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“The fate of the universe will be decided as it should be: in Mortal Kombat.”

– Elder Gods
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Resumo

Neste trabalho é apresentado o Transmission Control Protocol Best Path (TCPBP), uma métrica
de roteamento alternativa que visa maximizar a vazão TCP agregada em redes intradomínio de
alta velocidade com perdas. Obtém-se desempenho aprimorado ao se combinar atraso e perda
de pacotes em uma única métrica mista, como uma função-parâmetro. Em contraste, esta função
prevê a vazão TCP por fluxo que deve ser maximizada. Espera-se, com isto, que a maximização
da taxa de transferência de cada fluxo TCP que atravessa uma determinada rota deva melhorar a
taxa de transferência agregada (i.e., a soma de todos os fluxos TCP).

Para demonstrar a viabilidade da nossa abordagem na obtenção de rotas viáveis   em qualquer
topologia representada por um grafo direcionado 𝐺 (𝑉,𝐸), provamos que a métrica satisfaz as
propriedades matemáticas de isotonicidade e monotonicidade. Este fato implica sua consistên-
cia, otimicidade e ausência de loops, i.e., o que fornece rotas viáveis. Para o cômputo do caminho
mais curto, desenvolvemos um processo de relaxamento de arestas modificado, adequado para
métricas não-aditivas, com custos positivos nas arestas, utilizando o algoritmo de Dijkstra.

Como prova de conceito, executou-se testes de vazão TCP em uma topologia SDN emulada
em Linux, com dez nós, empregando-se para tal um protocolo de roteamento intradomínio de
estado de enlace (ou seja, tal qual o OSPF), capaz de executar tanto o TCPBP quanto as métricas
tradicionais de atraso e número de saltos. Tal topologia foi escolhida devido ao potencial de
melhorar sua vazão TCP com seleção de rotas, dadas as características da própria topologia e
do modelo de previsão de vazão TCP adotado.

O tempo de execução do cômputo do caminho mais curto no plano de controle não se
mostrou significativamente mais lento do que o algoritmo Dijkstra padrão tradicionalmente us-
ado com métricas aditivas padrão (como número de saltos). Além disso, o desempenho geral da
vazão TCP obtida com o TCPBP foi maior do que com diferentes rotas calculadas com métricas
tradicionais, sem impacto na justiça TCP, mostrando assim o potencial de nossa proposta.

Palavras-chave: Performance TCP, redes de alta velocidade com perdas, QoS, métricas de
roteamento, métricas mistas simples.



Abstract

This work presents the Transmission Control Protocol Best Path (TCPBP), an alternative routing
metric that aims to maximize the aggregated single-path TCP throughput on intradomain High-
Speed Lossy Networks. The enhanced performance is achieved by combining delay and packet
loss on a single mixed metric as a function parameter which predicts the per-flow TCP throughput
that should be maximized. Maximizing the throughput of each TCP flow traversing a given route
is also expected to improve the aggregated throughput (i.e., the sum of all TCP flows).

To demonstrate the feasibility of our approach concerning obtaining viable routes in any
topology represented by a 𝐺 (𝑉,𝐸) directed graph, we proved that the metric satisfies the mathe-
matical properties of isotonicity and monotonicity. This fact implies that it is consistent, optimal,
and loop-less, i.e., it is feasible regarding the shortest path computation, thus providing viable
routes. For the shortest path computation, we devised a modified edge relaxation process suit-
able for non-additive metrics with positive edge costs in the Dijkstra algorithm.

As proof of concept, TCP bandwidth tests were executed in an SDN High-Speed Lossy
Network Linux-emulated topology with ten nodes. For the routing algorithm, we employed an
intradomain link-state routing protocol (i.e., OSPF-like) capable of running both TCPBP and
traditional metrics delay and hop-count. Such topology was chosen because of the potential to
improve its TCP throughput with route selection, given the characteristics of the topology itself
and the TCP throughput prediction model adopted.

The shortest path computation running time in the control plane proved not significantly
slower than the default Dijkstra algorithm traditionally used with standard additive metrics (such
as hop-count). Also, the overall TCP throughput performance obtained with TCPBP was greater
than with different routes founded by traditional metrics, without impact on the TCP fairness,
thereby showing the potential of our proposal.

Keywords: TCP performance, High-Speed Lossy Networks, QoS, routing metrics, single mixed
metrics.
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1 | Introduction

This Chapter introduces our proposal and is divided into the categories of motivation (contextual-
ization of the problem), contribution (the proposal itself and a summary of the proof of concept),
and text outline.

1.1 Motivation

Transmission Control Protocol (TCP) is a Transport Layer protocol (TCP/IP layer 4) that runs on
top of IP (Internet Protocol; TCP/IP layer 3). It provides reliable communication between end-
points in a best-effort infrastructure computer network, given that the paths in the network are
not presumed as reliable and do not provide a guarantee of the delivery of a packet to its destina-
tion, nor provide flow control, end-to-end congestion control, acknowledgment, re-transmission,
error recovery and other correlated functionalities as detailed initially in RFC 793 and its subse-
quent updates (KUROSE; ROSS, 2010).

Despite the recent Google QUIC rapid expansion (which runs on top of UDP) and the emer-
gence of new transport protocols such as SCTP and DCCP (POLESE et al., 2019), TCP is still
the most used transport protocol on the internet. So, its performance, especially regarding raw
data transfer capacity, i.e., throughput, is a critical subject and primary object of concern to a lot
of researchers in the field of computer networks. When it comes to TCP throughput performance,
the maximum bandwidth achieved by a single TCP stream (hereby denoted as “𝐵𝑊𝑚𝑎𝑥”) can be
stated as a function of round-trip delay, packet loss, and available bandwidth (this holds even if
the network is not lossy; we discuss it in detail in Section 2.5.3: TCP Throughput Prediction).
On the other hand, in charge of defining paths between nodes in the network, there are routing
protocols such as OSPF (intradomain routing) and BGP (Border Gateway Protocol; interdomain
routing) (KUROSE; ROSS, 2010), in which routes are selected based on static metrics such as
hop-count, delay and reference bandwidth (as in OSPF), or as-path length (the case of BGP).

As a result of this rigidness, for example, Internet Service Providers (ISPs) backbones often
do not provide their customers routes that optimize TCP throughput; e.g., even if packet loss and
delay as Service Level Agreement (SLA) parameters are met, some of the routes do not have the
best possible combinations available of delay and packet loss for TCP, which limits performance
and possibly impairs backbone capacity of throughput delivery to the applications. In fact, even
sophisticated QoS routing metrics may fail to provide the best paths for TCP throughput simply
because they were not designed to do so. This effect is especially true in the case of High-Speed
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Lossy Networks because the possible routes between any pair of nodes in such topology may
differ significantly in their combined values of delay and packet loss.

1.2 Thesis Contribution

In this thesis, we propose and analyze the utilization of Transmission Control Best Path (hereby
denoted as “TCPBP”), a single mixed routing metric designed to be an alternative to the usually
implemented metrics in classic intradomain routing protocols, such as OSPF (MOY, 1998) and
IS-IS (SHAND; GINSBERG, 2014), that maximizes the function of delay and packet loss that
predicts the TCP throughput in High-Speed Lossy Networks: the basic intuition of such approach
is to simply choose the route that is expected to provide the highest per-flow throughput according
to the TCP prediction formula.

In a nutshell, the use of the TCPBP metric aims to maximize single-path TCP throughput on
IP networks with the occurrence of a sufficiently large TCP transfer (steady-state scenario), i.e., a
data transfer large enough so that slow start phase throughput of additive increase/multiplicative
decrease (AIMD) TCP congestion control can be neglected in the average throughput compu-
tation. With this approach, we hypothesize that ruling out possible bandwidth constraints and
limitations of the TCP throughput prediction model, the aggregated TCP performance (i.e., the
aggregated throughput of all TCP flows in the route) can be drastically improved in some of the
routes of some network topologies (such as High-Speed Lossy Networks) using a single mixed
routing metric based on a particular proportion of delay and packet loss such that aforementioned
𝐵𝑊𝑚𝑎𝑥 is maximized.

Even though TCPBP, because of its name, suggests it is based on a cross-layer design ap-
proach, it is not a cross-layer metric. This is so because there is no direct interaction between
the OSI layers (Transport Layer and the Network Layer, in this case), which is a fundamental
feature to classify any approach as cross-layer one (KAWADIA; KUMAR, 2005). That is to say
that the metric does not use any information specifically provided by the TCP functionalities
(TCP control information like ACK packets, or congestion window size, for example).

To evaluate TCPBP throughput improvement, we have opted for an emulated topology in the
Linux kernel that resembles a High-Speed Lossy Network. We justify this choice based on the
recent emerging scenario where the crescent diversification of network technologies and appli-
cation requirements results in sub-par performance of standard TCP implementations on large
high speed and lossy networks (e.g., heterogeneous topologies with 4G/5G and transcontinental
optical high speed links) (SU et al., 2019; SHI et al., 2009). From the chosen test scenarios,
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result analysis was discussed, as well as our proposal’s contributions and possible limitations.

1.2.1 List of Publications

The research conducted that gave birth to this thesis also produced the paper entitled “TCPBP:
Enhancing the TCP Throughput in High-Speed Lossy Networks Based on a Single Mixed Routing
Metric” (VILELA; V.O FONSECA; FONSECA, 2022) accepted at the Main Track on SBRC
2022.

1.3 Text Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the underlying theory
and network concepts necessary to understand our proposal. This includes mainly the concept
of routing metrics and their fundamental mathematical properties (Sections 2.2 and 2.3), Single-
Source Shortest Paths (SSSP) computation principles and algorithms (Section 2.4), Transmis-
sion Control Protocol (TCP) fundamentals, with a focus on the TCP throughput prediction model
employed (Section 2.5), High-Speed Lossy Networks (Section 2.6), and link estimation concepts
for the accounting of delay and packet loss on computer networks (Section 2.7).

Chapter 3 presents our proposal, i.e., the TCPBP intuition (Section 3.1), its most relevant
aspects regarding the feasibility of the approach, such as the metric mathematical properties
(Section 3.2), shortest path computation mechanism (Section 3.3), 𝑓 (𝑑,𝑝) computation (Section
3.4), route selection mechanisms (Section 3.5), the expected throughput improvement of the
metric employment (Section 3.6), and security considerations (Section 3.7).

Chapter 4 presents a proof-of-concept of the TCPBP on a Linux emulated testbed with ten
nodes in a scheme that resembles a High-Speed Lossy Network. The metric design for such is
detailed (Section 4.1), and the parameters of throughput, fairness, and algorithm running time
execution of TCPBP are compared to traditional metrics hop-count and delay, with the results
being discussed in Section 4.4.

Chapter 5 presents the literature related to our proposal in the categories of QoS Routing
Metrics (Section 5.1), Multi-Constrained Routing (MCR) (Section 5.2), Link-State Qos Routing
(Section 5.3), Single Mixed Metrics (Section 5.4), TCP performance (Section 5.5), and practical
uses of the TCP prediction model employed in our proposal (Section 5.6).

Finally, in Chapter 6, we present and summarize the contributions and considerations about
our work, including relevant aspects that were not covered or briefly covered, being, thus, ideas
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for future work (which are listed in Section 6.1).
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2 | Preliminaries

In this Chapter, we present the underlying theory related to and in the context of the development
of our proposal. For the sake of readability, the exposition is not exhaustive, being the reader
occasionally referred to additional literature. Additionally, we presume that the reader is famil-
iarized with common concepts of computer networks and terminology as stated, for example, in
(KUROSE; ROSS, 2010). The presentation is organized as follows:

2.1 Conventions and General Concepts

We begin the preliminaries by introducing conventions and general concepts as follows: Software-
Defined Networking (SDN), topology, routes and route terminology, route symmetry, and algo-
rithm complexity.

2.1.1 Software-Defined Networking

Software-Defined Networking (SDN) is a network paradigm that aims to centralize network
control decisions in one main component (i.e., the SDN controller) by decoupling the forwarding
devices of network datagrams (Data Plane) from the routing process control decision (Control
Plane). Terminology and concepts regarding SDN are as described in (KREUTZ et al., 2014).

2.1.2 Topology

The network can be described by a directed graph 𝐺 (𝑉,𝐸), where 𝑉 is the set of nodes in the
network and 𝐸 is the set of links interconnecting these nodes. For mathematical representation,
we have adopted the adjacency matrix format as in AdjMatrix (below):

𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥 =


𝑎11 𝑎12 · · · 𝑎1 𝑗

𝑎21 𝑎22 · · · 𝑎2 𝑗
...

...
. . .

...

𝑎𝑖1 𝑎𝑖2 · · · 𝑎𝑖 𝑗


Where matrix element 𝑎𝑖 𝑗 corresponds to the link-state value of two interconnected forwarding
devices 𝑖 and 𝑗 . If there is no connection between 𝑖 and 𝑗 , or 𝑖 = 𝑗 , we set 𝑎𝑖 𝑗 with 𝑖𝑛 𝑓 (infinite)².

²In fact, if 𝑖 = 𝑗 , the correct value in the matrix diagonal would be zero, which represent the route cost from
one router to itself; but, since we are not calculating paths when 𝑖 = 𝑗 , the representation stated suffices.
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This representation may be an avoidable waste of memory, especially in large and sparse
networks (as put in (BARABÁSI, 2013): “real networks are sparse”), but as memory consump-
tion is not an issue in our simulations, and being this also a rather didactic and convenient way to
represent a graph, the choice is justified. In production environments, if necessary, one can con-
sider other types of representation, such as an adjacency list. It is not our intent to discuss data
structures in algorithms (in special, representation of graphs), but, for instance, a comparison
between adjacency matrix and adjacency list can be found in (CORMEN et al., 2009).

2.1.3 Routes

Given two nodes, like 𝐴 and 𝐷, of a 𝐺 (𝑉,𝐸) graph, we denote as 𝐴 ⇒ 𝐷 the route from 𝐴 to
𝐷 (routes are indicated with the symbol⇒). If the set of hops of the same route is [𝐴,𝐵,𝐶,𝐷]
(i.e., 𝐴 to 𝐵 to 𝐶..., and so go on), we denote it as 𝐴 → 𝐵 → 𝐶 → 𝐷 (links are indicated with
the symbol→).

2.1.4 Route Symmetry

In general, we consider the possibility of asymmetric routing: that is, the route from source to
destination possibly does not consist of the same hops as in the route from destination to source,
which implies an asymmetric matrix in the topology representation. Given two adjacent nodes
(name it “𝐴”, and “𝐵”), link parameters may be different in each direction (𝐴→ 𝐵 or 𝐵→ 𝐴);
this way, for each particular topology, one asymmetric adjacency matrix is needed per parameter.
Also, because of this asymmetry, we have a total of (𝑛2−𝑛) routes to compute in a network with
𝑛 nodes.

If there is symmetry, in the case of an SDN routing protocol, we need to compute (𝑛2−𝑛)/2
one-way paths only, given that the path in the way back is the same and all path computations are
performed in a logically centralized Control Plane, but 𝑅𝑇𝑇 and 𝑝 still must be computed consid-
ering round-trip paths to permit a direct comparison of the transport layer protocol performance
in the case of TCP.

2.1.5 Algorithm Complexity

To present algorithm complexity throughout this work, we have adopted the Big O notation as
defined by Donald Knuth (KNUTH, 1976). It is basically a mathematical jargon that refers to
the asymptotic behavior of a function when its input size grows to a particular value or infinity.
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Formally, it is represented as 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) if∃𝑘 > 0∃𝑛0 ∀𝑛 > 𝑛0 : | 𝑓 (𝑛) | ≤ 𝑘 · 𝑔(𝑛). Since
𝑂 (𝑔(𝑛)) does not mean that the complexity is proportional to 𝑔(𝑛) for all values of 𝑛 (especially
small ones), rather only putting an upper bound on the growth rate of the function, it is not
used to directly and unrestrictedly compare algorithm performance, which is particularly clear
in the case of shortest path computation with traditional metrics in relatively small graphs that
represent typical intradomain networks (see, for example, footnote 4 on page 22).

Nevertheless, quite often it is correctly employed to show that some algorithm is scalable
in the face of other alternatives. For example: (1) an 𝑂 (𝑛!) complexity grows extremely fast in
comparison to 𝑂 (𝑛2), rendering the former unusable for relatively small values of 𝑛, or (2) the
asymptotic complexity of the routing algorithm also depends on a high number of flows in the
network, as is the case of (PASSOS, 2013).

2.2 Routing Metrics

Routing metrics are parameters used by the Control Plane of a network to determine the best
(or shortest³) path between two given nodes in a network. In this work, specifically, we define
routing metric as the parameter used to compute the shortest path in a network represented by
a directed graph 𝐺 (𝑉,𝐸) (WHITE; SLICE; RETANA, 2005). Perhaps, the simplest example
of a routing metric is hop-count, in which the best path between two nodes in a network is the
one with the lowest possible number of hops. Of course, since hop-count does not take into
consideration other key factors of the network, quite often it selects poor paths regarding, for
example, delay or bandwidth capacity.

Therefore, considering technical requirements of the applications exchanging data in the
network, the nature of network (e.g., there is a whole research field dedicated to routing metrics
for Wireless Mesh Networks (WMNs), due to peculiarities of the wireless media in such cases
(WANG; YAN, et al., 2020)), Service Level Agreement (SLA) parameters, or simply bearing
in mind that end user Quality of Experience (QoE) may be improved, other metrics may be
desirable, such as (but not limited to): bandwidth (the available capacity at a given instant, or
the total capacity of the path), delay (latency/jitter of the path), reliability (factors like bit-error
rate, or link availability), load (e.g., traffic load over a specific link, or router CPU utilization),
and packet loss (the probability of a packet getting lost in the path) (KENYON, 2002). Such
metrics are also called “QoS metrics”, a topic discussed in Section 5.1.

Due to distinct characteristics that determine how the shortest path should be computed,

³We make the distinction between “best” and “shortest” explicit only when it might otherwise be unclear from
the context.
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metrics can be formally put into three categories: additive (i), multiplicative (ii), and concave
(iii) (KENYON, 2002). Given that [𝑐1,𝑐2,...,𝑐𝑛] is the set of metric values per-hop across any
path, the path cost is calculated as below:

i. additive: path cost is based on the sum of the costs across the path, i.e., it is given by
𝑐1 + 𝑐2 + ... + 𝑐𝑛. Delay and hop-count are examples of additive metrics;

ii. multiplicative: path cost is based on the product 𝑐1×𝑐2× ...×𝑐𝑛. Packet loss is an example
of a multiplicative metric;

iii. concave: path cost is the minimum value of the links in the path: 𝑚𝑖𝑛[𝑐1,𝑐2,...,𝑐𝑛]. Avail-
able bandwidth is the most common concave metric.

Having a number of possibilities regarding metrics, as stated above, the control plane can
determine the path using one specific metric or a combination of metrics: in either case, usually,
the metric (or combination of metrics) is treated like a cost, and the path with the best cost is
selected as the best path. In this sense, if appropriate, the task of finding the best paths in a
computer network may be interpreted as an optimization problem that can be tackled with a
myriad of techniques, such as dynamic programming or greedy methods.

To find the shortest paths, control plane employs a shortest path calculation algorithm such
as the Dijkstra algorithm (or specialized variations of it), or the Bellman-Ford algorithm. The
choice, here, may depend on a set of factors as described in (YANG; WANG, 2008). In the
context of our work, because the proposed metric in Chapter 3 is showcased with a link-state
routing protocol running in a central hardware, we have opted for the Dijkstra algorithm.

2.3 Properties of Routing Metrics

To be considered feasible, i.e., to ensure that the requirements for the proper operation of the
routing protocol regarding shortest path computation are met, the routing protocols and metrics
must satisfy the conditions of loop-freeness, consistency, and optimality. In the general case,
it is proven in (SOBRINHO, 2001) that isotonicity and monotonicity, though not always nec-
essary (YANG; WANG, 2008), are sufficient properties that ensure routing protocols satisfy
all three aforementioned conditions. Isotonicity, monotonicity, consistency, loop-freeness, and
optimality are described in the following Subections as defined in (YANG; WANG, 2008).
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2.3.1 Isotonicity

Left-isotonicity basically means that the order relation between the weights of any two paths
is preserved if both of them are prefixed by a common third path; right-isotonicity, conversely,
states that the order relation between the weights of any two paths is preserved if both of them
are appended by a common third path. Therefore, isotonicity implies that both left-isotonicity
and right-isotonicity apply to the network.

2.3.2 Monotonicity

Left-monotonicity means that the weight of a path does not decrease when prefixed by another
path; right-monotonicity means that the weight of a path does not decrease when appended by
another path. Thus, monotonicity implies that both left-monotonicity and right-monotonicity
apply to the network.

2.3.3 Consistency

Consistency property states that a consistent routing requires that the packet forwarding decisions
made by all nodes along the route must be consistent with each other. Simply put, considering
any route [ℎ1,...,ℎ𝑛] in a network, where [ℎ1,...,ℎ𝑛] represents the vector containing the hops in
the path, any sub-sequence of the vector is also a shortest path. For example, in the sequence
𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐸 , the route from A to C is 𝐴 → 𝐵 → 𝐶, from B to D is 𝐵 → 𝐶 → 𝐷,
and so on.

2.3.4 Loop-Freeness

A routing protocol is defined as loop-free if, after its convergence, and for any directed graph
𝐺 (𝑉,𝐸), it does not forward any packet along a cycle. Consequently, a metric per se must not
ensue the computation of paths containing loops, and, given any metric, a proper shortest path
algorithm must be employed to find loop-free paths (for example, see footnote 3 on Section
2.4.2).
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2.3.5 Optimality

A routing protocol is said to be optimal if packet forwarding between all pairs of nodes in a
network traverses the shortest (lightest) routes regarding the metric itself.

2.4 Single-Source Shortest Paths (SSSP)

A shortest path calculation algorithm is the element in charge of finding the paths between every
distinct pair of nodes in a graph such that the cost of the found paths is optimal, i.e., each path
has the lowest (or best) cost. A Single-Source Shortest Path (SSSP) is an algorithm that finds
the shortest paths from a single node to all other nodes in a graph.

In the remainder of this Section, we present the concept of edge relaxation (Section 2.4.1),
because it is the main element that we propose a modification to suit our purposes; Dijkstra
algorithm (Section 2.4.2), because it is the SSSP algorithm of choice to showcase our metric;
and Yen’s algorithm for k-shortest path calculation (Section 2.4.3).

2.4.1 Edge Relaxation

We adopt the concept of edge relaxation as described in (CORMEN et al., 2009). Putting it
simply, in the process of shortest path calculation, edge relaxation is checking if the current cost
estimate of 𝑎 → 𝑏, two adjacent nodes, can be lowered if we divert the path via a third node
(call it 𝑐, also adjacent to 𝑎 and 𝑏), where this cost would be the aggregate cost of 𝑎 → 𝑐 and
𝑐 → 𝑏: if the cost of 𝑎 → 𝑐 → 𝑏 is lower than of 𝑎 → 𝑏, the cost estimate is updated. The
concept is based on the triangle inequality principle of the euclidean geometry (HEATH et al.,
1956). If isotonicity and monotonicity apply, it follows that the shortest path between all nodes
in a graph can be found with a finite number of successive edge relaxation operations.

2.4.2 Dijkstra Algorithm

Dijkstra’s algorithm (DIJKSTRA et al., 1959), in its original form (default Dijkstra), is an SSSP
algorithm based on a greedy approach of the triangle inequality principle, by means of edge
relaxation, and used in a wide range of applications, provided that the path cost is the sum of
the costs of the edges in the path (additive metric) and there is no negative⁴ values as edge costs.

⁴This ensures that the shortest path is loopless; if negative costs are allowed, the shortest path may not be
loopless, and Dijkstra is not guaranteed to find the shortest path. In such a case, algorithms such as the Bellmann-
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Nevertheless, Dijkstra principle, by means of a modification in the edge relaxation process, can
be extended to compute shortest paths without additive metrics, as will be shown in Section 3.3.

Dijkstra is a popular choice in general because it is optimal (i.e., guaranteed to find the
shortest paths), uninformed (used when there is no prior knowledge of the network topology),
and has polynomial running time complexity, being, in fact, the fastest known shortest path
calculation algorithm for arbitrary graphs with positive-only edge costs (time complexity of
Fibonacci heap min-priority queue implementation of Dijkstra to a 𝐺 (𝑉,𝐸) graph is 𝑂 (𝐸 +
𝑉𝑙𝑜𝑔𝑉))⁵. The pseudocode and other details of default Dijkstra, such as the proof of correctness,
can be easily found, as in (CORMEN et al., 2009).

2.4.3 Yen’s k-Shortest Path Algorithm

A k-shortest path algorithm does not stop after finding the shortest route, but keep searching
until it finds k different routes succeeding each other in cost. Yen’s k-shortest Path Algorithm
(or simply “Yen’s algorithm”) (YEN, 1971) was created by Jin Y. Yen in 1971, and employs any
shortest path algorithm to find the shortest loopless path, then proceeds to find the other 𝑘 − 1
shortest loopless paths. We have opted for Yen’s work, firstly, for its simplicity: a relatively
short and comprehensive pseudocode whose implementation in a wide range of programming
languages can be easily found on the Web. Also, without loss of generality, if the complexity
of the shortest path algorithm is 𝑂 ( 𝑓 (𝑉,𝐸)), the complexity of the k-shortest path algorithm
is 𝑂 (𝑘𝑉 ( 𝑓 (𝑉,𝐸))). Given that its time complexity grows linearly to the proportion of 𝑘 , it is
a fast and stable choice for intradomain routing protocols. Since Dijkstra algorithm Fibonacci
heap time complexity to a 𝐺 (𝑉,𝐸) graph is 𝑂 (𝐸 + 𝑉𝑙𝑜𝑔𝑉), Yen’s complexity with Dijkstra is
𝑂 (𝑘𝑉 (𝐸 +𝑉𝑙𝑜𝑔𝑉)).

2.5 Transmission Control Protocol (TCP)

2.5.1 TCP Basics

Transmission Control Protocol (TCP; RFC 793 (POSTEL et al., 1981) and its subsequent up-
dates) is a connection-oriented Transport Layer protocol that defines a set of rules to deal with
unreliable IP packet switching networks infrastructure. Opposed to UDP, TCP provides a reli-

Ford should be used.
⁵Despite having the best asymptotic worst-case complexity, the Fibonacci heap implementation 𝑇𝑛 has big

constants for lower order terms, thus implying a slower time execution for small networks; therefore, it is more
common to employ a Binary-heap 𝑂 (𝐸𝑙𝑜𝑔𝑉) instead.
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able, connection-oriented service: by employing a logical connection (with a process commonly
known as three-way handshake), acknowledgment of received packets, and other mechanisms
such as congestion control and flow control, the delivery of a packet is ensured by an end-to-
end process communication between the two remote endpoints that are exchanging application-
related information in an IP-based network, even if packet re-transmission due to packet loss is
needed. Thus, in this sense, TCP makes reliable communication possible over unreliable infras-
tructure.

To prevent congestion, a feedback control mechanism with the general principle of additive-
increase/multiplicative-decrease (AIMD) is employed by standard TCP, as follows: upon three-
way handshake, data transfer starts and its transmission rate is increased in an additive manner
(with an additive factor), probing for available end-to-end data rate capacity until loss (caused
by congestion, or not) happens; in the face of loss, the transmission rate is decreased by a mul-
tiplicative factor. Therefore, congestion control regarding an additive parameter 𝛼 (usually, a
received acknowledgement – ACK), and a multiplicative parameter 𝛽 (loss indicator – LOSS)
can be summarized in (i) and (ii), where congestion window (𝑐𝑤𝑛𝑑) is a TCP parameter that
states the amount of data in a given instant that can be sent to the destination before receiving
an acknowledgement:

ACK : 𝑐𝑤𝑛𝑑 ← 𝑐𝑤𝑛𝑑 + 𝛼 (i)

LOSS : 𝑐𝑤𝑛𝑑 ← 𝑐𝑤𝑛𝑑 × 𝛽 (ii)

Putting it simply, for standard TCP, 𝑐𝑤𝑛𝑑 is reduced in the face of a LOSS event (0 < 𝛽 < 1),
and increased in the face of an ACK event (𝛼 > 0). Although more recent TCP implementations,
such as CUBIC (HA; RHEE; XU, 2008), employ different mechanisms to increase and decrease
the 𝑐𝑤𝑛𝑑, the principle of reacting under ACK and LOSS events is the same. A detailed account
on how TCP works is out of the scope of this work and can be found, for example, in (FALL;
STEVENS, 2011) and (COMER, 2014); in relation to our work, because of its direct relationship
with the throughput delivery capacity in the face of delay and (especially) packet loss, congestion
control mechanism of TCP is a key factor.

2.5.2 TCP Fairness

In this work, we adopt the concept of fairness which refers to the distribution of bandwidth uti-
lization per-flow of each TCP connection (i.e., fairness between competing TCP flows) (FLOYD
et al., 2008). Basically, in the case of a best effort IP network, one main concern is that band-
width as a resource is shared with fairness between all TCP flows. Considering the simplest
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case where 𝑇𝐹𝑛 continuous TCP flows of 𝑛 TCP connections share the same bottleneck link,
fairness states that each flow should get 1/𝑛 of the link capacity, which is equivalent to say that
the standard deviation of the set of values representing the throughputs should be very close to
zero. The scenario, of course, can get more complicated if we consider that multiple flows with
different bandwidth constraints and 𝑅𝑇𝑇 not only exist but are common.

To evaluate the fairness of TCP flows quantitatively, we can employ Jain’s Fairness Index
(JAIN; CHIU; HAWE, et al., 1984), which is a common standard for evaluating resource allo-
cation fairness in computer systems. The formula for the computation of the index is stated in
Equation (2.1), where 𝑇𝐹 represents a TCP flow, and 𝑛 is the number of flows:

𝐽 (𝑇𝐹1,𝑇𝐹2, . . . ,𝑇𝐹𝑛) =
(∑𝑛

𝑖=1 𝑇𝐹𝑖)2

𝑛 ·∑𝑛
𝑖=1 𝑇𝐹𝑖

2 (2.1)

In our work, the topic is important because the adoption of different routing metrics can
impact the fairness of reliable data transfer transport protocols such as TCP.

2.5.3 TCP Throughput Prediction

Predictions of steady-state TCP throughput can be achieved based on a function of packet loss
and delay (in the general case, 𝑓 (𝑑,𝑝)) for most AIMD-based TCP implementations (such as
Tahoe, Reno, New Reno etc.), with accurate experimental results with packet loss from 𝑝 ≈ 10−5

up to 𝑝 ≈ 0.05 (5%) (MATHIS et al., 1997; PADHYE et al., 1998). Though the prediction model
presented in (PADHYE et al., 1998) is more accurate, extending Mathis et al. work by taking into
consideration more factors (such as the TCP timeouts mechanism), its formula is also way more
complicated. As a consequence of this, the work of Mathis et al., despite being more than twenty
years old, often suffices and is preferred due to its simplicity, as can be seen in recent papers such
as (ABDELMONIEM; BENSAOU, 2019; KFOURY et al., 2020). Equation (2.2) states that the
maximum average throughput of steady-state TCP data transfer (𝐵𝑊𝑚𝑎𝑥) is a function of TCP
Maximum Segment Size (MSS), round-trip delay (𝑅𝑇𝑇) and packet loss (𝑝); 𝐶 is a constant that
put together diverse attributes of a specific TCP implementation such as ACK policy and loss
recovery procedures, and 𝑘 can be approximated as -0.5 (MATHIS et al., 1997):

𝐵𝑊𝑚𝑎𝑥 =
𝑀𝑆𝑆

𝑅𝑇𝑇
𝐶𝑝𝑘 (2.2)

Realizing that the contributions of the Network Layer are contained in 𝑅𝑇𝑇 and 𝑝, taking ex-
ponent 𝑘 as -0.5 at Equation (2.2), putting aside all constant factors not related to the network
infrastructure, e.g., switches and routers, and disregarding delay and packet loss due to the end-
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points, 𝐵𝑊𝑚𝑎𝑥 can be stated as in Equation (2.3):

𝐵𝑊𝑚𝑎𝑥 ∝
1

𝑅𝑇𝑇
√
𝑝

(2.3)

The proportion stated in Equation (2.3) can be referred to as the inverse-square root law, and,
provided the same packet loss conditions stated above (from 𝑝 ≈ 10−5 up to 𝑝 ≈ 0.05), is also
valid in more recent TCP implementations such as CUBIC (Linux default TCP congestion con-
trol protocol) and Compound (MS Windows default up to earlier builds of Windows 10; also
partly AIMD-based) (AYAR et al., 2019). Furthermore, according to (BACCELLI; MCDON-
ALD, 2005), inverse-square root proportionality is also valid with non-persistent flows. The
effects of packet loss vs. 𝑅𝑇𝑇 in the resulting TCP throughput according to the inverse-square
root law can be seen on Fig. 1.
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Figure 1: Eq. (2.2) stating theoretical 𝐵𝑊𝑚𝑎𝑥 (measured in bytes per second) for three values of
𝑝 (0.01, 0.02 and 0.05: 1%, 2% and 5% of packet loss, respectively) versus 𝑅𝑇𝑇 (measured in
seconds). 𝐶 = 1 and 𝑀𝑆𝑆 = 1460 bytes.

Nevertheless, the inverse-square root law for TCP throughput prediction is not universal;
if packet loss is sufficiently small, the steady-state TCP throughput prediction can be obtained
with the proportion 1/𝑝 (linear regime) instead of 1/√𝑝 if 𝑝 is not greater than a value of 𝑝𝑚𝑎𝑥 ,
as stated in (ZARAGOZA, 2006). Just as an additional example, regarding any TCP loss-based
congestion control protocol, a more general formula is stated by (XU; HARFOUSH; RHEE,
2004) in 𝑅(𝑝) = 1

𝑅𝑇𝑇
𝑐
𝑝𝑦 ; 𝑅(𝑝) is the response function representing the steady-state sending

rate of the protocol in the unit of packets per 𝑅𝑇𝑇 , stated as a function of packet loss (𝑝), being
𝑐 and 𝑦 constants depending on the implementation. The value of 𝑑 is 0.5 for AIMD-based
congestion protocols, which, in this case, is compliant with the inverse-square root law. In
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contrast, for HS-TCP and STCP, the values of 𝑑 are 0.82 and 1, respectively (not compliant with
the inverse-square root law).

In general, although not universally compliant with the inverse-square root law, most of
the TCP congestion control protocols employed nowadays (such as the CUBIC as mentioned
above and Compound) are compliant if packet loss ranges from 𝑝 ≈ 10−5 up to 𝑝 ≈ 0.05.
This occurs because, in the face of a more severe packet loss, those implementations operate in
fallback mode and behave very similarly to Reno with an AIMD-like scheme; namely, it is valid
with Reno, New Reno (both AIMD-based), CUBIC (LUKASEDER et al., 2016), Compound
(POOJARY; SHARMA, 2016), HSTCP and STCP (YUE et al., 2012). As will be detailed in
Chapter 3, our proposal relies on this fact to develop the novel metric TCPBP.

2.5.4 Assumptions of the Inverse-Square Root Law Model

The work (BASSO et al., 2012) presents an application-level approach for the measurement of
packet loss rate in a TCP data transfer. This approach is built on eight assumptions of the model
in which we based our formula, as stated below:

i. the receive window is large enough;

ii. the sender is always sending data;

iii. persistent TCP connection;

iv. use of fast re-transmit and fast recovery mechanisms;

v. selective acknowledgment (SACKs) are implemented, and multiple subsequent losses in-
dicate a single congestion event;

vi. steady-state data transfer, i.e., a data transfer large enough so that slow start phase can be
neglected in the throughput computation;

vii. constant 𝑅𝑇𝑇 ;

viii. random packet loss.

Items i-vi, with the exception of v that depends on both network and TCP implementation (the
protocol behavior before multiple subsequent losses which can occur due to network), refers to
TCP and user behavior on the endpoints, i.e., factors due not to network, but to design character-
istics of the transport protocol and traffic profile. Items vii-viii refers to characteristics heavily
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determined by network infrastructure, such as packet loss (item viii), bandwidth-delay product
(item vii), and delay/jitter (also item vii). An assumption not listed, because it is not relevant to
(BASSO et al., 2012), but one which we take into account, also due to network, because we are
interested in express TCP throughput as a function of delay and packet loss, is available band-
width. This is so because, regardless of how large 𝐵𝑊𝑚𝑎𝑥 can be, the actual throughput can be
much lower due to the physical limitations of the path.

Therefore, our main concern with respect to the assumptions of the model focus on vii and
viii: round-trip delay, jitter (the statistical variation of delay, presumed to be small), and random
packet loss, e.g., loss due to the nature of the links, or even loss from mild to moderate congestion
under RED or Drop-Tail (MITZENMACHER; RAJARAMAN, 2001), but not the case of packet
loss due to severe congestion; interestingly, no prior specific statistical distribution is described.

2.6 High-Speed Lossy Networks

A High-Speed Lossy Network is defined as a network topology that simultaneously exhibits the
features of high speed (raw capacity in bits per second) and lossy links (e.g., wireless links
subject to propagation and media access control factors). An example of such are heterogeneous
networks comprising 4G/LTE and transcontinental optical links that have both lossy and high-
speed characteristics (DONG et al., 2019; SU et al., 2019)(interdomain scenario), and redundant
wireless backbone networks in remote areas where optical fiber coverage is not feasible (COHEN,
2020) (intradomain scenario).

An example of High-Speed Lossy Network is shown on Fig. 2. It consists of three separate
intradomain networks located far away from big centers, where optical fiber coverage is not
feasible, and topography favors the installation of omnidirectional point-to-point radios: (i) a
rural area backbone interconnected with omnidirectional high-speed gigabit radios; (ii) a small
city gigabit cabled network, and (iii), a community wireless mesh network (WMN) similar to
the one employed on the proof-of-concept of (MANZOOR et al., 2020). All three networks are
interconnected with both omnidirectional high-speed radios and low-earth orbit satellites. As
such, the network as a whole is heterogeneous (due to the diversity of link technologies) and
high-speed (mostly gigabit interconnections). It is also lossy since the omnidirectional radios,
satellite interconnections, and wireless mesh links are subject to conditions such as weather or
crowded spaces that either affect signal propagation or degrade network performance due to great
media sharing effects, resulting in a packet loss rate much greater than of provided by cable such
as optical fiber networks.
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Figure 2: Example of a High-Speed Lossy Network.

2.6.1 High-Speed Definition

The concept of “high-speed” changes over time, e.g., an 1 Mbps internet connection was indeed
deemed as high-speed twenty years ago. However, it is not the case anymore, given advances
in communications technology and the crescent end-user applications requirements concerning
bandwidth. Therefore, since there is no strict definition of “high-speed”, in this work, we arbitrar-
ily consider high-speed links with over 1 Gbps capacity, which are used in the proof-of-concept.

2.6.2 Lossy Definition

In this work, we consider a link “lossy” if its packet loss rate ranges from 𝑝 ≈ 10−5 to 𝑝 ≈ 0.05,
i.e.. In such networks, the inverse-square root law applies almost universally to the TCP behavior,
as stated in Section 2.5.3, and, due to the high-speed feature, we may guess that it takes quite
a number of parallel TCP streams to fill the links’ capacity before congestion occurs. For this
very reason (i.e., the combination of lossy links and high-speed capacity), selecting the routes
in such networks based on the inverse-square root law seems to be an alternative to enhancing
overall TCP throughput worth investigating.
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2.7 Link Estimation

TCPBP, as will be shown in Chapter 3, does not enforce any particular mean of link parameter
estimation or measurement, nor specifies the eventual format of messages (e.g., LSA, in the case
of a link-state routing protocol) between forwarding devices (e.g., routers). Thus, passive or
active measurements can be performed in the network to estimate the parameters: the approach
works as long as minimizing the function of one-way delay (𝑑) and packet loss (𝑝) actually repre-
sents an improvement to network traffic and links’ information can be correctly and periodically
retrieved by the Control Plane before shortest path calculation, regardless of how it is done.

Since our approach is based on the assumption that end-to-end parameters can be calculated
based on the quality of links (hops) in the path, it is also important to account for the implications
of Link Layer on the delay and packet loss behavior and measurement. We discuss it briefly on
Section 2.7.4, focusing on the differences between the MAC (Media Access Control) sublayer
of Ethernet (IEEE 802.3 and its amendments), and WLAN (IEEE 802.11 and its amendments).

2.7.1 General Assumptions

Though in the general case we recognize that delay and packet loss may change with respect to
traffic load (e.g., bandwidth or packets per second), router CPU utilization, and packet size, for
the sake of simplicity, in most simulations, unless stated otherwise, we assume it will not, or,
even if it does, it is not a relevant factor. This is equivalent to say that end-to-end parameters can
be properly estimated based on wire-to-wire traffic samples of the links which depend mostly on
propagation and media sharing effects.

Additionally, we presume that delay and packet loss are uncorrelated or at least have a very
low statistical correlation, which is true if the network is not collapsing with respect to the band-
width consumption (i.e., self-inflicted packet loss due to congestion).

2.7.2 Delay

Delay in this work may be: (1) the time taken by a given packet sent by a source node to reach
its destination node plus the time taken by a packet on the way back (destination to source), i.e.,
round-trip delay (𝑅𝑇𝑇), or: (2) the time taken by a given packet sent by a source node to reach
its destination, i.e., one-way delay (𝑑). The definition (1) is used whenever the values computed
in fact depend on round-trip delays, like in Equation (2.2); shortest path computation, on the
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other hand, uses definition (2).

As a link-state parameter, it is an additive metric (total delay is the sum of delays in the
hops along the path), so the computation of shortest paths, in this case, is straightforward with
Dijkstra shortest path algorithm, as the delay in the one-way route, being [𝑑1,𝑑2,..., 𝑑𝑛] the set
of delay values of the hops in the route, is 𝑑1 + 𝑑2 + ... + 𝑑𝑛.

Though end-to-end delay is composed of the contributions of processing delay (𝑑𝑝𝑟𝑜𝑐, in the
order of 𝜇𝑠), queuing delay (𝑑𝑞𝑢𝑒𝑢𝑒, theoretically zero if the queue is not full, that is, if there is no
bandwidth consumption very close to congestion), transmission delay (𝑑𝑡𝑟𝑎𝑛𝑠, also in the order
of 𝜇𝑠) and propagation delay (𝑑𝑝𝑟𝑜𝑝, ranging from 𝑚𝑠 to a fraction of a second under normal
circumstances), where 𝑑 = 𝑑𝑝𝑟𝑜𝑐 + 𝑑𝑞𝑢𝑒𝑢𝑒 + 𝑑𝑡𝑟𝑎𝑛𝑠 + 𝑑𝑝𝑟𝑜𝑝, for means of path computation, we
consider the propagation delay (𝑑𝑝𝑟𝑜𝑝) as the preponderant factor, but values of 𝑑 can be refined
a posteriori with end-to-end evaluation that also take into account the effects of processing,
queuing, and transmission.

2.7.3 Packet Loss

Like delay, in this work, packet loss (𝑝) has two definitions: (1) the probability of a packet
getting lost in the path – e.g., source to destination and back –, and: (2) the probability of a
packet getting lost from source to destination (one-way packet loss). The employment of (1) or
(2) is the same as in the case of delay. The usage of definitions (1) and (2) using the same symbol
(𝑝) also should be clear from the context.

As a link-state parameter, it is a multiplicative metric, making the shortest path computation
possible with the default Dijkstra shortest path algorithm transforming the multiplicative metric
into an additive metric with a logarithm. Since one-way packet loss is the probability of a packet
getting lost en route to the destination, the shortest path is the one with the greatest (1− 𝑝1) (1−
𝑝2)...(1−𝑝𝑛) product representing the probability of a packet successfully traversing the network
from source to destination in 𝑛 hops, being [𝑝1,𝑝2,..., 𝑝𝑛] the set of 𝑝 values of the hops in
the route. With the aid of the 𝑙𝑜𝑔 function, which is a group homomorphism that translates
multiplication of positive real numbers into the addition of real numbers (𝑙𝑜𝑔 : R+ → R with
𝑙𝑜𝑔(𝑎𝑏) = 𝑙𝑜𝑔(𝑎) + 𝑙𝑜𝑔(𝑏)), we can turn the multiplication into a sum and the shortest path can
be found in additive fashion taking 𝑎𝑏𝑠(𝑙𝑜𝑔((1− 𝑝1) (1− 𝑝2)...(1− 𝑝𝑛))) = 𝑎𝑏𝑠(𝑙𝑜𝑔(1− 𝑝1) +
𝑙𝑜𝑔(1 − 𝑝2) + ... + 𝑙𝑜𝑔(1 − 𝑝𝑛)).
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2.7.4 Considerations on Data Link Layer

Considering that end-to-end parameters delay and packet loss are composed of the contributions
of each hop in the path, thus yielding the possibility of a hop-by-hop shortest path computation,
one interesting point is to ponder whether links’ load (e.g., bandwidth utilization) impact the
aforementioned parameters. This is a crucial fact in the design of TCPBP because if bandwidth
utilization impacts delay and packet loss, both parameters may change a lot in a short-term
perspective, perhaps in unpredictable ways. Such behavior may complicate link estimation and
even render TCPBP unusable.

Apart from the cases where bandwidth utilization of any link in the network is at (or close
to) maximum, where packet loss obviously increases due to packet discarding (i.e., congestion)
and delay may be impacted by the queue buffering of the forwarding devices (increasing the
queuing delay 𝑑𝑞𝑢𝑒𝑢𝑒), regarding the bandwidth utilization vs. packet loss and delay interplay,
it is convenient presenting two main categories of networks classified with respect to the Data
Link Layer:

i. networks where all links share the same collision domain;

ii. networks where each link is at an exclusive collision domain.

Examples of networks described in i are wireless networks based on IEEE 802.11, such as
Wireless Mesh Networks (WMNs) that employ CSMA/CA (Carrier Sense Multiple Access with
Collision Avoidance) in the medium access control (MAC) sub-layer. In such networks, due
to the shared essence of the links, performance depends not only on the characteristics of the
physical layer (such as modulation schemes or signal propagation), which is a complex matter
by itself, but also on how many devices try to access the medium, the relative position of the
nodes in the network (with occasional emergence of the hidden-terminal problem), and when
they attempt to do so (PASSOS, 2013). Needless to say, in such networks, end-to-end parameters
𝑝 and 𝑑 as random variables are not i.i.d.⁶, and are prone to change from time to time concerning
the bandwidth utilization.

As an example of ii, we have modern Ethernet-based (802.3) networks will Full-Duplex in-
terconnections that occasionally resort on CSMA/CD (Carrier Sense Multiple Access with Colli-
sion Detection). Although IEEE 802.3 standard and its amendments specify CSMA/CA as MAC

⁶i.i.d. stands for independent and identically distributed. In the case of exclusive collision domains, we expect at
least that variables are independent, though they are not necessarily identically distributed. For the shared collision
domain case, an interesting discussion about the practical aspects of the dependency between packet reception
events in different nodes of wireless mesh networks can be found in Appendix B of (PASSOS, 2013).
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mechanism, in practice, nowadays, it is employed in a few cases only, mostly for retro com-
patibility and in the occurrence of Half-Duplex interconnections. Consequently, under normal
conditions, end-to-end parameters of such networks are not prone to change with respect to the
bandwidth utilization of their links.

2.7.5 Passive vs. Active Measurement

The adoption of any QoS metric requires the proper measurement of the parameters of interest,
which can be done in many ways. Two of the main approaches are broadly defined as “passive”
and “active”, so one can resort to one (or a combination) of the approaches whenever designing
a QoS routing protocol.

The passive approach is the one that relies on the observation of the data flowing in the
network, i.e., watching the network traffic as it passes by. It can be done with the periodic
polling of statistics of the forwarding devices in the network, usually with the aid of protocols
such as SNMP⁷, NetFlow or RMON (Remote Monitoring). The active approach, on the other
hand, is based on the injection of specific probe packets in the network. A classic example of
this category is ping employed in the measurement of round-trip delay and packet loss, but more
refined techniques can be used, such as with the iPerf tool with injection of UDP probe packets.

In general, we consider that the measurement techniques should be adopted according to the
specificities of the underlying network whenever it is possible; e.g., take into consideration if the
network is lossy or not (convergence of packet loss estimation may be faster in such cases). Some
guidelines can be found in the IETF IP Performance Metrics (IPPM) Working Group website,
like RFC 7679 (one-way delay measurement) (ALMES et al., 2016a) and RFC 7680 (one-way
packet loss) (ALMES et al., 2016b).

2.7.6 Time-Variant Estimates

Regardless of the nature of the measurement (e.g., passive vs. active), it is important to establish
a coherent way to present 𝑑 and 𝑝 information to the Control Plane, so it can provide values for
𝑓 (𝑑,𝑝) and use it to make routing decisions, i.e., use it as a metric. It is so because we wish to
obtain not only sufficiently accurate values that represent the parameters in a given instant or time
span but reference values that change smoothly over time: if we fail to fulfill this requirement,
the stability of the packet forwarding in the network may be compromised, as well as sub-optimal

⁷Simple Network Management Protocol - RFC 2570 and its subsequent updates.
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choices may be taken by the routing protocol.

Considering a scenario in which 𝑑 and 𝑝 may change abruptly over time⁸, even if the param-
eters can be properly measured, it may trigger a lot of undesired route changes in a short time
(via re-convergence of the underlying routing protocol), possibly triggering forwarding loops
and compromising stability in general. Therefore, it is clear that a problem at the very core of
the employment of TCPBP routing metric is adjusting the accuracy versus smoothness of 𝑑 and
𝑝, thus 𝑓 (𝑑,𝑝), over time.

In such a case, a mechanism to prevent route instability may be necessary, and the curve
of the parameter 𝑓 (𝑑,𝑝) representing the metric versus time should be smoothed: to do so,
we propose the use of time-tested moving averages. The basic idea of employing the moving
averages is to present the value of a given parameter in a given instant based on the average of
the last 𝑘 measurements. Formally, the simple moving average (SMA) is the simple mean over
the last 𝑘 entries of a data set with 𝑛 entries, where the vector representing the measurements is
[𝑥1,𝑥2,...,𝑥𝑛]. The mean over the last 𝑘 data-points is stated as 𝑥𝑘 in Equation (2.4):

𝑥𝑘 =
1
𝑘

𝑘∑
𝑖=1

𝑥𝑖, 𝑘 = 1, . . . , 𝑛 (2.4)

It is also possible to employ a weighted moving average, i.e., an average where data within
the same sample at different positions are given different weights, instead of a simple one; e.g.,
in a time series, we may attribute greater weight to more recent measurements. An example
of the employment of the weighted moving average can be found in (WOO; TONG; CULLER,
2003), where the authors use an exponentially weighted moving average (EWMA) for the link
estimation technique of packet loss in multi-hop sensor networks.

Moving averages processes are computationally inexpensive and can be easily deployed on
the Control Plane of the network. In the particular case of a centralized Control Plane, for the
purposes of research and prototyping, it can be calculated with built-in functions of software
like MATLAB. The effects of the employment of the moving average on a time series can be
seen in Fig. 3.

Nevertheless, although we advocate for the use of moving averages, it is not the only choice
documented in the literature. It is also possible to employ link estimation techniques based on
linear regression, Kalman filters (WOO; CULLER, 2003), or statistical hypothesis tests like

⁸Under normal circumstances, such behavior is not expected to occur in wired networks such as IEEE 802.3
based networks, but it can occur in typical wireless networks like ones based on IEEE 802.11, as discussed in
Section 2.7.4.
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Figure 3: Time series of the hypothetical collected data (blue curve) and the curve of the moving
average employed to smooth the original curve (red curve). Intuitively, the red curve can be
interpreted as a “smoothed” approximation of the original blue curve, i.e., an approximation
that sacrifices the correctness of individual data for the sake of obtaining a curve that changes
more slowly over time (𝑥 = 𝑡 (𝑚𝑖𝑛)); like it was a part of a hysteresis mechanism. If a simple
moving average is employed, the “smoothness” vs. accuracy trade-off of the approach can be
adjusted with the proper choice of 𝑘 and 𝑛 in Equation (2.4).
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Hypothesis Testing Estimator (HTE) (SILVA; PASSOS; ALBUQUERQUE, 2018). HTE is par-
ticularly interesting because it is a frame⁹ link delivery probability estimator built in such a way
that the estimate remains constant unless the link behavior in the recent past significantly drifts
from what is expected, i.e., it per-design also focuses on stability.

⁹Very appropriate to distinct “frame” and “packet” here. It is so because there is a possibility of re-transmission
of frames at Link Layer in wireless networks such as in IEEE 802.11. Therefore, in this context, “frame” and
“packet” are not synonyms.
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3 | Transmission Control Protocol Best Path (TCPBP)

In this Chapter we present our proposal in details (metric intuition – Section 3.1 –, feasibility re-
garding shortest path computation – Section 3.2 –, a shortest path computation method based on
a modified edge relaxation process – Section 3.3 –, 𝑓 (𝑑,𝑝) computation – Section 3.4), the main
aspects to be considered in the route selection (route selection mechanisms, initial routes and
re-convergence – Section 3.5), a discussion on the expected throughput improvement – Section
3.6 –, and security considerations – Section 3.7.

3.1 Metric Intuition

Transmission Control Protocol Best Path (TCPBP) is a single mixed metric such that the 𝑑
√
𝑝

per-route is minimized to maximize Equation (2.3) (i.e., 𝐵𝑊𝑚𝑎𝑥 ∝ 1
𝑅𝑇𝑇
√
𝑝 ). Considering two

nodes 𝐴 and 𝐵 in the network, the minimization of 𝑅𝑇𝑇√𝑝 follows from the minimization of
𝑑
√
𝑝𝐴⇒𝐵 and 𝑑

√
𝑝𝐵⇒𝐴 because of metric isotonicity. The key idea of this approach is to be

simple and allow the maximum per-flow TCP throughput as possible, under the assumption that
the TCP throughput prediction model is valid in the network in which it is employed and there
is enough available bandwidth to accommodate the flow during its duration.

Concerning High-Speed Lossy Networks, the inverse-square root law applies, and it is ex-
pected that the per-flow TCP throughput is much lower than the total bandwidth of the links,
suggesting that the adoption of our metric may optimize the network per-route TCP throughput
up to a certain number of TCP flows (denoted as 𝑛 𝑓 ). Our proposal is also scalable and easy to
deploy: for example, considering that it can be implemented with a simple modification of the
default Dijkstra as the shortest path algorithm, suitable to hop-by-hop routing, and that 𝑑 and 𝑝

can be passively or actively measured in the network with the aid of SNMP and ICMP, it can be
employed as an extension of a link-state routing protocol such as OSPF or IS-IS.

Ideally, the metric should also consider available bandwidth at a given time. However, one
reason we did not incorporate it to the metric is that, as opposed to end-to-end delay and packet
loss – parameters which we assume do not change with time, or that it changes slowly enough
such that we can get accurate and consistent measurements –, and due to traffic dynamics, it most
probably changes its value faster than the convergence time of the underlying routing protocol,
possibly affecting the stability of the packet forwarding in the network and requiring additional
mechanisms to maintain stability. Another issue with incorporating bandwidth in a single mixed
metric is that it is a concave metric; mixing it with additive and multiplicative metrics breaks the
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set of assumptions that guarantee the metric feasibility (isotonicity and consistency, in particular).
As a matter of fact, we consider that bandwidth issues with respect to route selection should be
treated separately from the shortest path computation algorithm (e.g., through pruning or with
traffic engineering).

3.2 Metric Feasibility

In this Section, we prove that the single mixed metric we proposed is both isotonic and mono-
tonic, thus satisfying the properties of loop-freeness, consistency, and optimality. Considering
that the metric is particular case of a function of delay and packet loss denoted as 𝑓 (𝑑,𝑝), we
proceed to Section 3.2.1 (isotonicity) and Section 3.2.2 (monotonicity).

3.2.1 Isotonicity

Considering [𝑑1,𝑑2,..., 𝑑𝑛] and [𝑝1,𝑝2,..., 𝑝𝑛] the set of values of delay and packet loss per-
route, respectively, and that 𝑑 and 𝑝 values are strictly positive, where each metric is isotonic by
itself and shortest path computation of each metric is possible by means of an additive process,
isotonicity of 𝑓 (𝑑,𝑝) follows immediately if 𝑓 (𝑑,𝑝) > 0 ∀ 𝑑 > 0, 0 ≤ 𝑝 ≤ 1, and 𝑓 (𝑑𝑛,𝑝𝑛) > 0
∀ 𝑛, which can be proved with contradiction, but it is more simple to show that the commutative
rule for sum and associative rule for multiplication implies the isotonicity of 𝑓 (𝑑,𝑝): in the case
of 𝑓 (𝑑,𝑝) = 𝑑 × 𝑝, 𝑑 = 𝑑1 + 𝑑2 + ... + 𝑑𝑛 and 𝑝 = 1 − ((1 − 𝑝1) (1 − 𝑝2)...(1 − 𝑝𝑛)), because of
the commutative and associative rules of mathematics, swapping the positions of the hops will
preserve the values of 𝑑 and 𝑝, thus preserving the value of 𝑑 × 𝑝; appending or prefixing with
hops such that 𝑓 (𝑑𝑛,𝑝𝑛) > 0 will not provoke any changes in the original path, because of the
same properties. Without loss of generality, the reasoning applies to any function of 𝑑 and 𝑝, if
𝑓 (𝑑𝑛,𝑝𝑛) > 0 ∀ 𝑛.

3.2.2 Monotonicity

Monotonicity of 𝑓 (𝑑,𝑝) also follows immediately if 𝑓 (𝑑𝑛,𝑝𝑛) > 0 ∀ 𝑛; this is so because the
path cost will never decrease when adding new hops (by appending or prefixing) with positive
costs.
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Algorithm 1: Modified edge relaxation. Because the path structure of TCPBP is not
additive, since 𝑑 (𝑢) is (𝑑1 + 𝑑2 + ... + 𝑑𝑛) (1 − ((1 − 𝑝1) (1 − 𝑝2)...(1 − 𝑝𝑛)))1/2,
𝑑 (𝑢)+𝑤(𝑢,𝑣) is (𝑑1+𝑑2+...+𝑑𝑛+𝑑𝑢→𝑣)(1−((1−𝑝1) (1−𝑝2)...(1−𝑝𝑛) (1−𝑝𝑢→𝑣)))1/2.
1 if 𝑑 (𝑢) + 𝑤(𝑢,𝑣) < 𝑑 (𝑣) then
2 𝑑 (𝑣) = 𝑑 (𝑢) + 𝑤(𝑢,𝑣)
3 else
4 do not update 𝑑 (𝑣)
5 end

3.3 Shortest Path Computation

This Section describes the shortest path computation mechanism employed to find the shortest
path according to our metric. For so, we devised a modified edge relaxation process able to work
with non-additive positive edge costs in a 𝐺 (𝑉,𝐸) directed graph based on the default Dijkstra
algorithm.

3.3.1 Modified Dijkstra Algorithm

While the default implementation of the Dijkstra algorithm assumes that the cost of the path is
the sum of the weights of the edges across the path, 𝑑√𝑝 is not additive. Therefore, we propose
a slight modification of the default algorithm suitable to the computation of 𝑑

√
𝑝 (which we

call “modified Dijkstra”). Such modification works because being additive is not a requirement
to employ Dijkstra in the broader sense: monotonicity and isotonicity are sufficient conditions
(YANG; WANG, 2008). The modification we propose is summarized below:

i. create an adjacency matrix with all values of 𝑑
√
𝑝 per-hop. These values are used to

determine the first edge to be considered by a node according to the greedy approach of
the algorithm, in consonance with the triangle inequality principle that guides Dijkstra’s
execution in the edge relaxation process;

ii. the updated value of 𝑑√𝑝 is stored alongside the individual values of 𝑑 and 𝑝, in order to
allow the proper computation of multi-hop 𝑑

√
𝑝.

The modification proposed basically introduces a per-iteration extra time for the computation of
𝑑
√
𝑝, following the computation of 𝑑 and 𝑝, and extra space for storing 𝑑 and 𝑝 separately. Thus,

the execution of the modified algorithm to a 𝐺 (𝑉,𝐸) graph is expected to be slightly greater (at
least in theory, due to the additional operations required to store the updated costs of the non-
additive metric), but the algorithm complexity regarding time execution in function of 𝑉 and
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𝐸 remains the same since 𝑉 and 𝐸 values and its respective number of operations (like edge
selection and path cost update) that determine the time complexity also remain. Considering
that the relaxation process is part of a single source shortest path algorithm with source 𝑆, 𝑑 (𝑢)
is the cost 𝑆 ⇒ 𝑢, 𝑑 (𝑣) is the cost 𝑆 ⇒ 𝑣, 𝑤(𝑢,𝑣) the cost 𝑢 → 𝑣, 𝑑𝑢→𝑣 the one-way delay cost
of 𝑢 → 𝑣, and 𝑝𝑢→𝑣 the one-way packet loss of 𝑢 → 𝑣, the modified edge relaxation process is
shown in Algorithm 1.

3.4 Computation of f(d,p)

The main aspects of the computation of 𝑓 (𝑑,𝑝) are granularity (Section 3.4.1) and, as proposed
in Section 2.7.6, the employment of moving averages (Section 3.4.2).

3.4.1 Metric Granularity

Granularity in the context of the computation of 𝑓 (𝑑,𝑝) refers to the number of significant digits
(or precision) used to present the values of 𝑑, 𝑝, and of the function itself. On the one hand, an
extremely precise value may yield the computation of paths with different values that in practice
are roughly equal, perhaps unnecessarily leading to the use of additional hysteresis mechanisms.
On the other hand, a low precision value may fail to capture the desired behavior of the paths
(e.g., the case of TCP throughput prediction). Therefore, the granularity must be considered
carefully, as it is an important object of concern to the metric design.

3.4.2 Simple Moving Averages

The value of 𝑓 (𝑑,𝑝) is based on a simple moving average (SMA). The values of 𝑘 and 𝑛 of Equa-
tion (2.4) are adjustable according to peculiarities of the network, such as link-state variability
expectation or other factors listed in Section 2.7.4.

3.5 Route Selection Mechanism

3.5.1 Initial Routes

Considering the instant where TCPBP is configured in the network, there are no statistics of 𝑑
and 𝑝 to calculate 𝑓 (𝑑,𝑝). Until the first measurement of link-state parameters, hop-count can
be used as a metric to initial route selection.
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3.5.2 Route Candidates

We define the Route Candidates as an arbitrary-sized set of shortest paths according to a metric
sorted in the crescent order of cost. In the context of our work, it can be specifically defined as
the set of k-shortest paths with respect to 𝑓 (𝑑,𝑝), where the value of 𝑘𝑇𝐶𝑃𝐵𝑃 (as we denote k for
TCPBP) depends on particularities of the metric design; therefore, e.g., it may be obtained with
Yen’s algorithm based on the modified Dijkstra proposed in Section 3.3.1.

3.5.3 Re-Convergence Criteria

Re-convergence basically refers to the Control Plane prerogative of deciding whether, and how
fast, a new route should be put into use in the face of new information received concerning
the routing metric. If a link goes down, for example, the Control Plane must command the
forwarding devices to establish a new route as soon as possible, e.g., by calculating a new path
or selecting a precomputed backup path with approaches like the one presented in (FRANSSON;
CARR-MOTYČKOVÁ, 2004).

Thus, such event (i.e., re-convergence) is of utmost importance in the network, and re-
convergence criteria is mandatory. Considering the end-user perspective, the main concern
is that re-convergence should be as seamless as possible, i.e., occur with minimal traffic dis-
ruption¹⁰. In the context of TCPBP, we focus on the Control Plane decision-making whenever
values of 𝑓 (𝑑,𝑝) are updated. In this respect, particularly interesting is the case if there are two
(or even more) routes with a close value of 𝑧 = 𝑓 (𝑑,𝑝) with overlapping values considering a
Δ𝑧 variation of 𝑧: if this happens, the preferred route may begin to alternate over time between
the two best choices, perhaps unnecessarily, urging the adoption of a hysteresis mechanism.

3.6 TCP Throughput Improvement

3.6.1 Case Study

To showcase the TCP throughput improvement that can be achieved with the adoption of TCPBP,
we start by presenting a case study in which two remote endpoints communicate with TCP using
a dedicated 1 Gbps “pipe”, where the parameters 𝑝 and 𝑅𝑇𝑇 , as well as the number of parallel
TCP streams sending data, can be adjusted. The tests of this Subsection were carried out in a

¹⁰To network engineers and administrators, there are other concerns not relevant to this work; see, for instance,
(SILVA; MOTA, 2017).
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Linux testbed where the endpoints are represented by two different Network Namespaces inter-
connected with an Open vSwitch; network parameters 𝑝, 𝑅𝑇𝑇 and bandwidth are emulated with
native traffic control (tc) module NetEm as detailed in Fig. 4.

Figure 4: Linux testbed employed in Section 3.6.1. Network parameters of each Namespace
are: TCP Cubic, 𝑀𝑆𝑆 = 64 KB; NetEm is applied to Open vSwitch interface eth_A which
interconnects to Namespace A, and emulates 𝑝, 𝑅𝑇𝑇 , and bandwidth.

Firstly (first test), we set 𝑝 = 0.001% and 𝑅𝑇𝑇 = 10𝑚𝑠, and executed a 300s iPerf single
connection test that presented 348 Mbps as a result; no TCP tuning was performed, and default
TCP window was used. This is close to the theoretical maximum bandwidth that can be achieved
according to the inverse-square root law formula: 𝑀𝑆𝑆 × 𝐶/𝑅𝑇𝑇√𝑝, with 𝐶 = 1, ≈ 369.4
Mbps. Since a bandwidth of a value close to 650 Mbps was left unused, it was hinted that the
data transfer between the endpoints can be doubled if two TCP connections¹¹ are used instead of
one. Hence, we proceeded to check the total throughput in a test with two connections (second
test), once again employing iPerf for 300s, and obtaining as a result a total of 692 Mbps (the
sum of two TCP streams of 350 Mbps and 342 Mbps, respectively; both values are very close
due to TCP fairness). Nevertheless, in this case, the link is still underused. An interesting fact
is that real-time monitoring showed that the total capacity of the link was never achieved during
both tests. Thus, packet loss that triggered TCP congestion control in the previous tests were not
caused by congestion.

With three parallel connections (third test), we obtained a total of 900 Mbps (per stream: 281
Mbps, 296 Mbps, and 323 Mbps). The scenario ensued in this case, however, stumbled upon
the physical limitation of 1 Gbps, with the occurrence of loss not only due to characteristics of
the link but also because of congestion due to the small buffer of the Open vSwitch interface (no
particular AQM¹² or packet scheduling scheme was employed in the OVS interfaces; Linux ker-
nel default was used). Anyway, considering a 1 Gbps¹³ interconnection and three TCP streams,
in a scenario with perfect fairness, the average throughput expected per stream is at maximum

¹¹At the expense of opening another pair of TCP sockets between client and server, thus increasing CPU and
memory consumption in both endpoints, though.

¹²Active Queue Management.
¹³Not to be confused with IEEE Gigabit Ethernet (GbE) standard that actually does not provide 1000 Mbps

capability, but rather ≈ 950 Mbps. The setup we employed in fact emulates a close-to-perfect 1 Gbps bandwidth.
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≈ 333 Mbps (1 Gbps divided by three streams), which is lower than the values obtained in the
first two tests, and even lower than the expected throughput according to the inverse-square root
law disregarding bandwidth limitations.

Supposing that we are able to improve the values of 𝑝 and 𝑅𝑇𝑇 of the link (which is true,
since we control the testbed with tc NetEm), it is clear that the steady-state throughput with one
and two connections can be improved: if 𝑅𝑇𝑇 or 𝑝 is properly reduced, with one connection, a
single TCP stream can achieve a value close to 1 Gbps, and, with two connections, each TCP
stream can achieve up to 500 Mbps, totaling 1 Gbps (i.e., 1000 > 369.4 and 500 > 369.4); and
it is clear that it cannot be in the case of three parallel connections, because fairness, in this case,
ensues a roughly equal division of bandwidth per stream, since 333 < 369.4. Therefore, we
conclude that, in this example, reducing 𝑅𝑇𝑇

√
𝑝 does not improve TCP throughput if there are

more than three flows.

3.6.2 Theoretical Improvement

Considering any route 𝐴⇒ 𝐵 obtained with single metrics such as delay or hop-count, TCPBP
provides an improvement if its route provides better individual TCP throughput performance for
several flows up to 𝑛 𝑓 ≥ 1. Denoting 𝑅𝑆𝑖𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐 as the original route, 𝑅𝑇𝐶𝑃𝐵𝑃 as the route
obtained with TCPBP, 𝐵𝑊 the average TCP throughput per-flow, 𝑇𝑃 the expected throughput
per-flow according to Equation (2.2), and 𝐴𝐵𝑊 the available bandwidth in the path, throughput
improvement occurs if conditions in (i) and (ii) are met; such conditions stem mainly from the
available bandwidth factor. The expected value for 𝑛 𝑓 is given in (iii).

𝑚𝑖𝑛[𝑇𝑃𝑇𝐶𝑃𝐵𝑃,𝐴𝐵𝑊𝑇𝐶𝑃𝐵𝑃] > 𝑚𝑖𝑛[𝑇𝑃𝑆𝑖𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐,𝐴𝐵𝑊𝑆𝑖𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐] (i)

𝑅𝑇𝐶𝑃𝐵𝑃𝐵𝑊 > 𝑅𝑆𝑖𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝐵𝑊 (ii)

(𝐴𝐵𝑊𝑇𝐶𝑃𝐵𝑃)/𝑛 𝑓 > 𝑅𝑆𝑖𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝐵𝑊 (iii)

3.7 Security Considerations

Procedures and protocol extensions described in this thesis do not affect inter or intradomain
routing security models. This is so because the adoption of a single mixed routing metric based
on a function of packet loss and delay does not relate directly to network security issues, nor
does it affect the communication security between the Control Plane and the Data Plane in the
network (GAO et al., 2018; XIE et al., 2015).
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Regarding specifically the intradomain case, which is the scope of this work, the security is
mostly ensued by cryptographic authenticated messages of the underlying routing protocol em-
ploying a given routing metric. See, for example, with respect to OSPF, the “Security Considera-
tions” topic of RFC 2328 (MOY, 1998), and RFCs 6863 – “Analysis of OSPF Security According
to the Keying and Authentication for Routing Protocols (KARP) Design Guide” (HARTMAN;
ZHANG, 2013) and 7474 – “Security Extension for OSPFv2 When Using Manual Key Manage-
ment” (BHATIA et al., 2015), and note that routing metrics are not even mentioned.
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4 | Simulation and Results

In this Chapter, we present an experimental evaluation of the TCPBP, comparing it to delay and
hop-count metrics (because of the prevalence of those metrics in most intradomain networks
nowadays), followed by a discussion of the results obtained and other insights. The evaluation is
not extensive, focusing on the throughput improvement and shortest path computation running
time. However, we consider it suffices to showcase the soundness of our proposal and point out
possible drawbacks of employing the metric as we did.

4.1 Metric Design

This Section presents the metric design characteristics employed in the TCPBP proof of con-
cept. We depict the design taking into consideration the SDN environment and the nature of the
Data Link Layer, as stated in Section 2.7.4 (network is IEEE 802.3-based) and considerations
following on Chapter 3.

4.1.1 Shortest Path Computation

The shortest path computation for TCPBP is performed with modified Dijkstra, as depicted in
Section 3.3.1. Delay and hop-count are computed with standard Dijkstra. All processes are
executed in a MATLAB SDN Northbound API running an OSPF-like program.

4.1.2 𝒇 (𝒅, 𝒑)

The 𝑓 (𝑑,𝑝) is the 𝑑
√
𝑝 expression derived from the formula 1

𝑅𝑇𝑇
√
𝑝 that predicts the maximum

average TCP throughput according to (MATHIS et al., 1997) (i.e., TCPBP). Its value is obtained
from the measurements of 𝑑 and 𝑝 as described in the following Sections.

4.1.2 Link-State Measurement

One-way packet loss is measured passively by polling the statistics of inbound and outbound
interfaces of the two adjacent forwarding devices. That is, counting how many packets arrive
at a device interface, dividing by the number of packets sent by the adjacent interface on the
other device, and subtracting the value from one. One-way delay is measured by checking the
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timestamps of the packets, which is possible because all devices’ clocks are synchronized.

The passive approach makes sense because link-state data provided to the Control Plane
is based on the average packet size generated by the endpoints; with an active approach, such
accounting for different levels of packet loss for different packet sizes may introduce unnecessary
complexity to the process. One possible drawback of the passive measurement for such means
(𝑝 in special), in the general case, is that we obtain different sample sizes for the same interval
in different links, but in this proof of concept, we do not expect it to be a problem if the minimal
sample size is exceeded, for the lossy nature of the links provides good estimation with much
smaller samples than what we would expect in not lossy links¹⁴.

4.1.2 Moving Averages

We employed a simple moving average (SMA) of the last 30𝑠 every 10𝑠 (i.e., link-state values
were updated every 10𝑠, with MATLAB built-in function 𝑓 𝑖𝑙𝑡𝑒𝑟 and each value represented by
the mean of the last three collected samples). Such values were chosen based on the expectation
of an average link-state variation not greater than ±10%.

4.1.2 Granularity

Delay is an integer number converted from the millisecond rounded unit obtained with one sig-
nificant digit after the decimal (e.g., 2.5ms, 10.6ms, etc.). Packet loss is presented as multiples
of 0.01% converted to absolute values.

4.1.3 Route Selection

Routes are selected based on the shortest path obtained with the metric, based on the average
values of 𝑓 (𝑑,𝑝). In other words, we employ the Route Candidates with 𝑘𝑇𝐶𝑃𝐵𝑃 = 1. In the
absence of packet loss and delay statistics to compute 𝑓 (𝑑,𝑝), initial routes for TCPBP and delay
are based on hop-count.

¹⁴For example: if we have a packet loss rate of 1%, the sample size (and mostly the time, too) to estimate it with
the passive approach is much smaller than of the case in which 𝑝 = 10−12.
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4.1.4 Re-Convergence Criteria

Re-convergence occurs upon the resurgence of a new route with the lowest value of 𝑓 (𝑑,𝑝),
without additional mechanisms. It is a “greedy” approach that does not account for the route
stability of the underlying routing protocol, but one which we resorted to due to its simplicity.

4.2 Testbed Outline

As a proof-of-concept, we implemented SDN OSPF with TCPBP metric and default metrics
(hop-count and delay) on a Linux OpenFlow testbed with IPv4 forwarding enabled in the kernel,
where each particular topology tested consisted on a set of L3-Routing-Enabled Open vSwitches
(OVS) interconnected with virtual ethernet pairs (veth) in the Default Network Namespace ac-
cording to its adjacency matrix representation, using additional Network Namespaces as end-
points.

Link-state parameters, i.e., delay and packet loss are emulated with Linux traffic control (tc)
module NetEm¹⁵ such that the scheme resembles a High-Speed Lossy Network. As a Northbound
API, we used MATLAB R2019, and, as Southbound API, OpenFlow 1.5.1. SDN controller of
choice is POX 0.2.9. The architecture of the scheme employed is shown in Fig. 5. Specs of the
machine used to run all the simulations are in Table 1.

Table 1: Specifications of the machine used to run all simulations.

Processor Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz
RAM Memory 16 GB (2x8GB DDR4 Dual-Channel 1066Mhz)
HD Samsung SSD 970 EVO Plus 250GB
Operational System Linux Mint 18.04

4.3 Parameters Evaluated and Methodology

To measure TCPBP throughput performance and fairness in the face of OSPF default metrics
delay and hop-count, we have opted for a topology with ten nodes. Simulations were executed
in a symmetric topology with 10 Open vSwitches, as detailed in Fig. 6, and Full Duplex inter-
connections with a rate limit of 1 Gbps. Emulated link-state parameters of the topology (delay
and packet loss) are in the adjacency matrices of Figures 7 and 8; the values of the matrices

¹⁵Usage and caveats of NetEm can be found in (FOUNDATION, 2021).
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Figure 5: Linux OpenFlow Testbed. Host A communicates with Host B through Open vSwitches
in the default Network Namespace. Communication between the POX controller and Open
vSwitches uses OpenFlow as the standardized protocol for flow installation and maintenance;
once a centralized Northbound API (MATLAB) after retrieving topology information from POX
defines the desired forwarding behavior of the network, proper flow instructions are installed in
each of the Open vSwitches (OVS).

were randomly chosen from an interval compatible with a lossy network. TCPBP running time
was evaluated in symmetric topologies, with 10, 25, 50, and 100 Open vSwitches and uniformly
distributed pseudo-random numbers as link-state parameters.

Figure 6: Graph representing the High-Speed Lossy Network topology with ten nodes used in
the proof-of-concept.

To generate all necessary topologies, we used MATLAB. Once a topology was created, it
was exported to a text file as input into a Bash Script, which then generated the topology with
the interconnection of Open vSwitches in the default Linux Network Namespace. POX SDN
controller also runs in default Network Namespace and, to receive link-state information from
each of the switches, communicates with the Data Plane via 127.0.0.1 IPv4 loopback address.
Upon receiving link-state information of the topology, POX forwards information to MATLAB,
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∞ ∞ 0.0085 ∞ 0.004 0.0015 ∞ ∞ 0.0032 ∞
∞ ∞ 0.004 ∞ 0.0055 ∞ ∞ 0.0019 0.007 ∞

0.0085 0.0044 ∞ 0.0018 ∞ 0.0096 0.0082 ∞ ∞ 0.0044
∞ ∞ 0.0018 ∞ 0.0005 ∞ 0.0073 ∞ ∞ 0.003

0.004 0.0055 ∞ 0.0005 ∞ 0.0094 ∞ 10−5 0.0063 0.005
0.0015 ∞ 0.0096 ∞ 0.0094 ∞ ∞ ∞ ∞ ∞
∞ ∞ 0.0082 0.0073 ∞ ∞ ∞ ∞ 0.0054 0.0076
∞ 0.0019 ∞ ∞ 10−5 ∞ ∞ ∞ ∞ ∞

0.0032 0.007 ∞ ∞ 0.0063 ∞ 0.0054 ∞ ∞ ∞
∞ ∞ 0.0044 0.003 0.005 ∞ 0.0076 ∞ ∞ ∞


Figure 7: Delay adjacency matrix. Values in seconds. Each value was emulated with a ±5%
uncertainty to provide a rudimentary link-state variability.

∞ ∞ 0.003 ∞ 0.0181 0.009 ∞ ∞ 0.0012 ∞
∞ ∞ 0.004 ∞ 0.0079 ∞ ∞ 0.0116 0.0196 ∞

0.003 0.004 ∞ 0.0002 ∞ 0.0116 0.0144 ∞ ∞ 0.0192
∞ ∞ 0.0002 ∞ 0.0005 ∞ 0.013 ∞ ∞ 0.0037

0.0181 0.0079 ∞ 0.0005 ∞ 0.0137 ∞ 0.0023 0.0057 0.0039
0.009 ∞ 0.0116 ∞ 0.0137 ∞ ∞ ∞ ∞ ∞
∞ ∞ 0.0144 0.013 ∞ ∞ ∞ ∞ 0.0119 0.0068
∞ 0.0116 ∞ ∞ 0.0023 ∞ ∞ ∞ ∞ ∞

0.0012 0.0196 ∞ ∞ 0.0057 ∞ 0.0119 ∞ ∞ ∞
∞ ∞ 0.0192 0.0037 0.0039 ∞ 0.0068 ∞ ∞ ∞


Figure 8: Packet loss adjacency matrix. Absolute values in the interval [0,1]. Each value was
emulated with a ±5% uncertainty to provide a rudimentary link-state variability.

which then calculates the best routes according to the correspondent metric, and instructs POX
back to install the flows accordingly in each of the switches.

The tests started at 𝑡 = 0𝑠. To gather the first link-state information, random unicast traffic
of 50 Mbps between all adjacent pairs was generated up to 𝑡 = 120𝑠, and data was collected in
10𝑠 intervals by means of passive measurement; then, during the rest of the tests, we employed a
simple moving average (SMA) as described in the Metric Design Section. Throughput, fairness,
and TCPBP running time were evaluated from 𝑡 = 120𝑠 as stated below (in Sections 4.3.1, 4.3.2
and 4.3.3):

4.3.1 Throughput

TCP persistent flow throughput was measured for all (𝑛2 − 𝑛)/2 possible distinct routes in the
topology with 𝑛 = 10 nodes, with TCPBP, delay, and hop-count metrics, using Host A (IPv4
192.0.2.2/30, GW 192.0.2.1) and Host B (IPv4 192.0.2.6/30, GW 192.0.2.5) as “seeds” to repli-
cate other hosts in the 192.2.0.x/24 subnet, each of them in a different Network Namespace and
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different subnet, as shown in Fig. 5, with TCP CUBIC, 𝑀𝑆𝑆=1460 bytes, and iPerf tool in
TCP client vs. server mode. During the tests, Host A, Host B, and 6 (six) other hosts cloned
from Hosts A and B (i.e., identical configuration, but with different /30 IPv4 addresses in the
192.0.2.0/24 subnet) were randomly put into each node of the distinct pairs in the topology, and
each metric was enforced according to the client TCP source port in the OVS flow tables. The
resulting throughput for each topology is the average of 𝑛 𝑓 = 10, 25, and 50 TCP parallel flows
per-route and per-metric for 60 seconds.

4.3.2 Fairness

To measure fairness, we resort to the Jain’s Index and present the average fairness per scenario
evaluated in the throughput test, i.e., for all metrics evaluated (TCPBP, delay, hop-count) and for
𝑛 𝑓 = 10, 25 and 50.

4.3.3 Running Time

TCPBP with modified Dijkstra and standard Dijkstra running times at application layer (i.e.,
Control Plane) were measured 100 times per topology, for random topologies with 𝑛 = 10, 25,
50 and 100 nodes, with MATLAB tic and toc functions; Dijkstra implementation is “naive”, with
vertex set stored in an array and edges in an adjacency matrix, 𝑂 (𝑉2) complexity. We did so not
to achieve the best running time as possible or measure running times with deep precision, but to
present a value of reference that demonstrates TCPBP shortest path computation with modified
edge relaxation is not significantly slower than standard Dijkstra, being capable of running in
common off-the-shelf hardware such as laptops.

4.4 Results and Discussion

Table 2 shows a route summary per topology tested. As expected, some of the routes provided are
the same in TCPBP, delay, and hop-count metrics; in fact, in our case, the majority of the routes
are the same (57.8% for TCPBP and hop-count, and 86.7% for TCPBP and delay). Globally,
i.e., considering all routes, the TCP throughput improvement ratio (Table 3) exhibits a slight
improvement (less than 1%) with TCPBP in respect to hop-count and delay, for 𝑛 𝑓 = 10, 𝑛 𝑓 = 25,
and 𝑛 𝑓 = 50. However, when TCPBP provides different routes, the average TCP throughput ratio
shows much greater performance (greater than 65% in comparison to hop-count and 40% in
comparison to delay), even though it diminishes considerably from 𝑛 𝑓 = 25 to 𝑛 𝑓 = 50, mostly
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due to the fact that, for 𝑛 𝑓 = 50, in average, the available bandwidth divided by the number
of flows (𝑛 𝑓 ) is smaller than the predicted by the inverse-square root law, implying additional
packet loss and delay due to congestion itself that may reduce the expected throughput per-flow.
Also, since the topology tested is symmetric, we believe that with asymmetric routing, a common
feature of IP networks, there would be a greater number of different round-trip paths produced
with TCPBP, thus presenting a greater throughput ratio in favor of our approach (e.g., a rough
estimation for the TCPBP versus delay in the case of our simulations, where 86.7% of the routes
are the same, is we should have 0.867 × 0.867 ≈ 0.751 of the same round-trip paths in an
asymmetric topology, i.e., 75%).

Though we have opted for presenting ratios instead of absolute values for throughput, for
our analysis focus is the global improvement and not the measurement of specific TCP flows, we
consider it worth presenting the specific results obtained in the route from node 1 to node 10, for
didactic reasons. A summary of the results obtained in the 1 ⇒ 10 route is presented in Table
4, in which we can note that the per-flow throughput to 1

𝑅𝑇𝑇
√
𝑝 ratios are quite close, showcasing

the adequacy of the inverse-square root law in predicting at least the TCP throughput proportion
between available routes: with respect to route selection with a metric, it is the fundamental
concern. Though our simulated environment is obviously simple in comparison to real networks,
it is interesting to note that there was not any occurrence of re-convergence, and we were able
to determine (perhaps due to the Law of Large Numbers applied to the long-term behavior of
𝑑 and 𝑝) that TCPBP is better than delay, even though their values of 1

𝑅𝑇𝑇
√
𝑝 are very close

(324.09 versus 321.99); in real networks, or with short-spanned flows, such difference may not
exist, implying that the best TCPBP route may change from time to time, possibly demanding
the employment of a mechanism to prevent route instability.

With respect to fairness, results are presented in Table 5; for the values do not differ sig-
nificantly across the metrics, we have not observed any negative effects on fairness that stem
from the adoption of TCPBP. Finally, TCPBP shortest path calculation running time with the
modified edge relaxation showed good performance, consonant with the expected increment to
the default Dijkstra implementation; i.e., it is slower than default Dijkstra, but the difference is
not something to raise concern. The results of shortest path computation times are summarized
in Table 6.
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Table 2: Route summary of the topology tested (10 Open vSwitches, 21 links); TCPBP versus
hop-count and Delay.

Route summary: TCPBP vs. hop-count and Delay
Total distinct routes: 45 TCPBP = hop-count: 26 TCPBP ≠ hop-count: 19

TCPBP = Delay: 39 TCPBP ≠ Delay: 6

Table 3: Throughput performance comparison in the tested: TCPBP versus hop-count and Delay
(10 Open vSwitches, 21 links); 𝑛 𝑓 = 10, 25 and 50 parallel TCP Flows. AR = all routes; DR =
when TCPBP provides different routes.

Average Throughput
TCPBP/hop-count

ratio (AR)
TCPBP/hop-count

ratio (DR)
TCPBP/Delay

ratio (AR)
TCPBP/Delay

ratio (DR)
𝑛 𝑓 = 10 1.0095 1.8222 1.0025 1.5523
𝑛 𝑓 = 25 1.0093 1.8362 1.0027 1.5321
𝑛 𝑓 = 50 1.0092 1.650 1.0022 1.412

Table 4: Values of Eq. 2.3 and its respective TCP throughput per-flow per-metric obtained in
the 1 ⇒ 10 route. Both 𝑅𝑇𝑇 and 𝑝 refers to round-trip values, and symmetry implies 1 ⇒ 10 =
10⇒ 1.

TCPBP hop-count Delay
1→ 3→ 4→ 10 1→ 5→ 10 1→ 5→ 4→ 10

1
𝑅𝑇𝑇
√
𝑝 324.09 265.18 321.99

Throughput (Mbps) 17.1 13.3 16.8
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Table 5: Jain’s index (J) per scenario evaluated in the throughput test. Each value presented is
an average.

Jain’s index (J)
TCPBP Delay hop-count

𝑛 𝑓 = 10 0.88 0.91 0.90
𝑛 𝑓 = 25 0.89 0.93 0.92
𝑛 𝑓 = 50 0.95 0.94 0.94

Table 6: Time execution (𝑡𝑒) of shortest path computation with Standard Dijkstra and Modi-
fied Dijkstra. Each value is the result of 100 experiments that represent the average time for
calculating all routes in a central hardware, with 𝑛 parallel instances running each turn.

𝑡𝑒 (𝑠) 𝑛 = 10 𝑛 = 25 𝑛 = 50 𝑛 = 100
Standard Dijkstra 0.0022 0.0304 0.1716 2.18564
Modified Dijkstra 0.00260 0.0362 0.1906 2.2241
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5 | Background and Related Work

Since the performance of TCP in the face of the QoS parameters of the network (like delay and
packet loss) also depends on the protocol behavior at endpoints (i.e., the performance depends
not only on QoS parameters but on how the transport protocol reacts before these parameters),
the TCPBP is not a QoS routing metric in the strict sense. Nevertheless, the topic of QoS routing
metrics is closely related to our proposal, particularly because of the path computation based on
QoS metrics and the impact on users’ Quality of Experience (QoE) (which can be improved with
both TCPBP and QoS metrics).

Because of this, we consider the topics of QoS Routing Metrics (Section 5.1), MCR (Section
5.2), Link-State QoS Routing (Section 5.3), and Single Mixed Metrics (Section 5.4) as related
subjects to our work. Furthermore, to the best of our knowledge, our approach is the only work
that tackles the problem of throughput delivered by the Transport Layer employing route se-
lection (e.g., routing metric); i.e., there is not any related work with this regard. So, due to its
relative proximity to our proposal, we also classify related work in the following categories: TCP
Performance (i.e., implementations on Transport Layer; Section 5.5), and Practical Uses of the
Inverse-Square Root Law (Section 5.6).

5.1 QoS Routing Metrics

Quality-of-Service (QoS) is a broad term in computer networks, and its precise meaning pretty
much depends on the context. Regarding our work, in specific, QoS metrics can be defined as
metrics used to quantitatively measure the quality of service of a network and/or network service,
whereas typical QoS parameters considered are error rates (or packet loss, in the context of IP
computer networks), bandwidth, throughput, transmission and propagation delay, availability,
jitter etc. (DAS; CHAUDHURI, 2015).

In the pioneer (yet mostly up-to-date) work of (WANG; CROWCROFT, 1996), it is stated
a couple of requirements for QoS routing, such as complexity analysis, metric selection criteria,
and path computation algorithms. The key concepts of the paper are described below:

i. path computation algorithms must be efficient and scalable, i.e., routes must be calculated
in a feasible time considering the increasing number of nodes in the network, with time
complexity comparable to current shortest path calculation algorithms;

ii. metrics should reflect basic characteristics of the network, whereas each QoS requirement
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translates into a routing metric;

iii. whenever possible, metrics should be orthogonal to each other, i.e., no redundant infor-
mation should be presented among the metrics of the network. It is so because redundant
information can introduce interdependence that makes impossible the individual evalua-
tion of each considered metric.

We accept items i and ii above as a principle (ii is certainly valid at least in the case of Multi-
Constrained Routing), but item iii should be analyzed carefully. In fact, a certain degree of
redundancy (in the sense of a positive correlation) between the metrics may be desirable, as it
could help evaluate one metric only instead of two, i.e., the individual evaluation of each metric
can be neglected. Furthermore, if a considered metric is compound, stated as a function of other
metrics, the individual evaluation of each metric is not only possible, but probably mandatory,
even if the metrics are not orthogonal¹⁶.

5.2 Multi-Constrained Routing

Because end-user applications may require that more than one QoS metric is satisfied, one in-
teresting problem at the very core of QoS routing is finding paths that simultaneously satisfy
multiple constraints, whereas each constraint translates into a routing metric: e.g., finding paths
in which both delay (additive) and packet loss (multiplicative) are better than certain established
thresholds. For this reason, such a problem is called Multi-Constrained Routing (MCR).

Regarding the aforementioned case in which a desirable path in a network is the one satisfy-
ing a set of different metrics (i.e., multiple constraints). The theoretical basis for such cases is
established, as can be seen, for example, in the works of (WANG, 1999) and (KUIPERS et al.,
2002). In (WANG, 1999), it is shown that finding a path satisfying multiple metrics with addi-
tive (e.g., delay and hop-count) and multiplicative metrics (e.g., packet loss) is NP-complete; in
practice¹⁷, this means that shortest path computation in such cases is not be feasible for network
topologies with more than a couple of nodes, because the algorithms that provide exact solutions
are way too slow. By the way, such path may not exist at all.

This fact led to the proposal of heuristic approaches to deal with the problem. (KUIPERS
et al., 2002) provides an overview of heuristic algorithms with the goal of finding the shortest
paths subject to multiple constraints (or metrics), and a handful of subsequent papers also present

¹⁶Saying that two metrics are not orthogonal means there is some degree of redundant information between
metrics, but it does not state how much; therefore, in such cases, it is probably necessary to evaluate both metrics.

¹⁷Given the current status of the P versus NP problem.
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approaches to tackle the problem in both traditional and SDN environments, such as in (GUCK
et al., 2017).

One case worth noting is that the combination of one concave metric plus any other metric
(be it additive or multiplicative) is the only straight feasible combination when it comes to pro-
viding exact solutions. Not surprisingly, a lot of papers deal with the combination of bandwidth
(concave) and delay (TANTISARKHORNKHET; WERAPUN, 2016) (TOMOVIC; RADUSI-
NOVIC, 2018) (BADIS; AGHA, 2003).

5.3 Link-State QoS Routing

We choose to present this Section because our simulations were executed with a link-state routing
protocol. Open Shortest Path First (OSPF) (RFC 1583; RFC 2328 – OSPFv2 (MOY, 1998),
and subsequent updates) is, perhaps, the most used Link-State routing protocol, employing the
Dijkstra algorithm as its shortest path calculation algorithm. Consequently, it was developed
such that routes are calculated based on the concept of cost, being the cost of the route the sum
of the costs per-hop across the path, and primarily taking reference bandwidth (default behavior
of the protocol), delay and load as possible metrics; it is also possible to manually adjust the
costs of the links with arbitrary weights.

Even though the original OSPF already offered the possibility of rudimentary QoS routing
(with delay and load as possible metrics), subsequent research, as in RFC 2676 – “QoS Routing
Mechanisms and OSPF Extensions” (APOSTOLOPOULOS et al., 1999), proposed extensions
to OSPF to support QoS mechanisms. In addition to these efforts, there are also Traffic Engi-
neering (TE) extensions to OSPF that can be employed to provide and maintain QoS policies in
the network, such as (but not limited to) described in RFCs 3630, 4973, and 8330.

5.4 Single Mixed Metrics

The work (WANG; CROWCROFT, 1996) introduces the concept of a single mixed metric and
questions whether such an approach can support end-user QoS requirements, as follows:

“One possible approach might be to define a function and generate a single metric
from multiple parameters. The idea is to mix various pieces of information into a sin-
gle measure and use it as the basis for routing decisions.” (WANG; CROWCROFT,
1996).
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Still, in (WANG; CROWCROFT, 1996), the authors make two appointments:

i. single mixed metric does not permit the individual assessment of whether QoS require-
ments can be met, and can be used only as an indicator;

ii. a problem of metric composition may arise when mixing some classes of metrics, such
as with concave and additive metrics. For example, considering a path with two hops 𝑎𝑏
and 𝑏𝑐, if metric 𝑓 (𝑝𝑡) (𝑝𝑡 stands for “path”) is delay, the composition rule is additive
( 𝑓 (𝑎𝑏+𝑏𝑐) = 𝑓 (𝑎𝑏) + 𝑓 (𝑏𝑐)); if it is bandwidth, the composition rule is concave ( 𝑓 (𝑎𝑏+
𝑏𝑐) = 𝑚𝑖𝑛[ 𝑓 (𝑎𝑏), 𝑓 (𝑏𝑐)]). But if 𝑓 (𝑝𝑡) is a product of bandwidth and delay, none of the
composition rules apply, and, in fact, a composition rule may not exist.

The first part of the statement in i is true because the value of a simple composition does
not have precise information about any individual QoS requirement, but we disagree with the
dismissal of a single mixed metric as a mere “indicator”: first, because as exposed throughout
this work, a single mixed metric based on delay and packet loss may be employed to enhance
transport layer protocols performance, in particular, TCP throughput performance (and most
probably other connection-oriented transport protocols); and, second, there is longstanding work
in the literature that present good results with single mixed metrics, such as in (COSTA; FDIDA;
DUARTE, 2000), who in the early 2000’s already demonstrated the feasibility of the single mixed
metric in terms of processing requirements, which is a relevant concern.

Furthermore, although the exposed in ii is entirely true, the absence of a composition rule
per se does not rule out the possibility of the feasibility of shortest path calculation mechanisms
based on the single mixed metric, like Dijkstra algorithm, as we demonstrated in Chapter 3:
simply put, the existence of a coherent composition rule is not a pre-requisite to the adoption of a
routing metric. In Section 5.4.1, we detail some of the papers in the research field. Those include
mostly solutions to the Multi-Constrained Routing problem based on single mixed metrics.

5.4.1 Selected Papers

In (COSTA; FDIDA; DUARTE, 2000), “Developing scalable protocols for three-metric QoS
routing”, it is presented SMM, a single mixed metric based on propagation delay (𝑑𝑝), available
bandwidth, and logarithmic transmission success (𝑠𝑙𝑜𝑔), where the cost is 𝑠𝑙𝑜𝑔+𝑑𝑝. The metric
is evaluated on link-state (LS) and distance-vector (DV) routing protocols (called SMM-LS and
SMM-DV, respectively). To showcase the metric feasibility, an heuristic based on residual loss
probability and metric combination is employed to achieve a scalable and polynomial running
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time algorithm. Furthermore, as the title suggests, it goes beyond the metric scope, analyzing
other aspects of the routing processes involved, such as the count-to-infinite problem of DV
routing protocols, processing requirements, and link failure procedures.

In the second part of the work (BADIS; AGHA, 2003), the authors employ the single mixed
metric approach to tackle the Delay, Bandwidth, and Loss probability Constrained Least Hop
path problem (DBLCLH). Specifically, as a part of the heuristic solution proposed, they make use
of the combination of logarithmic transmission success function (𝑠𝑙𝑜𝑔) and delay (𝑑𝑝), where
the cost is 𝑠𝑙𝑜𝑔 + 𝑑𝑝, just like in (COSTA; FDIDA; DUARTE, 2000).

“A New Method for Multi-Constraint QoS Routing” (KHADIVI; SAMAVI; SAIDI, 2003)
presents a heuristic solution to the MCR problem based on the single mixed metric approach.
For the case of two constraints (e.g, 𝑤(𝑒) = 𝑑1𝑤1 + 𝑑1𝑤1, where 𝑤(𝑒) is the mixed metric,
𝑤1 and 𝑤2 are the single metrics, and 𝑑1 and 𝑑2 are constants), the mixed metric is a linear
combination of the two base metrics, and is based on Jaffe’s algorithm (JAFFE, 1984). The
novelty introduced in the work is that extending Jaffe’s consideration of link weights, they also
consider the variation of link weights.

A handful of Genetic Algorithm approaches are found in the literature with respect to QoS
routing (KOYAMA et al., 2004). Of those, ARGAQ (Adaptive Routing based on Genetic Al-
gorithm for QoS) (BAROLLI et al., 2003), yet another multi-objective optimization scheme
based on heuristics, aiming to improve on previous work, employs the single mixed metric:
𝑇 =

∑𝑛
𝑖=1 𝐷𝑇𝑖∏𝑛
𝑖=1 𝑇𝑆𝑅𝑖

, where 𝑇 is metric, 𝐷𝑇 is the delay time, and 𝑇𝑆𝑅 is the transmission success rate.
The gene coding scheme is based on Tree Junctions.

The work of Majd and Yaghmaee (MAJD; YAGHMAEE, 2006) presents FMM (Fuzzy
Mixed Metric), a single mixed metric built upon a fuzzy-based heuristic based on a modified
Dijkstra algorithm. The goal of the metric, which relies on available bandwidth, propagation de-
lay, and the logarithmic transmission success function, is to select routes in IP/MPLS networks,
aiming at fulfilling QoS requirements. Though the mechanism employed is not described in
sufficient detail, the simulations carried out by the authors suggest an incremental bandwidth
performance improvement upon previous related work.

In (ZHANG et al., 2006), it is presented an OSPFv3 single metric to IPv6 networks called
LUR (Link Utilization Ratio, which is the ratio between the link utilized bandwidth and the
link capacity). Apart from the explicit QoS concern, an important aspect of the metric that dis-
tinguishes it from the previously work described in this Section is its architecture designed to
integrate with OSPFv3 with ease (e.g., LSA flooding uses only one metric field of the control
packets). Although the authors here explicitly state the metric is not single mixed, but rather a
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single metric, we argue that this is disputable: since available bandwidth and reference band-
width are widely considered as single metrics, from another point of wiew, the LUR can also be
classified as a single mixed metric.

In (LIU; FENG, 2007), a single mixed metric based on Simulated Annealing (SARA) is
proposed to tackle the MCR problem in MANETs (Mobile Ad-Hoc Networks), because prior-
to-the-work existing methods for dealing with the problem in wired networks are deemed by the
authors not able to solve it effectively. The scheme employed to do so is a heuristic based on
an energy function that translates multiple QoS metrics into a single mixed metric and Markov
chain. In terms of performance, it is described as especially good for networks not very large in
scale.

Abramkina and Shuvalov (ABRAMKINA; SHUVALOV, 2016) propose another solution to
the MCR problem with the employment of a single mixed metric. It is stated that their solution
is based on Lagrangian Relaxation (specifically, SMM-LR, an acronym for single mixed Metric
with Lagrangian Relaxation), but, in our opinion, the text overall is very confusing, as well as
the results.

In (TANTISARKHORNKHET; WERAPUN, 2016), it is presented a QoS routing algo-
rithm for SDN environments based on a single mixed metric. With the use of the function
𝑓 (𝑝) = 𝑏(𝑝)

𝑑 (𝑝)×𝑙 (𝑝) , where 𝑏(𝑝), 𝑑 (𝑝) and 𝑙 (𝑝) represents bandwidth, delay and packet loss, re-
spectively, the metric employs a modified version of Dijkstra algorithm and aims to select QoS
parameters depending on the requirements of the applications (throughput, delay, jitter, packet
loss) according to quantized levels of service (low, medium, high).

5.5 TCP Performance

TCP performance is a vast research field. Therefore, we restrained ourselves to present the
categories of SDN and TCP (Section 5.5.1) and TCP in High-Speed Lossy Networks (Section
5.5.2) due to its proximity to our proposal, and described some of the related literature.

5.5.1 SDN and TCP

It is shown that MPTCP performance could be enhanced in SDN environments aided by SDN
controllers which can dynamically control TCP subflows based on the available capacity of the
routes (NAM; CALIN; SCHULZRINNE, 2016). Another MPTCP scheme for IoT networks in
SDN (IWATA; ITO, 2017) showed that throughput of proposed method was higher than normal
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TCP up to a certain delay difference between the available paths but lower if this difference was
greater than a certain threshold. The authors proposed the switching of forwarding methods
triggered by the delay difference between the paths, or, alternatively, delay outgoing packets to
reduce the delay difference between the paths.

Motivated by two specific drawbacks of current MPTCP implementation (fixed number of
subflows and high dependency on ECMP random hashing) (DUAN; WANG; WU, 2015), a
responsive MPTCP system was proposed for simultaneously solving both limitations in SDN-
based Data centers. The solution consists on a centralized SDN controller for smart subflow
route calculation and a monitor running on each server, aimed at actively adjust the number of
subflows.

The paper of Singh et al. (SINGH et al., 2019) addresses TCP performance in Wi-Fi net-
works with SDN-based mechanisms which avoid TCP sender from entering its congestion con-
trol mode, without violation of end-to-end semantics in the protocol. Per definition, TCP as-
sumes occurrence of congestion if packets are dropped in the end-to-end communication process
between hosts. Although a reasonable approach in wired networks, in wireless environments
packets are more likely to be dropped due to transmission factors rather than traffic congestion.

An SDN method in (BINDER; BOROS; KOTULIAK, 2015) performs TCP handoff that
achieves faster handoff times in comparison to classic redirection methods based on application-
level mechanisms. TCP handoff is a mechanism to non-disruptively handoff one TCP socket in
an endpoint from one host to the other, that is, to migrate the established TCP state from the
original host to a new one, in such a way the new host can directly communicate with the other
TCP endpoint.

In (SONG et al., 2016), it is presented an SDN congestion avoidance algorithm. The algo-
rithm checks the bandwidth utilization of each switch port in a given route and diverts flow traffic
to another path based on a threshold utilization is higher than an established threshold (70% as
default). Whenever the utilization of the original path is reduced to 50% or less, the original
path is put into use again. According to the authors, their approach brought improvements in
jitter, delay, and throughput in high congestion-prone networks.

For IoT applications in Data Centers, an SDN-based TCP congestion control mechanism
(SDTCP) is presented in (LU et al., 2017). The main idea is to classify flows as burst or back-
ground flows and reduce the sending rate of established (background) flows to guarantee traffic
of burst flows, which are usually presented as urgent ones. The reduction was implemented on
the advertised receiving window of TCP ACK packets.
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Omniscient TCP (OTCP), a congestion avoidance mechanism in SDN Data Center networks
that configures TCP congestion parameters based on route information such as delay, buffering,
throughput and topology, is presented in (JOUET; PERKINS; PEZAROS, 2016), as well as a
survey on detection and mitigation of congestion in SDN-based Data Center networks, including,
among other mechanisms, the aforementioned SDTCP and OTCP.

In (BAO et al., 2018), it is presented Explicit Centralized congestion avoidance mechanism
(ECTCP). It works by keeping track of TCP flow information in the controller and proper allo-
cation of bandwidth to flows in the network.

Finally, in (LAI et al., 2017) it is presented an analytical model for performance analysis of
TCP flows in SDN networks, that is, a model which takes TCP flows into consideration, instead
of a packet-level model of performance analysis.

5.5.2 TCP in High-Speed Lossy Networks

Besides the proposal of schedulers for Multipath TCP (MPTCP) in highly lossy networks (like
LAMPS (DONG et al., 2019)) and the development of a couple of multipurpose TCP variants
with the goal of addressing longstanding issues of TCP in specific scenarios (notably, the case
of wireless networks), which we consider as a related subject, literature is scarce regarding the
problem of TCP performance specifically in High-Speed Lossy Networks (i.e., both high speed
and lossy).

Of the few work found in the literature that addresses the aforementioned problem, there are
mechanisms such as DVPTCP (Dynamic Virtual Parallel TCP) (SU et al., 2019), a delay-based
TCP congestion control algorithm that adjusts the number of virtual parallel streams dynami-
cally; this, to some extent, is analogous to the employment of multiple standard TCP streams
to increase throughput, but taking multiple round-trip times (𝑅𝑇𝑇) of multiple routes into con-
sideration. In (SHI et al., 2009), to tackle the same problem, it is presented RACC (Receiver
Assistant Congestion Control mechanism), a TCP congestion control mechanism that combines
loss-based and delay-based features. (LI et al., 2021) proposes Sphinx, a novel transport protocol
alternative to TCP that addresses the problem of throughput performance in mobile High-Speed
Lossy Networks, i.e., mobility is also taken into consideration.

In a sense, we consider that our work is complementary to such efforts because regardless of
the scheme employed in the Transport Layer, the chosen routes will allow higher throughput to
the individual TCP sub-flows (e.g., for DVPTCP, with TCPBP, a lower number of sub-flows may
be sufficient to obtain the same throughput of DVPTCP with routes computed with traditional
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metrics).

5.6 Practical Uses of the Inverse-Square Root Law

The work of (BASSO et al., 2012), described in Section 2.5.4, presents an application-level
approach for the measurement of packet loss rate in a TCP data transfer that is based on the
inverse-square root law, with the results deemed as accurate. Regarding this work, it is partic-
ularly interesting to note that it needs a more accurate TCP throughput prediction model than
ours. This is so because we do not need to present specific and accurate values for 𝑑 and 𝑝,
only provide the route that achieves the best TCP performance according to the TCP throughput
prediction, i.e., the route with the best 𝑑√𝑝 value. Here, an analogy can be made as follows: if
one wants to measure the actual speed of a car on a highway (for means of possibly fining an of-
fending driver), it is desirable to obtain a value closer to the actual speed in km/h, but if we have
two or more cars competing against each other at an illegal car racing competition, measuring
the speed of the cars is not necessary for one to say who is going faster (in fact, such task can be
done with the eyesight, unless speeds are very close).

In (LAN et al., 2021), it is presented “Packet Loss Measurement Based on Sampled Flow”
(PLMBSF), a model for packet loss rate (PLR) measurement based on the inverse-square root
law, TCP network flow sampling (that can be obtained, for example, with NetFlow), and statis-
tical regression analysis. Based on the experimental validation, it is argued that the method is
accurate compared with active trace-based loss measurement. Because the authors also claim
their proposal suits to “real-time requirements of current high-speed backbone performance mon-
itoring”, we believe their method can be improved with the usage of the linear regime for TCP
throughput instead of the inverse-square root law.
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6 | Conclusion

In this thesis, we examined the problem of route selection taking into account the throughput
provided by the Transport Layer with TCP in High-Speed Lossy Networks in the face of delay and
packet loss. Specifically, we proposed the utilization of a paradigm that relies on a single mixed
metric based on end-to-end delay (𝑑) and packet loss (𝑝) (TCPBP), which aims to optimize
single-path TCP throughput per-route. The basic intuition of this approach is that the per-flow
throughput performance in such cases is proportional to 1/ 𝑓 (𝑑,𝑝), so, finding the adequate
model for 𝑓 (𝑑,𝑝) and routes that minimize it may yield optimal (or at least better than of existent
metrics) throughput-wise paths if the available bandwidth is not an issue and other conditions
stated in Section 3.6.2 are met. In the specific case of TCPBP, we have shown that the inverse-
square root model applies, therefore 𝑓 (𝑑,𝑝) = 1

𝑑
√
𝑝 .

We also demonstrate that, in an emulated SDN High-Speed Lossy Network, TCPBP provides
better TCP throughput performance in comparison to pure delay and hop-count metrics. Thus,
TCPBP proved feasible in the sense of providing routes whenever link-state information can be
properly measured and reliably fast enough retrieved by the Control Plane (in the case of our
proof-of-concept, the SDN controller), to ensure good convergence behavior, regardless of the
network topology.

In some networks, however, TCPBP may not present relevant benefits in the face of the in-
creased complexity of the protocol (e.g., because routes found with classic metrics: (1) already
provide maximum TCP throughput, as could be the case of delay; (2) satisfy QoS criteria; or
(3) because TCP throughput performance is not critical), or even provide worse routes with less
available bandwidth. Since the single mixed metric proposed does not take bandwidth (either
available or consumption) into consideration, such issues should be treated separately, as is the
case of, for example, Capacity Based Routing (HAN, 2011). Furthermore, depending on viola-
tions of the assumptions in which the inverse-square root model is based, as is the case of high
packet loss (𝑝 ≫ 5%), or low packet loss (in which the linear regime applies, and the estimation
of packet loss with a passive approach may be more complicated to perform), the TCPBP metric
may not produce the best paths for TCP performance, as discussed in Section 2.5.3.

As for the proof-of-concept, we evaluated the TCPBP on SDN environments for their prospects
in the future of computer networks: SDN can provide the advantages of centralized program-
ming of a routing protocol running as an API in a centralized or distributed hardware with far
greater capabilities (e.g., CPU and memory) than ordinary forwarding devices, thus allowing the
usage of sophisticated and tailor-made QoS routing protocols that are more space and time-wise
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expensive algorithms than usual, including the possibility of parallelism. For so, it is suitable
for the adoption of routing metrics and protocols that can account for the peculiarities of a given
network topology, and we conclude that TCPBP matches very well with SDN.

Though we presented a novel shortest path calculation mechanisms (modified Dijkstra) for
link-state protocols, i.e., based on algorithms that work with a complete view of the network
topology, we should emphasize that TCPBP is a metric that satisfies the conditions of mono-
tonicity and isotonicity, not a routing protocol. Therefore, it is suitable for any routing scheme
(proactive or reactive routing; link-state or vector-distance protocols; and source routing or hop-
by-hop routing) if delay and packet loss estimation of the links in the network can be periodically
retrieved with sufficient precision and diffused to the Control Plane.

From the theoretical exposition and experimental evaluation, TCPBP seems to be a feasible
approach, as the proof-of-concept results show throughput improvement in steady-state flows
consonant with the TCP throughput prediction model itself, suggesting that TCPBP use should
be considered whenever it is possible, and its effects are desirable. Given a flexible SDN envi-
ronment, for example, TCPBP on top of default OSPF metric can be evaluated with minimal
intrusion on network traffic, which is possible in many ways, such as with flow discrimination in
the flow table rules (e.g., installing TCPBP to provide route metric to specific flows, and evaluate
the effects on throughput performance).

Nevertheless, to present a more detailed account of TCPBP performance and its possibilities
of usage, further investigation and future works regarding specific cases are needed, like through-
put and convergence performance evaluation with a greater number of forwarding devices and
links, on specific topologies – Wireless Mesh Networks, Low Power and Lossy Networks, or ISP
backbones, for example –, and asymmetric routing.

6.1 Future Work

Opportunities for research in future works are described below:

i. practical aspects of TCPBP in real networks: our work provided guidelines for TCPBP
adoption, presenting only a basic proof-of-concept based on a simulated environment.
Therefore, the implementation of TCPBP in real networks is necessary to assess its per-
formance and discuss practical aspects. For example, although 𝑑 and 𝑝 are prone to change
with respect to bandwidth utilization in the case of WMNs, in practice, it is not clear how
much impact it has on the TCPBP utilization in such networks;
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ii. bandwidth issues in TCPBP: the adoption of a metric that is based on quality aspects like
delay or packet loss may repel traffic from links deemed “poor”, or, conversely, attract traf-
fic to links deemed “good”. This is a good thing if congestion can be prevented with other
measures, but, in any case, TCPBP raises a concern involving bandwidth consumption;

iii. TCPBP performance with non-persistent flows: HTTP is one of the most commonly
used protocols on the Internet and mainly uses non-persistent TCP flows to retrieve WEB
pages, so we consider it an important subject of research. Therefore, another research
focus could be TCPBP performance evaluation in the transient state (non-persistent flows).
Even though such flows, according to the literature, comply with the inverse-square root
model assumptions, it was not evaluated in the present work;

iv. route stability: further research on route stability mechanisms (like dampening or hys-
teresis algorithms) is needed to avoid unnecessary re-convergences resulting from the
adoption of TCPBP. For example, TCPBP may produce one or more routes with an ar-
bitrarily close value of 𝑑√𝑝 relative to the best route. In contrast, this difference may not
be statistically significant (meaning that there are two or more best routes); this may trig-
ger re-convergence not because of changes in the network dynamics but by measurements
that may differ from time to time, possibly resulting in routing instability. In this case,
both routes with a close value of 𝑑√𝑝 can be used to balance traffic in the network, or a
threshold value to classify the routes may be desirable;

v. interdomain routing: TCPBP is a routing metric, not a traffic engineering solution. Since
a lot (if not most) TCP flows on the Internet occur between different network adminis-
trative domains (e.g., interdomain routing between different autonomous systems) with
routes defined not only by intradomain protocols, but also by BGP, where most networks
are not lossy, it is possible to evaluate the usage of BGP extensions similar to BGP-LS
(GINSBERG et al., 2019) to propagate key values of 𝑑√𝑝;

vi. link-state measurement and estimation: although in this work we have used passive
measurement and simple moving averages to perform link estimation of the emulated
parameters, active measurement alongside other more sophisticated link estimation tech-
niques can be considered to account for link quality variability over time and one-way
delay proper computation in the context of the TCPBP. Since the appropriate link-state
measurement is critical to ensure the proper calculation of 𝑑√𝑝, thus critical to the TCPBP
metric operation, we consider it crucial;

vii. energy consumption due to re-transmissions: in some networks, energy consumption
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is a critical factor. If TCP or other reliable connection-oriented transport protocol is used
in such environments, avoiding re-transmissions may be interesting to reduce power con-
sumption; thus, there may be the possibility of the employment of TCPBP alongside other
mechanisms to save energy;

viii. performance enhancement of other transport protocols: the possibility of extending
the TCPBP principle to other transport layer protocols, such as QUIC, upon the establish-
ment of a throughput prediction model, seems to be a possibility worth investigating;

ix. comparison with other metrics: although we have compared TCPBP to delay and hop-
count metrics in the proof-of-concept, because of the prevalence of those metrics in most
intradomain networks nowadays, a comparison of TCPBP and some of the metrics shown
in Section 5.4.1, such as SMM-LS or SMM-DV, could also be a potential future work.
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