense areas and 50+Mbps
in everywhere categories

Ultra-low latency DL: 50 Mbps

UL: 25 Mbps
<1 ms Pedestrian

Resilience and traffic surge DL: 0.1-1 Mbps UL: 0.1-1 Mbps
Regular communication:

not critical
0-120 km/h

Ultra-high reliability &
Ultra-low latency

DL: From 50 kbps to 10 Mbps

UL: From a few bps to 10 Mbps
1 ms

On demand:

0- 500 km/h

Ultra-high availability
& reliability

DL: 10 Mbps

UL: 10 Mbps
10 ms

On demand, 0-

500 km/h

Broadcast like services DL: Up to 200 Mbps

UL: Modest (e.g. 500 kbps)
<100 ms

On demand: 0-

500 km/h

Source: (NGMN, 2015)



28

2.2 MASSIVE MACHINE TYPE COMMUNICATIONS

Previous generations of cellular networks were able to provide Human-to-Human

(HTH) type of communications, but the support to Machine-to-Machine (MTM) type was

limited to a small number of devices in each cell (WANG; MA, 2019). B5G technologies shift

this paradigm by providing services that are mMTC ready, making possible a huge variety of

applications, including smart agriculture, traffic control, wireless factory automation, internet

of drones, and many others (MAHMOOD et al., 2020; WANG; MA, 2019). To do so, B5G

must integrate the already provided HTH services with a massive number of low-complexity,

low-power machine-type devices (SENEL; LARSSON, 2018). The main obstacles for providing

mMTC services are achieving massive connectivity, which is suggested by the 3rd generation

partnership project (3GPP) as 106 [devices/km2] (WANG; MA, 2019; 3GPP, 2016), and allowing

the implementation of low-power consuming devices. Given that a mMTC grid will supposedly

be constituted by numerous devices, it is not practical to allow a high energy consumption

because the batteries have to be changed frequently, leading to poor system efficiency (WANG;

MA, 2019). Massive MIMO have been shown to be a key technology for the integration of

HTH, and MTM type communications (SENEL; LARSSON, 2018) and the support of mMTC

requirements.

2.3 MASSIVE MIMO

The concept of massive MIMO can be regarded as an extension of the MIMO concept

introduced by Marconi more than a century ago (ALEXANDERSON, 1919). The benefits of

the massive MIMO technology were first demonstrated in (MARZETTA, 2010), where it was

shown how increasing the number of transmitting antennas leads to the channel hardening effect,

which occurs when the number of transmitting antennas M grows to infinity. As a result, the

effects of uncorrelated noise and fast fading disappear, leaving only inter-cellular interference

caused by pilot contamination. According to Marzetta et al. (2016, p. 13), the main importance

of the channel hardening effect is that the effective channel between each terminal and the BS

can be reduced to a deterministic number. Considering a terminal with M -dimensional channel

response g and a beamforming vector v, the terminal sees a scalar channel with gain vTg. When

M is large, by virtue of the law of large numbers, vTg is close to its expected value, E(vTg) (a

deterministic number). This means that the resulting effective channel between each terminal and
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the base station is a scalar channel with known, frequency-independent gain and additive noise.

In practice, the channel hardening effect reduces the channel between the terminal k and BS to a

deterministic value dependent only on the large-scale fading coefficient, βk. This is a positive real

number that embodies range-dependent path loss and shadow fading. It is virtually independent

of frequency and is strongly correlated over many wavelengths of space (MARZETTA et al.,

2016). Given the slow-changing nature of the large-scale fading coefficient, it is assumed to be

known by the terminal.

The channel hardening effect in massive MIMO systems provides the following benefits:

a) The scalar channel experienced by each terminal behaves like an Additive White Gaussian

Noise (AWGN) channel, enabling the use of standard coding and modulation techniques de-

signed for AWGN channels; b) Simple resource allocation and power control schemes can be

implemented; c) The channel hardening allows for the estimation of average channel gain, which

is dependent on βk, at terminals, without the need for Downlink (DL) pilot transmissions in

most cases. The value of βk is assumed to be known by terminal k, which estimates it based on

information periodically received from the BS (MARZETTA et al., 2016).

Before diving deep into the specific details of massive MIMO technology, this section

introduces the notion of point-to-point MIMO and multi-user MIMO (MU-MIMO).

2.3.1 Point-to-Point MIMO

The most basic form of MIMO is the point-to-point MIMO. In a point-to-point MIMO

system, the BS is equipped with an array of M antennas to serve a single terminal equipped with

an array of T antennas. In such a scheme, different terminal devices must be served through

a different combination of time and frequency resources. Furthermore, the BS must acquire

Channel State Information (CSI) during the Uplink (UL), and the terminal during the downlink

(MARZETTA, 2015). A representative illustration of the point-to-point MIMO is depicted in

Figure 1.

During the UL, the BS receives a signal yul ∈ C
M×1 through a wireless propagation

channel Gul ∈ C
M×T , expressed as:

yul =
√
ρulGulxul + nul, (1)

where ρul is the transmit power, xul ∈ C
T×1 is the uplink signal vector and nul ∈ C

M×1 is the
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Figure 1 – Illustrative representation of the point-to-point MIMO system

uplink additive noise plus interference.

During the UL the BS decodes the received signal yul by employing a detection

technique. If a Maximum-Ratio combining (MRC) detector is employed, then the received signal

is multiplied by the conjugate-transpose of the UL channel matrix, Gul. If a Zero-Forcing (ZF)

detector is employed, then yul is multiplied by the UL channel matrix pseudo-inverse. We can

generically write any linear detector matrix as W ∈ C
T×M and expand the received symbols to

fully characterize them in terms of the desired signal, interference, and noise,

x̂ul = Wyul, (2)

where x̂ul represents the UL signal vector estimated by the BS. Expanding the ith received

symbol x̂iul,

x̂iul = wiyul = wi · (√ρulGulxul + nul) = wi

T∑
j=1

√
ρulxjgulj +wi · nul =

√
ρulwigulixi︸ ︷︷ ︸
desired signal

+
T∑

j=1,j �=i

√
ρulwixjgulj︸ ︷︷ ︸

interference

+wi · nul︸ ︷︷ ︸
noise

, (3)

where wi represents the ith row vector of the matrix W, gulj indicates the jth column vector of

the UL channel matrix Gul and xj indicates the jth symbol sent by the transmitter.

The T terminal antennas receives the DL signal ydl ∈ C
T×1 in a similar fashion as:

ydl =
√
qGdlxdl + ndl, (4)

where q is the DL transmit power, xdl ∈ C
M×1 is the DL signal vector, ndl ∈ C

T×1 is the DL

noise plus interference and Gdl ∈ C
T×M is the DL channel matrix.
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During the DL the BS usually send a precodified signal vector xdl, with xdl = F · x, in

which F ∈ C
M×T is a linear precoding matrix, such as Maximum-Ratio transmission (MRT) or

ZF, and x ∈ C
T×1 is the signal vector. The signal received by the k-th terminal antenna can also

be expanded in terms of the desired signal, interference, and noise, similar to Equation (3),

ŷdlk =
√
qgdlk · F · x+ nk =

√
qgdlk ·

T∑
i=1

fixi + nk,

=
√
qgdlk · fk · xk︸ ︷︷ ︸

desired signal

+
√
q

M∑
j=1,j �=k

gdlk · fj · xj︸ ︷︷ ︸
interference

+ nk︸︷︷︸
noise

, (5)

where gdlk is the k-th row vector of the DL matrix Gdl, fi, fk and fj are respectively the i-th,

k-th and j-th column vectors of the precoding matrix F, xi and xj are respectively i-th and j-th

symbols sent by the BS, nk is noise perceived by the k-th terminal antenna in the DL.

If we assume a Time-Division Duplex (TDD) mode, then Gdl can be calculated as

the transpose of the uplink channel matrix Gul (BJÖRNSON et al., 2016). Typically, massive

MIMO systems employ a TDD scheme in order to acquire CSI since it demands only UL pilot

signals. Frequency-Division Duplex (FDD) schemes can also be employed by massive MIMO

systems, however, when employing FDD schemes the BS must acquire CSI for UL and DL

channels as they are not reciprocal to each other (LU et al., 2014). In fact, the time required to

transmit DL pilot symbols is proportional to the number of BS antennas (LU et al., 2014). Thus,

in FDD mode, the system is not scalable regarding the number of BS antennas. In this work, only

the TDD mode operation is considered.

The instantaneous achievable rate Cul for the UL can be calculated (in [bits/s]) based

on knowledge of the Shannon theory as:

Cul = log2

[
det
(
IM +

ρul
T

GulGul
H
)]

[bits/s], (6)

where IM is the M ×M identity matrix and (·)H is the conjugate-transpose operation. For the

DL case, the Equation (6) becomes:

Cdl = log2

[
det
(
IT +

q

M
Gul

HGul

)]
, (7)

where IT is the T × T identity matrix. In both Equation (6) and Equation (7), the transmit

power is constant and does not depend on the number of antennas, which is expressed in the

normalization by M and T (MARZETTA et al., 2016). To be valid, the Equations (6) and (7)

assume that the additive receiver noise is complex Gaussian. Assuming the elements of the
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channel matrices of DL and UL to be independent, identically distributed (i.i.d) zero-mean

complex Gaussian, unit variance random variables and also that the Signal-to-Noise Ratio (SNR)

is high enough, then random matrix theory yields that:

C ∝ min(M,T ) log2(ρsnr), (8)

where ρsnr is the SNR at the receiver side (MARZETTA, 2015).

The lower and upper bounds on the channel capacity are derived in (RUSEK et al.,

2013) and expressed as:

log2(1 + ρM) ≤ C ≤ min(M,T ) log2

(
1 +

ρmax(M,T )

T

)
. (9)

where the scalar ρ is the SNR of the link, proportional to the transmitted power divided by the

noise-variance (RUSEK et al., 2013).

Theoretically, the channel capacity can be linearly scaled by increasing T and M .

However, scaling point-to-point MIMO systems is not practical beyond a certain number of

antennas on both sides. For instance, the 802.11ac standard sets a limit of 8 for both T and M .

According to (MARZETTA, 2015), scaling point-to-point MIMO beyond 8× 8 is not easy for a

variety of reasons:

1. Line-of-sight conditions present a particular challenge because, for compact arrays, the

channel matrix has a minimum rank of one, allowing only one data stream.

2. Increasing the number of antennas necessitates spending proportional amounts of time on

training.

3. Near the edge of the cell, Signal-to-Interference-plus-Noise ratio (SINR) are typically low,

and multiplexing gains fall short of the promised min(M,T ).

4. The terminal equipment is complex, requiring separate electronic circuits for each antenna

and advanced digital processing to separate the data streams.

5. To achieve performance close to the Shannon limit, both the BS and the user terminal must

perform complex signal processing.

A slightly better alternative to the point-to-point MIMO is the multi-user MIMO system.
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2.3.2 Multi-User MIMO

A simple representation of the MU-MIMO system is shown in Figure 2. The main idea

of MU-MIMO is to split the T terminal antennas of the point-to-point MIMO system into T

single-antenna devices scattered within the cell.

Figure 2 – Illustrative representation of the MU-MIMO system

This approach is better than the point-to-point MIMO for two main reasons: First,

only the BS requires more expensive hardware, while the terminal sides can be equipped with

relatively cheap antennas and circuits (LU et al., 2014). Second, Line-of-sight conditions are

no longer a significant issue (MARZETTA, 2015). This is because, in MU-MIMO systems,

the terminals are usually separated by multiple wavelengths of distance, which renders their

channel matrices also to be uncorrelated, allowing multiple data streams to be sent from multiple

terminals (BJÖRNSON et al., 2017b). Similar to the point-to-point MIMO, the UL channel

capacity Cul in the MU-MIMO is expressed (in [bits/s]) as :

Cul = log2
[
det
(
IT + ρulGulGul

H
)]

[bits/s]. (10)

However, the transmit power is T times higher than in the point-to-point MIMO model

because there is no power sharing among the antennas (MARZETTA et al., 2016). On the other

hand, the DL capacity Cdl is computed as convex optimization problem as:

Cdl = max
θ

log2
[
det
(
IM + qGulDθGul

H
)]

,

subject to bTθ = 1,

θ ≥ 0,

(11)

where θ is a M × 1 power allocation vector, Dθ = diag (θ) is a M × M positive diagonal

matrix containing the power allocations elements of the vector θ, as its diagonal elements, b is a
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M × 1 vector of ones and (·)T is the transpose operation (LU et al., 2014; MARZETTA et al.,

2016; MARZETTA, 2015).

One well-known way of allocating the diagonal elements of Dθ is through the water-

filling algorithm. This power allocation algorithm consists in increasing the transmission power

for streams that have better channel conditions, and it can be done either per user or jointly

for all users in order to maximize overall capacity at the cost of an unfair power allocation

(CRÂŞMARIU et al., 2016).

However, to achieve the spectral efficiency showed in Equations (10) and (11) requires

a more complex signal processing at both the BS and user terminal ends (the algorithm dirty

paper coding/decoding) (MARZETTA, 2015). Also, the MU-MIMO system assumes that the

downlink channel is known by both the BS and terminal devices, which is not practical as it

requires that pilot signals are sent in both directions (MARZETTA et al., 2016). Therefore, the

multi-user MIMO as originally conceived is also not scalable.

2.3.3 Multiuser MIMO vs Massive MIMO

According to (BJÖRNSON, 2017), there are a few differences between MU-MIMO and

massive MIMO that in the end turns the massive MIMO a much superior approach such as: a) In

massive MIMO systems only the BS acquires CSI and simple linear signal processing is used

on both the UL and the DL; b) In massive MIMO, the number of BS antennas is usually much

higher, but not necessarily higher, than the number of users in the cell; c) In the MU-MIMO,

channel estimation is done mainly based on codebooks with a set of predefined angular beams.

In contrast, in massive MIMO, the channel is estimated based on UL pilots. An illustration of

the massive MIMO system is shown in Figure 3.

The scalability of massive MIMO concerning the number of BS antennas allows the

channel hardening effect to take place. The benefits of massive MIMO are also perceived

from the single antenna terminal side, as the effective scalar channel behaves like AWGN.

Therefore standard AWGN channel coding and modulation techniques are effective in most cases

(MARZETTA et al., 2016). For the BS to perform multiplexing and de-multiplexing of signal,

massive MIMO depends on the acquisition of measured CSI from uplink pilots.
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Figure 3 – Illustrative representation of the massive MIMO system

2.3.4 Coherence Interval

The coherence interval is a key concept in the context of B5G, mMTC, and massive

MIMO systems. It can be defined as the time-frequency block over which a wireless channel

remains constant or coherent and is a measure of the stability of the channel. This stability is

crucial for ensuring reliable and efficient communications, as it allows for accurate demodulation

and decoding of the signal. Also, the coherence interval of a wireless channel determines the

maximum length of a block of data that can be transmitted without encountering significant

interference or errors.

The length of the coherence interval depends on various factors, such as the mobility

of the transmitter and receiver, the environment in which the communication is taking place,

and the signal’s frequency band. In general, a longer coherence interval indicates a more stable

channel, allowing longer data blocks to be transmitted without errors. For example, signals in

higher frequency bands, such as mmWave bands, tend to have shorter coherence intervals than

those in lower frequency bands. Additionally, channel conditions, such as multi-path fading and

shadowing, can also shorten the coherence interval.

The coherence interval can be mathematically represented as a combination of the

coherence time, Tc, and the coherence bandwidth, Bc. Tc refers to the time duration for which a

wireless channel can be considered time-invariant, while Bc denotes the range of frequencies

where a constant value can approximate the magnitude of the channel’s frequency response.

The coherence time, Tc, can be approximated as the amount of time that a moving

device takes to travel half a wavelength of the considered signal:

Tc =
λ

2.ν
[s], (12)
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where λ is the wavelength and ν is the device’s velocity (MARZETTA et al., 2016).

The relationship between the wireless channel, represented by g(t), the input signal

x(t), and the output signal y(t) over a time interval Tc, is defined by the impulse response of the

wireless channel:

y(t) =

∫ ∞

−∞
g(τ)x(t− τ)dτ, (13)

and the channel’s frequency response given by:

G(f) =

∫ ∞

−∞
g(t)e−i2πftdt. (14)

The magnitude of the channel’s frequency response,|G(f)|, is, in general, frequency-

dependent. However, it can be approximated by a constant value over a Bc frequency interval

(MARZETTA et al., 2016). The value of Bc can be approximated as:

Bc =
c

|d1 − d2| [Hz], (15)

where c is the speed of the light, and |d1−d2| is the maximum length difference between different

propagation paths from the transmitter to the receiver (MARZETTA et al., 2016). According to

Marzetta et al. (2016, p. 22): "As a first-order approximation, |d1 − d2|/c is equal to the delay

spread of the channel, and g(t) is time-limited to |d1 − d2|/c seconds."

A coherence interval, depicted in Figure 4, is a time-frequency space characterized by a

time span of Tc seconds and a bandwidth of Bc Hz, which is the maximum time-frequency space

where the wireless channel’s effects can be described by the multiplication of a complex-valued

gain Φ. The magnitude of |Φ| represents the scaling of the waveform’s envelope, and arg(Φ)

represents a shift in its phase (MARZETTA et al., 2016).

Finally, the sampling theorem states that any segment of a waveform spanning D

seconds with energy limited to a B Hz wide frequency interval can be described in terms of BD

complex-valued samples taken at each 1/B seconds. This fact yields that TcBc complex-valued

samples are necessary to define a waveform fitting a coherence interval (MARZETTA et al.,

2016). The length of the coherence interval is then defined as:

τc = TcBc [samples]. (16)

Some estimates of Tc, Bc, and τp values are given in Table 2 for some different propaga-

tion scenarios at a carrier frequency of 2 GHz.

Considering a TDD scheme, the τc samples of the coherence interval naturally divide

themselves into UL and DL subintervals since only one end of the link transmit a signal each time



37

Figure 4 – Illustrative representation of the coherence interval

Indoors

|d1 − d2| = 30 meters

Outdoors

|d1 − d2| = 1000 meters

Pedestrian

ν = 1.5 m/s

(5.4 km/h)

Bc = 10 MHz

Tc = 50 ms

τc = 500,000 samples

Bc = 300 kHz

Tc = 50 ms

τc = 15,000 samples

Vehicular

ν = 30 m/s

(108 km/h)

N/A

Bc = 300 kHz

Tc = 2.5 ms

τc = 750 samples

Table 2 – First-order estimates of the coherence time Tc, coherence bandwidth Bc, and sample length of the
coherence interval, τc, for some different propagation scenarios, at a carrier frequency of 2 GHz
(λ = 15 cm).

Source: (MARZETTA et al., 2016, p 23)

in the TDD mode. The UL and DL subintervals are then subdivided into UL and DL subintervals

spent on uplink pilots and payload data. Hence, τc can be represented as a sum of subintervals as

follows:

τc = τul + τul,p + τdl + τdl,p [samples], (17)

where τul represents the number of samples per coherence interval spent on the transmission of

UL payload data, τul,p the number of samples per coherence interval spent on UL pilots, τdl the

number of samples used for transmission of DL payload data, and τdl,p the number of samples

allocated for DL pilots. Since the use of TDD mode allows the channel estimation of the DL by

simply taking the conjugate-transpose of the UL channel, then in practice the τdl,p samples can

be allocated for the DL payload data τdl and τc will constituted of only 3 subintervals:

τc = τul + τp + τdl [samples], (18)
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in which the (·)ul subscript is dropped from the subinterval τup,p to simplify the notation.

The shortage of coherence blocks is closely tied to the scarcity of pilot signals 2.3.5.

Measuring the number of coherence blocks in each use case scenario is crucial for any B5G

project design, especially in mMTC systems where the number of connected devices to the BS

may exceed the number of available pilots. This work proposes three RA protocols to handle use

case scenarios with limited pilot availability.

2.3.5 Pilot Signals

In the massive MIMO technology channel estimation is a key step. The BS estimates the

channel gain of the terminals, receiving and decoding pilot sequence signals sent by them. For

the BS to estimate the channels of T terminals, at least T mutually orthogonal pilot waveforms

are needed. The orthogonality among the pilots is required to ensure that there is no interference

between them. Hence, the BS keeps available a set of τp orthogonal pilots sequence of length

τp to be shared among devices on the network, where τc ≥ τp ≥ T (MARZETTA et al., 2016).

The pilot sequence length must be equal to or greater than the number of pilots for them to be

orthogonal. Naturally, τp is the smallest possible pilot length capable of ensuring orthogonality

within a set of τp pilots.

The BS uses the following procedure to estimate the channel gains of terminals using

pilots:

When the k-th terminal wants to transmit a signal to the BS, it chooses one of the

available pilot sequences, herein represented by the vectorψk with dimension τp×1. Collectively,

all pilot sequences chosen by T terminals is then represented by a τp × T unitary matrix

Ψ = [ψ1,ψ2, ...,ψk] with τp ≥ T and

ΨHΨ = IT . (19)

Together, all T terminals transmit a T × τp signal,

Xp =
√
τpΨ

H, (20)

which, according to Marzetta et al. (2016, p. 46), "is normalized so that each terminal expends a

total energy that is equal to the duration of the pilot sequence",

τpψ
H
kψk = τp. (21)
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The pilot signals sent by the UL channel is then received at the BS as a M × τp matrix signal,

Yp =
√
ρulGulXp +Np =

√
τpρulGulΨ

H +Np, (22)

where Np is the receiver M × τp noise matrix, with entries i.i.d, following a complex normal

distribution, CN (0, 1).

The BS then correlates Yp with each of the T pilot sequences, yielding a noisy version

of the channel matrix Gul:

Y′
p = YpΨ =

√
τpρulGulΨ

HΨ+NpΨ =
√
τpρulGul +N′

p, (23)

where N′
p = NpΨ is M × T noisy matrix, whose entries are also i.i.d with distribution CN (0, 1)

(MARZETTA et al., 2016). The entries of Gul are then estimated by employing a channel

estimator. For instance, under the assumption of independent Rayleigh fading, the elements of

the channel matrix and the noise matrix are statistically independent, and the Minimum Mean

Square Error (MMSE) method can be employed to estimate the (m,k)-th component of Gul as

follows:

[Y′
p]mk =

√
τpρulg

m
k + [N′

p]mk. (24)

Assuming that the large-scale fading coefficients are known, so the prior distribution of gmk ,

CN (0, βk), is also known. The MMSE estimator yields:

ĝmk = E[g
m
k |Yp] = E[g

m
k |Y′

p] =

√
τpρulβk

1 + τpρulβk

[N′
p]mk. (25)

2.3.6 Pilot Contamination and Pilot Collision

One of the main benefits of massive MIMO is to allow simple and linear estimators such

as MMSE and Least Squares (LS) to be employed by BS for acquiring CSI (BJÖRNSON et al.,

2017b). Researchers have shown that signal detection, and precoding can also be carried out using

simple and linear signal processing approaches such as Matched-Filter (MF), ZF and Maximum

Ratio (MR) when the number of BS antennas is large without a significant performance loss

when compared to more complex non-linear methods (RUSEK et al., 2013).

Ideally, the number of pilots should be equal to the number of devices. Nonetheless,

since both time and frequency spectrum resources are limited, the number of possible orthogonal

pilots is also limited. Hence, pilot reuse is frequently necessary either in the same or neighboring

cells.
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Currently, pilot contamination and pilot collision are the main impairments to massive

MIMO scalability. Pilot contamination occurs due to the reuse of pilots in neighboring cells; it

acts as an interference and does not disappear by increasing M . Pilot collisions occur due to the

reuse of pilots within the same cell.

Nonetheless, as the number of mobile phones and mMTC devices is continuously

increasing, the number of available pilots will eventually not be enough for the BS to serve all

devices within the cell. This shortage of pilots gives rise to performance issues such as pilot

collisions when two or more users choose the same pilot to try to access the BS resources.

Since the BS cannot estimate the channel when a pilot collision occurs, none of the contenders

can access the BS resources. This issue leads to a system bottleneck and makes the network

unsuitable for high data transmission devices and URLLC. Therefore, establishing a RA policy

is mandatory.

2.4 RANDOM ACCESS PROTOCOLS

Several RA protocols have already been proposed. A RA policy can be established

mainly either as GF or GB handshake procedure. In a GB process, the device first has to be

granted permission to access the system resources controlled by the BS before sending any

payload data through an exclusive channel. On the other hand, in a GF process, the device is

allowed to send its payload data without being granted an exclusive channel of the system. This

section reviews the most common RA procedures proposed in the literature.

2.4.1 Grant-based Protocols

A common GB procedure is the LTE Random Access Channel (RACH) protocol,

Figure 5, which has currently been applied to the narrowband IoT (NB-IoT) (BJÖRNSON et al.,

2017b). The LTE RACH can be either a contention-based random access or a non-contention-

based random access. The non-contention-based random access procedure has three steps: First,

the BS allocates random access preambles to all devices. Next, each device sends the assigned

preamble to the BS. Finally, after receiving the preambles, the BS sends the Random Access

Response (RAR) to all devices. Since each device has its own preamble, a collision in this

procedure can be avoided.

The contention-based procedure, shown in Figure 6, has four steps: In the first step,
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Figure 5 – Non-contention-based RACH Protocol for LTE systems

the devices send a preamble randomly chosen from a set of preambles made available by the

BS. Then, the BS send a RAR to the devices whose preambles did not collide in the previous

step. Next, After receiving a response to its preamble transmission, each device sends a Radio

Resource Control (RRC) connection request to request resources for ensuing data transmission.

If more than one device activated the preamble, all of these devices use the same resource to send

their RRC connection request in Step 3, and the BS detects this collision. In the last step, the BS

achieves the contention resolution in the DL, a complex procedure that may require all colliding

devices to make a new access attempt after a random waiting period (WANG; MA, 2019).

Random Access GB protocols targeted to massive MIMO systems have also been

proposed. In (BJÖRNSON et al., 2017a), Figure 7, the SUCRe protocol is introduced. This

protocol is a GB, 4-steps RA procedure whose idea is to grant access, to the BS resources, only

to the strongest pilot contender each time. Firstly, the devices that wish to become active transmit

during the UL a RA pilot sequence randomly chosen from the set of pilots provided by the BS.

In the next step, the BS responds with a precoded pilot in the DL, with the precoding evaluated

based on CSI acquired from each RA pilot received. Receiving this signal allows devices to

assess the total signal strength of all contenders competing for the same RA pilot. Based on this

information, each competitor decides whether or not to retransmit its pilot signal in the UL of

step 3. The pilot is retransmitted only when the device’s signal strength exceeds 50% of the entire

sum of the signal strengths of all devices competing for the same specific RA pilot. Finally, in the

last step, the BS assigns dedicated communication resources to the devices whose pilot signals

did not collide in step 3. In numerical Monte-Carlo simulations, the SUCRe protocol has been
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Figure 6 – Contention-based RACH Protocol for LTE systems

shown to be very successful, solving around 90% of all collisions. However, the channel gain

correlates with the device’s distance from the BS. Thus, in the RA stage, devices closer to the

BS are favored over those farther away. Moreover, the protocol does not resolve false-negative

pilot collisions in which the strongest device has a signal strength value below 50% of the total

sum of the contesting devices’ signal strengths. Furthermore, the 4-step procedure required for

the BS to grant exclusive communications resources to the devices could be a performance

bottleneck and a source of excessive delay and signaling overhead. Therefore, it is not the ideal

choice for mMTC systems, where accessing devices usually have small data packets to transmit

sporadically. Other works, such as (HAN et al., 2017a; MARINELLO; ABRÃO, 2019; HAN

et al., 2017b; MARINELLO et al., 2020), present proposals for optimization of the SUCRe

protocol showing promising results. However, they are also GB protocols that introduce extra

complexity or overhead compared to the SUCRe protocol. To support new use cases, B5G

RA schemes should achieve high scalability under latency and reliability constraints. For this

purpose, grant-free (GF) RA protocols have gained increasing interest, as they can drastically

reduce control signaling for connection establishment (CHEN et al., 2021).

A grant-based protocol is better suited to eMBB applications that require high data rates

and reliable connections. However, when dealing with massive machine-type devices, a four-step

handshake procedure may result in excess of control signaling overhead. Given that most use
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Figure 7 – Illustrative representation of the SUCRe Protocol

cases of mMTC systems are in the form of small sensors and actuators that transmit small data

packets, a GF RA protocol is a better approach.

2.4.2 Grant-free Protocols

Classical GF RA approaches are the contention resolution diversity slotted ALOHA

(CASINI et al., 2007) and irregular repetition slotted ALOHA (LIVA, 2011) protocols. The

idea behind those schemes is to repeat the transmission of data packets in several randomly

chosen slots. When a device uniquely selects a slot, its payload is successfully decoded, and its

interference in other slots is canceled via Successive interference cancellation (SIC), increasing

the occurrence of other non-colliding slots. Although these protocols achieve excellent results,

they have the disadvantages of requiring packet retransmissions, overhead for side information

signaling, increased complexity for SIC evaluation, and the possibility of propagation errors.

Grant-free random access protocols can also take advantage of the massive MIMO

properties. In (BAI et al., 2021), a GF random-access protocol that minimizes signaling overhead

and access delay, and exploits the features of massive MIMO to handle preamble collisions, is

proposed. The main novelty introduced by (BAI et al., 2021) is an algorithm capable of decoding

up to three collided signals via the following steps: First, the BS broadcasts system information
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to the devices, allowing them to estimate their channel gains and use Fractional Power Control

(FPC) to compensate for path loss. Following that, devices wishing to connect to the network

randomly select a preamble from a predetermined list assigned to the corresponding cell and

transmit the preamble, followed by data, to the BS. Next, using the energy detector, the BS detects

preambles in use and estimates the channel vector corresponding to each detected preamble.

If multiple devices select the same preamble, the corresponding channel estimate transforms

into an estimate of the superposition of the multiple devices’ channels. The BS then employs

an Automatic Modulation Classification (AMC) procedure based on elementary High-Order

Cumulants (HOCs) to detect the presence of collisions through a given threshold. If there is no

collision, the decoding phase ends. If the BS detects a collision, the data sequence is forwarded

to the next stage, where the BS employs a Second-Order Statistic of the Eigenvalues (SORTE)

approach to determine the number of devices that experience preamble collisions. Finally, each

signal layer must be decoded using an appropriate SIC strategy. For each superimposed signal,

the BS decodes the two strongest signal layers and attempts to decode the third signal layer only

when the estimated number of colliding devices is greater than twice the estimated number of

preambles picked by multiple devices. In (DING et al., 2019), analytic expressions of success

probability of the GF RA applied in massive MIMO networks for conjugate and zero-forcing

beamforming techniques are derived, showing that GF protocols are an attractive RA technique

with low signaling overhead in massive MIMO networks. It is also shown that massive MIMO

networks employing GF RA protocols could simultaneously accommodate a number of RA users,

which is multiple times the number of RA channels, with almost 100% success probability. GF

RA protocols are also applied to non-orthogonal multiple access (NOMA) and IoT technologies

(SHAHAB et al., 2020). Other works, such as (BELLO et al., 2014) and (SHARMA; WANG,

2019) that apply ML algorithms for pilot collision resolution, will be discussed in the next

section. Figure 8 illustrates a generic diagram of a 2-step GF procedure, in which a device sends

the pilots signal followed by the data payload to the BS and receives an acknowledgment signal

(ACK) if the BS successfully decodes the device’s signal.

2.5 MACHINE LEARNING

The term Machine learning (ML) refers to a part of AI and computer science that studies

algorithms capable of imitating the way humans learn (IBM, 2023). In the context of wireless

communications, including B5G , ML based techniques have been finding a plethora of new



45

Figure 8 – 2-step grant-free protocol

possible applications such as in (KOLODZIEJ et al., 2020), (MUSTAFA et al., 2021), and others.

There are three main types of ML algorithms: a) Supervised Learning; b) Unsupervised Learning;

and c) Reinforcement Learning. Both supervised learning and unsupervised learning need

training data. However, while supervised learning requires labeled training data, unsupervised

learning is able to navigate through data and find groups of data that might form a specific data

category. Reinforcement learning, however, does not require any training data and learns from

the environment by expressing a behavior and being rewarded for it.

2.5.1 Supervised Learning

A supervised learning (SLe) model is a computational algorithm that predicts outcomes

based on labeled training data. To do this, the SLe model requires a set of labeled training data

where each data point consists of an input and its corresponding label or desired output. The goal

of the model is to learn a function that maps inputs to their corresponding outputs.

Before training an SLe model, preparation of the training data is necessary. This may

involve splitting the data into training and test sets in a predetermined proportion, such as 80%

for training and 20% for testing. Preprocessing the data, such as normalizing it to values between

0 and 1, may also be required.

A classic example of labeled training data is the iris dataset. This dataset is a table

where each row represents an iris flower, and the columns present information taken from

each individual flower. The information includes the species (labels) and features such as the

dimensions of their botanical parts, sepal, and petal, in centimeters. The iris dataset has four

features: "Sepal length", "Sepal width", "Petal length", and "Petal width", and three possible

species labels: "Versicolor", "Setosa", and "Virginica".
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In the example of the iris dataset, the features of each data item can be used as a 4-

dimensional input vector of a training model so that each input vector corresponds only to a single

output class. The model’s output can be numerically modeled through the encoding method one-

hot for classification tasks, where each class is arbitrarily modeled as a vector with a dimension

equal to the number of classes. In the one-hot model, each element of the output class is either 0

or 1, only a single element of the vector output is equal to 1, and all others are equal to 0. Hence,

each input vector input = ["Sepal length", "Sepal width", "Petal length", "Petal width"]T cor-

responds to one of three possible output vector classes:

output =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎦
︸︷︷︸

Versicolor

,

⎡⎢⎢⎢⎣
0

1

0

⎤⎥⎥⎥⎦
︸︷︷︸
Setosa

,

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
︸︷︷︸

Virginica

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

This example can be generalized for any classification task with known desired output

classes, regardless of the number of features or classes. In general, SLe methods can be used to

estimate any function of type f : X −→ Y , where X ⊆ R
m and Y ⊆ R

n, in which m and n are

respectively the input and output vectors’ dimensions.

The most common types of SLe based methods are Linear Regression, a technique

that, by fitting a linear equation to the observed data, seeks to predict the value of one or

more continuous target variables d given the value of a D-dimensional vector xd of input

variables (BISHOP, 2006). Logistic Regression, a method used for binary classification tasks in

which a logistic curve is fit to the observed data (SHALEV-SHWARTZ; BEN-DAVID, 2014).

Decision Tree, a tree-like hierarchical model that, by traveling from a root node of a tree to a

leaf (where the label is found), can be used to predict the label associated with a given input

(SHALEV-SHWARTZ; BEN-DAVID, 2014). Random Forest, a collection of decision trees

whose predictions are combined to improve the overall performance and reduce the variance

(SHALEV-SHWARTZ; BEN-DAVID, 2014). Support Vector Machine (SVM), a method that

works by finding a hyperplane that maximally separates the different classes of data (SHALEV-

SHWARTZ; BEN-DAVID, 2014). Finally, Neural Networks, a network of artificial neurons that

are organized in layers and trained for learning the correct output for a given input data (SILVA

et al., 2016).

There are many examples of SLe applications in the context of wireless communications.

For instance, the SLe version of deep learning has been employed to solve various issues in
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B5G systems such as in (CHUN et al., 2019) where a deep learning based approach for channel

estimation in massive MIMO systems is proposed. The suggested method is applied to cases

when the pilot length is smaller than the number of transmit antennas achieving better results

than traditional approaches. Another example is as described in (WEN et al., 2018) where deep

learning is used as a tool for minimizing overhead when acquiring downlink CSI for massive

MIMO systems employing FDD mode, which is not practical using conventional methods. Other

ML approaches, including Decision-Tree,Random Forests, Space-Vector-Machine,Convolutional

Neural Networks and Recurrent Neural Network are also applied in various issues within B5G

systems (REKKAS et al., 2021).

2.5.2 Unsupervised Learning

Unlike a SLe model, an unsupervised learning (ULe) model does not rely on labeled

data items. Instead, ULe algorithms aim to discover patterns in the data collection. An important

ULe application is clustering, which is finding groups of data within the dataset. The clustering

model, however, is not able to provide specific labels for those groups. For instance, a clustering

model presented with an unlabeled version of the iris dataset is capable of finding 3 different

groups. However, only a specialist can define the specific class of each group as "Versicolor",

"Setosa" or "Virginica". One of the most popular clustering approaches is the K-Means method,

a centroid-based algorithm where each data group is associated with a centroid. The algorithm

iteratively updates the centroid and the membership of data points to the clusters until convergence

(SHALEV-SHWARTZ; BEN-DAVID, 2014).

Other types of ULe applications are dimensionality reduction and anomaly detection.

The goal of dimensionality reduction is to reduce the number of variables in data while retaining

as much information as possible. This can be useful for visualizing high-dimensional data or

improving the performance of supervised learning algorithms. Some popular dimensionality

reduction methods include Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA). Anomaly detection, also known as outlier detection, aims to identify data items

that do not conform to the normal pattern in the data.

Unsupervised learning-based algorithms, such as K-Means, Self-Organizing Maps

(SOM), and unsupervised Long Short-Term Memory (LSTM), have been effectively applied in

various scenarios, including power allocation, fault detection, fault management, and channel

estimation (REKKAS et al., 2021). In (CUI et al., 2018), the K-Means algorithm is utilized to
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solve the sum-rate maximization problem in a mmWave-NOMA system where the distribution of

users’ locations is modeled using a Poisson cluster, resulting in improved performance compared

to applying K-Means to Orthogonal multiple access (OMA) systems combined with mmWave

technology. The sum-rate maximization problem for DL in mmWave-NOMA systems is also

studied in (REN et al., 2019). The authors propose an Expectation Maximization (EM) algorithm

for user clustering in a fixed user model, demonstrating superiority over the same algorithm

applied to mmWave-OMA systems. Other works such as (GóMEZ-ANDRADES et al., 2016) and

(FARSAD; GOLDSMITH, 2017) also propose unsupervised learning-based solutions, achieving

good results.

2.5.3 Reinforcement Learning

Reinforcement learning (RLe) based methods differ from SLe and ULe methods, as

they do not require data items for training. The model (an agent) learns by interacting with the

environment and receiving rewards and penalties for its actions. The goal is to choose actions

that will maximize the cumulative reward over time.

A classic RLe method is the Q-Learning, an algorithm based on the Q-function, which

estimates the maximum expected cumulative reward for an agent following a particular policy

(SUTTON; BARTO, 2018). The Q-Learning method operates by constructing a table (Q-table)

that stores the cumulative reward Q(s, a) for taking a certain action a if the agent is currently in

state s and following the optimal policy from there on. The cumulative reward Q(s, a) is updated

as:

Qt+1(s, a) = Qt(s, a) + κ(r + γ ∗max
a

(Q(st+1, at+1))−Qt(s, a)), (27)

where κ is the learning rate, a value between 0 and 1 that determines the update rate, r is the

immediate reward for taking action a in state s, γ is the discount factor, a value between 0 and

1, that controls the trade-off between short-term and long-term rewards. For example, if γ is

close to 0, the agent will prioritize short-term rewards, while if γ is close to 1, the agent will

prioritize long-term rewards. st+1 is the next state after taking action a in state s. at+1 is the

next action taken in the next state st+1. maxa(Q(st+1, at+1)) is the maximum action-value for

the next state st+1. This is the maximum expected cumulative reward for all actions in the next

state. Hence, the Q-table works as a map for the agent to find the action with the highest reward
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in its current state. Other RLe based methods are State–Action–Reward–State–Action (SARSA),

Temporal-Difference (TD) learning, Monte Carlo Methods, and deep reinforcement learning

(SUTTON; BARTO, 2018).

Due to the randomly ever-changing nature of wireless channels, RLe based methods

are interesting approaches to apply in B5G and other wireless communications technologies as

they can adapt to environmental changes in almost real-time. In (BELLO et al., 2014), a GF RA

RLe-based protocol is proposed as a pilot collision control method. The RLe algorithm used

in (BELLO et al., 2014) is the Q-Learning, in which each accessing device is an independent

agent and the rewards are +1 if it selects a unique RA slot or −1 otherwise. As an improvement,

(SHARMA; WANG, 2019) proposes a collaborative Q-learning RA scheme in which the negative

rewards in the event of a collision are proportional to the congestion level of the chosen RA

slot. However, the protocol assumes that the devices know the exact number of devices colliding

by their chosen RA slot. The performance results are better than when compared with the

independent Q-learning approach of (BELLO et al., 2014). Nonetheless, both (BELLO et al.,

2014) and (SHARMA; WANG, 2019) do not take into account realistic effects like multipath

fading, path loss, thermal noise, and ICI, besides assuming the devices know the exact congestion

levels.

2.6 STATISTICAL INFERENCE

Classical Statistical Inference (SI) models such as the frequentist inference, Pearson

Correlation, and the Bayesian method differ from ML models as they derive population in-

ferences from a population sample while machine learning discovers generalizable predictive

patterns (BZDOK et al., 2018). In principle, many statistical and ML methods can be used for

prediction and inference. However, statistical methods have long focused on inference, which is

accomplished through developing and fitting a project-specific probability model (BZDOK et al.,

2018). The model enables us to calculate a quantitative measure of confidence that a discovered

relationship describes a true effect that is unlikely to be caused by noise. Moreover, if sufficient

data are available, we can explicitly validate assumptions (e.g., equal variance) and, if necessary,

refine the specified model (BZDOK et al., 2018).

Statistical learning is a process of data analysis in which a set of general characteristics

of a population are inferred from a subset of the population. The process of statistical learning

through Bayes’ rule, (28), is called Bayesian method or Bayesian inference (HOFF, 2009).
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The Bayesian method can be applied for binary classification tasks, as described in the

following example. Suppose we want to classify fruits that pass at a given point of a conveyor

belt in an industry. Also, suppose that these fruits are of only two types: "pears" and "apples".

A class or state of nature Cj , with j ∈ {1,2}, is associated with each type of fruit. We let the

state C1 represent "pears," and C2 represent "apples". We assume these fruits do not arrive at the

observed point in any predictable order, so Cj is a random variable. Finally, we assume that all

costs associated with incorrect classifications are equal. After some observations, it is possible to

establish the a priori (prior) probability that the fruit is a pear P (C1) or an apple P (C2). The

prior probability represents what is originally believed by the classifier before new evidence is

introduced. An important clue to help in classifying the fruit passing at the observed point is to

know which one has the highest associated prior probability P (Cj). However, the probability

P (Cj) alone is not enough. If P (C1) > P (C2), the classifier would always decide for C1 if the

only clue it had was P (Cj). Complementing our classifier, we can take some measurements from

the fruits using a sensor. For instance, we can measure their weights1. Letting x, a continuous

random variable, be the weight of an observed fruit, the relationship between x and Cj can be

established as the class-conditional probility density function (PDF) px(x|Cj), which is the PDF

of x given a class Cj . A probability density function is a function that describes the likelihood

of a random variable taking on a particular value. One of the most important properties of a

PDF is that the area under the curve must always equal 1, which represents the total probability

of the random variable taking on any value within its domain. The definite integral of the PDF

over a range of values gives the probability that the random variable falls within that range. A

class-condition probability is the PDF of a conditional random variable, in which the condition

is that the random variable belongs to a class Cj . The PDF term px(x|Cj) is called the likelihood

of Cj with respect to x. The likelihood term refers to the conditional probability or PDF of a

particular measured value x, assuming that the x came from a specific scenario or class.

Figure 9 shows an illustration of hypothetical px(x|C1) and px(x|C2) PDFs overlapping

each other. For the sake of this example, it is assumed that the PDF px(x|C1) is a gaussian curve

with mean μ1 = 2 and standard deviation σ1 = 0.8 and px(x|C2) is a gaussian curve with mean

μ2 = 3 and standard deviation σ2 = 1. The PDFs are also normalized, so the area under each

one is equal to 1.

The prior probabilities P (Cj) can be combined with the class-conditional PDF px(x|Cj)

1 As this is a generic example, there is no specific weight unit mentioned in the body of the text. The weight unit

can be of any type as long as it can be measured as a continuous real value.
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Figure 9 – Representative illustration of two overlapping gaussian curves. With μ1 = 2, μ2 = 3, σ1 = 0.8 and
σ2 = 1.

through the Bayes’ rule to calculate the a posteriori (posterior) probability P (Cj|x) in Equation

(28). Where P (Cj|x) is the probability of the fruit being in a state of nature Cj given that x is its

measured weight (DUDA et al., 2000). A posterior probability calculated through the Bayes’ rule

expresses the likelihood of an event given the evidence that has been observed. In this example,

the event is belonging to a class Cj given as evidence, the random variable x.

P (Cj|x) = px(x|Cj)P (Cj)

px(x)
. (28)

The Equation (29) presents the PDF px(x) called evidence. The evidence px(x) is the

PDF of x being measured among all considered J classes. In this example, J = 2. (DUDA et al.,

2000).

px(x) =
J∑

j=1

px(x|Cj)P (Cj). (29)

What Bayes’ rule says is that given a feature value x, the prior probability P (Cj)

can be converted into a posterior probability P (Cj|x) of the state of nature being Cj given a

measured feature x. The evidence factor px(x) is only a scale factor that guarantees that posterior

probabilities sum to 1 (DUDA et al., 2000).

Figure 10 depicts the P (C1|x) and P (C2|x) posterior probabilities as a functions of x

and assumes prior probabilities of P (C1) = 0.3 and P (C2) = 0.7.

The decision procedure indicates which of the states of nature, C1 or C2 is more likely

to be the true one. The natural choice is to take the one with the highest posterior probability
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Figure 10 – Representative illustration of P (C1|x) and of P (C2|x) as functions of x. With P (C1) = 0.3 and
P (C2) = 0.7.

for any particular observation of x. For instance, if P (C1|x) > P (C2|x), the classifier decides

that the true state of nature for a measured feature x is C1 and C2 if P (C2|x) > P (C1|x). What

justifies this choice is that it minimizes the joint probability P (error,x) of a error occurring in

the decision procedure given a value x:

P (error,x) =

⎧⎪⎨⎪⎩P (C1|x) if decide for C2

P (C2|x) if decide for C1

(30)

Since there are only two classes and P (C1|x)+P (C2|x) = 1, the probability of error for

deciding for C1 will always be P (C2|x) and vice versa. This fact justifies the decision procedure.

In this example, the Bayesian classifier would decide for C1 (the fruit is classified as a pear) if

x < 1.909 and for C2 (the fruit is classified as an apple) otherwise.

A generalization of this example involves incorporating multiple features, a number

of classes larger than just two, and different types of actions beyond classification tasks. This

also involves the introduction of a loss function to quantify the cost of an action. The multiple

features can be represented by a random vector xR
d ∈ R

d, where d is the number of features. The

set of J classes is represented as {C1,..,CJ} and the set of C possible actions as {a1,..,aC}. The

loss function λ(ai|Cj) represents the loss incurred when taking action ai when the true class is

Cj . With these elements, Bayes’ Rule (Equation (28)) can be written in a more general form:

P (Cj|xR
d ) =

px(x
R
d |Cj)P (Cj)

px(xR
d )

. (31)
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where px(x
R
d |Cj) is the class-conditional PDF of xR

d , with the probability density function for

xR
d given Cj , the true class. As before, P (Cj) describes the prior probability that the state of

nature Cj is true, P (Cj|xR
d ) is the posterior probability. Equation (29) is rewritten as:

px(x
R
d ) =

J∑
j=1

px(x
R
d |Cj)P (Cj), (32)

Taking action ai, by definition, will incur the loss λ(ai,Cj) when a particular xR
d is

observed, and its true class is Cj . The expected loss associated with an action ai is called Risk,

and R(ai|xR
d ) is the conditional risk:

R(ai|xR
d ) =

J∑
j=1

λ(ai|Cj)P (Cj|xR
d ). (33)

The risk related to any particular observation of xR
d can be minimized by selecting an

action ai that minimizes the conditional risk. The Bayes decision procedure minimizes this risk.

We call decision rule a function a(xR
d ) that associates an observed vector of measured features

xR
d to one of the C possible actions and assumes one of the values a1,..,aC . The overall risk R is

the risk associated with a particular decision rule. It is expressed as:

R =

∫
R(a(xR

d )|xR
d )px(x

R
d )dxd, (34)

where dxd is the notation for a d-space volume element. The risk is minimized if an action ai

that minimizes the conditional risk R(ai|xR
d ) is selected. The resulting minimum risk is the best

performance that can be achieved and is called Bayes risk. In classification problems, each state

of nature is usually associated with a different class, and the action ai, is usually interpreted as

the decision that the true state of nature is Ci. If action ai is taken and the true state of nature

is Cj , then the decision is correct if i = j and in error if i �= j. If errors are to be avoided, it is

natural to seek a decision rule that minimizes the probability of error.

In practice, the Bayes method requires at least knowledge about the prior probabilities

and class-conditional PDFs to be employed. The PDFs of type px(x|Cj) can be either approx-

imated numerically by deriving the normalized d-dimensional histogram of the sample data

containing the vector of d characteristics being measured in each class or analytically by assum-

ing that the PDFs of the d measured characteristics can be approximated by a d-dimensional

distribution expressed by closed form equation, e.g., the normal distribution. Thus, the classifica-

tion is made by considering the correct class, the one with the highest probability of being "true"

with the lowest associated cost.
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Despite its simplicity, the Bayesian method can achieve high accuracy levels when

combined with kernel density estimation in statistical learning frameworks. Other works have

proposed the Bayesian method to solve problems such as channel detection in smart-grid (TAO

et al., 2021), topology optimization for wireless sensor networks in complex terrains (OROZA et

al., 2021), backlogged devices number estimation in low-power wide-area networks (SEO et al.,

2021), and others.

Many works have proposed SI tools to solve problems in B5G. For instance, (LIU et

al., 2019) introduces a Sparse-Bayesian Inference (SBI) method to localize users in massive

MIMO systems which is capable of exploiting the sparse and high-resolution nature of Angle-

of-Arrival (AoA) and any available Statistical location information (SLI), to enhance the user

localization accuracy. In (THOOTA; MURTHY, 2019), the quantized variational Bayesian

soft-symbol decoder is presented. This algorithm aims to obtain the posterior beliefs of the

transmitted bits in an uplink coded massive MIMO. This method is based on the variational

Bayesian approach (BISHOP, 2006) in which the exact posterior distribution is approximated

using a factorizable posterior distribution. Other works in literature, such as (CHERGUI et al.,

2022) , (REZAZADEH et al., 2021) also utilize SI tools in B5G.
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3 A RANDOM ACCESS PROTOCOL FOR CROWDED MASSIVE MIMO SYSTEMS

BASED ON A BAYESIAN CLASSIFIER

In this chapter, the SUCRe enhanced by the Bayesian Classifier (SUCRe-BC) protocol is

introduced. Although the SUCRe protocol is highly effective, it only considers the strongest user

competing for a particular pilot to be the user whose signal strength is greater than half the sum

of all users’ signal strengths competing for the same pilot. As the number of users increases, the

likelihood of a particular user being the strongest, with less than 50% of the sum of users’ signal

strengths competing for the same pilot, also increases. Therefore, the performance of the SUCRe

protocol tends to be less effective as more false-negative cases occur. The SUCRe-BC protocol

aims to reduce the number of false-negative cases by replacing the decentralized decision-making

step (3rd step) of the SUCRe protocol with a new decentralized procedure using a BC.In the

sections that follow, the system model will be described. The proposed approach is based on the

Bayesian classifier, described in Section 3.2. To corroborate the effectiveness of our proposed

method, the numerical results are comprehensively explored in Section 3.3.

The results demonstrate the superiority of the Bayesian method in terms of Average

Number of Access Attempts (ANAA) and Fraction of Failed Access Attempts (FFAA) compared

to the SUCRe protocol. In addition, the proposed method shows robustness regarding variation

in the number of antennas or variation in the SNR level at the cell’s border. Thus, making the

SUCRe-BC a promising approach for replacing the SUCRe protocol.

3.1 SYSTEM MODEL

In this section, the system model of the proposed procedure is described. It is assumed

that a BS with M antennas, located in the center of a hexagonal cell and operating in TDD mode,

serves a set of User Equipments (UEs) with time and frequency resources split into coherence

blocks of τc channel uses. The coherence blocks are divided into two categories: payload data

blocks and RA blocks. The payload data blocks are used for UL and DL data transmission to the

UEs in the set of active users, Ai, that have been granted access to the BS exclusive resources.

The RA blocks is dedicated for RA from inactive UEs (i.e., some of those in Ui\Ai ) that wish

to be granted access to the payload data blocks; that is, to be allocated a temporary dedicated

pilot (BJÖRNSON et al., 2017a).

We represent by Ui, the set of all UEs inside cell i and Ai ⊂ Ui the subset of Ui
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representing the active UEs. In a typical scenario where UEs are overcrowded, we have |Ui| � τc.

Nonetheless, inactive UEs try to become active with a probability Pa ≤ 1. Hence, we can

also consider a scenario where |Ai| < τc in which the BS can temporarily make orthogonal

Payload data pilot (PDP) signals available to all active UEs during payload data transmission, by

employing a GB RA protocol.

For this model, we focus on a central cell arbitrarily chosen and called cell 0, in which

K0 = U0\A0 is the set of inactive UEs with cardinality K0 = |K0|. It is also considered that

the BS provides a quantity of τp orthogonal RA pilot signals {ψ1, ψ2, ...ψτp} ∈ C
τp for K0 UEs

to share, satisfying ‖ψt‖2 = τp, t ∈ {1,2,...,τp}. In each RA block, UEs that want to become

active randomly choose one of the τp available RA pilot signals and make an access attempt by

transmitting ψc(k) with power ρk > 0, with c(k) ∈ {1,2,...,τp}. The set St = {k : c(k) = t, ρk >

0} contains the indices of the UEs that transmit the pilot t, and thus |St| represents the number

of UEs that choose the pilot ψt and follows a binomial distribution (BJÖRNSON et al., 2017a):

|St| ∼ B
(
K0,

Pa

τp

)
. (35)

The condition of pilot t to be unused (|St| = 0) is given by the probability(
1− Pa

τp

)K0

. The probability of pilot t be selected by only one UE (|St| = 1) with proba-

bility K0
Pa

τp

(
1− Pa

τp

)K0−1

. Therefore, an RA collision (|St| ≥ 2) at this arbitrary pilot occur

with probability

1−
(
1− Pa

τp

)K0

−K0
Pa

τp

(
1− Pa

τp

)K0−1

. (36)

Before any UE can be allocated a temporary dedicated pilot, these collisions must be

detected and resolved.

The vector hk ∈ C
M denotes the channel between UE k ∈ K0 and its BS. These

channels are said to provide channel hardening as well as asymptotic favorable propagation

conditions, which is mathematically expressed as:

‖hk‖2
M

M → ∞−−−−−→ βk, ∀k, (37)

hH
k hi

M
M → ∞−−−−−→ 0, ∀k,i, k �= i (38)

where βk is a strictly positive value known by the k-th UE.
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The SUCRe protocol has four steps that satisfy both (37) and (38) conditions. In the

first step, the BS receives the signal Yp ∈ C
M×τp from the pilots sent by the UEs:

Yp =
∑
k∈K0

√
ρkhkψ

T
c(k) +B+Np, (39)

in which B ∈ C
M×τp is the interference from adjacent cells, and Np ∈ C

M×τp is the noise matrix

of the signal received by the BS with each element following a complex normal distribution,

CN (0, σ2). Then, BS correlates Yp with ψt and obtains

yt = Yp
ψ∗
t

‖ψt‖ =
∑

i∈St

√
ρi‖ψt‖hi +B

ψ∗
t

‖ψt‖ + nt

=
∑

i∈St

√
ρiτphi +B

ψ∗
t

‖ψt‖ + nt,
(40)

in which nt = Np
ψ∗
t

‖ψt‖ is the effective noise with distribution CN (0, σ2IM).

The ICI B term can be modelled as:

B =
∑
l

bld
T
l +

τp∑
t=1

∑
k∈S interf

t

√
ρt,kgt,kψ

T
t , (41)

where the first summation is over the interfering data transmissions carried out in neighboring

cells that do not use the same set of pilots of cell 0. The l-th interferer has the channel bl ∈ CM to

the BS in cell 0 and transmits some random data sequence dl ∈ C
τp . The second summation is

over the interferers in cells that reuse the pilots of cell 0, which also perform RA. The interferers

that use pilot ψt are gathered in the set S interf
t , and member k ∈ S interf

t has the channel gt,k to the

BS in cell 0 and uses the transmit power ρt,k.

B
ψ∗
t

‖ψt‖ =
∑
l

bl
dT
l ψ

∗
t

‖ψt‖ +
∑

k∈S interf
t

√
ρt,kτpgt,k. (42)

Assuming that all the interfering channels also satisfy the conditions in (37) and (38),

denoted as
‖bl‖2
M

→ βw,l and
‖gt,k‖2

M
→ βt,k, we obtain

|B ψ∗
t

‖ψt‖ |2
M

M → ∞−−−−−→
∑
l

βω,l
|dT

l ψ
∗
t |2

‖ψt‖ +
∑

k∈S interf
t

ρt,kτpβt,k︸ ︷︷ ︸
ωt

. (43)

From Equations (40), (37) and (43) we derive:

‖yt‖
M

M → ∞−−−−−→
∑
i∈St

ρiβiτp + ωt + σ2. (44)

In the second step of the SUCRe protocol, all UEs who sent pilot signals, is responded

by the BS with a precoded signal V ∈ C
M×τp :
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V =
√
q

τp∑
t=1

y∗
t

‖yt‖ψ
T
t , (45)

in which q is the signal power available at this stage by the BS. The k-th UE then receives the

signal zk ∈ C
τp :

zTk = hT
kV + νT

k + ηT
k , (46)

where νT
k ∈ C

τp is ICI and ηT
k is the noise of the signal received by the UE in this step, with

distribution CN (0,σ2Iτp). Then the UE correlates zk with its chosen pilot ψt, resulting in

zk = zTk
ψ∗
t

‖ψt‖ =
√
qτph

T
k

y∗
t

‖yt‖ + νT
k

ψ∗
t

‖ψt‖ + ηk, (47)

where ηk ∼ CN (0, σ2). We derive

zk√
M

=
√
qτp

(hkyt)
∗

M

1√
1
M
‖yt‖2

+
νT
k ψ

∗
t√

M‖ψt‖
+

ηk√
M

M → ∞−−−−−→
√
ρkqβkτp√∑

i∈St
ρiβiτp + ωt + σ2

,

(48)

from the asymptotic favorable propagation, the convergence in (44), and the fact that noise does

not increase with M . We also assume that ICI ηk is unaffected by M . Let αt be the sum of the

signal strengths and interference received by the BS during the first stage of the protocol for each

pilot t, according to eq. (40). αt can be expressed as:

αt =
∑
i∈St

ρiβiτp + ωt, (49)

where ωt is the interference derived in (43).

As proposed in (BJÖRNSON et al., 2017a), the value of αt can be estimated as:

α̂t,k = max

⎛⎝[Γ(M + 1
2)

Γ(M)

]2
qρkβ

2
kτ

2
p

[�(zk)]2 − σ2, ρkβkτp

⎞⎠ , (50)

where function max(·, ·) outputs the maximum of two values and Γ(·) is the gamma function.

In the third step, each UE k determines whether or not to retransmit the pilot signal

based on its own average channel gain βk. The goal here is to allow only one competing UE (the

strongest one) to retransmit in order to resolve the collision and connect this UE to the network.

When Rk is true, the pilot is retransmitted; when Ik is true, the pilot is not retransmitting:

Rk : ρkβkτp >
α̂t,k

2
+ εk, (51)

Ik : ρkβkτp ≤ α̂t,k

2
+ εk, (52)
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where εk ∈ R is a bias parameter that can be used to adjust the system behavior; for instance,

it can be employed for maximizing the average number of resolved collisions or to minimize

the occurrence of false positives (or negatives). The bias term can also be used to ensure that at

most one UE will transmit the pilot in the third step of the SUCRe protocol when εk > 0 for all

k (BJÖRNSON et al., 2017a). Björnson et al. (2017a) proposes a suitable value for εk:

εk =
δβk√
M

+
ω̄

2
, (53)

where δ is standard deviations of
‖hk‖2
M

centered around its mean value βk and ω̄ is the average

UL interference given by:

ω̄ = E

{‖B ψ∗
t

‖ψt‖‖2
M

}
, (54)

where the expectation is computed with respect to user locations and shadow fading realizations

are assumed to be known at the UE. The bias term is further explored in Pereira et al. (2021),

where it is optimized and combined with a NOMA-RA protocol.

The fourth step of the SUCRe method comprises granting access to network resources

to the UE that successfully retransmits its pilot after the collision has been resolved. All UEs

that failed to be granted access to the BS resources try to connect again in the next RA block

with a probability Pr until the maximum number of access attempts is reached. If the maximum

number of access attempts is reached without the UE having gained access to the exclusive BS

channel, the UE automatically gives up its attempts.

The soft-SUCRe (s-SUCRe) protocol of (MARINELLO; ABRÃO, 2019) follows a

similar framework. However, instead of applying the hard decision retransmission criterion

described in (51) and (52), each UE retransmits or not its chosen pilot in the third step according

to its probability of being the strongest contender, which is derived in (MARINELLO; ABRÃO,

2019, eq. (16) and (17)).

3.2 BAYESIAN CLASSIFIER

The Bayesian method is a classical inference statistical tool that compares the weighted

PDFs of numerous classes and the costs associated with them and then selects the class having

the highest odd of being true with the lowest cost associated with it. In this section, we show

how the Bayesian classifier can be used to resolve pilot collisions in crowded massive MIMO

networks using the strongest user criterion. To begin, we rearrange inequations (51) and (52) as
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follows to obtain an input variable for the proposed BC:

Rk : φk > 0.5, (55)

Ik : φk ≤ 0.5, (56)

in which the φk ∈ [0,1] factor represents the proportion of the signal strength of the k-th UE

among the contenders:

φk =
ρkβkτp − εk

α̂t,k

. (57)

Resolving the pilot collisions using the strongest UE retransmission rule can be regarded

as a classification task to be carried out at the UEs’ side. Thus, we can define two classes for

the UEs: C0 that represents the class of UEs that are not the strongest contenders for their

chosen pilots, and C1 which represents the class of the strongest UEs, comprehending the set

C = {C0, C1}. We also define the state of each UE k as Ωk ∈ C. Based on the φk estimate

obtained after step 2 as in (57), the proposed BC operates by seeking the class that maximizes

the a posteriori probability of the k-th UE as:

Ω̂k = argmax
C�∈C

P (C�|φk),

= argmax
C�∈C

px(φk|C�)P (C�)

px(φk)
,

= argmax
C�∈C

px(φk|C�)P (C�). (58)

The Bayesian method is then proposed to statistically map and classify the values of

φk based on the possibility of the existence of UEs ∈ C1 with φk ≤ 0.5, where C1 is the class

of the strongest UEs. Although it is possible to calculate the distribution of φk in (57), using

Meijer’s G-function, as the distribution of the ratio of two random variables, we opted for an

empirical estimate of the distribution of φk for the following reasons. Firstly, the process of

calculating the distribution of the ratio of two random variables using Meijer’s G-function is

complex and involves a multi-dimensional integral and the product of hypergeometric functions.

Secondly, an empirical approach is a more flexible and robust method for estimating PDFs,

as it is non-parametric and does not make any assumptions about the underlying distribution

of the data. Finally, with a large enough number of data samples, in the order of millions, we

can achieve a relatively precise estimation of the φk distribution. However, further works are

encouraged to explore an analytic approach for calculating the PDFs related to the proposed BC.



61

We conduct an empirical statistical analysis with the objective of obtaining the joint

PDF px(φk,C�) = px(φk|C�)P (C�), � ∈ 0,1 numerically. This means that we aim to find the joint

probability density function of the variable φk and the class C�, which is given by the product of

the conditional PDF px(φk|C�) of φk given C� and the probability P (C�) of a UE belonging to

class C�, where � ∈ 0,1. The BC training data is generated using the MATLAB 2020a software,

following a simulation setup similar to the one proposed and publicly shared by the authors of

the SUCRe protocol (BJÖRNSON et al., 2017a). The numerical parameters for data collection

in the SUCRe protocol simulation is shown in Table 3.

The SUCRe-BC simulation parameters are summarized in Table 4. The column "Value"

displays the specific value or range of values used for each parameter, while the column "De-

scription" provides an explanation of the purpose of the parameter, along with the indication of

Figures that depict the results of simulations that employ the respective value or range of values

of the parameter. Parameters without indication of Figures are applied in all simulations of the

section.

Table 3 – Numerical Parameters for Data Collection in SUCRe Protocol Simulation
Parameter Value Description

M 100
Number of BS antennas in the center and

neighboring cells

Pa 0.001 Transmission probability

Pr 0.5 Probability of trying again in the next RA block

τp 10 Number of available RA pilot sequences

ρ 27 dBm Transmit power of UEs

q 27 dBm Transmit power of the BS

σ2 -98.65 dBm Noise variance

δ -1 Number of standard deviations in Equation (53)

Kici 10 Number of active users in the neighboring cells

K0 from 100 to 40000 Variation in the number of UEs in the center cell

Edge SNR 0 dB Edge SNR in the center cell

6 Number of neighboring cells

R 250 m Radius of the center cell

R 250 m Radius of the neighboring cells

27 dBm Transmit power of UEs in adjacent cells

10 dB Shadow fading standard deviation

5G sub-6 GHz Band of operation

10000 Number of Monte-Carlo realizations

10 Maximum number of connection attempts before the UE gives up

The offline training procedure we conducted consists in generating 10× 106 examples

of φk values labeled in terms of C�, with � = 0, 1, equally distributed between the different

K0 values. Then, we apply MATLAB function histcounts configured with 38-bin divisions and

probability normalization on the training data. Such normalization implies that the area under

graphs (a) and (b) of the Figures add up to one, since
∫ 1

0
px(φk,C0)dφk +

∫ 1

0
px(φk,C1)dφk = 1.
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Table 4 – Simulation parameters of the proposed SUCRe-BC
Parameter Value Description

M 100
Number of BS antennas in the center and

neighboring cells (Figures 11, 12, 13,14 )

M from 1 to 150
Variation in the number of BS antennas in the center

and neighboring cells (Figure 15.a)

Pa 0.001 Transmission probability

Pr 0.5 Probability of trying again in the next RA block

τp 10 Number of available RA pilot sequences

ρ 27 dBm Transmit power of UEs

q 27 dBm Transmit power of the BS

σ2 -98.65 dBm Noise variance

δ -1 Number of standard deviations in Equation (53)

Kici 10 Number of active users in the neighboring cells

K0 18000 Number users in the center cell (Figure 15)

K0 from 100 to 30000
Variation in the number of UEs in the center cell

(Figures 11, 12, 13,14 )

Edge SNR 0 dB
Edge SNR in the center cell (Figures 11,

12, 13,14 and 15)

Edge SNR from -10 to 10 dB Variation of the edge SNR in the center cell (Figures 15.b)

38 Number of bin divisions of the estimated px(φk|C�) and px(φk) histograms

10× 106 Number of φk labeled samples

6 Number of neighboring cells

R 250 m Radius of the center cell

R 250 m Radius of the neighboring cells

27 dBm Transmit power of UEs in adjacent cells

10 dB Shadow fading standard deviation

5G sub-6 GHz Band of operation

10 Maximum number of connection attempts before the UE gives up

Besides, the choice for a number of examples of 10 × 106 is empirical, trading off a training

execution complexity of a few minutes while obtaining smooth PDF curves. The choice for

a 38-bin divisions configuration is due to empirical tests with different bin divisions numbers

ranging from 20 up to a 100, showing that a 38-bin configuration was the optimum choice by

ensuring the greatest accuracy of the results. The procedure is initially performed without ICI,

obtaining Figure 11, and then repeated with ICI, obtaining Figure 12.

Figure 11 shows the estimate of the PDFs of the φk values conditioned to the occurrences

of each class, weighted by the class probabilities, i.e., px(φk|C�)P (C�), � = 0, 1, for the scenario

without ICI. The Figure also depicts the crossover point between both curves, pointing out the

φk value at which px(φk|C1)P (C1) becomes greater than px(φk|C0)P (C0), which occurs for

φk ≈ 0.2942.

Similarly, Figure 12 presents a similar result for the cases with ICI. In this scenario, the

crossover point turns to occur for φk ≈ 0.2853.

The results in Figure 11 and Figure 12 were obtained by configuring the MATLAB

function histcounts with 38-bin divisions and probability normalization weighted by the like-
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Figure 11 – px(φk|C�)P (C�), (a) � = 1, (b) � = 0, and (c) the crossover point for the scenario without ICI.
With Kici = 10M = 100 and K0 varying from 100 to 30000.

Figure 12 – px(φk|C�)P (C�), (a) � = 1, (b) � = 0, and (c) the crossover point for the scenario with ICI. With
Kici = 10, M = 100 and K0 varying from 100 to 30000.
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lihood of their respective true class. As a result, the area under graphs (a) and (b) equals one.

Interestingly, the above analysis shows that using BC as a criterion for UEs retransmitting their

pilots in step 3 of the RA protocol is equivalent to changing the SUCRe protocol’s retransmission

rule decision threshold of 0.5 to a more refined value of 0.2942 in the absence of ICI, or 0.2853

in the presence of ICI. As a result, the inequations (55) and (56) can be replaced by

(w/o ICI) (with ICI)

Rk : φk > 0.2942, φk > 0.2853, (59)

Ik : φk ≤ 0.2942, φk ≤ 0.2853. (60)

In other words, while the SUCRe protocol’s goal is to resolve pilot collisions by allowing

only the strongest UE to retransmit their pilots, it does so by evaluating φk > 0.5. Indeed,

φk > 0.5 is a sufficient condition for a UE to be the strongest contender, but it is not necessary,

leading to an increase in false-negatives and a deterioration in connectivity performance. On

the other hand, as shown in the following section, the SUCRe-BC uses a more refined decision

threshold near 0.29, which significantly improves RA performance.

3.3 NUMERICAL RESULTS

This section numerically evaluates the performance of the investigated RA protocols.

First, we present and compare the RA performance of the protocols, and then we present and

compare the classification accuracy of the schemes.

3.3.1 Confusion Matrix Interpretation

Before presenting the results, which are presented in the form of graphs and tables

of confusion matrices, this section presents a Confusion Matrix (CM) model to facilitate the

understanding of the results presented in this format. Table 5 presents a CM model to be

interpreted as follows:

The column on the far right of the matrix presents the positive predictive values (PPVs),

also known as precision, which are the percentages of all the samples predicted to belong to

each state belonging to Ω̂k that are correctly classified. In other words, it shows the classifier’s

accuracy for each output class Ω̂k = C0 or Ω̂k = C1. The same column also shows the false

discovery rates (FDRs), which are the percentages of all the samples predicted to belong to each
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Table 5 – Confusion Matrix Model

Pr
ed

ic
te

d
C

la
ss C0 T0 F0

PPV0
FDR0

C1 F1 T1
PPV1
FDR1

total TPR0
FNR0

TPR1
FNR1

AC

C0 C1 total

Actual Class

class that are incorrectly classified:

• PPV0 - Indicates the PPV rate of all the samples predicted to belong to class C0 .

• PPV1 - Indicates the PPV rate of all the samples predicted to belong to class C1 .

• FDR0 - Indicates the FDR of all the samples predicted to belong to class C0.

• FDR1 - Indicates the FDR of all the samples predicted to belong to class C1.

The row at the bottom of the matrix shows the true positive rates (TPRs), also known as recall,

which are the percentages of all the samples of each state belonging to Ω̂k that are correctly

classified. The row at the bottom also shows the false negative rates (FNRs), which are the

percentages of samples belonging to each class that are incorrectly classified.

• TPR0 - Indicates the TPR of all the samples belonging to class C0.

• TPR1 Indicates the TPR of all the samples belonging to class C1.

• FNR0 - Indicates the FNR of all the samples belonging to class C0.

• FNR1 Indicates the FNR of all the samples belonging to class C1.

• AC - Indicates the overall percentage accuracy of the proposed classifier.

3.3.2 Classification Performance

Tables 6 and 7 evaluate the classification performance for the scenario without ICI

in terms of confusion matrices. Table 6 shows the results when using the SUCRe protocol’s
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Table 6 – CM of SUCRe w/o ICI
Pr

ed
ic

te
d

C
la

ss C0
6829732

93.1%
293539

4.0%
95.9%
4.1%

C1
2977

0.0%
210311

2.9%
98.6%
1.4%

total 100.0%
0.0%

41.7%
58.3%

96.0%
4.0%

C0 C1 total

Actual Class

Table 7 – CM of the SUCRe-BC w/o ICI

Pr
ed

ic
te

d
C

la
ss C0

6763743

92.2%
127111

1.7%
98.2%
1.8%

C1
68966

0.9%
376739

5.1%
84.5%
15.5%

total 99.0%
1.0%

74.8%
25.2%

97.3%
2.7%

C0 C1 total

Actual Class

decision threshold of φk = 0.5, whereas Table 7 shows the results when using the proposed BC

approach, with the obtained new threshold of φk = 0.2942.

The results in Table 6 show that the classification success rate of UE of class C0 is

100% for the decision threshold of φk = 0.5 used in the SUCRe protocol. Nevertheless, when

φk ≤ 0.5, the successful classification rate among C1 UEs is 41.7%, indicating too many false

negatives. Moreover, the precision of C0 and C1 classifications is 95.9% and 98.6%, respectively.

The overall success rate of successful classifications is 96%.

Table 7 shows the outcomes when the decision threshold is φk = 0.2942. The classi-

fication precision of C0 and C1 outputs is 98.2% and 84.5%, respectively. The percentages of

correct predictions for class C0 UEs are 99% and 74.8% for class C1 UEs. The overall accuracy

is 97.3%, which is higher than the results obtained for the φk = 0.5 threshold.

The confusion matrices for the cases with ICI are shown in Tables 8 and 9. Table 8

displays the results when the decision threshold is set to φk = 0.5. The results show an accuracy

of 95.3% for output class C0 and 99% for output class C1. For UEs belonging to classes C0 and

C1, the rate of successful classified states is 100% and 34.8%, respectively. The overall accuracy

is 95.4%. When ICI is considered, the inferior classifier performance stands out.

For the SUCRe-BC with ICI, Table 9 shows the results when φk = 0.2853 is used as

the decision threshold. The results for SUCRe with ICI show an accuracy of 98.0% for output

class C0 and 83.9% for output class C1. For UEs belonging to classes C0 and C1, the rate of

successful classified states is 99.0% and 72.8%, respectively. The overall accuracy is 97.1%,

which is slightly lower than the case without ICI.

In summary, the results in this subsection show that, when compared to the SUCRe

protocol, the BC approach proposed in this work trades off a very slight increase in false-positive

rates for a significant decrease in false-negative probabilities. Hence, using the BC increases the



67

Table 8 – CM of SUCRe with ICI
Pr

ed
ic

te
d

C
la

ss C0
6866246

93.0%
336464

4.6%
95.3%
4.7%

C1
1844

0.0%
179662

2.4%
99.0%
1.0%

total 100.0%
0.0%

34.8%
65.2%

95.4%
4.6%

C0 C1 total

Actual Class

Table 9 – CM of the SUCRe-BC with ICI

Pr
ed

ic
te

d
C

la
ss C0

6795980

92.0%
140362

1.9%
98.0%
2.0%

C1
72110

1.0%
375764

5.1%
83.9%
16.1%

total 99.0%
1.0%

72.8%
27.2%

97.1%
2.9%

C0 C1 total

Actual Class

correct classification for UEs of class C1 significantly. The results point to 41.7% of SUCRe

to 74.8% in the scenario without interference and 34.8% to 72.8% in the case with ICI. These

results are also very beneficial to the RA performance, as shown in the following section.

3.3.3 Connectivity Performance

Here, we present the results of the SUCRe-BC in terms of ANAA and FFAA. Figures

13.a and 13.b show, respectively, the results of ANAA and FFAA for the cases without ICI and

Figures 14.a and 14.b show, respectively, the results of ANAA and FFAA for the cases when

ICI is considered. In both Figures, the result is presented in the following format: The black

line represents the performance of the baseline protocol of (BJÖRNSON et al., 2017a), which

is an ALOHA-like protocol where pilot collisions are only handled by retransmission in later

RA blocks. The red lines with "+" marker indicate the results obtained with the original SUCRe

protocol of (BJÖRNSON et al., 2017a), and the magenta lines with "�" marker indicate the

results obtained with the s-SUCRe protocol of (MARINELLO; ABRÃO, 2019). The cyan lines

with "◦" marker indicate the results obtained with the ACBPC protocol of (MARINELLO et

al., 2020). The blue lines with "x" marker indicate the results obtained when employing the BC

methodology proposed in this paper. The dotted line shows the results obtained for the cases

with ICI. Both Figures show that the proposed BC method performs significantly better when

the average number of accessing UEs exceeds the number of available pilots, which occurs when

K0 > τp/Pa = 10000 UEs. The proposed protocol is also kept as simple as the original SUCRe

protocol by avoiding any additional complexity or overhead. Furthermore, Figure 15 depicts the

FFAA with variation in the number of BS, M , antennas and SNR at the cell border (edge SNR),

defined as ρ/σ2 and q/σ2, with ρ = q. Although the proposed BC is trained with M = 100 and
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Figure 13 – Performance with K0 variation: a) ANAA, and b) FFAA. w/o ICI for M = 100, τp = 10,
Kici = 10, and 0 dB of edge SNR.

0 dB of SNR, the results show the robustness of the approach regarding the variation of such

parameters.

3.4 CHAPTER CONCLUSIONS

This chapter proposes a statistical approach using a Bayesian classifier to optimize the

SUCRe protocol. The classification results showed that our proposed methodology trades off

a slight increase in false-positive rates for a significant decrease in false-negative probabilities,

resulting in significantly higher correct classification probabilities for the strongest UEs. This

behavior is very beneficial in terms of connectivity performance, which has been significantly

improved by our proposed method over the SUCRe protocol in both scenarios with and without

ICI. The most significant performance improvements have been found in the overcrowded

scenario, with more expected accessing UEs than available RA pilots, i.e., K0 > τp/Pa, indicating

the proposed method as a promising approach in massive MIMO systems with very high UE

density.
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Figure 14 – Performance with K0 variation: a) ANAA, and b) FFAA. With ICI for M = 100, τp = 10,
Kici = 10, and 0 dB of edge SNR.
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4 A NEURAL NETWORK-BASED RANDOM ACCESS PROTOCOL FOR CROWDED

MASSIVE MIMO SYSTEMS

This chapter proposes an alternative for SUCRe-BC method introduced in chapter 3.

The idea presented in this chapter is to employ an MLP NN-based method to conduct the same

classification task and compare the results with the ones achieved by the SUCRe-BC approach

and with other previously proposed methods. Similarly to the SUCRe-BC protocol, it aims to

reduce the number of false-negative cases by replacing the decentralized decision-making step

(3rd step) of the SUCRe protocol with a decentralized procedure. The main reasons for choosing

an MLP NN are the following: a) The MLP NN is a simple method and is already well-validated

by the literature. b) Once trained, a simple MLP NN can be embedded on low-cost hardware

with relative ease. c) It is a method capable of producing better results than those achieved by

the SUCRe-BC method. Although the Bayesian method can achieve great accuracy, the results

depend on the considered classes’ statistical distribution. On the other hand, the NN has the

potential to predict with 100% accuracy, which is the class of a given variable, regardless of its

statistical distribution.

The following sections describe the architecture, topology, and training process of the

proposed NN. The validation results of the proposed NN are presented in terms of the number of

hidden layer neurons and different learning rate values. The results of the proposed NN-based

method indicate improved performance compared to the SUCRe-BC and similar protocols.

Additionally, the robustness of the proposed method with respect to variations in the number of

antennas and Edge SNR values is evaluated and demonstrates promising results.

4.1 THE SYSTEM MODEL AND THE MULTILAYER PERCEPTRON CLASSIFIER

In this chapter, the same scenario proposed in chapter 3 is investigated. Therefore, the

same system model described in the section 3.1 is considered for the application of the MLP

classifier.

4.2 NEURAL NETWORK CLASSIFIER

One of the most relevant features of artificial NNs is their capability to learn from the

presentation of input data that expresses the system’s behavior. Hence, after the network has
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learned the relationship between inputs and outputs, it can generalize solutions, meaning that the

network can produce an output close to the expected (or desired) output of any given input value.

In this section, we show how an NN classifier can be applied to the random access problem in

crowded massive MIMO networks under the strongest user criterion to resolve pilot collisions.

Aiming to resolve pilot collisions under the strongest UE retransmission rule on the UEs’ side,

we define two classes for the UEs: C0 represents the class of UEs that are not the strongest

competitors for their chosen pilots, and C1 represents the class of the strongest UEs, forming

the set C = {C0, C1}. We also define the state of each UE k as Ωk ∈ C. Our method works by

seeking an approximation Ω̂k of the class that truly represents the one of the k-th UE. This can

be accomplished through an MLP NN by estimating a function Ωk = f(x1,x2) that maps the

input values x1 = ρkβkτp and x2 = α̂t,k to the state Ωk of the k-th UE.

The steps to realize this method are the following: A. Database Acquisition, B. Prepro-

cessing, C. Neural Network Training and D. Validation

4.2.1 Database Acquisition

The first step is to acquire the NNs training data. The database is generated from the

simulation setup public shared by the authors of (BJÖRNSON et al., 2017a), where the values of

α̂t,k, βk and their respective transmission classifications are collected, according to:

dk =

⎧⎪⎨⎪⎩1 if Ωk = C1

0 if Ωk = C0.

(61)

In this work, it was collected near 5× 106 labeled training data from the simulation.

4.2.2 Preprocessing

In the preprocessing step, the data is prepared for being used as input for the NN. The

preprocessing step, which includes data shuffling and normalization, is essential for ensuring

the proper functioning of a NN. The data shuffling prevents overfitting, and normalization is

important to ensure all input data have the same scale. Normalization is also important because

many activation functions, such as sigmoid and hyperbolic tangent (tanh), are sensitive to the

scale of the input data. Normalization helps to ensure that the input data falls within the range of

these functions.
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Given the skewed 1 nature of the collected dataset (primary dataset), the input values are

randomly shuffled using the MATLAB function randperm to ensure that a subset of the primary

dataset with a sufficiently large number of elements will have members of both classes in a

proportion near or equal to the one of the primary dataset. Next, 10× 105 data samples are taken

from the shuffled dataset, from which 80% are separated for the training step and 20% for the

validation. Then, the input values x1 and x2 of both training and validation data are normalized

according to:

x̄1 =
ln(x1)−min(ln(x1))

max(ln(x1))−min(ln(x1))
, (62)

and,

x̄2 =
ln(x2)−min(ln(x2))

max(ln(x2))−min(ln(x2))
. (63)

The normalization procedure mathematically described in Equations (62) and (63) are

divided into two steps. First, the natural logarithm of the input data is taken to eliminate large

numerical discrepancies (above six orders of magnitude) among the input data, improving the

data resolution. Next, the resulting values are normalized to fit the closed interval [0,1], matching

the output range of the activation function in (71). Finally, both input values are grouped into a

vector x̄k, where a bias term b is also appended:

x̄k = [b x̄1 x̄2]
T , (64)

where (·)T is the transpose operation.

4.2.3 Neural Network Training

The training process of an NN consists of applying the required ordinated steps for

tuning its neurons’ synaptic weights and thresholds in order to generalize the solutions produced

by its outputs. In the proposed method, the normalized data, x̄k, and the desired output value

dk associated with each x̄k sample are used as input data for training a fully connected MLP

NN, in which each neuron in one layer is connected to every neuron in the subsequent layer. In

the proposed method the NN have one hidden layer, as illustrated in Figure 16. The MLP NN

1 The data skewed nature comes from the fact that the dataset has a number of data items labeled with C0 much

larger than the ones labeled with C1.
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Figure 16 – MLP NN with one hidden layer

consists of a set of linear combinators, called neurons, that control scalar product operations

between input vectors and sometimes a bias term b with synaptic weights to generate a result by

applying a given activation function. The bias term b accounts as an additional input term for the

hidden layer’s neurons.

4.2.3.1 Backpropagation algorithm

The training process for a neural network is performed using the well-known back-

propagation algorithm. This algorithm updates two weight matrices that connect the various

layers of the network. The first weight matrix, U1 ∈ R
(LI+1)×LH , connects the input layer with

LI neurons to the hidden layer with LH neurons. The second weight matrix, U2 ∈ R
LH×LO ,

connects the hidden layer with LH neurons to the output layer with LO neurons.

The backpropagation algorithm works as follows: first, the synaptic weights are ran-

domly initialized, then two training steps alternate until the stopping criterion is reached. In the

first step, the input signals are propagated toward the network’s output layer. This is also known

as the forward phase of training. The previous phase’s output is compared to the desired output

in the second step, and the weight matrices are adjusted backward. The weights of the output

layer are adjusted first, then the weights of the previous layer are adjusted based on the weights

of the output layer, and so on until the weights of the input layer are adjusted. This is also known

as the backward phase. As the network in question has only two matrices of synaptic weights,

the adjustment occurs only in the output layer and in the input layer. Equations (65) and (66)

represent the adjustment of the weights in the output layer, and Equations (67) and (68) represent
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the adjustment of the weights in the input layer (SILVA et al., 2016). Where κ is the learning

rate, grad
(2)
j is the local gradient with respect to the j-th neuron of the second layer, grad

(1)
j is

the local gradient with respect to the j-th neuron of the first layer, dj is the j-th desired output

value, o
(2)
j is the value of the j-th output provided by the network, sig′(·) is the derivative of

the sigmoid function, u
(2)
ji (t) is the synaptic weight between the j-th neuron of the output layer

and the i-th neuron of the immediately previous layer, and u
(2)
ji (t+ 1) is the value of the same

synaptic weight updated by the generalized delta rule and in the same way u
(1)
ji (t) and u

(1)
ji (t+1)

are respectively the previous and updated synaptic weights connecting the j-th neuron of the

hidden layer and the i-th input value, p
(2)
j =

LH∑
i=1

u
(2)
ji sig(p

(1)
j ) is the activation potential of the

j-th neuron of the second layer, p
(1)
j =

LI∑
i=1

u
(1)
ji xi is the activation potential of the j-th neuron of

the first layer, and xi is the i-th input value.

grad
(2)
j = (dj − o

(2)
j ) · sig′(p(2)j ) (65)

u
(2)
ji (t+ 1) = u

(2)
ji (t) + κ · grad(2)j · o(2)j (66)

grad
(1)
j = −

LO∑
k=1

(d
(2)
k − u

(2)
ji ) · sig′(p(1)j ) (67)

u
(1)
ji (t+ 1) = u

(1)
ji (t) + κ · grad(1)j · xi (68)

Given a learning rate κ, the backpropagation algorithm, proceeds iteratively by min-

imizing the mean square error (MSE) function between the desired outputs ok and the actual

output ôk at each i-th training epoch. The choice for the MSE function follows the MLP NN

model proposed by Silva et al. (2016, p. 41) for classification tasks:

MSEi =
1

2P

P∑
k=1

(ok − ôk)
2 , (69)

where MSEi is the MSE value at the i-th training epoch, and P is the total number of training

samples. The training is considered complete when a given precision value, ξ = MSEi−MSEi−1

is achieved. Once trained, the MLP NN can be used to estimate the function g(·) as:

ôk = sig(U2
T · sig(U1

T x̄k)), (70)

where sig(·) is the activation sigmoid function:

sig(x) =
1

1 + e−x
. (71)
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Finally, the output ŷk is associated to one of the output C classes. Thus, deriving the estimator

Ω̂k:

Ω̂k =

⎧⎪⎨⎪⎩C0 if ôk ≤ 0.5 ,

C1 if ôk > 0.5 .

(72)

4.2.4 Validation

Validation is a crucial step in demonstrating the ability of an NN to generalize its results

over data that was not used during the training process. The aim of the validation in this work

is to support the choice of the architecture, topology, and hyperparameters of the proposed NN

binary classifier. To evaluate the performance of the proposed NN, the performance metrics

Recall, Precision, F-Measure, and Accuracy are calculated using the set of data reserved for

testing.

The Recall metric measures the proportion of actual instances of C1 that were correctly

classified as C1. Precision indicates the ratio of C1 predictions that were actually C1 to the

total number of C1 predictions. The F-Measure is the harmonic mean of precision and recall,

calculated as 2× (Precision × Recall)/(Precision + Recall). Finally, Accuracy represents the

proportion of correct predictions made by the MLP NN over all predictions. The results in both

Tables are based on the classification of data generated from a simulation scenario with ICI.

The results of the evaluation are presented in Tables 10 and 11. These Tables show the

performance of the NN binary classifier for different numbers of neurons in the hidden layer LH

and different learning rates κ.

Table 10 – Number of neurons test.
LH Recall Precision F-Measure Accuracy
3 0.7414 0.8380 0.7867 0.9719

4 0.7414 0.8380 0.7867 0.9718

5 0.7485 0.8355 0.7896 0.9721

6 0.7567 0.8192 0.7867 0.9713

7 0.7079 0.8532 0.7738 0.9713

8 0.7941 0.7925 0.7933 0.9713

9 0.7763 0.8079 0.7918 0.9718

10 0.7689 0.8081 0.7918 0.9713

In Table 10 the number of neurons in the hidden layer LH increases from 3 to 10 while

the learning rate κ is fixed as 0.2 and the precision ξ is set to 10−7. The bias term is set to

b = −1, as recommended in (SILVA et al., 2016). It is noteworthy from Table 10 that there is not

a significant change of performance when varying LH from 3 to 10. Also, there is no indication
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of an increase in the overall accuracy metric. Nonetheless, there is a slight performance increase

in the recall and the F-measure metrics. The F-measure is an important metric of performance

for skewed data classification since it indicates that precision and recall metrics are balanced out.

The learning rate in Table 11 ranges from 0.01 to 0.2, with the hyperparameter LH fixed

at 5, ξ at 10−7 and b = −1. As κ increases from 0.01 to 0.2, the recall drops from 0.7738 to

0.7485, but precision improves slightly from 0.8113 to 0.8355. Despite these changes, accuracy

and F-measure do not present significant changes.

Table 11 – Learning rate test.
κ Recall Precision F-Measure Accuracy
0.01 0.7738 0.8113 0.7921 0.9718

0.05 0.7556 0.8225 0.7876 0.9716

0.1 0.7280 0.8567 0.7871 0.9720

0.15 0.7617 0.8355 0.7880 0.9714

0.2 0.7485 0.8355 0.7896 0.9721

Figure 17 shows the convergence of the MSE function to its minimum value with

training parameters set HL = 5, κ = 0.2, ξ = 10−7 and b = −1. The training is set up to stop

when one of the two conditions occurs. The first stopping criterion is reaching the required

precision value of ξ = 10−7, and the second one is completing a predetermined number of

training epochs, which is set to 1000. In Figure 17, the maximum number of epochs is achieved

first, which stops the training at 1000 epochs of training. The MSE value achieved is 0.010263

with a precision below ξ = 10−6.

In the following section, the third step of the SUCRe protocol is replaced with a MLP

NN binary classifier with LO = 1 neuron in the output layer, LI = 2 neurons in the input layer,

and LH = 5 neurons in the hidden layer. The NN is trained with the backpropagation algorithm

described in Subsection 4.2.3 with learning rate κ = 0.2. Two main training runs are carried

out, the first with data collected in a scenario with ICI and the second with data collected in

a scenario without ICI, yielding as the final result of the training process 4 weight matrices, 2

of them for the NN trained in the scenario with ICI and two of them for the NN trained in the

scenario without ICI.

The LH and κ values are chosen empirically among their tested values since their

performance metrics do not show a significant difference. The number LH is also kept relatively

low as 5 because adding more neurons to the NN introduces more complexity making the

algorithm computationally costly. For the same reason, a second hidden layer is not introduced.

The bias term, b, is set to −1, as suggested in (SILVA et al., 2016).
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4.3 NUMERICAL RESULTS

In this section, we present the results obtained with the proposed method in terms of

confusion matrices, ANAA, and FFAA. The systems parameters used for collecting the training

data of the proposed NN are summarized in Table 3. Table 12 shows the parameters of the

proposed MLP NN based protocol. Similar to Table 4, the column "Value" displays the specific

value or range of values used for each parameter, while the column "Description" informs the

purpose of the parameter and indicate Figures that depict the results of simulations that employ

the respective value or range of values of the parameter. Parameters without indication of Figures

are applied in all simulations of the section.

We consider a system operating under the 5G sub-6 GHz band. The center cell has a

radius of R = 250 m and a number of UEs K0 varying between 100 and 30000 in increments

of 100. The neighboring cells have the same radius and a fixed number of 10 active UEs each,

matching the number of pilots and the expected number of active UEs in the neighboring cells.

First, we provide results for the classification accuracy of the schemes, and then we present and

compare the RA performance of the protocols.
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Table 12 – Simulation parameters of the proposed GB RA NN-based protocol
Parameter Value Description

M 100
Number of BS antennas in the center and

neighboring cells (Figures 18, 19, 20, 22 )

M from 1 to 100
Variation in the number of BS antennas in the center

and neighboring cells (Figure 21)

Pa 0.001 Transmission probability

Pr 0.5 Probability of trying again in the next RA block

τp 10 Number of available RA pilot sequences

ρ 27 dBm Transmit power of UEs

q 27 dBm Transmit power of the BS

σ2 -98.65 dBm Noise variance

δ -1 Number of standard deviations in Equation (53)

Kici 10 Number of active users in the neighboring cells

K0 28000 Number users in the center cell (Figure 21, 22)

K0 from 100 to 30000
Variation in the number of UEs in the center cell

(Figures 18, 19, 20 )

K0 from 25000 to 40000
Variation in the number of UEs in the center cell

(Figure 20 )

Edge SNR 0 dB Edge SNR in the center cell (Figures 18, 19, 20, 20,21 )

Edge SNR from -8 to +8 dB Variation of the edge SNR in the center cell (Figures 22)

6 Number of neighboring cells

R 250 m Radius of the center cell

R 250 m Radius of the neighboring cells

27 dBm Transmit power of UEs in adjacent cells

10 dB Shadow fading standard deviation

5G sub-6 GHz Band of operation

10 Maximum number of connection attempts before the UE gives up

4.3.1 Classification Performance

Tables 13 and 14 show the classification performance of the proposed MLP NN-based

protocol in terms of confusion matrices. Table 13 presents the results for the scenario without ICI

and Table 14 results for the scenario with ICI. The bottom row shows the successful classification

rates of each state, the far-right column of the matrix shows the classification precision, and the

far-right square at the bottom shows the overall accuracy of the classifier.

Table 13 – NN classifier w/o ICI

Pr
ed

ic
te

d
C

la
ss C0

184560
92.3%

3226
1.6%

98.3%

1.7%

C1
1729
0.9%

10485
5.2%

85.8%

14.2%

total 99.1%

0.9%

76.5%

23.5%

97.5%

2.5%

C0 C1 total

Actual Class
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The results presented in Table 13 indicate that for the proposed MLP NN-based classifier,

in a scenario without ICI, the classification success rate of UEs of class C0 is 99.1%, and the

successful classification rate among C1 UEs is 76.5%, which is a number higher than the ones

achieved by the SUCRe protocol, 41.7% and the ones achieved by the BC method, which is

74.8% (BUENO et al., 2022). Besides, the precision of C0 and C1 classifications are 98.3% and

85.8%, respectively. The overall accuracy of successful classifications is 97.5%, which is also

higher than the values achieved by the SUCRe protocol and the SUCRe-BC method, which are

respectively 96% and 97.3% in a scenario without ICI.

Table 14 – NN classifier with ICI

Pr
ed

ic
te

d
C

la
ss C0

184068
92.0%

3599
1.8%

98.1%

1.9%

C1
1965
1%

10368
5.2%

84.1%

15.9%

total 98.9%

1.1%

74.2%

25.8%

97.2%

2.8%

C0 C1 total

Actual Class

Table 14 presents the results for a scenario with ICI. The classification precision of

C0 and C1 outputs are 98.1% and 84.1%, respectively. The percentages of correct predictions

are 98.9% for class C0 and 74.2% for class C1. The overall accuracy is 97.2%, higher than the

results obtained with the SUCRe protocol and the SUCRe-BC method.

4.3.2 Connectivity Performance

Figures 18 and 19, respectively, show the results of the metrics ANAA and FFAA

in the following format: a) The baseline protocol of (BJÖRNSON et al., 2017a), which is an

ALOHA-like protocol where pilot collisions are only handled by retransmission in later RA

blocks, is shown in a black line. b) The red lines marked with "◦" indicate the results of the

original SUCRe protocol presented in (BJÖRNSON et al., 2017a). c) The cyan lines marked

with "�" indicate the results of the the ACBPC protocol of (MARINELLO et al., 2020). d) In

the green lines marked with "x" are indicated the results obtained with the softSUCRe protocol

of (MARINELLO; ABRÃO, 2019). e) The magenta line with "�" marker represents the results

obtained with the BC method of (BUENO et al., 2022). e) Finally, the blue lines with the "�"
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marker indicate the results obtained when employing the MLP NN-based methodology proposed

in this paper. The dotted line shows the results obtained for the cases without ICI. It is noteworthy

the superiority of the proposed method. Compared to the SUCRe-BC method, for example, the

proposed MLP NN-based method achieves a better performance when K0 ≥ 25000 UEs in the

cases with ICI, as highlighted in Figure 20, where K0 varies from 25000 up to 40000.
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Figure 18 – ANAA ×K0, for M = 100, τp = 10, Kici = 10, and 0 dB of edge SNR.

Figure 21 shows the results of the ANAA and FFAA when the number of antennas

varies from M = 1 to M = 100 in steps of 2. Even though the NN-based method is trained with

M = 100 antennas, the proposed method shows robustness under the variation in the number of

BS antennas M , where a number of M ≈ 50 antennas reveals to be sufficient to provide superior

results than the SUCRe and BC methods in both with and without ICI scenarios.

In Figure 22 the edge SNR in dB, defined as ρ/σ2 and q/σ2, with ρ = q, varies from

−8 dB to +8 dB. The ANAA and FFAA are taken for a fixed number M = 100 antennas and

K0 = 28000 UEs. In both charts the performance of the NN-based method in both scenarios with

and without ICI, is superior than the performance of the SUCRe protocol, in the whole considered

edge SNR range. Compared to the SUCRe-BC method, the NN-based method presents a superior
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Figure 19 – FFAA ×K0, for M = 100, τp = 10, Kici = 10, and 0 dB of edge SNR.
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Figure 20 – FFAA ×K0, for M = 100, τp = 10, Kici = 10, and 0 dB of edge SNR.
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Figure 21 – Performance with M variation: a) ANAA, and b) FFAA. With τp = 10, Kici = 10, K0 = 28000,
and 0 dB of edge SNR.

performance in a scenario with ICI from ≈ −6 dB to ≈ +6 dB, and in the cases without ICI,

from the 0 dB to ≈ 6dB.

4.4 CHAPTER CONCLUSIONS

In this chapter, it was implemented an NN-based method to optimize the SUCRe

and other similar protocols. Based on our findings, we conclude that the proposed NN-based

method outperforms the SUCRe protocol in both scenarios with and without inter-cellular

interference, and without the need for additional overhead. We also demonstrated how the

proposed method outperforms other similar protocols, particularly in extremely congested

scenarios,i.e., K0 > 25000. The robustness of the proposed method has also been evaluated by

varying the number of BS antennas, demonstrating that the results are still valid for a number

of antennas other than those considered during the training phase of the proposed NN-based

method. The robustness of the proposed method has also been assessed regarding the number

of BS antennas and edge SNR, demonstrating that the proposed method is a promising GB RA

protocol option.
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Figure 22 – Performance with edge SNR variation in dB: a) ANAA, and b) FFAA. With M = 100, τp = 10,
Kici = 10 and K0 = 28000.
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5 APPLICATION OF Q-LEARNING ALGORITHM FOR PILOT COLLISION RESO-

LUTION IN GRANT-FREE RANDOM ACESS SYSTEMS

This chapter presents a new GF RA protocol which we denote by massive QmMTC

(mQmMTC). This protocol is a collaborative multi-agent QL-based method applied to pilot

collision resolution in mMTC systems, similar to the protocol proposed in (SHARMA; WANG,

2019). However, unlike the introduced in (SHARMA; WANG, 2019), the mQmMTC is designed

to work in massive MIMO systems under realistic propagation effects, such as multipath fading,

shadowing, path loss, thermal noise and ICI.

5.1 EXISTING QL-BASED GF RA PROTOCOLS

Q-learning can be used as a multi-agent RLe method to assist IoT devices in selecting

the least congested RA pilots in a decentralized manner. In typical mMTC networks, active

IoT devices can coordinate neither with the BS nor with each other for pilot selection. Thus,

IoT devices act as individual learning agents, using their previous experience to increase the

probability of selecting exclusive RA pilots and reducing the occurrence of pilot collisions. In

this section, we revisit two earlier works in which this framework was applied in an simple

collision channel, i.e., assuming that the only communication impairment is pilot collision.

We consider a mMTC network employing a GF RA policy. The cell consists of Ka

IoT active devices, each with L packets to transmit competing for τp pilot resources. After

transmitting all L packets, the k-th device becomes inactive, and a new device with more L

packets to transmit activates and takes the position of the inactive one, ensuring that the cell

always has Ka active devices.

The devices send the payload data prepended with a RA pilot to enable channel esti-

mation using a GF RA protocol. Suppose the RA pilot is chosen exclusively by that device (no

interference). In that case, we assume that the payload data packet, transmitted by the device, is

successfully decoded at the BS, and the device proceeds to transmit the next data packet of a

total of L packets. Otherwise, if a collision occurs, the device repeats the transmission of the

same packet in the next frame, increasing latency and decreasing network throughput. Thus, RLe

techniques can be employed to guide the pilots’ choice of devices towards the least congested

ones, improving the connectivity performance of the network as a whole. In this work, the

performance metric latency is normalized and expressed as multiples of time slot, Ts. We define
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latency as the total amount of time spent on transmitting L packets, including failed transmission

attempts, divided by the average duration of a time slot, Ts. If transmitting 1 packet takes Ts

seconds and each failed attempt also takes Ts seconds, then the latency is expressed as:

latency =
L× Ts + AF × Ts

Ts

= (L+ AF ) [Ts] (73)

where AF is the number of failed packet transmission attempts. The normalization procedure

ensures that the latency results are independent of the duration of Tc, which varies depending on

the environment and device’s velocity as discussed in subsection (2.3.4).

The interaction between the IoT device and the environment can be modeled as a Markov

decision process (MDP), where at each time step, a device can change its current state st ∈ S

to st+1 ∈ S by taking action at ∈ A based on a transition probability function f(st,at,st+1)

(SHARMA; WANG, 2019). Depending on its state-action pair, the device is rewarded with

rt+1 ∈ R during the transition. Besides, the expected return of a state-action pair is given by

Qπ(s,a) = E

[∑Ep

j=0 γ
jrt+j+1|st = s,at = a,π

]
, where π is the established policy, γ ∈ [0,1] is

the discount factor, and Ep is the length of one episode (SHARMA; WANG, 2019).

Satisfying the Bellman optimality equation, the Q-function can then be written as

Q∗(s,a) = maxπ Q
π(s,a). If a greedy policy π(s) = argmaxa Q

π(s,a) is established for the

Q-function, then we have a Q-Learning algorithm that selects only the actions with the highest

Q-value Q(s,a) at each state, calculated iteratively as:

Qt+1(st,at) = Qt(st,at) + κt

[
rt+1 + γ max

a
Qt(st+1,at+1)−Qt(st,at)

]
, (74)

where κt is the learning rate at the tth time step. This model can then be applied for decentralized

pilot selection as described in (BELLO et al., 2014),(SHARMA; WANG, 2019):

Qt+1(k,�) = Qt(k,�) + κ [RF (k,�)−Qt(k,�)] , (75)

where Q(k,�) indicates that the k-th device has chosen the pilot � = c(k) and RF (k,�) indicates

the reward function for this choice.

In (BELLO et al., 2014), a simple method for computing the rewards RF (k,�) in (75) is

proposed via an independent Q-learning approach for mMTC (iQmMTC), where RF (k,�) = +1

if the transmission succeeds, or RF (k,�) = −1 otherwise. However, (SHARMA; WANG,

2019) has demonstrated that better results can be obtained through a collaborative approach

(cQmMTC), in which the device is rewarded either with RF (k,�) = +1 for a successful
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transmission or with RF (k,�) = −Pc(k) if the transmission fails, with the collaborative penalty

function Pc(k) being computed as:

Pc(k) =
1

Ka

CL(k), (76)

where Ka is the number of active devices in the cell and the congestion level CL(k) = |Sc(k)| is

the number of contenders for c(k) (SHARMA; WANG, 2019).

We assume that each device maintains its own 1× τp Q-table. Initially, all Ka devices

have zeroed Q-tables, and all τp RA pilots are equally likely to be chosen by any of them.

Then, on each subsequent transmission attempt, all devices are rewarded with RF (k,�), and their

Q-tables are updated using (75). Once a device’s Q-table has been updated, it will only be able

to select pilots with the highest Q-value. The process is repeated until the L packets are sent. It is

worth noting that the new devices activated with probability Pa also begin transmission attempts

with a zeroed Q-table. As a result, it must also update its Q-table after each transmission attempt

in order to learn from the current set environment.

In the cQmMTC approach of (SHARMA; WANG, 2019), the congestion levels in the

event of a collision are computed as the number of contending devices, |Sc(k)|. However, nothing

is said about the feasibility of making this information available on the device’s side. At first

glance, it appears that it would necessitate developing an estimator to be used at the BS and then

feeding the results back to the devices, which would incur significant signaling overhead. To

avoid this and simplify the procedure, we propose a 2-step Q-learning-based GF RA protocol

which also takes advantage of a large number of BS antennas to allow a collaborative penalty

function computation at the device’s side in case of collisions with minimal complexity and

overhead.

5.2 PROPOSED 2-STEP Q-L GF RA M-MIMO PROTOCOL

This section describes the proposed 2-step, GF, RA Q-Learning based pilot collision

resolution protocol.

Let K be the set of devices in the cell, which are activated with probability Pa. These

devices transmit not only payload data but also a randomly selected pilot sequence during the UL

to enable channel estimation at the BS side. We consider τp mutually orthogonal pilot sequences:

{ψ1,...,ψτp} ∈ C
τp×1, such that each pilot has length τp and squared magnitude ‖ψt‖2 = τp,

∀t ∈ [1, τp]. We also consider a TDD scheme, in which the channels are considered constant



87

during a time slot. The BS is equipped with M antennas localized at the center of the cell. An

illustrative representation of the adopted scenario is presented in Figure 23.

Figure 23 – Illustrative representation of the adopted scenario.

Each device that activates has a number of Lk packets to transmit. Therefore, considering

St ⊂ K as the set of devices that want to transmit data selecting pilot t, its cardinality follows a

binomial distribution:

|St| ∼ B
(
KT ,

Pa

τp

)
(77)

where KT = |K| is the total number of devices in the cell and Pa is their activation probability.

The channel vector between BS and device k is denoted by hk ∈ C
M×1 and follows a complex

Gaussian distribution hk ∼ CN (0,βkIM), where βk is the large-scale fading coefficient, which

follows an urban micro scenario (3GPP, 2018). The large-scale fading of the link between device

k and its BS is calculated as:

βk = 10−ϑ log(distk)+
PL+ϕ

10 . (78)

where distk is the distance between device k and the BS, ϑ = 3.8 is the path loss exponent,

ϕ ∼ N (0,σ2
sf ) is the shadow fading, with standard deviation σsf = 10 dB, and PL = −34.53 dB

is the path loss at the reference distance (BJÖRNSON et al., 2017a; NISHIMURA et al., 2020).

When the device k transmits data, it randomly selects one of the τp pilot sequences

and transmits it followed by its UL payload data dk ∈ C
τd×1, with a non-zero transmit power
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ρk > 0. We can denote the chosen pilot as c(k) ∈ {1,2, . . . , τp}, and define the UL signal as

xk = [ψT
c(k),d

T
k ]

T ∈ C
(τp+τd)×1.

Thus, the BS receives the signal

Y = [Yp,Yd] =
∑
k∈K

√
ρkhkxT

k + N, (79)

where Y ∈ C
M×(τp+τd), Yp ∈ C

M×τp , Yd ∈ C
M×τd , and N ∈ C

M×(τp+τd) is the receiver noise

with entries drawn from CN (0, σ2). Besides, we have that

Yp =
∑
k∈K

√
ρkhkψ

T
c(k) + Np, and (80)

Yd =
∑
k∈K

√
ρkhkd

T
k + Nd, (81)

with N = [Np,Nd]. Hence, the BS correlates (80) with each pilot to generate channel estimates.

For the case of an arbitrary pilot ψt, with t ∈ [1, τp], it yields:

yt = Yp
ψ∗

t

‖ψt‖
=
∑
i∈St

√
ρiτphi + nt, (82)

where nt = Np
ψ∗

t

‖ψt‖
is the effective receiver noise, so that nt ∼ CN (0,σ2IM). As a result, the

BS tries to decode the payloads in (81) using the channel estimates yt, evaluating:

d̂T
k =

yH
t√
τp

Yd. (83)

The signal-to-interference-plus-noise ratio (SINR) of d̂k in (83) can be obtained follow-

ing the SINR analysis of (MARINELLO et al., 2022), adapting the results to our scenario.

First, the components of d̂T
k are expanded as:

d̂T
k =

1√
τp

[∑
i∈St

√
ρiτphi + nt

]H [∑
k∈K

√
ρkhkd

T
k + Nd

]
,

= ρk‖hk‖2dT
k︸ ︷︷ ︸

ω1

+
∑

i∈St,i �=k

ρi‖hi‖2dT
i︸ ︷︷ ︸

ω2

+
∑
i∈St

∑
k∈K,k �=i

√
ρiρk(hi)

H(hk)d
T
k︸ ︷︷ ︸

ω3

+

(nt)
H

√
τp

∑
k∈St

√
ρkhkd

T
k︸ ︷︷ ︸

ω4

+
(yt)

H

√
τp

∑
k∈K\St

√
ρkhkd

T
k︸ ︷︷ ︸

ω5

+
(yt)

H

√
τp

[Nd]︸ ︷︷ ︸
ω6

. (84)

Next, the expected power of each term in (84) is computed as the expectation of their

squared magnitude, following the analysis in (MARINELLO et al., 2017). Table 15 shows the
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mean and variance of each component in (84). Then, taking only E[ω1] as the desired signal

power, while relegating V[ω1] as an additional interference as in (MARINELLO et al., 2017),

the full SINR expression is obtained as γul
k in (85):

Table 15 – First and Second-Order Statistical Moments of the decoded signal
Term ωi E[ωi] V[|ωi|]
ω1 Mρkβk Mρkβk

ω2 M
√∑

i∈St,i �=k ρ
2
iβ

2
i M

∑
i∈St,i �=k ρiβi

ω3 0 M
∑

i∈St

∑
k∈‖ ρiρkβiβk

ω4 0 Mσ2

τp

∑
k∈St

ρkβk

ω5 0 M [
∑

k∈St
ρiβi +

σ2

τp
]
∑

k∈K\St
ρkβk

ω6 0 M [
∑

k∈St
ρiβi +

σ2

τp
]σ2

γul
k =

M ρ2k β
2
k

M
∑

i∈St
i �=k

ρ2i β
2
i +
[∑

i∈St
ρiβi +

σ2

τp

] [∑
j∈K ρjβj + σ2

] . (85)

We assume that the decoding of (83) is always successful when k is the unique competi-

tor for the pilot t (No pilot collisions occur). The BS responds with an ACK feedback message if

the decoding of (83) is successful, together with the transmission of a precoded DL pilot signal

V ∈ C
M×τp , with power q, according to:

V =

√
q

τp

τp∑
t=1

y∗
t

‖yt‖
ψT

t . (86)

The devices receive zk ∈ C
τp×1, k ∈ St

zTk = hT
k V + ηT

k , (87)

where ηk ∼ CN (0, σ2Iτp) is the noise. After correlating zk with ψt, the device calculates

zk = zTk
ψ∗

t

‖ψt‖
=

√
q hT

k

y∗
t

‖yt‖
+ ηk, (88)

where ηk ∼ CN (0, σ2).

Collaborative penalty function computation. Let αt =
∑

i∈St
ρiβiτp be the sum of channel gains

of the devices in St seen at the BS according to (82), then an asymptotically error-free estimator

for αt is proposed in a similar scenario1 in (BJÖRNSON et al., 2017a) as:

α̂t,k = max

([
Γ(M + 1

2
)

Γ(M)

]2
qρkβ

2
kτp

[�(zk)]2 − σ2, ρkβkτp

)
, (89)

1 In Björnson et al. (2017a), the α̂t,k estimate is computed as part of the 4-steps GB handshake procedure

of SUCRe protocol, and used to let the UEs decide whether they should retransmit the chosen pilot or not,

depending if it is the strongest contender. Differently, we employ here a GF RA protocol, in which the devices

transmit the payload data together with an RA pilot to enable channel estimation in a reduced number of steps.
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where �(·) is the real part and Γ(·) is the complete Gamma function.

Based on the estimate α̂t,k in (89), reminded that αc(k) =
∑

i∈Sc(k)
ρiβiτp, and since

the device k is aware of its average channel gain βk, the device can calculate a measure of the

congestion level of its selected pilot as follows:

φ̂k =
α̂t,k

ρkβkτp
, 1 ≤ φk < ∞. (90)

The large-scale fading coefficient βk can be estimated from the broadcast signals

periodically received from the BS, such as beacon2 signals. One can note that as φ̂k approaches

1, it indicates that it is likely that no other device has chosen the pilot c(k). On the other hand,

as φ̂k increases, it indicates that it is likely that many other devices chose the same pilot c(k).

Therefore, φ̂k can be seen as a rough estimate of CL(k); hence, the penalty function Pc(k) in

(76) can be computed approximately as

Pc(k) ≈ φ̂k

K̂a

, (91)

in which K̂a is an estimate for the number of active devices in the cell. We propose to use a

simple estimator that calculates K̂a, the expected number of active devices, assuming no pilot

collision occurs and that the device k knows the total number of users KT in the center cell, the

activation probability Pa, and the average number of packets E[Lk] transmitted to the BS by each

active device in the cell. In this way, one can compute:

K̂a = KT · Pa · E[Lk]. (92)

The penalty function Pc(k) in (91) can be used in crowded networks, considering

realistic propagation effects such as multipath fading, path loss, thermal noise, and ICI, allowing

practical implementation of the cQmMTC approach in a GF RA protocol. Therefore, in the

proposed protocol, the devices choose their RA pilots along the transmissions of the Lk packets

according to their own Q-table, which is updated following (75), while computing the rewards

as:

RF (k,�) =

⎧⎨⎩ +1, if the transmission succeeds

−Pc(k) = −φ̂k/K̂a, in case of pilot collision.
(93)

The diagram presented in Figure 24 illustrates K devices with L packets to transmit

while competing for τp pilots. It also shows the rewards estimated by each device with or without

2 The beacon signal is a periodically transmitted signal by the BS and carries important information such as

the cellular network identifier, timestamp, gateway address, paging area ID, and other BS parameters. This

information can be used by devices to estimate their own channel gain (SJ et al., 2001).
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collisions. Figure 24.a illustrates that each device has L packets to transmit. The green squares

represent the packets that are already successfully transmitted, the magenta squares represent

the packets waiting to be sent in the next RA block, and the blue squares represent the packets

currently being transmitted. Each packet is contained within a frame with the UL pilot chosen

by the device. Based on the pilot chosen by the device, the BS responds with an ACK feedback

if the transmission succeeds or with a NACK if the transmission fails. In this work, the NACK

response is interpreted simply as the absence of an ACK response. In all cases, successful or

unsuccessful, the devices receive zk, which allows them to estimate their congestion levels. In

Figure 24.b, the columns represent the available pilots, and the rows represent each active device.

The pilot chosen by a particular device is depicted in colored rectangles as green or red. Green

rectangles indicate that the transmission was successful (no pilot collision occurred), and red

rectangles indicate that the packet transmission was unsuccessful (a pilot collision occurred). The

current packet being transmitted is also expressed in all colored rectangles. Finally, Figure 24.c

represents how each device calculates its reward based on the occurrence or not of pilot collision

and associates this reward with its chosen pilot in the current RA block.

5.3 NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed QL-based GF RA protocol

in terms of (i) average latency, (ii) average network throughput, defined as the ratio between

the number of successfully transmitted packets (without collisions) at certain time step and

the number of available pilots τp, and (iii) per-user throughput, considered as the ratio of the

total number Lk of successfully sent packets by each device to the total number of transmission

attempts, AT , that the device has to make to send them, in such a way that Lk ≤ AT . For the

simulations, we consider a massive MIMO BS equipped with M antennas at the center of a

hexagonal cell with a radius of R, surrounded by six neighboring hexagonal cells with the same

radius. The simulation parameters are shown in Table 16. The description column of the Table

indicates Figures that depict the results of simulations that employ the respective parameter value.

Parameters without indication of Figures are applied in all simulations of the section.

With respect to L and Pa, we investigate three different scenarios in this section: (i)

Lk = L, ∀k ∈ K, and Pa = 1, such that Ka = KT , that is, the number of active devices in the

center cell is equal to its total number of devices since all devices are active; (ii) random Lk,

and Pa = 1, also resulting in Ka = KT ; (iii) random Lk, ∀k ∈ K, and Pa = 0.1%, such that
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(a) K devices with L packets to transmit;

(b) K devices competing for τp pilots;

(c) Q-Learning rewards
Figure 24 – Illustrative representation of the proposed protocol.
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Table 16 – Simulation parameters of the proposed QL based GF RA protocol
Parameter Value Description

M 100
Number of BS antennas in the center and

neighboring cells. Figures ( 25, 26, 30,32,33,34, 35,36 )

M from 1 to 100
Variation in the number of BS antennas in the center

and neighboring cells. Figures ( 27 and 28)

Pa 1 Probability of the devices activation. Figures ( 25, 26, 33 and 34)

Pa 0.001 Probability of the devices activation. Figures ( 35 and 36)

τp 400
Number of available RA pilot sequences. Figures ( 25, 26,27,28,

29, 30,32,33,34)

τp 40 Number of available RA pilot sequences. Figures ( 35, 36)

ρ 27 dBm Transmit power of UEs

q 27 dBm Transmit power of the BS

σ2 -98.65 dBm Noise variance

Kici Ka, 10 ·Ka, 60 ·Ka
Number of active devices in the neighboring cells.

Figures ( 25, 26, 30, 31, 32, 33, 34)

Kici 400 Number of devices in the neighboring cells. Figures ( 27, 28,29)

Kici 40 Number of available RA pilot sequences. Figures ( 35, 36)

KT from 0 to 800 Number of devices in center cell. Figures ( 25, 26, 33, 34)

KT 400 Number of devices in the center cell. Figures (27, 28, 29)

KT 600 Number of devices in the center cell. Figures (30, 32)

KT from 0 to 4000 Number of devices in the center cell. Figures (35, 36)

Lk 10
Number of packets that user k have to transmit.

Figures ( 25, 26, 27,28, and 29)

Lk from 1 to 100 (Figures 30,31 and 32)

Lk Random with distribution U(1,10) Number of packets that user k has to transmit.

Figures ( 33, 34, 35, 36)

R 250 m Radius of the center cell

R 250 m Radius of the neighboring cells

σsf 10 dB Shadow fading standard deviation

PL - 34.53 dB Path loss at reference distance.

ϑ 3.8 Path loss exponent.

5G sub-6 GHz Band of operation

27 dBm Transmit power of devices in adjacent cells

Ka ≤ KT is also random.

We investigate 4 protocols: the a) baseline scheme, which is equivalent to the slotted

ALOHA protocol, with the devices choosing the pilots uniformly at random; b) iQmMTC

approach of (BELLO et al., 2014); c) cQmMTC approach of (SHARMA; WANG, 2019),

assuming that the actual values of |St| and Ka are perfectly known at the devices’ side, like if a

genie could inform this to them; and d) our proposed 2-step QL-based GF RA protocol, which

takes advantage of the massive MIMO propagation features to efficiently compute the negative

rewards of the QL framework at the devices’ side, which we denote as mQmMTC. Besides, for

this last one, we investigate its performance in the scenarios with and without ICI3. The results

mQmMTC with ICI in Figures 25, 26, 30, 31, 32, 33 and 34 are presented with three levels of

3 It is worth noting that for the baseline, iQmMTC, and cQmMTC in the adopted scenario, only pilot collisions

degrade their connectivity performance. Therefore, ICI does not matter for them.
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Kici values, Kici = Ka, Kici = 10 ·Ka, and Kici = 60 ·Ka. Figures 27, 28, 29 present results

with a fixed number of Kici = 400 and Figures 35, 36 depict results with Kici = 40.

5.3.1 Fixed Lk and Pa = 1

In this subsection, we take Lk = L, ∀k ∈ K, and Pa = 1, such that Ka = KT . Although

these simplifying assumptions usually do not hold in practice, they are useful to unveil the full

potential of the investigated methods and evaluate the performance losses when not assuming

them, which is carried out in the following subsections. The graphs presented in Figures 25 and

26 have been generated with 10000 Monte-Carlo realizations. Each realization is a frame, or a

time step in the QL framework, in which each device can transmit only one pilot and the payload

packet with a number of devices varying from 25 to 800.

Figure 25 displays the average latency, in multiples of time-slots Ts, as a function of

Ka results. The closeness of the proposed mQmMTC results to the ideal cQmMTC protocol,

in both scenarios with and without interference and for the three levels of Kici, is remarkable.

Additionally, both the mQmMTC and ideal cQmMTC results are lower than the baseline for

all Ka values. The results are below the independent QmMTC for Ka > 400, confirming the

superiority of cQmMTC as stated in (SHARMA; WANG, 2019). It is noteworthy that even

scaling the number of devices in the neighboring cell to Kici = 60 ·Ka is not enough to impair

the functionality of the proposed method.

Similarly, Figure 26 reveals the average network throughput versus Ka results, where

the performance of proposed mQmMTC protocol is close to the ideal cQmMTC performance

for both the scenarios without and with ICI, considering Kici = Ka, while being consistently

superior to the baseline results for any number of devices Ka and any investigated values of Kici.

Furthermore, compared with iQmMTC, the obtained performances are very similar in the region

of Ka ≤ τp = 400 devices, while the performance obtained by the proposed mQmMTC approach

becomes remarkably superior for a higher number of devices. For example, with Ka = 600 active

devices, the baseline and iQmMTC results achieve average network throughputs of ≈ 0.33 and

0.35, respectively, and our proposed mQmMTC protocol achieves an average network throughput

of ≈ 0.43 in the worst case scenario with ICI and Kici = 60 ·Ka, an improvement of ≈ 30%

and ≈ 22%, respectively.

The graphs presented in Figure 27 and 28 are generated with 80000 Monte-Carlo

realizations. The number of devices in the center and neighboring cells are fixed at Ka = Kici =
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Figure 25 – Average latency ×Ka, for L = 10 packets, Pa = 1, τp = 400, Kici = Ka, 10 ·Ka, 60 ·Ka, and
M = 100.

400 and the number of available pilots is also fixed at τp = 400. The number of BS antennas

varies in the range M ∈ [1, 100], both in the center and neighboring cells. The increase of

antennas in the neighboring cells is carried out only for computational reasons. In practice, it

does not impact the results and does not differ from the results of the increase only in the central

cell since only the UL time is considered in this analysis.

Figure 27 depicts the average latency with an increasing number of BS antennas M

and Figure 28 reveals the behavior of the average network throughput vs. M . Both Figures of

merit for the proposed mQmMTC approach improve with the increasing number of antennas M ,

since the reward computations in (91) benefit from the large number of BS antennas (favorable

propagation effect). The results of the ideal cQmMTC are also included in the Figures as a lower

bound (avg. latency) and upper bound (avg. throughput), respectively. The average percentual

degradations of the results of mQmMTC regarding the ideal cQmMTC is also shown in both

Figures for M = 30 and M = 100. One can see that the improvement caused by increasing M

from M = 10 to M = 100 is not as significant as when increasing M from M = 1 to M = 10.

Therefore we can conclude that our proposed mQmMTC RA protocol is able to achieve very

improved connectivity performance even with a small number of BS antennas.

Figure 29 shows the throughput and latency degradation levels versus the number of

antennas M . Indeed, the graphs reaveals that M ≈ 30 antennas at the BS are sufficient to attain
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Figure 26 – Average network throughput ×K, for L = 10 packets, Pa = 1, τp = 400, Kici = Ka, 10 · Ka,
60 ·Ka, and M = 100.

a reliable congestion level estimation of φ̂k, when a maximum acceptable level of throughput

degradation of 3% is considered.

Figures 30, 31 and 32 present, respectively, the graphs of latency, normalized latency,

which is the latency normalized by L, and network throughput versus L . The results shown in
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Figure 27 – Average latency ×M , for L = 10 packets, τp = 400, Kici = 400, and Ka = 400.
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Figure 28 – Average network throughput ×M , for L = 10 packets, τp = 400, Kici = 400, and Ka = 400.

both Figures are generated with 10000 Monte-Carlo realizations. The number of active devices

are kept fixed at Ka = 600, the number of antennas is also fixed at M = 100 and the three Kici

levels, Kici = Ka, Kici = 10 ·Ka and Kici = 60 ·Ka are also investigated. The graphs illustrate

the superiority of the proposed methods even when each device has a small number of packets

to send (L ≤ 10). In fact, a minimum number of L = 2 is enough for the proposed methods

(mQmMTC without and with ICI) to produce a result superior to the baseline and the iQmMTC

methods, while approximating to the cQmMTC method.

5.3.2 Random Lk and Pa = 1

In this subsection, we evaluate the scenario when the number of packets Lk sent by

each device is random and follows a discrete uniform distribution as Lk ∼ U [1,10], while we

still maintain Pa = 1 such that K = Ka. Figures 33 and 34 show, respectively, the graphs of

latency and network throughput. One can note that the superiority of the results achieved by the

proposed methods over the results achieved by the iQmMTC and baseline methods are preserved.

Indeed, the curves in Figures 33 and 34 present practically the same shapes of the ones in Figures

25 and 26, respectively, but with a little performance degradation due to the reduction in the

average number of transmitted packets, which limits the learning capability of the Q-Learning

algorithm in seeking less congested pilots.
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Figure 29 – Average network throughput and latency degradations ×M , for L = 10 packets, Ka = 400, and
Kici = 400.

5.3.3 Random Lk and Pa = 0.1%

We consider, in this subsection, a random number of packets sent by each device

following Lk ∼ U [1,10], and a random number of devices being activated at each frame following

a binomial distribution with activation probability of Pa = 0.1%, such that Ka ≤ KT . The

number of available RA pilots is also reduced to τp = 40, in order to keep the simulation time not

so long, and Kici is kept fixed as 40. The reward in the QL framework of the mQmMTC GF RA

protocol is calculated using (93), while assuming that E[Lk] = 5.5 is known at the devices’ side.

The graphs presented in Figure 35 and 36 are generated with 64000 Monte-Carlo realizations.

Figure 35 presents the average per-user throughput and Figure 36 presents the average

network throughput. In terms of both performance metrics, our proposed mQmMTC protocol

remains quite close to that of the ideal cQmMTC protocol while always superior than that

of Baseline and iQmMTC. While the per-user throughput of Baseline drops below 0.5 for

KT ≈ 2400, this happens with KT ≈ 2800 for iQmMTC, with KT ≈ 3100 for mQmMTC,

and with KT ≈ 3400 for the ideal cQmMTC. Similarly, the network throughput falling point

in Figure 36 occurs with KT ≈ 2300 for the Baseline, with KT ≈ 2400 for iQmMTC, with

KT ≈ 2800 for mQmMTC, and with KT ≈ 3100 for the ideal cQmMTC. These results

corroborate the feasibility of the proposed mQmMTC GF RA protocol to address the challenges
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Figure 30 – Average latency ×L, for Ka = 600, τp = 400, Kici = Ka, 10 ·Ka, 60 ·Ka and M = 100.

of massive machine-type communications in the framework of B5G systems. Nonetheless, the

graph shows an inverted behavior between "No interf. mQmMTC" and "Interf. mQmMTC"

chart lines when KT ∈ [2800; 3000] range. This fact needs further research to be explained. An

initial hypothesis is that a higher number of Monte Carlo realizations is necessary to improve the

accuracy of the graphs. Another hypothesis is that the model proposed in (92) is not accurate

enough and should be replaced for a more accurate one. Some attempts to increase the number

of Monte-Carlo repetitions were unsuccessful, firstly due to the simulation time which with 64

thousand Monte-Carlo repetitions is already 72 hours and secondly because of problems due

to memory allocation. In the further research section 6.1, the development of a more efficient

simulation computational environment is proposed, in which a faster algorithm and a more

precise traffic predictor are considered.

5.4 CHAPTER CONCLUSIONS

In this chapter, we have applied the collaborative Q-Learning (QL) GF RA protocol

to a practical massive MIMO scenario for pilot collision control, where we assumed realistic

wireless propagation effects, such as multipath fading, shadowing, path loss, thermal noise

and ICI. As the devices cannot know the exact number of pilot contenders without incurring

excessive complexity and signaling overhead, our proposed approach takes advantage of the
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Figure 31 – Average normalized latency ×L, for Ka = 600, τp = 400, Kici = Ka, 10 · Ka, 60 · Ka and
M = 100.

massive number of BS antennas to allow the devices to compute the Q-learning rewards in a

simplified way. We have also shown that our proposed approach is robust and does not require

more than ≈ 30 BS antennas to produce significantly improved results, very close to the ideal

cQmMTC protocol of (SHARMA; WANG, 2019). Furthermore, we have shown that the method

also works for a small number of packets, such as 10, and when a number of packets and devices

are random, following a uniform discrete distribution. This method has also shown robustness

regarding the number of devices and levels of Kici. Finally, we have shown that the number of

activate devices can be random based on a binomial distribution.

Future works can decide on a SINR based criteria for decoding the payload in Equation

(81) as well as investigating how many BS antennas would be adequate for an acceptable,

successful decoding rate. Other works may include using a more sophisticated RLe-based

approach, for instance, the deep Q-learning method (JIANG et al., 2019; KUMAR et al., 2021).

It is also recommended the development of a more efficient computational algorithm for the

simulations and a more precise traffic predictor, such the LSTM-based predictor (ABDELLAH;

KOUCHERYAVY, 2020).
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Figure 32 – Average network throughput ×L, for Ka = 600, τp = 400, Kici = Ka, 10 · Ka, 60 · Ka, and
M = 100.

0 100 200 300 400 500 600 700 800

Number of devices (K
a
)

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 L
at

en
cy

 (
 T

s )

Baseline
iQmMTC
cQmMTC
No interf. mQmMTC
Interf. mQmMTC K

ici
 = K

a

Interf. mQmMTC K
ici

= 10 K
a

Interf. mQmMTC K
ici

= 60 K
a

Figure 33 – Average latency ×Ka, for Lk ∼ U(1,10), Pa = 1, τp = 400, Kici = Ka, 10 · Ka, 60 · Ka, and
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Figure 34 – Average network throughput ×Ka, for Lk ∼ U(1,10), Pa = 1, τp = 400, Kici = Ka, 10 · Ka,
60 ·Ka, and M = 100.
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Figure 35 – Average per-user throughput ×KT , for Lk ∼ U(1,10), τp = 40, Kici = 40, Pa = 0.001 and
M = 100.
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Figure 36 – Average network throughput ×KT , for Lk ∼ U(1,10), τp = 40, Kici = 40, Pa = 0.001 and
M = 100.
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6 CONCLUSION

The increasing number of MTC devices represents a challenge when it comes to

providing high connectivity and low latency in massive MIMO systems. Among many issues that

may occur, there is pilot collision, which happens, in a massive MIMO system, when two or more

devices in a cell send the same pilot to the BS for channel estimation. This problem represents a

performance bottleneck in the system, impairing IoT and mMTC applications that usually require

low latency. This work has investigated the use of statistical inference and machine learning

based approaches for pilot collision control in massive MIMO systems. In Chapter 3 we propose

a GB RA protocol for pilot collision resolution in massive MIMO systems, similar to the SUCRe

protocol. However, our approach optimizes the decentralized decision making step of the SUCRe

protocol with a BC classifier that indicates if the device is more likely to have the strongest

signal among the contenders for particular pilot. Our proposed methodology trades off a slight

increase in false-positive rates for a significant decrease in false-negative probabilities, resulting

in significantly higher correct classification probabilities for the strongest user. This behavior

is very beneficial in terms of connectivity performance, which has been significantly improved

over the SUCRe protocol in both scenarios with and without ICI by our proposed method. The

most significant performance gains were found in the overcrowded scenario, with more expected

accessing devices than available RA pilots, i.e., K0 > τp/Pa, indicating the proposed method as

a suitable strategy in massive MIMO systems with a very high number of devices. Furthermore,

the results also show robustness regarding the number of antennas and edge SNR value.

In Chapter 4 a NN-based protocol is proposed as an alternative for the BC proposed

in chapter Chapter 3. In the proposed methodology, a multilayer perceptron neural network is

implemented as a classification tool to indicate if the device is the strongest contender. The results

found indicate that the NN-based protocols present a slightly better performance than the BC

classifier, in both scenarios with and without ICI, when K0 > 25000, and only in scenarios with

ICI, for a quantity of inactive UEs within a range of approximately 8000 UEs to approximately

12000 UEs. This second protocol also presents robustness concerning variation in the number

of antennas, showing that the proposed machine-learning method can operate with a number of

antennas other than it was trained.

In Chapter 5, a Q-Learning-based GF RA approach was introduced. This model was

applied to a massive MIMO system, assuming realistic propagation effects, such as multipath
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fading, shadowing, path loss, thermal noise and inter-cell interference. Because the devices

cannot know the exact number of pilot candidates without incurring in excessive complexity and

signaling overhead, our proposed approach makes use of the massive number of BS antennas to

allow the devices to compute the Q-learning rewards in a simplified manner. We also demon-

strated that our proposed approach is robust in terms of the number of packets to transmit, which

can be as low as 10 or as random as a discrete uniform distribution, Kici levels proportional to

the number of active user in the center cell, and the number of active users in the center cell,

which can be randomly activated as a binomial distribution. Our proposed method is also robust

in terms of antenna number variation. Given that it does not require more than ≈ 30 antennas at

the BS to produce significantly improved performance, which is very close to the ideal (genie)

cQmMTC protocol of (SHARMA; WANG, 2019).

We can conclude that the three approaches, BC, NN and Q-Learning are useful tools of

RA protocols in massive MIMO systems. In the next section some future works suggestions are

provided.

6.1 FURTHER RESEARCH TOPICS

This section points out possible research idea that can be complementary to this work.

Future research topics could include developing a new RA model for massive MIMO systems

using a different ML or SI approach. Another option is to use a previously validated RA protocol

in scenarios not previously studied. These potential future research topics could include one or

more of the following ideas:

• Apply ULe based methods for either GB or GF RA algorithms. ULe algorithms are useful

for clustering data in wide variety of applications. However, there is a lack of RA protocols

that make use of ULe-based methods in the literature, which make their use appealing for

a high-impact publication.

• Propose analytical methods for deriving the PDF of φk in chapter 3. A closed form

expression for the PDF of φk allows for more precise and efficient computation and

manipulation of the distribution and is more suitable for modeling complex relationships

and dependencies between variables.

• Investigate the tendency of changing of threshold φk in chapter 3 for changes in different

parameters such as Pa, Pr and Kici. It is expected that changing the simulation parameters
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of the threshold φk will also change. In relation to Kici, there is little difference in perfor-

mance without interference and with interference, which indicates a certain robustness

to the presence and variation of ICI. Therefore, a variation of Kici is not expected to

modify the threshold φk too much. Regarding the activation probability Pa, if Pa assumes

a value greater than the current one, a greater number of active users is also expected, and

therefore, it is also expected that the threshold value φth
k will increase since with more

active users the probability of the user being the strongest decreases. The same can be

said about the probability Pr of a retransmission attempt. This analysis is important for

providing more reliable and robust results.

• Propose different neural network topologies or architecture for the classification task in

chapter 3. For example, implement the cost function binary cross entropy.

• Evaluate the behavior of the bias term εk in different usage scenarios.

• Increase the number Kici proportionally to the number of UEs or devices. The purpose is

to make the simulations more realistic as the number of interfering devices in neighboring

cells are proportional to the number of devices in the center cell.

• Evaluate the performance of the NN proposed in chapter 4, considering different levels of

transmission power and ICI.

• Propose a more realistic simulation scenario for IoT and mMTC applications, e.g., a smart

factory plant. Since the IoT has become a commercial trend, to aim for always more

realistic models has become of paramount importance.

• Propose a coefficient to evaluate the performance of the RLe method in 5 proportional

to the levels of Kici, the number of devices and the angular coefficient κk of the curve in

Figure 30 (Latency × L). One option is the following.

αk = κk · Kici

Ka

(94)

• Integrate the IRS and the mmWave technologies to the proposed methods and evaluate

their performances.

• Discuss the trade-off between time division, which results in less interference but less

efficient usage of communication resources, and and temporal superposition, already
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applied to the mQmMTC protocol, which leads to more interference that could be mitigated

when applying massive MIMO.

• Analyze the SINR behaviour of the protocol proposed in Chapter 5 and investigate how

many antennas would be necessary to achieve an acceptable SINR value according to

Equation 85 converted to dBs with γul
dBk = 10 log10(γ

ul
k ) . Some previous results are

shown in Figures 37 and 38. In Figure 37 is shown the average SINR, for cQmMTC and

mQmMTC for the cases with and without ICI, for M varying from 0 to 2000.
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Figure 37 – Average SINR ×M (for L = 10 packets, Ka = 100, τp = Kici = 100)

Figure 38 shows the Complementary Cumulative distribution function (CCDF) for

M = 100, M = 500, M = 1000 e M = 2000, L = 10 packets, K = 100, and τp = Kici = 100.

It indicates at each SINR level ranging from −20 to 15 dB the probability that the actual SINR

of the wireless channel will be above that level.
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A Random Access Protocol for Crowded Massive
MIMO Systems Based on a Bayesian Classifier

Felipe Augusto Dutra Bueno, Cézar Fumio Yamamura, Alessandro Goedtel , and José Carlos Marinello Filho

Abstract—The strongest user collision resolution (SUCRe) pro-
tocol is an efficient grant-based random access (RA) solution to
provide connectivity for large numbers of user equipments (UEs),
leveraging massive MIMO propagation features, typically avail-
able in fifth-generation and beyond networks. In this letter, we
propose to replace the retransmission rule of SUCRe protocol by
a Bayesian classifier for identifying the strongest user, aiming to
resolve the collisions in a decentralized way, at the UEs’ side. As
an offline training stage, we first conduct a statistical learning
procedure to obtain the density estimations of the UEs’ decision
variables in the SUCRe protocol, both in the cases of the UE
being the strongest contender or not. Then, following the max-
imum a posteriori decision criterion, we determine how the UE
can decide if it is the strongest contender (retransmitting the cho-
sen RA pilot) or not (staying idle and trying again later). The
numerical results show that our proposed method achieves sig-
nificant connectivity performance improvements compared with
other protocols, without requiring any additional complexity or
overhead.

Index Terms—Random access, grant-based protocols, massive
MIMO, statistical learning, machine learning.

I. INTRODUCTION

THE NUMBER of connected devices is ever-increasing in
fifth-generation (5G) and beyond (B5G) networks [1],

while the available time and frequency communication
resources remain scarce. This scarcity of resources gives rise to
a connectivity performance bottleneck in such networks since
pilot collisions during the random access (RA) stage for user
equipments (UEs) become more frequent, especially critical
for UEs requiring reliable and low latency communications.
Therefore, the design and implementation of powerful and
effective RA protocols are very important for the development
and consolidation of B5G networks [1].

Several solutions have been proposed to mitigate the
problem of pilot collisions. The strongest-user collision resolu-
tion (SUCRe) protocol proposed in [2] is a 4-steps grant-based
procedure whose main idea is to allow only the strongest
contender to access the network resources. In the first step,
the UEs which want to become active transmit in the uplink
(UL) an RA pilot sequence randomly chosen from a common
pilots’ set. Then, in step 2, the base station (BS) responds
with a precoded pilot response in the downlink (DL), with
the precoding evaluated from the channel estimates obtained
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from each received RA pilot. By receiving this signal, the
UEs can estimate information about the sum of the signal
strengths of all UEs contending for the same RA pilot. Based
on this information, each contender decides, in a decentralized
way, whether or not to retransmit its pilot signal in the UL of
step 3. The retransmission occurs only when the UE signal
strength corresponds to more than 50% of the total sum of the
signal strengths of all UEs contending for a given RA pilot
signal. Finally, in step 4, the BS allocates dedicated commu-
nication resources to the UEs who did not collide in step 3.
The SUCRe protocol is very effective and can resolve 90% of
collisions [2]. However, the protocol does not resolve pilot col-
lisions in which the strongest UE has a signal strength lower
than 50% of the sum of the signal strengths of contending
UEs, characterizing false-negatives.

In [3] and [4], collision resolution schemes are proposed
in which the UEs receive from the BS not only the precoded
DL response to estimate the sum of the signal strengths of all
contenders, but also the information on which pilots remain
idle after the first RA round, aiming to admit as many UEs as
possible to the network. The results of both studies demon-
strate superior performance concerning the SUCRe method.
However, the extra overhead required to inform the idle pilots
needs to be taken into account for a fairer comparison, which
increases the signaling overhead in the RA stage, increases
latency and penalizes spectral efficiency.

In [5], a soft decision retransmission rule is proposed to
improve the performance of the SUCRe protocol. This rule
is based on the probability of the UE being the strongest
contender for its chosen pilot. The obtained results are supe-
rior to the original SUCRe protocol, but requiring additional
information known at the UEs’ side. In [6], the access class
barrier with power control (ACBPC) RA protocol is proposed.
The results indicate a relative connectivity performance gain in
comparison with the SUCRe protocol, while providing homo-
geneous access possibilities to the UEs, independent of their
distances to the BS. Other works, such as [7], [8] and [9],
also present different alternatives of collision resolution pro-
tocols. However, [7] and [8] introduce extra complexity and
overhead to the RA stage, while in [9] the SUCRe protocol
is adapted for extra-large MIMO (XL-MIMO) systems, taking
advantage of the spatial non-stationarities typically available
in such scenarios.

The Bayesian method is a classical inference statistical
tool that compares the weighted probability density functions
(PDFs) of numerous classes and costs associated with them,
and then selects the class having the highest odd of being
true [10]. Although being a simple method, it can achieve
high accuracy levels when coupled with kernel density estima-
tion under statistical learning frameworks. It has been recently
applied to solve problems like backlogged devices number
estimation in low-power wide-area networks [11], channel
detection in smart grid [12], and others.
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This letter proposes to replace the retransmission rule of
the original SUCRe protocol by a Bayesian classifier (BC) to
indicate if the UE is the strongest contender or not, resolving
thus the pilot collision in a decentralized way. The main con-
tributions are as follow: i) We characterize the RA in crowded
massive MIMO systems employing the SUCRe framework as
a classification problem to the UEs decide whether they are
the strongest contender for the chosen pilot or not, and pro-
pose a solution aiming to maximize the probability of correct
classification by the UEs given their observations; ii) As the
required PDFs for the BC computation are difficult to obtain
analytically, we first carry out an offline statistical learning
procedure to empirically obtain them; iii) Finally, we obtain a
quite simplified solution for this approach, which simplifies
to a unidimensional comparison with an optimized thresh-
old. The numerical results indicate a significantly improved
performance of our proposed BC approach compared to
other protocols available in literature, besides of showing its
robustness to the variation of different system parameters.

II. SYSTEM MODEL

We consider a set of UEs served by a BS with M anten-
nas, with time and frequency resources divided into coherence
blocks of T channel uses. The BS is located in the center of
a hexagonal cell and operates through a time-division duplex
(TDD), similarly as in [2]. We define Ui as the set of all UEs
inside cell i, and Ai as the subset of all active UEs, such
that Ai ⊂ Ui . In a typical overcrowded scenario, we have
|Ui | � T . However, there is a probability Pa ≤ 1 that inac-
tive UEs want to become active. Hence, we can consider a
scenario where |Ai | < T , in which the BS can temporarily
make orthogonal payload data pilot (PDP) signals available to
all active UEs during payload data transmission, by employing
a grant-based RA protocol.

In this letter, the investigated system model focuses on a
central cell arbitrarily chosen and called cell 0, in which,
K0 = U0\A0 is the set of inactive UEs with cardinality
K0 = |K0|. The channel vector between BS and UE k is
denoted by hk ∈ C

M×1. The channel follows a complex
Gaussian distribution hk ∼ CN (0, βk IM ), where βk is the
large-scale fading coefficient, obtained as in [2]. The K0 UEs
share τp orthogonal RA pilot signals: ψ1,ψ2, . . . ,ψτp , with
ψ t ∈ C

τp and ||ψ t ||2 = τp , t ∈ {1, 2, . . . , τp}. UEs that
want to become active randomly choose one of the τp RA
pilot signals and make an access attempt by transmitting ψc(k)
with power ρk > 0, with c(k) ∈ {1, 2, . . . , τp}. The set
St = {k : c(k) = t , ρk > 0} contains the indices of the
UEs that transmit the pilot t, and thus |St | represents the num-
ber of UEs that choose the pilot ψ t and follows a binomial
distribution [2]:

|St | ∼ B
(
K0,

Pa

τp

)
. (1)

The SUCRe protocol is divided into four steps. In the first
step, the BS receives the signal Y ∈ C

M×τp from the pilots
sent by the UEs:

Y =
∑
k∈K0

√
ρk hk ψ

T
c(k) +W+N, (2)

in which N ∈ C
M×τp is the noise matrix of the signal received

by the BS with each element following a complex normal

distribution, CN (0, σ2), and W ∈ C
M×τp is the interference

from adjacent cells. Then BS correlates Y with ψ t and obtains

yt = Y
ψ∗
t

||ψ t ||
=
∑
i∈St

√
ρi ||ψ t || hi +W

ψ∗
t

||ψ t ||
+ nt

=
∑
i∈St

√
ρiτp hi +W

ψ∗
t

||ψ t ||
+ nt , (3)

in which nt = N
ψ∗
t

||ψt || is the effective noise with distribution

CN (0, σ2 IM ).
Then, in step 2 the BS responds to all UEs who sent pilot

signals with a precoded signal V ∈ C
M×τp :

V =
√
q

τp∑
t=1

y∗t
|| yt ||

ψT
t , (4)

in which q is the signal power available at this stage by the
BS. The k-th UE then receives the signal zk ∈ C

τp :

zTk = hTk V+νTk + ηTk , (5)

where νTk ∈ C
τp is inter-cellular interference (ICI) and ηTk is

the noise of the signal received by the UE in this step, with
distribution CN (0, σ2 Iτp ). Then the UE correlates zk with its
chosen pilot ψ t , resulting in

zk = zTk
ψ∗
t

||ψt || =
√
qτp h

T
k

y∗t
|| yt ||

+ νTk
ψ∗
t

||ψt || + ηk , (6)

where ηk ∼ CN (0, σ2). Defining αt as:

αt =
∑
i∈St

ρiβiτp + ωt , (7)

which is the sum of the signal strengths and interference
received by the BS during the first stage of the protocol for
each pilot t, according to eq. (3). As proposed in [2], the value
of αt can be estimated by α̂t ,k :

α̂t ,k = max

⎛⎝[Γ(M + 1
2 )

Γ(M )

]2
qρkβ

2
k τ

2
p

[�(zk )]2
− σ2, ρkβk τp

⎞⎠, (8)

in which �(·) returns the real part of a complex number and
Γ(·) is the gamma function.

In the third step, each UE k knowing his own average chan-
nel gain βk decides whether to retransmit the pilot signal or
not. The objective here is to let only one contending UE (the
strongest one) retransmit to resolve the collision and connect
this UE to the network. The pilot will be retransmitted when
Rk is true and will not be retransmitted when Ik is true:

Rk : ρkβk τp >
α̂t ,k

2
+ εk , (9)

Ik : ρkβk τp ≤ α̂t ,k

2
+ εk , (10)

where εk is a bias parameter with a suitable value proposed
in [2]. The fourth step of the SUCRe method consists of grant-
ing access to network resources to the UE that successfully
retransmits its pilot when the collision has been resolved.

The soft-SUCRe (s-SUCRe) protocol of [5] follows a simi-
lar framework. However, instead of applying the hard decision
retransmission criterion described in (9) and (10), each UE
retransmits or not its chosen pilot in the third step according
to its probability of being the strongest contender, which is
derived in [5, eqs. (16) and (17)].
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III. BAYESIAN CLASSIFIER

We present in this section how the Bayesian classifier can
be applied to the random access problem in crowded massive
MIMO networks, under the strongest user criterion to resolve
pilot collisions. First, in order to obtain an input variable for
the proposed BC, we rearrange inequations (9) and (10) as

Rk : φk > 0.5, Ik : φk ≤ 0.5, (11)

in which the φk∈ [0, 1] factor represents the proportion of the
signal strength of the k-th UE among the contenders:

φk =
ρkβk τp − εk

α̂t ,k
. (12)

The problem of resolving the pilot collisions following the
strongest UE retransmission rule can be seen as a classification
problem to be solved at the UEs’ side. We can thus define two
classes for the UEs: C0 represents the class of UEs which
are not the strongest contenders for their chosen pilots, and
C1 represents the class of the strongest UEs, forming the set
C = {C0,C1}. We also define the state of each UE k as
Ωk ∈ C. Given the φk estimate obtained after step 2 as in (12),
the proposed BC operates by seeking the class that maximizes
the a posteriori probability of the k-th UE as

Ω̂k = arg max
C�∈C

p(C�|φk ),

= arg max
C�∈C

p(φk |C�)P(C�)

p(φk )
,

= arg max
C�∈C

p(φk |C�)P(C�). (13)

Based on the possibility of the existence of UEs ∈ C1 with
φk ≤ 0.5, the Bayesian method is then proposed to map
and classify the values of φk statistically. However, as the
probabilities in (13) are difficult to be obtained analytically,
since the estimate φk is computed as the ratio of two random
variables in (12), we conduct in the following empirical sta-
tistical analysis, aiming to numerically obtain the joint PDFs
p(φk |C�)P(C�), � = 0, 1.

The training data of the BC are generated in the software
MATLAB 2020a in a simulation setup following that proposed
and publicly shared by the authors of the SUCRe proto-
col [2]. The setup considers the system parameters indicated
in the beginning of Section IV. The offline training proce-
dure we conducted consists in generating 10× 106 examples
of φk values labeled in terms of C�, � = 0, 1, equally dis-
tributed between the different K0 values. Then, we apply the
MATLAB function histcounts configured with 38-bin divisions
and probability normalization1 on the training data. The
procedure is initially performed without ICI, obtaining Fig. 1,
and then repeated with ICI, obtaining Fig. 2.

Fig. 1 presents the estimate of the PDFs of the φk val-
ues conditioned to the occurrences of each class, weighted
by the class probabilities, i.e., p(φk |C�)P(C�), � = 0, 1,
for the scenario without ICI. The Figure also depicts
the crossover point between both curves, pointing out the
φk value at which p(φk |C1)P(C1) becomes greater than
p(φk |C0)P(C0), which occurs for φk ≈ 0.2942. Similarly,

1This implies that the area under graphs (a) and (b) of the figures add up to
one, since

∫ 1
0 p(φk ,C0)dφk +

∫ 1
0 p(φk ,C1)dφk = 1. Besides, the choice

for a number of examples of 10× 106 was empirical, trading-off a training
execution complexity of few minutes while obtaining smooth PDF curves.

Fig. 1. p(φk |C�)P(C�), (a) � = 1, (b) � = 0, and (c) the crossover point
for the scenario without ICI.

Fig. 2. p(φk |C�)P(C�), (a) � = 1, (b) � = 0, and (c) the crossover point
for the scenario with ICI.

Fig. 2 presents a similar result for ICI cases. In this scenario,
the crossover point turns to occur for φk ≈ 0.2853.

Interestingly, one can see from the above analysis that a BC
applied as criterion to the UEs retransmit their pilots in step 3
of the RA protocol is equivalent to changing the retransmission
rule decision threshold of 0.5 from the SUCRe protocol to a
more refined value of 0.2942 in the scenario without ICI, or
0.2853 in the scenario with ICI. Therefore, inequations in (11)
can be replaced by

(w/o ICI) (with ICI)

Rk : φk > 0.2942, φk > 0.2853, (14)

Ik : φk ≤ 0.2942, φk ≤ 0.2853. (15)

In other words, although the purpose of SUCRe protocol is
to resolve pilot collisions letting only the strongest UE retrans-
mit their pilots, it takes this decision evaluating φk > 0.5.
Indeed, φk > 0.5 is a sufficient condition for a UE being the
strongest contender, but not necessary, giving rise to exces-
sive occurrences of false-negatives, deteriorating connectivity
performance. On the other hand, our proposed BC applies
a more refined decision threshold near 0.29, which signifi-
cantly improves the RA performance as shown in the following
section.
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TABLE I
CONFUSION MATRIX OF SUCRE W/O ICI

IV. NUMERICAL RESULTS

The performance of the investigated RA protocols are
numerically evaluated in this section. The setup considers a
hexagonal cell with a radius of 250 m and the number of UEs
K0 varying between 100 and 30000 in increments of 100.
The cell is surrounded by six neighboring hexagonal cells
with the same radius, but with a fixed number of 10 active
UEs. The system operates under the 5G sub-6 GHz band, and
the simulation parameters are set as M=100, ρ = 1, q = 1,
τp = 10, and transmission probability Pa = 0.001. First, we
provide results for the classification accuracy of the schemes,
and then we present and compare the RA performance of the
protocols.

A. Classification Performance

Tables I and II evaluate the classification performance
for the scenario without ICI in terms of confusion matri-
ces. Table I shows the results when considering a decision
threshold of φk = 0.5, which is employed in the SUCRe pro-
tocol, while Table II shows the results when employing the
proposed BC approach, with the obtained new threshold of
φk = 0.2942. The third column at the far right of the matrix
shows the precision of predictions for each state belonging to
Ω̂k . In other words, it presents the accuracy of the classifier
given each output class Ω̂k = C0 or Ω̂k = C1. The bottom
row shows the successful classification rates of each state. The
far-right square at the bottom shows the overall accuracy2 of
the classifier. In Table I the results indicate that for the deci-
sion threshold of φk = 0.5 employed in the SUCRe protocol,
the classification success rate of UEs of class C0 is 100%.
However, the successful classification rate among C1 UEs is
41.7%, indicating too many false-negatives when φk ≤ 0.5.
Besides, the precision of C0 and C1 classifications are 95.9%
and 98.6% respectively. The overall accuracy of successful
classifications is 96%.

Table II indicates the results when the decision threshold
is φk = 0.2942. The classification precision of C0 and C1
outputs are 98.2% and 84.5%, respectively. The percentages
of correct predictions are 99% for class C0 UEs and 74.8%
for class C1 UEs. The overall accuracy is 97.3%, higher than
the results obtained for the threshold φk = 0.5.

2The total accuracy is given by P(Ω̂k = C0,C0) + P(Ω̂k = C1,C1).
Each of these probabilities can be computed by dividing the respective number
of occurrences with the total number of occurrences simulated.

TABLE II
CONFUSION MATRIX OF PROPOSED BC W/O ICI

TABLE III
CONFUSION MATRIX OF SUCRE WITH ICI

TABLE IV
CONFUSION MATRIX OF PROPOSED BC WITH ICI

Tables III and IV are the confusion matrices for the cases
with ICI. Table III shows the results adopting the decision
threshold of φk = 0.5. The results indicate accuracy of 95.3%
for output class C0 and 99% for output class C1. The rate
of successful classified states are 100% and 34.8% for UEs
belonging to classes C0 and C1, respectively. The overall accu-
racy is 95.4%.The inferior classifier performance is noteworthy
when taking the ICI into account.

Table IV shows the results when taking φk = 0.2853 as
the decision threshold. The results indicate an accuracy of
98.0% for output class C0 and 83,9% for output class C1. The
rate of successful classified states are 99.0% and 72.8% for
UEs belonging to classes C0 and C1, respectively. The overall
accuracy is 97.1%, slightly inferior than the case without ICI.

In summary, the results in this subsection show that the
BC approach proposed in this letter trades-off a very slight

Authorized licensed use limited to: Universidade Tecnologica Federal do Parana. Downloaded on November 19,2022 at 13:51:22 UTC from IEEE Xplore.  Restrictions apply.



BUENO et al.: RANDOM ACCESS PROTOCOL FOR CROWDED MASSIVE MIMO SYSTEMS BASED ON A BC 2459

Fig. 3. Performance with K0 variation: a) ANAA, and b) FFAA.

increase in the false-positive rates for a significant reduction
in the false-negative probabilities in comparison with SUCRe
protocol. Consequently, the correct classification for UEs of
class C1 is significantly increased using the BC. The results
point to 41.7% of SUCRe to 74.8% in the scenario without
ICI and 34.8% to 72.8% in ICI. These results are also very
beneficial to the RA performance, as shown in the following.

B. Connectivity Performance

Fig. 3 shows the result of Average Number of Access
Attempts (ANAA) and Fraction of Failed Access Attempts
(FFAA). The black line represents the performance of the base-
line protocol of [2], which is an ALOHA-like protocol where
pilot collisions are only handled by retransmission in later
RA blocks. The red lines with “+” marker indicate the results
obtained with the original SUCRe protocol of [2], the magenta
lines with “�” marker indicate the results obtained with the
s-SUCRe protocol of [5], and the ciano lines with “◦” marker
indicate the results obtained with the ACBPC protocol of [6].
The blue lines with “x” marker indicate the results obtained
when employing the BC methodology proposed in this letter.
The dotted line shows the results obtained for the cases with
ICI. Both charts show a significantly high performance of the
BC for K0 > τp/Pa = 10000 UEs, when the average num-
ber of accessing UEs surpasses the number of available pilots.
Compared with s-SUCRe for example, the FFAA decreases
6.73% for K0 = 15000 UEs, while the proposed BC approach
avoids the complexity of computing the probability of the UE
being the strongest contender, and does not require the actual
K0 value to be known at the UEs’ side as in s-SUCRe. Besides,
Fig. 4 shows the FFAA with the variation in the number of BS
antennas M and edge SNR, defined as ρ/σ2 and q/σ2, with
ρ = q . Although the proposed BC is trained with M = 100
and 0 dB of edge SNR, the results show the robustness of the
approach regarding the variation of such parameters, since the
BC remains achieving improved performances. Fig. 4a also
shows that 50 BS antennas are sufficient for a satisfactory
operation of the BC approach.

V. FINAL REMARKS

This letter proposes a statistical approach to optimize the
SUCRe protocol through a Bayesian classifier. The classifica-
tion results indicated that our proposed methodology trades-off

Fig. 4. FFAA with K0 = 15000 UEs vs a) Number of BS Antennas M, and
b) Edge SNR. Ideal SUCRe refers to SUCRe with perfect α̂t,k estimation,
i.e., α̂t,k =

∑
i∈St

ρiβiτp .

a slight increase in false-positive rates for a significant reduc-
tion in the false-negative probabilities, substantially increasing
the correct classification probabilities for the strongest UEs.
This behavior shows to be very beneficial from the connec-
tivity performance perspective, which has been significantly
improved by our proposed method in comparison with other
protocols, for both scenarios with and without ICI. The over-
crowded scenario, with more expected accessing UEs than
available RA pilots, i.e., K0 > τp/Pa , is where the most
significant performance improvements have been found, indi-
cating the proposed method as a promising approach in
massive MIMO systems with very high density of UEs.
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Reinforcement Learning-Based Grant-Free Random
Access for mMTC Massive MIMO Networks

Felipe A. Dutra Bueno, Alessandro Goedtel, Taufik Abrão, José Carlos Marinello Filho

Abstract—The expected huge number of connected devices in
Internet of Things (IoT) applications characterizes the massive
machine-type communication (mMTC) scenario, one prominent
use case of beyond fifth-generation (B5G) systems. To meet
the mMTC connectivity requirements, grant-free (GF) random
access (RA) protocols are seen as a promising solution, due
to the small amount of data that the simple devices usually
transmit. In this letter, we propose a GF RA protocol based on
a multi-agent reinforcement learning approach, applied to aid
the IoT devices in selecting the least congested RA pilots. The
rewards obtained by the devices in collision cases resemble the
congestion level of the chosen pilot. To enable the operation of
the proposed method in a realistic B5G network scenario, and
aiming to reduce signaling overheads and centralized processing,
the rewards in our proposed method are computed by the devices
taking advantage of the large number of base station antennas.
Numerical results demonstrate the superior performance of the
proposed method in terms of latency, network throughput, and
per-user throughput compared with other protocols.

Index Terms—Random access protocol, Grant-Free, Beyond
5G, Reinforcement Learning, Massive MIMO.

I. INTRODUCTION

Cellular Internet of Things (CIoT) is an important research

topic within beyond fifth-generation (B5G) networks [1].

The number of IoT devices has been explosively increasing

recently, while most devices are low-power nodes whose

batteries are expected to be usable for years. Furthermore,

such IoT devices are usually distributed over a long-range.

Therefore, we can point out the main requirements of CIoT in

B5G networks: massive connectivity, low power consumption,

and broad coverage [1]. Exploiting new wireless technologies,

such as massive multiple-input multiple-output (MIMO) tech-

nology, intelligent reflecting surfaces, and others, is essential

to achieve such goals.

The massive MIMO is already a successful technology [2].

Its fundamental idea is to equip base stations (BSs) with many

antennas to serve a set of single-antenna users scattered in the

cell. It benefits from the fact that the effects of uncorrelated

noise and fast fading disappear as the number of BS antennas

grows to infinity, remaining only the inter-cellular interference

that results from pilot contamination [3]. Massive MIMO

systems usually employ a time-division duplex (TDD) scheme

that demands the transmission of only uplink (UL) pilot signals

to acquire channel state information (CSI), since the downlink

F. A. D Bueno, A. Goedtel, J. C. Marinello are with Electrical Engineer-
ing Department, Federal University of Technology PR, Cornélio Procópio,
PR, Brazil (e-mail: faugustobueno@gmail.com, agoedtel@utfpr.edu.br, jc-
marinello@utfpr.edu.br).

T. Abrão is with Department of Electrical Engineering Londrina State
University, Parana Brazil (e-mail taufik@uel.br)

(DL) CSI can be estimated by channel reciprocity [4]. How-

ever, while the number of devices is continually increasing,

motivated by the wide spreading of IoT applications, the

number of resources offered by the cellular network remains

scarce. This fact gives rise to performance issues such as pilot

collisions when two or more users choose the same pilot trying

to access the BS resources. Therefore, establishing an effective

random-access (RA) policy is mandatory.

Several methods have been presented to enhance the tradi-

tional random access performance, such as access class barring

(ACB), slotted access, and backoff [5]. Among several pro-

posed solutions for congestion problem resulted from massive

access, there are for instance, a) [5], which investigates an

efficient random access procedure based on ACB to decrease

the access delay and the power consumption under wireless

networks congestion resulted from massive access; b) the

strongest-user collision resolution (SUCRe) protocol from [6].

The SUCRe protocol is a grant-based (GB), 4-steps RA ap-

proach whose main idea consists in allowing just the strongest

pilot competitor to access the BS resources each time. Numer-

ical results indicate that the SUCRe protocol can solve about

90% of all collisions. However, the 4-steps procedure required

for the BS to grant exclusive communication resources to

the devices could result in a performance bottleneck, being a

source of excessive delay, and signaling overhead. Therefore,

it is not the ideal choice for massive machine-type communi-

cation (mMTC) systems, where accessing devices usually have

small data packets to transmit sporadically. Other works such

as [7]–[10] present proposals for optimization of the SUCRe

protocol showing promising results. However, they are also

GB protocols that introduce extra complexity or overhead to

the SUCRe protocol. B5G RA schemes should achieve high

scalability under latency and reliability constraints to support

new use cases. For this purpose, grant-free (GF) RA protocols

have gained increasing interest, as they can drastically reduce

control signaling for connection establishment [1].

Many GF RA protocols available in the literature are derived

from the contention resolution diversity slotted ALOHA [11],

and irregular repetition slotted ALOHA [12]. The idea behind

such schemes is to repeat the transmission of data packets

in several randomly-chosen slots, including the indices of

the chosen slots as side information. Whenever a particular

device chooses a slot, its payload is successfully decoded,

and its interference in the other slots is canceled through

successive interference cancellation (SIC), increasing the oc-

currence of other non-colliding slots. Although achieving

exceptional performances, these protocols have the drawbacks
of requiring packets re-transmissions, a substantial overhead

for side information signaling, increased complexity for SIC
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evaluation, and the possibility of propagation errors.

Reinforcement learning (RL) techniques can be aggregated

to deal with congestion control (CC), especially in grant-

free random access M-MIMO networks. The CC is a funda-

mental mechanism for the implementation of heterogeneous

networks. In the recent years, RL-based smart CC methods

have drawn a lot of attention in the research community.

RL is a type of machine learning technique, which can

enable the agents/devices to interact with the environment in

order to learn efficient strategies that maximize the long-term

system performance. The most typical RL algorithm is the

Q-learning (QL) algorithm, which can be implemented at the

user equipment (UE) even without an operating model of the

environment.

In ultra-dense mMTC networks, RA optimization is very

challenging; hence, the use of ML tools is quite promising,

particularly RL, to efficiently accommodate the MTC devices

in RA slots. However, exploitation vs exploration is critical

in reinforcement learning. RL algorithms try to continuously

optimize the environment learning for the best returns, at-

tempting to efficiently achieve good exploitation, while the

exploration mechanism plays a secondary role. Consequently,

RL agents try to find the best solution as fast as possible.

However, committing to solutions too quickly without enough

exploration could become inadequate, as it could lead to local

minima or total failure.

In [13], an RL-based GF RA for pilot collision control is

proposed. The RL algorithm used in [13] is the Q-Learning,

where each accessing device is an independent agent and the

rewards are simply +1 when it chooses a unique RA slot or −1
otherwise. A similar procedure is proposed in [14], in which

the BS also sends +1 or −1 depending on the outcome of

the device’s transmission. However, in the case of collision,

the actual reward computed by the device is −1 times the

ratio of packets already transmitted by it, e.g, if the device

has already transmitted 20% of its packets and collided in the

current instant, its actual reward is -0.2. As an improvement, a

collaborative QL RA scheme is proposed in [15], in which the

negative rewards in case of collisions are proportional to the

congestion level of the chosen RA slot. However, the protocol

assumes that the devices know the exact number of devices

colliding by their chosen RA slot. The performance results are

better than when compared with the independent QL approach

of [13]. Nonetheless, [13], [14], and [15] do not assume a

realistic system model and do not consider channel effects

like multipath fading, path loss, thermal noise, and inter-cell

interference (ICI), besides assuming the devices know the

exact congestion levels in the case of [15].

In this work, we propose a QL-based GF RA protocol

specially designed for realistic mMTC B5G scenarios. Our

scenario considers realistic wireless propagation effects, in-

cluding multipath fading, shadowing, path loss, thermal noise,

and ICI. Besides, the devices compute the collaborative QL

rewards in collision cases by estimating the congestion levels.

Contributions. The paper’s contributions are threefold:

i. Innovative Grant-free RA protocol. To suitably operate

under such a realistic scenario, and allowing improved

congestion level estimation at the devices with minimal
signaling overhead, we propose an innovative GF RA
protocol taking advantage of the large number of BS an-

tennas typically available in the advanced B5G networks.

ii. Improved latency, network throughput, and per-user
throughput figures of merit: numerical results reveal

that latency, network throughput, and per-user throughput

performances obtained through the congestion estimation

are near the ideal case where the device knows the actual

congestion level.

iii. Robustness against system parameter changes: further-

more, the network throughput and latency results also

show robustness when varying the number of antennas

or the number of packets that each device has to send, in

a scenario with an equal number of contending devices

and RA pilots.

The remainder of this paper is organized as follows. Section

II revisited the main QL-based GF RA protocols available in

the literature. The proposed 2-step QL GF RA M-MIMO Pro-

tocol is diligently described in Section III. Numerical results

exploring the main metrics for analysing the performance of

random access networks are carried out in Section IV. The

main conclusions and possible research directions are offered

in Section V.

II. EXISTING QL-BASED GF RA PROTOCOLS

Q-learning can be used as a multi-agent RL method to

aid IoT devices in selecting the least congested RA pilots

in a decentralized way. In typical mMTC networks, active

IoT devices can coordinate neither with the BS nor with

each other for pilot selection; therefore, IoT devices act as

individual learning agents, using their previous experience

to enhance the probability of selecting exclusive RA pilots,

minimizing the occurrence of pilot collisions. In this section,

we revisited two previous works where this framework has

been applied in a simple collision channel, i.e., assuming that

the only communication impairment is pilot collision. The

adopted scenario considers an mMTC network employing a

GF RA policy in a cell comprising Ka IoT devices, each with

L packets to transmit, and contending for τp pilot resources.

The devices transmit the payload data prepended with an

RA pilot to enable channel estimation employing a GF RA

protocol. If the chosen RA pilot is exclusively chosen by

that device (no interference), it is assumed that the payload

data packet transmitted by it is successfully decoded at the

BS, and the device proceeds to transmit the next data packet.

Otherwise, if a collision occurs, the device repeats the trans-

mission of the same packet in the next frame, which increases

latency and decreases the per-user throughput and the network
throughput. Thus, reinforcement learning techniques can be

employed to guide the pilots’ choice of devices towards the

least congested ones, improving the connectivity performance

of the network as a whole.

The interaction between the IoT device and the environ-

ment can be modeled as a Markov Decision Process (MDP),

where at each time step, a device can change its current

state xt ∈ X to xt+1 ∈ X by taking action at ∈ A
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based on a transition probability function f(xt, at, xt+1) [15].

Depending on its state-action pair, the device is rewarded

with rt+1 ∈ R during the transition state. Besides, the

expected return of a state-action pair is given by Qπ(x, a) =

E

[∑J
j=0 γ

jrt+j+1|xt = x, at = a, π
]
, where π is the estab-

lished policy, γ ∈ [0, 1] is the discount factor and J is the

length of one episode [15].

Satisfying the Bellman optimality equation, the Q-function

can then be written as Q∗(x, a) = maxπ Q
π(x, a). If a greedy

policy π(x) = argmaxa Q
π(x, a) is established for the Q-

function, then we have a QL algorithm that selects only the

actions associated with the highest Q-value Q(x, a) at each

state, calculated iteratively as:

Qt+1(xt, at) = Qt(xt, at)+

δt

[
rt+1 + γ max

a
Qt(xt+1, a)−Qt(xt, at)

]
, (1)

where δt is the learning rate at the tth time step. This

model can then be applied for decentralized pilot selection as

described in [13], [15], in which each device has a Q-table of

τp elements evaluating its experience in selecting the different

pilots to transmit data. This Q-table can be updated according

to:

Qt+1(k, �) = Qt(k, �) + δ [R(k, �)−Qt(k, �)] , (2)

where Qt(k, �) is related to the experience of the kth device in

choosing the pilot � = c(k), and R(k, �) indicates the reward

function for this choice.

A simple way to compute the rewards R(k, �) in (2) is

proposed in [13] through an independent QL approach for

mMTC (iQmMTC), where R(k, �) = +1 if the transmission

succeeds, or R(k, �) = −1 , otherwise. However, [15] has

shown that better results can be achieved through a collab-
orative approach (cQmMTC), where the device is rewarded

either with R(k, �) = +1 for a successful transmission or

with R(k, �) = −Pc(k) if the transmission fails, with the

collaborative penalty function Pc(k) being computed as

Pc(k) =
1

Ka
CL(k), (3)

where Ka is the number of active devices in the cell and the

congestion level CL(k) = |Sc(k)| is the number of contenders
for pilot c(k) [15], while Sc(k) is the set of devices choosing

the same pilot c(k).
In this framework, each device keeps its own 1×τp Q-table.

Initially, this Q-table is filled with zeros, and all τp RA pilots

are equally like to be chosen by it. Then, at each subsequent

transmission attempt, the devices are rewarded with R(k, �),
and their Q-tables are updated according to (2). Once an

individual device has updated its Q-table, it will only choose

pilots among the ones with the highest Q-value. The process

is repeated until the L packets are transmitted.

In the cQmMTC approach of [15], the congestion levels in

case of collisions are computed as the number of contending

devices, |Sc(k)|. However, nothing is discussed about the

feasibility of making this information available on the device’s

side. At first glance, it would require to conceive an estimator

to be employed at the BS, and then feedback the result to the

devices, which would spend significant signaling overhead.

For comparison purpose, herein, we assume perfectly known

the congestion level at device side, treating this scheme as

genie cQmMTC. Furthermore, in a practical network, not all

IoT devices are active at a given instant, since they activate

independently with certain probabilities, in such a way that

the actual number of active devices is not known by the

BS. To avoid complex computations and excessive signaling

overheads while simplifying the procedure, we propose a 2-

step QL-based GF RA protocol making use of the large num-

ber of BS antennas to allow a collaborative penalty function

computation at the devices’ side in case of collisions with

minimal complexity and overhead.

III. PROPOSED 2-STEP QL GF RA M-MIMO PROTOCOL

We consider a TDD scheme, where the channels are con-

sidered constant during a time slot. The BS is equipped

with a massive number of BS antennas (M ), localized at

the center of the cell. Let K be the set of single-antenna

devices in the cell, which decide to activate with probability Pa

transmitting payload data together with a randomly selected

pilot sequence to enable UL channel estimation at the BS

side. An illustrative representation of the adopted scenario is

presented in Fig. 1. We consider τp mutually orthogonal pilot

sequences: s1, ..., sτp ∈ C
τp×1, such that each pilot has length

τp and ‖st‖2 = τp, ∀t ∈ [1, τp]. Each device that activates has

a number of Lk packets to transmit. Therefore, considering

St ⊂ K as the set of devices that want to transmit data

selecting pilot t, its cardinality follows a binomial distribution:

|St| ∼ B
(
K,

Pa

τp

)
(4)

where K = |K| is the total number of devices in the cell.

Fig. 1. Illustrative representation of the adopted scenario.

The channel vector between BS and device k is denoted

by hk ∈ C
M×1. The channel follows a complex Gaussian

distribution hk ∼ CN (0, βkIM ), where βk is the large-scale

fading coefficient, which follows an urban micro scenario [16].

So the large-scale fading of the link between device k and the

BS is

βk = 10−κ log(dk)+
g+ϕ
10 . (5)

In this equation dk is the distance between device k and the

BS, κ = 3.8 is the path loss exponent, ϕ ∼ N (0, σ2
sf) is
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the shadow fading, with standard deviation σsf = 10 dB, and

g = −34.53 dB is the path loss at the reference distance [16].

When the device k transmits data, it randomly selects one

of the τp pilot sequences and transmits it followed by its UL

payload data packet dk ∈ C
τd×1, with a non-zero transmit

power ρk > 0, where τd is the data length. We can denote

the chosen pilot as c(k) ∈ {1, 2, . . . , τp}, and define the UL

signal as xk = [sTc(k),d
T
k ]

T ∈ C
(τp+τd)×1.

Thus, the BS receives the signal

Y = [Yp,Yd] =
∑
k∈K

√
ρkhkxTk + N, (6)

where Y ∈ C
M×(τp+τd), Yp ∈ C

M×τp , Yd ∈ C
M×τd , and

N ∈ C
M×(τp+τd) is the receiver noise with entries drawn from

CN (0, σ2). Besides, we have that

Yp =
∑
k∈K

√
ρkhks

T
c(k) + Np, and (7)

Yd =
∑
k∈K

√
ρkhkd

T
k + Nd, (8)

with N = [Np,Nd]. Hence, the BS correlates (7) with each

pilot to generate channel estimates. For the case of an arbitrary

pilot st, with t ∈ [1, τp], it yields:

yt = Yp
s∗t
‖st‖ =

∑
i∈St

√
ρiτphi + nt, (9)

where nt = Np
s∗
t

‖st‖ is the effective receiver noise, so that

nt ∼ CN (0, σ2IM ). As a result, the BS tries to decode the

payloads in (8) using the channel estimates yt, evaluating:

d̂T
k =

yH
t√
τp

Yd. (10)

The signal-to-interference-plus-noise ratio (SINR) of d̂k in
(10) can be obtained following the SINR analysis of [17],
adapting the results to our scenario, as follows:

γul
k =

M ρ2k β
2
k

M
∑

i∈St
i �=k

ρ2i β
2
i +

[∑
i∈St

ρiβi +
σ2

τp

] [∑
j∈K ρjβj + σ2

] .
(11)

We assume that the decoding of d̂k in (10) is always suc-

cessful when k is the unique competitor for the pilot t (without

pilot collisions). The BS responds with an ACK feedback

message if the decoding of (10) is successful, together with

the transmission of a precoded DL pilot signal V ∈ C
M×τp ,

with power q, according to:

V =

√
q

τp

τp∑
t=1

y∗
t

||yt||s
T
t . (12)

The devices receive zk ∈ C
τp×1, k ∈ St

zTk = hT
kV + ηT

k , (13)

where ηk ∼ CN (0, σ2Iτp) is the noise. After correlating zk
with st, the device calculates

zk = zTk
s∗t

||st|| =
√
q hT

k

y∗
t

||yt|| + ηk, (14)

where ηk ∼ CN (0, σ2).

Collaborative penalty function computation. Let αt =∑
i∈St

ρiβiτp be the sum of average channel gains of the
devices in St seen at the BS according to (9), then an

asymptotically error-free estimator for αt is proposed in a

similar scenario1 in [6] as:

α̂t,k = max

([
Γ(M + 1

2 )

Γ(M)

]2
qρkβ

2
kτp

[�(zk)]2 − σ2, ρkβkτp

)
, (15)

�(·) is the real part and Γ(·) is the complete Gamma function.

Given the estimate α̂t,k in (15), reminding that αc(k) =∑
i∈Sc(k)

ρiβiτp, and since the device k knows its average

channel gain βk, it can compute a measure of how congested

is its chosen pilot as follows

φ̂k =
α̂t,k

ρkβkτp
, 1 ≤ φ̂k < ∞. (16)

One can note that as long as φ̂k approaches 1, it indicates to

be likely that no other device has chosen the pilot c(k). On

the other hand, as φ̂k increases, it indicates to be likely that

many other devices chose the same pilot c(k). Therefore, φ̂k

can be seen as a rough estimate of CL(k); hence, the penalty

function Pc(k) in (3) can be computed approximately as

Pc(k) ≈ φ̂k

K̂a

, (17)

in which K̂a is an estimate for the number of active devices

in the cell. We propose to employ here a simple estimator,

which computes K̂a as the expected number of active devices

supposing that no pilot collision occurs. In this way, one can

compute:

K̂a = K · Pa · E[Lk]. (18)

The penalty function Pc(k) in (17) can be used in a realistic

massive MIMO scenario, allowing a practical implementation

of the cQmMTC approach in a GF RA protocol. Therefore,

in the proposed protocol, the devices choose their RA pilots

along the transmissions of the Lk packets according to their

own Q-table, which is updated following (2), while computing

the rewards as:

R(k, �) =

{
+1, if the transmission succeeds

−Pc(k) = −φ̂k/K̂a, in case of pilot collision.
(19)

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

QL-based GF RA protocol in terms of: (i) average latency,

considered herein as the total number of attempts, Ak, the

device makes to transmit its Lk packets, (ii) average network

throughput, defined as the ratio between the number of suc-

cessfully transmitted packets (without collisions) at certain

time step and the number of available pilots τp, and (iii)

1In [6], the α̂t,k estimate is computed as part of the 4-steps GB handshake
procedure of SUCRe protocol, and used to let the UEs decide whether they
should retransmit the chosen pilot or not, depending if it is the strongest
contender. Differently, herein we employ a GF RA protocol, in which the
devices transmit the payload data together with an RA pilot to enable channel
estimation and data decoding in a reduced number of steps.
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the per-user throughput, considered as the ratio of the total

number of successfully sent packets by each device, Lk, to

the total number of attempts, Ak, that the device has to

make to send them, in such a way that Lk ≤ Ak. For the

simulations, we consider a massive MIMO BS equipped with

M antennas at the center of a hexagonal cell with a radius

of 250m, surrounded by six neighboring hexagonal cells with

the same radius. Each neighboring cell has a fixed number

of Kici = 400 active interfering devices. The simulation

parameters are set as ρ = 1, q = 10, τp = 400, and

δ = 0.1. With respect to L and Pa, we investigate three

different scenarios in this section: (i) Lk = L, ∀k ∈ K, and

Pa = 1, such that Ka = K; (ii) random Lk, and Pa = 1, such

that Ka = K; (iii) random Lk, ∀k ∈ K, and Pa = 0.1%, such

that Ka ≤ K is also random.

We investigate 4 protocols: the a) baseline scheme, which

is equivalent to the slotted ALOHA protocol, with the de-

vices choosing the pilots uniformly at random; b) iQmMTC
approach of [13]; c) cQmMTC approach of [15], assuming

that the actual values of |St| and Ka are perfectly known at

the devices’ side, like if a genie could inform this to them;

and d) our proposed 2-step QL GF RA protocol leveraging the

massive MIMO propagation features to efficiently compute the

negative rewards of the QL framework at the devices’ side,

which we denote as mQmMTC. Besides, for this last one, we

investigate its performance in the scenarios with and without

ICI2.

A. Fixed Lk and Pa = 1

In this subsection, we take Lk = L, ∀k ∈ K, and Pa = 1,

such that Ka = K. Although these simplifying assumptions

usually do not hold in practice, they are useful to unveil the full

potential of the investigated methods, as well as to evaluate the

performance losses when not assuming them, which is carried

out in the following subsections. The graphs presented in the

Fig. 2 and 3 have been generated with 10000 Monte-Carlo

realizations. Each realization is a frame, or a time step in the

QL framework, in which each device can transmit only one

pilot and the payload packet. The number of antennas is kept

fixed at M = 100, and the number of devices varies from 25
to 800 in steps of 25.

Fig. 2 shows average latency versus K results. The proxim-

ity of the proposed mQmMTC results for both scenarios with

and without interference with the ideal cQmMTC protocol is

noteworthy. Also, both the mQmMTC and the ideal cQmMTC

results are below the baseline for any value of K. Also,

they are below the independent QmMTC for K > 400,

which corroborates with the cQmMTC superiority presented

in [15]. Similarly, Fig. 3 reveals average network throughput

versus K results where the mQmMTC is very close to the

ideal cQmMTC performance for both the scenarios with and

without interference, while being consistently superior to the

baseline results for any number of devices K. Furthermore,

compared with iQmMTC, the obtained performances are very

2It is worth to note that for the baseline, iQmMTC, and cQmMTC in the
adopted scenario, only pilot collisions degrade their connectivity performance.
Therefore, ICI does not matter for them.

similar in the region of K ≤ τp = 400 devices, while the

performance obtained by the proposed mQmMTC approach

becomes remarkably superior for a higher number of devices.

For example, with K = 600 active devices, while baseline

and iQmMTC achieve network throughputs of ≈ 0.34 and

0.36, respectively, our mQmMTC protocol achieves a network

throughput of ≈ 0.49, an improvement of ≈ 44% and ≈ 36%,

respectively.
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Fig. 2. Average latency ×K, for L = 10 packets, and M = 100.
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Fig. 3. Average network throughput ×K, for L = 10 packets, and M = 100.

The graphs presented in Fig. 4 and 5 are generated with

80000 Monte-Carlo realizations. The number of devices is

fixed at K = 400 and the number of available pilots is also

fixed at τp = 400. The number of BS antennas varies in

the range M ∈ [1, 100], both in the home cell as well as

in the neighboring cells. Fig. 4 depicts the average latency

with an increasing number of BS antennas M , while Fig.

5 reveals the behavior of the average network throughput

vs. M . Both figures of merit for the proposed mQmMTC

approach improve with the increasing number of antennas

M , since the reward computations in (17) benefit from the

large number of BS antennas (favorable propagation effect).
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The results of the ideal cQmMTC are also included in the

figures as a lower bound (avg. latency) and upper bound (avg.

throughput), respectively. The average percentual degradations

of the results of mQmMTC regarding the ideal cQmMTC is

also shown in both figures for M = 30 and M = 100. One

can see that the improvement caused by increasing M from

M = 10 to M = 100 is not as significant as when increasing

M from M = 1 to M = 10. Therefore we can conclude that

our proposed mQmMTC RA protocol is able to achieve very

improved connectivity performance even with a small number

of BS antennas. Indeed, M ≈ 30 antennas at the BS reveals

to be sufficient to attain reliable congestion level estimation

φ̂k when a maximum acceptable degradation level of 3.5% is

considered.
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Fig. 4. Average latency ×M , for L = 10 packets, and K = 400.
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Fig. 5. Average network throughput ×M , for L = 10 packets, and K = 400.

Figures 6 and 7 present, respectively, the graphs of latency

and network throughput versus L . The results shown in both

figures are generated with 10000 Monte-Carlo realizations.

The number of active devices are kept fixed at K = 600
and the number of antennas is also fixed at M = 100. The

graphs illustrate the superiority of the proposed methods even

when each device has a small number of packets to send

(L ≤ 10). In fact, a minimum number of L = 2 is enough

for the proposed methods (mQmMTC without and with ICI)

to produce a result superior to the baseline and the iQmMTC

methods, while approximating to the cQmMTC method.
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Fig. 6. Average latency ×L, for K = 600, and M = 100.
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Fig. 7. Average network throughput ×L, for K = 600, and M = 100.

B. Random Lk and Pa = 1

In this subsection, we evaluate the scenario when the num-

ber of packets Lk sent by each device is random and follows a

discrete uniform distribution as Lk ∼ U [1, 10], while we still

maintain Pa = 1 such that K = Ka. Figures 8 and 9 show,

respectively, the graphs of latency and network throughput.

One can note that the superiority of the results achieved by the

proposed methods over the results achieved by the iQmMTC

and baseline methods are preserved. Indeed, the curves in

Figures 8 and 9 present practically the same shapes of the ones

in Figures 2 and 3, respectively, but with a little performance

degradation due to the reduction in the average number of

transmitted packets, which limits the learning capability of

the QL algorithm in seeking less congested pilots.
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Fig. 8. Average latency ×K, for Lk ∼ U (1,10), and M = 100.
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Fig. 9. Average network throughput ×K, for Lk ∼ U (1,10), and M = 100.

C. Random Lk and Pa = 0.1%

We consider in this subsection random number of pack-

ets sent by each device following Lk ∼ U [1, 10], and a

random number of devices being activated at each frame

following a binomial distribution with activation probability

of Pa = 0.1%, such that Ka ≤ K. The number of available

RA pilots is also reduced to τp = 40, in order to keep the

simulation time not so long. The graphs presented in Fig. 10

and 11 are generated with 64000 Monte-Carlo realizations.

Fig. 10 presents the average per-user throughput and Fig.

11 the average network throughput. The reward in the QL

framework of the mQmMTC GF RA protocol is calculated

using (19), while assuming that E[Lk] = 5.5 is known at

the devices’ side. In terms of both performance metrics, our

proposed mQmMTC protocol remain quite close to that of

the ideal cQmMTC protocol, while always superior than that

of Baseline and iQmMTC. While the per-user throughput of

Baseline drops below 0.5 for K ≈ 2400, this happens with

K ≈ 2800 for iQmMTC, with K ≈ 3100 for mQmMTC, and

with K ≈ 3400 for the ideal cQmMTC. Similarly, the network

throughput falling point in Fig. 11 occurs with K ≈ 2300
for the Baseline, with with K ≈ 2400 for iQmMTC, with

K ≈ 2800 for mQmMTC, and with K ≈ 3100 for the

ideal cQmMTC. These results corroborate the feasibility of the

proposed mQmMTC GF RA protocol to address the challenges

of massive machine-type communications in the framework of

next generation massive multiple access systems.
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Fig. 10. Average per-user throughput ×K, for Lk ∼ U (1,10), and M = 100.
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Fig. 11. Average network throughput ×K, for Lk ∼ U (1,10), and M = 100.

V. FINAL REMARKS

In this work, we have applied the collaborative, distributed

and decentralized QL-based GF RA protocol to a massive

MIMO scenario for pilot collision control, assuming real-

istic wireless propagation effects, such as multipath fading,

shadowing, path loss, thermal noise and ICI. As the devices

cannot know the exact number of pilot contenders without

incurring excessive complexity and signaling overhead, our

proposed approach takes advantage of the massive number

of BS antennas to allow the devices to compute the QL

rewards in a simplified way. We have also shown that our

proposed approach is robust regarding the number of packets
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to transmit, which can be as small as 10 or even random

following a discrete uniform distribution, and regarding the

number of active users, which can be randomly activated

following a binomial distribution. Our proposed method is also

robust regarding the number of antennas variation, and does

not require more than ≈ 30 antennas at the BS to produce

significantly improved performance, very close to the ideal

(genie) cQmMTC protocol of [15].
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A Neural Network Based Random Access Protocol
for Crowded Massive MIMO Systems

Felipe A. D. Bueno, Cézar F. Yamamura, Paulo R. Scalassara, Taufik Abrão, José Carlos Marinello.

Abstract—Fifth-generation and beyond networks are expected
to serve large numbers of users equipments (UEs). Grant-
based random access protocols are efficient when serving human
users, which typically have large data volumes to transmit. The
strongest user collision resolution (SUCRe) is the first protocol
effectively taking advantage of the many antennas at the base
station (BS) to improve connectivity performance. In this letter,
we propose to replace the retransmission rule of SUCRe protocol
with a neural network (NN) for identifying the strongest user,
aiming to resolve the collisions in a decentralized way on the UEs’
side. The NN is offline trained with different congestion levels of
the system, aiming to obtain a single setup able to operate with
different numbers of UEs. Our numerical results indicate that our
proposed method obtains substantial connectivity performance
improvements compared to other protocols without requiring ad-
ditional complexity or overhead. Besides, the proposed approach
is robust regarding variations in the number of BS antennas and
transmission power.

Index Terms—Random access protocol, grant-based protocols,
massive MIMO, NNs, B5G.

I. INTRODUCTION

Fifth-generation (5G) and beyond (B5G) mobile commu-

nication networks must be ready to provide reliable and

enhanced Mobile Broadband (eMBB) communications to an

ever-increasing number of devices [1]. Since time and fre-

quency resources are scarce, pilot collisions during the random

access (RA) stage will inevitably occur when the number

of connected devices exceeds the number of available pilots,

impairing the network as a whole. This problem is an impor-

tant and challenging issue that future wireless networks must

solve to provide reliable connections with the expected quality.

Hence, the implementation of reliable and effective scheduling

RA protocols is critical for the development of B5G networks.

There are multiple possible solutions for pilot collision in

massive MIMO systems, such as the adoption of grant-free

(GF) or grant-based (GB) protocols. One already validated

approach is the strongest-user collision resolution (SUCRe)

protocol [2]. This protocol is a 4-steps GB procedure that

allows only the strongest contender to access the network

resources. Although the SUCRe protocol can resolve about

90% of all collisions, it results in a high number of false-

negative cases as shown in [3], since the SUCRe protocol

does not resolve pilot collisions in which the strongest UE

has a signal strength lower than 50% of the sum of the signal

strengths of contending UEs.

Some works propose variations on the SUCRe protocol

showing relatively good results. In [4], the UEs receive from

the BS the precoded DL response to estimate the sum of

the signal strengths of all contenders the UEs and also the

information on which pilots remain idle after the first RA

round and an access class barrier (ACB) factor for access

control. Hence, some UEs that failed to be granted access

on the first attempt can try to access the network resources

through previously unused pilot signals. A similar protocol

is proposed in [5] in which the BS broadcasts no ACB

factor to UEs; instead, a graph-based interference cancellation

scheme is applied to admit as many UEs as possible to the

network. Both works show better results than the SUCRe

protocol. However, both protocols introduce extra overhead

to inform idle pilots to the UEs, increasing latency and

harming the system’s spectral efficiency. In [6], the access

class barring with power control (ACBPC) RA protocol is

introduced. The ACBPC protocol proposes a decentralized UL

pilot transmit power control to be performed on the UEs’ side.

The results show a relative performance gain in comparison

with the SUCRe protocol. Furthermore, the ACBPC protocol

provides a fair access possibility to the UEs, independent of

their distances to the BS. Another variation of the SUCRe

protocol is a soft decision retransmission rule, softSUCRe,

proposed in [7]. The softSUCRe rule differs from the SUCRe

protocol as the UE decides to retransmit its pilot based on its

probability of being the strongest user. The results are superior

to the original SUCRe protocol. However, they present a

small load of additional information for the UE to decide.

Other works, such as [8], [9] and [10], also present different

alternatives of collision resolution protocols. However, in [10],

the SUCRe protocol is adapted for extra-large MIMO (XL-

MIMO) systems, and [8] and [9] introduce extra overhead to

the RA stage, making the system more complex as a whole.

Finally, in [3], a statistical-based GB RA protocol, aiming

to resolve the collisions in a decentralized way at the UEs’

side, is implemented with a bayesian classifier (BC) for

identifying the strongest user and replacing the retransmission

rule of SUCRe protocol. This protocol also shows results

superior to the SUCRe protocol without the need for extra

overhead. However, as a statistical approach, the BC method

has a maximum accuracy limited by the distribution of the

considered classes.

With the development of artificial intelligence, a new vision

for solving the problems in communication systems especially

using a neural network (NN) to pattern recognition has arised

[11], [12]. This work proposes a decision-making methodol-

ogy based on the Multi-layer Perceptron (MLP) NN applied

to the SUCRe protocol empirical simulation data. The idea is

to replace the retransmission rule of the original SUCRe with

an MLP to indicate if the UE is the strongest contender or not,

resolving thus the pilot collision in a decentralized way. The
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performance results in the fraction of failed access attempts

(FFAA) and the average number of access attempts (ANAA)

indicate a significantly improved performance of our proposed

method compared to other protocols available in literature.

The remainder of this paper is organized as follows. The

system model is described in section II. The proposed NN-

based RA protocol is explained in section III. The numerical

results of the proposed protocol are presented, considering

the ANAA and FFAA metrics, in Section IV. The main

conclusions are offered in section V.

II. SYSTEM MODEL

Similarly as presented in [2], our model focus on a center

hexagonal cell C0, surrounded by 6 neighboring cells Cj with

j ∈ {1, 2, ...6}. All cells present a BS located at their centers

and equipped with M antennas to serve a set of UEs, through a

time-division duplex (TDD) scheme, with time and frequency

resources divided into coherence blocks of T channel uses.

Furthermore, we represent the set of all UEs inside cell j by

Uj , and the subset of Uj of all active UEs by Aj ⊂ Uj . Also,

we consider that inactive UEs will try to become active with

probability Pa ≤ 1. Therefore, even in cells with |Uj | � T ,

it is possible to consider a scenario where |Aj | < T . Such

a scenario allows the BS to temporarily make orthogonal

payload data pilot (PDP) signals available to all active UEs

during payload data transmission by employing a grant-based

RA protocol.

Let K0 = U0\A0 denote the set of inactive UEs with

cardinality K0 = |K0| in cell C0. The BS makes available a

number τp of orthogonal RA pilot signals ψ1, ψ2, ...ψτp ∈ C
τp

satisfying ||ψt||2 = τp, t ∈ {1, 2, ..., τp}. The τp available

pilots are then shared by the K0 inactive UEs. A particular

UE that wants to become active firstly randomly chooses one

pilot ψc(k) out of the τp RA pilots signals available and then

makes an access attempt by transmitting ψc(k) with power

ρk > 0, with c(k) ∈ {1, 2, ..., τp}. The number of UEs that

choose the pilot ψt and is denoted by |St|, the cardinality of

the set St = {k : c(k) = t, ρk > 0}, which contains the of the

UEs that choose the pilot t, and follows a binomial distribution

[2]:

|St| ∼ B
(
K0,

Pa

τp

)
. (1)

The SUCRe protocol is divided into four steps as illustrated

in the diagram show in figure 1:

i) Random Pilot Sequence: In the first step, the BS receives

the signal Y ∈ C
M×τp from the pilot sent by the UEs :

Y =
∑
k∈K0

√
ρkhkψ

T
c(k) +W +N, (2)

where N ∈ C
M×τp is the noise matrix of the signal received

by the BS with each element following CN (0, σ2), and W ∈
C

M×τp is the interference signals received by the BS from the

adjacent cells. The signal Y is then correlated with ψt by the

BS:

yt = Y
ψ∗

t

||ψt|| =
∑

i∈St

√
ρi||ψt||hi +W

ψ∗
t

||ψt|| + nt

=
∑

i∈St

√
ρiτphi +W

ψ∗
t

||ψt|| + nt,
(3)

Fig. 1: SUCRe protocol diagram for massive MIMO.

where nt = N
ψ∗

t

||ψt|| is the effective noise, which follows a

Random distribution CN (0, σ2IM ).

ii) Precoded Random Access: In the second step, the BS

responds to all UEs who sent pilot signals with a precoded

signal V ∈ C
M×τp :

V =
√
q

τp∑
t=1

y∗
t

||yt||ψ
T
t , (4)

in which q is the signal power available at this stage by the

BS. The k-th UE then receives the signal zk ∈ C
τp :

zTk = hT
kV + νT

k + ηT
k , (5)

where νT
k ∈ C

τp is intercellular interference (ICI) and ηT
k is

the noise of the signal received by the UE, which follows a

complex-normal random distribution CN (0, σ2Iτp). Next, the

UE correlates zk with its chosen pilot ψt, resulting in

zk = zTk
ψ∗
t

||ψt|| =
√
qτph

T
k

y∗
t

||yt|| + ν
T
k

ψ∗
t

||ψt|| + ηk, (6)

where ηk ∼ CN (0, σ2). Defining the sum of the signal

strengths and interference received by the BS during the first

step of the protocol for each pilot t, according to eq. (3) as

αt:

αt =
∑
i∈St

ρiβiτp + ωt. (7)

Then, as proposed in [2], the value of αt can be estimated by
α̂t,k:

α̂t,k = max

([
Γ(M + 1

2
)

Γ(M)

]2
qρkβ

2
kτ

2
p

[�(zk)]2 − σ2, ρkβkτp

)
, (8)

where Γ(·) is the gamma function, and �(·) returns the real

part of a complex number.

iii) Distributed contention resolution and pilot repetition:
In the third step, we assume that the k-th UE knows its own

average channel gain βk. Based on this value and the value

α̂t,k received by each UE from the BS, the UE decides whether

to retransmit the pilot signal or not. The main objective of

the SUCRe protocol is to allow only one contending UE

retransmit (the strongest one) to be connected to the network.
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The pilot will be retransmitted when Rk is true and will not

be retransmitted when Ik is true:

Rk : ρkβkτp >
α̂t,k

2
+ εk, (9)

Ik : ρkβkτp ≤ α̂t,k

2
+ εk, (10)

in which εk is a bias parameter with a suitable value proposed

in [2]. iv) Allocation of Dedicated Data Pilots: In the fourth

step, all UEs that successfully retransmitted their pilots are

granted access to exclusive network resources.

III. NEURAL NETWORK CLASSIFIER

One of the most relevant features of artificial NNs is

their capability of learning from the presentation of samples

(patterns), which expresses the system behavior. Hence, after

the network has learned the relationship between inputs and

outputs, it can generalize solutions, meaning that the network

can produce an output which is close to the expected (or

desired) output of any given input values. In this section, we

show how an NN classifier can be applied to the random access

problem in crowded massive MIMO networks, under the

strongest user criterion, to resolve pilot collisions. Aiming to

resolve pilot collisions under the strongest UE retransmission

rule on the UEs’ side, we define two classes for the UEs:

Z0 represents the class of UEs which are not the strongest

competitors for their chosen pilots, and Z1 represents the class

of the strongest UEs, forming the set Z = {Z0, Z1}. We also

define the state of each UE k as Ωk ∈ Z . Our method works by

seeking an approximation Ω̂k of the class that truly represents

the one of the k-th UE. This can be accomplished through an

MLP NN by estimating a function g(·) that maps the input

values x1 = ρkβkτp and x2 = α̂t,k to the true state Ωk of the

k-th UE:

Ω̂k = ĝ(x1, x2), (11)

where Ω̂k is an estimator for the k-th UE’s true class and ĝ
is an estimator for the function g.

The steps to realize this method are the following: A.
Database Acquisition, B. Preprocessing, C. Neural Network
Training and D. Validation

A. Database Acquisition

The first step is to acquire the NN training data. The

database is generated from the simulation setup public shared

by the authors of [2], where the values of α̂t,k, βk and their

respective transmission classifications are collected, according

to:

μk =

{
1 if Ωk = Z1

0 if Ωk = Z0.
(12)

B. Preprocessing

First, the input values are randomly mixed. Next, it is

separated 80% for the NN training step and 20% for the NN

validation. Then, the input values x1 and x2 are normalized

according to:

x̄1 =
ln(x1)−min(ln(x1))

max(ln(x1))−min(ln(x1))
, (13)

and,

x̄2 =
ln(x2)−min(ln(x2))

max(ln(x2))−min(ln(x2))
. (14)

Finally, both input values are grouped into a vector x̄k,

where a bias term b is also appended:

x̄k = [b x̄1 x̄2]
T , (15)

where (·)T is the transpose operation.

C. Neural Network Training

The training process of an NN consists of applying the

required ordinated steps for tuning the synaptic weights and

thresholds of its neurons, in order to generalize the solutions

produced by its outputs. In the proposed method, the nor-

malized data, x̄k, and the desired output value μk associated

with each x̄k sample are used as input data for training an

MLP NN with okne hidden layer, as illustrated in Fig. 2.

The MLP NN consists of a set of linear combinators, called

Fig. 2: MLP NN with one hidden layer

neurons, that control scalar product operations between input

vectors and sometimes a bias term b with synaptic weights

to generate a result by applying a given activation function.

The bias term b accounts as an additional input term for the

hidden layer’s neurons. The training is carried out through

the well-known backpropagation algorithm, which updates the

set weight matrices W1 ∈ R
(r+1)×t, which is the weight

matrix between the input layer with r neurons and the hidden

layer with t neurons and W2 ∈ R
t×v , which is the weight

matrix between the hidden layer with length t neurons and

output layer with v neurons. Given a learning rate δ, the

backpropagation algorithm, proceeds iteratively by minimizing

the mean square error (MSE) function between the desired

outputs yk and the actual output ŷk at each i-th training epoch:

MSEi =
1

2P

P∑
k=1

(yk − ŷk)
2
, (16)

where MSEi is the MSE value at the i-th training epoch,

and P is the total number of training samples. The train-

ing is considered complete when a given precision value,
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ε = MSEi − MSEi−1 is achieved. Once trained, the MLP

NN can be used to estimate the function g(·) as:

ŷk = s(W2
T · s(W1

T x̄k)), (17)

where s(·) is the activation sigmoid function:

s(x) =
1

1 + e−x
. (18)

Finally, the output ŷk is associated to one of the output Z
classes. Thus, deriving the estimator Ω̂k:

Ω̂k =

{
Z0 if ŷk ≤ 0.5

Z1 if ŷk > 0.5
(19)

This work implements an MLP NN with t = 5 neurons in the

hidden layer, v = 1 neurons in the output layer, and r = 2
neurons in the input layer, the bias term is set to b = −1.

The learning rate is set to δ = 0.2 and the mean square error

precision of ε = 10−7.

D. Validation

After the training is complete, the MLP NN weights matri-

ces W1 and W2 are validated according to (17). The purpose

of the validation step is to verify whether the trained neural

network meets the generalization criteria, by demonstrating its

ability to generate results with a high degree of accuracy,i.e,

above 50%, with input data that did not participate in the train-

ing phase and generate classification performances presented

in the subsection IV-A.

IV. NUMERICAL RESULTS

In this section, we present the results obtained with the

proposed method in terms of confusion matrices, ANAA, and

FFAA .

We consider a system operating under the 5G sub-6 GHz

band. The cell C0 has a radius of 250m and a number of UEs

K0 varying between 100 and 30000 in increments of 500. The

cells Cj with j ∈ {1, 2, ...6} have the same radius and a fixed

number of 10 active UEs each. The simulation parameters are

set as M=100, ρ=1, q=1, τp=10, and transmission probability

Pa=0.001. First, we provide results for the classification ac-

curacy of the schemes, and then we present and compare the

RA performance of the protocols.

A. Classification Performance

Tables I and II show the classification performance of

the proposed MLP NN-based protocol in terms of confusion

matrices. Table I presents the results for the scenario without

ICI and table II results for the scenario with ICI. The bottom

row shows the successful classification rates of each state,

while the third column at the far right of the matrix shows

the precision of predictions for each state belonging to Ω̂k.

In other words, it presents the accuracy of the classifier given

each output class Ω̂k = Z0 or Ω̂k = Z1. The far-right square

at the bottom shows the overall accuracy of the classifier.

The results presented in Table I indicate that for the pro-

posed MLP NN-based classifier, in a scenario without ICI, the

TABLE I: NN classifier w/o ICI

Pr
ed

ic
te

d
C

la
ss Z0 184560

92.3%
3226
1.6%

98.3%
1.7%

Z1 1729
0.9%

10485
5.2%

85.8%
14.2%

total 99.1%
0.9%

76.5%
23.5%

97.5%
2.5%

Z0 Z1 total

Actual Class

classification success rate of UEs of class Z0 is 99.1%, and the

successful classification rate among Z1 UEs is 76.5%, which

is a number higher than the ones achieved by the SUCRe

protocol, 41.7% and the ones achieved by the BC method,

which is 74.8% [3]. Besides, the precision of Z0 and Z1

classifications are 98.3% and 85.8%, respectively. The overall

accuracy of successful classifications is 97.5%, which is also

higher than the values achieved by the SUCRe protocol and

the BC method, which are respectively 96% and 97.3% in a

scenario without ICI.

TABLE II: NN classifier with ICI

Pr
ed

ic
te

d
C

la
ss Z0 184068

92.0%
3599
1.8%

98.1%
1.9%

Z1 1965
1%

10368
5.2%

84.1%
15.9%

total 98.9%
1.1%

74.2%
25.8%

97.2%
2.8%

Z0 Z1 total

Actual Class

Table I presents the results for a scenario with ICI. The

classification precision of Z0 and Z1 outputs are 98.1% and

84.1%, respectively. The percentages of correct predictions are

98.9% for class Z0 UEs and 74.2% for class Z1 UEs. The

overall accuracy is 97.2%, higher than the results obtained

with the SUCRe protocol and the BC method.

B. Connectivity Performance

Figures 3 and 4, respectively show the results of the metrics

ANAA and FFAA in the following format: a) The baseline

protocol of [2], which is an ALOHA-like protocol where pilot

collisions are only handled by retransmission in later RA

blocks, is shown in a black line. b) The red lines marked

with “◦” indicate the results of the original SUCRe protocol

presented in [2]. c) The ciano lines marked with “�” indicate

the results of the the ACBPC protocol of [6]. d) In the green

lines marked with “x” are indicated the results obtained with

the softSUCRe protocol of [7]. e) The magenta line with “�”

marker represents the results obtained with the BC method

of [3]. e) Finaly, the blue lines with “�” marker indicate
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the results obtained when employing the MLP NN-based

methodology proposed in this paper. The dotted line shows

the results obtained for the cases without ICI. It is noteworthy

the superiority of the proposed method. Compared to the BC

method, for example, the proposed MLP NN-based method

achieves a better performance when K0 ≥ 25000 UEs in the

cases with ICI, as highlighted in Fig. 5, where K0 varies from

25000 up to 40000.
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Fig. 3: ANAA ×K0, for M = 100 and 0 dB of edge SNR
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Fig. 4: FFAA ×K0, for M = 100 and 0 dB of edge SNR

Fig. 6 shows the results of the ANAA and FFAA when

the number of antennas varies from M = 1 to M = 100 in

steps of 2. Even though the NN-based method is trained with

M = 100 antennas, the proposed method shows robustness

under the variation in the number of BS antennas M , where a

number of M ≈ 50 antennas reveals to be sufficient to provide

superior results than the SUCRe and BC methods in both with

and without ICI scenarios.

In Fig. 7 the edge SNR in dB (SNRdB), defined as ρ/σ2

and q/σ2, with ρ = q, varies from −8 dB to +8 dB. The

ANAA and FFAA are taken for a fixed number M = 100
antennas and K0 = 28000 UEs. In both charts the performance
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Fig. 5: FFAA ×K0, for M = 100 and 0 dB of edge SNR
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Fig. 6: Performance with M variation: a) ANAA, and b)
FFAA.

of the NN-based method in both scenarios with and without

ICI, is superior than the performance of the SUCRe protocol,

in the whole considered edge SNR range. Compared to the BC

method, the NN-based method presents a superior performance

in a scenario with ICI from ≈ −6 dB to ≈ +6 dB, and in the

cases without ICI, from 0 dB to ≈ 6dB. Consequently, the

suggested approach demonstrates that it is a viable GB RA

protocol option.

V. CONCLUSIONS

In this work, we have implemented a neural network based

method aiming to optimize the SUCRe and other similar

protocols. Based on our results, we conclude that the proposed

neural network based method achieves significantly superior

performance in comparison with SUCRe protocol, for both

scenarios with and without inter-cellular interference and

without the necessity of extra overhead. We have also shown

how the proposed method is superior to other similar protocols,

especially in overcrowded scenario, i.e., K0 > 25000. The

robustness of the proposed method have also been assessed

regarding the number of BS antennas and edge SNR, demon-

strating that the proposed method is a promising GB RA

protocol option.
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Fig. 7: Performance with edge SNR variation in dB: a) ANAA,

and b) FFAA. With M = 100, and K0 = 28000
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