UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

FELIPE MOLINARI MARCONDES

REDUÇÃO DO CONSUMO DE ÁGUA POTÁVEL DE UMA EDIFICAÇÃO
UNIFAMILIAR UTILIZANDO O SISTEMA DE APROVEITAMENTO DE ÁGUA
PLUVIAL NO MUNICÍPIO DE PATO BRANCO - PR

PATO BRANCO 2022

FELIPE MOLINARI MARCONDES

REDUÇÃO DO CONSUMO DE ÁGUA POTÁVEL DE UMA EDIFICAÇÃO UNIFAMILIAR UTILIZANDO O SISTEMA DE APROVEITAMENTO DE ÁGUA PLUVIAL NO MUNICÍPIO DE PATO BRANCO - PR

REDUCTION OF THE DRINKING WATER CONSUMPTION OF A SINGLE-FAMILY BUILDING USING THE RAINWATER HARVESTING SYSTEM IN THE MUNICIPALITY OF PATO BRANCO - PR

Trabalho de Conclusão de Curso de graduação, apresentado como requisito para obtenção do título de Bacharel em Engenharia Civil da Universidade Tecnológica Federal do Paraná (UTFPR).

Orientador: Prof. Dr. Cesar Augusto Medeiros Destro.

PATO BRANCO

2022

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do trabalho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es). Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

FELIPE MOLINARI MARCONDES

REDUÇÃO DO CONSUMO DE ÁGUA POTÁVEL DE UMA EDIFICAÇÃO UNIFAMILIAR UTILIZANDO O SISTEMA DE APROVEITAMENTO DE ÁGUA PLUVIAL NO MUNICÍPIO DE PATO BRANCO - PR

Trabalho de Conclusão de Curso de graduação, apresentado como requisito para obtenção do título de Bacharel em Engenharia Civil da Universidade Tecnológica Federal do Paraná (UTFPR).

Orientador: Prof. Dr. Cesar Augusto Medeiros Destro.

Cesar Augusto Medeiros Destro
Doutorado em Engenharia de Recursos Hídricos e Ambiental
Universidade Tecnológica Federal do Paraná

Murilo Cesar Lucas
Doutorado em Engenharia Hidráulica e Saneamento
Universidade Tecnológica Federal do Paraná

Cleovir José Milani
Doutorado em Programa de Pós-graduação em Engenharia Civil e Ambiental
Universidade Tecnológica Federal do Paraná

PATO BRANCO

DEDICATÓRIA

Dedico este trabalho aos meus pais, que estiveram ao meu lado a todo momento, investindo e acreditando em mim, para a realização dos meus sonhos.

AGRADECIMENTOS

Em primeiro lugar eu agradeço a Deus por ter me guiado ao longo de toda essa trajetória.

A minha mãe Loureci pelo cuidado, pela atenção, pela educação e por todo o carinho em todos os momentos da minha vida.

Ao meu pai Alandi, por todo incentivo, investimento e ensinamentos que me deu para que eu pudesse realizar este sonho.

A minha irmã Alana por toda ajuda e dicas que me deu para que eu me tornasse uma pessoa melhor.

Ao meu amigo Gabriel R. Primon pelo companheirismo, pelas diversas ajudas e trabalhos feitos juntos, além das milhares conversas neste percurso.

Aos meus amigos que sempre estiveram presentes em diversos momentos para me ajudar, me alegrar e para ouvir minhas reclamações ao longo de todo o curso.

Ao meu orientador, Prof. Dr. Cesar A. M. Destro, por ter tornado possível a realização deste trabalho e por todo auxílio durante a elaboração.

RESUMO

Diante do cenário de escassez de água mundial, a sociedade tem buscado alternativas para a mitigação deste problema. As técnicas de aproveitamento de água de chuva de coberturas para fins não potáveis têm contribuído para a conservação e uso racional da água. Este trabalho tem por objetivo analisar o potencial de redução do consumo de água potável de uma edificação utilizando um sistema de aproveitamento de águas de chuva, no município de Pato Branco - PR. A água de chuva armazenada poderá ser utilizada para a lavagem de veículos, lavagem de piso, rega de jardim e de plantas, e nas descargas da bacia sanitária. A pesquisa desenvolveu o levantamento de dados pluviométricos da região, a estimativa do volume de água consumido, a estimativa da demanda de água não potável pelas atividades que possuem restrição no uso, os dimensionamentos dos componentes do sistema, e a utilização de alguns métodos da NBR 15527 (ABNT, 2007), e do software Netuno para o dimensionamento do reservatório. Foi determinado um volume de reservatório inferior de 6,5 m³ e superior de 0,5 m³, como também um potencial de economia de água potável de 26% gerado pela implantação do sistema de aproveitamento, obtendo resultados satisfatórios para a conservação da água no município de Pato Branco.

PALAVRAS CHAVES: Aproveitamento de água de chuva; Sustentabilidade; Cisternas; Economia de água potável.

ABSTRACT

In face with the world wise water scarcity, society has been searching for alternatives to reduce this problem. The techniques of rainwater harvesting from roofs for non-potable purposes have contributed to water conservation and the rational use of water. Based on this idea, this study aims to analyze the reduction of potable water consumption from a building using a rainwater harvesting system in the city of Pato Branco, Paraná. The water stored by rainfall can be used to wash cars, floors, water gardens and plants, and flush toilets. The research method developed pluviometric data gathering from the region, the estimation on the volume of water consumed, the demand of non-potable water by the activities that have restriction in use, the sizing of the system components, the use of some methods from NBR 15527 (ABNT, 2007), and the software Netuno for the reservoir sizing. In the end, a lower reservoir volume of 6.5 m³ and an upper reservoir volume of 0.5 m³ was determined, as well as a potable water savings potential of 26% generated by the implementation of rainwater harvesting system, obtaining satisfactory results for water conservation in the municipality of Pato Branco.

KEY WORDS: Rainwater harvesting; Sustainability; Potable water saving; Rainwater tank.

LISTA DE ILUSTRAÇÕES

Figura 1 - Mapa mundial da escassez média anual de água, período (1996-2005)21
Figura 2 - Cisterna de placas de concreto de 16.000 L construída pelo P1MC26
Figura 3 – (a) Grade sobre a extensão da calha. Fonte: MAC - Meio ambiente e
construção (2017) (b) Grade hemisférica flexível para saída da calha. Fonte: Tigre
(2022)31
Figura 4 – Modelo de filtro comercial para retenção de materiais grosseiros32
Figura 5 - Dispositivo de descarte da primeira chuva33
Figura 6 - Reservatório de auto-limpeza com boia de nível34
Figura 7 - Localização do Município de Pato Branco no Estado do Paraná44
Figura 8 - Série histórica de chuvas para Pato Branco/PR (1964-2019)46
Figura 9 – Tela de entrada do programa netuno56
Figura 10 – Dados de entrada do reservatório superior no programa Netuno57
Figura 11 - Entrada de dados para análise econômica no programa Netuno61
Figura 12 - Precipitação média mensal no período analisado62
Figura 13 – Diagrama de massas - Método de Rippl gráfico67
Figura 14 - Gráfico dos volumes do reservatório inferior em litros em razão do
potencial de economia de água potável (%)73
Figura 15 - Gráfico dos volumes do reservatório inferior em litros em razão do potencial
de economia de água potável (%) considerando o reservatório superior74

LISTA DE TABELAS

Tabela 1 - Coeficientes de <i>runoff</i> médios
Tabela 2 - Estimativas da demanda residencial de água não potável para usos interno
3
Tabela 3 - Estimativa da demanda por água não potável par usos externos3
Tabela 4 - Parametrização do consumo de água nas edificações3
Tabela 5 - Parâmetros mínimos para usos não potáveis4
Tabela 6 - Dados de precipitação média mensal no município de Pato Branco entre o
anos de 1964 a 20214
Tabela 7 - Capacidade de calhas semicirculares com coeficiente de rugosidad
n=0,11 (Vazão em L/min)4
Tabela 8 - Coeficientes de rugosidade n de Manning5
Tabela 9 - Demanda de água potável6
Tabela 10 - Resumo do consumo de água não potável6
Tabela 11- Parametrização do consumo para a edificação6-
Tabela 12 - Vazões de projeto das calhas de acordo com a área de contribuição6
Tabela 13 – Dimensionamento reservatório de autolimpeza6
Tabela 14 - Resumo considerações inicias para os dimensionamentos6
Tabela 15 - Resumo das simulações mensais para o caso do reservatório inicialment
vazio6
Tabela 16 - Resumo das simulações mensais para o caso do reservatório inicialment
cheio6
Tabela 17 - Resumo das simulações diárias para o caso do reservatório inicialmento
cheio70
Tabela 18 – Resumo das simulações diárias para o caso do reservatório inicialmente
vazio7
Tabela 19 – Comparação da precipitação com a precipitação média mensal7
Tabela 20 - Resumo do dimensionamento do reservatório pelos diferentes método
7
Tabela 21 - Resumo dados de dimensionamento do reservatório7
Tabela 22 - Volumes dos reservatórios por situação dos dados
Tabela 23 - Comprimentos equivalentes para as conexões da tubulação de sucção
recalque79

Tabela 24 - Altura manométrica	80
Tabela 25 - Potência da bomba	80
Tabela 26 - Economia gerada na edificação	81
Tabela 27 – Potencial de economia de água potável pelo programa Netuno	82
Tabela 28 - Resumo dos potenciais de economia de água por estudo	83

LISTA DE ABREVIATURAS E SIGLAS

ABNT Associação Brasileira de Normas Técnicas

AL Alagoas

ANA Agência Nacional de Águas

ANQIP Associação Nacional para a Qualidade das Instalações Prediais

ASA Articulação no Semiárido Brasileiro

CONAGUA Comissão Nacional de Águas

ERSAR Entidade Reguladora de Serviços de Águas e Resíduos

FIESP Federação das Indústrias do Estado de São Paulo

GO Goiás

IBGE Instituto Brasileiro de Geografia e Estatística

IAT Instituto Água e Terra

NBR Norma Brasileira

P1MC Programa Um Milhão de Cisternas

PCA Programa de conservação de água

PR Paraná

PURAE Programa de Conservação e Uso Racional de Águas nas Edificações

PVC Policloreto de vinila

RJ Rio de Janeiro

RO Rondônia

SANEPAR Companhia de Saneamento do Paraná

SindusCon Sindicato das Indústrias de Construção Civil

SNIS Sistema Nacional de Informações sobre Saneamento

SP São Paulo

Vol. Volume

LISTA DE SIMBOLOS

- A Área de captação
- A_o Área de seção do orifício
- C Coeficiente de escoamento superficial (runoff)
- C_d Consumo diário
- C_m Consumo mensal
- Cp Consumo per capita
- D Diâmetro
- D(t) Demanda de água no tempo t
- DHr Perda de carga no recalque
- DHs Perda de carga na sucção
- Dr Diâmetro de recalque
- g Aceleração da gravidade
- H Altura lâmina d'água na calha
- Hg Desnível geométrico
- H_m Altura manométrica total
- h₀ Altura de água sobre o orifício
- I Intensidade pluviométrica
- J Perda de carga
- L Comprimento do condutor vertical
- n Número de habitantes
- nr Número de meses que o reservatório não atendeu a demanda
- nt Número total de meses
- P Precipitação média mensal
- P(t) Índice pluviométrico no tempo t
- Pot Potência
- Q Vazão
- Q(t) Volume de água captada no tempo t
- Rr Confiança
- S(t) Volume de água no reservatório no tempo t
- $S_{(t-1)}$ Volume do reservatório no tempo t -1
- t Duração
- T- Período de funcionamento da bomba por dia

TR – Tempo de retorno

V – Volume do reservatório

γ - Peso específico da água

η - Eficiência global

SUMÁRIO

1.	INTRODUÇAO	17
2.	OBJETIVO	19
2.1	OBJETIVO GERAL	19
2.1.1	Objetivos específicos	19
3.	REFERENCIAL TEÓRICO	20
3.1	PROBLEMÁTICA DA ESCASSEZ DE ÁGUA	20
3.2	CONSERVAÇÃO DA ÁGUA	22
3.2.1	Redução no consumo de água potável	23
3.3	APROVEITAMENTO DE ÁGUA DE CHUVA	24
3.3.1	Aproveitamento das águas pluviais para fins não potáveis	27
3.4	SISTEMA DE CAPTAÇÃO DE ÁGUA PLUVIAL	28
3.4.1	Precipitação	28
3.4.2	Área de captação	29
3.4.3	Calhas e condutores verticais	30
3.4.4	Grades e filtros	30
3.4.5	Dispositivo de descarte da primeira chuva	32
3.4.6	Tratamento	34
3.4.7	Reservatório de armazenamento	35
3.4.8	Bombeamento	36
3.5	DEMANDA DE ÁGUA	36
3.5.1	Estimativas de consumo	37
3.6	QUALIDADE DA ÁGUA	40
3.6.1	Qualidade da água da chuva	40
3.6.2	Qualidade requerida para uso não potável na edificação	41
3.7	LEGISLAÇÃO	42
4.	METODOLOGIA	44
4.1	ÁREA DE ESTUDO	44
4.2	LEVANTAMENTO DE DADOS	45
4.2.1	Dados Pluviométricos	45
4.2.2	Estimativa da demanda de água potável	47
4.2.3	Estimativa da demanda de água não potável	47
4.2.4	Coleta e coeficiente de escoamento superficial	48

4.3	DIMENSIONAMENTO DO SISTEMA DE COLETA DE ÁGUAS PLUVIAIS	3 48
4.3.1	Calhas e tubos de queda	.49
4.3.2	Sistema de descarte da água inicial	.50
4.3.3	Reservatório de armazenamento	.51
4.3.3.1	Método de Rippl	.51
4.3.3.2	Método da Simulação	.52
4.3.3.3	Método Azevedo Neto	.53
4.3.3.4	Método prático alemão	.54
4.3.3.5	Método prático inglês	.54
4.3.3.6	Confiança	.54
4.3.4	Programa Netuno	.55
4.3.5	Sistema elevatório	.57
4.4	ECONOMIA DE ÁGUA NA EDIFICAÇÃO	.59
4.4.1	Potencial de economia de água potável	.59
4.4.2	Método do Software Netuno	.60
4.4.3	Comparação com outros estudos	.61
5.	RESULTADOS E DISCUSSÃO	.62
5.1	LEVANTAMENTO DE DADOS	.62
5.1.1	Dados Pluviométricos	.62
5.1.2	Estimativa de demanda de água	.62
5.2	SISTEMA DE COLETA DE ÁGUA	.64
5.2.1	Calhas e tubos de queda	.64
5.2.2	Descarte de água inicial	.65
5.3	DIMENSIONAMENTO DO RESERVATÓRIO DE ARMAZENAMENTO	.66
5.3.1	Método de Rippl	.66
5.3.2	Método da Simulação	.68
5.3.2.1	Simulações mensais	.68
5.3.2.2	Simulações diárias	.69
5.3.3	Método Azevedo Neto	.71
5.3.4	Método prático alemão	.72
5.3.5	Método prático inglês	.72
5.3.6	Programa Netuno	.72
5.3.6.1	Simulação 01	.72

5.3.6.2	Simulação 02	73	
5.3.6.3	Simulação 03	74	
5.3.7	Dimensionamento do reservatório	75	
5.3.7.1	Outros estudos	76	
5.4	SISTEMA ELEVATÓRIO	78	
5.5	ECONOMIA DE ÁGUA	80	
5.5.1	Potencial de economia de água potável	81	
5.5.2	Análise econômica	82	
5.5.3	Outros estudos	82	
6.	CONCLUSÕES	85	
REFER	RÊNCIAS	87	
APÊNI	DICE A – CÁLCULO MÉTODO DE RIPPL MENSAL	93	
APÊNI	DICE B – CÁLCULO RIPPL DIÁRIO	95	
APÊNI	DICE C – CÁLCULO MÉTODO DE RIPPL GRÁFICO	105	
APÊNI	DICE D – MÉTODO DA SIMULAÇÃO MENSAL	107	
APÊNI	DICE E – MÉTODO DA SIMULAÇÃO DIÁRIA	112	
ANEXO	O A	130	
ANEXO) B	131	
ANEXO	O C	132	
ANEXO	D	133	
ANEXO) E	134	
ANEXO) F	135	
ANEXO) G	136	
ANEXO) H	137	
ANEXO I138			
ANEXO J139			
ANEXO K140			

1. INTRODUÇÃO

A água é um recurso primordial para a nossa sobrevivência, visto que ela é indispensável para a manutenção da natureza e dos próprios seres humanos. Sendo também um grande recurso estratégico desde a formação das sociedades, desempenhando papel de grande importância no transporte, no fornecimento de alimentos e no desenvolvimento da agricultura.

A população global no último século (1900-2000) quase quadriplicou, e neste mesmo período o consumo de água *per capita* aumentou em 9%, entretanto este consumo não é semelhante em todo o mundo. Embora a variação no consumo per capita tenha aumentado, a população vivendo sob algum grau de escassez de água aumentou em quase 16 vezes, saindo de pouco mais de 200 milhões de pessoas nos anos de 1900 para 3,8 bilhões de pessoas nos anos 2000. Destas cerca de metade sofrem escassez moderada ou estresse hídrico, enquanto a outra metade enfrenta tanto o estresse hídrico quanto a escassez de água. Estes dados mostram uma tendência crescente na escassez de água (KUMMU et al, 2016).

Campos (2004) comenta que a demanda de água cresceu devido a urbanização desenfreada, causando uma diminuição da disponibilidade de recursos como a água, e para combater este problema, o uso racional é um bom caminho. Este uso racional da água pode ocorrer por meio de ações, econômicas, compreendendo incentivos ou multas pelo consumo mensal, ações socais, através de conscientização da população, e ações tecnológicas, com o uso arejadores em torneiras, caixas acopladas, aproveitamento de água de chuvas, e outras tecnologias que provoquem a economia de água (OLIVEIRA, 1999).

Neste contexto, é observado que a importância do tema de conservação de água nas edificações é crescente, buscando-se soluções e tecnologias alternativas que visam um melhor aproveitamento dos recursos hídricos. Sella (2011) comenta que as soluções alternativas têm como objetivo atingir o mínimo de impacto, para um maior conforto e economia nas construções.

A grande maioria das edificações desperdiçam água potável e não potável com um grau elevado de qualidade, utilizando-a para todos os fins. Sautchúk (2004) comenta sobre a necessidade de se utilizar soluções alternativas para usos de água não potáveis, de modo a reduzir o desperdício. Devido a isto, acredita-se que as

tecnologias alternativas constituem a maneira mais eficiente na redução do desperdício, por não haver necessidade de mudança de hábitos dos consumidores, não necessitando de ações diretas da população para redução do consumo (OLIVEIRA, 1999).

Desta forma, a utilização de cisternas em edificações, tem atuado como uma solução de controle de fonte, armazenando água durante eventos de chuva e posteriormente atendendo a demanda doméstica de água para uso interno e externo não potável (descarga da bacia sanitária, irrigação de jardim, limpeza de pisos etc.) (CAMPISANO, 2014). Por isso, este método desempenha um papel significativo na proteção e conservação, bem como na redução do uso de água potável e dos problemas de escassez.

Contudo há diversos motivos que influenciam na decisão de utilizar as águas de chuvas, Tomaz (2007) elenca alguns deles como: a conscientização da conservação da água, a baixa disponibilidade hídrica, as altas tarifas, o rápido retorno de investimento, a instabilidade no fornecimento de água, leis específicas, locais áridos ou períodos de estiagem.

O presente trabalho apresenta um estudo do sistema de captação e aproveitamento de água de chuva, com armazenamento em cisternas e uso em fins não potáveis para reduzir o consumo de água potável em uma edificação unifamiliar no município de Pato Branco, Paraná.

2. OBJETIVO

2.1 Objetivo Geral

O objetivo geral deste trabalho é analisar a redução do consumo de água potável de uma edificação utilizando um sistema de aproveitamento de águas de chuva, no município de Pato Branco, Estado do Paraná.

2.1.1 Objetivos específicos

- Caracterizar a área de estudo e estimar a demanda de água da edificação;
- Dimensionar o sistema de aproveitamento de água pluviais;
- Apresentar um resumo dos volumes dos reservatórios dimensionados pelos diferentes métodos;
- Comparar os volumes de reservatórios e potenciais de redução no consumo de água potável com outros estudos.

3. REFERENCIAL TEÓRICO

3.1 Problemática da escassez de água

Identifica-se que há uma exaustão nos recursos hídricos naturais, quer pela crescente demanda de água ou pela deterioração da sua qualidade. Santos e Malinowski (2005) consideram que existe um grande desafio para humanidade: atender à esta crescente demanda, quando o próprio insumo tende a escassez.

A água é um recurso finito e indispensável para a continuidade da vida em nosso planeta, a população mundial encontra-se em um cenário onde se faz necessário planejar como utilizar este bem para que as próximas gerações e a vida na Terra possam se perpetuar.

A disponibilidade global de água tem diminuído cada vez mais, a degradação ambiental, os impactos das mudanças climáticas e mudanças tecnológicas vêm causando severas pressões sobre a disponibilidade de recursos hídricos, devido à falta de chuvas e as alterações em seu ciclo, causando escassez em diversas áreas (YANNOPOULOS et al 2019).

Rijsberman (2005) define que as áreas de escassez de água são locais onde um grande número de pessoas estão por um período significativo de tempo sem acesso a água de forma segura e acessível para satisfazer suas necessidades de beber, lavar ou utilizá-la em seus meios de subsistências.

Veriato et al (2015) apresentam também que os recursos hídricos acessíveis para uso em nosso planeta estão distribuídos de forma desigual, com regiões onde a disponibilidade de água é escassa, e devido ao aumento da demanda por água um colapso pode acontecer, por isso é necessário o planejamento e gestão eficiente dos recursos hídricos.

As análises de Rijsberman (2005) concluem que a disponibilidade de água é proporcionalmente menor à medida que a população cresce, pois, a base deste recurso em geral é constante. Logo, em áreas onde a densidade populacional é alta e possuem baixa pluviosidade, a água tenderá a ser escassa.

De acordo com por Mekonnen e Hoekstra (2016) atualmente 4,0 bilhões de pessoas sofrem de escassez grave pelo menos 1 mês por ano. Os autores também

apresentam um mapa que representa a escassez média anual de água no mundo todo no período dos anos de 1996 a 2005 presente na Figura 1.

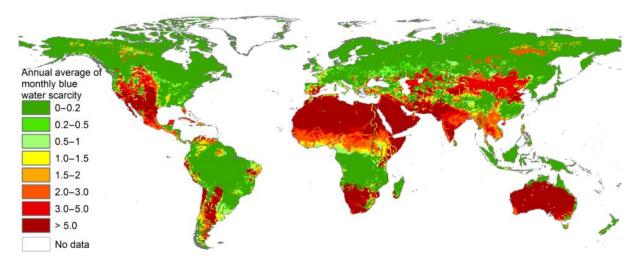


Figura 1 - Mapa mundial da escassez média anual de água, período (1996-2005) Fonte: Mekonnen and Hoekstra (2016)

Supõe se que não necessariamente a escassez de água ocorra devido à falta de água para o uso doméstico, pois a necessidade doméstica é pequena em comparação aos milhares de litros necessários para a produção de alimentos. Por exemplo, para produção de 1 kg de carne bovina é requerido cerca de 13,5 m³ de água (Rijsberman, 2005). Compreendendo que a escassez pode comprometer a segurança alimentar da população.

Logo o impacto econômico da escassez de água conforme descrevem Dolan et al (2021) surge com a dificuldade para obtenção de água, forçando uma mudança no consumo. Quando ocorre a escassez de água, as sociedades necessitam adaptar o comércio e os padrões de produção. Devido a isso, a economia sofre impactos, pois o custo de adaptação está relacionado a dificuldade de adotar essas mudanças.

No Brasil, apesar da riqueza em recursos hídricos, há uma má distribuição dos recursos entre as regiões. Isto somado a grandes centros com uma alta concentração de pessoas gera zonas de estresse hídrico, causando problemas como a falta de acesso a água para a população, além da contaminação das fontes de água (SAUTCHUK, 2004).

Chunyang et al (2021) citam que as soluções os problemas de escassez de água podem não estar disponíveis a todas as cidades, pois demanda de um alto investimento na infraestrutura hídrica e de desenvolvimento de novas tecnologias.

Para lidar com a escassez global é sugerido a promoção da conservação e redução da demanda de água, a aplicação de tecnologias de economias de água, como cidades esponjas, e cidades inteligentes.

Yannopoulos et al (2019) retratam que soluções de grande escala exigem investimentos significativos e podem não atender suficientemente todos as necessidades dos usuários. O aproveitamento de água pluvial é visto como uma alternativa promissora para o enfrentamento da escassez de água global, além do seu baixo impacto ambiental.

A coleta de águas de chuva opera como uma técnica sustentável na construção civil, no entanto de acordo com Yannopoulos et al (2019) é preciso um esforço significativo para estender este método, sendo necessário investimentos, informações, incentivos econômicos e legislação adequada. Tais necessidades podem ser alcançadas através de pesquisas e disseminação da importância do uso de águas pluviais.

3.2 Conservação da água

O Manual de conservação e reúso da água em edificações da Agência Nacional de Águas - ANA (2005), define a conservação de água como qualquer ação que reduza o consumo e desperdício de água, reduza a extração de fontes de suprimento, aumente a eficiência do uso da água ou ainda aumente a reciclagem e o reúso da água. Assim, para a conservação da água é necessário o uso racional deste recurso.

Para Sautchuk (2004) conservar água é atuar de forma sistêmica na oferta e demanda de água. Um uso eficiente da água atua de forma direta sobre a economia e expansão do uso dos recursos, podendo flexibilizar o seu uso para outros fins, como poder atender a demanda da população, além da preservação do meio ambiente. Além de que a racionalização do uso da água é elemento fundamental para sua conservação.

Em geral as edificações utilizam da água potável para a realização de quase todas as suas atividades, sem uma análise prévia da qualidade necessária da água para cada atividade. Em um conceito que há uma evolução na conservação da água, atividades que demandam de uma água em uma forma menos nobre devem ser supridas por águas de qualidade inferior (ANA/FIESP & SindusCon/SP, 2005).

Logo a utilização de um programa de conservação de água – PCA contém ações para gerir as ofertas e demandas de água de uma edificação, seja ela em fase de projeto ou já existente. Alguns fatores motivam a implantação de um PCA, entre eles a economia gerada pela redução do consumo, aumento da disponibilidade hídrica, agregação de valor do produto pela responsabilidade social (SLOB, 2015).

Entre as ações presentes em um PCA para redução de desperdício de água de um sistema destacam-se, a correção de vazamentos, redução de perdas seja por mau desempenho ou negligência do usuário, campanhas de sensibilização e educativas e instalação de tecnologias economizadoras nos pontos de consumo. No entanto o maior potencial na redução do consumo de água encontram-se nas ações que visam o aproveitamento de água, como aproveitamento de água pluvial e reúso de águas cinzas (ANA/FIESP & SindusCon/SP, 2005).

Neste contexto, é cada vez maior a importância da conservação da água de modo que esse recurso não seja escasso no futuro. O aproveitamento de água de chuvas é uma ótima forma de conservar a água nas edificações.

3.2.1 Redução no consumo de água potável

A redução do consumo de água potável pode ocorrer de diversas maneiras, sendo pela mudança de hábitos, pela aplicação de tecnologias, ou pela condição socioeconômica da população (DIAS et al, 2010).

Diversos estudos têm demonstrado que a implementação de um sistema de aproveitamento de água de chuva pode causar uma redução no consumo de água potável pelas edificações na substituição de seu uso em fins não potáveis.

Slob (2015) realizou uma análise da economia de água potável com captação de água de chuva em uma propriedade agroindustrial na cidade de Carambei – PR. Estimando uma demanda de 159 m³/mês de água não potável. Com a implementação do sistema de captação, toda a demanda de água não potável foi atendida pela água da chuva, equivalente a 1/3 da demanda total de água consumida na propriedade.

Cardoso (2013) realizou estudos de casos em cidades diferentes, utilizando do sistema de aproveitamento de água pluvial. Em uma edificação na cidade de Porto Velho – RO ocorreu uma economia de 45% de água. Em Goiânia – GO, em uma residência foi obtido uma substituição de 45% da água potável. Para a cidade de

Campos dos Goytacazes – RJ, foram analisadas uma residência e uma universidade, obtendo uma redução no consumo de água potável de 79% e 30% respectivamente.

Cadine (2017) analisou o uso de um sistema de aproveitamento de água de chuva na cidade de Anápolis – GO, com o estudo em um bairro com casas fornecidas por um programa do governo. Foi observado uma substituição de 28% do consumo de água total, ao utilizar a captação de água de chuva.

3.3 Aproveitamento de água de chuva

O aproveitamento de água de chuva é tão antigo que não se sabe quando foi seu início, há documentos datados de 830 a.C. na antiga de região de Moab próximo a Israel, sendo registrado em uma pedra moabita onde o rei Mesa determinava a construção de cisterna nas casas, sendo um método com tamanha eficiência, que é utilizado até hoje (TOMAZ, 2007).

Mesmo pela utilização do aproveitamento da água pluvial para o uso doméstico, agrícola e industrial, ao longo dos séculos, nas últimas décadas este sistema está ganhando maior destaque globalmente, devido a sua simplicidade e eficiência em atenuar o problema ambiental da escassez de água para consumo (MAY, 2004).

A prática do aproveitamento de águas de chuva atualmente continua em desenvolvimento, países como Japão, Estados Unidos, Cingapura, Bélgica, Suécia, Canadá, Espanha e Alemanha, entre outros já apresentam grande quantidade de sistemas instalados, utilizados para complementar os sistemas convencionais (YANNOPOULOS et al, 2019).

No México, com o Plano Nacional de Águas, os sistemas de aproveitamento de água pluvial são utilizados para a redução da escassez de abastecimento, aumentando o porcentual da população com acesso a água potável, além da melhora na eficiência dos serviços de águas municipais. A Comissão Nacional de Águas (CONAGUA) desenvolveu um programa para captação de água de chuvas e ecotécnicas em áreas rurais para o fornecimento de água para as populações rurais, sendo aplicado em diversos estados do país (FUENTES-GALVÁN et al. 2018).

Na França desde 2008, está em vigor um decreto sobre o aproveitamento de água de chuva, tratando de uma regulamentação, com os requisitos técnicos a

serem cumpridos pelas edificações, proibindo a utilização da água da chuva para beber ou tomar banho, permitindo o uso para descargas sanitárias e lavagem de pisos (VIALLE et al, 2015).

Em Portugal, nas diretrizes da ERSAR (Entidade Reguladora dos Serviços de Águas e Resíduos) só é permitida a utilização de sistemas de aproveitamento de água de chuva para o uso não potável, principalmente para fins de irrigação. Um documento técnico emitido em 2012 pela ANQIP (Associação Nacional para a Qualidade das Instalações Prediais) prevê os procedimentos a serem seguidos para instalação dos sistemas de captação de águas de chuva em edifícios (SILVA et al, 2015).

O Japão apresenta uma grande experiência do uso da captação de água pluvial. Desde 1980 eles exploram o uso de fontes alternativas para o uso não potável, além da captação de chuva para lidar com emergências, como inundações. É comum a instalação de cisternas de pequeno porte, com armazenamento inferior a 1 m³ em casas individuais. Existem também aproximadamente 2.800 sistemas de reciclagem de água ou uso de água pluvial de grande escala (YANNOPOULOS, 2019).

Em Tóquio, o governo impôs que todos os prédios com área construída maior que 30.000 m² façam o uso de mais de 100 m³ de água por dia para fins não potáveis, além de dever fazer a reciclagem de água servida (água de lavatórios, chuveiros e máquinas de lavar roupa). No intuito de conter enchentes, terrenos com área maior de 10.000 m² ou edifícios com área construída maior de 3.000 m² devem construir reservatórios de detenção de água de chuva (CARVALHO, 2010).

Nas Bermudas, o sistema de captação de água de chuva em telhados é obrigatório por lei, para todos os edifícios, sendo a principal fonte de abastecimento de água doméstico, esta lei estabelece os regulamentos para manutenção e conservação desse tipo de sistema (GOULD e LO, 2015)

Na Alemanha, o governo e a população apoiam de forma ativa o aproveitamento de água de chuva, o governo fornece apoio financeiro na construção de sistemas de captação de água pluvial (CARVALHO, 2010). Segundo Campos (2004) no início dos anos 2000 já existiam cerca de 100 fabricantes de acessórios para instalação de sistemas de captação, além do principal fabricante ter instalado quase 100.000 cisternas em 10 anos, contabilizando mais de 600.000 m³.

Além disso, em Berlim, capital alemã, cobra-se a taxa pelo despejo de água no sistema de esgoto por m³ de água potável consumida e outra taxa anual por m² de área impermeável, e de modo a incentivar os proprietários isenta-se aqueles que constroem os sistemas de coletas e armazenamento (SLOB, 2015).

No Brasil, destaca-se as experiencias com água pluvial na região nordeste, onde a escassez de água está presente, levando parte da população nordestina fazer o uso da água de chuva para suprir suas necessidades de consumo doméstico e atividades agrícolas, sendo o clima semiárido o pioneiro nesta prática (CARVALHO, 2010).

Em 2003 teve início o Programa de Formação e Mobilização Social para Convivência com o Semiárido: Um milhão de Cisternas Rurais (P1MC), idealizado pela Articulação no Semiárido Brasileiro (ASA), contendo um conjunto de ações para construção de cisternas para captação da água da chuva para consumo humano (ANA, 2006).

Tendo como maior financiador o governo federal brasileiro, o programa constrói cisternas de placa de concreto pré-moldadas (Figura 2), as quais são conectadas a um sistema de calhas junto aos telhados, para captarem e reservarem a água da chuva. Estas cisternas têm capacidade para 16.000 L de água, as quais são utilizadas para as demandas domésticas (GOMES e HELLER, 2013).

Figura 2 - Cisterna de placas de concreto de 16.000 L construída pelo P1MC. Fonte: Brasil, Governo Federal, 2020

O P1MC tem como alvo famílias rurais de baixa renda as quais sofrem pela falta de água ou pela seca. Para poder participar do programa, as famílias precisam estar inscritas no Cadastro Único para Programas Sociais do Governo Federal (BRASIL, 2020).

De acordo com a ASA (2022) até o mês de setembro de 2021, o P1MC já construiu 628416 cisternas para armazenar água para consumo humano, além de 7186 cisternas de armazenamento de água de 52.000 L em escolas.

Para regulamentar as construções que possuem sistemas de captação de água de chuva, a Associação Brasileiras de Normas Técnicas – ABNT (2007) publicou as diretrizes de projeto e dimensionamento para os sistemas de aproveitamento de água pluvial, a NBR 15527 – Água da Chuva – Aproveitamento de coberturas em áreas urbanas para fins não potáveis.

No Rio de Janeiro em 2004 foi instituída uma lei que obriga novas construções com área de impermeabilizada maior que 500 m² a construir reservatórios de captação de água de chuva, objetivando diminuir temporariamente a quantidade de água escoada para as redes de drenagem (ARAÚJO et al., 2008).

Em Curitiba segundo Carvalho (2010) foi criado o Programa de Conservação e Uso Racional de Águas nas Edificações (PURAE), com objetivo de instituir medidas de conservação e uso racional da água, além da utilização de fontes alternativas em novas edificações, como sistemas de captação e sistemas hidráulicosanitários projetados visando a sustentabilidade dos sistemas hídricos.

3.3.1 Aproveitamento das águas pluviais para fins não potáveis

Esta técnica caracteriza-se por sua diminuição na demanda de água fornecida pelas concessionárias de abastecimento, viabilizando uma redução nos custos com água potável, além da diminuição no escoamento para as redes de drenagem, baixando o risco de enchentes. Técnica que também é utilizada no combate ao problema de escassez de água.

A água de chuva pode ser aproveitada em fins não potáveis para os seguintes usos: descargas em bacias sanitárias; lavagem de veículos e calçadas, irrigação de jardim, usos industriais. Tomaz (2007) não recomenda o uso para lavagem de roupas devido ao parasita *Cryptosporidium parvum*, que para sua remoção necessita de um filtro lento de areia. Além de que esta água não substitui a

água potável utilizada para banho, ingestão e preparo de alimentos que é fornecida pelas concessionárias públicas.

Segundo May (2004) a utilização da água de chuva na limpeza de vasos sanitários é benéfica, devido ao alto consumo de água tratada em uma residência é destinado apenas para limpeza da bacia sanitária. Para que este tipo de sistema tenha sucesso, pelo risco de contaminação não se pode misturar água potável no mesmo sistema de distribuição, outro fator é a necessidade de desinfecção da água, pois podem oferecer risco a saúde dos usuários.

3.4 Sistema de captação de água pluvial

Santos (2002) configura o sistema de aproveitamento de águas de chuva constando com uma área de captação (telhado, piso, laje), sistema de condução (calhas, condutores horizontais e verticais), unidade de tratamento (reservatório de descarte inicial, filtros) e reservatório de armazenamento. Este sistema pode ainda necessitar de um sistema de recalque e um reservatório superior, além de uma rede de distribuição própria.

Para que seja projetado um sistema de coleta, tratamento e uso de água pluvial, o manual da ANA/FIESP & SindusCon/SP (2005) dispõe uma metodologia que segue as seguintes etapas: determinar a precipitação média local, área de coleta e o coeficiente de escoamento superficial, projetar os reservatórios de armazenamento, o reservatório de descarte inicial e os sistemas complementares (grades, sistema de condução, bombas, filtros), identificação da qualidade e demanda de água, estabelecer o sistema de tratamento necessário.

3.4.1 Precipitação

Segundo Tabalipa e Fiori (2008) as informações meteorológicas assumem um papel importante no desenvolvimento urbano, concedendo informações necessárias para um melhor aproveitamento dos recursos naturais.

De acordo com Peters (2006) a precipitação pluviométrica é um fator que atua diretamente no sistema, assim a regularidade das chuvas pode determinar a eficiência de um sistema de aproveitamento de águas de chuvas, de modo que o mesmo seja dimensionamento e otimizado para o clima no qual está inserido.

Deste modo, o levantamento dos dados de chuva é imprescindível para o dimensionamento, devido ao fato que o sistema só terá sucesso se houver chuva. Os dados sobre a quantidade de chuva interferem diretamente no tamanho, no custo e na eficiência do sistema de aproveitamento de água de pluvial.

3.4.2 Área de captação

Segundo May (2004) a quantidade de água que pode ser reservada depende diretamente da área de captação, do coeficiente de escoamento superficial e da precipitação atmosférica. As áreas de coleta utilizadas normalmente são telhados ou lajes da edificação, podendo ser também realizada por superfícies impermeabilizadas como calçadas e pátios.

Em geral, a captação através dos telhados é mais simples e produz uma água com melhor qualidade. As coberturas são executadas comumente com inclinações dependendo do tipo de material no qual é empregado, para o correto escoamento da água. Os telhados podem ser feitos com telhas de cerâmica, fibrocimento, zinco, ferro galvanizado e PVC, em concreto armado, manta asfáltica, entre outros, para cada tipo de material há um coeficiente de escoamento superficial. Para uma minimização das perdas, é recomendado os materiais com menores absorção para um sistema de captação de água de chuva (PETERS, 2006).

O coeficiente de escoamento superficial (C) chamado também de coeficiente de *runoff*, representa a água que efetivamente cai sobre a cobertura, coletada e transportada ao reservatório, ou seja, o *runoff* é a relação entre o volume total escoado e o volume total precipitado, considerando a absorção da superfície do telhado e possíveis perdas por evaporação, perdas na autolimpeza e outras (TOMAZ, 2007).

Segundo Tomaz (2009) o volume de chuva aproveitado não será o mesmo que o precipitado, pois são estimadas perdas de água por evaporação, vazamentos e lavagem do telhado, que vão de 10% a 33% do volume precipitado. O coeficiente de escoamento superficial apresenta uma ampla faixa de valores, indo de 0,67 a 0,9 de acordo com o tipo do material e localidade, na Austrália adota-se C = 0,9 e na Flórida C = 0,67.

Tomaz (2009) recomenda a adoção do coeficiente de C=0,80 para o Brasil, e apresenta valores médios para os diferentes materiais empregados nas coberturas, conforme mostra a

Tabela 1 - Coeficientes de runoff médios

rubcia i Godinoidites de rumon inculos		
Material	Coeficiente de Runoff	
Telhas cerâmica	0,8 a 0,9	
Telhas esmaltadas	0,9 a 0,95	
Telhas corrugadas de metal	0,8 a 0,9	
Cimento amianto	0,8 a 0,9	
Plástico/ PVC	0,9 a 0,95	

Fonte: Tomaz (2009)

3.4.3 Calhas e condutores verticais

Após escoar pelos telhados, a água escoa pelas calhas e condutores, os quais têm o papel de conduzir a água até dispositivo de descarte de chuva, ou até mesmo direto para o reservatório de armazenamento.

O dimensionamento deve ser feito a partir de uma vazão de captação, e para prosseguir com estes cálculos, deve ser observada a NBR 10844 (ABNT, 1989) instalações prediais de águas pluviais. O bom dimensionamento e execução podem vir a evitar um colapso, reduzindo os riscos de perda de água por extravasamento ou evitar gastos desnecessários com um superdimensionamento (PETERS, 2006).

Este sistema também necessita de manutenção periódica auxiliando na maior durabilidade do sistema de transporte. Deve-se proceder inspeções periódicas durante eventos de chuva no intuito de se detectar goteiras ou vazamentos, e evitar que haja contaminação da água coletada (HAGEMANN, 2009). Segundo a NBR 15527 (ABNT, 2007) a manutenção de calhas, condutores verticais e horizontais deve ser feito semestralmente.

Segundo Pertes (2006) a durabilidade também está relacionada às características dos materiais, que devem ser resistentes a corrosão, boa durabilidade, não ser afetado por temperatura, ser liso, leves e rígidos. De acordo Hagemann (2009) materiais como PVC, plástico ou outro material inerte são comumente utilizados. Devido ao pH da chuva ser baixo, caso seja feito o uso de materiais metálico, pode ocorrer corrosão.

3.4.4 Grades e filtros

Grades ou telas são utilizados para a retenção do material grosseiro, sendo folhas, sujeiras, etc., impedindo que estas impurezas entrem para dentro dos condutores, evitando que haja obstrução na passagem de água e mantendo a água mais limpa. Por ficarem expostos ao tempo, as grades de filtragem devem ser de materiais que não enferrujam (CARDOSO, 2013).

Segundo Peters (2006) para que o processo de remoção de materiais grosseiros ocorra, pode ser instalado uma grelha na saída da calha ou utilizar de uma grade instalada por toda extensão da calha (

Figura 3). É possível também o uso de uma tela na entrada de água do reservatório de autolimpeza.

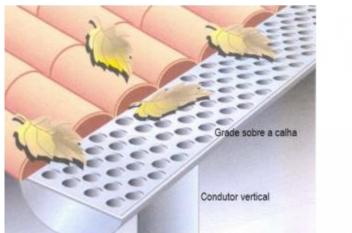


Figura 3 – (a) Grade sobre a extensão da calha. Fonte: MAC - Meio ambiente e construção (2017)¹ (b) Grade hemisférica flexível para saída da calha. Fonte: Tigre (2022)²

De acordo com Hagemann (2009) é comum a utilização de filtros (Figura 4) para reter e descartar os materiais grosseiros, podendo remover partículas menores que passaram pelas grades de retenção.

Nas instruções da NBR 15527 (ABNT, 2007) a manutenção dos dispositivos de retenção de detritos precisa ocorrer de forma periódica para serem eficientes, sendo esta inspeção ocorrendo de forma mensal e limpeza trimestral

² Tigre, 2022. Disponível em: https://www.tigre.com.br/produto/grelha-hemisferica-flexivel. Acesso em: 08 jun. 2022.

¹ MAC, 2017. Disponível em: https://mac.arq.br/wp-content/uploads/2017/10/Informativo-9-Captação-Água-Chuva-2.pdf. Acesso em: 08 jun. 2022.

Figura 4 – Modelo de filtro comercial para retenção de materiais grosseiros Fonte: Acquastier (2022)³

3.4.5 Dispositivo de descarte da primeira chuva

Em períodos secos, ocorre um acúmulo de resíduos como folhas, fezes de animais, poeira, pequenos animais mortos, entre outros poluentes, sobre a superfície da área de captação. Ao ocorrer os primeiros minutos da chuva, a água tende a carregar estes resíduos consigo, influenciando diretamente na qualidade da água, sendo necessário que essa porção de chuva seja descartada, para que a água captada seja da melhor qualidade possível (CARDOSO, 2013).

Esses primeiros minutos de chuva são conhecidos como *first flush* e são destinados para um reservatório temporário, para que posteriormente haja o descarte dessa água coletada no início da precipitação.

Segundo Tomaz (2007) os volumes de água comumente a serem descartados são na média de 0,4 mm a 8,5 mm, significando que seja descartado pelo menos 0,4 litros/m² a 8,5 litros/m². Estes volumes podem ser determinados de acordo com a qualidade da água após diferentes períodos de estiagem.

Há diferentes técnicas de coleta e descarte do primeiro volume precipitado. De acordo Hagemann (2009) uma delas consiste em um tubo de PVC (Figura 5), que

³ Acquastier, 2022. Disponível em: https://www.acquastier.com.br/captador-de-agua-da-chuva/. Acesso em: 08 de jun. 2022.

irá armazenar a água, quando este tubo estiver cheio, a água é desviada para a tubulação principal que escoa para o reservatório de armazenamento. No fundo deste tubo há um orifício ou válvula, onde a água do tubo será continuamente drenada em uma vazão menor que a de entrada. Em uma sofisticação deste tubo, há a presença de uma válvula esférica flutuante no interior, que ao encher o tubo esta válvula irá obstruir a entrada, conduzindo a água para o reservatório de armazenamento.

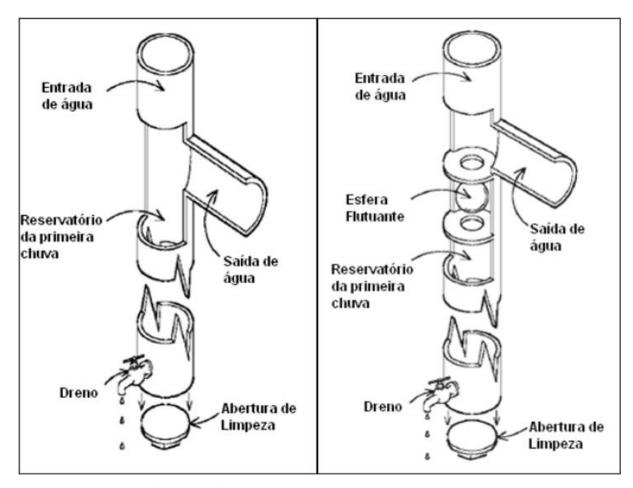


Figura 5 - Dispositivo de descarte da primeira chuva. Fonte: Texas (2005) *apud* Tomaz (2009)

Outra técnica a ser utilizada são reservatórios com torneira boia (Figura 6), funcionam de modo desviar a água para um reservatório, e quando a água chega em um certo nível pré-estabelecido, que corresponde ao volume de água que deve ser descartado, a boia tampa a entrada de água. Assim a água é desviada para o reservatório de armazenamento, e a água que foi retida pode ser eliminada após o fim da precipitação (PETERS, 2006)

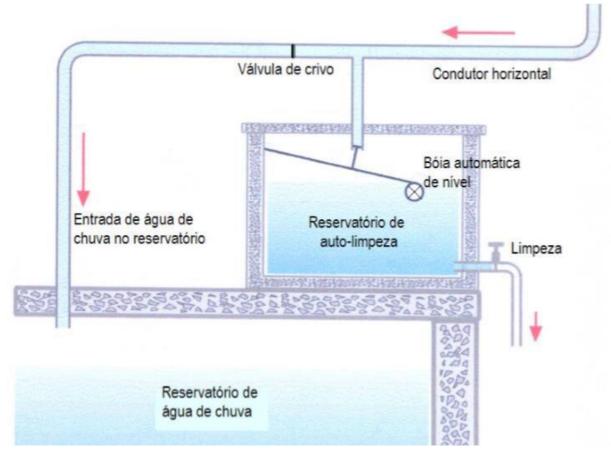


Figura 6 - Reservatório de auto-limpeza com boia de nível Fonte: Lemos (2017)

A manutenção destes dispositivos de descarte inicial de água de acordo com a NBR 15527 (ABNT, 2007), deve ser feito uma limpeza mensal para preservação do equipamento e melhor qualidade da água.

3.4.6 Tratamento

Mesmo após o descarte inicial da água, podem existir ainda algumas substâncias na água da chuva, fazendo necessário que sejam utilizados dispositivos de filtração. Segundo o Manual da ANA/FIESP & SindusCon/SP (2005), de modo geral são utilizados sistemas de tratamentos compostos de unidades de sedimentação simples, filtração simples e filtração com cloro ou luz ultravioleta.

O manual da ANA/FIESP & SindusCon/SP (2005) elenca que os sistemas de tratamento recomendado para o uso potencial da água pluvial como fonte alternativa em descargas sanitárias, lavagem de piso, irrigação e rega de jardim, lavagem de veículos e uso ornamental, devem possuir um sistema de gradeamento,

um sistema de filtração simples e sedimentação, ser realizada a desinfecção e a correção do pH.

De acordo com Tomaz (2007) o cloro é um ótimo desinfetante que age contra bactérias, vírus e *Giárdia*. Pode-se usar um dosador de cloro com vazão variável ou de vazão fixa, dependendo do quanto será investido no sistema, pois um de vazão variável pode ser consideravelmente mais caro.

Uma filtração simples, de acordo com Tomaz (2007) pode ser utilizado no intuito de melhorar a qualidade da água. Embora a utilização de um filtro lento de areia, deixe potável a água de chuva precipitada sobre telhados, melhorará sua qualidade para os fins não potáveis. Esses filtros podem remover parte da turbidez, remover bactérias do grupo coliformes, além de possuírem um baixo custo de construção.

Os dispositivos de desinfecção precisam de uma manutenção mensal de acordo com a NBR 15527 (ABNT, 2007).

3.4.7 Reservatório de armazenamento

O reservatório de armazenamento ou cisterna, é um dos principais componentes do sistema, e sua principal função é reter e acumular a água captada, para posteriormente distribuir para os demais pontos de usos.

Os reservatórios devem atendem a NBR 15527 (ABNT, 2007), e devem possuir extravasor, dispositivo de esgotamento, cobertura, ventilação, inspeção e segurança, e devem ser limpos e desinfetados no mínimo uma vez por ano, estando protegido de incidência direta da luz e do calor, bem como de animais que possam entrar no reservatório.

Para Cardoso (2013) o dimensionamento deve ser feito de modo cuidados, pois um reservatório pode ficar caro a ponto de inviabilizar a construção da obra, pois é o componente mais caro do sistema. Quando forem utilizados reservatórios em níveis mais baixos, ou enterrados, gera a necessidade do bombeamento da água, até os níveis superiores, o que pode acarretar num custo maior do sistema.

De acordo com Peters (2006) as cisternas podem estar enterradas, apoiadas ou elevadas, dependendo da necessidade da construção. Os reservatórios podem ser construídos por vários materiais, podendo ser de plástico, concreto, fibra

de vidro, ferro-cimento, madeira, alvenarias, entre outros, determinando assim não somente o custo do sistema, mas também a forma de garantir a qualidade da água.

Os reservatórios de concreto possuem a vantagem de diminuir a acidez da água, devido a presença de cálcio, e ser construído no local, porém tende a fissuras e vazamentos. Os de ferro-cimento é mais barato que o de concreto e construído através de malhas de aço espaçadas e cobertas com cimento. Reservatórios de fibra de vidro possuem boa durabilidade e fácil reparação, além de um ótimo custobenefício, porém não se adapta bem a pinturas (HAGEMANN, 2009)

Os sistemas de distribuição de água de chuva precisam ser independentes dos sistemas de água potável, não podendo haver uma conexão cruzada. Deve-se fazer o uso de dispositivos que não permitam a conexão cruzada quando o reservatório for também alimentado por água potável de acordo com a NBR 15527 (ABNT, 2007).

Para atender a demanda de água não potável da edificação, o reservatório precisa ser dimensionado de acordo com o seu uso, período de estiagem, precipitação, seguindo os métodos apresentados pela NBR 15527 (ABNT, 2007).

A NBR 15527 (ABNT, 2007) apresenta 6 métodos para o dimensionamento do reservatório, são eles: método de Rippl, método da simulação, método Azevedo Neto, método prático alemão, método prático inglês e método prático australiano.

3.4.8 Bombeamento

De acordo com Tomaz (2007) quando se fizer necessário o bombeamento, o sistema deve atender a NBR 12214 (ABNT,1992) e NBR 5626 (ABNT, 2020). Assim, observando as recomendações quanto as tubulações de recalque e sucção, além das velocidades mínimas para a escolha do conjunto motor-bomba. Junto a bomba, pode ser instalado o dosador automático de cloro.

A manutenção deste equipamento de acordo com a NBR 15527 (ABNT, 2007) deve ser realizada mensalmente.

3.5 Demanda de água

Uma das principais análises para viabilização do projeto é se a quantidade de água armazenada irá suprir a demanda de água para fins não potáveis. Sendo em

uma edificação sem sistema de captação, a água potável é utilizada para todos os fins, essa quantidade de água pode ser definida como o consumo médio diário por pessoa, ou consumo *per capita*.

Diversos podem ser os fatores que motivam o uso da água, sejam por hábitos de higiene, costumes, clima, a instalação hidrossanitária, tamanho e desenvolvimento da cidade, ocasionando uma variação no consumo de lugar para lugar. No Brasil é comum a adoção de valores entre 130 L/hab./dia a 250 L/hab./dia para o consumo *per capita* pelos órgãos oficiais (CARDOSO, 2013).

A estimativa do consumo residencial de água pode ser dividida em dois grupos: o grupo que demanda de água potável, como preparação de alimentos, higiene pessoal, e a lavagem de roupa. E o outro grupo que não demanda de água potável, como lavagem de calçada e veículos, bacia sanitária e rega de jardim.

3.5.1 Estimativas de consumo

Estudos em diferentes locais do mundo quanto a estimativa de consumo residencial traz diferentes resultados, devido ao consumo de água ter diversas interferências. Por isso é importante conhecer os hábitos familiares para que a estimativa seja feita de modo mais adequado possível.

A água da chuva pode ser utilizada para diversos fins, em sua maioria para fins não potáveis. No uso residencial destacam-se a descarga sanitária, a lavagem de carros, a rega de jardins e a lavagem de superfícies impermeáveis (HAGEMANN, 2009)

Tomaz (2009) divide os usos de água em usos internos e usos externos, as Tabela 2 e Tabela 3, apresentam valores utilizados para estimar a demanda residencial de água para fins não potáveis. O autor salienta que os dados são estimados na maioria dos casos, devido à falta e a dificuldade da realização de pesquisas amostrais em uma grande quantidade de residências.

Tabela 2 - Estimativas da demanda residencial de água não potável para usos internos

			Valores	
Uso	o Unidade		Superior	Mais Provável
Bacia Sanitária - Volume de descarga	Litros/descarga	6,8	18	9
Bacia Sanitária - Frequência de uso	Descarga/hab./dia	4	6	5
Vazamento de bacias sanitárias	Percentagem	0	30	9
Máquina de lavar roupas - volume de água	Litros/ciclo	108	189	108
Máquina de lavar roupas	Carga/hab./dia	0,2	0,37	0,37

Fonte: Adaptado de Tomaz (2009)

Tabela 3 - Estimativa da demanda por água não potável par usos externos.

Uso	Unidade	Valor
Rega de Gramado ou Jardins	Litros/dia/m²	2
Lavagem de carros - Volume de água	Litros/lavagem/carro	150
Lavagem de carros - Frequência	Lavagem/mês	4
Lavagem de pisos – Volume de água	Litros/lavagem/m²	2
Lavagem de pisos – Frequência	Lavagem/mês	4

Fonte: Adaptado de Tomaz (2009)

O consumo *per capita* é uma média diária do volume utilizado por indivíduo para satisfazer os consumos domésticos, públicos, comerciais e industriais. São utilizadas as estimativas de consumo *per capita* como parâmetro de projeção de demanda (SNIS, 2019).

No diagnóstico dos serviços de água e esgoto, o Sistema Nacional de Informações sobre Saneamento – SNIS (2019) apresenta um estudo sobre os consumos médios per capita de água no Brasil entre os anos de 2017 a 2019. Na média do país o consumo *per capita* foi de 153,9 L/hab./dia. É possível analisar uma grande discrepância dos consumos entre os estados brasileiros, como por exemplo, o estado do Rio de Janeiro em 2017 possuía um consumo per capita de 249,7 L/hab./dia, enquanto o estado de Pernambuco no mesmo período possuía um consumo de 95,5 L/hab./dia.

Para o Paraná a Sanepar recomenda em seu Manual de Projetos Hidrossanitários (2019) que pode ser adotado para estimar o cálculo do consumo per capita três tipos de residências, as residências de padrão popular com um consumo

de 100 L/hab./dia, as de padrão médio com um consumo de 150 L/hab./dia e as de padrão alto com um consumo de 250 L/hab./dia.

Outra estimativa complementar da demanda de água é feita por peça sanitária em uma residência, Peters (2006) apresenta uma tabela de parametrização com estimativas de demanda em porcentagens por unidade hidráulico-sanitárias no Brasil, com resultado de pesquisadas feitas por diferentes autores. A Tabela 4 adaptada com as pesquisas de Tomaz (2009), apresenta estes dados de parametrização.

Tabela 4 - Parametrização do consumo de água nas edificações

Tabela 4 - Talametrização do consumo de agua has edificações								
Fonte	Vickers (2003)	Qasim, Syed R. (1994)	USP (2003)	IPT (2006)	DECA (2006)	PNCDA (2005)	Almeida et al (1999)	Ikedo (2006)
Unidade								
Bacia Sanitária	27%	41%	29%	5%	14%	5%	31%	33%
Chuveiro	17%	37%	28%	54%	47%	55%	12%	25%
Lavatório	16%	3%	6%	7%	12%	26%	13%	25/0
Pia de cozinha	2%	4%	17%	17%	14%	20%	13%	27%
Máquina de Lavar Roupa	22%	-	9%	4%	8%	11%	16%	12%
Tanque	-	7%	6%	10%	5%	-	-	
Máquina de Lavar Louça	-	4%	5%	3%	-	-	-	-
Outros	16%	4%	_	-	-	3%	16%	3%
Total	100%	100%	100%	100%	100%	100%	100%	100%

Fonte: Adaptado de Peters (2006) e Tomaz (2009)

A variabilidade dos dados de consumo doméstico ocorre por diversos fatores de acordo com o levantamento feito por Garcia (2011), os mais frequentes da literatura que explicam este consumo são fatores ligados as características socioeconômicas da família e do imóvel, fatores ligados ao clima e o preço da água.

Além disso Garcia (2011) identificou que os aspectos financeiros é o principal fator motivador para as famílias fazerem o uso racional, de modo a ter um menor valor pago a concessionária. Dias et al (2010) descreve que com o acesso a uma maior renda, as famílias tendem a ter maior frequência de banhos, festas, limpeza, lavagem de carros, dentro outras atividades, que ocorrem em um maior gasto de água.

Silva et al (2019) constatou em uma avaliação da demanda de água devido a diferentes pressões em bacias sanitárias com caixa acoplada que existe uma correlação entre o aumento da pressão com um consumo mais elevado de água. A falta de manutenção e instalação não adequada dos equipamentos hidrossanitários, pode também incidir em um aumento no consumo de água.

3.6 Qualidade da água

Para que se possa fazer o uso seguro da água, é preciso garantir os padrões de qualidade de acordo com o uso pretendido. Assim, para o aproveitamento de águas de chuva e até mesmo para o uso da água potável, a água deve atender os padrões descritos pela legislação vigente (PHILIPPI et al, 2006).

A qualidade da água pode ser caracterizada pelo tipo e quantidade de impurezas, os parâmetros de qualidade presentes indicam quais são os usos apropriados que podem ser feitos com determinada água. Tais parâmetros são divididos em: parâmetros químicos, parâmetros físicos e parâmetros biológicos (HAGEMANN, 2009).

A presença de elementos ou compostos químicos na água são indicados pelos parâmetros químicos, sendo os principais o: pH, alcalinidade, dureza, cloretos, ferro e manganês, fósforo e nitrogênio. A presença de gases e sólidos relaciona os parâmetros físicos, sendo eles: sólidos, temperatura, condutividade, cor e turbidez. Por fim a presença de seres vivos indicam os parâmetros biológicos, sendo os mais analisados: coliformes totais e coliformes termotolerantes (HAGEMANN, 2009).

Para que se faça a utilização da água, seja para uso potável ou não potável, se faz necessário o uso de técnicas de desinfecção para que a água se adeque aos parâmetros de qualidade exigidos em lei, como na norma NBR 15527 (ABNT, 2007) que apresenta os parâmetros de qualidade de água de chuva para usos restritivos não potáveis. E como na Portaria nº 518/2004 do Ministério da Saúde (BRASIL, 2004) a qual estabelece padrões para a qualidade da água potável, com os procedimentos de controle da qualidade, além de apresentar uma lista com os parâmetros de potabilidade e aceitação para consumo humano.

3.6.1 Qualidade da água da chuva

De modo a proporcionar segurança a saúde da população e não comprometer a durabilidade do sistema como um todo, o uso da água da chuva precisa do controle de qualidade e a análise da necessidade de tratamento.

Pode-se encarar que a qualidade da água da chuva tem quatro etapas, sendo elas: antes de atingir o solo; após escorrer pelo telhado; no reservatório; no ponto de uso (TOMAZ, 2009)

A água da chuva de modo geral apresenta uma boa qualidade, podendo ser até superior de águas superficiais e subterrâneas, em decorrência do processo de destilação natural que ela sofre. Este processo está diretamente ligado ao ciclo hidrológico, porém dependendo da localização geográfica está água pode apresentar cargas poluidoras, principalmente em regiões próximas a centros urbanos (CAMPOS, 2004).

Philippi et al (2006) destaca diversos fatores que influenciam a qualidade da água pluvial, sendo estes: a localização geográfica da amostragem (centros urbanos, proximidade a oceanos, áreas rurais), condições meteorológicas (intensidade, estação do ano, regime de ventos, duração e tipo de chuva, etc.), presença ou não de vegetação e a presença de carga poluidora.

A qualidade da água da chuva sofre influência decorrente a qualidade do ar, dependendo da localização as características da água da chuva sofrem alterações devido a fatores naturais ou pela ação antrópica (HAGEMANN, 2009). Segundo Tomaz (2007), próximo ao mar a chuva apresenta elementos como sódio, potássio, magnésio, cloro e cálcio em quantidades semelhantes às da água marinha. Em regiões mais afastadas da costa, são encontradas partículas de solo que contêm sílica, ferro, alumínio, entre outros de origem biológica, como enxofre e nitrogênio.

As alterações que a atmosfera causa sobre a água da chuva são grandes, porém as maiores alterações ocorrem sobre a superfície de captação. Segundo Evans et al (2006) a contaminação microbiológica ocorre de duas fontes nas áreas de captação, sendo pela deposição de organismos ambientes pela atmosfera e a outra pela contaminação direta através de animais, insetos e pássaros. Como as fezes de aves e outros animais podem acarretar problemas de contaminação gastrointestinais recomenda-se que a haja o descarte da primeira água (TOMAZ, 2009).

3.6.2 Qualidade requerida para uso não potável na edificação

Para que possa fazer o uso da água de chuva, a norma vigente NBR 15527 (ABNT, 2019) descreve os parâmetros mínimos de qualidade para uso não potável. A água da chuva deve atender a Tabela 5

Tabela 5 - Parâmetros mínimos para usos não potáveis

	rabela 3 - i arametros inililinos para usos não potaveis		
	Parâmetro	Valor	
	Escherichia coli	< 200 / 100 mL	
	Turbidez	< 5,0 uT	
_	рН	6,0 a 9,0	

Fonte: ABNT (2019)

A atualização da norma em comparação a do ano de 2007 não apresenta em parâmetros de qualidade para usos não potáveis, a cor aparente da água. Outro ponto em destaque é o monitoramento dos parâmetros que deve ter uma frequência mínima semestral.

A análise da contagem de presença/ausência de coliformes deve ser menos que 200 organismos por 100 mL. Para todas as amostras a turbidez não pode passar de 5 unidades de turbidez. E caso seja necessário, deve-se ajustar o pH da água. Para o uso de cloro, a concentração residual livre deve ser entre 0,5 a 2,0 mg/L, sendo permitido um máximo de 5 mg/L (ABNT, 2007).

Além do especificado em norma, no manual da ANA/FIESP & SindusCon/SP (2005) apresenta exigências mínimas para diferentes atividades as quais podem ser realizadas nas edificações. Em geral, a água não deve apresentar mau cheiro, não pode ser abrasiva, não deve manchar superfícies e nem propiciar infecções ou contaminação por vírus ou bactérias prejudiciais à saúde humana. Em especial para irrigação, lavagem de piso e rega de jardim, não deve conter componentes que possam agredir as plantas ou então estimular o surgimento de pragas, para uso em descarga sanitária a água não deve deteriorar os metais sanitários, para lavagem de veículos, após a secagem não pode conter sais ou substâncias remanescentes.

3.7 Legislação

O Brasil, mesmo com uma grande quantidade de disponibilidade de água, possui diferenças significativas ao se falar de oferta e demanda de água entre suas regiões. Além disso, devido ao fato da sua grande extensão territorial, algumas

populações não possuem uma infraestrutura necessária para ter acesso a uma água aceitável (PACHECO et al, 2016).

Com esse contexto, o governo brasileiro começou a trabalhar em leis e incentivos para a captação e aproveitamento de água pluvial, como por exemplo o P1MC na região do Nordeste do país com início em 2003, e a ABNT NBR 15527 no ano de 2007.

Pouco incentivo nacional tem ocorrido em relação a prática de captação de água de chuva de acordo com Campos (2004), assim algumas prefeituras preocupadas com a drenagem urbanas, apresentam leis para obrigar a retenção de parte da precipitação em reservatórios, diminuindo o pico de volume de água na rede.

De acordo com Pacheco et al (2016) ainda é mais comum ver a legislação no Brasil em nível local do que nacional, com a aplicação de leis especificas para os municípios. Logo, ocorre uma variação entre as legislações de cada local, pelo fato que existe uma grande diferença na demanda de recursos hídricos entre as regiões.

Para a cidade de Pato Branco, área de estudo deste trabalho, em 2004 foi criado o Programa de Conservação e Uso Racional de Água, dispondo que para aprovação dos projetos de construção deve ser seguida a lei nº 2349/2004 (PATO BRANCO, 2004). As edificações residenciais com mais de 200 m², as edificações comerciais acima de 100 m², as edificações públicas, industriais e educacionais com qualquer área, devem conter sistema de captação de água de chuva, bacias sanitárias com volume reduzido e torneiras com arejadores.

4. METODOLOGIA

4.1 Área de estudo

A área de estudo analisada neste trabalho situa-se no município de Pato Branco (Figura 7), localizado na região sudoeste do estado do Paraná encontra-se na Latitude 26°16'05.3"S e Longitude 52°40'31.0"O. Pato Branco possui um território de 539,087 km² com uma população de 72.370 habitantes de acordo com o censo realizado pelo Instituto Brasileiro de Geografia e Estatística - IBGE no ano de 2010, e para o ano de 2021 a população estimada é de aproximadamente de 84.779 habitantes (IBGE, 2021).

0 100 200 300 400 500 km

0 1.000 2.000 3.000 4.000 km

LEGENDA

PATO BRANCO

MUNICÍPIOS PR

PARANÁ

BRASIL

Figura 7 - Localização do Município de Pato Branco no Estado do Paraná

Fonte: Autoria própria.

Para a realização do presente trabalho escolheu-se uma edificação residencial unifamiliar, a qual já está construída, em que se pudesse ser realizado o estudo de um sistema de captação de águas pluviais com fins não potáveis.

A residência escolhida está localizada no município de Pato Branco – PR, no bairro Alvorada, sendo uma residência de um pavimento. A edificação não possui o sistema de captação de chuvas em seu projeto original. O projeto da edificação foi fornecido pela empresa Escala Engenharia de obras, a planta de cobertura está no Anexo A.

A casa é composta por uma cozinha, uma sala de jantar, uma sala de estar, um banheiro, três quartos, uma área de serviço, e uma garagem para dois carros, totalizando 80,40 m² de cobertura, 22,10 m² de calçada e 70,40 m² de jardins. A fins de estudo, para esta residência será considerado que residem 5 pessoas, devido a casa ainda não estar ocupada.

4.2 Levantamento de Dados

Para a realização das análises neste trabalho, há a necessidade do levantamento de alguns dados, entre eles, a obtenção de dados históricos de precipitação na área de estudo. Além disso, se faz necessário estimar a demanda de água potável e não potável da edificação, como também a obtenção da área de cobertura da casa, onde será coletada a água, e os coeficientes de escoamento superficial da mesma.

4.2.1 Dados Pluviométricos

Os dados de precipitações foram obtidos através do Instituto Água e Terra Paraná – IAT-PR (2022), para conseguir o acesso aos dados foi necessário acessar as séries históricas no Sistema de Informações Hidrológicas, informando o município de Pato Branco, o ano inicial do fornecimento dos dados e o ano final, assim disponibilizando os relatórios para consulta, podendo ser relatórios de altura de precipitação diário, mensal ou anual.

A estação pluviométrica que está localizada próxima a área de estudo, é denominada de Pato Branco, código 2652013, de coordenadas 26°13'58.481" S e 52°40'57.551" O à 760 m de altitude, tendo como responsável o IAT-PR (2022). A estação escolhida está aproximadamente 04 km da residência de estudo. Os dados de chuvas obtidos desta estação contemplam um período de 57 anos, iniciando no mês de outubro de 1964 e com término em dezembro de 2021.

A partir da obtenção dos dados pluviométricos é possível analisar, se existem períodos de estiagem, quais meses são os mais chuvosos, no intuito de saber em quais meses haverá necessidade de reservas de água armazenadas no reservatório, e em quais a água da chuva suprirá a capacidade máxima de água. A Figura 8 demonstra os dados de precipitações acumuladas anuais coletados.

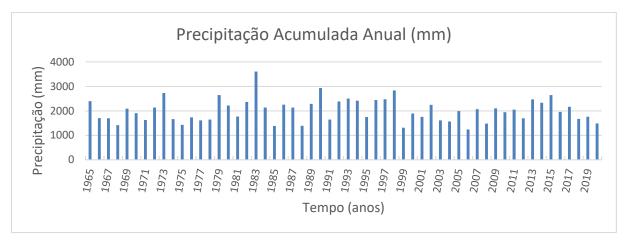


Figura 8 - Série histórica de chuvas para Pato Branco/PR (1964-2021) Fonte: IAT-PR, 2022.

Segundo os dados pluviométricos apresentados na Tabela 6 coletados através do IAT-PR (2022), a média de precipitação anual para o período de 1964 a 2021 na bacia foi de 2014,2 mm/ano, sendo outubro o mês com maior índice pluviométrico apresentando uma média de 10,83% das chuvas anuais, e agosto o mês menos chuvoso com 6,03% das chuvas anuais. O trimestre mais chuvoso, são os meses de outubro, novembro e dezembro, com 27,92% do total de precipitação, e o trimestre menos chuvoso são os meses de julho, agosto e setembro, com 21,10% das chuvas. Demonstrando que há uma distribuição uniforme da chuva durante o ano.

Tabela 6 - Dados de precipitação média mensal no município de Pato Branco entre os anos de 1964 a 2021

				1904 a 20) 2 1		
Ano	Média	Mínima	Máxima	Desvio Padrão	Média (%)	Média Trimestral (mm)	Média Trimestral (%)
Jan.	198,8	29,4	440,1	90,8	9,94%		
Fev.	166,1	13,5	329,2	83,9	8,31%	517,2	25,86%
Mar.	152,3	41,1	360,7	79,4	7,62%		
Abr.	149,4	8,6	499,8	95,8	7,47%		
Mai.	181,9	10,4	653	137,6	9,10%	502,6	25,13%
Jun.	171,3	0	449,6	103,9	8,57%		
Jul.	140,7	8,4	706	107,9	7,04%		
Ago.	120,6	1,9	329,2	95,7	6,03%	421,9	21,10%
Set.	160,6	34,6	343	84,2	8,03%		
Out.	216,6	50	434	92,3	10,83%		
Nov.	170,6	23,6	544,6	90,4	8,53%	558,3	27,92%
Dez.	171,1	32,4	383,8	84,8	8,56%		
Anual	2014,2	0	706	-	100,00%	2014,2	100,00%

Fonte: Adaptado IAT-PR, 2022

Os dados de chuva são condizentes aos estudados por Tabalipa e Fiori (2008), onde foram coletados dados de outra estação meteorológica do município. Com uma precipitação anual média de 2109,79 mm/ano, sendo outubro o mês mais chuvoso e agosto o com menor precipitação. Com os trimestres de outubro, novembro, dezembro com 29,93% do total precipitado, e julho, agosto, setembro com 20,51% do total precipitado.

4.2.2 Estimativa da demanda de água potável

Para a correta análise do sistema de captação, é necessário o cálculo do consumo de água na edificação. A demanda de água representa o total de água que é consumido em um certo período pela residência.

Para o cálculo de consumo de água em uma residência, será considerado que a demanda de água por pessoa será de 250 L/hab./dia, de acordo com o Manual do Projeto Hidrossanitário - Sanepar (2019).

Assim, para o cálculo do consumo diário e mensal foram consideradas as seguintes equações:

$$C_d = n \cdot c_p$$
 Equação 01

$$C_m = C_d \cdot 30$$
 Equação 02

Onde C_d é o consumo diário (L/dia), n é o número de habitantes (hab.), c_p é o consumo per capita (L/hab./dia), C_m é consumo mensal (L).

Logo, pode-se calcular uma estimativa de consumo mensal de água de potável em uso na residência, e através da tabela de parametrização do consumo, discretizar o consumo por unidade consumidora.

4.2.3 Estimativa da demanda de água não potável

As atividades na propriedade que não demandam de um uso restritivo quanto a potabilidade da água, ou seja, não há a necessidade que está água seja potável. Portanto a demanda de água das atividades será estimada levando como base a frequência e tempo de uso e o volume médio consumido mensalmente (SLOB, 2005).

Serão contempladas algumas atividades não potáveis da residência, tanto as exercidas no ambiente externo, como interno, desconsiderando o uso de água de chuva para lavagem de roupa, devido a possíveis complicações que podem trazer para os equipamentos de lavagem.

Também, pode-se estimar a porcentagem de substituição da água potável por água pluvial, com o uso da tabela de parametrização de consumo na residência, chegando assim a uma porcentagem de suprimento de água pluvial em relação a demanda total.

4.2.4 Coleta e coeficiente de escoamento superficial

O telhado da residência é composto por telhas cerâmicas, A NBR 15527 (ABNT, 2007) apresenta que para este tipo de telha o valor de coeficiente de escoamento superficial é de 0,80, sendo este o valor adotado.

Outro fator importante na coleta da chuva, é o *first flush*, ou carga de lavagem ou primeira água, que ocorre quando a chuva cai sobre um telhado seco em um período de três dias. Quando chove ocorre um arrastamento de poeira, folhas e detritos que estão no telhado por um período de 10 min a 20 min, conforme a intensidade da chuva, assim está água suja deverá ser descartada (TOMAZ, 2009). Valor qual está inserido junto ao coeficiente de escoamento superficial. Assim, podese calcular o volume de captação de água de chuva a partir da equação:

$$Q(t) = P \cdot A \cdot C$$
 Equação 03

Onde Q(t) é o volume de água captada (L), P é a precipitação média mensal (mm), A é a área do telhado em projeção (m²) e C é o coeficiente de escoamento superficial do telhado (*runoff*).

4.3 Dimensionamento do sistema de coleta de águas pluviais

A metodologia empregada para analisar o sistema de coleta segue os métodos sugeridos pela NBR 15527 (ABNT, 2007), para isto se faz necessário o uso de dados do cenário fictício de captação de chuvas, definidos como a área de captação, material da superfície de captação, os dados pluviométricos, e o descarte da primeira chuva e o consumo de água pluvial (BRANDÃO e MARCON, 2014).

4.3.1 Calhas e condutores

A instalação de calhas e tubos de queda devem obedecer a norma de instalações prediais de águas pluviais NBR 10844 (ABNT, 1989). Estas instalações são de drenagem pluviais, que tem como objetivo recolher e conduzir a água de chuva até os locais desejados.

De acordo com a NBR 10844 (ABNT, 1989) serão utilizados uma duração de precipitação fixada em t = 5 minutos, tempo de retorno de T = 5 anos para coberturas, logo a vazão de projeto de nas calhas será calculada pela equação:

$$Q = \frac{I \cdot A}{60}$$
 Equação 04

Onde Q é vazão de projeto (L/min), I é a intensidade pluviométrica (mm/h) e A é a área de contribuição (m²).

Para obtenção da intensidade pluviométrica para a cidade de Pato Branco, será utilizado a proposta de equação IDF de Reis (2017), onde ele apresenta a equação abaixo:

$$I = \frac{986,7 \cdot TR^{0,1457}}{(t+9,791)^{0,7244}}$$
 Equação 05

Onde: I é a intensidade pluviométrica (mm/h), TR é o tempo de retorno (anos) e t é a duração (min.).

Para o dimensionamento da calha, a NBR 10844 (ABNT, 1989) utiliza da fórmula de Manning, e disponibilizando uma tabela (Tabela 7) com os diâmetros utilizados para as vazões de projetos calculadas pela fórmula para calhas semicirculares.

Tabela 7 – Capacidade de calhas semicirculares com coeficiente de rugosidade n=0,11 (Vazão

em	L/min)		
Diâmetro Interno	De	clividade	s
(mm)	0,50%	1%	2%
100	130	183	256
125	236	333	466
150	384	541	757
200	829	1167	1634

Fonte: ABNT (1989)

O cálculo das calhas é para uma lâmina de água igual a metade do diâmetro interno do condutor. O coeficiente de rugosidade depende do material do condutor, conforme Tabela 8 abaixo.

Tabela 8 - Coeficientes de rugosidade n de Manning

- about o controlled to lagoritate in the maining	1
Material	n
Plástico, Fibrocimento, Aço, Metais não-ferrosos	0,011
Ferro fundido, Concreto alisado, Alvenaria revestida	0,012
Cerâmica, Concreto não alisado	0,013
Alvenaria de tijolos não-revestida	0,015

Fonte: ANBT (1989)

Para o dimensionamento de condutores verticais, a NBR 10844 (ABNT, 1989) determina que deve ser feita a partir dos seguintes dados: vazão de projeto (Q), em L/min, Altura da lâmina de água na calha (H), em mm, e comprimento do condutor vertical (L), em m.

Assim, pode-se encontrar o valor do diâmetro (D) do condutor, utilizandose de dois ábacos ANEXO B o primeiro (a) para calha com saída em aresta viva, e (b) calha com funil de saída. O procedimento deve seguir os seguintes passos:

Levantar uma reta vertical pela vazão Q até interceptar as curvas de H e L. Caso de não exista curvas dos valores de H e L, deve ser feita uma interpolação entre as curvas. Então alinhar a interseção até o eixo D, logo adotando o diâmetro nominal no qual o diâmetro interno seja superior ou igual ao valor encontrado.

A norma NBR 10844 (ABNT, 1989) informa também uma tabela com tubos de vários materiais, diâmetros e inclinações usuais, conforme o ANEXO C para os condutores horizontais, sendo que devem ser utilizadas curvas de raio longo na conexão entre condutores verticais e horizontais.

4.3.2 Sistema de descarte da água inicial

O sistema de descarte de água inicial, pode também ser chamado de reservatório de autolimpeza, o qual pode ser automático ou não, para fins de praticidade e elucidação do estudo, será utilizada um reservatório automático.

Portanto para que as sujeiras e a água carregada inicialmente pela chuva no *first flush* sejam descartadas de forma automática pelo próprio reservatório, ou seja, sem a necessidade de interferência humana, pode-se dimensionar um reservatório para armazenar o volume gerado nos primeiros 10 minutos de chuva. O valor de 10 min. é tomado empiricamente, sendo o tempo necessário para a água apresentar uma qualidade aceitável (TOMAZ, 2007).

Logo, Tomaz (2009) propõe que a partir dos valores de vazão máxima nas calhas, considerada em um período de 10min, pode-se chegar ao volume do reservatório de autolimpeza. Porém, como o valor de vazão de projeto é muito alto, pode-se adotar um valor entre 1 L/m² a 2 L/m², pois a vazão máxima será para casos de pico no sistema, que ocorrerá raramente. Assim, tornando-se possível o cálculo do diâmetro da tubulação de saída do reservatório de autolimpeza a partir da equação.

$$Q = Cd \cdot Ao \cdot (2 \cdot g \cdot ho)^{0.5}$$
 Equação 06

Onde Q é a vazão de saída do orifício (m^3/s), A_0 é a área da seção do orifício (m^2), g é a aceleração da gravidade, ($g = 9.81 \text{ m/s}^2$), h é a altura de água sobre o orifício (m). Sendo a metade da altura da caixa e Cd é o coeficiente de descarga do orifício, (Cd = 0.62).

4.3.3 Reservatório de armazenamento

No dimensionamento do reservatório de água de chuva, a NBR 15527 (ABNT, 2007) descreve métodos para encontrar o volume da cisterna, sendo os utilizados neste trabalho: o Método de Rippl, o Método da Simulação, o Método Azevedo Neto, o Método Prático Alemão e o Método Prático Inglês.

Também será feita a utilização do *software* Netuno no dimensionamento do volume do reservatório.

4.3.3.1 Método de Rippl

É descrito por Tomaz (2009) como o método mais comumente utilizado em aproveitamento de água de chuva, onde apresenta o valor extremo do volume do reservatório, assim tornando-se possível ter uma referência máxima do volume, podendo ser realizado de forma analítica e gráfica.

O método utiliza de uma série histórica o mais longa possível de precipitações mensais ou diárias, geralmente se faz o uso de chuvas mensais. Assim,

podendo ser formulado de forma analítica e gráfica, as quais não estão descritas em norma. (TOMAZ, 2009)

Logo, o método analítico considera que o volume do reservatório será uma soma acumulada de valores superiores a 0 da diferença entre a demanda de água de chuva e o volume de água aproveitável (BRANDÃO e MARCON, 2014). Descrito na equação:

$$V = \sum S(t)$$
, se $S(t) > 0$ Equação 07

Considerando que: S(t) = D(t) - Q(t); $Q(t) = C \cdot P(t) \cdot A$

Onde V é volume do reservatório (m³); S(t) é o volume de água no reservatório no tempo t (m³), D(t) é a demanda ou consumo de água no tempo t (m³), Q(t) é o volume de chuva aproveitável no tempo t (m³), C é o coeficiente de escoamento superficial (runoff), P(t) é o índice pluviométrico mensal ou diário no tempo t (m³) e A é a área da superfície de captação (m²).

Os dados podem ser descritos por meio de uma tabela, onde terão 7 colunas, sendo a coluna 1 os meses do ano, a coluna 2 a chuva média mensal, a coluna 3 a demanda constante mensal, a coluna 4 a área de captação, coluna 5 o volume de chuva mensal, a coluna 6 a diferença entre a demanda e o volume de chuva, a coluna 7 a diferença acumulada para os valores positivos de volume, conforme restrição do método (TOMAZ, 2009).

No método Rippl gráfico serão geradas curvas para os volumes acumulados de água de chuva e para as demandas de água pluvial acumuladas. Utilizando de uma tabela parecida ao método analítico, o método gráfico utiliza de 7 colunas, onde as 5 primeiras colunas serão iguais, mudando a coluna 6 para o volume de chuva acumulada e a coluna 7 para a demanda acumulada. Com estes dados formulados na tabela, será possível criar um diagrama de massas (TOMAZ, 2009).

O volume do reservatório será obtido através do traçado de retas paralelas a reta de demanda acumulada, passando uma no ponto mais alto e outra no ponto mais baixo da chuva acumulada. A distância vertical entre as retas é o valor do volume do reservatório (BRANDÃO e MARCON, 2014).

4.3.3.2 Método da Simulação

O método da simulação parte do princípio de determinar o reservatório a partir de um volume predefinido. O volume de água no reservatório está relacionado ao volume disponível o período anterior, estando limitada a capacidade máxima como o volume estimado. Então é comparado os valores de cada período e o volume estimado incialmente, se os valores forem inferiores ao dimensionamento estará aferido, caso contrário, deverá ser estipulado outro valor para o volume predefinido para redimensionar o reservatório (LEMOS, 2017).

$$S(t) = Q(t) + S_{(t-1)} - D(t)$$
 Equação 08

Considerando que: $Q(t) = C \cdot P(t) \cdot A$; 0 < S(t) < V; Se S(t) < 0, então S(t) = 0

Onde S(t) é o volume de água no reservatório no tempo t, $S_{(t-1)}$ é o volume do reservatório no tempo t-1, P(t) é a precipitação média no período t (mm), Q(t) é o volume de chuva no tempo t, D(t) é o consumo ou demanda no tempo t, V é o volume do reservatório fixado e C é o coeficiente de escoamento superficial.

De acordo com a ABNT (2007) é recomendado a realização dos cálculos na escala mensal, e admitir que o reservatório estará cheio no início dos cálculos, e que os dados de precipitações históricas possam representar condições futuras.

Será considerado 366 dias, devido aos anos bissextos, e por possuir uma quantidade satisfatória de série histórica pluviométrica para este dia

4.3.3.3 Método Azevedo Neto

Lemos (2007) descreve que é um método que foi desenvolvido empiricamente no Brasil em 1991. O método considera a aplicação de um fator de 4,2% sobre a multiplicação da precipitação, área de captação e quantidade de meses com pouca chuva.

O método de Azevedo neto, descrito pela ABNT (2007), obtém o volume de água do reservatório a partir da equação:

$$V = 0.042 \cdot P(t) \cdot A \cdot T$$
 Equação 09

Onde P(t) é a precipitação média anual (mm), T é o número de meses com pouca chuva ou seca, A é a área de captação (m²), e V é o volume de água aproveitável e o volume de água do reservatório (L).

Como a NBR 15527 (ABNT, 2007) não demonstra como determinar os meses em que há pouca chuva, Ghisi et al (2011) para determinar o valor T, descreve os meses que possuem valores de chuva inferiores a 80% da média mensal de chuva, serão considerados como os meses de pouca chuva.

4.3.3.4 Método prático alemão

O método prático alemão, é um método empírico, onde será utilizado o valor mínimo entre 6% do volume anual precipitado aproveitável e 6% do volume anual de consumo, pela NBR 15527 (ABNT, 2007).

$$V = \min(Va; D) \cdot 0.06$$
 Equação 10

Onde V_a é o volume aproveitável de água de chuva anual (L), D é a demanda de água não potável anual (L) e V é o volume de água do reservatório (L).

Como a norma não estabelece como calcular o volume aproveitável de água de chuva anual, será considerada os valores acumulados de chuva captada para a equação 03.

4.3.3.5 Método prático inglês

O método prático inglês obtém o volume de chuva pela equação da NBR 15527 (ABNT, 2007):

$$V = 0.05 \cdot P(t) \cdot A$$
 Equação 11

Onde P é a precipitação média anual (mm), A é a área de captação (m²) e V é o volume de água do reservatório (L)

4.3.3.6 Confiança

Tomaz (2009) levanta uma variável a ser utilizada no aproveitamento de água de chuva, que é a confiança. Ela representa uma proporção de tempo no qual o reservatório consegue atender a demanda, descrito pela equação:

$$Rr = 1 - \frac{nr}{nt}$$
 Equação 12

Onde Rr é a confiança (%), nr é o número de meses que o reservatório não atendeu a demanda e nt é o número total de meses.

4.3.4 Programa Netuno

O software Netuno versão 4.0 foi desenvolvido no Laboratório de Eficiência Energética em Edificações - LabEEE/UFSC (Ghisi e Cordova, 2014), com o intuito de determinar o potencial de economia de água potável através do aproveitamento de água pluvial em fins não potáveis em função da capacidade do reservatório de armazenamento (GHISI et al, 2011).

Com o programa é possível determinar um volume ideal para o reservatório inferior, como também realizar o cálculo para a existência de um reservatório superior utilizando de uma base diária considerando a demanda e a disponibilidade de águas pluviais (GHISI et al, 2011).

Para que sejam realizadas as simulações o programa demanda de alguns dados de entrada, de acordo com Ghisi e Cordova (2014): os dados de precipitação diária (período mínimo de 1 ano), a demanda de água potável diária *per capita*, a área de captação, a quantidade de habitantes, a porcentagem da demanda a ser suprida pela água pluvial, o coeficiente de escoamento superficial, os volumes dos reservatórios e o descarte inicial de água. Conforme é mostrado na Figura 9 abaixo:

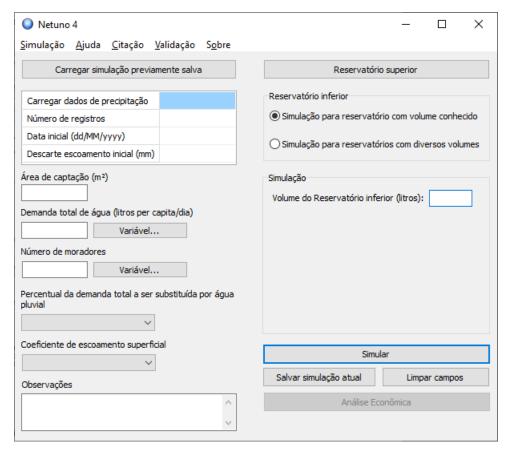


Figura 9 – Tela de entrada do programa netuno Fonte: *Print screen software* Netuno; Ghisi e Cordova (2014)

Algumas são as escolhas para os volumes do reservatório, pode-se entrar com dados com um volume do reservatório inferior já conhecido, como também realizar uma simulação com um intervalo entre os volumes, indicando qual é o volume ideal para o reservatório inferior. O volume do reservatório superior pode ser calculado com os valores de demanda diária, ou com um volume desejado Figura 10.

Assim, o software será utilizado a partir das instruções descritas no Manual do Usuário de Ghisi e Cordova (2014), como os cálculos realizados no dimensionamento são para o reservatório inferior, inicialmente será realizada a simulação somente com o reservatório inferior, tornando possível a comparação com os volumes do reservatório obtidos com os cálculos da NBR 15527 (ABNT, 2007), buscando encontrar o valor do reservatório ideal.

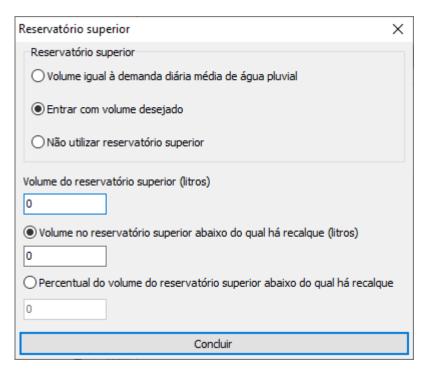


Figura 10 – Dados de entrada do reservatório superior no programa Netuno Fonte: *Print screen software* Netuno; Ghisi e Cordova (2014)

Em sequência, as simulações considerando um reservatório superior, serão realizadas, permitindo a comparação com os resultados obtidos com apenas um reservatório inferior, assim avaliando a influência que este reservatório superior tem quanto ao potencial de economia de água (GHISI et al, 2011).

4.3.5 Sistema elevatório

Para o sistema elevatório, deve se atender a NBR 12214 (ABNT, 1992) Projeto de sistema de bombeamento de água para abastecimento público, assim Tomaz (2007) comenta que deve ser observada as recomendações das velocidades mínimas de sucção, tubulações de recalque e sucção e escolha do conjunto motorbomba.

No cálculo do sistema elevatório será levado em conta, a altura manométrica e a vazão de recalque, sendo necessário calcular as perdas de cargas da tubulação através da equação Fair-Whipple-Hsiao pelo método dos comprimentos equivalentes. Então, sendo possível calcular a potência da bomba que será utilizada, e então, com o uso de um catálogo buscar uma bomba que seja equivalente ao sistema e que consiga atender as demandas do sistema.

Algumas atividades são necessárias na elaboração de um sistema de bombeamento, sendo elas determinar a vazão de projeto, como será o arranjo e o traçado do sistema, a caracterização hidráulica do sistema, escolha do conjunto motor-bomba, entre outras definições para o sistema (ABNT, 1992).

De acordo com Justino e Nogueira (2012) para o dimensionamento do sistema, inicia-se pela determinação da vazão de projeto, que será a demanda de água diária dividida pelo tempo de funcionamento do sistema, conforme a equação a seguir.

$$Q = \frac{D(t)}{t}$$
 Equação 13

Onde Q é a vazão de projeto em L/h, D(t) é a demanda (L) e t é o tempo de operação (horas)

Entendendo o regime de operação do sistema elevatório, em seguida é realizada a relação das características hidráulicas com o cálculo dos diâmetros da tubulação de recalque e sucção. Segundo Justino e Nogueira (2012) a equação que descreve os diâmetros de recalque é a equação 14 a seguir.

$$Dr = 1.3 \cdot \sqrt[4]{\frac{T}{24}} \cdot \sqrt{Q}$$
 Equação 14

Onde Dr é o diâmetro de recalque (m), T é o período de funcionamento da bomba por dia (horas) e Q é a vazão (m³/s).

Em sequência deve ser determinada a altura manométrica da instalação, para isto, é necessário encontrar as perdas de cargas da tubulação, para o recalque e para a sucção. As perdas de cargas são encontradas pela equação Fair-Whipple-Hsiao para tubos de PVC a seguir (PORTO, 1999).

$$J = 0.000869 \cdot Q^{1.75} \cdot D^{-4.75}$$
 Equação 15

Onde J é a perda de carga unitária (m/m), Q é a vazão (m³/s) e D é o diâmetro da tubulação (m).

Segundo Menezes (2022) para encontrar a altura manométrica após a obtenção da perda de carga unitária, deve ser encontrado os comprimentos equivalentes para as tubulações de sucção e de recalque, conforme o ANEXO D.

Encontrado o comprimento equivalente total de cada tubulação, pode ser calculado as alturas manométricas pela formula a seguir (MENEZES, 2022).

$$H_m = H_g + DH_s + DH_r$$
 Equação 16

Onde H_m é a altura manométrica total (m), Hg é o desnível geométrico, DHs é a perda de carga na sucção (m) e DHr é a perda de carga no recalque (m).

Com todos os dados, pode ser encontrado a potência do conjunto elevatório pode ser encontrada através da equação disponibilizada por Tomaz (2009) a seguir.

$$Pot = \frac{\gamma \cdot Q \cdot H_m}{75 \cdot \eta}$$
 Equação 17

Onde Pot é a potência (cv), Q é a vazão em (m³/s), H_m é a altura manométrica (m.c.a), η é a eficiência global (%) e γ é o peso específico da água de (1000 kgf/m³).

Segundo Tomaz (2009) a eficiência global dos motores ou rendimento dos motores pode ser encontrado através do ANEXO E.

Os motores devem seguir os padrões do mercado, após encontrado o valor da potência, deve ser escolhido o valor de potência dos motores elétricos padrões no Brasil, então será seguido o manual de seleção de bombas e motobombas da Franklin Electric (2019) para a escolha da bomba que suprirá o sistema ANEXO K.

Uma observação importante a ser feita, é que a caixa superior possuirá um comando liga/desliga automático, com o funcionamento em relação ao nível de água no reservatório, além de também permitir o acionamento manual, conforme descrito na NBR 5626 (ABNT, 1998)

4.4 Economia de água na edificação

4.4.1 Potencial de economia de água potável

Na estimativa da redução do consumo de água, será analisado o quanto da água pluvial armazenada conseguiu suprir a demanda da água potável, assim verificando se em todos os meses, o reservatório possuía água suficiente ou foi necessário utilizar da água potável.

Assim, a partir da eficiência do reservatório, pode ser analisado a quantia de água que foi economizada mensalmente, e então evidenciar a eficácia deste tipo de solução, para economia de água no município de Pato Branco-PR.

4.4.2 Método do Software Netuno

O programa computacional Netuno é utilizado para simular sistemas de captação de águas de chuva, permitindo uma apresentação da relação do potencial de economia de água potável com o uso de água pluvial e a capacidade do reservatório. Permite também a análise econômica do sistema, assim demonstrando estimativas de custos e economias (GHISI e CORDOVA, 2014).

Além da capacidade ideal dos reservatórios, é possível utilizar de todos os volumes obtidos no programa para expressar os potenciais de economia de água de cada método, podendo determinar a aplicabilidade ou não para as condições de precipitação a qual estão sendo analisadas, então determinando se os métodos subdimensionam ou superdimensionam os reservatórios (GHISI et al, 2011). Pode se então simular e obter a análise de custos com uso das tarifas de água e esgoto, com os valores cobrados pela concessionária atuante (Sanepar).

Para a realização destes cálculos são necessárias algumas informações, incialmente é necessário definir as tarifas de água e esgoto (ANEXO I) através do custo por metro cubico e o volume fixado das tarifas de água, a forma que a tarifa de esgoto é cobrada, se é uma taxa fica ou variável, o valor dessa taxa e o imposto cobrado, valores que devem ser consultados na concessionaria de abastecimento.

Vale salientar que neste estudo será desconsiderado os valores de implantação do sistema de captação, ou seja, custos de reservatório, gastos com tubulação, com mão de obra, gastos compra e energia elétrica da bomba, entre demais gastos envolvidos para instalação e manutenção do sistema. Deste modo o estudo não irá avaliar o quão economicamente viável será a instalação do sistema, avaliando apenas o potencial economia de água potável.

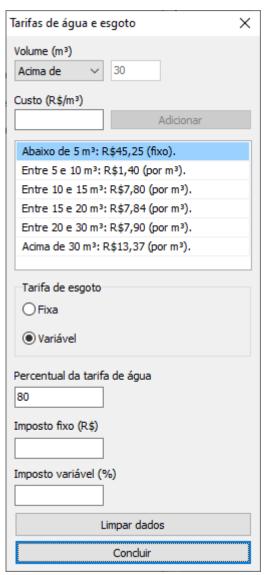


Figura 11 - Entrada de dados para análise econômica no programa Netuno

Fonte: Print screen software Netuno; Ghisi e Cordova (2014)

4.4.3 Comparação com outros estudos

De modo a gerar uma melhor percepção dos dimensionamentos realizados neste trabalho, os resultados serão comparados com outros estudos semelhantes, para o dimensionamento do reservatório de armazenamento pelos métodos da NBR 15527 (ABNT, 2007) e pelo uso do *software* Netuno, e para o potencial de economia de água potável.

5. RESULTADOS E DISCUSSÃO

5.1 Levantamento de dados

5.1.1 Dados Pluviométricos

Em posse da série histórica de precipitação obtida no IAT-PR para a estação Pato Branco, após a análise dos dados foi possível a elaboração gráfica que representa a precipitação média mensal para o período de outubro de 1964 a dezembro de 2021 (Figura 12).

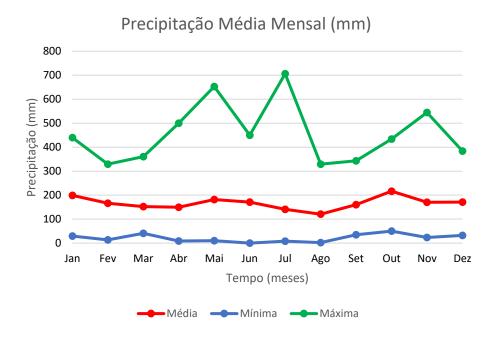


Figura 12 - Precipitação média mensal no período analisado Fonte: Autoria própria

Com este gráfico é possível notar que a precipitação no município é bem distribuída durante o ano todo, agosto é o mês menos chuvoso com uma média mensal de 124,24 mm e outubro é o mês mais chuvoso, com a média de 221,25 mm de chuva. Consequentemente, os meses terão uma boa contribuição de chuva para o reservatório, sendo necessário prestar atenção principalmente para o mês de agosto, onde a precipitação geralmente é a menor.

5.1.2 Estimativa de demanda de água

O volume de água do reservatório, dependerá de quanto de água será consumida pela edificação. Tem-se duas estimativas de consumo, a demanda de água consumida na edificação, e a demanda de água para as atividades que utilizam de água não potável.

Para o cálculo da demanda total de água em uma residência foram considerados 250 L/hab./dia de consumo *per capita*, devido a construção ser de alto padrão, sendo a população de projeto de 5 habitantes, a demanda mensal foi estimada seguindo as equações 01 e 02, os valores obtidos estão representados na Tabela 9.

Tabela 9 - Demanda de água potável

	-	
Variáveis	Valor	Unidade
Consumo per capita (Cp)	250	L/hab./dia
Nº de habitantes (n)	5	hab.
Consumo diário (Cd)	1250	L/dia
Consumo mensal (Cm)	37500	L/mês

Fonte: Autoria própria.

Com o uso das Tabela 2 e da Tabela 3 foi realizada a estimativa das demandas de água não potáveis nos usos internos e externos da edificação, levando em conta as seguintes considerações, gerando a Tabela 10.

- a) Para usos internos, a bacia sanitária foi utilizada 5 vezes ao dia por habitante, com um volume de 9 litros e 9% de vazamento por descarga, a lavagem do piso interno de área de 59,8 m², foi realizada 1 vez por semana (4 vezes ao mês), considerando 2 litros/m²/lavagem.
- b) Para usos externos, a irrigação do gramado de área de 70,4 m², foi realizada 1 vez por semana (4 vezes ao mês), considerando 2 litros/m²/irrigação, a lavagem de calçada de área de 22,10 m², foi realizada 1 vez por semana (4 vezes ao mês), considerando 2 litros/m²/lavagem, a lavagem de 2 carros, foi realizada 1 vez por semana (4 vezes ao mês), considerando 150 litros/lavagem.

Os resultados da estimativa dos consumos não potáveis são apresentados na Tabela 10.

Tabela 10 - Resumo do consumo de água não potável

Consumo	Volume
	(L/mês)
Bacia sanitária	7357,5
Lavagem de piso	478,4
Irrigação do gramado	563,2
Lavagem de carro	1200
Lavagem de calçada	176,8
Consumo Total	9775,9

Fonte: Autoria própria.

A demanda de água total da edificação foi de 37,5 m³ por mês, destes aproximadamente 9,8 m³ podem ser substituídos por água pluvial. Com estes valores, chegamos que a porcentagem de água potável substituída por água pluvial é de 26%.

Com os valores de consumo de água não potável, foi possível elaborar a tabela de parametrização de consumo de água (Tabela 11), adaptando os valores dos estudos de Peters (2006) e Tomaz (2009), apresentados na Tabela 4.

Tabela 11- Parametrização do consumo para a edificação.

Tabela III Talaliletii	aşac ac comeanie	para a varriougaor
Unidade	Consumo (%)	Consumo Mensal (L/mês)
Bacia Sanitária	19,6%	7357,5
Chuveiro	45,0%	16875,0
Lavatório	5,0%	1875,0
Pia de cozinha	5,0%	1875,0
Máquina de Lavar Roupa	9,0%	3375,0
Tanque	5,0%	1875,0
Lavagem de Piso	1,7%	655,2
Irrigação de Jardim	1,5%	563,2
Lavagem de Carro	3,2%	1200,0
Outros	4,9%	1849,1
Total	100%	37500,0

Fonte: Autoria própria.

5.2 Sistema de Coleta de água

5.2.1 Calhas e tubos de queda

As calhas foram dimensionadas conforme a NBR 10844 (ABNT, 1989). Para encontrar a vazão de projeto, é necessário saber a intensidade pluviométrica para o município de Pato Branco, para isto, foi utilizada a equação 05, onde foi

encontrado uma intensidade de 177,293 mm/h, considerando um tempo de retorno de 5 anos e um tempo de duração de 5 min.

Com a intensidade pluviométrica, e considerando a existência de 4 áreas de contribuição, foram encontradas as vazões de projeto a partir da equação 04, sendo respectivamente da menor para a maior área, apresentados na Tabela 12 seguir.

Tabela 12 - Vazões de projeto das calhas de acordo com a área de contribuição

Área de contribuição (m²)	Vazão de Projeto (L/min)
4,45	13,15
8,71	25,74
24,82	73,34
46,04	136,04

Fonte: Autoria própria.

Para fins de simplificação de projeto, foi adotado a maior vazão para dimensionar todas as calhas da residência. Conforme a Tabela 7, considerando uma calha de PVC, o diâmetro interno da calha semicircular utilizada foi de 100 mm, com uma declividade de 1%.

No dimensionamento dos tubos de queda, foi seguido os ábacos da NBR 10844 (ABNT, 1989) apresentados no ANEXO B. Como a vazão de projeto, não intercepta nenhuma das curvas, será considerado o tamanho mínimo recomendado, de 70 mm. Como o diâmetro de mercado de 70 mm não é comercializado, será utilizado um de 75 mm.

Os condutores horizontais que auxiliam no transporte da água até o reservatório foram dimensionados de acordo com o ANEXO C. Assim, também serão utilizados tubos de 75 mm, com inclinação de 1%.

5.2.2 Descarte de água inicial

O dimensionamento do reservatório de autolimpeza, compreende em acumular o volume de água nos minutos iniciais, e descartar essa chuva em uma vazão baixa ao longo do tempo. Para isto, foi considerado o descarte de 1 L/m² de área de captação.

Inicialmente foi cálculo o volume de água durante os primeiros 10 minutos da chuva, para determinar as dimensões do reservatório, 1 L/m² gerou um volume de 0,0804 m³ ou 80,4 L, então será considerado um reservatório de 0,5 m de altura.

Com a altura determinada, foi possível aplicar a equação 06, para encontrar o diâmetro da tubulação de saída do reservatório (Tabela 13).

Tabela 13 - Dimensionamento reservatório de autolimpeza

Variáveis	Valores
Volume reservatório (m³)	0,0804
Vazão de saída (m³/s)	0,0001
Altura do reservatório (m)	0,5
Gravidade (m/s²)	9,81
Coeficiente de descarga (ad.)	0,62
Área do orifício (cm²)	0,9759
Diâmetro do orifício (cm)	1,114

Fonte: Autoria própria.

Após o reservatório de descarte inicial estar cheio, a água da chuva que vier em sequência, será direcionada para a cisterna, a qual estará com menor presença ou até ausência de poluentes.

5.3 Dimensionamento do Reservatório de Armazenamento

O principal dimensionamento do sistema, é o dimensionamento da cisterna, esta irá armazenar a água para utilização, principalmente para os períodos de estiagem, o qual o reservatório deverá ter reservas suficientes para suprir as demandas, até que ocorra um outro evento de chuva.

Os dimensionamentos pelos diversos métodos levaram em conta as considerações iniciais (Tabela 14).

Tabela 14 - Resumo considerações inicias para os dimensionamentos

Variáveis	Valores
Área de captação (m²)	80,4
Coeficiente de escoamento (ad.)	0,80
Demanda mensal (m³)	9,77
Demanda diária (L)	325,67

Fonte: Autoria própria.

O método de Rippl foi realizado utilizando dados pluviométricos mensais e diários médios, além também do desenvolvimento do método de Rippl gráfico, com um diagrama de massas.

O método de Rippl mensal (APÊNDICE A) utilizando da equação 07, foi possível calcular um reservatório de 2,73 m³.

Para a realização do método de Rippl diário (APÊNDICE B), foi necessário ordenar os dados pluviométricas em médias diárias, para todos os dias do ano, considerando os anos bissextos. Com isto, a demanda também foi considerada como constante e de 325,67 L/dia. Utilizando o mesmo método da soma da diferença dos volumes acumulados positivos, foi encontrado um valor de 4,33 m³ para a cisterna.

Para o método de Rippl gráfico, as colunas 6 e 7 da tabela de Rippl mensal foram alteradas para os volumes chuva acumulado e demanda acumulada, utilizando valores mensais de chuva, gerado no APÊNDICE C.

Para gerar o gráfico (Figura 13) foi utilizado os valores de chuva acumulada e os valores de demanda acumulada, traçando duas retas paralelas a reta da demanda, no ponto mais alto e mais baixo da chuva acumulada, o volume do reservatório foi encontrado a partir da distância entre essas duas retas, gerando um volume de 8,38 m³.

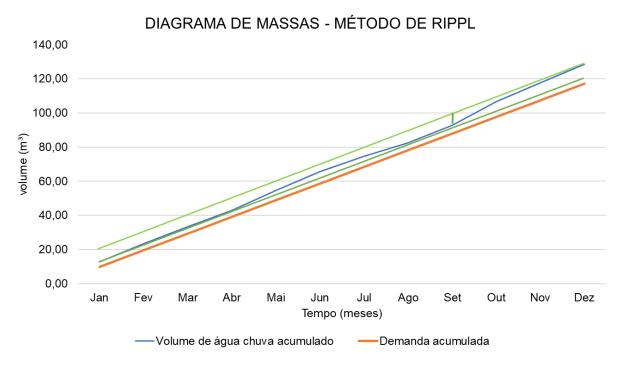


Figura 13 – Diagrama de massas - Método de Rippl gráfico Fonte: Autoria própria

5.3.2 Método da Simulação

Este método, possui semelhanças ao método de Rippl, pois os dois pretendem atender toda a demanda de água, porém este método parte de um valor de volume pré-definido, então foram simulados valores de modo a encontrar um reservatório que tenha capacidade de atender as demandas da residência.

Algumas considerações foram feitas para a realização das simulações mensais e diárias, sendo uma a recomendação da NBR 15527 (ABNT, 2007) utilizando inicialmente o reservatório cheio, e outra simulação utilizando o reservatório vazio inicialmente.

5.3.2.1 Simulações mensais

Para as simulações mensais (Tabela 15 e Tabela 16), foram feitas as simulações de volume inicial de 1,0 m³, de 2,0 m³, de 3,0 m³, de 4,0 m³, de 10 m³ e de 2,73 m³ e seguindo a equação 08, valores de volume inicial adotados de acordo com o valor de demanda não atendida pelas simulações. A consideração de um reservatório com 2,73 m³ foi de acordo com os valores obtidos para o reservatório pelo método de Rippl mensal. O APÊNDICE D demonstra os cálculos do método da simulação mensal.

Tabela 15 - Resumo das simulações mensais para o caso do reservatório inicialmente vazio

Simulações	Vol. cisterna (m³)	Meses atendidos (meses)	Atendido (%)	Volume total vertido (m³)	Demanda não atendida (m³)	Possível volume de captação (m³)	Volume captado (m³)
01	1,00	11	92%	13,73	1,73	128,64	114,91
02	2,00	11	92%	13,73	0,73	128,64	114,91
03	2,73	12	100%	13,73	0,00	128,64	114,91
04	3,00	12	100%	13,73	0,00	128,64	114,91
05	4,00	12	100%	9,78	0,00	128,64	118,86
06	10,00	12	100%	2,44	0,00	128,64	126,20

Fonte: Autoria própria.

Tabela 16 - Resumo das simulações mensais para o caso do reservatório inicialmente cheio

Simulações	Vol. cisterna (m³)	Meses atendidos (meses)	Atendido (%)	Volume total vertido (m³)	Demanda não atendida (m³)	Possível volume de captação (m³)	Volume captado (m³)
01	1,00	11	92%	13,73	1,73	128,64	114,91
02	2,00	11	92%	13,73	0,73	128,64	114,91
03	2,73	12	100%	13,73	0,00	128,64	114,91
04	3,00	12	100%	13,73	0,00	128,64	114,91
05	4,00	12	100%	13,73	0,00	128,64	114,91
06	10,00	12	100%	13,73	0,00	128,64	114,91

Fonte: Autoria própria.

Em ambas as considerações os resultados de reservatório que atendem à demanda foram iguais, sendo eles a partir de um volume de cisterna de 2,73 m³, como foi dimensionado no método de Rippl. Os resultados bem semelhantes para os reservatórios com volume de 3 m³ e 4 m³, atendendo toda demanda. Os reservatórios de 1 m³ e 2 m³ não atendem à demanda total, pois em 1 mês há necessidade do uso de água potável, demandando de 1,73 m³ e 0,73m³ respectivamente para as duas considerações.

Na consideração de um reservatório de 10 m³, foi calculado que além de atender a demanda, o volume total vertido no caso da cisterna vazia foi de 5 vezes menor se comparado ao volume de cisterna cheia, contando que o reservatório com 10 m³ demorou 11 meses para que houvesse um evento de extravasamento. Logo, percebeu-se que há impacto quanto a considerar inicialmente vazio ou inicialmente cheio, pois ao simular o reservatório cheio, não é possível analisar quanto tempo demora para que o reservatório consiga atingir sua capacidade total.

5.3.2.2 Simulações diárias

Para as simulações diárias (Tabela 17 e Tabela 18), foram feitas as simulações com de volume inicial de 1,0 m³, de 2,0 m³, de 3,0 m³, de 4,0 m³, de 5,0 m³, de 6,0 m³, de 10 m³ e de 4,33 m³ e seguindo a equação 08, valores de volume inicial adotados de acordo com o valor de demanda não atendida pelas simulações. A consideração de um reservatório com 4,33 m³ foi de acordo com os valores obtidos

para o reservatório pelo método de Rippl diário. O APÊNDICE E demonstra os cálculos do método da simulação diária.

Tabela 17 - Resumo das simulações diárias para o caso do reservatório inicialmente cheio

Simulações	Vol. cisterna (m³)	Das atendidos (dias)	Atendido (%)	Volume total vertido (m³)	Demanda não atendida (m³)	Possível volume de captação (m³)	Volume captado (m³)
01	1,00	330	90%	16,62	3,89	130,39	113,78
02	2,00	341	93%	14,02	2,35	130,39	116,37
03	3,00	354	97%	11,31	1,35	130,39	119,08
04	4,00	362	99%	9,32	0,35	130,39	121,07
05	4,33	364	99%	8,89	0,02	130,39	121,50
06	5,00	365	100%	7,78	0,02	130,39	122,61
07	6,00	365	100%	6,63	0,02	130,39	123,77
8	10,00	365	100%	2,05	0,02	130,39	128,35

Fonte: Autoria própria.

Tabela 18 – Resumo das simulações diárias para o caso do reservatório inicialmente vazio

Simulações	Vol. cisterna (m³)	Das atendidos (dias)	Atendido (%)	Volume total vertido (m³)	Demanda não atendida (m³)	Possível volume de captação (m³)	Volume captado (m³)
01	1,00	331	90%	17,50	3,87	130,39	112,89
02	2,00	342	93%	15,90	2,33	130,39	114,49
03	3,00	355	97%	14,81	1,33	130,39	115,59
04	4,00	363	99%	13,87	0,33	130,39	116,52
05	4,33	366	100%	13,45	0,00	130,39	116,94
06	5,00	366	100%	13,45	0,00	130,39	116,94
07	6,00	366	100%	13,45	0,00	130,39	116,94
08	10,00	366	100%	13,45	0,00	130,39	116,94

Fonte: Autoria própria.

Em ambas as considerações iniciais, de reservatório vazio e cheio temos resultados semelhantes. As simulações para o reservatório vazio em nenhuma haverá o atendimento de 100%, pois a demanda do primeiro dia é maior que a captação deste dia, não suprindo 20 L neste dia.

Conforme dimensionado pelo método de Rippl, o volume de cisterna que começa atender toda a demanda é de 4,33 m³, porém o reservatório de 4 m³ já apresenta uma porcentagem de atendimento de 99% muito próxima do atendimento total da demanda. Já os reservatórios com volume menor de 2 m³, não conseguem ter

um atendimento total, com 93% dos dias sendo atendidos pela cisterna de 2 m³ e 90% dos dias sendo suprido pelo reservatório de 1m³.

A partir dos reservatórios com mais de 3 m³ temos já uma ótima eficiência no atendimento da demanda, com mais de 97% da demanda atendida, deixando a critério do projetista a escolha do volume da cisterna a ser utilizada quando dimensionado por este método. As cisternas que atendem toda a demanda, apresentaram resultando muito semelhantes, com diferença apenas no volume vertido e captado nas cisternas vazias, por necessitarem de um tempo para ter seu volume totalmente completado.

Os resultados condizem com o estudo de Brandão e Marcon (2018), onde os resultados do método da simulação e o método de Rippl foram iguais. É importante salientar que mesmo com essa semelhança, a diferença entre os métodos é que o método de Rippl analisa que a demanda deve ser suprida pelo volume de água armazenado, enquanto a simulação analisa o comportamento do reservatório.

5.3.3 Método Azevedo Neto

Este método, considera os meses onde há pouco chuva, a NBR 15527 (ABNT, 2007) não define qual são estes valores, então foi utilizado os meses com chuva inferior a 80% da média mensal de 167,85, e encontrado que apenas o mês de agosto é considerado com poucas chuvas (Tabela 19).

Tabela 19 – Comparação da precipitação com a precipitação média mensal

Meses	P (mm)	Comparação com a média (%)
Jan.	198,8	118,4%
Fev.	166,1	99,0%
Mar.	152,3	90,7%
Abr.	149,4	89,0%
Mai.	181,9	108,4%
Jun.	171,3	102,1%
Jul.	140,7	83,8%
Ago.	120,6	71,8%
Set.	160,6	95,7%
Out.	216,6	129,0%
Nov.	170,6	101,6%
Dez.	171,1	101,9%

Fonte: Autoria própria.

Em posse da quantidade de meses de pouca chuva, foi possível calcular um volume do reservatório de 6801,51 L ou 6,8 m³ a partir da equação 09.

5.3.4 Método prático alemão

O método alemão utiliza de um valor mínimo de 6% entre o volume anual precipitado aproveitável de 128,64 m³ e 6% do volume anual consumido de 117,24 m³. Assim, a partir equação 10, foi encontrado um volume de 7,03 m³ para o reservatório, adotando o volume anual consumido por ser o menor valor.

5.3.5 Método prático inglês

O método prático inglês calcula o volume do reservatório a partir da equação 11, utilizando de 5% do produto entre a precipitação média anual de 2014,2 mm e a área de captação de 80,4 m², resultando em um volume de reservatório de 8097,1 L ou 8,10 m³.

5.3.6 Programa Netuno

Para realização das simulações foi utilizado a taxa de água potável a ser substituída por água pluvial de 30%, por ser o valor mais próximo aos 26% encontrado no item 5.1.2.

5.3.6.1 Simulação 01

Esta simulação foi realizada para encontrar o volume ideal para o reservatório, sem considerar o reservatório superior. Utilizou-se um volume máximo de 15.000 L e um intervalo entre os volumes de 500 litros. A diferença entre os potenciais de economia de água potável para determinação do volume ideal foi de 2%/m³. A Figura 14 mostra o cálculo dos volumes do reservatório inferior em litros, em razão do potencial de economia em %.

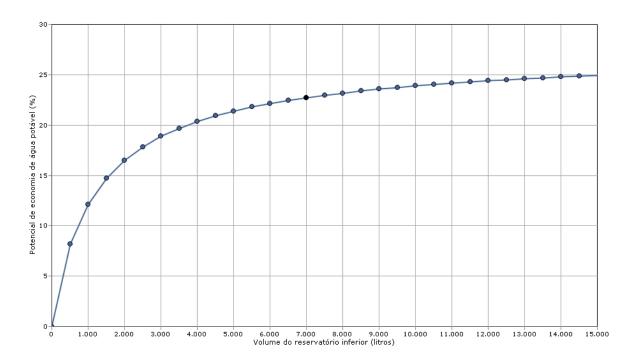


Figura 14 – Gráfico dos volumes do reservatório inferior em litros em razão do potencial de economia de água potável (%)

Fonte: *Print screen software* Netuno.

O volume ideal para o reservatório indicado foi de 7000 litros, com um potencial de utilização de água pluvial de 22,72%. A porcentagem de dias de atendimento completo foi de 73,13%, dias parcialmente atendidos de 4,82% e dias sem atendimento de 22,05%.

5.3.6.2 Simulação 02

Esta simulação considerou os mesmos dados da simulação 02, porém agora considerando o reservatório superior, sendo este de 500 L, suprindo a demanda diária média de água pluvial de pouco mais de 1 dia, sendo considerado a demanda de substituição de água de 30%, a qual está sendo utilizada para os cálculos. A Figura 15 demonstra o gráfico gerado para o cálculo deste reservatório.

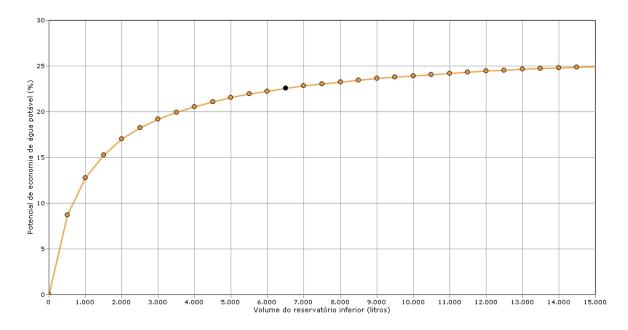


Figura 15 - Gráfico dos volumes do reservatório inferior em litros em razão do potencial de economia de água potável (%) considerando o reservatório superior Fonte: *Print screen software* Netuno.

O volume ideal para o reservatório indicado foi de 6500 litros, com um potencial de utilização de água pluvial de 22,55%. A porcentagem de dias de atendimento completo foi de 72,48%, dias parcialmente atendidos de 4,98% e dias sem atendimento de 22,54%. A média de recalques diários foi de 0,84 recalques.

5.3.6.3 <u>Simulação 03</u>

Os cálculos desta simulação foram para comparação dos valores obtidos com os métodos recomendados pela NBR 15527 (ABNT, 2007) que utilizam de dados diários, sendo o método de Rippl e o método da Simulação, que forneceram o mesmo volume de reservatório de 4330 litros. Com e sem a consideração de um reservatório superior.

Para esta simulação, o porcentual da demanda a ser substituída por água pluvial foi variado, utilizando os valores de 20% e 30%, para efeitos de comparação. Assim, no programa foi selecionado para a entrada de volumes conhecidos do reservatório inferior e gerado a simulação.

Para um reservatório inferior de 4330 litros, e um porcentual da demanda a ser substituída por água pluvial de 30%, o porcentual em que a demanda de água é

atendida completamente é de 65,65%, parcialmente é de 6,51% e não atende é de 27,84%.

Para um reservatório de 4330 litros, e um porcentual da demanda a ser substituída por água pluvial de 20%, o porcentual em que a demanda de água é atendida completamente é de 83,79%, parcialmente é de 2,56% e não atende é de 13,65%.

O reservatório superior não interferiu na demanda de água atendida, porém apresentou uma taxa de recalque média diárias de 0,93% para o porcentual de água substituída de 20% e de 0,77% o porcentual de água substituída de 30%.

5.3.7 Dimensionamento do reservatório

Dimensionado os reservatórios por todos os métodos citados, foi possível a análise e a comparação dos métodos. Na Tabela 20 encontra-se o resumo dos volumes determinados pelos diferentes métodos.

Tabela 20 - Resumo do dimensionamento do reservatório pelos diferentes métodos

Método	Volume (m³)
Rippl mensal	2,73
Rippl diário	4,33
Rippl gráfico	8,38
Simulação mensal	2,73
Simulação diária	4,33
Azevedo neto	6,80
Prático alemão	7,03
Prático inglês	8,10
Netuno s/ res. Sup.	7,00
Netuno c/ res. Sup.	6,50

Fonte: autoria própria.

Os métodos de Rippl e da simulação (mensal e diário) apresentaram volumes menores, devido ao método apenas atender a demanda e utilizar dos períodos secos para fazer o dimensionamento. Como a cidade de Pato Branco, possui um regime de chuva bem distribuído, caso o volume captado fosse sempre maior que a demanda, teria que ser adotado uma área de coleta menor, para se tornar possível o dimensionamento.

Os demais métodos para este caso apresentaram volumes semelhantes, com um volume de reservatório de aproximadamente 7 m³ a 8 m³, mesmo que as condições para cálculo de cada método sejam diferentes.

É importante ressaltar que os métodos como Azevedo Neto, Prático inglês e o Prático alemão, não levaram em conta o balanço entra água captada e demanda para abastecimento, de modo que se houve um aumento no consumo, as garantias de abastecimento seriam menor, porém como Pato Branco não apresenta grandes oscilações pluviométricas devido ao clima temperado, o mesmo clima dos locais aonde os métodos inglês e alemão foram concebidos (LEMOS, 2017), estes ofereceram bons valores de volume para o reservatório.

Como método do software Netuno considerar as chuvas diárias de todo o período, analisando os eventos de chuva e períodos de seca, será considerado este método para o dimensionamento, com uma cisterna de capacidade de 6500 L com reservatório superior, o qual foi considerado de 500 L, que consegue suprir a demanda diária de 325,67 L, e ainda reserva uma quantidade de aproximadamente 175 L.

5.3.7.1 Outros estudos

No intuito de verificar se os valores obtidos são coerentes, foram analisados estudos de diferentes autores. Analisando volumes dos reservatórios dimensionados pelos autores de acordo com os métodos expressos na NBR 15527 (ABNT, 2007) e pelo software Netuno, como também a localidade, a demanda e a área de captação de cada estudo.

Brandão e Marcon (2018) realizaram uma análise dos métodos da NBR 15527 (ABNT, 2007), utilizando diferentes valores de demanda e áreas de contribuições diferentes, para a cidade de São Carlos - SP. A fim de comparação, foram coletados apenas os volumes para as demandas mensais de 8 m³ e 12 m³ para a área de captação de 100 m², expressos na Tabela 21 a seguir.

Tabela 21 - Resumo dados de dimensionamento do reservatório

Método	Demanda mensal	Volume (m³)
Rippl/Simulação mensal	8,0	41,6
Rippl/Simulação mensal	12,0	717,8
Rippl/Simulação diário	8,0	45,5
Rippl/Simulação diário	12,0	525,3
Azevedo Neto	8,0/12,0	13,1
Prático Alemão	8,0	5,8
Prático Alemão	12,0	8,6
Prático Inglês	8,0/12,0	7,8

Fonte: Adaptado Brandão e Marcon (2018)

Os métodos de Rippl e da Simulação apresentam valores superdimensionados, o método Azevedo Neto considerou 2 meses de pouca chuva, assim o volume de reservatório mostrou diferença para o local estudado, que foi considerado apenas 1 mês. Já o método Prático alemão e o método Prático inglês, apresentaram resultados semelhantes ao estudado.

Ghisi et al (2011) realizou um estudo da comparação entre os métodos da NBR 15527 (ABNT, 2007) e o *software* Netuno, para as cidades de Santos – SP, Palhoça – SC e Santana do Ipanema – AL. Para os mesmos valores de demanda semelhantes foram feitas as seguintes análises em comparação aos dimensionados neste estudo.

Para a cidade de Santos – SP (ANEXO F), apenas os métodos do programa Netuno e o Prático alemão não superdimensionaram o reservatório, obtendo resultados parecidos ao estudado, além de que os métodos de Rippl e da Simulação não permitirem o dimensionamento.

Para a cidade de Palhoça – SC (ANEXO G) os métodos apresentaram valores semelhantes aos dimensionados. Apenas o método de Azevedo Neto apresentou um superdimensionamento, pela consideração dos meses de pouca chuva ser mais alto para este município.

Para a cidade de Santana do Ipanema – AL (ANEXO H), o método de Rippl e Azevedo Neto superdimensionaram o reservatório, o método Prático inglês se comparado subdimensionou o reservatório devido à baixa precipitação média anual na cidade. Não foi possível o dimensionamento pelo método da Simulação, e os métodos Prático alemão e Netuno apresentaram resultados semelhantes.

Campos (2004) realizou um estudo para o método de Rippl (Tabela 22), para a cidade de São Carlos – SP, levando em conta não apenas médias mensais e diárias, como também analisando o ano com a pior, a melhor e a situação típica dos dados de precipitação.

Tabela 22 - Volumes dos reservatórios por situação dos dados

Situação	Volume do reservatório (m³)
médias mensais	0,4
médias diárias	0,6
pior ano com dados mensais	17,74
pior ano com dados diários	22,2
melhor ano com dados mensais	0,4
melhor ano com dados diários	6,24
ano típico com dados mensais	7,2
ano típico com dados mensais	12,58

Fonte: Adaptado de Campos (2004)

Campos (2004) adotou um volume de armazenamento de 10 m³, demonstrando as variações que o método de Rippl pode apresentar dependendo do cenário pluviométrico. Apenas pelas médias mensais e diárias o reservatório estaria subdimensionado. O autor cita que a precisão do método de Rippl é aumentada para menores intervalos dos dados pluviométricos, por levar em conta os períodos de estiagem. Comparando os dimensionamentos, as médias mensais e diárias também subdimensionaram o reservatório de armazenamento.

Através do programa Netuno, Carvalho (2010) analisou para a cidade de Londrina – PR, que para uma demanda de 13 m³/mês de água pluvial e uma área de captação de 200 m², o reservatório ideal seria de 4 m³, adotou um reservatório de 5 m³, devido ao potencial de economia ser maior. Valor próximo aos estimados pelo programa Netuno para este trabalho.

França (2011) com o uso do programa Netuno analisou para a cidade de Goiânia – GO, com demanda mensal de 9,72 m³ e área de captação de 156,71 m², o volume de armazenamento necessário foi de 6,0 m³, com a utilização de um reservatório inferior de 5,0 m³ e um superior de 1,0 m³. O dimensionamento do autor obteve um valor muito semelhante ao dimensionado pelo programa Netuno para este trabalho.

5.4 Sistema elevatório

O sistema elevatório irá recalcar a água do reservatório inferior para o reservatório superior, para isto inicialmente é calculada a vazão de projeto, que leva em conta o tempo de funcionamento e a demanda de água. A demanda a ser considerada será de 500 L, sendo o volume do reservatório superior, e um tempo de funcionamento de 1h. Conforme a equação 13, a vazão será de 500L/h ou 1,30.10⁴ m³/s.

De acordo com a equação 14, o diâmetro de recalque encontrado foi de 0,082 mm, um valor muito baixo devido à baixa vazão, assim, será considerado um DN de 20 mm para tubulação.

Em sequência, foi necessário o cálculo das perdas de cargas localizadas da tubulação, para encontro da altura manométrica do sistema. Seguindo a equação 15, em posse do diâmetro e da vazão do sistema, foi encontrado uma perda de carga unitária de 0,018157 m/m.

Então, com o método dos comprimentos equivalentes da tubulação, foi utilizado do ANEXO D as equivalências das conexões em metro de canalização, para as tubulações de sucção (Tabela 23) e recalque.

Tabela 23 - Comprimentos equivalentes para as conexões da tubulação de sucção e recalque

	Conexão	Quantidade (um.)	Equivalência (m)
	Válvula de pé com crivo	1	9,5
SUCÇÃO	Joelho 90°	1	0,5
ÖŊĊ	União	1	0,1
0,	Redução	1	0,1
	Tubulação	-	2,8
	Comprimento equivalente to	otal	13
	Conexão	Quantidade (um.)	Equivalência (m)
当	ய Registro gaveta aberto		0,2
Ιά	Joelho 90°	4	2
⋖			
Ω	Válvula de retenção		
RECALQUE	Válvula de retenção vertical	1	2,6
REC	,	1 -	2,6 17,4

Fonte: Autoria própria

O desnível geométrico é de 6,4 m, aplicando as perdas de carga para as tubulações, foi calculado a partir da equação 16 a altura manométrica total, apresentado na Tabela 24

Tabela 24 - Altura manométrica

rabela 24 - Altara manometrica				
	Perda de			
Variáveis	carga			
	(m.c.a)			
Desnível geométrico	6,400			
Sucção	0,236			
Recalque	0,399			
Altura manométrica	7,035			

Fonte: Autoria própria

Com os dados de altura manométrica e vazão, foi possível calcular a potência da bomba (Tabela 25) pela equação 17, onde foi considerado um rendimento para o motor de 64% e um rendimento para a bomba de 52%.

Tabela 25 - Potência da bomba

Tubela 20 Toteriola da Borriba	
Variáveis	Valores
Peso específico da água (kgf/m³)	1000
Vazão (m³/s)	1,39.10 ⁻⁴
Altura manométrica (m.c.a)	7,04
Eficiência global (%)	33,15%
Potência da bomba calculada (cv)	0,04
Potência da bomba escolhida (cv)	0,25

Fonte: Autoria própria

O valor de potência de 0,04 cv encontrado é um valor bem baixo, devido a vazão ser baixa.

Logo, foi considerado o valor da menor potência das bombas centrífugas encontradas no manual de seleção da Franklin Electric (2019), para o modelo BCR-2000 conforme ANEXO K, utilizado em edificações residenciais, o valor de menor potência é de 1/4 cv ou 0,25 cv, o qual para uma altura manométrica de 7 m.c.a, consegue suprir uma vazão de até 2,7 m³/h, suprindo com folga as necessidades de recalque do reservatório superior. Conforme a recomendação do manual, foi utilizado uma tubulação de 1 pol. na sucção até a união.

5.5 Economia de água

O fator essencial para o uso do sistema de captação é gerar uma economia de água, utilizando a água da chuva em fins não potáveis, diminuindo não só o consumo de água potável como o gasto com tarifas também.

Essa economia pode ser vista no quanto de água está sendo substituída, sendo um sistema que gera um retorno financeiro a longo prazo em geral, devido ao alto custo de investimento inicial envolvido.

5.5.1 Potencial de economia de água potável

Conforme a Tabela 10 o consumo de água potável mensal na edificação foi de aproximadamente de 9,8 m³, representando um potencial de economia de água potável de 26% mensalmente, para a edificação em estudo. Contudo, este valor não é fixado, pois depende dos usos da água que acontecerão no mês avaliado.

Considerando que a tarifa cobrada pela SANEPAR (2022) é de 13,37 R\$/m³ para consumos acima de 30 m³, e de 7,90 R\$/m³ para consumos entre 21 a 30 m³, valores conforme ANEXO I. A instalação do sistema de aproveitamento de água pluvial gerou possíveis economias com o gasto mensal com água da concessionária desconsiderando os gastos com as tarifas de esgoto (Tabela 26).

Tabela 26 - Economia gerada na edificação

rabeia 26 - Economia gerada na edincação					
	Consumo água potável mensal (m³)	Consumo água potável anual (m³)	Gastos com a taxa de água mensal (R\$)		
Dados s/ sistema de aproveitamento	37,5	450	R\$ 501,40		
Dados c/ sistema de aproveitamento	27,7	332,4	R\$ 218,83		
Economia Total	9,8	117,6	R\$ 282,57		

Fonte: Autoria própria.

O *software* Netuno faz uma análise dos potenciais de economia de água potável fixados pelo programa, as simulações foram realizadas para as substituições de 20% e 30%, conforme a Tabela 27.

Tabela 27 – Potencial de economia de água potável pelo programa Netuno

Mês	Potencial de utiliza	ação de água pluvial
IVIES	20%	30%
Jan.	17,21	21,08
Fev.	17,56	22,80
Mar	18,64	24,27
Abr.	18,25	22,99
Mai	17,70	22,15
Jun.	18,56	22,45
Jul	18,06	22,26
Ago.	18,62	23,86
Set	18,24	23,21
Out	18,50	22,13
Nov.	18,22	22,62
Dez	17,73	20,77
Média	18,11	22,54

As médias dos potenciais apresentadas pelo programa Netuno, foram de 18,11% para o potencial de 20% e de 22,54% para o de 30%, devido ao fato que há períodos que o sistema de aproveitamento não consegue atender a demanda.

5.5.2 Análise econômica

O Netuno fornece uma análise econômica, a partir da definição das tarifas de água e esgoto, junto a estimativa de consumo mensal pela edificação. Junto as simulações foi realizado esta análise econômica, a partir dos dados de tarifas coletados da SANEPAR (2022), conforme o ANEXO I.

Foi analisado conforme as tarifas de água e esgoto para a cidade de Pato Branco – PR, em uma edificação residencial, que a economia média mensal gira em torno de R\$ 195,00 a R\$ 220,00, com exceção do mês de fevereiro que a economia média é de aproximadamente R\$ 163,00.

5.5.3 Outros estudos

Cadine e Belém Jr (2017) em um estudo social no bairro social Reny Cury, na cidade de Anápolis – GO, adotando os sistemas de captação para casas residenciais fornecidas pelo programa do governo, com área de captação de 52 m², não supria toda demanda da população do bairro, com capacidade de

aproximadamente 56% da demanda de água não potável, apresentando um potencial de economia de água potável de 28%.

Cardoso (2013) realizou alguns estudos de casos em cidades diferentes. No estudo para uma casa de 100 m² de cobertura na cidade de Goiânia – GO, foi obtido um potencial de economia de água potável de 45%, com uma demanda de água pluvial de 13,5 m³/mês.

Carvalho (2010) realizou a análise da implantação do sistema de captação na cidade de Londrina – PR, em uma residência de 200 m² de área de captação, com uma demanda de 9 m³/mês de água para fins não potáveis, foi obtido um potencial de economia de 44,2%.

França (2011) realizou um estudo para aproveitamento de água potável para fins não potáveis para a cidade de Goiânia – GO, para uma residência de 156,71 m², foi encontrado um potencial de economia de 27%, para uma demanda de 9,72 m³ por mês

Campos (2004) realizou um estudo de aproveitamento de água pluviais em edifícios residenciais e encontrou que para uma área de captação de 350 m², e uma demanda de 10 m³ mensais de água pluvial, o potencial de economia de água foi de 22%.

Logo, se comparado os estudos de outros autores, com o estudo deste trabalho, considerando o potencial ideal de 26%, onde toda demanda foi atendida durante todo o período, foi analisado que existem semelhanças nos potenciais de economia de água em residências. A Tabela 28 a seguir, reúne os dados dos estudos comparados.

Tabela 28 - Resumo dos potenciais de economia de água por estudo

Autor	Autor Cidade		Potencial de economia de água (%)
Cadine e Belém Jr (2017)	Anápolis - GO	52	28%
Cardoso (2013	Goiânia - GO	100	45%
Carvalho (2010)	Londrina - PR	200	44%
França (2011)	Goiânia - GO	156,71	27%
Campos (2004)	Ribeirão Preto - SP	350	22%

Fonte: Diversos autores

Em comparação a estes 5 estudos, pode se perceber que não há grande variação nos potenciais de economia, estando todos abaixo de 45%. A semelhança entre os estudos é maior com 3 estudos, que apresentam potenciais muito parecidos com uma diferença de 4% em relação ao estudo abordado neste trabalho.

6. CONCLUSÕES

Analisando o levantamento de dados pluviométrico da cidade de Pato Branco, conclui-se que o regime de chuva é bem distribuído, o que torna a região propícia para uma maior garantia da substituição de água potável pelo sistema de aproveitamento de água pluvial para fins não potáveis, tornando possível a utilização de reservatórios com menores volumes e baixas frequências de abastecimento pela concessionária.

De maneira geral o levantamento de dados e dimensionamento dos componentes do sistema é simples, pela existência de literatura para os dados do Município e de normas norteadoras para os dimensionamentos. Apenas o reservatório de armazenamento exige de cálculos mais complexos e atualmente não possui uma norma para seu dimensionamento, ficando a par do projetista a escolha do método as ser seguido.

Os métodos para o dimensionamento do reservatório de armazenamento apresentaram volumes diferentes, pelo fato de considerarem fatores diferentes em seus cálculos.

Os métodos de Rippl e da Simulação dependem que a demanda de água pluvial supere o volume de chuva captado, o que ocorre em locais com períodos de pouca chuva ou estiagem, o que não acontece pelas médias mensais históricas no município de Pato Branco. Além de que os volumes dimensionados para os reservatórios aumentam de acordo com o aumento da demanda, sem necessariamente provocar um aumento no potencial de economia de água.

O método Azevedo Neto depende da quantidade de meses com pouca chuva, essa quantidade não está determinada pela norma, necessitando que o projetista adote este critério. No caso de Pato Branco, onde há uma baixa oscilação nas médias mensais de precipitação, o critério adotado para os meses com poucas chuvas foi de apenas 20% abaixo da média de chuvas mensais, considerando meses que as chuvas ainda seriam relativamente altas. Caso este critério adotasse valores menores para a média pluviométrica, o método não teria condições de dimensionar o reservatório para a região.

O método Prático Inglês e o Prático Alemão, apesar de simples, apresentaram resultados satisfatórios para região de estudo. Porém por não

apresentarem um balanço entre a demanda e quantidade água captada, os métodos podem resultar em garantias de abastecimento menores.

Conclui-se que os métodos de dimensionamento do reservatório de armazenamento da NBR 15527 (ABNT, 2007) demonstram que por terem princípios, considerações e parâmetros diferentes, os volumes podem apresentar grande discrepâncias, precisando compreender o contexto das edificações para a aplicabilidade dos métodos.

Consequentemente a não recomendação desses métodos pela atualização na NBR 15527 (ABNT, 2019) deixou os projetistas sem uma norma para o dimensionamento de reservatórios de sistemas de aproveitamento de água de chuvas de coberturas para fins não potáveis. Ficando a critério do projetista qual método seguir de acordo com as recomendações da literatura, levando em conta critérios econômicos, técnicos e ambientais.

O método do programa Netuno demonstrou ser o método com maior confiança para o dimensionamento do reservatório, por ajustar o dimensionamento em função o regime de chuva e da demanda pluvial, além de ser o único método que forneceu o potencial de economia de água potável em relação ao volume da cisterna.

O potencial de economia de água potável se mostrou satisfatório, com uma substituição de 26% da água potável e atendimento em quase 80% do ano, trazendo não apenas benefícios ambientais, como uma economia mensal com as tarifas da companhia de abastecimento, além de que se mostrou em conformidade com potenciais encontrados em outros estudos.

No entanto, o programa netuno não permite a entrada do valor exato do potencial de economia esperado, apenas valores múltiplos de 10, ocorrendo simulações não tão precisas quanto ao valor de substituição de real de água potável da edificação.

Portanto, com uma visão apenas de sustentabilidade, sem analisar os benefícios econômicos, o sistema de captação tem resultados satisfatórios para a conservação da água no município de Pato Branco - PR, além de colaborar com diminuição de problemas de enchentes e desperdícios de água.

REFERÊNCIAS

ABNT. Associação Brasileira de Normas Técnicas. **NBR 10844: Instalações Prediais de Águas Pluviais**. Rio de Janeiro, 1989. 13 p.

ABNT. Associação Brasileira de Normas Técnicas. **NBR 12214: Projeto de sistema de bombeamento de água para abastecimento público**. Rio de Janeiro, 1992. 15p.

ABNT. Associação Brasileira de Normas Técnicas. NBR 15527: Água da Chuva – Aproveitamento de coberturas em áreas urbanas para fins não potáveis – Requisitos. Rio de Janeiro, 2007. 12 p.

ABNT. Associação Brasileira de Normas Técnicas. **NBR 15527: Água da Chuva – Aproveitamento de coberturas em áreas urbanas para fins não potáveis – Requisitos**. Rio de Janeiro, 2019. 14 p.

ANA, Agência Nacional de Águas. **Prêmio Ana**. 2006. Disponível em: https://premio.ana.gov.br/projetos/>. Acesso em 19 de maio 2022

ANA/FIESP e SindusCon-SP. Conservação e Reúso de água em Edificações. São Paulo: Prol Editora Gráfica. 2005.

ARAÚJO, E.P; RODRIGUES, R.P.; NUNES, R. **O** Gerenciamento da demanda de água é o caminho para propiciar a sua preservação, 2008. Disponível em: https://www.publicacoesacademicas.uniceub.br/arqcom/article/view/669 Acesso em: 24 de abril de 2022.

ARTICULAÇÃO NO SEMIÁRIDO BRASILEIRO – ASA (2022). **Ações P1MC**. Disponível em: https://www.asabrasil.org.br/acoes/p1mc, acesso em 19/05/2022. Acesso em: 08 de jun. de 2022.

BRANDÃO, J. L. B.; MARCON, P. Análise dos métodos de dimensionamento de reservatórios de águas pluviais sugeridos pela NBR 15527 (ABNT, 2007) com base na simulação diária. **Engenharia Sanitária e Ambiental,** v. 23, n. 6, p. 1-11, 2018. https://doi.org/10.1590/s1413-41522018129228

BRASIL, Governo Federal. **Programa Cisternas do Governo Federal garante a segurança alimentar ao semiárido nordestino**. Disponível em: https://www.gov.br/casacivil/pt-br/assuntos/noticias/2020/agosto/programa-cisternas-do-governo-federal-garante-a-seguranca-alimentar-ao-semiarido-nordestino>. Acesso em: 08 de jun. 2022.

BRASIL. Ministério da Saúde. Comentários sobre a Portaria MS N.o 518/2004: subsídios para implementação. Secretaria de Vigilância em Saúde, Coordenação-Geral de Vigilância em Saúde Ambiental. Editora do Ministério da Saúde. Brasília, 2005.

- CAMPISANO, A., LIBERTO, D. D. MONDICA, C., REITANO, S. Potential for Peak Flow Reduction by Rainwater Harvesting Tanks. **Procedia Engineering.** V. 89. P. 1507-1515. 2014
- CAMPOS, M. A. S. **Aproveitamento de água pluvial em edifícios residenciais multifamiliares na cidade de São Carlos**. 131p. Dissertação (Mestrado). Universidade Federal de São Carlos, 2004
- CANDINE, P. F.; BELEM JR, J. S. Aproveitamento de água de chuva para fins não potáveis Estudo de caso: Bairro social Reny Cury. **ESPACIOS (CARACAS)**, v. 38, p. 18, 2017.
- CARDOSO, C. E. N. **Aproveitamento de água de chuva para fins não potáveis.** Tese (Graduação em Engenharia Civil) Faculdade de Engenharia Civil, Universidade Estadual Paulista. Guaratinguetá, p. 74. 2013.
- CARVALHO, R. S. Potencial econômico do aproveitamento de águas pluviais: Análise da implantação de um sistema para a região urbana de londrina. 2010. Monografia (Especialização em Construção de Obras Públicas) Curso de Pós Graduação em Construção de Obras Públicas da Universidade Federal do Paraná, Apucarana, 2010.
- Chunyang. H.; Liu, Z., Wu, J. et al. Future global urban water scarcity and potential solutions. **Nat Commun** 12, 4667 (2021). https://doi.org/10.1038/s41467-021-25026-3
- DIAS, D. M.; MARTINEZ, C. B.; LIBANIO, M. Avaliação do impacto da variação da renda no consumo domiciliar de água. **Eng. Sanit. Ambient**. v.15, n.2, p. 155-166, 2010
- Dolan, F., Lamontagne, J., Link, R. et al. Evaluating the economic impact of water scarcity in a changing world. **Nat Commun** 12, 1915 (2021). https://doi.org/10.1038/s41467-021-22194-0
- EVANS, C.A.; COOMBES, P.J.; DUNSTAN, R.H. Wind, rain and bacteria: The effect of Weather on the microbial composition of roof-harvested Rainwater. **Water Research**, v. 40, p.37-44, 2006
- FRANÇA, A. M. **Análise da viabilidade econômica para o aproveitamento de água de chuva em uma residência na cidade de Goiânia**, 2011. Trabalho de conclusão de curso (Graduação em Engenharia Civil) Curso de Engenharia Civil, Universidade Federal de Goiás, 2011.
- FRANKLIN ELECTRIC. **Tabela de seleção de bombas e motobombas**, Joinville. 2019. Disponível em: https://schneider.ind.br>. Acesso em: 08 de jun. 2022.
- Fuentes-Galván, M.L.; Ortiz Medel, J.; Arias Hernández, L.A. Roof Rainwater Harvesting in Central Mexico: Uses, Benefits, and Factors of Adoption. **Water 2018**, 10, 116.

- GARCIA, A. P. A. A. **Fatores associados ao consumo de água em residências de baixa renda. 2011**. Dissertação (Mestrado em Engenharia Industrial) Universidade Federal da Bahia. 2011.
- GHISI, E.; CORDOVA, M. M. Netuno 4. Programa computacional. Universidade Federal de Santa Catarina, Departamento de Engenharia Civil. Disponível em: http://www.labeee.ufsc.br/. 2014.
- GHISI, E; RUPP, R.F.; MUNARIM, U. Comparação de métodos para dimensionamento de reservatórios de água pluvial. **Ambiente Construído**, v. 11, p. 47-64, 2011.
- GOMES, U. A. F.; HELLER, I. Acesso à água proporcionado pelo Programa de Formação e Mobilização Social para Convivência com o Semiárido: Um Milhão de Cisternas Rurais: combate à seca ou ruptura da vulnerabilidade?. **Engenharia Sanitária e Ambiental (Online),** v. 21, p. 623-633, 2016. https://doi.org/10.1590/S1413-41522016128417
- GOMES, U.A.F.; DOMÈNECH, L.; PENA, J.L.; HELLER, L.; PALMIER, L.R. A Captação de Água de Chuva no Brasil: Novos Aportes a Partir de um Olhar Internacional. **Revista Brasileira de Recursos Hídricos**, v. 19, n. 1, p. 1-16, 2014. https://doi.org/10.21168/rbrh.v19n1.p7-16
- Gould, J; Lo, A.G. Rainwater Harvesting: Global Overview. In Rainwater Harvesting for Agriculture and Water Supply; **Eds.; Springer: Singapore**, 2015; pp. 213–233. http://doi.org/10.1007/978-981-287-964-6
- IBGE INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATISTICA. **Pato Branco. IBGE**, 2022. Disponível em: https://cidades.ibge.gov.br/brasil/pr/pato-branco/panorama. Acesso em: 27 nov. 2021.
- INSTITUO ÁGUA E TERRA IAT-PR. **Sistemas de Informações Hidrológicas, 2022. Curitiba**. Disponível em: https://www.iat.pr.gov.br/Pagina/Sistema-de-Informacoes-Hidrologicas. Acesso em: 08 de jun. de 2022.
- Kummu, M., Guillaume, J., de Moel, H. et al. The world's road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. **Sci Rep 6, 38495** (2016). https://doi.org/10.1038/srep38495
- LEMOS, I. B. Aproveitamento de água de chuva para usos não potáveis e análise comparativa dos métodos de dimensionamento de reservatório propostos pela NBR 15527:2007. Projeto de graduação (Graduação em Engenharia), Escola Politécnica pela Universidade Federal do Rio de Janeiro, 2017.
- MAY. S. Estudo da viabilidade do aproveitamento de água de chuva para consumo não potável em edificações. 2004. 159 p. Dissertação (Mestrado em Engenharia Civil). Escola Politécnica da Universidade de São Paulo. São Paulo, 2004.
- MEKONNEN, M.M.; HOEKSTRA. A.Y. Four billion people facing severe water scarcity. 2016; **Sci.adv. 2: e1500323**. https://doi.org/10.1126/sciadv.1500323

- MENEZES. **Portal Professor Menezes, escolha da bomba de recalque**, 2022. Disponível em: http://mz.pro.br/hidraulicapredial/11-Bomba_de_Recalque.pdf>. Acesso em: 09 de jun de 2022.
- OLIVEIRA, L.H. **Metodologia para a implantação de programa de uso racional da água em edifícios**. 1999. 344p. Tese (Dotourado em Engenharia) Escola Politécnica, Universidade de São Paulo, São Paulo, 1999.
- PACHECO, P. R. C.; GÓMEZ, Y. D.; OLIVEIRA, I. F.; TEIXEIRA, L. C.G. A view of the legislative scenario for rainwater harvesting in Brazil, **Journal of Cleaner Production, Volume 141,** 2016, Pages 290-294. ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2016.09.097.
- PATO BRANCO, Lei municipal n° 2349, de 18 de junho de 2004. Cria o programa de conservação e uso racional da água nas edificações. Pato Branco, 2004. Disponível em: < https://leismunicipais.com.br/a/pr/p/pato-branco/leiordinaria/2004/235/2349/lei-ordinaria-n-2349-2004-cria-o-programa-de-conservacao-e-uso-racional-da-agua-nas-edificacoes>. Acesso em 09 de jun. de 2022.
- PETERS, M.R. Potencialidade de uso de fontes alternativas de água para fins não potáveis em uma unidade residencial. 2006. 109f. Dissertação (mestrado em Engenharia Ambiental) Universidade Federal de Santa Catarina, Florianópolis, 2006.
- PHILIPPI. L.S et al. Aproveitamento de água de chuva. In: GONÇALVES, R.F. (Org.). **Uso racional da água em edificações**. Rio de Janeiro: ABES PROSAB, 2006. Cap 3, p. 73-152.
- PORTO, R. de M. Hidráulica Básica. São Carlos, EESC/USP, 1998. 516p.
- Rijsberman, F. R. Water scarcity: Fact or fiction?. **Agricultural Water Management**. Volume 80. Issues 1–3. 2006. Pages 5-22. ISSN 0378-3774. https://doi.org/10.1016/j.agwat.2005.07.001.
- SANEPAR, Companhia de Saneamento do Paraná. **Manual do Projeto Hidrossanitário**, 2019. Disponível em: https://site.sanepar.com.br/informacoestecnicas/manual-de-projeto-hidrossanitario. Acesso em: 09 jun. 2022.
- SANEPAR, Companhia de Saneamento do Paraná. **Tabela de Tarifas de Saneamento Básico da Companhia de Saneamento do Para**ná, 2022. Disponível em: https://site.sanepar.com.br/clientes/nossas-tarifas>. Acesso em: 09 de jun. 2022.
- SANTOS, D. C. Os sistemas prediais e a promoção da sustentabilidade ambiental. **Ambiente Construído**, Porto Alegre, v. 2, n. 4, p. 7-18, 2002. Disponível em: https://seer.ufrgs.br/ambienteconstruido/article/view/3429. Acesso em: 24 de abril de 2022.
- SANTOS, D. C.; MALINOWSKI, A. Programa de conservação de água no meio urbano: Uma aplicação enfocando o reúso de água, 2005. **Rev. bras. eng. agríc. ambient.** vol.9 supl.1. ISSN 1807-1929. https://doi.org/10.1590/1807-1929/agriambi.v9nsupp171-175

- SAUTCHÚK, C. A. Formulação de diretrizes para implantação de programas de conservação de água em edificações. Dissertação (Mestrado em Engenharia) Escola Politécnica da Universidade de São Paulo, São Paulo, 2004.
- SELLA, M. B. Reúso de águas cinzas: avaliação da viabilidade da implantação do sistema em residências. 2011. Trabalho de Conclusão de Curso (Graduação em Engenharia Civil) Universidade Federal do Rio Grande do Sul. Porto Alegre, 2011.
- Silva, C.M.; Sousa, V.; Carvalho, N.V. Evaluation of rainwater harvesting in Portugal: Application to single-family residences. **Resour. Conserv. Recycl.** 2015, 94, 21–34.
- SILVA. G. B. R.; TACHINI, M.; ROHDEN, A. B. EA Revista de estudos ambientais (Online) v.21, n. 2, p.48-57, jul./dez. 2019.
- SLOB, M. K. Análise da economia de água potável através da implantação de um sistema de aproveitamento de água de chuva em uma propriedade agroindustrial, 2015. Monografia (Especialização em Construções Sustentáveis) Universidade Tecnológica Federal do Paraná, Curitiba, 2015.
- SNIS, Sistema Nacional de Informações sobre Saneamento. **Diagnóstico dos serviços de água e esgoto**, 2019. Disponível em: http://www.snis.gov.br/downloads/diagnosticos/ae/2019/Diagnóstico_SNIS_AE_2019_Republicacao_31032021.pdf. Acesso em: 09 de jun. 2022.
- TABALIPA, N. L.; FIORI, A. P. Estudo do clima do município de Pato Branco, Paraná. **Synergismus Scyentifica** UTFPR, v. 3, p. 20, 2008.
- TOMAZ, P. Aproveitamento de água de chuva de cobertura em área urbana para fins não potáveis. 2009. Disponível em: http://nascecme.com.br/2014/wp-content/uploads/2015/02/capitulo8.pdf>. Acesso em: 09 de jun 2022.
- TOMAZ, P. Aproveitamento de água de chuva em áreas urbanas para fins não potáveis, 2009. Disponível em: https://docplayer.com.br/1223588-Aproveitamento-de-agua-de-chuva-em-areas-urbanas-para-fins-nao-potaveis.html. Acesso em: 09 de jun. 2022.
- TOMAZ, P. Aproveitamento de água de chuva para áreas urbanas e fins não potáveis. In: **SIMPOSIO BRASILEIRO DE CAPTAÇÃO E MANEJO DE ÁGUA DE CHUVA**, 7, 2007, Belo Horizonte. São Paulo. 2007. P. 1-24
- VERIATO, M. K. L.; BARROS, H. M. M.; SOUZA, L. P.; CHICÓ, L. R.; BAROSI, K. X. L. Água: Escassez, crise e perspectivas para 2050. **Revista Verde de Agroecologia e Desenvolvimento Sustentável**, v. 10, n. 5, p. 17 22, 3 Dec. 2015.
- Vialle, C.; Busset, G.; Tanfin, L.; Montrejaud-Vignoles, M.; Huau, M.-C.; Sablayrolles, C. Environmental analysis of a domestic rainwater harvesting system: A case study in France. **Resour. Conserv. Recycl.** 2015, 102, 178–184
- YANNOPOULOS, S.; GIANNOPOULOU, I.; KAIAFA-SAROPOULOU, M. Investigation of the Current Situation and Prospects for the Development of Rainwater Harvesting

as a Tool to Confront Water Scarcity Worldwide. **Water.** 2019. 11(10):2168. https://doi.org/10.3390/w11102168

APÊNDICE A - CÁLCULO MÉTODO DE RIPPL MENSAL

Cálculo do método de Rippl Mensal.

1	2	3	4	5	6	7
Meses	P (t) (mm)	D (t) (m³)	A (m²)	Q (t) (m³)	D (t) - Q (t) (m ³)	Dif. Acum. Valores + (m³)
Jan	198,8	9,77	80,40	12,79	-3,02	
Fev	166,1	9,77	80,40	10,68	-0,91	
Mar	152,3	9,77	80,40	9,80	-0,03	
Abr	149,4	9,77	80,40	9,61	0,16	0,16
Mai	181,9	9,77	80,40	11,70	-1,93	
Jun	171,3	9,77	80,40	11,02	-1,25	
Jul	140,7	9,77	80,40	9,05	0,72	0,72
Ago	120,6	9,77	80,40	7,76	2,01	2,73
Set	160,6	9,77	80,40	10,33	-0,56	2,17
Out	216,6	9,77	80,40	13,93	-4,16	
Nov	170,6	9,77	80,40	10,97	-1,20	
Dez	171,1	9,77	80,40	11,01	-1,24	
Total	2014,2	117,24	-	128,64	-	2,73

APÊNDICE B – CÁLCULO RIPPL DIÁRIO

Cálculo do método de Rippl diário.

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t)	Dif. Acum. Valores + (L)
01/jan	4,720	325,667	80,4	303,614	22,053	0,000
02/jan	9,600	325,667	80,4	617,472	-291,805	0,000
03/jan	4,102	325,667	80,4	263,831	61,836	61,836
04/jan	5,883	325,667	80,4	378,416	-52,749	9,087
05/jan	6,293	325,667	80,4	404,740	-79,073	0,000
06/jan	7,193	325,667	80,4	462,628	-136,961	0,000
07/jan	7,587	325,667	80,4	487,998	-162,331	0,000
08/jan	8,350	325,667	80,4	537,072	-211,405	0,000
09/jan	9,343	325,667	80,4	600,916	-275,249	0,000
10/jan	7,709	325,667	80,4	495,860	-170,193	0,000
11/jan	4,059	325,667	80,4	261,092	64,575	64,575
12/jan	5,180	325,667	80,4	333,154	-7,487	57,089
13/jan	6,550	325,667	80,4	421,296	-95,629	0,000
14/jan	8,067	325,667	80,4	518,848	-193,181	0,000
15/jan	4,724	325,667	80,4	303,852	21,815	21,815
16/jan	7,594	325,667	80,4	488,475	-162,808	0,000
17/jan	5,698	325,667	80,4	366,505	-40,838	0,000
18/jan	5,650	325,667	80,4	363,408	-37,741	0,000
19/jan	5,467	325,667	80,4	351,616	-25,949	0,000
20/jan	8,369	325,667	80,4	538,263	-212,596	0,000
21/jan	5,176	325,667	80,4	332,916	-7,249	0,000
22/jan	4,161	325,667	80,4	267,643	58,024	58,024
23/jan	4,028	325,667	80,4	259,067	66,600	124,625
24/jan	5,724	325,667	80,4	368,172	-42,505	82,119
25/jan	10,824	325,667	80,4	696,204	-370,537	0,000
26/jan	7,241	325,667	80,4	465,724	-140,057	0,000
27/jan	4,969	325,667	80,4	319,575	6,092	6,092
28/jan	4,522	325,667	80,4	290,869	34,798	40,890
29/jan	4,489	325,667	80,4	288,725	36,942	77,831
30/jan	3,570	325,667	80,4	229,646	96,021	173,852
31/jan	9,080	325,667	80,4	584,002	-258,335	0,000
01/fev	8,463	325,667	80,4	544,338	-218,671	0,000
02/fev	6,069	325,667	80,4	390,327	-64,660	0,000
03/fev	6,554	325,667	80,4	421,534	-95,867	0,000
04/fev	5,504	325,667	80,4	353,998	-28,331	0,000
05/fev	4,857	325,667	80,4	312,428	13,239	13,239
06/fev	2,733	325,667	80,4	175,808	149,859	163,098
07/fev	3,317	325,667	80,4	213,328	112,339	275,437
08/fev	3,080	325,667	80,4	198,082	127,585	403,022
09/fev	4,269	325,667	80,4	274,551	51,116	454,138

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t)	Dif. Acum. Valores + (L)
10/fev	6,848	325,667	80,4	440,473	-114,806	339,332
11/fev	6,102	325,667	80,4	392,471	-66,804	272,528
12/fev	4,678	325,667	80,4	300,875	24,792	297,320
13/fev	4,915	325,667	80,4	316,121	9,546	306,866
14/fev	7,446	325,667	80,4	478,946	-153,279	153,587
15/fev	8,407	325,667	80,4	540,764	-215,097	0,000
16/fev	8,294	325,667	80,4	533,499	-207,832	0,000
17/fev	8,180	325,667	80,4	526,114	-200,447	0,000
18/fev	7,353	325,667	80,4	472,934	-147,267	0,000
19/fev	6,725	325,667	80,4	432,522	-106,855	0,000
20/fev	5,187	325,667	80,4	333,614	-7,947	0,000
21/fev	4,698	325,667	80,4	302,183	23,484	23,484
22/fev	7,502	325,667	80,4	482,521	-156,854	0,000
23/fev	5,017	325,667	80,4	322,672	2,995	2,995
24/fev	7,294	325,667	80,4	469,179	-143,512	0,000
25/fev	4,463	325,667	80,4	287,058	38,609	38,609
26/fev	6,369	325,667	80,4	409,623	-83,956	0,000
27/fev	5,281	325,667	80,4	339,705	-14,038	0,000
28/fev	5,039	325,667	80,4	324,101	1,566	1,566
29/fev	10,633	325,667	80,4	683,936	-358,269	0,000
01/mar	4,417	325,667	80,4	284,080	41,587	41,587
02/mar	4,330	325,667	80,4	278,482	47,185	88,772
03/mar	6,009	325,667	80,4	386,516	-60,849	27,924
04/mar	6,509	325,667	80,4	418,676	-93,009	0,000
05/mar	7,363	325,667	80,4	473,586	-147,919	0,000
06/mar	2,274	325,667	80,4	146,268	179,399	179,399
07/mar	3,389	325,667	80,4	217,973	107,694	287,092
08/mar	4,122	325,667	80,4	265,141	60,526	347,618
09/mar	4,372	325,667	80,4	281,221	44,446	392,064
10/mar	3,880	325,667	80,4	249,538	76,129	468,193
11/mar	3,556	325,667	80,4	228,693	96,974	565,166
12/mar	5,052	325,667	80,4	324,935	0,732	565,898
13/mar	7,391	325,667	80,4	475,372	-149,705	416,193
14/mar	3,380	325,667	80,4	217,378	108,289	524,482
15/mar	5,709	325,667	80,4	367,220	-41,553	482,930
16/mar	2,569	325,667	80,4	165,207	160,460	643,389
17/mar	7,344	325,667	80,4	472,395	-146,728	496,662
18/mar	5,402	325,667	80,4	347,447	-21,780	474,882
19/mar	7,230	325,667	80,4	465,010	-139,343	335,539
20/mar	6,809	325,667	80,4	437,972	-112,305	223,234
21/mar	3,735	325,667	80,4	240,247	85,420	308,654
22/mar	2,604	325,667	80,4	167,470	158,197	466,851

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t) (L)	Dif. Acum. Valores + (L)
23/mar	4,185	325,667	80,4	269,191	56,476	523,327
24/mar	4,694	325,667	80,4	301,947	23,720	547,047
25/mar	5,202	325,667	80,4	334,583	-8,916	538,131
26/mar	3,457	325,667	80,4	222,380	103,287	641,418
27/mar	4,269	325,667	80,4	274,551	51,116	692,534
28/mar	6,404	325,667	80,4	411,886	-86,219	606,314
29/mar	7,681	325,667	80,4	494,073	-168,406	437,908
30/mar	4,906	325,667	80,4	315,525	10,142	448,050
31/mar	3,926	325,667	80,4	252,516	73,151	521,202
01/abr	3,926	325,667	80,4	252,516	73,151	594,353
02/abr	6,041	325,667	80,4	388,540	-62,873	531,480
03/abr	5,063	325,667	80,4	325,650	0,017	531,497
04/abr	3,476	325,667	80,4	223,572	102,095	633,592
05/abr	4,076	325,667	80,4	262,164	63,503	697,096
06/abr	4,302	325,667	80,4	276,695	48,972	746,068
07/abr	5,746	325,667	80,4	369,602	-43,935	702,133
08/abr	3,089	325,667	80,4	198,677	126,990	829,122
09/abr	3,341	325,667	80,4	214,876	110,791	939,913
10/abr	4,759	325,667	80,4	306,116	19,551	959,464
11/abr	3,096	325,667	80,4	199,154	126,513	1085,978
12/abr	0,965	325,667	80,4	62,057	263,610	1349,588
13/abr	2,119	325,667	80,4	136,263	189,404	1538,992
14/abr	7,956	325,667	80,4	511,701	-186,034	1352,957
15/abr	7,431	325,667	80,4	477,993	-152,326	1200,631
16/abr	6,602	325,667	80,4	424,631	-98,964	1101,667
17/abr	3,026	325,667	80,4	194,628	131,039	1232,707
18/abr	2,993	325,667	80,4	192,484	133,183	1365,890
19/abr	9,133	325,667	80,4	587,456	-261,789	1104,101
20/abr	2,987	325,667	80,4	192,126	133,541	1237,642
21/abr	6,550	325,667	80,4	421,296	-95,629	1142,013
22/abr	5,483	325,667	80,4	352,688	-27,021	1114,992
23/abr	5,859	325,667	80,4	376,868	-51,201	1063,791
24/abr	6,002	325,667	80,4	386,039	-60,372	1003,419
25/abr	6,587	325,667	80,4	423,678	-98,011	905,408
26/abr	3,141	325,667	80,4	202,012	123,655	1029,063
27/abr	10,106	325,667	80,4	649,989	-324,322	704,740
28/abr	7,104	325,667	80,4	456,910	-131,243	573,497
29/abr	3,589	325,667	80,4	230,837	94,830	668,327
30/abr	5,626	325,667	80,4	361,860	-36,193	632,134
01/mai	5,783	325,667	80,4	371,984	-46,317	585,817
02/mai	2,776	325,667	80,4	178,548	147,119	732,937
03/mai	5,285	325,667	80,4	339,943	-14,276	718,661

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t)	Dif. Acum. Valores + (L)
04/mai	5,756	325,667	80,4	370,197	-44,530	674,130
05/mai	2,926	325,667	80,4	188,196	137,471	811,602
06/mai	3,289	325,667	80,4	211,541	114,126	925,727
07/mai	4,096	325,667	80,4	263,474	62,193	987,921
08/mai	6,963	325,667	80,4	447,858	-122,191	865,730
09/mai	3,363	325,667	80,4	216,306	109,361	975,091
10/mai	5,965	325,667	80,4	383,657	-57,990	917,101
11/mai	4,361	325,667	80,4	280,507	45,160	962,261
12/mai	7,735	325,667	80,4	497,527	-171,860	790,401
13/mai	6,117	325,667	80,4	393,424	-67,757	722,644
14/mai	8,969	325,667	80,4	576,855	-251,188	471,456
15/mai	5,591	325,667	80,4	359,596	-33,929	437,527
16/mai	9,278	325,667	80,4	596,747	-271,080	166,447
17/mai	5,222	325,667	80,4	335,893	-10,226	156,221
18/mai	6,033	325,667	80,4	388,064	-62,397	93,824
19/mai	5,024	325,667	80,4	323,148	2,519	96,342
20/mai	7,896	325,667	80,4	507,890	-182,223	0,000
21/mai	10,120	325,667	80,4	650,942	-325,275	0,000
22/mai	6,519	325,667	80,4	419,271	-93,604	0,000
23/mai	6,852	325,667	80,4	440,711	-115,044	0,000
24/mai	5,530	325,667	80,4	355,666	-29,999	0,000
25/mai	6,461	325,667	80,4	415,579	-89,912	0,000
26/mai	5,878	325,667	80,4	378,059	-52,392	0,000
27/mai	5,167	325,667	80,4	332,320	-6,653	0,000
28/mai	6,970	325,667	80,4	448,334	-122,667	0,000
29/mai	8,200	325,667	80,4	527,424	-201,757	0,000
30/mai	5,065	325,667	80,4	325,769	-0,102	0,000
31/mai	7,019	325,667	80,4	451,431	-125,764	0,000
01/jun	3,852	325,667	80,4	247,751	77,916	77,916
02/jun	3,865	325,667	80,4	248,585	77,082	154,998
03/jun	6,237	325,667	80,4	401,166	-75,499	79,499
04/jun	3,091	325,667	80,4	198,796	126,871	206,369
05/jun	10,009	325,667	80,4	643,796	-318,129	0,000
06/jun	7,902	325,667	80,4	508,247	-182,580	0,000
07/jun	4,089	325,667	80,4	262,997	62,670	62,670
08/jun	6,643	325,667	80,4	427,252	-101,585	0,000
09/jun	4,483	325,667	80,4	288,368	37,299	37,299
10/jun	3,598	325,667	80,4	231,433	94,234	131,533
11/jun	5,574	325,667	80,4	358,524	-32,857	98,676
12/jun	2,509	325,667	80,4	161,396	164,271	262,947
13/jun	5,961	325,667	80,4	383,419	-57,752	205,195
14/jun	9,909	325,667	80,4	637,364	-311,697	0,000

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t) (L)	Dif. Acum. Valores + (L)
15/jun	4,957	325,667	80,4	318,860	6,807	6,807
16/jun	4,363	325,667	80,4	280,626	45,041	51,848
17/jun	4,578	325,667	80,4	294,443	31,224	83,072
18/jun	13,870	325,667	80,4	892,142	-566,475	0,000
19/jun	6,326	325,667	80,4	406,884	-81,217	0,000
20/jun	9,822	325,667	80,4	631,765	-306,098	0,000
21/jun	6,791	325,667	80,4	436,780	-111,113	0,000
22/jun	2,691	325,667	80,4	173,068	152,599	152,599
23/jun	5,450	325,667	80,4	350,544	-24,877	127,722
24/jun	6,113	325,667	80,4	393,186	-67,519	60,203
25/jun	6,239	325,667	80,4	401,285	-75,618	0,000
26/jun	5,687	325,667	80,4	365,790	-40,123	0,000
27/jun	4,976	325,667	80,4	320,052	5,615	5,615
28/jun	3,931	325,667	80,4	252,873	72,794	78,410
29/jun	3,335	325,667	80,4	214,519	111,148	189,557
30/jun	5,254	325,667	80,4	337,918	-12,251	177,306
01/jul	4,842	325,667	80,4	311,406	14,261	191,567
02/jul	6,802	325,667	80,4	437,497	-111,830	79,737
03/jul	5,296	325,667	80,4	340,653	-14,986	64,751
04/jul	5,702	325,667	80,4	366,745	-41,078	23,672
05/jul	3,730	325,667	80,4	239,926	85,741	109,414
06/jul	3,843	325,667	80,4	247,207	78,460	187,873
07/jul	5,817	325,667	80,4	374,148	-48,481	139,392
08/jul	8,815	325,667	80,4	566,987	-241,320	0,000
09/jul	8,657	325,667	80,4	556,793	-231,126	0,000
10/jul	6,845	325,667	80,4	440,289	-114,622	0,000
11/jul	3,281	325,667	80,4	211,042	114,625	114,625
12/jul	2,987	325,667	80,4	192,110	133,557	248,181
13/jul	2,494	325,667	80,4	160,436	165,231	413,412
14/jul	2,102	325,667	80,4	135,193	190,474	603,886
15/jul	5,023	325,667	80,4	323,056	2,611	606,497
16/jul	5,308	325,667	80,4	341,381	-15,714	590,782
17/jul	5,815	325,667	80,4	374,027	-48,360	542,422
18/jul	6,800	325,667	80,4	437,376	-111,709	430,713
19/jul	3,755	325,667	80,4	241,503	84,164	514,877
20/jul	4,066	325,667	80,4	261,528	64,139	579,016
21/jul	6,602	325,667	80,4	424,633	-98,966	480,050
22/jul	5,572	325,667	80,4	358,372	-32,705	447,345
23/jul	3,174	325,667	80,4	204,125	121,542	568,887
24/jul	3,796	325,667	80,4	244,173	81,494	650,381
25/jul	2,453	325,667	80,4	157,766	167,901	818,282
26/jul	3,919	325,667	80,4	252,062	73,605	891,887

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t)	Dif. Acum. Valores + (L)
27/jul	1,923	325,667	80,4	123,664	202,003	1093,890
28/jul	3,417	325,667	80,4	219,780	105,887	1199,777
29/jul	1,925	325,667	80,4	123,786	201,881	1401,658
30/jul	6,736	325,667	80,4	433,250	-107,583	1294,075
31/jul	1,838	325,667	80,4	118,203	207,464	1501,539
01/ago	6,227	325,667	80,4	400,516	-74,849	1426,691
02/ago	4,921	325,667	80,4	316,529	9,138	1435,829
03/ago	3,179	325,667	80,4	204,463	121,204	1557,033
04/ago	2,804	325,667	80,4	180,343	145,324	1702,356
05/ago	3,083	325,667	80,4	198,279	127,388	1829,744
06/ago	3,621	325,667	80,4	232,913	92,754	1922,499
07/ago	3,331	325,667	80,4	214,235	111,432	2033,931
08/ago	2,367	325,667	80,4	152,265	173,402	2207,332
09/ago	3,458	325,667	80,4	222,399	103,268	2310,601
10/ago	3,173	325,667	80,4	204,092	121,575	2432,175
11/ago	3,588	325,667	80,4	230,810	94,857	2527,033
12/ago	1,746	325,667	80,4	112,313	213,354	2740,387
13/ago	6,004	325,667	80,4	386,167	-60,500	2679,887
14/ago	3,087	325,667	80,4	198,526	127,141	2807,027
15/ago	4,340	325,667	80,4	279,174	46,493	2853,521
16/ago	5,567	325,667	80,4	358,089	-32,422	2821,099
17/ago	4,192	325,667	80,4	269,649	56,018	2877,116
18/ago	5,077	325,667	80,4	326,548	-0,881	2876,236
19/ago	4,902	325,667	80,4	315,292	10,375	2886,611
20/ago	4,349	325,667	80,4	279,731	45,936	2932,547
21/ago	4,564	325,667	80,4	293,566	32,101	2964,647
22/ago	7,002	325,667	80,4	450,361	-124,694	2839,953
23/ago	2,857	325,667	80,4	183,737	141,930	2981,883
24/ago	3,442	325,667	80,4	221,358	104,309	3086,192
25/ago	3,202	325,667	80,4	205,945	119,722	3205,914
26/ago	4,357	325,667	80,4	280,217	45,450	3251,364
27/ago	5,608	325,667	80,4	360,677	-35,010	3216,354
28/ago	3,130	325,667	80,4	201,334	124,333	3340,687
29/ago	0,838	325,667	80,4	53,883	271,784	3612,471
30/ago	2,040	325,667	80,4	131,189	194,478	3806,950
31/ago	8,980	325,667	80,4	577,570	-251,903	3555,047
01/set	5,125	325,667	80,4	329,610	-3,943	3551,104
02/set	2,511	325,667	80,4	161,528	164,139	3715,243
03/set	3,791	325,667	80,4	243,809	81,858	3797,101
04/set	3,000	325,667	80,4	192,960	132,707	3929,808
05/set	5,028	325,667	80,4	323,420	2,247	3932,054
06/set	3,496	325,667	80,4	224,877	100,790	4032,844

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t)	Dif. Acum. Valores + (L)
07/set	5,496	325,667	80,4	353,517	-27,850	4004,994
08/set	6,855	325,667	80,4	440,895	-115,228	3889,765
09/set	4,540	325,667	80,4	291,989	33,678	3923,444
10/set	1,136	325,667	80,4	73,058	252,609	4176,053
11/set	2,666	325,667	80,4	171,480	154,187	4330,240
12/set	7,191	325,667	80,4	462,497	-136,830	4193,410
13/set	6,791	325,667	80,4	436,769	-111,102	4082,308
14/set	7,304	325,667	80,4	469,779	-144,112	3938,196
15/set	6,785	325,667	80,4	436,405	-110,738	3827,458
16/set	3,840	325,667	80,4	246,965	78,702	3906,161
17/set	4,813	325,667	80,4	309,586	16,081	3922,242
18/set	5,117	325,667	80,4	329,124	-3,457	3918,785
19/set	8,389	325,667	80,4	539,560	-213,893	3704,892
20/set	8,296	325,667	80,4	533,613	-207,946	3496,946
21/set	3,857	325,667	80,4	248,057	77,610	3574,556
22/set	2,421	325,667	80,4	155,703	169,964	3744,520
23/set	6,438	325,667	80,4	414,075	-88,408	3656,112
24/set	6,645	325,667	80,4	427,425	-101,758	3554,354
25/set	7,204	325,667	80,4	463,347	-137,680	3416,675
26/set	5,885	325,667	80,4	378,517	-52,850	3363,825
27/set	6,089	325,667	80,4	391,624	-65,957	3297,868
28/set	5,674	325,667	80,4	364,925	-39,258	3258,610
29/set	8,828	325,667	80,4	567,836	-242,169	3016,440
30/set	10,931	325,667	80,4	703,113	-377,446	2638,994
01/out	8,857	325,667	80,4	569,657	-243,990	2395,005
02/out	6,940	325,667	80,4	446,357	-120,690	2274,315
03/out	5,123	325,667	80,4	329,488	-3,821	2270,494
04/out	4,774	325,667	80,4	307,037	18,630	2289,124
05/out	5,943	325,667	80,4	382,279	-56,612	2232,512
06/out	5,917	325,667	80,4	380,580	-54,913	2177,598
07/out	6,606	325,667	80,4	424,876	-99,209	2078,389
08/out	4,743	325,667	80,4	305,095	20,572	2098,961
09/out	8,498	325,667	80,4	546,599	-220,932	1878,029
10/out	7,219	325,667	80,4	464,318	-138,651	1739,379
11/out	6,974	325,667	80,4	448,541	-122,874	1616,505
12/out	6,383	325,667	80,4	410,556	-84,889	1531,616
13/out	7,557	325,667	80,4	486,041	-160,374	1371,242
14/out	5,570	325,667	80,4	358,250	-32,583	1338,659
15/out	6,268	325,667	80,4	403,153	-77,486	1261,173
16/out	6,725	325,667	80,4	432,522	-106,855	1154,318
17/out	12,628	325,667	80,4	812,252	-486,585	667,733
18/out	5,592	325,667	80,4	359,707	-34,040	633,694

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t)	Dif. Acum. Valores + (L)	
19/out	6,500	325,667	80,4	418,080	-92,413	541,281	
20/out	5,675	325,667	80,4	365,046	-39,379	501,901	
21/out	5,496	325,667	80,4	353,517	-27,850	474,051	
22/out	6,128	325,667	80,4	394,172	-68,505	405,546	
23/out	7,258	325,667	80,4	466,866	-141,199	264,346	
24/out	4,709	325,667	80,4	302,911	22,756	287,103	
25/out	9,389	325,667	80,4	603,880	-278,213	8,890	
26/out	12,223	325,667	80,4	786,160	-460,493	0,000	
27/out	7,015	325,667	80,4	451,211	-125,544	0,000	
28/out	8,685	325,667	80,4	558,613	-232,946	0,000	
29/out	7,108	325,667	80,4	457,157	-131,490	0,000	
30/out	8,055	325,667	80,4	518,079	-192,412	0,000	
31/out	8,317	325,667	80,4	534,948	-209,281	0,000	
01/nov	4,300	325,667	80,4	276,576	49,091	49,091	
02/nov	6,690	325,667	80,4	430,326	-104,659	0,000	
03/nov	6,463	325,667	80,4	415,730	-90,063	0,000	
04/nov	5,969	325,667	80,4	383,941	-58,274	0,000	
05/nov	5,152	325,667	80,4	331,372	-5,705	0,000	
06/nov	8,788	325,667	80,4	565,274	-239,607	0,000	
07/nov	5,125	325,667	80,4	329,640	-3,973	0,000	
08/nov	8,767	325,667	80,4	563,913	-238,246	0,000	
09/nov	5,460	325,667	80,4	351,162	-25,495	0,000	
10/nov	6,594	325,667	80,4	424,141	-98,474	0,000	
11/nov	6,777	325,667	80,4	435,892	-110,225	0,000	
12/nov	4,648	325,667	80,4	298,964	26,703	26,703	
13/nov	5,958	325,667	80,4	383,199	-57,532	0,000	
14/nov	6,423	325,667	80,4	413,132	-87,465	0,000	
15/nov	3,406	325,667	80,4	219,059	106,608	106,608	
16/nov	5,546	325,667	80,4	356,729	-31,062	75,546	
17/nov	5,458	325,667	80,4	351,039	-25,372	50,175	
18/nov	5,227	325,667	80,4	336,196	-10,529	39,646	
19/nov	3,610	325,667	80,4	232,170	93,497	133,142	
20/nov	5,231	325,667	80,4	336,443	-10,776	122,366	
21/nov	3,742	325,667	80,4	240,705	84,962	207,328	
22/nov	9,015	325,667	80,4	579,870	-254,203	0,000	
23/nov	2,660	325,667	80,4	171,066	154,601	154,601	
24/nov	5,017	325,667	80,4	322,713	2,954	157,554	
25/nov	4,706	325,667	80,4	302,675	22,992	180,546	
26/nov	5,033	325,667	80,4	323,703	1,964	182,510	
27/nov	8,060	325,667	80,4	518,394	-192,727	0,000	
28/nov	7,981	325,667	80,4	513,323	-187,656	0,000	
29/nov	4,454	325,667	80,4	286,471	39,196	39,196	

Dias	P (t) (mm)	D (t) (L)	A (m²)	Q (t) (L)	D (t) - Q (t)	Dif. Acum. Valores + (L)	
30/nov	6,390	325,667	80,4	411,030	-85,363	0,000	
01/dez	6,233	325,667	80,4	400,887	-75,220	0,000	
02/dez	3,929	325,667	80,4	252,703	72,964	72,964	
03/dez	5,985	325,667	80,4	384,930	-59,263	13,700	
04/dez	3,677	325,667	80,4	236,500	89,167	102,867	
05/dez	6,002	325,667	80,4	386,044	-60,377	42,491	
06/dez	5,917	325,667	80,4	380,601	-54,934	0,000	
07/dez	3,306	325,667	80,4	212,627	113,040	113,040	
08/dez	3,969	325,667	80,4	255,301	70,366	183,406	
09/dez	5,408	325,667	80,4	347,823	-22,156	161,250	
10/dez	5,338	325,667	80,4	343,370	-17,703	143,547	
11/dez	5,921	325,667	80,4	380,849	-55,182	88,366	
12/dez	7,158	325,667	80,4	460,383	-134,716	0,000	
13/dez	7,346	325,667	80,4	472,505	-146,838	0,000	
14/dez	4,831	325,667	80,4	310,715	14,952	14,952	
15/dez	3,271	325,667	80,4	210,401	115,266	130,218	
16/dez	5,354	325,667	80,4	344,359	-18,692	111,526	
17/dez	3,333	325,667	80,4	214,359	111,308	222,834	
18/dez	4,023	325,667	80,4	258,764	66,903	289,737	
19/dez	8,581	325,667	80,4	551,915	-226,248	63,489	
20/dez	4,925	325,667	80,4	316,776	8,891	72,380	
21/dez	5,533	325,667	80,4	355,863	-30,196	42,184	
22/dez	9,021	325,667	80,4	580,241	-254,574	0,000	
23/dez	4,635	325,667	80,4	298,098	27,569	27,569	
24/dez	8,898	325,667	80,4	572,324	-246,657	0,000	
25/dez	4,408	325,667	80,4	283,503	42,164	42,164	
26/dez	4,342	325,667	80,4	279,297	46,370	88,534	
27/dez	2,346	325,667	80,4	150,905	174,762	263,296	
28/dez	7,210	325,667	80,4	463,722	-138,055	125,241	
29/dez	6,287	325,667	80,4	404,350	-78,683	46,558	
30/dez	7,538	325,667	80,4	484,874	-159,207	0,000	
31/dez	4,660	325,667	80,4	299,706	25,961	25,961	

APÊNDICE C – CÁLCULO MÉTODO DE RIPPL GRÁFICO

Cálculo Método de Rippl gráfico

1	2	3	4	5	6	7
Meses	P (t) (mm)	D (t) (m ³)	A (m²)	Q (t) (m ³)	Q (t)+ Q(t-1)	D (t)+ D (t-1)
Jan	198,8	9,77	80,40	12,79	12,79	9,77
Fev	166,1	9,77	80,40	10,68	23,47	19,54
Mar	152,3	9,77	80,40	9,80	33,27	29,31
Abr	149,4	9,77	80,40	9,61	42,88	39,08
Mai	181,9	9,77	80,40	11,70	54,58	48,85
Jun	171,3	9,77	80,40	11,02	65,59	58,62
Jul	140,7	9,77	80,40	9,05	74,64	68,39
Ago	120,6	9,77	80,40	7,76	82,40	78,16
Set	160,6	9,77	80,40	10,33	92,73	87,93
Out	216,6	9,77	80,40	13,93	106,66	97,70
Nov	170,6	9,77	80,40	10,97	117,63	107,47
Dez	171,1	9,77	80,40	11,01	128,64	117,24
Total	2014,2	117,24	80,40	128,64	128,64	117,24

APÊNDICE D – MÉTODO DA SIMULAÇÃO MENSAL

1	Método da :	3	4	5	6	7	8	9	10
Meses	P (t) (mm)	D (m³)	A (m²)	Q (t) (m ³)	V (m³)	S (t-1) (m³)	S (t) (m³)	Vol. vertido (m³)	Conces- sionária (m³)
Jan	198,8	9,77	80,40	12,79	1,00	0,00	1,00	3,02	0,00
Fev	166,1	9,77	80,40	10,68	1,00	1,00	1,00	0,91	0,00
Mar	152,3	9,77	80,40	9,80	1,00	1,00	1,00	0,03	0,00
Abr	149,4	9,77	80,40	9,61	1,00	1,00	0,84	0,00	0,00
Mai	181,9	9,77	80,40	11,70	1,00	0,84	1,00	1,93	0,00
Jun	171,3	9,77	80,40	11,02	1,00	1,00	1,00	1,25	0,00
Jul	140,7	9,77	80,40	9,05	1,00	1,00	0,28	0,00	0,00
Ago	120,6	9,77	80,40	7,76	1,00	0,28	0,00	0,00	1,73
Set	160,6	9,77	80,40	10,33	1,00	0,00	0,56	0,00	0,00
Out	216,6	9,77	80,40	13,93	1,00	0,56	1,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	1,00	1,00	1,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	1,00	1,00	1,00	1,24	0,00
Total	2014,2	117,24	-	128,64	1,00	-	-	13,73	1,73
1	2	3	4	5	6	7	8	9	10
Meses	P (t) (mm)	D (m³)	A (m²)	Q (t) (m ³)	V (m³)	S (t-1) (m³)	S (t) (m³)	Vol. vertido	Conces- sionária
			10					(m³)	(m³)
<u>Jan</u>	198,8	9,77	80,40	12,79	2,00	0,00	2,00	3,02	0,00
Fev	166,1	9,77	80,40	10,68	2,00	2,00	2,00	0,91	0,00
Mar	152,3	9,77	80,40	9,80	2,00	2,00	2,00	0,03	0,00
Abr	149,4	9,77	80,40	9,61	2,00	2,00	1,84	0,00	0,00
Mai	181,9	9,77	80,40	11,70	2,00	1,84	2,00	1,93	0,00
Jun	171,3	9,77	80,40	11,02	2,00	2,00	2,00	1,25	0,00
Jul	140,7	9,77	80,40	9,05	2,00	2,00	1,28	0,00	0,00
Ago	120,6	9,77	80,40	7,76	2,00	1,28	0,00	0,00	0,73
Set	160,6	9,77	80,40	10,33	2,00	0,00	0,56	0,00	0,00
Out	216,6	9,77	80,40	13,93	2,00	0,56	2,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	2,00	2,00	2,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	2,00	2,00	2,00	1,24	0,00
Total	2014,2	117,24	-	128,64	2,00	-	-	13,73	0,73
1	2	3	4	5	6	7	8	9	10
Meses	P (t) (mm)	D (m³)	A (m²)	Q (t) (m³)	V (m³)	S (t-1) (m³)	S (t) (m³)	Vol. vertido (m³)	Conces sionária (m³)
Jan	198,8	9,77	80,40	12,79	2,73	0,00	2,73	3,02	0,00
Fev	166,1	9,77	80,40	10,68	2,73	2,73	2,73	0,91	0,00
Mar	152,3	9,77	80,40	9,80	2,73	2,73	2,73	0,03	0,00
Abr	149,4	9,77	80,40	9,61	2,73	2,73	2,57	0,00	0,00
Mai	181,9	9,77	80,40	11,70	2,73	2,57	2,73	1,93	0,00
Jun	171,3	9,77	80,40	11,02	2,73	2,73	2,73	1,25	0,00
	140,7		80,40						
Jul Ago		9,77		9,05 7.76	2,73	2,73	2,01	0,00	0,00
Ago	120,6	9,77	80,40	7,76	2,73	2,01	0,00	0,00	0,00
Set	160,6	9,77	80,40	10,33	2,73	0,00	0,56	0,00	0,00
Out	216,6	9,77	80,40	13,93	2,73	0,56	2,73	4,16	0,00
Nov	170,6	9,77	80,40	10,97	2,73	2,73	2,73	1,20	0,00
Dez Total	171,1	9,77	80,40	11,01	2,73	2,73	2,73	1,24	0,00
エーチート	2014,2	117,24	80,40	128,64	2,73	-	_	13,73	0,00

	Método da simulação mensal para um reservatório incialmente vazio								
1	2	3	4	5	6	7	8	9	10
						0 ((4)	0 (1)	Vol.	Conces-
Meses	P (t) (mm)	D (m³)	A (m²)	Q (t) (m ³)	V (m³)	S (t-1)	S (t)	vertido	sionária
	(,, ,	` ,	` ,	,	` ,	(m³)	(m³)	(m³)	(m³)
Jan	198,8	9,77	80,40	12,79	3,00	0,00	3,00	3,02	0,00
Fev	166,1	9,77	80,40	10,68	3,00	3,00	3,00	0,91	0,00
Mar	152,3	9,77	80,40	9,80	3,00	3,00	3,00	0,03	0,00
Abr	149,4	9,77	80,40	9,61	3,00	3,00	2,84	0,00	0,00
Mai	181,9	9,77	80,40	11,70	3,00	2,84	3,00	1,93	0,00
Jun	171,3	9,77	80,40	11,02	3,00	3,00	3,00	1,25	0,00
Jul	140,7	9,77	80,40	9,05	3,00	3,00	2,28	0,00	0,00
Ago	120,6	9,77	80,40	7,76	3,00	2,28	0,27	0,00	0,00
Set	160,6	9,77	80,40	10,33	3,00	0,27	0,83	0,00	0,00
Out	216,6	9,77	80,40	13,93	3,00	0,83	3,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	3,00	3,00	3,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	3,00	3,00	3,00	1,24	0,00
Total	2014,2	117,24	-	128,64	3,00	-	-	13,73	0,00
		-		· ·					
1	2	3	4	5	6	7	8	9	10
						S (t-1)	S (t)	Vol.	Conces-
Meses	P (t) (mm)	D (m³)	A (m²)	Q (t) (m ³)	V (m³)	(m³)	(m³)	vertido	sionária
								(m³)	(m³)
Jan	198,8	9,77	80,40	12,79	4,00	0,00	3,02	0,00	0,00
Fev	166,1	9,77	80,40	10,68	4,00	3,02	3,93	0,00	0,00
<u>Mar</u>	152,3	9,77	80,40	9,80	4,00	3,93	3,96	0,00	0,00
Abr	149,4	9,77	80,40	9,61	4,00	3,96	3,80	0,00	0,00
Mai	181,9	9,77	80,40	11,70	4,00	3,80	4,00	1,93	0,00
Jun	171,3	9,77	80,40	11,02	4,00	4,00	4,00	1,25	0,00
Jul	140,7	9,77	80,40	9,05	4,00	4,00	3,28	0,00	0,00
Ago	120,6	9,77	80,40	7,76	4,00	3,28	1,27	0,00	0,00
<u>Set</u>	160,6	9,77	80,40	10,33	4,00	1,27	1,83	0,00	0,00
Out	216,6	9,77	80,40	13,93	4,00	1,83	4,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	4,00	4,00	4,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	4,00	4,00	4,00	1,24	0,00
Total	2014,2	117,24	-	128,64	4,00	-	-	9,78	0,00
1	2	3	4	5	6	7	8	9	10
						S (t-1)	S (t)	Vol.	Conces-
Meses	P (t) (mm)	D (m³)	A (m²)	Q (t) (m ³)	V (m³)	(m³)	(m³)	vertido	sionária
						(/	(/	(m³)	(m³)
Jan	198,8	9,77	80,40	12,79	10,00	0,00	3,02	0,00	0,00
Fev	166,1	9,77	80,40	10,68	10,00	3,02	3,93	0,00	0,00
Mar	152,3	9,77	80,40	9,80	10,00	3,93	3,96	0,00	0,00
Abr	149,4	9,77	80,40	9,61	10,00	3,96	3,80	0,00	0,00
Mai	181,9	9,77	80,40	11,70	10,00	3,80	5,73	0,00	0,00
Jun	171,3	9,77	80,40	11,02	10,00	5,73	6,97	0,00	0,00
Jul	140,7	9,77	80,40	9,05	10,00	6,97	6,25	0,00	0,00
Ago	120,6	9,77	80,40	7,76	10,00	6,25	4,24	0,00	0,00
Set	160,6	9,77	80,40	10,33	10,00	4,24	4,80	0,00	0,00
Out	216,6	9,77	80,40	13,93	10,00	4,80	8,96	0,00	0,00
Nov	170,6	9,77	80,40	10,97	10,00	8,96	10,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	10,00	10,00	10,00	1,24	0,00
Total	2014,2	117,24	-	128,64	10,00	-	-	2,44	0,00

Fonte: Autoria própria

	Métod	o da sim	ulação r	mensal p	ara um	reserva	tório inci	almente	e cheio
1	2	3	4	5	6	7	8	9	10
Meses	P (t) (mm)	D (m³)	A (m²)	Q (t) (m³)	V (m³)	S (t-1) (m³)	S (t) (m³)	Vol. vertido (m³)	Conces- sionária (m³)
Jan	198,8	9,77	80,40	12,79	2,73	2,73	2,73	3,02	0,00
Fev	166,1	9,77	80,40	10,68	2,73	2,73	2,73	0,91	0,00
Mar	152,3	9,77	80,40	9,80	2,73	2,73	2,73	0,03	0,00
Abr	149,4	9,77	80,40	9,61	2,73	2,73	2,57	0,00	0,00
Mai	181,9	9,77	80,40	11,70	2,73	2,57	2,73	1,93	0,00
Jun	171,3	9,77	80,40	11,02	2,73	2,73	2,73	1,25	0,00
Jul	140,7	9,77	80,40	9,05	2,73	2,73	2,01	0,00	0,00
Ago	120,6	9,77	80,40	7,76	2,73	2,01	0,00	0,00	0,00
Set	160,6	9,77	80,40	10,33	2,73	0,00	0,56	0,00	0,00
Out	216,6	9,77	80,40	13,93	2,73	0,56	2,73	4,16	0,00
Nov	170,6	9,77	80,40	10,97	2,73	2,73	2,73	1,20	0,00
Dez	171,1	9,77	80,40	11,01	2,73	2,73	2,73	1,24	0,00
Total	2014,2	117,24	-	128,64	2,73	-,	27,02	13,73	0,00
		,		1=0,01	,-				-,
1	2	3	4	5	6	7	8	9	10
	D (4)			0 (4)		C (4.4)		Vol.	Conces-
Meses	P (t)	$D (m^3)$	A (m ²)	Q (t)	$V (m^3)$	S (t-1)	S (t) (m ³)	vertido	sionária
	(mm)	, ,	, ,	(m³)	, ,	(m³)	,,,,,	(m^3)	(m^3)
Jan	198,8	9,77	80,40	12,79	3,00	3,00	3,00	3,02	0,00
Fev	166,1	9,77	80,40	10,68	3,00	3,00	3,00	0,91	0,00
Mar	152,3	9,77	80,40	9,80	3,00	3,00	3,00	0,03	0,00
Abr	149,4	9,77	80,40	9,61	3,00	3,00	2,84	0,00	0,00
Mai	181,9	9,77	80,40	11,70	3,00	2,84	3,00	1,93	0,00
Jun	171,3	9,77	80,40	11,02	3,00	3,00	3,00	1,25	0,00
Jul	140,7	9,77	80,40	9,05	3,00	3,00	2,28	0,00	0,00
Ago	120,6	9,77	80,40	7,76	3,00	2,28	0,27	0,00	0,00
Set	160,6	9,77	80,40	10,33	3,00	0,27	0,83	0,00	0,00
Out	216,6	9,77	80,40	13,93	3,00	0,83	3,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	3,00	3,00	3,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	3,00	3,00	3,00	1,24	0,00
Total	2014,2	117,24	-	128,64	3,00	-	30,21	13,73	0,00
1	2	3	4	5	6	7	8	9	10
14	P (t)	D (ma3)	A (m-2)	Q (t)	\ / (3\	S (t-1)	C (4) (3)	Vol.	Conces-
Meses	(mm)	D (m³)	A (m²)	(m^3)	V (m³)	(\dot{m}^3)	S (t) (m ³)	vertido	sionária
		0.77	00.40		0.00		0.00	(m³)	(m³)
<u>Jan</u>	198,8	9,77	80,40	12,79	2,00	2,00	2,00	3,02	0,00
Fev	166,1	9,77	80,40	10,68	2,00	2,00	2,00	0,91	0,00
Mar Abr	152,3	9,77	80,40	9,80	2,00	2,00	2,00	0,03	0,00
Abr	149,4	9,77	80,40	9,61	2,00	2,00	1,84	0,00	0,00
<u>Mai</u>	181,9	9,77	80,40	11,70	2,00	1,84	2,00	1,93	0,00
<u>Jun</u>	171,3	9,77	80,40	11,02	2,00	2,00	2,00	1,25	0,00
Jul Ago	140,7 120,6	9,77 9,77	80,40 80,40	9,05 7,76	2,00 2,00	2,00 1,28	1,28 0,00	0,00	0,00 0,73
Ago Sot		· · · · · · · · · · · · · · · · · · ·							•
Set	160,6	9,77	80,40	10,33	2,00	0,00	0,56	0,00	0,00
Out	216,6	9,77	80,40	13,93	2,00	0,56	2,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	2,00	2,00	2,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	2,00	2,00	2,00	1,24	0,00
Total	2014,2	117,24	-	128,64	2,00	-	19,68	13,73	0,73

Fonte: Autoria própria.

	Métod	o da sim	ulação r	nensal p	ara um	reserva	tório incia	almente	cheio
1	2	3	4	5	6	7	8	9	10
	D (#)			O (t)		C /+ 1)		Vol.	Conces-
Meses	P (t)	$D (m^3)$	A (m ²)	Q (t)	$V (m^3)$	S (t-1)	S (t) (m ³)	vertido	sionária
	(mm)			(m³)		(m³)		(m^3)	(m³)
Jan	198,8	9,77	80,40	12,79	1,00	1,00	1,00	3,02	0,00
Fev	166,1	9,77	80,40	10,68	1,00	1,00	1,00	0,91	0,00
Mar	152,3	9,77	80,40	9,80	1,00	1,00	1,00	0,03	0,00
Abr	149,4	9,77	80,40	9,61	1,00	1,00	0,84	0,00	0,00
Mai	181,9	9,77	80,40	11,70	1,00	0,84	1,00	1,93	0,00
Jun	171,3	9,77	80,40	11,02	1,00	1,00	1,00	1,25	0,00
Jul	140,7	9,77	80,40	9,05	1,00	1,00	0,28	0,00	0,00
Ago	120,6	9,77	80,40	7,76	1,00	0,28	0,00	0,00	1,73
Set	160,6	9,77	80,40	10,33	1,00	0,00	0,56	0,00	0,00
Out	216,6	9,77	80,40	13,93	1,00	0,56	1,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	1,00	1,00	1,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	1,00	1,00	1,00	1,24	0,00
Total	2014,2	117,24	-	128,64	1,00		9,68	13,73	1,73
1	2	3	4	5	6	7	8	9	10
								Vol.	Conces-
Meses	P (t)	D (m³)	A (m²)	Q (t)	V (m³)	S (t-1)	S (t) (m ³)	vertido	sionária
MCGCG	(mm)	D (III)	A (III)	(m^3)	v (111)	(m^3)	O (t) (111)	(m³)	(m³)
 Jan	198,8	9,77	80,40	12,79	4,00	4,00	4,00	3,02	0,00
Fev	166,1	9,77	80,40	10,68	4,00	4,00	4,00	0,91	0,00
Mar	152,3	9,77	80,40		4,00	4,00	4,00	0,91	0,00
Abr	149,4	9,77		9,80 9,61	4,00	4,00	3,84	0,00	0,00
Mai	181,9	9,77	80,40	11,70	4,00	3,84	4,00	1,93	0,00
-			80,40		•		•		•
<u>Jun</u>	171,3	9,77	80,40	11,02	4,00	4,00	4,00	1,25	0,00
<u>Jul</u>	140,7	9,77	80,40	9,05	4,00	4,00	3,28	0,00	0,00
Ago	120,6	9,77	80,40	7,76	4,00	3,28	1,27	0,00	0,00
Set	160,6	9,77	80,40	10,33	4,00	1,27	1,83	0,00	0,00
Out	216,6	9,77	80,40	13,93	4,00	1,83	4,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	4,00	4,00	4,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	4,00	4,00	4,00	1,24	0,00
Total	2014,2	117,24		128,64	4,00	-	42,21	13,73	0,00
1	2	3	4	5	6	7	8	9	10
	P (t)			Q (t)		S (t-1)		Vol.	Conces-
Meses	(mm)	$D (m^3)$	A (m ²)	(m³)	V (m ³)	(m³)	S (t) (m ³)	vertido	sionária
	(111111)			(111)		(111)		(m^3)	(m³)
Jan	198,8	9,77	80,40	12,79	10,00	10,00	10,00	3,02	0,00
Fev	166,1	9,77	80,40	10,68	10,00	10,00	10,00	0,91	0,00
Mar	152,3	9,77	80,40	9,80	10,00	10,00	10,00	0,03	0,00
Abr	149,4	9,77	80,40	9,61	10,00	10,00	9,84	0,00	0,00
Mai	181,9	9,77	80,40	11,70	10,00	9,84	10,00	1,93	0,00
Jun	171,3	9,77	80,40	11,02	10,00	10,00	10,00	1,25	0,00
Jul	140,7	9,77	80,40	9,05	10,00	10,00	9,28	0,00	0,00
Ago	120,6	9,77	80,40	7,76	10,00	9,28	7,27	0,00	0,00
Set	160,6	9,77	80,40	10,33	10,00	7,27	7,83	0,00	0,00
Out	216,6	9,77	80,40	13,93	10,00	7,83	10,00	4,16	0,00
Nov	170,6	9,77	80,40	10,97	10,00	10,00	10,00	1,20	0,00
Dez	171,1	9,77	80,40	11,01	10,00	10,00	10,00	1,24	0,00
Total	2014,2	117,24	-	128,64	10,00	-	114,21	13,73	0,00
								•	

Fonte: Autoria própria.

APÊNDICE E - MÉTODO DA SIMULAÇÃO DIÁRIA

Método da simulação diária inicialmente vazio para 10 m³

	- / · · ·	- " >	• (0)	- · · · · · ·		5 (4 4) (1)	- (v) (l)	Vol.	Conces-
Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	vertido (L)	
01/jan	4,72037	325,67	80,4	303,61	10000,00	0,00	0,00	0,00	22,05
02/jan	9,60000	325,67	80,4	617,47	10000,00	0,00	291,81	0,00	0,00
03/jan	4,10185	325,67	80,4	263,83	10000,00	291,81	229,97	0,00	0,00
04/jan	5,88333	325,67	80,4	378,42	10000,00	229,97	282,72	0,00	0,00
_05/jan	6,29259	325,67	80,4	404,74	10000,00	282,72	361,79	0,00	0,00
06/jan	7,19259	325,67	80,4	462,63	10000,00	361,79	498,75	0,00	0,00
07/jan	7,58704	325,67	80,4	488,00	10000,00	498,75	661,08	0,00	0,00
08/jan	8,35000	325,67	80,4	537,07	10000,00	661,08	872,49	0,00	0,00
09/jan	9,34259	325,67	80,4	600,92	10000,00	872,49	1147,74	0,00	0,00
10/jan	7,70926	325,67	80,4	495,86	10000,00	1147,74	1317,93	0,00	0,00
11/jan	4,05926	325,67	80,4	261,09	10000,00	1317,93	1253,36	0,00	0,00
12/jan	5,17963	325,67	80,4	333,15	10000,00	1253,36	1260,84	0,00	0,00
13/jan	6,55000	325,67	80,4	421,30	10000,00	1260,84	1356,47	0,00	0,00
14/jan	8,06667	325,67	80,4	518,85	10000,00	1356,47	1549,65	0,00	0,00
15/jan	4,72407	325,67	80,4	303,85	10000,00	1549,65	1527,84	0,00	0,00
16/jan	7,59444	325,67	80,4	488,47	10000,00	1527,84	1690,65	0,00	0,00
17/jan	5,69815	325,67	80,4	366,50	10000,00	1690,65	1731,49	0,00	0,00
18/jan	5,65000	325,67	80,4	363,41	10000,00	1731,49	1769,23	0,00	0,00
19/jan	5,46667	325,67	80,4	351,62	10000,00	1769,23	1795,18	0,00	0,00
20/jan	8,36852	325,67	80,4	538,26	10000,00	1795,18	2007,77	0,00	0,00
21/jan	5,17593	325,67	80,4	332,92	10000,00	2007,77	2015,02	0,00	0,00
22/jan	4,16111	325,67	80,4	267,64	10000,00	2015,02	1957,00	0,00	0,00
23/jan	4,02778	325,67	80,4	259,07	10000,00	1957,00	1890,40	0,00	0,00
24/jan	5,72407	325,67	80,4	368,17	10000,00	1890,40	1932,90	0,00	0,00
25/jan	10,82407	325,67	80,4	696,20	10000,00	1932,90	2303,44	0,00	0,00
26/jan	7,24074	325,67	80,4	465,72	10000,00	2303,44	2443,50	0,00	0,00
27/jan	4,96852	325,67	80,4	319,58	10000,00	2443,50	2437,41	0,00	0,00
28/jan	4,52222	325,67	80,4	290,87	10000,00	2437,41	2402,61	0,00	0,00
29/jan	4,48889	325,67	80,4	288,73	10000,00	2402,61	2365,67	0,00	0,00
30/jan	3,57037	325,67	80,4	229,65	10000,00	2365,67	2269,65	0,00	0,00
31/jan	9,07963	325,67	80,4	584,00	10000,00	2269,65	2527,98	0,00	0,00
01/fev	8,46296	325,67	80,4	544,34	10000,00	2527,98	2746,66	0,00	0,00
02/fev	6,06852	325,67	80,4	390,33	10000,00	2746,66	2811,32	0,00	0,00
03/fev	6,55370	325,67	80,4	421,53	10000,00	2811,32	2907,18	0,00	0,00
04/fev	5,50370	325,67	80,4	354,00	10000,00	2907,18	2935,51	0,00	0,00
05/fev	4,85741	325,67	80,4	312,43	10000,00	2935,51	2922,28	0,00	0,00
06/fev	2,73333	325,67	80,4	175,81	10000,00	2922,28	2772,42	0,00	0,00
07/fev	3,31667	325,67	80,4	213,33	10000,00	2772,42	2660,08	0,00	0,00
08/fev	3,07963	325,67	80,4	198,08	10000,00	2660,08	2532,49	0,00	0,00
09/fev	4,26852	325,67	80,4	274,55	10000,00	2532,49	2481,38	0,00	0,00

	5 (0 ()		A (2)	.		6 (4 (1) (1)	.	Vol.	Conces-
Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	vertido (L)	sionária (L)
10/fev	6,84815	325,67	80,4	440,47	10000,00	2481,38	2596,18	0,00	0,00
11/fev	6,10185	325,67	80,4	392,47	10000,00	2596,18	2662,99	0,00	0,00
12/fev	4,67778	325,67	80,4	300,87	10000,00	2662,99	2638,20	0,00	0,00
13/fev	4,91481	325,67	80,4	316,12	10000,00	2638,20	2628,65	0,00	0,00
14/fev	7,44630	325,67	80,4	478,95	10000,00	2628,65	2781,93	0,00	0,00
15/fev	8,40741	325,67	80,4	540,76	10000,00	2781,93	2997,03	0,00	0,00
16/fev	8,29444	325,67	80,4	533,50	10000,00	2997,03	3204,86	0,00	0,00
17/fev	8,17963	325,67	80,4	526,11	10000,00	3204,86	3405,31	0,00	0,00
18/fev	7,35283	325,67	80,4	472,93	10000,00	3405,31	3552,57	0,00	0,00
19/fev	6,72453	325,67	80,4	432,52	10000,00	3552,57	3659,43	0,00	0,00
20/fev	5,18679	325,67	80,4	333,61	10000,00	3659,43	3667,38	0,00	0,00
21/fev	4,69811	325,67	80,4	302,18	10000,00	3667,38	3643,89	0,00	0,00
22/fev	7,50189	325,67	80,4	482,52	10000,00	3643,89	3800,75	0,00	0,00
23/fev	5,01667	325,67	80,4	322,67	10000,00	3800,75	3797,75	0,00	0,00
24/fev	7,29444	325,67	80,4	469,18	10000,00	3797,75	3941,27	0,00	0,00
25/fev	4,46296	325,67	80,4	287,06	10000,00	3941,27	3902,66	0,00	0,00
26/fev	6,36852	325,67	80,4	409,62	10000,00	3902,66	3986,61	0,00	0,00
27/fev	5,28148	325,67	80,4	339,70	10000,00	3986,61	4000,65	0,00	0,00
28/fev	5,03889	325,67	80,4	324,10	10000,00	4000,65	3999,09	0,00	0,00
29/fev	10,63333	325,67	80,4	683,94	10000,00	3999,09	4357,36	0,00	0,00
01/mar	4,41667	325,67	80,4	284,08	10000,00	4357,36	4315,77	0,00	0,00
02/mar	4,32963	325,67	80,4	278,48	10000,00	4315,77	4268,58	0,00	0,00
03/mar	6,00926	325,67	80,4	386,52	10000,00	4268,58	4329,43	0,00	0,00
04/mar	6,50926	325,67	80,4	418,68	10000,00	4329,43	4422,44	0,00	0,00
05/mar	7,36296	325,67	80,4	473,59	10000,00	4422,44	4570,36	0,00	0,00
06/mar	2,27407	325,67	80,4	146,27	10000,00	4570,36	4390,96	0,00	0,00
07/mar	3,38889	325,67	80,4	217,97	10000,00	4390,96	4283,27	0,00	0,00
08/mar	4,12222	325,67	80,4	265,14	10000,00	4283,27	4222,74	0,00	0,00
09/mar	4,37222	325,67	80,4	281,22	10000,00	4222,74	4178,30	0,00	0,00
10/mar	3,87963	325,67	80,4	249,54	10000,00	4178,30	4102,17	0,00	0,00
<u>11/mar</u>	3,55556	325,67	80,4	228,69	10000,00	4102,17	4005,20	0,00	0,00
12/mar	5,05185	325,67	80,4	324,94	10000,00	4005,20	4004,46	0,00	0,00
13/mar	7,39074	325,67	80,4	475,37	10000,00	4004,46	4154,17	0,00	0,00
14/mar	3,37963	325,67	80,4	217,38	10000,00	4154,17	4045,88	0,00	0,00
15/mar	5,70926	325,67	80,4	367,22	10000,00	4045,88	4087,43	0,00	0,00
16/mar	2,56852	325,67	80,4	165,21	10000,00	4087,43	3926,98	0,00	0,00
17/mar	7,34444	325,67	80,4	472,39	10000,00	3926,98	4073,70	0,00	0,00
18/mar	5,40185	325,67	80,4	347,45	10000,00	4073,70	4095,48	0,00	0,00
19/mar	7,22963	325,67	80,4	465,01	10000,00	4095,48	4234,83	0,00	0,00
20/mar	6,80926	325,67	80,4	437,97	10000,00	4234,83	4347,13	0,00	0,00
21/mar	3,73519	325,67	80,4	240,25	10000,00	4347,13	4261,71	0,00	0,00
22/mar	2,60370	325,67	80,4	167,47	10000,00	4261,71	4103,52	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
23/mar	4,18519	325,67	80,4	269,19	10000,00	4103,52	4047,04	0,00	0,00
24/mar	4,69444	325,67	80,4	301,95	10000,00	4047,04	4023,32	0,00	0,00
25/mar	5,20185	325,67	80,4	334,58	10000,00	4023,32	4032,24	0,00	0,00
26/mar	3,45741	325,67	80,4	222,38	10000,00	4032,24	3928,95	0,00	0,00
27/mar	4,26852	325,67	80,4	274,55	10000,00	3928,95	3877,83	0,00	0,00
28/mar	6,40370	325,67	80,4	411,89	10000,00	3877,83	3964,05	0,00	0,00
29/mar	7,68148	325,67	80,4	494,07	10000,00	3964,05	4132,46	0,00	0,00
30/mar	4,90556	325,67	80,4	315,53	10000,00	4132,46	4122,32	0,00	0,00
31/mar	3,92593	325,67	80,4	252,52	10000,00	4122,32	4049,17	0,00	0,00
01/abr	3,92593	325,67	80,4	252,52	10000,00	4049,17	3976,02	0,00	0,00
02/abr	6,04074	325,67	80,4	388,54	10000,00	3976,02	4038,89	0,00	0,00
03/abr	5,06296	325,67	80,4	325,65	10000,00	4038,89	4038,87	0,00	0,00
04/abr	3,47593	325,67	80,4	223,57	10000,00	4038,87	3936,78	0,00	0,00
05/abr	4,07593	325,67	80,4	262,16	10000,00	3936,78	3873,28	0,00	0,00
06/abr	4,30185	325,67	80,4	276,70	10000,00	3873,28	3824,30	0,00	0,00
07/abr	5,74630	325,67	80,4	369,60	10000,00	3824,30	3868,24	0,00	0,00
08/abr	3,08889	325,67	80,4	198,68	10000,00	3868,24	3741,25	0,00	0,00
09/abr	3,34074	325,67	80,4	214,88	10000,00	3741,25	3630,46	0,00	0,00
10/abr	4,75926	325,67	80,4	306,12	10000,00	3630,46	3610,91	0,00	0,00
11/abr	3,09630	325,67	80,4	199,15	10000,00	3610,91	3484,40	0,00	0,00
12/abr	0,96481	325,67	80,4	62,06	10000,00	3484,40	3220,79	0,00	0,00
13/abr	2,11852	325,67	80,4	136,26	10000,00	3220,79	3031,38	0,00	0,00
14/abr	7,95556	325,67	80,4	511,70	10000,00	3031,38	3217,42	0,00	0,00
15/abr	7,43148	325,67	80,4	477,99	10000,00	3217,42	3369,74	0,00	0,00
16/abr	6,60185	325,67	80,4	424,63	10000,00	3369,74	3468,71	0,00	0,00
17/abr	3,02593	325,67	80,4	194,63	10000,00	3468,71	3337,67	0,00	0,00
18/abr	2,99259	325,67	80,4	192,48	10000,00	3337,67	3204,49	0,00	0,00
19/abr	9,13333	325,67	80,4	587,46	10000,00	3204,49	3466,27	0,00	0,00
20/abr	2,98704	325,67	80,4	192,13	10000,00	3466,27	3332,73	0,00	0,00
21/abr	6,55000	325,67	80,4	421,30	10000,00	3332,73	3428,36	0,00	0,00
22/abr	5,48333	325,67	80,4	352,69	10000,00	3428,36	3455,38	0,00	0,00
23/abr	5,85926	325,67	80,4	376,87	10000,00	3455,38	3506,59	0,00	0,00
24/abr	6,00185	325,67	80,4	386,04	10000,00	3506,59	3566,96	0,00	0,00
25/abr	6,58704	325,67	80,4	423,68	10000,00	3566,96	3664,97	0,00	0,00
26/abr	3,14074	325,67	80,4	202,01	10000,00	3664,97	3541,32	0,00	0,00
27/abr	10,10556	325,67	80,4	649,99	10000,00	3541,32	3865,64	0,00	0,00
28/abr	7,10370	325,67	80,4	456,91	10000,00	3865,64	3996,88	0,00	0,00
29/abr	3,58889	325,67	80,4	230,84	10000,00	3996,88	3902,05	0,00	0,00
30/abr	5,62593	325,67	80,4	361,86	10000,00	3902,05	3938,25	0,00	0,00
01/mai	5,78333	325,67	80,4	371,98	10000,00	3938,25	3984,56	0,00	0,00
02/mai	2,77593	325,67	80,4	178,55	10000,00	3984,56	3837,44	0,00	0,00
03/mai	5,28519	325,67	80,4	339,94	10000,00	3837,44	3851,72	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
04/mai	5,75556	325,67	80,4	370,20	10000,00	3851,72	3896,25	0,00	0,00
05/mai	2,92593	325,67	80,4	188,20	10000,00	3896,25	3758,78	0,00	0,00
06/mai	3,28889	325,67	80,4	211,54	10000,00	3758,78	3644,65	0,00	0,00
07/mai	4,09630	325,67	80,4	263,47	10000,00	3644,65	3582,46	0,00	0,00
08/mai	6,96296	325,67	80,4	447,86	10000,00	3582,46	3704,65	0,00	0,00
09/mai	3,36296	325,67	80,4	216,31	10000,00	3704,65	3595,29	0,00	0,00
10/mai	5,96481	325,67	80,4	383,66	10000,00	3595,29	3653,28	0,00	0,00
11/mai	4,36111	325,67	80,4	280,51	10000,00	3653,28	3608,12	0,00	0,00
12/mai	7,73519	325,67	80,4	497,53	10000,00	3608,12	3779,98	0,00	0,00
13/mai	6,11667	325,67	80,4	393,42	10000,00	3779,98	3847,74	0,00	0,00
14/mai	8,96852	325,67	80,4	576,86	10000,00	3847,74	4098,93	0,00	0,00
15/mai	5,59074	325,67	80,4	359,60	10000,00	4098,93	4132,86	0,00	0,00
16/mai	9,27778	325,67	80,4	596,75	10000,00	4132,86	4403,94	0,00	0,00
17/mai	5,22222	325,67	80,4	335,89	10000,00	4403,94	4414,16	0,00	0,00
18/mai	6,03333	325,67	80,4	388,06	10000,00	4414,16	4476,56	0,00	0,00
19/mai	5,02407	325,67	80,4	323,15	10000,00	4476,56	4474,04	0,00	0,00
20/mai	7,89630	325,67	80,4	507,89	10000,00	4474,04	4656,27	0,00	0,00
21/mai	10,12037	325,67	80,4	650,94	10000,00	4656,27	4981,54	0,00	0,00
22/mai	6,51852	325,67	80,4	419,27	10000,00	4981,54	5075,15	0,00	0,00
23/mai	6,85185	325,67	80,4	440,71	10000,00	5075,15	5190,19	0,00	0,00
24/mai	5,52963	325,67	80,4	355,67	10000,00	5190,19	5220,19	0,00	0,00
25/mai	6,46111	325,67	80,4	415,58	10000,00	5220,19	5310,10	0,00	0,00
26/mai	5,87778	325,67	80,4	378,06	10000,00	5310,10	5362,49	0,00	0,00
27/mai	5,16667	325,67	80,4	332,32	10000,00	5362,49	5369,15	0,00	0,00
28/mai	6,97037	325,67	80,4	448,33	10000,00	5369,15	5491,82	0,00	0,00
29/mai	8,20000	325,67	80,4	527,42	10000,00	5491,82	5693,57	0,00	0,00
30/mai	5,06481	325,67	80,4	325,77	10000,00	5693,57	5693,67	0,00	0,00
31/mai	7,01852	325,67	80,4	451,43	10000,00	5693,67	5819,44	0,00	0,00
01/jun	3,85185	325,67	80,4	247,75	10000,00	5819,44	5741,52	0,00	0,00
02/jun	3,86481	325,67	80,4	248,58	10000,00	5741,52	5664,44	0,00	0,00
03/jun	6,23704	325,67	80,4	401,17	10000,00	5664,44	5739,94	0,00	0,00
04/jun	3,09074	325,67	80,4	198,80	10000,00	5739,94	5613,07	0,00	0,00
05/jun	10,00926	325,67	80,4	643,80	10000,00	5613,07	5931,20	0,00	0,00
06/jun	7,90185	325,67	80,4	508,25	10000,00	5931,20	6113,78	0,00	0,00
07/jun	4,08889	325,67	80,4	263,00	10000,00	6113,78	6051,11	0,00	0,00
08/jun	6,64259	325,67	80,4	427,25	10000,00	6051,11	6152,70	0,00	0,00
09/jun	4,48333	325,67	80,4	288,37	10000,00	6152,70	6115,40	0,00	0,00
_10/jun	3,59815	325,67	80,4	231,43	10000,00	6115,40	6021,16	0,00	0,00
_11/jun	5,57407	325,67	80,4	358,52	10000,00	6021,16	6054,02	0,00	0,00
_12/jun	2,50926	325,67	80,4	161,40	10000,00	6054,02	5889,75	0,00	0,00
_13/jun	5,96111	325,67	80,4	383,42	10000,00	5889,75	5947,50	0,00	0,00
_14/jun	9,90926	325,67	80,4	637,36	10000,00	5947,50	6259,20	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol.	Conces-
WCSCS	1 (6) (111111)	D (L)	A (III)	Q (i) (L)	V (L)	O (t-1) (L)	O (t) (L)	vertido (L)	sionária (L)
15/jun	4,95741	325,67	80,4	318,86	10000,00	6259,20	6252,39	0,00	0,00
16/jun	4,36296	325,67	80,4	280,63	10000,00	6252,39	6207,35	0,00	0,00
17/jun	4,57778	325,67	80,4	294,44	10000,00	6207,35	6176,13	0,00	0,00
18/jun	13,87037	325,67	80,4	892,14	10000,00	6176,13	6742,60	0,00	0,00
19/jun	6,32593	325,67	80,4	406,88	10000,00	6742,60	6823,82	0,00	0,00
20/jun	9,82222	325,67	80,4	631,77	10000,00	6823,82	7129,92	0,00	0,00
21/jun	6,79074	325,67	80,4	436,78	10000,00	7129,92	7241,03	0,00	0,00
22/jun	2,69074	325,67	80,4	173,07	10000,00	7241,03	7088,43	0,00	0,00
23/jun	5,45000	325,67	80,4	350,54	10000,00	7088,43	7113,31	0,00	0,00
24/jun	6,11296	325,67	80,4	393,19	10000,00	7113,31	7180,83	0,00	0,00
25/jun	6,23889	325,67	80,4	401,29	10000,00	7180,83	7256,45	0,00	0,00
26/jun	5,68704	325,67	80,4	365,79	10000,00	7256,45	7296,57	0,00	0,00
27/jun	4,97593	325,67	80,4	320,05	10000,00	7296,57	7290,96	0,00	0,00
28/jun	3,93148	325,67	80,4	252,87	10000,00	7290,96	7218,16	0,00	0,00
29/jun	3,33519	325,67	80,4	214,52	10000,00	7218,16	7107,02	0,00	0,00
30/jun	5,25370	325,67	80,4	337,92	10000,00	7107,02	7119,27	0,00	0,00
01/jul	4,84151	325,67	80,4	311,41	10000,00	7119,27	7105,01	0,00	0,00
02/jul	6,80189	325,67	80,4	437,50	10000,00	7105,01	7216,84	0,00	0,00
03/jul	5,29623	325,67	80,4	340,65	10000,00	7216,84	7231,82	0,00	0,00
04/jul	5,70189	325,67	80,4	366,75	10000,00	7231,82	7272,90	0,00	0,00
05/jul	3,73019	325,67	80,4	239,93	10000,00	7272,90	7187,16	0,00	0,00
06/jul	3,84340	325,67	80,4	247,21	10000,00	7187,16	7108,70	0,00	0,00
07/jul	5,81698	325,67	80,4	374,15	10000,00	7108,70	7157,18	0,00	0,00
08/jul	8,81509	325,67	80,4	566,99	10000,00	7157,18	7398,51	0,00	0,00
09/jul	8,65660	325,67	80,4	556,79	10000,00	7398,51	7629,63	0,00	0,00
10/jul	6,84528	325,67	80,4	440,29	10000,00	7629,63	7744,25	0,00	0,00
11/jul	3,28113	325,67	80,4	211,04	10000,00	7744,25	7629,63	0,00	0,00
12/jul	2,98679	325,67	80,4	192,11	10000,00	7629,63	7496,07	0,00	0,00
13/jul	2,49434	325,67	80,4	160,44	10000,00	7496,07	7330,84	0,00	0,00
14/jul	2,10189	325,67	80,4	135,19	10000,00	7330,84	7140,37	0,00	0,00
15/jul	5,02264	325,67	80,4	323,06	10000,00	7140,37	7137,76	0,00	0,00
16/jul	5,30755	325,67	80,4	341,38	10000,00	7137,76	7153,47	0,00	0,00
17/jul	5,81509	325,67	80,4	374,03	10000,00	7153,47	7201,83	0,00	0,00
18/jul	6,80000	325,67	80,4	437,38	10000,00	7201,83	7313,54	0,00	0,00
19/jul	3,75472	325,67	80,4	241,50	10000,00	7313,54	7229,38	0,00	0,00
20/jul	4,06604	325,67	80,4	261,53	10000,00	7229,38	7165,24	0,00	0,00
21/jul	6,60189	325,67	80,4	424,63	10000,00	7165,24	7264,21	0,00	0,00
22/jul	5,57170	325,67	80,4	358,37	10000,00	7264,21	7296,91	0,00	0,00
23/jul	3,17358	325,67	80,4	204,12	10000,00	7296,91	7175,37	0,00	0,00
24/jul	3,79623	325,67	80,4	244,17	10000,00	7175,37	7093,88	0,00	0,00
25/jul	2,45283	325,67	80,4	157,77	10000,00	7093,88	6925,98	0,00	0,00
26/jul	3,91887	325,67	80,4	252,06	10000,00	6925,98	6852,37	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol.	Conces-
MESES	1 (1) (111111)	D (L)	A (III)	Q (i) (L)	V (L)	3 (t-1) (L)	O (i) (L)	vertido (L)	sionária (L)
27/jul	1,92264	325,67	80,4	123,66	10000,00	6852,37	6650,37	0,00	0,00
28/jul	3,41698	325,67	80,4	219,78	10000,00	6650,37	6544,48	0,00	0,00
29/jul	1,92453	325,67	80,4	123,79	10000,00	6544,48	6342,60	0,00	0,00
30/jul	6,73585	325,67	80,4	433,25	10000,00	6342,60	6450,18	0,00	0,00
31/jul	1,83774	325,67	80,4	118,20	10000,00	6450,18	6242,72	0,00	0,00
01/ago	6,22692	325,67	80,4	400,52	10000,00	6242,72	6317,57	0,00	0,00
02/ago	4,92115	325,67	80,4	316,53	10000,00	6317,57	6308,43	0,00	0,00
03/ago	3,17885	325,67	80,4	204,46	10000,00	6308,43	6187,23	0,00	0,00
04/ago	2,80385	325,67	80,4	180,34	10000,00	6187,23	6041,91	0,00	0,00
05/ago	3,08269	325,67	80,4	198,28	10000,00	6041,91	5914,52	0,00	0,00
06/ago	3,62115	325,67	80,4	232,91	10000,00	5914,52	5821,76	0,00	0,00
07/ago	3,33077	325,67	80,4	214,24	10000,00	5821,76	5710,33	0,00	0,00
08/ago	2,36731	325,67	80,4	152,27	10000,00	5710,33	5536,93	0,00	0,00
09/ago	3,45769	325,67	80,4	222,40	10000,00	5536,93	5433,66	0,00	0,00
10/ago	3,17308	325,67	80,4	204,09	10000,00	5433,66	5312,09	0,00	0,00
11/ago	3,58846	325,67	80,4	230,81	10000,00	5312,09	5217,23	0,00	0,00
12/ago	1,74615	325,67	80,4	112,31	10000,00	5217,23	5003,88	0,00	0,00
13/ago	6,00385	325,67	80,4	386,17	10000,00	5003,88	5064,38	0,00	0,00
14/ago	3,08654	325,67	80,4	198,53	10000,00	5064,38	4937,24	0,00	0,00
15/ago	4,34038	325,67	80,4	279,17	10000,00	4937,24	4890,74	0,00	0,00
16/ago	5,56731	325,67	80,4	358,09	10000,00	4890,74	4923,17	0,00	0,00
17/ago	4,19231	325,67	80,4	269,65	10000,00	4923,17	4867,15	0,00	0,00
18/ago	5,07692	325,67	80,4	326,55	10000,00	4867,15	4868,03	0,00	0,00
19/ago	4,90192	325,67	80,4	315,29	10000,00	4868,03	4857,66	0,00	0,00
20/ago	4,34906	325,67	80,4	279,73	10000,00	4857,66	4811,72	0,00	0,00
21/ago	4,56415	325,67	80,4	293,57	10000,00	4811,72	4779,62	0,00	0,00
22/ago	7,00189	325,67	80,4	450,36	10000,00	4779,62	4904,31	0,00	0,00
23/ago	2,85660	325,67	80,4	183,74	10000,00	4904,31	4762,38	0,00	0,00
24/ago	3,44151	325,67	80,4	221,36	10000,00	4762,38	4658,08	0,00	0,00
25/ago	3,20189	325,67	80,4	205,95	10000,00	4658,08	4538,35	0,00	0,00
26/ago	4,35660	325,67	80,4	280,22	10000,00	4538,35	4492,90	0,00	0,00
27/ago	5,60755	325,67	80,4	360,68	10000,00	4492,90	4527,92	0,00	0,00
28/ago	3,13019	325,67	80,4	201,33	10000,00	4527,92	4403,58	0,00	0,00
29/ago	0,83774	325,67	80,4	53,88	10000,00	4403,58	4131,80	0,00	0,00
30/ago	2,03962	325,67	80,4	131,19	10000,00	4131,80	3937,32	0,00	0,00
31/ago	8,97963	325,67	80,4	577,57	10000,00	3937,32	4189,22	0,00	0,00
01/set	5,12453	325,67	80,4	329,61	10000,00	4189,22	4193,17	0,00	0,00
02/set	2,51132	325,67	80,4	161,53	10000,00	4193,17	4029,03	0,00	0,00
03/set	3,79057	325,67	80,4	243,81	10000,00	4029,03	3947,17	0,00	0,00
04/set	3,00000	325,67	80,4	192,96	10000,00	3947,17	3814,46	0,00	0,00
05/set	5,02830	325,67	80,4	323,42	10000,00	3814,46	3812,22	0,00	0,00
06/set	3,49623	325,67	80,4	224,88	10000,00	3812,22	3711,43	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
07/set	5,49623	325,67	80,4	353,52	10000,00	3711,43	3739,28	0,00	0,00
08/set	6,85472	325,67	80,4	440,90	10000,00	3739,28	3854,51	0,00	0,00
09/set	4,53962	325,67	80,4	291,99	10000,00	3854,51	3820,83	0,00	0,00
10/set	1,13585	325,67	80,4	73,06	10000,00	3820,83	3568,22	0,00	0,00
11/set	2,66604	325,67	80,4	171,48	10000,00	3568,22	3414,03	0,00	0,00
12/set	7,19057	325,67	80,4	462,50	10000,00	3414,03	3550,86	0,00	0,00
13/set	6,79057	325,67	80,4	436,77	10000,00	3550,86	3661,97	0,00	0,00
14/set	7,30377	325,67	80,4	469,78	10000,00	3661,97	3806,08	0,00	0,00
15/set	6,78491	325,67	80,4	436,41	10000,00	3806,08	3916,82	0,00	0,00
16/set	3,83962	325,67	80,4	246,96	10000,00	3916,82	3838,12	0,00	0,00
17/set	4,81321	325,67	80,4	309,59	10000,00	3838,12	3822,03	0,00	0,00
18/set	5,11698	325,67	80,4	329,12	10000,00	3822,03	3825,49	0,00	0,00
19/set	8,38868	325,67	80,4	539,56	10000,00	3825,49	4039,38	0,00	0,00
20/set	8,29623	325,67	80,4	533,61	10000,00	4039,38	4247,33	0,00	0,00
21/set	3,85660	325,67	80,4	248,06	10000,00	4247,33	4169,72	0,00	0,00
22/set	2,42075	325,67	80,4	155,70	10000,00	4169,72	3999,76	0,00	0,00
23/set	6,43774	325,67	80,4	414,08	10000,00	3999,76	4088,17	0,00	0,00
24/set	6,64528	325,67	80,4	427,42	10000,00	4088,17	4189,92	0,00	0,00
25/set	7,20377	325,67	80,4	463,35	10000,00	4189,92	4327,60	0,00	0,00
26/set	5,88491	325,67	80,4	378,52	10000,00	4327,60	4380,45	0,00	0,00
27/set	6,08868	325,67	80,4	391,62	10000,00	4380,45	4446,41	0,00	0,00
28/set	5,67358	325,67	80,4	364,92	10000,00	4446,41	4485,67	0,00	0,00
29/set	8,82830	325,67	80,4	567,84	10000,00	4485,67	4727,84	0,00	0,00
30/set	10,93148	325,67	80,4	703,11	10000,00	4727,84	5105,29	0,00	0,00
01/out	8,85660	325,67	80,4	569,66	10000,00	5105,29	5349,28	0,00	0,00
02/out	6,93962	325,67	80,4	446,36	10000,00	5349,28	5469,97	0,00	0,00
03/out	5,12264	325,67	80,4	329,49	10000,00	5469,97	5473,79	0,00	0,00
04/out	4,77358	325,67	80,4	307,04	10000,00	5473,79	5455,16	0,00	0,00
05/out	5,94340	325,67	80,4	382,28	10000,00	5455,16	5511,77	0,00	0,00
06/out	5,91698	325,67	80,4	380,58	10000,00	5511,77	5566,68	0,00	0,00
07/out	6,60566	325,67	80,4	424,88	10000,00	5566,68	5665,89	0,00	0,00
08/out	4,74340	325,67	80,4	305,10	10000,00	5665,89	5645,32	0,00	0,00
09/out	8,49811	325,67	80,4	546,60	10000,00	5645,32	5866,25	0,00	0,00
10/out	7,21887	325,67	80,4	464,32	10000,00	5866,25	6004,90	0,00	0,00
11/out	6,97358	325,67	80,4	448,54	10000,00	6004,90	6127,78	0,00	0,00
12/out	6,38302	325,67	80,4	410,56	10000,00	6127,78	6212,67	0,00	0,00
13/out	7,55660	325,67	80,4	486,04	10000,00	6212,67	6373,04	0,00	0,00
14/out	5,56981	325,67	80,4	358,25	10000,00	6373,04	6405,63	0,00	0,00
15/out	6,26792	325,67	80,4	403,15	10000,00	6405,63	6483,11	0,00	0,00
16/out	6,72453	325,67	80,4	432,52	10000,00	6483,11	6589,97	0,00	0,00
17/out	12,62830	325,67	80,4	812,25	10000,00	6589,97	7076,55	0,00	0,00
18/out	5,59245	325,67	80,4	359,71	10000,00	7076,55	7110,59	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
19/out	6,50000	325,67	80,4	418,08	10000,00	7110,59	7203,01	0,00	0,00
20/out	5,67547	325,67	80,4	365,05	10000,00	7203,01	7242,39	0,00	0,00
21/out	5,49623	325,67	80,4	353,52	10000,00	7242,39	7270,24	0,00	0,00
22/out	6,12830	325,67	80,4	394,17	10000,00	7270,24	7338,74	0,00	0,00
23/out	7,25849	325,67	80,4	466,87	10000,00	7338,74	7479,94	0,00	0,00
24/out	4,70943	325,67	80,4	302,91	10000,00	7479,94	7457,19	0,00	0,00
25/out	9,38868	325,67	80,4	603,88	10000,00	7457,19	7735,40	0,00	0,00
26/out	12,22264	325,67	80,4	786,16	10000,00	7735,40	8195,89	0,00	0,00
27/out	7,01509	325,67	80,4	451,21	10000,00	8195,89	8321,44	0,00	0,00
28/out	8,68491	325,67	80,4	558,61	10000,00	8321,44	8554,38	0,00	0,00
29/out	7,10755	325,67	80,4	457,16	10000,00	8554,38	8685,87	0,00	0,00
30/out	8,05472	325,67	80,4	518,08	10000,00	8685,87	8878,29	0,00	0,00
31/out	8,31698	325,67	80,4	534,95	10000,00	8878,29	9087,57	0,00	0,00
01/nov	4,30000	325,67	80,4	276,58	10000,00	9087,57	9038,48	0,00	0,00
02/nov	6,69038	325,67	80,4	430,33	10000,00	9038,48	9143,14	0,00	0,00
03/nov	6,46346	325,67	80,4	415,73	10000,00	9143,14	9233,20	0,00	0,00
04/nov	5,96923	325,67	80,4	383,94	10000,00	9233,20	9291,47	0,00	0,00
05/nov	5,15192	325,67	80,4	331,37	10000,00	9291,47	9297,18	0,00	0,00
06/nov	8,78846	325,67	80,4	565,27	10000,00	9297,18	9536,79	0,00	0,00
07/nov	5,12500	325,67	80,4	329,64	10000,00	9536,79	9540,76	0,00	0,00
08/nov	8,76731	325,67	80,4	563,91	10000,00	9540,76	9779,01	0,00	0,00
09/nov	5,45962	325,67	80,4	351,16	10000,00	9779,01	9804,50	0,00	0,00
10/nov	6,59423	325,67	80,4	424,14	10000,00	9804,50	9902,98	0,00	0,00
11/nov	6,77692	325,67	80,4	435,89	10000,00	9902,98	10000,00	110,23	0,00
12/nov	4,64808	325,67	80,4	298,96	10000,00	10000,00	9973,30	0,00	0,00
13/nov	5,95769	325,67	80,4	383,20	10000,00	9973,30	10000,00	57,53	0,00
14/nov	6,42308	325,67	80,4	413,13	10000,00	10000,00	10000,00	87,47	0,00
15/nov	3,40577	325,67	80,4	219,06	10000,00	10000,00	9893,39	0,00	0,00
16/nov	5,54615	325,67	80,4	356,73	10000,00	9893,39	9924,45	0,00	0,00
17/nov	5,45769	325,67	80,4	351,04	10000,00	9924,45	9949,83	0,00	0,00
18/nov	5,22692	325,67	80,4	336,20	10000,00	9949,83	9960,36	0,00	0,00
19/nov	3,60962	325,67	80,4	232,17	10000,00	9960,36	9866,86	0,00	0,00
20/nov	5,23077	325,67	80,4	336,44	10000,00	9866,86	9877,64	0,00	0,00
21/nov	3,74231	325,67	80,4	240,71	10000,00	9877,64	9792,67	0,00	0,00
22/nov	9,01538	325,67	80,4	579,87	10000,00	9792,67	10000,00	254,20	0,00
23/nov	2,65962	325,67	80,4	171,07	10000,00	10000,00	9845,40	0,00	0,00
24/nov	5,01731	325,67	80,4	322,71	10000,00	9845,40	9842,45	0,00	0,00
25/nov	4,70577	325,67	80,4	302,68	10000,00	9842,45	9819,45	0,00	0,00
26/nov	5,03269	325,67	80,4	323,70	10000,00	9819,45	9817,49	0,00	0,00
27/nov	8,05962	325,67	80,4	518,39	10000,00	9817,49	10000,00	192,73	0,00
28/nov	7,98077	325,67	80,4	513,32	10000,00	10000,00	10000,00	187,66	0,00
29/nov	4,45385	325,67	80,4	286,47	10000,00	10000,00	9960,80	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
30/nov	6,39038	325,67	80,4	411,03	10000,00	9960,80	10000,00	85,36	0,00
01/dez	6,23269	325,67	80,4	400,89	10000,00	10000,00	10000,00	75,22	0,00
02/dez	3,92885	325,67	80,4	252,70	10000,00	10000,00	9927,04	0,00	0,00
03/dez	5,98462	325,67	80,4	384,93	10000,00	9927,04	9986,30	0,00	0,00
04/dez	3,67692	325,67	80,4	236,50	10000,00	9986,30	9897,13	0,00	0,00
05/dez	6,00192	325,67	80,4	386,04	10000,00	9897,13	9957,51	0,00	0,00
06/dez	5,91731	325,67	80,4	380,60	10000,00	9957,51	10000,00	54,93	0,00
07/dez	3,30577	325,67	80,4	212,63	10000,00	10000,00	9886,96	0,00	0,00
08/dez	3,96923	325,67	80,4	255,30	10000,00	9886,96	9816,59	0,00	0,00
09/dez	5,40769	325,67	80,4	347,82	10000,00	9816,59	9838,75	0,00	0,00
10/dez	5,33846	325,67	80,4	343,37	10000,00	9838,75	9856,45	0,00	0,00
11/dez	5,92115	325,67	80,4	380,85	10000,00	9856,45	9911,64	0,00	0,00
12/dez	7,15769	325,67	80,4	460,38	10000,00	9911,64	10000,00	134,72	0,00
13/dez	7,34615	325,67	80,4	472,50	10000,00	10000,00	10000,00	146,84	0,00
14/dez	4,83077	325,67	80,4	310,72	10000,00	10000,00	9985,05	0,00	0,00
15/dez	3,27115	325,67	80,4	210,40	10000,00	9985,05	9869,78	0,00	0,00
16/dez	5,35385	325,67	80,4	344,36	10000,00	9869,78	9888,48	0,00	0,00
17/dez	3,33269	325,67	80,4	214,36	10000,00	9888,48	9777,17	0,00	0,00
18/dez	4,02308	325,67	80,4	258,76	10000,00	9777,17	9710,26	0,00	0,00
19/dez	8,58077	325,67	80,4	551,92	10000,00	9710,26	9936,51	0,00	0,00
20/dez	4,92500	325,67	80,4	316,78	10000,00	9936,51	9927,62	0,00	0,00
21/dez	5,53269	325,67	80,4	355,86	10000,00	9927,62	9957,82	0,00	0,00
22/dez	9,02115	325,67	80,4	580,24	10000,00	9957,82	10000,00	254,57	0,00
23/dez	4,63462	325,67	80,4	298,10	10000,00	10000,00	9972,43	0,00	0,00
24/dez	8,89808	325,67	80,4	572,32	10000,00	9972,43	10000,00	246,66	0,00
25/dez	4,40769	325,67	80,4	283,50	10000,00	10000,00	9957,84	0,00	0,00
26/dez	4,34231	325,67	80,4	279,30	10000,00	9957,84	9911,47	0,00	0,00
27/dez	2,34615	325,67	80,4	150,90	10000,00	9911,47	9736,70	0,00	0,00
28/dez	7,20962	325,67	80,4	463,72	10000,00	9736,70	9874,76	0,00	0,00
29/dez	6,28654	325,67	80,4	404,35	10000,00	9874,76	9953,44	0,00	0,00
30/dez	7,53846	325,67	80,4	484,87	10000,00	9953,44	10000,00	159,21	0,00
31/dez	4,65962	325,67	80,4	299,71	10000,00	10000,00	9974,04	0,00	0,00

Fonte: Autoria Própria.

Método da simulação diária inicialmente cheio para 10 m³.

1	2	3	4	5	6	7	8	9	10
		-		-	-		-	Vol.	
Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	vertido	Conces-
	(,, ,	` ,	` ,	(,,,,	` ,	` , ` ,	(,,,,	(L)	sionária (L)
01/jan	4,72037	325,67	80,4	303,61	10000,00	10000,00	9977,95	0,00	0,00
02/jan	9,60000	325,67	80,4	617,47	10000,00	9977,95	10000,00	291,81	0,00
03/jan	4,10185	325,67	80,4	263,83	10000,00	10000,00	9938,16	0,00	0,00
04/jan	5,88333	325,67	80,4	378,42	10000,00	9938,16	9990,91	0,00	0,00
05/jan	6,29259	325,67	80,4	404,74	10000,00	9990,91	10000,00	79,07	0,00
06/jan	7,19259	325,67	80,4	462,63	10000,00	10000,00	10000,00	136,96	0,00
07/jan	7,58704	325,67	80,4	488,00	10000,00	10000,00	10000,00	162,33	0,00
08/jan	8,35000	325,67	80,4	537,07	10000,00	10000,00	10000,00	211,41	0,00
09/jan	9,34259	325,67	80,4	600,92	10000,00	10000,00	10000,00	275,25	0,00
10/jan	7,70926	325,67	80,4	495,86	10000,00	10000,00	10000,00	170,19	0,00
11/jan	4,05926	325,67	80,4	261,09	10000,00	10000,00	9935,42	0,00	0,00
12/jan	5,17963	325,67	80,4	333,15	10000,00	9935,42	9942,91	0,00	0,00
13/jan	6,55000	325,67	80,4	421,30	10000,00	9942,91	10000,00	95,63	0,00
14/jan	8,06667	325,67	80,4	518,85	10000,00	10000,00	10000,00	193,18	0,00
15/jan	4,72407	325,67	80,4	303,85	10000,00	10000,00	9978,19	0,00	0,00
16/jan	7,59444	325,67	80,4	488,47	10000,00	9978,19	10000,00	162,81	0,00
17/jan	5,69815	325,67	80,4	366,50	10000,00	10000,00	10000,00	40,84	0,00
18/jan	5,65000	325,67	80,4	363,41	10000,00	10000,00	10000,00	37,74	0,00
19/jan	5,46667	325,67	80,4	351,62	10000,00	10000,00	10000,00	25,95	0,00
20/jan	8,36852	325,67	80,4	538,26	10000,00	10000,00	10000,00	212,60	0,00
21/jan	5,17593	325,67	80,4	332,92	10000,00	10000,00	10000,00	7,25	0,00
22/jan	4,16111	325,67	80,4	267,64	10000,00	10000,00	9941,98	0,00	0,00
23/jan	4,02778	325,67	80,4	259,07	10000,00	9941,98	9875,38	0,00	0,00
24/jan	5,72407	325,67	80,4	368,17	10000,00	9875,38	9917,88	0,00	0,00
25/jan	10,82407	325,67	80,4	696,20	10000,00	9917,88	10000,00	370,54	0,00
26/jan	7,24074	325,67	80,4	465,72	10000,00	10000,00	10000,00	140,06	0,00
27/jan	4,96852	325,67	80,4	319,58	10000,00	10000,00	9993,91	0,00	0,00
28/jan	4,52222	325,67	80,4	290,87	10000,00	9993,91	9959,11	0,00	0,00
29/jan	4,48889	325,67	80,4	288,73	10000,00	9959,11	9922,17	0,00	0,00
30/jan	3,57037	325,67	80,4	229,65	10000,00	9922,17	9826,15	0,00	0,00
31/jan	9,07963	325,67	80,4	584,00	10000,00	9826,15	10000,00	258,34	0,00
01/fev	8,46296	325,67	80,4	544,34	10000,00	10000,00	10000,00	218,67	0,00
02/fev	6,06852	325,67	80,4	390,33	10000,00	10000,00	10000,00	64,66	0,00
03/fev	6,55370	325,67	80,4	421,53	10000,00	10000,00	10000,00	95,87	0,00
04/fev	5,50370	325,67	80,4	354,00	10000,00	10000,00	10000,00	28,33	0,00
05/fev	4,85741	325,67	80,4	312,43	10000,00	10000,00	9986,76	0,00	0,00
06/fev	2,73333	325,67	80,4	175,81	10000,00	9986,76	9836,90	0,00	0,00
07/fev	3,31667	325,67	80,4	213,33	10000,00	9836,90	9724,56	0,00	0,00
08/fev	3,07963	325,67	80,4	198,08	10000,00	9724,56	9596,98	0,00	0,00
09/fev	4,26852	325,67	80,4	274,55	10000,00	9596,98	9545,86	0,00	0,00
10/fev	6,84815	325,67	80,4	440,47	10000,00		9660,67	0,00	0,00
_11/fev	6,10185	325,67	80,4	392,47	10000,00		9727,47	0,00	0,00
12/fev	4,67778	325,67	80,4	300,87	10000,00	9727,47	9702,68	0,00	0,00
13/fev	4,91481	325,67	80,4	316,12	10000,00	9702,68	9693,14	0,00	0,00
14/fev	7,44630	325,67	80,4	478,95	10000,00	9693,14	9846,42	0,00	0,00
15/fev	8,40741	325,67	80,4	540,76	10000,00	9846,42	10000,00	215,10	0,00
16/fev	8,29444	325,67	80,4	533,50		10000,00	10000,00	207,83	0,00
17/fev	8,17963	325,67	80,4	526,11		10000,00	10000,00	200,45	0,00
18/fev	7,35283	325,67	80,4	472,93		10000,00	10000,00	147,27	0,00
19/fev	6,72453	325,67	80,4	432,52		10000,00	10000,00	106,85	0,00
20/fev	5,18679	325,67	80,4	333,61	10000,00	10000,00	10000,00	7,95	0,00

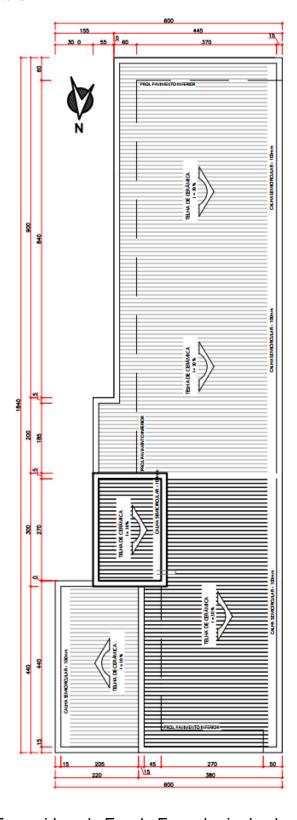
Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
21/fev	4,69811	325,67	80,4	302,18	10000,00	10000,00	9976,52	0,00	0,00
22/fev	7,50189	325,67	80,4	482,52	10000,00	9976,52	10000,00	156,85	0,00
23/fev	5,01667	325,67	80,4	322,67	10000,00	10000,00	9997,01	0,00	0,00
24/fev	7,29444	325,67	80,4	469,18	10000,00	9997,01	10000,00	143,51	0,00
25/fev	4,46296	325,67	80,4	287,06	10000,00	10000,00	9961,39	0,00	0,00
26/fev	6,36852	325,67	80,4	409,62	10000,00	9961,39	10000,00	83,96	0,00
27/fev	5,28148	325,67	80,4	339,70	10000,00	10000,00	10000,00	14,04	0,00
28/fev	5,03889	325,67	80,4	324,10	10000,00	10000,00	9998,43	0,00	0,00
29/fev	10,63333	325,67	80,4	683,94	10000,00	9998,43	10000,00	358,27	0,00
01/mar	4,41667	325,67	80,4	284,08	10000,00	10000,00	9958,41	0,00	0,00
02/mar	4,32963	325,67	80,4	278,48	10000,00	9958,41	9911,23	0,00	0,00
03/mar	6,00926	325,67	80,4	386,52	10000,00	9911,23	9972,08	0,00	0,00
04/mar	6,50926	325,67	80,4	418,68	10000,00	9972,08	10000,00	93,01	0,00
05/mar	7,36296	325,67	80,4	473,59	10000,00	10000,00	10000,00	147,92	0,00
06/mar	2,27407	325,67	80,4	146,27	10000,00	10000,00	9820,60	0,00	0,00
07/mar	3,38889	325,67	80,4	217,97	10000,00	9820,60	9712,91	0,00	0,00
08/mar	4,12222	325,67	80,4	265,14	10000,00	9712,91	9652,38	0,00	0,00
09/mar	4,37222	325,67	80,4	281,22	10000,00	9652,38	9607,94	0,00	0,00
10/mar	3,87963	325,67	80,4	249,54	10000,00	9607,94	9531,81	0,00	0,00
11/mar	3,55556	325,67	80,4	228,69	10000,00	9531,81	9434,84	0,00	0,00
12/mar	5,05185	325,67	80,4	324,94	10000,00	9434,84	9434,10	0,00	0,00
13/mar	7,39074	325,67	80,4	475,37	10000,00	9434,10	9583,81	0,00	0,00
14/mar	3,37963	325,67	80,4	217,38	10000,00	9583,81	9475,52	0,00	0,00
15/mar	5,70926	325,67	80,4	367,22	10000,00	9475,52	9517,07	0,00	0,00
16/mar	2,56852	325,67	80,4	165,21	10000,00	9517,07	9356,61	0,00	0,00
17/mar	7,34444	325,67	80,4	472,39	10000,00	9356,61	9503,34	0,00	0,00
18/mar	5,40185	325,67	80,4	347,45	10000,00	9503,34	9525,12	0,00	0,00
19/mar	7,22963	325,67	80,4	465,01	10000,00	9525,12	9664,47	0,00	0,00
20/mar	6,80926	325,67	80,4	437,97	10000,00	9664,47	9776,77	0,00	0,00
21/mar	3,73519	325,67	80,4	240,25	10000,00	9776,77	9691,35	0,00	0,00
22/mar	2,60370	325,67	80,4	167,47	10000,00	9691,35	9533,15	0,00	0,00
23/mar	4,18519	325,67	80,4	269,19	10000,00	9533,15	9476,68	0,00	0,00
24/mar	4,69444	325,67	80,4	301,95	10000,00	9476,68	9452,96	0,00	0,00
25/mar	5,20185	325,67	80,4	334,58	10000,00	9452,96	9461,88	0,00	0,00
26/mar	3,45741	325,67	80,4	222,38	10000,00	9461,88	9358,59	0,00	0,00
27/mar	4,26852	325,67	80,4	274,55	10000,00	9358,59	9307,47	0,00	0,00
28/mar	6,40370	325,67	80,4	411,89	10000,00		9393,69	0,00	0,00
29/mar	7,68148	325,67	80,4	494,07	10000,00	9393,69	9562,10	0,00	0,00
30/mar	4,90556	325,67	80,4	315,53	10000,00	9562,10	9551,96	0,00	0,00
31/mar	3,92593	325,67	80,4	252,52	10000,00	9551,96	9478,81	0,00	0,00
01/abr	3,92593	325,67	80,4	252,52	10000,00	9478,81	9405,66	0,00	0,00
02/abr	6,04074	325,67	80,4	388,54	10000,00	9405,66	9468,53	0,00	0,00
03/abr	5,06296	325,67	80,4	325,65	10000,00	9468,53	9468,51	0,00	0,00
04/abr	3,47593	325,67	80,4	223,57	10000,00	9468,51	9366,42	0,00	0,00
05/abr	4,07593	325,67	80,4	262,16	10000,00	9366,42	9302,91	0,00	0,00
06/abr	4,30185	325,67	80,4	276,70	10000,00	9302,91	9253,94	0,00	0,00
07/abr	5,74630	325,67	80,4	369,60	10000,00	9253,94	9297,88	0,00	0,00
08/abr	3,08889	325,67	80,4	198,68	10000,00	9297,88	9170,89	0,00	0,00
09/abr	3,34074	325,67	80,4	214,88	10000,00	9170,89	9060,10	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
10/abr	4,75926	325,67	80,4	306,12	10000,00	9060,10	9040,55	0,00	0,00
11/abr	3,09630	325,67	80,4	199,15	10000,00	9040,55	8914,03	0,00	0,00
12/abr	0,96481	325,67	80,4	62,06	10000,00	8914,03	8650,42	0,00	0,00
13/abr	2,11852	325,67	80,4	136,26	10000,00	8650,42	8461,02	0,00	0,00
14/abr	7,95556	325,67	80,4	511,70	10000,00	8461,02	8647,06	0,00	0,00
15/abr	7,43148	325,67	80,4	477,99	10000,00	8647,06	8799,38	0,00	0,00
16/abr	6,60185	325,67	80,4	424,63	10000,00	8799,38	8898,35	0,00	0,00
17/abr	3,02593	325,67	80,4	194,63	10000,00	8898,35	8767,31	0,00	0,00
18/abr	2,99259	325,67	80,4	192,48	10000,00	8767,31	8634,12	0,00	0,00
19/abr	9,13333	325,67	80,4	587,46	10000,00	8634,12	8895,91	0,00	0,00
20/abr	2,98704	325,67	80,4	192,13	10000,00	8895,91	8762,37	0,00	0,00
21/abr	6,55000	325,67	80,4	421,30	10000,00	8762,37	8858,00	0,00	0,00
22/abr	5,48333	325,67	80,4	352,69	10000,00	8858,00	8885,02	0,00	0,00
23/abr	5,85926	325,67	80,4	376,87	10000,00	8885,02	8936,22	0,00	0,00
24/abr	6,00185	325,67	80,4	386,04	10000,00	8936,22	8996,60	0,00	0,00
25/abr	6,58704	325,67	80,4	423,68	10000,00	8996,60	9094,61	0,00	0,00
26/abr	3,14074	325,67	80,4	202,01	10000,00	9094,61	8970,95	0,00	0,00
27/abr	10,10556	325,67	80,4	649,99	10000,00	8970,95	9295,28	0,00	0,00
28/abr	7,10370	325,67	80,4	456,91	10000,00	9295,28	9426,52	0,00	0,00
29/abr	3,58889	325,67	80,4	230,84	10000,00	9426,52	9331,69	0,00	0,00
30/abr	5,62593	325,67	80,4	361,86	10000,00	9331,69	9367,88	0,00	0,00
01/mai	5,78333	325,67	80,4	371,98	10000,00	9367,88	9414,20	0,00	0,00
01/mai 02/mai		325,67	80,4	178,55	10000,00	9414,20	9267,08	0,00	0,00
02/mai	2,77593 5,28519	325,67	80,4	339,94	10000,00	9267,08	9281,36	0,00	0,00
03/mai 04/mai	5,75556	325,67	80,4	370,20	10000,00	9281,36	9325,89	0,00	0,00
05/mai	2,92593	325,67	80,4	188,20	10000,00	9325,89	9188,42	0,00	0,00
	3,28889	325,67	80,4	211,54	10000,00	9188,42	9074,29	0,00	0,00
06/mai	4,09630	325,67	80,4	263,47	10000,00	9100,42	9012,10	0,00	0,00
07/mai 08/mai	6,96296	325,67	80,4	447,86	10000,00	9012,10	9134,29	0,00	0,00
	3,36296	325,67	80,4	216,31	10000,00	9134,29	9024,93	0,00	0,00
09/mai 10/mai									
	5,96481	325,67	80,4	383,66	10000,00	9024,93	9082,92	0,00	0,00
11/mai	4,36111	325,67	80,4	280,51	10000,00	9082,92	9037,76	0,00	0,00
<u>12/mai</u> 13/mai	7,73519	325,67	80,4 80,4	497,53 393,42	10000,00	9037,76	9209,62	0,00	0,00
	6,11667	325,67				9209,62	9277,38		
14/mai	8,96852	325,67	80,4	576,86	10000,00	9277,38	9528,57	0,00	0,00
15/mai	5,59074	325,67	80,4	359,60	10000,00		9562,50	0,00	0,00
16/mai	9,27778	325,67	80,4	596,75	10000,00	9562,50	9833,58	0,00	0,00
17/mai	5,22222	325,67	80,4	335,89	10000,00	9833,58	9843,80	0,00	0,00
18/mai	6,03333	325,67	80,4	388,06	10000,00	9843,80	9906,20	0,00	0,00
19/mai	5,02407	325,67	80,4	323,15	10000,00	9906,20	9903,68	0,00	0,00
20/mai	7,89630	325,67	80,4	507,89	10000,00	9903,68	10000,00	182,22	0,00
21/mai	10,12037	325,67	80,4	650,94	10000,00	10000,00	10000,00	325,28	0,00
22/mai	6,51852	325,67	80,4	419,27	10000,00	10000,00	10000,00	93,60	0,00
23/mai	6,85185	325,67	80,4	440,71	10000,00	10000,00	10000,00	115,04	0,00
24/mai	5,52963	325,67	80,4	355,67	10000,00		10000,00	30,00	0,00
25/mai	6,46111	325,67	80,4	415,58	10000,00		10000,00	89,91	0,00
26/mai	5,87778	325,67	80,4	378,06	10000,00		10000,00	52,39	0,00
27/mai	5,16667	325,67	80,4	332,32	10000,00	10000,00	10000,00	6,65	0,00
28/mai	6,97037	325,67	80,4	448,33	10000,00	10000,00	10000,00	122,67	0,00
29/mai	8,20000	325,67	80,4	527,42	10000,00	10000,00	10000,00	201,76	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
30/mai	5,06481	325,67	80,4	325,77	10000,00	10000,00	10000,00	0,10	0,00
31/mai	7,01852	325,67	80,4	451,43	10000,00	10000,00	10000,00	125,76	0,00
01/jun	3,85185	325,67	80,4	247,75	10000,00	10000,00	9922,08	0,00	0,00
02/jun	3,86481	325,67	80,4	248,58	10000,00	9922,08	9845,00	0,00	0,00
03/jun	6,23704	325,67	80,4	401,17	10000,00	9845,00	9920,50	0,00	0,00
04/jun	3,09074	325,67	80,4	198,80	10000,00	9920,50	9793,63	0,00	0,00
05/jun	10,00926	325,67	80,4	643,80	10000,00	9793,63	10000,00	318,13	0,00
06/jun	7,90185	325,67	80,4	508,25	10000,00	10000,00	10000,00	182,58	0,00
07/jun	4,08889	325,67	80,4	263,00	10000,00	10000,00	9937,33	0,00	0,00
08/jun	6,64259	325,67	80,4	427,25	10000,00	9937,33	10000,00	101,58	0,00
09/jun	4,48333	325,67	80,4	288,37	10000,00	10000,00	9962,70	0,00	0,00
10/jun	3,59815	325,67	80,4	231,43	10000,00	9962,70	9868,47	0,00	0,00
11/jun	5,57407	325,67	80,4	358,52	10000,00	9868,47	9901,33	0,00	0,00
12/jun	2,50926	325,67	80,4	161,40	10000,00	9901,33	9737,05	0,00	0,00
13/jun	5,96111	325,67	80,4	383,42	10000,00	9737,05	9794,81	0,00	0,00
14/jun	9,90926	325,67	80,4	637,36	10000,00	9794,81	10000,00	311,70	0,00
15/jun	4,95741	325,67	80,4	318,86	10000,00	10000,00	9993,19	0,00	0,00
16/jun	4,36296	325,67	80,4	280,63	10000,00	9993,19	9948,15	0,00	0,00
17/jun	4,57778	325,67	80,4	294,44	10000,00	9948,15	9916,93	0,00	0,00
18/jun	13,87037	325,67	80,4	892,14	10000,00	9916,93	10000,00	566,48	0,00
19/jun	6,32593	325,67	80,4	406,88	10000,00	10000,00	10000,00	81,22	0,00
20/jun	9,82222	325,67	80,4	631,77	10000,00	10000,00	10000,00	306,10	0,00
21/jun	6,79074	325,67	80,4	436,78	10000,00	10000,00	10000,00	111,11	0,00
22/jun	2,69074	325,67	80,4	173,07	10000,00	10000,00	9847,40	0,00	0,00
23/jun	5,45000	325,67	80,4	350,54	10000,00	9847,40	9872,28	0,00	0,00
24/jun	6,11296	325,67	80,4	393,19	10000,00	9872,28	9939,80	0,00	0,00
25/jun	6,23889	325,67	80,4	401,29	10000,00	9939,80	10000,00	75,62	0,00
26/jun	5,68704	325,67	80,4	365,79	10000,00	10000,00	10000,00	40,12	0,00
27/jun	4,97593	325,67	80,4	320,05	10000,00	10000,00	9994,38	0,00	0,00
28/jun	3,93148	325,67	80,4	252,87	10000,00	9994,38	9921,59	0,00	0,00
29/jun	3,33519	325,67	80,4	214,52	10000,00	9921,59	9810,44	0,00	0,00
30/jun	5,25370	325,67	80,4	337,92	10000,00	9810,44	9822,70	0,00	0,00
01/jul	4,84151	325,67	80,4	311,41	10000,00	9822,70	9808,43	0,00	0,00
02/jul	6,80189	325,67	80,4	437,50	10000,00	9808,43	9920,27	0,00	0,00
03/jul	5,29623	325,67	80,4	340,65	10000,00	9920,27	9935,25	0,00	0,00
04/jul	5,70189	325,67	80,4	366,75	10000,00		9976,33	0,00	0,00
05/jul	3,73019	325,67	80,4	239,93	10000,00	9976,33	9890,59	0,00	0,00
06/jul	3,84340	325,67	80,4	247,21	10000,00	9890,59	9812,13	0,00	0,00
07/jul	5,81698	325,67	80,4	374,15	10000,00	9812,13	9860,61	0,00	0,00
08/jul	8,81509	325,67	80,4	566,99	10000,00	9860,61	10000,00	241,32	0,00
09/jul	8,65660	325,67	80,4	556,79	10000,00	10000,00	10000,00	231,13	0,00
10/jul	6,84528	325,67	80,4	440,29	10000,00	10000,00	10000,00	114,62	0,00
11/jul	3,28113	325,67	80,4	211,04	10000,00	10000,00	9885,38	0,00	0,00
12/jul	2,98679	325,67	80,4	192,11	10000,00	9885,38	9751,82	0,00	0,00
13/jul	2,49434	325,67	80,4	160,44	10000,00	9751,82	9586,59	0,00	0,00
14/jul	2,10189	325,67	80,4	135,19	10000,00	9586,59	9396,12	0,00	0,00
15/jul	5,02264	325,67	80,4	323,06	10000,00	9396,12	9393,51	0,00	0,00
16/jul	5,30755	325,67	80,4	341,38	10000,00	9393,51	9409,22	0,00	0,00
17/jul	5,81509	325,67	80,4	374,03	10000,00	9409,22	9457,58	0,00	0,00
18/jul	6,80000	325,67	80,4	437,38	10000,00	9457,58	9569,29	0,00	0,00

M	leses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
	19/jul	3,75472	325,67	80,4	241,50	10000,00	9569,29	9485,13	0,00	0,00
	20/jul	4,06604	325,67	80,4	261,53	10000,00	9485,13	9420,99	0,00	0,00
_	21/jul	6,60189	325,67	80,4	424,63	10000,00	9420,99	9519,95	0,00	0,00
	22/jul	5,57170	325,67	80,4	358,37	10000,00	9519,95	9552,66	0,00	0,00
	23/jul	3,17358	325,67	80,4	204,12	10000,00	9552,66	9431,12	0,00	0,00
	24/jul	3,79623	325,67	80,4	244,17	10000,00	9431,12	9349,62	0,00	0,00
_	25/jul	2,45283	325,67	80,4	157,77	10000,00	9349,62	9181,72	0,00	0,00
	26/jul	3,91887	325,67	80,4	252,06	10000,00	9181,72	9108,12	0,00	0,00
_	27/jul	1,92264	325,67	80,4	123,66	10000,00	9108,12	8906,12	0,00	0,00
	28/jul	3,41698	325,67	80,4	219,78	10000,00	8906,12	8800,23	0,00	0,00
	29/jul	1,92453	325,67	80,4	123,79	10000,00	8800,23	8598,35	0,00	0,00
3	30/jul	6,73585	325,67	80,4	433,25	10000,00	8598,35	8705,93	0,00	0,00
3	31/jul	1,83774	325,67	80,4	118,20	10000,00	8705,93	8498,47	0,00	0,00
0.	1/ago	6,22692	325,67	80,4	400,52	10000,00	8498,47	8573,32	0,00	0,00
02	2/ago	4,92115	325,67	80,4	316,53	10000,00	8573,32	8564,18	0,00	0,00
0;	3/ago	3,17885	325,67	80,4	204,46	10000,00	8564,18	8442,98	0,00	0,00
	4/ago	2,80385	325,67	80,4	180,34	10000,00	8442,98	8297,65	0,00	0,00
0	5/ago	3,08269	325,67	80,4	198,28	10000,00	8297,65	8170,26	0,00	0,00
06	6/ago	3,62115	325,67	80,4	232,91	10000,00	8170,26	8077,51	0,00	0,00
0	7/ago	3,33077	325,67	80,4	214,24	10000,00	8077,51	7966,08	0,00	0,00
08	8/ago	2,36731	325,67	80,4	152,27	10000,00	7966,08	7792,68	0,00	0,00
09	9/ago	3,45769	325,67	80,4	222,40	10000,00	7792,68	7689,41	0,00	0,00
10	0/ago	3,17308	325,67	80,4	204,09	10000,00	7689,41	7567,83	0,00	0,00
1	1/ago	3,58846	325,67	80,4	230,81	10000,00	7567,83	7472,98	0,00	0,00
12	2/ago	1,74615	325,67	80,4	112,31	10000,00	7472,98	7259,62	0,00	0,00
13	3/ago	6,00385	325,67	80,4	386,17	10000,00	7259,62	7320,12	0,00	0,00
14	4/ago	3,08654	325,67	80,4	198,53	10000,00	7320,12	7192,98	0,00	0,00
	5/ago	4,34038	325,67	80,4	279,17	10000,00	7192,98	7146,49	0,00	0,00
10	6/ago	5,56731	325,67	80,4	358,09	10000,00	7146,49	7178,91	0,00	0,00
	7/ago	4,19231	325,67	80,4	269,65	10000,00	7178,91	7122,90	0,00	0,00
18	8/ago	5,07692	325,67	80,4	326,55	10000,00	7122,90	7123,78	0,00	0,00
19	9/ago	4,90192	325,67	80,4	315,29	10000,00	7123,78	7113,40	0,00	0,00
2(0/ago	4,34906	325,67	80,4	279,73	10000,00	7113,40	7067,47	0,00	0,00
2	1/ago	4,56415	325,67	80,4	293,57	10000,00	7067,47	7035,37	0,00	0,00
	2/ago	7,00189	325,67	80,4	450,36	10000,00	7035,37	7160,06	0,00	0,00
2	3/ago	2,85660	325,67	80,4	183,74	10000,00	7160,06	7018,13	0,00	0,00
	4/ago	3,44151	325,67	80,4	221,36	10000,00	7018,13	6913,82	0,00	0,00
2	5/ago	3,20189	325,67	80,4	205,95	10000,00	6913,82	6794,10	0,00	0,00
	6/ago	4,35660	325,67	80,4	280,22	10000,00	6794,10	6748,65	0,00	0,00
2	7/ago	5,60755	325,67	80,4	360,68	10000,00	6748,65	6783,66	0,00	0,00
28	8/ago	3,13019	325,67	80,4	201,33	10000,00	6783,66	6659,33	0,00	0,00
29	9/ago	0,83774	325,67	80,4	53,88	10000,00	6659,33	6387,55	0,00	0,00
	0/ago	2,03962	325,67	80,4	131,19	10000,00	6387,55	6193,07	0,00	0,00
3	1/ago	8,97963	325,67	80,4	577,57	10000,00	6193,07	6444,97	0,00	0,00
	1/set	5,12453	325,67	80,4	329,61	10000,00	6444,97	6448,91	0,00	0,00
0	2/set	2,51132	325,67	80,4	161,53	10000,00	6448,91	6284,78	0,00	0,00
0	3/set	3,79057	325,67	80,4	243,81	10000,00	6284,78	6202,92	0,00	0,00
0	4/set	3,00000	325,67	80,4	192,96	10000,00	6202,92	6070,21	0,00	0,00
0	5/set	5,02830	325,67	80,4	323,42	10000,00	6070,21	6067,96	0,00	0,00
0	6/set	3,49623	325,67	80,4	224,88	10000,00	6067,96	5967,18	0,00	0,00

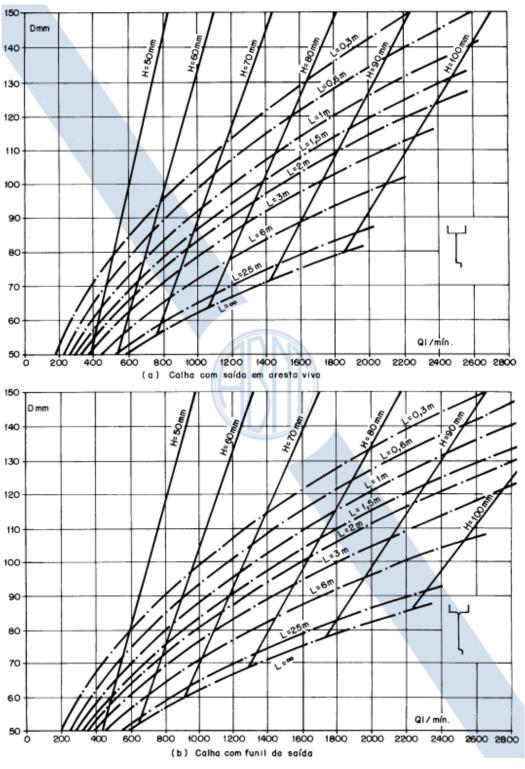
Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
07/set	5,49623	325,67	80,4	353,52	10000,00	5967,18	5995,03	0,00	0,00
08/set	6,85472	325,67	80,4	440,90	10000,00	5995,03	6110,25	0,00	0,00
09/set	4,53962	325,67	80,4	291,99	10000,00	6110,25	6076,58	0,00	0,00
10/set	1,13585	325,67	80,4	73,06	10000,00	6076,58	5823,97	0,00	0,00
11/set	2,66604	325,67	80,4	171,48	10000,00	5823,97	5669,78	0,00	0,00
12/set	7,19057	325,67	80,4	462,50	10000,00	5669,78	5806,61	0,00	0,00
13/set	6,79057	325,67	80,4	436,77	10000,00	5806,61	5917,71	0,00	0,00
14/set	7,30377	325,67	80,4	469,78	10000,00	5917,71	6061,83	0,00	0,00
15/set	6,78491	325,67	80,4	436,41	10000,00	6061,83	6172,56	0,00	0,00
16/set	3,83962	325,67	80,4	246,96	10000,00	6172,56	6093,86	0,00	0,00
17/set	4,81321	325,67	80,4	309,59	10000,00	6093,86	6077,78	0,00	0,00
18/set	5,11698	325,67	80,4	329,12	10000,00	6077,78	6081,24	0,00	0,00
19/set	8,38868	325,67	80,4	539,56	10000,00	6081,24	6295,13	0,00	0,00
20/set	8,29623	325,67	80,4	533,61	10000,00	6295,13	6503,08	0,00	0,00
21/set	3,85660	325,67	80,4	248,06	10000,00	6503,08	6425,47	0,00	0,00
22/set	2,42075	325,67	80,4	155,70	10000,00	6425,47	6255,50	0,00	0,00
23/set	6,43774	325,67	80,4	414,08	10000,00	6255,50	6343,91	0,00	0,00
24/set	6,64528	325,67	80,4	427,42	10000,00	6343,91	6445,67	0,00	0,00
25/set	7,20377	325,67	80,4	463,35	10000,00	6445,67	6583,35	0,00	0,00
26/set	5,88491	325,67	80,4	378,52	10000,00	6583,35	6636,20	0,00	0,00
27/set	6,08868	325,67	80,4	391,62	10000,00	6636,20	6702,16	0,00	0,00
28/set	5,67358	325,67	80,4	364,92	10000,00	6702,16	6741,42	0,00	0,00
29/set	8,82830	325,67	80,4	567,84	10000,00	6741,42	6983,59	0,00	0,00
30/set	10,93148	325,67	80,4	703,11	10000,00	6983,59	7361,03	0,00	0,00
01/out	8,85660	325,67	80,4	569,66	10000,00	7361,03	7605,02	0,00	0,00
02/out	6,93962	325,67	80,4	446,36	10000,00	7605,02	7725,71	0,00	0,00
03/out	5,12264	325,67	80,4	329,49	10000,00	7725,71	7729,53	0,00	0,00
04/out	4,77358	325,67	80,4	307,04	10000,00	7729,53	7710,90	0,00	0,00
05/out	5,94340	325,67	80,4	382,28	10000,00	7710,90	7767,52	0,00	0,00
06/out	5,91698	325,67	80,4	380,58	10000,00	7767,52	7822,43	0,00	0,00
07/out	6,60566	325,67	80,4	424,88	10000,00	7822,43	7921,64	0,00	0,00
08/out	4,74340	325,67	80,4	305,10	10000,00	7921,64	7901,07	0,00	0,00
09/out	8,49811	325,67	80,4	546,60	10000,00	7901,07	8122,00	0,00	0,00
10/out	7,21887	325,67	80,4	464,32	10000,00	8122,00	8260,65	0,00	0,00
11/out	6,97358	325,67	80,4	448,54	10000,00	8260,65	8383,53	0,00	0,00
12/out	6,38302	325,67	80,4	410,56	10000,00		8468,42	0,00	0,00
13/out	7,55660	325,67	80,4	486,04	10000,00	8468,42	8628,79	0,00	0,00
14/out	5,56981	325,67	80,4	358,25	10000,00	8628,79	8661,37	0,00	0,00
15/out	6,26792	325,67	80,4	403,15	10000,00	8661,37	8738,86	0,00	0,00
16/out	6,72453	325,67	80,4	432,52	10000,00	8738,86	8845,71	0,00	0,00
17/out	12,62830	325,67	80,4	812,25	10000,00	8845,71	9332,30	0,00	0,00
18/out	5,59245	325,67	80,4	359,71	10000,00	9332,30	9366,34	0,00	0,00
19/out	6,50000	325,67	80,4	418,08	10000,00	9366,34	9458,75	0,00	0,00
20/out	5,67547	325,67	80,4	365,05	10000,00	9458,75	9498,13	0,00	0,00
21/out	5,49623	325,67	80,4	353,52	10000,00	9498,13	9525,98	0,00	0,00
22/out	6,12830	325,67	80,4	394,17	10000,00	9525,98	9594,49	0,00	0,00
23/out	7,25849	325,67	80,4	466,87	10000,00	9594,49	9735,69	0,00	0,00
24/out	4,70943	325,67	80,4	302,91	10000,00	9735,69	9712,93	0,00	0,00
25/out	9,38868	325,67	80,4	603,88	10000,00	9712,93	9991,15	0,00	0,00
26/out	12,22264	325,67	80,4	786,16	10000,00	9991,15	10000,00	460,49	0,00


Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
27/out	7,01509	325,67	80,4	451,21	10000,00	10000,00	10000,00	125,54	0,00
28/out	8,68491	325,67	80,4	558,61	10000,00	10000,00	10000,00	232,95	0,00
29/out	7,10755	325,67	80,4	457,16	10000,00	10000,00	10000,00	131,49	0,00
30/out	8,05472	325,67	80,4	518,08	10000,00	10000,00	10000,00	192,41	0,00
31/out	8,31698	325,67	80,4	534,95	10000,00	10000,00	10000,00	209,28	0,00
01/nov	4,30000	325,67	80,4	276,58	10000,00	10000,00	9950,91	0,00	0,00
02/nov	6,69038	325,67	80,4	430,33	10000,00	9950,91	10000,00	104,66	0,00
03/nov	6,46346	325,67	80,4	415,73	10000,00	10000,00	10000,00	90,06	0,00
04/nov	5,96923	325,67	80,4	383,94	10000,00	10000,00	10000,00	58,27	0,00
05/nov	5,15192	325,67	80,4	331,37	10000,00	10000,00	10000,00	5,71	0,00
06/nov	8,78846	325,67	80,4	565,27	10000,00	10000,00	10000,00	239,61	0,00
07/nov	5,12500	325,67	80,4	329,64	10000,00	10000,00	10000,00	3,97	0,00
08/nov	8,76731	325,67	80,4	563,91	10000,00	10000,00	10000,00	238,25	0,00
09/nov	5,45962	325,67	80,4	351,16	10000,00	10000,00	10000,00	25,50	0,00
10/nov	6,59423	325,67	80,4	424,14	10000,00	10000,00	10000,00	98,47	0,00
11/nov	6,77692	325,67	80,4	435,89	10000,00	10000,00	10000,00	110,23	0,00
12/nov	4,64808	325,67	80,4	298,96	10000,00	10000,00	9973,30	0,00	0,00
13/nov	5,95769	325,67	80,4	383,20	10000,00	9973,30	10000,00	57,53	0,00
		325,67		413,13		10000,00			
14/nov	6,42308		80,4		10000,00		10000,00	87,47	0,00
15/nov	3,40577	325,67	80,4	219,06	10000,00	10000,00	9893,39	0,00	0,00
16/nov	5,54615	325,67	80,4	356,73	10000,00	9893,39	9924,45	0,00	0,00
17/nov	5,45769	325,67	80,4	351,04	10000,00	9924,45	9949,83	0,00	0,00
18/nov	5,22692	325,67	80,4	336,20	10000,00	9949,83	9960,36	0,00	0,00
19/nov	3,60962	325,67	80,4	232,17	10000,00	9960,36	9866,86	0,00	0,00
20/nov	5,23077	325,67	80,4	336,44	10000,00	9866,86	9877,64	0,00	0,00
21/nov	3,74231	325,67	80,4	240,71	10000,00	9877,64	9792,67	0,00	0,00
22/nov	9,01538	325,67	80,4	579,87	10000,00	9792,67	10000,00	254,20	0,00
23/nov	2,65962	325,67	80,4	171,07	10000,00	10000,00	9845,40	0,00	0,00
24/nov	5,01731	325,67	80,4	322,71	10000,00	9845,40	9842,45	0,00	0,00
25/nov	4,70577	325,67	80,4	302,68	10000,00	9842,45	9819,45	0,00	0,00
26/nov	5,03269	325,67	80,4	323,70	10000,00	9819,45	9817,49	0,00	0,00
27/nov	8,05962	325,67	80,4	518,39	10000,00	9817,49	10000,00	192,73	0,00
28/nov	7,98077	325,67	80,4	513,32	10000,00	10000,00	10000,00	187,66	0,00
29/nov	4,45385	325,67	80,4	286,47	10000,00	10000,00	9960,80	0,00	0,00
30/nov	6,39038	325,67	80,4	411,03	10000,00	9960,80	10000,00	85,36	0,00
01/dez	6,23269	325,67	80,4	400,89		10000,00	10000,00	75,22	0,00
02/dez	3,92885	325,67	80,4	252,70	10000,00		9927,04	0,00	0,00
03/dez	5,98462	325,67	80,4	384,93	10000,00	9927,04	9986,30	0,00	0,00
04/dez	3,67692	325,67	80,4	236,50	10000,00	9986,30	9897,13	0,00	0,00
05/dez	6,00192	325,67	80,4	386,04	10000,00	9897,13	9957,51	0,00	0,00
06/dez	5,91731	325,67	80,4	380,60	10000,00	9957,51	10000,00	54,93	0,00
07/dez	3,30577	325,67	80,4	212,63	10000,00	10000,00	9886,96	0,00	0,00
08/dez	3,96923	325,67	80,4	255,30	10000,00	9886,96	9816,59	0,00	0,00
09/dez	5,40769	325,67	80,4	347,82	10000,00	9816,59	9838,75	0,00	0,00
10/dez	5,33846	325,67	80,4	343,37	10000,00	9838,75	9856,45	0,00	0,00
11/dez	5,92115	325,67	80,4	380,85	10000,00	9856,45	9911,64	0,00	0,00
12/dez	7,15769	325,67	80,4	460,38	10000,00	9911,64	10000,00	134,72	0,00
13/dez	7,34615	325,67	80,4	472,50	10000,00	10000,00	10000,00	146,84	0,00
14/dez	4,83077	325,67	80,4	310,72	10000,00	10000,00	9985,05	0,00	0,00
15/dez	3,27115	325,67	80,4	210,40	10000,00		9869,78	0,00	0,00

Meses	P (t) (mm)	D (L)	A (m²)	Q (t) (L)	V (L)	S (t-1) (L)	S (t) (L)	Vol. vertido (L)	Conces- sionária (L)
16/dez	5,35385	325,67	80,4	344,36	10000,00	9869,78	9888,48	0,00	0,00
17/dez	3,33269	325,67	80,4	214,36	10000,00	9888,48	9777,17	0,00	0,00
18/dez	4,02308	325,67	80,4	258,76	10000,00	9777,17	9710,26	0,00	0,00
19/dez	8,58077	325,67	80,4	551,92	10000,00	9710,26	9936,51	0,00	0,00
20/dez	4,92500	325,67	80,4	316,78	10000,00	9936,51	9927,62	0,00	0,00
21/dez	5,53269	325,67	80,4	355,86	10000,00	9927,62	9957,82	0,00	0,00
22/dez	9,02115	325,67	80,4	580,24	10000,00	9957,82	10000,00	254,57	0,00
23/dez	4,63462	325,67	80,4	298,10	10000,00	10000,00	9972,43	0,00	0,00
24/dez	8,89808	325,67	80,4	572,32	10000,00	9972,43	10000,00	246,66	0,00
25/dez	4,40769	325,67	80,4	283,50	10000,00	10000,00	9957,84	0,00	0,00
26/dez	4,34231	325,67	80,4	279,30	10000,00	9957,84	9911,47	0,00	0,00
27/dez	2,34615	325,67	80,4	150,90	10000,00	9911,47	9736,70	0,00	0,00
28/dez	7,20962	325,67	80,4	463,72	10000,00	9736,70	9874,76	0,00	0,00
29/dez	6,28654	325,67	80,4	404,35	10000,00	9874,76	9953,44	0,00	0,00
30/dez	7,53846	325,67	80,4	484,87	10000,00	9953,44	10000,00	159,21	0,00
31/dez	4,65962	325,67	80,4	299,71	10000,00	10000,00	9974,04	0,00	0,00

Fonte: Autoria própria.

ANEXO A


Planta de cobertura

Fonte: Fornecido pela Escala Engenharia de obras (2022).

ANEXO B

Ábacos de determinação de diâmetro de condutores verticais

Fonte: ABNT (1989)

ANEXO C

Capacidade de condutores horizontais de seção circular (vazões em L/min.)

	Diâmetro interno (D)	o <u>n</u> = 0,011					<u>n</u> = 0,012				<u>n</u> = 0,013			
	(mm)	0,5 %	1 %	2 %	4 %	0,5 %	1 %	2 %	4 %	0,5 %	1 %	2 %	4 %	
	1	2	3	4	5	6	7	8	9	10	11	12	13	
1	50	32	45	64	90	29	41	59	83	27	38	54	76	
2	75	95	133	188	267	87	122	172	245	80	113	159	226	
3	100	204	287	405	575	187	264	372	527	173	243	343	486	
4	125	370	521	735	1.040	339	478	674	956	313	441	622	882	
5	150	602	847	1.190	1.690	552	777	1.100	1.550	509	717	1.010	1.430	
6	200	1.300	1.820	2.570	3.650	1.190	1.670	2.360	3.350	1.100	1.540	2.180	3.040	
7	250	2.350	3.310	4.660	6.620	2.150	3.030	4.280	6.070	1.990	2.800	3.950	5.600	
8	300	3.820	5.380	7.590	10.800	3.500	4.930	6.960	9.870	3.230	4.550	6.420	9.110	

Fonte: ABNT (1989)

ANEXO D

Comprimentos equivalentes em conexões de PVC e Metálicas.

		Co	omprim	entos E	quivaler	ites em C	onexõe	es			
Tabela	de comprim	entos equiv	alentes e							alizadas.	
CONEXA	in			Diâmetro	o nominal	X Equivaler	ncia em m	etros de ca	nalização		
CONEX		Material	3/4"	1″	1 1/4"	1 1/2"	2"	2 1/2"	3″	4"	5"
Curva 90°		PVC	0,5	0,6	0,7	1,2	1,3	1,4	1,5	1,6	1,9
Curva 90°	目	Metal	0,4	0,5	0,6	0,7	0,9	1,0	1,3	1,6	2,1
Curva 45º	A	PVC	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1
Curva 45°	\exists	Metal	0,2	0,2	0,3	0,3	0,4	0,5	0,6	0,7	0,9
Joelho 90°		PVC	1,2	1,5	2,0	3,2	3,4	3,7	3,9	4,3	4,9
Joeino 90°	E,	Metal	0,7	0,8	1,1	1,3	1,7	2,0	2,5	3,4	4,2
lealle 450	\wedge	PVC	0,5	0,7	1,0	1,3	1,5	1,7	1,8	1,9	2,5
Joelho 45°	Metal	0,3	0,4	0,5	0,6	0,8	0,9	1,2	1,5	1,9	
Tê de passagem	# .	PVC	0,8	0,9	1,5	2,2	2,3	2,4	2,5	2,6	3,3
direta	الهل	Metal	0,4	0,5	0,7	0,9	1,1	1,3	1,6	2,1	2,7
Tê de saída	<u> </u>	PVC	2,4	3,1	4,6	7,3	7,6	7,8	8,0	8,3	10,0
lateral 4	th.	Metal	1,4	1,7	2,3	2,8	3,5	4,3	5,2	6,7	8,4
Tê de saída	#.	PVC	2,4	3,1	4,6	7,3	7,6	7,8	8,0	8,3	10,0
bilateral	4	Metal	1,4	1,7	2,3	2,8	3,5	4,3	5,2	6,7	8,4
	AH.	PVC	0,1	0,1	0,1	0,1	0,1	0,1	0,15	0,2	0,25
União	Ш.	Metal	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,03	0,04
Saída de		PVC	0,9	1,3	1,4	3,2	3,3	3,5	3,7	3,9	4,9
canalização		Metal	0,5	0,7	0,9	1,0	1,5	1,9	2,2	3,2	4,0
Luva de	R	PVC	0,3	0,2	0,15	0,4	0,7	0,8	0,85	0,95	1,2
redução (*)		Aço	0,29	0,16	0,12	0,38	0,64	0,71	0,78	0,9	1,07
Registro de gaveta	本	PVC	0,2	0,3	0,4	0,7	0,8	0,9	0,9	1,0	1,1
ou esfera aberto		Metal	0,1	0,2	0,2	0,3	0,4	0,4	0,5	0,7	0,9
Registro de globo aberto	A	Metal	6,7	8,2	11,3	13,4	17,4	21,0	26,0	34,0	43,0
Registro de ângulo aberto		Metal	3,6	4,6	5,6	6,7	8,5	10,0	13,0	17,0	21,0
Válvula de pé	А	PVC	9,5	13,3	15,3	18,3	23,7	25,0	26,8	28,8	37,4
com crivo	A	Metal	5,6	7,3	10,0	11,6	14,0	17,0	22,0	23,0	30,0
Retending Walkula de Valkula de V	tal at 13	Metal	1,6	2,1	2,7	3,2	4,2	5,2	6,3	6,4	10,4
Wertical Vertical	4	Metal	2,4	3,2	4,0	4,8	6,4	8,1	9,7	12,9	16,1

Fonte: Franklin Electric (2019)

ANEXO E

Tabela 6.2 Rendimento estimado do motor em função da potência

Potencia em HP	Rendimento do motor η _m
1/2	64%
3/4	67%
1	72%
1 ½	73%
2	75%
3	77%
5	81%
10	84%
20	86%
30	87%
50	88%
100	90%

Tabela 6.3 Rendimento estimado da bomba em função da vazão de bombeamento

Vazão em litros /segundo	Rendimento da bomba centrifuga η _b
5	52%
7,5	61%
10	66%
15	68%
20	71%
25	75%
30	80%
40	84%
50	85%
100	87%
200	88%

Fonte: Tomaz (2009)

ANEXO F

Tabela 3 - Capacidades dos reservatórios dimensionados pelos diferentes métodos para a cidade de Santos

)E	Demanda diária de água potável (litros)	100	100	100	200	200	300	200	300	300	
DADOS DE ENTRADA	Número de moradores	2	2	2	2	2	2	2	2	2	Área de captaçã
O E	% substituição de água potável por pluvial	30%	40%	50%	30%	40%	30%	50%	40%	50%	o (m ²)
D/	Demanda de água pluvial (litros/mês)	1.800	2.400	3.000	3.600	4.800	5.400	6.000	7.200	9.000] ` ´
	Método			Cap	acidade o	lo reserv	atório (li	tros)		•	
	Rippl	-	-	-	-	-	-	-	-	-]
	Simulação	-	-	-	-	-	-	-	-	-]
	Azevedo Neto	42.526	42.526	42.526	42.526	42.526	42.526	42.526	42.526	42.526]
	Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	6.480	100
	Prático Inglês	16.875	16.875	16.875	16.875	16.875	16.875	16.875	16.875	16.875]
	Prático Australiano	-	-	-	-	-	-	-	-	-	
	Netuno sem reservatório superior	1.500	2.000	2.500	2.500	3.500	4.000	4.500	5.500	6.500]
	Netuno com reservatório superior	1.500	1.500	2.000	2.500	3.500	4.000	4.500	5.500	6.500	
[Método			Cap	acidade o	lo reserv	atório (li	tros)			
	Rippl	-	-	-	-	-	-	-	-	-	
	Simulação	1	-	-	-	-	-	-	-	-	
00	Azevedo Neto	85.051	85.051	85.051	85.051	85.051	85.051	85.051	85.051	85.051	
MÉTODO	Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	6.480	200
MÉ	Prático Inglês	33.750	33.750	33.750	33.750	33.750	33.750	33.750	33.750	33.750	
	Prático Australiano	-	-	-	-	-	-	-	-	-	
	Netuno sem reservatório superior	1.500	2.000	2.000	2.500	3.000	3.500	4.000	4.500	5.500	
	Netuno com reservatório superior	1.000	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.500	
L	Método			Cap	acidade o	lo reserv	atório (li	tros)			
	Rippl	-	-	-	-	-	-	-	-	-	
	Simulação	-	-	-	-	-	-	-	-	-	
L	Azevedo Neto	127.577	127.577	127.577	127.577	127.577	127.577	127.577	127.577	127.577	
	Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	6.480	300
	Prático Inglês	50.626	50.626	50.626	50.626	50.626	50.626	50.626	50.626	50.626	
L	Prático Australiano	-	-	-	-	-	-	-	-	-	
	Netuno sem reservatório superior	1.500	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.500]
	Netuno com reservatório superior	1.000	1.500	2.000	2.500	3.000	3.500	3.500	4.500	5.500	

Fonte: Ghisi et al (2011)

ANEXO G

 ${\sf Tabela\ 4-Capacidades\ dos\ reservat\'orios\ dimensionados\ pelos\ diferentes\ m\'etodos\ para\ a\ cidade\ de\ Palhoça}$

JE A	Demanda diária de água potável (litros)	100	100	100	200	200	300	200	300	300	
DADOS DE ENTRADA	Número de moradores	2	2	2	2	2	2	2	2	2	Área de captação
Q E	% substituição de água potável por pluvial	30%	40%	50%	30%	40%	30%	50%	40%	50%	(m ²)
D/ EN	Demanda de água pluvial (litros/mês)	1.800	2.400	3.000	3.600	4.800	5.400	6.000	7.200	9.000	` ′
	Método			Capa	acidade o	lo reserv	atório (li	tros)			
	Rippl	-	-	-	-	-	-	-	523	3774	
	Simulação	-	-	-	-	-	-	-	1.000	3.500	
	Azevedo Neto	35.632	35.632	35.632	35.632	35.632	35.632	35.632	35.632	35.632	
	Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	6.480	100
	Prático Inglês	8.484	8.484	8.484	8.484	8.484	8.484	8.484	8.484	8.484	
	Prático Australiano	-	-	-	-	-	-	-	-	-	
	Netuno sem reservatório superior	2.000	2.500	3.000	4.000	5.500	6.500	7.000	8.000	1.0000	
[Netuno com reservatório superior	1.500	2.000	3.000	3.500	5.500	6.000	7.000	8.000	1.0000	
	Método			Cap	acidade (lo reserv	atório (li	tros)			
	Rippl	-	-	-	-	-	-	-	-	-	
	Simulação	-	-	-	-	-	-	-	-	-	
00	Azevedo Neto	71.264	71.264	71.264	71.264	71.264	71.264	71.264	71.264	71.264	
MÉTODO	Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	6.480	200
MÉ	Prático Inglês	16.968	16.968	16.968	16.968	16.968	16.968	16.968	16.968	16.968	
	Prático Australiano	-	-	-	-	-	-	-	-	-	
	Netuno sem reservatório superior	1.500	2.000	2.500	3.000	4.000	4.500	5.000	6.000	7.500	
	Netuno com reservatório superior	1.500	2.000	2.500	3.000	3.500	4.500	5.000	6.000	7.500	
	Método			Cap	acidade o	lo reserv	atório (li	tros)			
	Rippl	-	-	-	-	-	-	-	-	-	
	Simulação	-	-	-	-	-	-	-	-	-	
	Azevedo Neto	106.897	106.897	106.897	106.897	106.897	106.897	106.897	106.897	106.897	
	Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	6.480	300
	Prático Inglês	25.452	25.452	25.452	25.452	25.452	25.452	25.452	25.452	25.452	
	Prático Australiano	-	-	-	-	-	-	-	1.000	5.000	
[Netuno sem reservatório superior	1.500	2.000	2.500	2.500	3.500	4.000	4.500	5.500	7.000	
	Netuno com reservatório superior	1.500	1.500	2.000	2.500	3.500	4.000	4.500	5.500	7.000	

Fonte: Ghisi et al (2011)

ANEXO H

Tabela 5 - Capacidades dos reservatórios dimensionados pelos diferentes métodos para a cidade de Santana do Ipanema

Demanda diária de água potável (litros) 100 100 100 200 200 300 200 300 300 300 300 Número de moradores 2 2 2 2 2 2 2 2 2	Juille	ia do ipanema										
Método Capacidade do reservatório (litros)	OE A	Demanda diária de água potável (litros)	100	100	100	200	200	300	200	300	300	, .
Método Capacidade do reservatório (litros)	S I	Número de moradores	2	2	2	2	2	2	2	2	2	
Método Capacidade do reservatório (litros)	Q K	% substituição de água potável por pluvial	30%	40%	50%	30%	40%	30%	50%	40%	50%	(m ²)
Rippl	DA	Demanda de água pluvial (litros/mês)	1.800	2.400	3.000	3.600	4.800	5.400	6.000	7.200	9.000	()
Simulação 200 600 2.000 4.770 - - - - - - - - -		Método			Capa	cidade d	lo reserv	atório (1	itros)	•		
Azevedo Neto		Rippl	170	830	2.170	4.910	13.690	18.850	24.850	37.640	58.500	
Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 6.480 Prático Inglês 3.121 3.121 3.121 3.121 3.121 3.121 3.121 3.121 Prático Australiano 500 1.500 3.000 6.000 - - - - - - Netuno sem reservatório superior 8.000 1.0000 13.500 16.000 18.000 16.000 14.500 11.000 8.500 Netuno com reservatório superior 8.000 1.0000 13.500 16.000 17.500 16.000 14.500 11.500 8.500 Método Capacidade do reservatório (litros) Rippl - - 350 1.670 2.870 4.350 9.810 22.590 Simulação - - 500 1.500 2.000 4.000 10.000 13.000 Azevedo Neto 26.216 26.216 26.216 26.216 26.216 26.216 26.216 26.216 Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 5.940 Prático Australiano - 500 500 2.000 4.000 6.000 12.000 - Netuno sem reservatório superior 6.500 9.000 11.000 12.500 16.500 17.000 16.500 17.000 15.000 Método Capacidade do reservatório (litros) Rippl - - - 500 1.500 17.000 16.500 17.000 15.000 Método Capacidade do reservatório (litros) Rippl - - - 500 1.000 17.000 16.500 17.000 15.000 Método Capacidade do reservatório (litros) Rippl - - - 500 1.000 17.000 16.500 17.000 15.000 Simulação - - - 500 1.000 17.000 16.500 17.000 15.000 Azevedo Neto 39.324 39.324 39.324 39.324 39.324 39.324 39.324 39.324 Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 6.480 Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 6.480 Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 6.480 Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 6.480 Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 6.480 Prático Alemão 1.2		Simulação	200	600	2.000	4.770	-	-	-	-	-	
Prático Inglês 3.121 3.1		Azevedo Neto	13.108	13.108	13.108	13.108	13.108	13.108	13.108	13.108	13.108	
Prático Australiano 500 1.500 3.000 6.000 - - - - - - - -		Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	6.480	100
Netuno sem reservatório superior 8.000 10.500 13.500 16.000 18.000 14.500 11.000 8.500 Netuno com reservatório superior 8.000 1.0000 13.500 16.000 17.500 16.000 14.500 11.500 8.500 Netuno com reservatório superior 8.000 1.0000 13.500 16.000 17.500 16.000 14.500 11.500 8.500 Netuno com reservatório superior 8.000 1.0000 13.500 16.000 17.500 16.000 14.500 11.500 8.500 Netuno com reservatório superior 8.000 1.0000 13.500 1.600 17.500 1.6000 14.500 11.500 13.000		Prático Inglês	3.121	3.121	3.121	3.121	3.121	3.121	3.121	3.121	3.121	
Netuno com reservatório superior 8.000 1.0000 13.500 16.000 17.500 16.000 14.500 11.500 8.500		Prático Australiano	500	1.500	3.000	6.000	-	-	-	-	-	
Método Capacidade do reservatório (litros)		Netuno sem reservatório superior	8.000	10.500	13.500	16.000	18.000	16.000	14.500	11.000	8.500	
Rippl		Netuno com reservatório superior	8.000	1.0000	13.500	16.000	17.500	16.000	14.500	11.500	8.500	
Simulação		Método			Capa	cidade d	lo reserv	atório (1	itros)			
Azevedo Neto 26.216 26.216 26.216 26.216 26.216 26.216 26.216 26.216 26.216 26.216 26.216 26.216 Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 5.940 Prático Inglês 6.242		Rippl	-	-	-	350	1.670	2.870	4.350	9.810	22.590	
Prático Australiano - - 500 500 2.000 4.000 6.000 12.000 - Netuno sem reservatório superior 6.500 9.000 11.000 13.000 16.500 17.000 16.500 17.500 15.500 Netuno com reservatório superior 6.500 9.000 11.000 12.500 16.000 17.000 16.500 17.000 15.000 Método Capacidade do reservatório (litros) Rippl - - - - 520 1.120 2.500 6.520 Simulação - - - - - 1.000 1.500 2.000 9.500 Azevedo Neto 39.324 39.363 9.363 9.363 9.363 9.363 <td></td> <td>Simulação</td> <td>-</td> <td>-</td> <td>-</td> <td>500</td> <td>1.500</td> <td>2.000</td> <td>4.000</td> <td>1.0000</td> <td>13.000</td> <td></td>		Simulação	-	-	-	500	1.500	2.000	4.000	1.0000	13.000	
Prático Australiano - - 500 500 2.000 4.000 6.000 12.000 - Netuno sem reservatório superior 6.500 9.000 11.000 13.000 16.500 17.000 16.500 17.500 15.500 Netuno com reservatório superior 6.500 9.000 11.000 12.500 16.000 17.000 16.500 17.000 15.000 Método Capacidade do reservatório (litros) Rippl - - - - 520 1.120 2.500 6.520 Simulação - - - - - 1.000 1.500 2.000 9.500 Azevedo Neto 39.324 39.363 9.363 9.363 9.363 9.363 <td>8</td> <td>Azevedo Neto</td> <td>26.216</td> <td>26.216</td> <td>26.216</td> <td>26.216</td> <td>26.216</td> <td>26.216</td> <td>26.216</td> <td>26.216</td> <td>26.216</td> <td></td>	8	Azevedo Neto	26.216	26.216	26.216	26.216	26.216	26.216	26.216	26.216	26.216	
Prático Australiano - - 500 500 2.000 4.000 6.000 12.000 - Netuno sem reservatório superior 6.500 9.000 11.000 13.000 16.500 17.000 16.500 17.500 15.500 Netuno com reservatório superior 6.500 9.000 11.000 12.500 16.000 17.000 16.500 17.000 15.000 Método Capacidade do reservatório (litros) Rippl - - - - 520 1.120 2.500 6.520 Simulação - - - - - 1.000 1.500 2.000 9.500 Azevedo Neto 39.324 39.363 9.363 9.363 9.363 9.363 <td>TO</td> <td>Prático Alemão</td> <td>1.296</td> <td>1.728</td> <td>2.160</td> <td>2.592</td> <td>3.456</td> <td>3.888</td> <td>4.320</td> <td>5.184</td> <td>5.940</td> <td>200</td>	TO	Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	5.940	200
Netuno sem reservatório superior 6.500 9.000 11.000 13.000 16.500 17.000 16.500 17.500 15.500	ΜĚ	Prático Inglês	6.242	6.242	6.242	6.242	6.242	6.242	6.242	6.242	6.242	
Netuno com reservatório superior 6.500 9.000 11.000 12.500 16.000 17.000 16.500 17.000 15.000 Método Capacidade do reservatório (litros) Rippl - - - - 520 1.120 2.500 6.520 Simulação - - - - - 1.000 1.500 2.000 9.500 Azevedo Neto 39.324 39.363 9.363 9.363 9.363 9.363 9.363		Prático Australiano	-	-	500	500	2.000	4.000	6.000	12.000	-	
Método Capacidade do reservatório (litros) Rippl - - - - - 520 1.120 2.500 6.520 Simulação - - - - - 1.000 1.500 2.000 9.500 Azevedo Neto 39.324 <td></td> <td>Netuno sem reservatório superior</td> <td>6.500</td> <td>9.000</td> <td>11.000</td> <td>13.000</td> <td>16.500</td> <td>17.000</td> <td>16.500</td> <td>17.500</td> <td>15.500</td> <td></td>		Netuno sem reservatório superior	6.500	9.000	11.000	13.000	16.500	17.000	16.500	17.500	15.500	
Rippl - - - - - 520 1.120 2.500 6.520 Simulação - - - - - 1.000 1.500 2.000 9.500 Azevedo Neto 39.324 <		Netuno com reservatório superior	6.500	9.000	11.000	12.500	16.000	17.000	16.500	17.000	15.000	
Simulação - - - - 1.000 1.500 2.000 9.500 Azevedo Neto 39.324 39.		Método			Capa	cidade d	lo reserv	atório (1	itros)			
Azevedo Neto 39.324 39.363 9.363 9.363 9.363 9.363		Rippl	-	-	-	-	-	520	1.120	2.500	6.520	
Prático Alemão 1.296 1.728 2.160 2.592 3.456 3.888 4.320 5.184 6.480 Prático Inglês 9.363 <td></td> <td>Simulação</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1.000</td> <td>1.500</td> <td>2.000</td> <td>9.500</td> <td></td>		Simulação	-	-	-	-	-	1.000	1.500	2.000	9.500	
Prático Inglês 9.363		Azevedo Neto	39.324	39.324	39.324	39.324	39.324	39.324	39.324	39.324	39.324	
Prático Australiano - - - 500 1.500 2.000 4.000 8.500 Netuno sem reservatório superior 6.500 8.000 1.0000 11.500 14.000 15.500 15.500 18.000 18.500		Prático Alemão	1.296	1.728	2.160	2.592	3.456	3.888	4.320	5.184	6.480	300
Netuno sem reservatório superior 6.500 8.000 1.0000 11.500 14.000 15.500 15.500 18.000 18.500		Prático Inglês	9.363	9.363	9.363	9.363	9.363	9.363	9.363	9.363	9.363	
		Prático Australiano	-	-	-	-	500	1.500	2.000	4.000	8.500	
Netuno com reservatório superior 6.000 7.500 1.0000 11.000 13.500 15.000 16.000 18.000 18.500		Netuno sem reservatório superior	6.500	8.000	1.0000	11.500	14.000	15.500	15.500	18.000	18.500	
		Netuno com reservatório superior	6.000	7.500	1.0000	11.000	13.500	15.000	16.000	18.000	18.500	

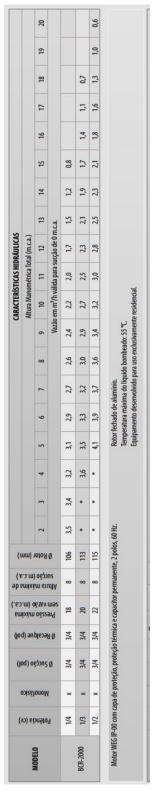
Fonte: Ghisi et al (2011)

ANEXO I

	TARIFA RESIDE	NCIAL NORM	MAL (R\$/r	n3)			
		Até 5 m³	6 a 10	11 a 15	16 a 20	21 a 30	> 30
ÁGUA Todas as Localidad	des Operadas	45,25	1,40	7,80	7,84	7,90	13,37
Curitiba	ESGOTO ÁGUA E ESGOTO	38,46 83,71	1,19 2,58	6,63 14,43	6,67 14,51	6,72 14,62	11,37 24,74
Demais Localidades	ESGOTO ÁGUA E ESGOTO	36,20 81,45	1,12 2,52	6,23 14,03	6,27 14,11	6,32 14,22	10,70 24,07
			_,02	,00	,	,	

Fonte: SANEPAR (2022)

ANEXO J


Estimativas de consumo.

Més Consumo total Consumo de água pluvial (ltros) Polume de água pluvial (ltros) Volume de água pluvial (ltros) Portável (ltros) Consumo de água pluvial (ltros) Residado (ltros) Pola de água pluvial (ltros) Pola de água pluvial (ltros) Pola de água pluvial (ltros) Residado (ltros) <th< th=""><th>Estimati</th><th>Estimativas iniciais de consumos e eco</th><th>umos e economias n</th><th>nomias mensais de água</th><th></th><th></th><th></th><th>×</th></th<>	Estimati	Estimativas iniciais de consumos e eco	umos e economias n	nomias mensais de água				×
38750 8250,26 30499,74 8218,85 587,59 389,04 35000 8033,18 26966,82 8100,04 497,34 333,88 35000 8033,18 26966,82 8100,04 9497,34 333,88 38750 9524,39 29225,61 9437,26 557,51 359,79 38750 8682,56 30067,44 8628,06 587,59 378,63 38750 8553,30 28946,70 8526,36 587,59 377,72 38750 8720,36 30029,64 8774,56 587,59 368,59 38750 8774,61 2875,51 358,59 377,72 38750 8774,61 2875,53 8703,13 358,89 38750 8766,98 8703,13 587,59 361,90 38750 8562,76 8563,12 557,51 361,90 38750 8169,98 8759 361,90 361,90	Mês	Consumo total mensal (litros)		Consumo de água potável (litros)	Volume de água pluvial recalcado (litros)	Valor da conta sem utilização de água pluvial (R\$)	Valor da conta com utilização de água pluvial (R\$)	Economia mensal (R\$)
35000 8033,18 26966,82 8100,04 497,34 333,88 38750 9524,39 29225,61 9437,26 587,59 366,00 37500 8711,29 28788,71 8810,67 587,59 359,79 37500 8682,56 30067,44 8628,06 587,51 359,79 37500 8553,30 28946,70 8526,36 557,51 362,03 38750 8720,36 30029,64 8774,56 587,59 377,72 37500 8774,61 2875,00 587,59 368,59 37500 8774,61 28725,39 8703,13 557,51 358,89 37500 8562,76 28937,24 8563,12 557,50 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	Jan	38750		30499,74	8218,85	587,59	389,04	198,55
38750 9524,39 29225,61 9437,26 587,59 366,00 37500 8711,29 28788,71 8810,67 557,51 359,79 38750 8682,56 30067,44 8628,06 587,59 378,63 37500 8553,30 28946,70 8526,36 557,51 362,03 38750 8720,36 29407,68 9365,00 587,59 368,59 37770 8774,61 28725,39 8703,13 557,51 358,89 38750 8703,01 30046,99 8728,33 587,59 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	Fev	35000		26966,82	8100,04	497,34	333,88	163,46
37500 8711,29 28788,71 8810,67 557,51 359,79 38750 8682,56 30067,44 8628,06 587,59 378,63 37500 8553,30 28946,70 8526,36 557,51 362,03 38750 8720,36 9365,00 587,59 377,72 37500 8774,61 28725,39 8703,13 557,51 358,89 38750 8703,01 30046,99 8728,33 587,59 378,14 37500 8562,76 28937,24 8563,12 557,51 358,99 38750 8169,98 33080,02 8172,63 587,59 361,90	Mar	38750	9524,39	29225,61	9437,26	587,59	366,00	221,59
38750 8682,56 30067,44 8628,06 587,59 378,63 37500 8553,30 28946,70 8526,36 557,51 362,03 38750 8720,36 8774,56 8774,56 368,59 377,72 38750 9342,32 29407,68 9365,00 587,59 368,59 37500 8774,61 28725,39 8703,13 587,59 378,14 38750 8562,76 28937,24 8563,12 557,50 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	Abr	37500		28788,71	8810,67	557,51	359,79	197,72
37500 8553,30 28946,70 8526,36 557,51 362,03 38750 8720,32 29407,68 8774,56 587,59 377,72 37500 8774,61 28725,39 8703,13 557,51 358,89 37500 8703,01 30046,99 8728,33 587,59 378,14 37500 8562,76 28937,24 8563,12 557,50 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	Mai	38750		30067,44	8628,06	587,59	378,63	208,95
38750 8720,36 8774,56 8774,56 587,59 377,72 38750 9342,32 29407,68 9365,00 587,59 368,59 37500 8774,61 28725,39 8703,13 587,51 358,89 38750 8703,01 30046,99 8728,33 587,59 378,14 37500 8562,76 28937,24 8563,12 557,50 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	Jun	37500		28946,70	8526,36	557,51	362,03	195,47
38750 8774,61 28725,39 8703,13 557,51 358,89 38750 8703,01 30046,99 8728,33 587,59 378,14 37500 8562,76 28937,24 8563,12 557,50 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	η	38750		30029,64	8774,56	587,59	377,772	209,86
37500 8774,61 28725,39 8703,13 557,51 358,89 38750 8703,01 30046,99 8728,33 587,59 378,14 37500 8562,76 28937,24 8563,12 557,50 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	Ago	38750	9342,32	29407,68	9365,00	587,59	368,59	219,00
38750 8703,01 30046,99 8728,33 587,59 378,14 37500 8562,76 28937,24 8563,12 557,50 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	Set	37500	8774,61	28725,39	8703,13	557,51	358,89	198,62
37500 8562,76 28937,24 8563,12 557,50 361,90 38750 8169,98 30580,02 8172,63 587,59 390,97	Out	38750	8703,01	30046,99	8728,33	587,59	378,14	209,45
38750 8169,98 30580,02 8172,63 587,59 390,97	Nov	37500		28937,24	8563,12	557,50	361,90	195,61
	Dez	38750	8169,98	30580,02	8172,63	587,59	390,97	196,62

Fonte: Print screen software Netuno; Ghisi e Cordova (2011)

ANEXO K

Tabela de seleção de bomba.

Fonte: Franklin Electric (2019)