
DOTS - Detection of Covid-19
Contagion Symptoms and

Self-Diagnosis in Social Networks

Clístenes Fernandes da Silva

Work supervised by:

Prof. Dr. Rui Pedro Lopes

Prof. Dr. Arnaldo Candido Junior

Master in Informatics

2020-2021

DOTS - Detection of Covid-19
Contagion Symptoms and

Self-Diagnosis in Social Networks

Dissertation presented to the School of Technology and Management to

obtain the Master’s Degree in Informatics

Clístenes Fernandes da Silva

2020-2021

The School of Technology and Management is not responsible for the opinions ex-

pressed in this document

Acknowledgments

First of all, I thank God for everything. Also both Polithecnic Institute of Bragança - IPB

and Federal University of Technology Parana - UTFPR for giving me the opportunity to

participate in this amazing program.

I thank all the help, patience and availability that my mentors Professor Dr. Rui

Pedro Lopes and Professor Dr. Arnaldo Candido Junior had with me before and during

this project.

Special thanks to my family, specially my wife Anne K. Fernandes and my parents

Siegfried and Araly Riegler that were always there for me even though the distance and

gave all the necessary support to conclude my projects.

v

Abstract

Social media present ways for people to share emotions, feelings, ideas, and even symp-

toms of disease, and is a great source of data for a variety of analyses. At the end of

2019, an alert was raised for a global pandemic of a virus that has a very high contam-

ination rate and can cause respiratory complications in the contaminated people. To

help identify those who may have the symptoms of this disease or to control who are al-

ready infected, this paper analyzed the performance of KNN, Naive Bayes, Decision Tree,

Random Forest, SVM, simple Multilayer Perceptron, Convolutional Neural Networks and

BERT algorithms to classify tweets that contained reports of Covid-19 symptoms or self-

reports of infection. The dataset was labeled using a set of disease symptom keywords

taken from a list provided by the World Health Organization. The tests on these models

showed that the Random Forest algorithm performed best when classifying the tweets in

a small dataset. This work demonstrated a superior performance of the Random Forest

algorithm over other more robust algorithms for this type of classification and dataset.

Keywords: Machine Learning, Deep Learning, Covid-19, Algorithm Comparison.

vi

Resumo

As redes sociais apresentam meios para as pessoas compartilharem emoções, sentimentos,

ideias e até sintomas de doenças, e são uma ótima fonte de dados para as mais diversas

análises. No final do ano de 2019, um alerta foi levantado para uma pandemia global de

um vírus que tem uma taxa de contaminação muito elevada e que pode causar compli-

cações respiratórias nas pessoas contaminadas. Para o auxilio na identificação de pessoas

que possam ter os sintomas desssa doença ou o controle das que já estão infectadas, neste

trabalho foram analisados os desempenhos dos algoritmos KNN, Naive Bayes, Decision

Tree, Random Forest, SVM, Multilayer Perceptron simples, Redes neurais Convolucionais

e BERT para classificação de tweets que continham relatos de sintomas do Covid-19 ou

auto-declaração de contaminação. O conjunto de dados foi rotulado utilizando um con-

junto de palavras chaves dos sintomas da doença retirada de uma lista disponibilizada

pela Organização Mundial da Saúde. Os testes nesses modelos mostraram que o algo-

ritmo Random Forest foi o que obteve melhor resultado ao classificar os tweets em uma

base de dados pequena. Este trabalho demonstrou o desempenho superior do algoritmo

RandomForest sobre outros mais robustos para este tipo de classificação e conjunto de

dados.

Palavras-chave: Machine Learning, Deep Learning, Covid-19, Comparação de Algo-

ritmos.

vii

viii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Document Structure . 3

2 Context and Technologies 5

2.1 Coronavirus . 5

2.1.1 Virus . 5

2.1.2 Covid-19 . 7

2.1.3 SARS-CoV-2 Variants . 9

2.1.4 Vaccines . 10

2.2 Artificial Intelligence . 10

2.3 Natural Language Processing . 11

2.4 Machine Learning . 12

2.4.1 K-Nearest Neighbors . 14

2.4.2 Naive Bayes . 15

2.4.3 Decision Tree and Random Forest Classifier 16

2.4.4 Support Vector Machine . 17

2.5 Artificial Neural Network . 19

2.5.1 Neuron . 19

2.5.2 Perceptron . 20

ix

2.5.3 MultiLayer Perceptron . 21

2.5.4 Activation Functions . 22

2.5.5 MultiLayer Perceptron Training . 24

2.5.6 Convolutional Neural Network . 26

2.6 Advances in Natural Language Processing Models 29

2.7 Transformers . 29

2.8 Bidirectional Encoder Representations from Transformers 31

3 Materials and Methods 35

3.1 Tools . 35

3.1.1 Hardware . 36

3.2 Dataset . 37

3.2.1 Labeling . 38

3.2.2 Pre-processing . 38

3.2.3 Characteristics of the Tweets . 40

3.3 Training . 42

4 Results and Discussion 47

4.1 Analysis of Results . 47

4.2 Confusion Matrices . 48

4.3 Metrics . 49

4.3.1 Precision . 50

4.3.2 Recall . 50

4.3.3 F-Measure . 51

4.3.4 Accuracy . 51

4.4 Best Results . 52

5 Conclusions and Future works 53

5.1 Challenges during the project . 53

5.2 Future Directions . 54

x

A Implemented Code A1

xi

List of Tables

3.1 Similarity level with the term covid . 41

4.1 Confusion matrices table of all models . 49

4.2 Metrics of all models tested . 50

xii

List of Figures

2.1 Double-stranded (dsRNA) RNA [7] . 6

2.2 Coronavirus Structure [13] . 8

2.3 KNN classification example [45] . 14

2.4 Decision Tree for playing tennis prediction [40] 16

2.5 SVM hyperplanes for separable and non-separable data [50] 17

2.6 Separating classes in a higher dimensional space [52] 18

2.7 Biological Neuron [62] . 20

2.8 Perceptron [64] . 21

2.9 Fully connected feedforward MLP [63] . 22

2.10 Logistic Sigmoid and Tanh activation functions [70] 23

2.11 Rectified Linear Unit (ReLU) [72] . 24

2.12 Convolutional Neural Networks (CNN) Architecture on an image classifi-

cation task [77] . 26

2.13 Channels of a CNN input [78] . 27

2.14 Filter route with stride 1 [79] . 27

2.15 Zero Padding [79] . 28

2.16 Max Pooling [80] . 28

2.17 Transformer Architecture [81] . 30

2.18 Bert input sentence representation [89] . 32

2.19 Bert pre-training and fine-tuning representation [89] 33

3.1 The 10 most frequent words in dataset . 40

xiii

3.2 The 10 most frequent words for the positive and negative classes 41

3.3 Symptoms that appeared the most in the positive class 42

3.4 Most frequent bi-grams in the whole dataset and in the positive and neg-

ative instances . 43

3.5 Proposed CNN architecture [97] . 45

xiv

Siglas

AI Artificial Intelligence. 3, 5, 10–12

ANN Artificial Neural Networks. 5, 19, 20, 26

BERT Bidirectional Encoder Representations from Transformers. 3, 5, 31, 32, 42, 44,

49–52

CNN Convolutional Neural Networks. xiii, 3, 23, 26, 42, 44, 49–53

DNA Deoxyribonucleic Acid. 6, 7, 10

GPU Graphics Processing Unit. 11

KNN K-Nearest Neighbors. 3, 42, 48–51

ML Machine Learning. 3, 5, 12, 13, 36

MLP Multilayer Perceptron. 21, 22, 42, 49, 50

NLP Natural Language Processing. 2, 3, 11, 12

OSH Optimal Separating Hyperplan. 18

ReLU Rectified Linear Unit. xiii, 23, 24, 42

RNA Ribonucleic Acid. 6, 7, 10

xv

SVM Support Vector Machine. 3, 17, 18, 42, 49–52

SVR Support Vector Regression. 18

WHO World Health Organization. 7, 10, 38

xvi

Chapter 1

Introduction

In this chapter we will present an introduction to the work theme. First, we will approach

the background in which this work is inserted. Next, we will show the objectives that we

expect to achieve and then, the structure that this document follows.

1.1 Background

The year 2020 posed organizations, governments, and even the population a great chal-

lenge in the face of a virus that was spreading at a very high speed and that, in some

cases, required more accurate information. The delay in obtaining concrete information

and mass testing were some of the challenges faced in the effort to control the spread of

the virus in the population [1].

Over time, new information about the behavior of the virus and the mapping of

its transmissibility has been obtained from more traditional sources of data collection,

such as population health surveys or group studies, where investigations of causes, and

relationships between risk factors and health consequences are made. However, these

approaches can take time to generate relevant reports, and this can be very damaging

when taking into account the characteristics of a pandemic [2].

Since the advent of social networks, they have been widely used as a way for people

1

to express emotions, feelings, opinions, information, as well as health concerns and symp-

toms, making these communication media potential sources for collecting and building a

dataset of self-reported symptoms [3].

A possible source where data can be collected for analysis and possible detection

of disease symptoms is Twitter, a virtual platform for social interaction and microblog,

where users can send and receive updates from other contacts, limiting themselves to

a maximum, at the date of this work, of 280 characters per message. To analyze the

texts posted on twitter and classify those with self-declared symptom content, Natural

Language Processing (NLP) techniques can be applied. NLP is a research and application

area that explores how computers can be used to understand and manipulate natural

language from text or speech and, although it is not a recent area of study, it has been

gaining more and more space in several fields [4]. It is possible to see the growth of NLP

in everyday life, being used by a lot of common people, for instance, when using a cell

phone or computer to interact with virtual assistants such as Alexa1, Cortana2, Siri3 or

Google Assistant4.

In companies, for example, NLP can be used to evaluate consumer acceptance of a

certain product, which can make the company more effective in producing the next prod-

ucts or improving the current ones. NLP can also be trained with the goal of extracting

relevant and, in some cases, unknown information about characteristics or symptoms of

some disease, such as Covid-19.

1.2 Objectives

The objective of this work is to study and apply machine learning techniques and al-

gorithms, based on natural language processing, to identify symptoms and text with

self-diagnostic content in social networks. For this purpose, Tweeter was used as a base

1https://alexa.amazon.com/
2https://support.microsoft.com/en-us/topic/what-is-cortana-953e648d-5668-e017-1341-7f26f7d0f825
3https://www.apple.com/br/siri/
4https://assistant.google.com/

2

https://alexa.amazon.com/
https://support.microsoft.com/en-us/topic/what-is-cortana-953e648d-5668-e017-1341-7f26f7d0f825
https://www.apple.com/br/siri/
https://assistant.google.com/

for collecting and studying texts with Covid-19 related content.

In order to achieve the general objective of this work, the following specifics objectives

were made:

• Collect and build a dataset from tweets;

• Label the dataset with positive or negative classes, according to the tweet’s charac-

teristic;

• Research and apply Machine Learning algorithms such as Decision Tree, Random

Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN);

• Research and apply Artificial Intelligence algorithms such as Multilayer Perceptron,

CNN, Bidirectional Encoder Representations from Transformers (BERT);

• Analyze and compare the performance of the algorithms.

1.3 Document Structure

This document is composed of five Chapters. As we are currently in the Introduction, the

rest of the document is organized as follows:

• In the Second Chapter, we will talk about the theoretical basis involving the Coro-

navirus, concepts of Artificial Intelligence (AI), Machine Learning (ML) and NLP.

• In the Third Chapter, we will show the materials and methods used to implement

this work.

• In the Fourth Chapter, we will post the results obtained after testing the models

and discuss about them.

• In the Fifth Chapter, we will present our conclusions about the work and suggest

future directions around the theme of this project.

3

4

Chapter 2

Context and Technologies

This chapter will cover the concepts regarding the Coronavirus on Section 2.1, Artificial

Intelligence on Section 2.2, Machine Learning on Section 2.4, Artificial Neural Networks

on Section 2.5, Transformers on Section ?? and BERT on Section 2.8.

2.1 Coronavirus

Covid-19 (Corona Virus Disease-2019) is a contagious disease recently discovered as result

of the infection from a new variation of an existing group of viruses that includes SARS-

CoV (Severe Respiratory Acute Syndrome). This disease is caused by the virus SARS-

CoV-2.

Two other events related to this virus occurred in the years of 2002 and 2012, with

SARS-CoV in Asia and MERS-CoV (Middle East Respiratory Syndrome Coronavirus) in

the Middle East, both leading to the death of a large number of people.

2.1.1 Virus

Viruses are very small parasites, usually ranging from 0.02 to 0.3 micrometers in size.

Viruses depend on a host to reproduce, such as bacteria, plants, or animals [5]. Viruses

usually have a very simple structure: they are covered by proteins, called capsids, and

5

in some cases also by lipids. The nucleus may contain Deoxyribonucleic Acid (DNA),

Ribonucleic Acid (RNA), or even both. Each type of virus can contain single or double-

stranded genetic material. Single-stranded RNA viruses can have either positive-sense

or negative-sense polarity [6]. A positive-sense RNA can have its genome immediately

translated by the host cell while the negative-sense needs to be converted to positive-sense

before being translated. Figure 2.1 shows a representation of a double-stranded RNA and

its translation into viral protein.

Figure 2.1: Double-stranded (dsRNA) RNA [7]

The proteins present in the capsid are particular to each type of virus. Some viruses

may consist of just the nucleocapsid, which is RNA or DNA surrounded by the capsid,

while others may have a wrapping or envelope on the surface of the nucleocapsid, called

encapsulated or enveloped viruses [5].

6

It is common for DNA viruses to replicate in the nucleus of the host cells, while RNA

viruses usually replicate in the cytoplasm, which is the region of the cell where the nucleus

and organelles and other structures with specific functions are located [8]. However,

retroviruses, which are positive-sense single-stranded RNA viruses, use a distinct method

of replication [9]. Retroviruses replicate viral RNA using reverse transcription, where the

transcriptase enzyme is carried by the virus inside its wrapper [10].

In the infection process, as mentioned previously, the virus needs a host cell, where

it will attack one or several of the receptor molecules. The viral genetic material is then

unencapsulated and replicated inside the host cell, requiring some specific enzymes. The

host cell usually dies after the viral components are completely formed and releases new

viruses that can infect other host cells [11].

2.1.2 Covid-19

Coronaviruses are positive-sense simple-stranded RNA viruses. They are enveloped in a

coat of fat and protein, ranging in diameter from 60 to 140 nanometers [12], and the Spike

Protein on their surface, which binds to the ACE2 enzyme, making infection easier. The

arrangement of this protein resembles a crown (Figure 2.2).

Covid-19 has its known origin from the Chinese province of Wuhan, where a wave of

infections began in late 2019. Several tests were done to detect the possible causes of these

infections, which until then were being treated as pneumonia. Later, it was discovered

that a new coronavirus was in action. Some of the symptoms that these viruses have in

common are respiratory complications, which can range from a milder case to one with

more severe complications, possibly leading to death.

Some sources claim that the virus began circulating from a wild animal sales market

and from then on began to spread across the country and soon took over the whole world,

leading to the death of approximately 3.20 million people to the date of this work.

According to the World Health Organization (WHO) [14], on average, it takes approx-

imately one week for the infected person to show the symptoms like:

7

Figure 2.2: Coronavirus Structure [13]

• Most common symptoms:

– Fever;

– Dry cough;

– Tiredness.

• Less common symptoms:

– Aches and pains;

– Sore throat;

– Diarrhea;

– Conjunctivitis;

– Headache;

– Loss of taste or smell;

– Skin rashes, or discoloration of fingers or toes.

• Serious symptoms:

8

– Difficulty breathing or shortness of breath;

– Chest pain or pressure;

– Loss of speech or movement.

2.1.3 SARS-CoV-2 Variants

In 2020, the coronavirus caused enormous devastation and, seeking to stop it, there was a

great rush to develop a vaccine that would be able to immunize the population against this

virus. By the end of 2020, some countries were already starting vaccination campaigns

following their respective protocols, which in most cases started with professionals who

were on the front lines of fighting the virus and people in an older age group [15]–[17].

After the start of vaccination, it was hoped that the entire pandemic situation would

soon be under control worldwide. However, in late 2020 and also in early 2021, new Covid-

19 variants were discovered: 501Y.V2 (B.1.351) in South Africa, 501Y.V1 (B.1.1.7) in the

United Kingdom, and P.1 (501Y.V3) in Brazil [18].

Variants of viruses usually arise from the various infections that the virus makes and

from adaptations to the environment and conditions that surround them. One of the many

concerns that now arises in connection with these new variants is whether the vaccines

being developed will also be effective against them [19].

Some of the Covid-19 variants are:

• The British Variant: named a Variant of Concern 202012/01 (lineage B.1.1.7, VOC

202012/01), it began to be highlighted in late November 2020. It has a very large

number of genetic mutations, in which many of them are in the Spike protein [20].

According to a report by the New and Emerging Respiratory Virus Threats Advisory

Group (NERVTAG), this variant appears to have a higher transmissibility than

other variants, and some initial studies have indicated a possible association of this

new variant with an increased lethality rate [21].

• The South African Variant: also known as 501Y.V2 (B.1.351). Like the British vari-

ant has mutations in the receptor binding domain (RBD) of the Spike protein. This

9

variant is a consequence of the first wave of COVID-19 in South Africa and was ini-

tially detected in Nelson Mandela Bay [22]. Mutations occurred in both the British

and South African variants are reported to contribute to increased transmission and

a potential to escape relevant antibodies [23].

• The Brazilian Variant: the P.1 (501Y.V3) lineage, as the Brazilian variant of SARS-

CoV-2 is called, was discovered in early 2021 after a group of passengers were

routinely tested at an airport in Japan upon their return from Amazonas, Brazil.

This variant has mutations in the Spike protein similar to those found in B.1.1.7

and B.1.351, plus 17 different mutations than usual in amino acids [24].

2.1.4 Vaccines

With the urgency that the pandemic demanded for a form of immunization of the popu-

lation, there was a great effort from scientists and researchers from many areas to develop

vaccines against the Coronavirus in a very short period of time, compared to the normal

development of a vaccine [25], [26]. According to the WHO [27], at the moment there

are several vaccines already developed, such those that use a weakened part of the virus

to generate antibodies, the protein-based ones, which are small protein fragments that

generate an immune response by “mimicking” the Covid-19 virus, and the RNA and DNA-

based ones, which use a genetic modification technique of the RNA or DNA to generate

a protein that provokes an immune reaction. Some of the vaccines using these techniques

are already in use, while others are awaiting regulation by the health authorities in each

country.

2.2 Artificial Intelligence

The term AI, first introduced by John McCarthy, known as the father of the AI [28], refers

to the ability of a machine to perform tasks commonly done by intelligent beings. These

10

are systems programmed with the goal of emulating intelligent behavior through compu-

tational processes [29] and, from that, performing a certain action or decision similar to

what a human would perform.

Technological advances allowed major advances in the area [30]. This includes the in-

crease in computational capacity over the years built on the development of more powerful

processors, memories with greater capacity and emergence of Graphics Processing Units

(GPUs). As a result, machines, in some tasks, can already surpass humans. Some of the

best known examples are DeepBlue, a supercomputer developed by IBM specifically to

play chess, with the ability to analyze approximately 200 million positions per second,

which beat the then world chess champion Garry Kasparov [31], and AlphaGo, a program

developed by Google specifically to play the Chinese game Go, which beat the also world

champion at the time, Lee Sidol, by 4 to 1 [32].

The area of AI has been overcoming many challenges and being a great asset not

only in various socioeconomic activities, but also in medicine by helping doctors and

researchers to detect and prevent various diseases [33]. Despite the great advances, there

are still many perspectives and challenges in the field of artificial intelligence [34].

2.3 Natural Language Processing

NLP is a subfield of Artificial Intelligence that studies the understanding of natural lan-

guage by machines [35]. One of the goals of NLP is to make the machine analyze and

produce written or spoken texts, recognizing their context and being able to perform

processes such as:

• Phonetic analysis: it studies the acoustic processes of speech, that is how a word

actually sounds when spoken by someone.

• Phonology analysis: studies phonemes, which are acoustic units of a language, that

may or may not have a concrete meaning, and the way they are organized.

11

• Morphology analysis: is the study of the structure, formation, and classification of

words. It studies how words are formed from morphemes, which are minimal units

capable of expressing meaning.

• Lexicon analysis: is the set of words that belongs to a language.

• Syntax analysis: studies the words within sentences or clauses and the relationship

they create with each other to make up meaning.

• Semantic analysis: studies the meaning and interpretation of the meaning of a word,

sentence, phrase, or expression in a given context.

• Pragmatic analysis: studies the influence and use of context in the interactions

between speaker and listener.

NLP can also be used for text classification [36] or audio classification [37], where the

algorithm is fed with a document or just a sentence and each word in that sentence can

be assigned to a value. This value can be assigned in different manners, including one-hot

Encoding, a 1xN matrix used to differentiate each word of the vocabulary, consisting

of zeros all over the vector with the exception of a single 1 that identifies a particular

word [38]. There is also the approach of Word Embeddings [39], i.e., dense vector repre-

sentations of words. In this approach, each word is also assigned a value and the more

semantically close one word is to another, the more similar the value will also be.

2.4 Machine Learning

ML can be seen as a subarea of AI that provides systems with the ability to learn from a

dataset of past examples or experiences, and then make some inference on future similar

tasks. Mitchell [40] defined ML as:

A computer program is said to learn from experience E referring to a class

of tasks T and performance measure P , if its performance on task T , measured

by P , improves with experience E.

12

To illustrate the quote, one can use the task of correctly sorting apples and oranges

into a basket from a previously provided data set, where:

• Task T : correctly classify what is apple and what is orange;

• Experience E: set of data previously provided for the machine to get a sense of

what apples and oranges are;

• Performance P : number of correct matches obtained by the machine during the

classification.

Depending on the type of task, ML algorithms can be trained from techniques such

as Supervised Training, Unsupervised Training, or Reinforcement Learning.

Supervised Training is a training technique for ML algorithms in which the system is

provided with labeled data with correct task responses. From this, the parameters for the

algorithm can be adjusted during training so that the machine can learn to correctly, or

with the lowest possible error rate, classify the unlabeled data [41]. K-Nearest Neighbors,

Decision Trees, Random Forest and Support Vector Machine are some of the machine

learning algorithms that apply the supervised approach.

The Unsupervised Training, unlike the previous one, does not provide much or any

information about the data. So the algorithm must observe some patterns among the data

and group them according to the similarities found. Some data that are very different

from the others can be seen as anomalies [42].

Reinforcement Learning is a technique in which no training data is given to the agent

[42]. In this case, the agent should perform an action in an environment where it should

be rewarded or punished depending on how its behavior was during the task. With each

action the behavior should become more complex and thus should behave more effectively

during iterations [43].

13

2.4.1 K-Nearest Neighbors

K-Nearest Neighbors is a supervised algorithm used in machine learning and verifies how

similar the data is to each other. The training data consists of vectors of n dimensions.

The algorithm calculates the similarity of a new data with other data that have already

been classified, and tries to find the K nearest neighbors of that new data [44]. The

similarity between the data can be calculated using the Euclidean distance, Manhattan,

Minkowski, Weighted or other metrics.

The classification process of the K-Nearest Neighbors algorithm receives an unclassified

data, that will have its distance calculated with the other data that have already been

classified. After the calculation of the distances, the K smallest distances will be obtained.

From the quantity measured by the algorithm, the class that has the most is the one that

should be assigned to the new data [45].

Figure 2.3 demonstrates an example of how K-Nearest Neighbors works during the

classification process, where the red dot in the middle of the circle has not been classified

yet, so it will calculate the distance to the other data already classified (yellow and purple

dots). After calculating, for K = 3, the red dot should be assigned to the purple class,

because it has the greatest number of neighbors in the surrounding. In case that k = 6,

it should be assigned to the yellow class because from the 6 neighbors the yellow appears

the most.

Figure 2.3: KNN classification example [45]

14

2.4.2 Naive Bayes

Naive Bayes, in machine learning, is a supervised algorithm used as a classifier that

is based on the probability of an event occurring, without the correlation between the

features being taken into account. It is widely used in text classification, especially for

classifying spam in an e-mail box, document separation, and other tasks.

The Naive Bayes algorithm is inspired by Bayes’ theorem [46], that describes the

probability of an event, based on a priori knowledge and it is represented in Equation

2.2.

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

In Equation 2.2 P (A|B) is called posterior probability, and it represents the degree of

confidence of A after observations of the feature vector B. P (A) is the initial degree of

confidence in A and it is independent of B.

P (y|x1, x2, x3, . . . , xn) =
P (x1|y)P (x2|y)P (x3|y) . . . P (xn|y) ∗ P (y)

P (x1)P (x2)P (x3) . . . P (xn)
(2.2)

Given that B is a feature vector, it can be assumed as B = x1, x2, x3, . . . , xn and

A = y, as it is the objective output. So if substitute the values of B and A, the Equation

will be like in Equation 2.3. This equation can be simplified by using the product operator

that, in this case, indicates that each feature x from i = 1 til i = n is multiplied by y, as

represented in Equation ??.

=
P (y)

∏n
i=1 P (xi|y))

P (x1)P (x2)P (x3) . . . P (xn)
(2.3)

As P (B) = P (x1), P (x2), P (x3), . . . , P (xn) will remain as a constant, and will be the

same for every feature, it may be ignored and removed from the equation.

The Naive Bayes algorithm tries to return the most probable class, so it makes use

of the argmax function to return class with maximum probabilities from the obtained.

For instance, if the model returns a probability of 0.7 for the Positive class over 0.3 for

15

the Negative, in this case the model should return return a probability the greater. The

Naive Bayes formula is represented in Equation 2.4.

y = argmaxy(P (y)
n∏

i=1

P (xi|y)) (2.4)

2.4.3 Decision Tree and Random Forest Classifier

Decision Tree is a type of classifier that sorts the attributes of an instance from the root

of the tree. Attributes will compose internal nodes of the tree while classes will compose

the leaves [40]. Figure 2.4 demonstrates a Decision Tree for predicting whether a person

will play tennis or not. The attributes (Outlook, Humidity, Wind) are on the nodes and

each of them will be split with the values of the respective attribute in which the edges

are going to be attribute values.

Figure 2.4: Decision Tree for playing tennis prediction [40]

Random Forest Classifier is a machine learning algorithm used in various classification

and regression tasks. It is built by creating a huge number of decision trees where each tree

relies on the values of a random vector with similar distribution and independent samples

[47]. Each of the trees returns a classification that will be “voted” by the algorithm. The

class with the most votes will be the chosen one [48].

In order to decrease the correlation of the trees, which could negatively affect the

16

generalization of the model, approaches like Bootstrap Aggregation or Feature Random-

ness can be used. In Bootstrap Aggregation, a random sample is detached from the tree

keeping the original size of the data. In Feature Randomness, each tree has a random set

of features that can be used.

2.4.4 Support Vector Machine

Support Vector Machine-SVM is a machine learning algorithm that plays a good role

for classification or regression tasks. SVM aims to create the best hyperplane in an N -

dimensional space, being N the number of features, to classify discretely the data [49].

SVM has shown to be more accurate in some tasks than decision trees or neural

network based approaches [50]. Given a set of training examples, the objective of the

hyperplane is to separate the set in a way that every instance with the same labels stays on

the same side [51]. Figure 2.5 shows two representations for separable and non-separable

data.

Figure 2.5: SVM hyperplanes for separable and non-separable data [50]

On Figure 2.5 two classes are presented, +1 and −1, represented as circles and trian-

gles, with k pairs (x1, y1), ..., (xn, yn) where xi ∈ Rn are the inputs of an n-dimensional

space.

17

Once the algorithm has the data, it gets the training samples, support vectors, that

stays on boundaries of the class and creates the Optimal Separating Hyperplan (OSH).

The OSH separates the data with maximum margin and can be achieved by minimizing

the norm of w [51]. In Figure 2.5, the hyperplane is created in a way that best separate

both classes, also is created two additional planes that have maximum margin between

the central hyperplane and the nearest support vector, in this case, the support vector

will the triangle and circle points.

The SVM kernel presents a way to solve problems not linearly separable. SVM Kernel

tries to convert a problem from a low dimensional space into a higher dimensional. In

Figure 2.6, for instance, are presented two classes that are disposed in a way that is not

possible to separate them linearly in a 2-dimension space. By setting a Kernel of 3, in

this case, would convert the space 2-D space into a 3-D space, and make the creation of

a hyperplane possible.

Figure 2.6: Separating classes in a higher dimensional space [52]

SVM can be applied to regression tasks and, in this case is called Support Vector

Regression (SVR). SVR attempts to find a function that presents the greatest deviation

among all examples [53]. In the regression approach margins are also used, but no costs

are incurred for the instances that are within this margin.

18

2.5 Artificial Neural Network

Artificial Neural Networks (ANN) are computational techniques inspired by the human

brain that use mathematical models to try to simulate the operation of biological neural

networks.

Neurophysiologist Warren McCulloch and mathematician Walter Pitts were the first

to introduce a mathematical model to simulate a biological neural network [54]. Their

work is considered a landmark in the history of ANNs [55].

In 1949, Hebb proposed a theory that learning in complex nervous systems could be

reduced to a local process, and the intensity of synaptic connections is changed only as

a function of locally detected errors [56]. Later, Frank Rosenblat created the Perceptron

network, a network with multiple neurons of linear discriminator type [57].

In the 1970s, with the publication of Marvin Minsky’s book Perceptron [58], research in

the area practically came to a stop, as the book emphatically pointed out the limitations

of the Perceptron network, such as not being able to solve the or-exclusive problem.

The field resumed its development in the 1980s with models such as the Adaline [59]

and Madaline [60], and later with the Backpropagation algorithm. Since then ANN had

successes and failures in their models. However their use has been growing rapidly in

many applications [61] and has being widely used in several areas such as Computer

Vision, Natural Language Processing, among others.

2.5.1 Neuron

Neurons are cells capable of receiving, processing, and transmitting information by elec-

trochemical signals called action potentials. Neurons are composed of body (soma) with

nucleus, axons, and dendrites, as shown in Figure 2.7.

The dendrites are thin, branched extensions that carry nerve impulses picked up from

the environment or from other cells toward the cell body. The impulse is processed and

new ones are generated. These impulses are conducted by the axon, which is responsible

for taking the impulses coming from the cell body to the synapse, and passed on to another

19

Figure 2.7: Biological Neuron [62]

neuron. The synapse is responsible for making contact between two neurons, consisting

of the presynaptic side, from where the impulse is sent, and the postsynaptic side, where

the impulse is received. When the neuron is sufficiently excited it fires, and then performs

the whole process of transmission between neurons [62].

ANNs are based on the functioning of the biological neuron. They are composed of

nodes or units connected by directed links. They represent a simple mathematical model

that presents a linear combination when exceeds some threshold triggers the neuron. Its

connections have associated numerical weights. As in linear regression models, each unit

has an input xi with an associated weight wi, where a weighted sum of all inputs and a

bias is computed.

2.5.2 Perceptron

The Perceptron network introduced by Frank Rosenblat is a representation of the artificial

neuron model [30], and although it does not have great potential today, its study is justified

by its simplicity and its historical role.

The Perceptron is built around McCulloch-Pitts’ model of a neuron [63]. It can be

viewed as the simplest type of Feedforward neural network, in which information flows

only from the input layer to the output layer. It can be seen as a classifier for linearly

separable problems.

20

Figure 2.8: Perceptron [64]

As represented in Figure 2.8, the Perceptron is fed with a vector of inputs X̂ =

[x1, x2, x3, · · · , xN] which is multiplied by a vector of weights Ŵ = [w1, w2, w3, · · · , wN]

corresponding to each input and then combined with the bias b, as represented in Equation

2.5 [64].

v =
N∑
i=1

xiwi + b (2.5)

The output v of Equation 2.5 will produce a value that is passed to a given activa-

tion function φ(v). In the case of Perceptron, the Step function is used, which evaluates

whether the activation threshold is greater than zero, returning 1 in this case and rep-

resenting that the neuron is active. Otherwise, there will be no activation, as seen in

Equation 2.6.

φ(v) =

 1, if ≥ 0

0, if < 0
(2.6)

2.5.3 MultiLayer Perceptron

One of the problems pointed out by Minsky [58] about the simple Perceptron network is

the inability to solve non-linearly separable problems, such as the or-exclusive problem.

The Multilayer Perceptron (MLP) network is similar to the Perceptron network but with

more neurons and layers of neurons.

21

The MLPs are composed of an input layer to receive the signal, an output layer where

the decision or prediction of the input layer will be returned, and between them, an

arbitrary number of hidden layers [63].

MLPs are usually trained using the algorithms Backpropagation and Gradient Descent

(or variations) [65]. In Figure 2.9, a fully connected MLP of type Feedforward is illustrated

[66]. In fully connected networks, a neuron in any layer of the network is connected to

all nodes/neurons in neighboring layers. In the Feedforward networks, the signal flows

from the input layer to the output layer without loops. The Backpropagation algorithm

is based on the error correction learning rule. It is a supervised training algorithm, where

a training set with a correct labeling of the outputs is used.

Figure 2.9: Fully connected feedforward MLP [63]

2.5.4 Activation Functions

Activation functions determine how the neuron will activate. There are several types of

activation functions, including the Logistic Sigmoid, Hyperbolic Tangent, ReLu, among

others. The choice of activation function depends on the type of network or problem

being studied, since it can influence the performance and complexity of the network [67].

22

The Logistic Sigmoid Function generally works better when it have to deal with the

output prediction as probability. It uses a real input value, x, and returns a value in the

range between 0 and 1 [68]. It is continuous, and differentiable at all its domain [63]. Its

formula is represented by Equation 2.7.

σ(x) =
1

1 + e−x
(2.7)

The Hyperbolic Tangent function, tanh, is very similar to the Logistic Sigmoid. It is

mainly used in tasks where the desired classification is between two classes and it is defined

by the division of hyperbolic sine by hyperbolic cosine, which can also be represented by

the division between the difference of two exponential functions at points x and −x, and

the sum of these same functions, according to Equation 2.8. The function tanh is similar

to the logistic sigmoid, but its range is from -1 to 1 [69]. Figure 2.10 shows the graph of

the two functions.

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
(2.8)

Figure 2.10: Logistic Sigmoid and Tanh activation functions [70]

ReLU is a piecewise activation function very used in models like CNN, for instance

[71]. It suits better in complex models. Some of the advantages is that it avoids and

rectifies the vanishing gradient problem. It will also only deactivate the neurons if their

23

result is less than 0. In this case, the negative values will be equal to 0 as disposed on

Equation2.9 in which the maximum value between 0 and the input value is returned, and

when the value is smaller than 0 it should return 0. The plot of the ReLU function is

represented in Figure 2.11.

σ(x) = max(0, x) (2.9)

Figure 2.11: ReLU [72]

2.5.5 MultiLayer Perceptron Training

The Backpropagation is divided into two parts: forward pass and backward pass. During

the forward pass phase, input signals flow through the network and output predictions

obtained. In the backward pass phase, the gradient of a given loss function in the final

layer of the network is calculated and using the chain rule will update the weights and

biases of the network from the output to the input [73]. This process should repeat to

the next set of inputs until an acceptable error is reached.

The Gradient Descent algorithm determines a vector of weights that minimizes the

prediction error. The vector of weights of the network are initialized arbitrarily and, at

each step, the it is changed in the direction of the gradient that produces the largest drop

24

along the error surface [74].

The Backpropagation uses, for adjustment of the weights and biases, the derivative

of a cost function, such as Mean Square Error (MSE) cost, and the derivatives of the

activation functions involved, such as the logistic Sigmoid function. The calculation for

adjusting the weights in layers is represented in Equation 2.10 adapted from [40], where

the weight wij connects the input neuron i to the output neuron j. So, the weight wij

will be adjusted by summing its value with its derivative.

wij = wij +∆wji (2.10)

The calculation of the ∆wij, in the output layers is shown in Equation 2.11, where

is applied a given learning rate η to the calculation of the obtained output o and the

expected output t

∆wji = η(tj − oj)oj(1− oj)xji (2.11)

In hidden layers the term δ is used to the adjustments of the weight for unit j. The

calculation is represented in Equation 2.12 where is made a summation of the input

weights for the unit and multiplied by the output obtained o and the difference between

1 and the output obtained o.

δj = oj(1− oj)
∑

wjkδk (2.12)

The adjustment of bias is represented in Equation 2.13, in which the current value of

bias subtracted by the product between the learning rate and the corresponding δ term

is calculated.

bj = bj − ηδj (2.13)

25

2.5.6 Convolutional Neural Network

Convolutional Neural Network-CNN is a type of ANN oriented towards processing grid

type data. Despite great developments in other types of neural networks, CNNs have

provided an even greater leap forward in several areas involving pattern recognition, with

tasks ranging from image processing to speech recognition [66]. Eventually, CNNs also

came to be used for tasks involving text, such as text classification or sentence modeling

[75] where the process throughout the classification task, for instance, is similar to the

image classification. The only difference is that the input of the text will be a matrix of

word vectors [76].

CNN is typically composed of three layers in its architecture: the convolution layer,

the pooling layer and the fully-connected layer, as show in Figure 2.12:

Figure 2.12: CNN Architecture on an image classification task [77]

The input to a convolutional network will be of matrix type data, that may be com-

posed of width, height and depth. For images with more than 2 dimensions, or in RGB

format, the images are divided into channels, as represented in Figure 2.13.

In the convolution layer these inputs should pass through a filter or kernel where the

characteristics from the input image represented in matrix format should be extracted

[77]. This filter may have a defined size up to the maximum size of the image. The filter

26

Figure 2.13: Channels of a CNN input [78]

can be initialized with random values, where a dot-product operation will be made with

the elements of the input matrix and the resulting value will be stored in a feature map

whose size will be according to the size of the filter and the stride used. The stride is

the amount of nodes in the matrix that will be skipped on each pass of the filter. The

resulting size of the feature map of an image, for example 7x7, will be 5x5, with a stride

of 1, or 3x3 with a stride of 2, using a kernel of size 3x3. Figure 2.14 demonstrates the

route followed by a 3x3 kernel in an image, or matrix, of size 7x7 and stride 1.

Figure 2.14: Filter route with stride 1 [79]

Depending on the image size, filter and stride, important information may be lost at

the edge of the input image during the dot-product operation. To mitigate this problem

values can be inserted at the border of the image. This technique is called padding. One

approach for padding that may be adopted is the zero-padding that fills the image border

with zeros and does not alter the characteristics of the image but the size, as the padding

27

values will be multiplied with that of the filter and result in zeros [79]. Figure 2.15 shows

how the zero-padding technique.

Figure 2.15: Zero Padding [79]

In the pooling layer a down-sampling of the representation will be done with the

intention of reducing the complexity generated in the filters. Among the different pooling

methods, the most common is Max-pooling, where the largest value within the given

filtered region will be used, with the most common filter being 2x2 [79]. Figure 2.16

shows a representation of a Max-pooling operation, where for the pink 2x2 input region

the maximum value is 6, the green is 8, the orange is 3 and the blue is 4.

Figure 2.16: Max Pooling [80]

The fully connected layer is not so different from a traditional neural network. Thus

each neuron will be connected to every node in the previous and subsequent layers [79].

28

2.6 Advances in Natural Language Processing Mod-

els

2.7 Transformers

Transformer model uses sequence to sequence (seq2seq) and self-attention mechanism to

obtain features of each word in relation to the others in the sentence. It is based on

the paper “Attention is all you need” [81], published by a group of researchers from

Google. The Transformer model, unlike other models that deal with Natural Language

Processing, does not make use of recurrence or convolution [82], it relies almost entirely

on the attention mechanism [83].

The Transformer model has an Encoder-Decoder structure where the Encoder maps

the input sequence X to another sequence Z. Then the decoder generates an output

sequence of each element, and can make use of the previous elements in addition to support

the generation of the output sentence [81]. Figure 2.17 presents the overall architecture

of a Transformer model.

On the left side of the picture, the input side, is presented the encoder architecture,

where the first step is to pass the whole sentence through an Embedding layer. After

Embedding the sentences, the next step is insert information about the position into the

Embedding, since the Transformer Model does not use recurrence. This can be achieved

by using sine and cosine functions, as presented on Equations ?? and ?? respectively. All

the even index on the input vector will be applied to a function using sine and the odds

to a cosine.

The step after Positional Encoding pass the result encoding to a Multihead Attention,

that is composed of multiple Scaled Dot-Product Attention and permits the model to han-

dle information from other positions in different representation subspaces that wouldn’t

be possible using a single attention head. The Scaled Dot-Product Attention is used to

get the context vector that is a context vector is a weighted average of the encoder’s

annotations.

29

Figure 2.17: Transformer Architecture [81]

30

The next step is to pass the result through a Normalization layer [84] that will be added

with the original embedded and positioned sentence. After that, it will pass through a fully

connected Feed Forward layer and then Normalize the result, adding the data obtained

on the previous Normalization.

The Decoder architecture runs in a similar manner to the encoder. It is fed with the

outputs shifted one position to the right, in order to inhibit positions from stack attending

to subsequent positions, which will pass also through the Embedding layer, Positional

Encoding, Multihead Attention and Normalization. The difference is that before passing

through the Feed Forward layer, it is added another Multihead Attention layer which

is fed with the Encoder output and the Decoder result, then the information will pass

through a Normalization layer, a Feed Forward layer and Normalization. The output of

the Decoder passes through a Linear layer that can have the size of the vocabulary and a

Softmax function [85] that will generate probabilities for each word.

2.8 Bidirectional Encoder Representations from Trans-

formers

The Bidirectional Encoder Representations from Transformers is a recent approach devel-

oped by Google researchers. From the moment of its release, in 2018, this model stands

as a state-of-art technique for tasks involving Natural Language Processing [86].

The technique involving BERT consists of a deeper pre-training of the Transformer

model when trying to find the sentence context by processing the input in two directions,

from the beginning to the end and from the end to the beginning, as opposed to other

models that usually process the input only in one direction. During pre-training, the

Masked Language Model (MLM) technique is used in which an input token is masked

and the model aims to predict this token [87]. The bidirectional processing of the input

helps in predicting the masked token, since it has a finer understanding of the sentence

context. The Next Sentence Prediction (NSP) [88] technique is used along with these.

31

This technique uses sentence pair representations, where two input sentences separated by

the token [SEP] will be provided. The goal is to find a relationship between sentences A

and B. The sentences can be generated from a monolingual corpus where, when choosing

each pair of sentences A and B, half of the time B will be the real sentence that succeeds

A (labeled in this case as IsNext) and, in the other half being labeled as NotNext when

the sentence B is not the one that actually succeeds A [89].

As shown in figure 2.18, each BERT input token is composed of the sum of token

embedding, segment embedding and positional embedding.

Figure 2.18: Bert input sentence representation [89]

Using the BERT model is typically done in two stages. The first one, discussed

previously, is pre-training the model using unlabeled data. The second is the called fine-

tuning, where the model should be initialized with parameters used in the pre-training

stage and then fine-tuned during the training of the task to which it is being applied.

Figure 2.19 shows a representation of both stages of the model, where the left side of

the figure shows the pre-training stage using masked sentence pairs, [SEP] to separate

sentence A from B and the classification token [CLS] at the beginning of every input [89].

32

Figure 2.19: Bert pre-training and fine-tuning representation [89]

33

34

Chapter 3

Materials and Methods

This chapter will present the technologies and tools, dataset and procedures used in the

development of this work.

3.1 Tools

To collect the dataset, implement the models and run the tests we used the following tools

were used:

• Python1: a high-level, dynamically typed programming language that allows the

creation of applications using object-oriented, imperative, functional or procedural

paradigms;

• Tensorflow2: an open source library for numerical computation using computational

graphs. This library was developed by the Google Brain team for machine learning

and deep neural network research, but it can be used for a variety of purposes [90].

• Natural Language Toolkit - NLTK3: is a library for natural language processing. It

is written in Python and it is useful for pre-processing texts because it provides a

variety of functions for this purpose, like transforming words into tokens [91].
1Official website: https://www.python.org/
2https://www.tensorflow.org/
3https://www.nltk.org/

35

https://www.python.org/
https://www.tensorflow.org/
https://www.nltk.org/

• Google Colab4: Google Colaboratory, also known as Colab is a research platform

provided by Google that offers a Jupyter Notebook environment with support for

Graphical Processing Unit (GPU) and Tensor Processing Unit (TPU) accelerator

[92]. Colab is free to use and allows users to run their Machine Learning and Deep

Learning models in an interactive development manner.

• scikit-learn5: an open-source Machine Learning tool, most of which was developed

in Python. With scikit-learn it is possible to perform many different kinds of ML

tasks, like classification, regression, clustering, using a huge variety of algorithms,

like Random Forest, K-Means, SVM, Naive Bayes, among others, with a few lines

of code and little complexity.

• Twarc6: a Python library tool used to obtain Twitter data. Each tweet is retrieved

in a JSON format. With this tool is possible to collect users, trends, and hydrate

tweet ids.

3.1.1 Hardware

To collect the dataset was used a Linux Virtual Machine instantiated in the cluster of

Research Centre in Digitalization and Intelligent Robotics (CeDRI) at the Polytechnic

Institute of Bragança - IPB. The virtual machine had the following specification: Ubuntu

Mate OS, CPU AMD Epic Quad Core 64 bits 2400 MHz, 16GB RAM, GPU NVIDIA

TU102 - GeForce RTX 2080 Ti.

To run the models was used the Google Colab whose specification was: Jupyter Note-

book environment, CPU Intel(R) Xeon(R) CPU @ 2.30GHz, 12GB RAM, GPU Tesla

K80.

In addition to the machines previously described to collect the dataset and run the

models, was also used a personal machine to make the dataset labeling. The specifications
4https://colab.research.google.com/
5https://scikit-learn.org/stable/
6https://github.com/DocNow/twarc

36

https://colab.research.google.com/
https://scikit-learn.org/stable/
https://github.com/DocNow/twarc

for this machine was: Windows 10 PRO, CPU Intel(R) Core(TM) i3-5005U CPU @

2.00GHz 64 bits, 12GB RAM.

3.2 Dataset

The dataset to train the models was obtained from a collection of Tweets made available

by Lamsal7 [93]. In Lamsal’s work, millions of Tweets were collected to perform sentiment

classification task regarding the virus. To collect the dataset several keywords related to

the virus were used. Words such as COVID, COVID19, Coronavirus, virus, pandemic,

and others.

The available dataset provided only the IDs of tweets, following Twitter’s privacy

policy. The “hydration” process, as it is called, is the process in which information

regarding the tweet is retrieved from the Twitter platform using its ID. To “hydrate” the

ids it waas used the Twarc tool.

After installing the Twarc tool, through the Package Installer for Python (PIP), it was

necessary to register on the Twitter Developer platform8, that provided access keys that

later were inserted into the Twarc configurations and passed as parameters in the tweets

requests. The data returned from Twarc requests was in JSON format, which brought

a wide variety of information. However, as only the tweets themselves were needed, a

filter was applied to the JSON object to get only the ID and the text of the tweet. The

raw text of the tweets and its respective IDs were saved in a Comma Separated Values

(CSV) file for labeling and pre-procesing. The process to request the tweets from the

Twitter platform was the one that took the most time as it was put into sleep for around

5 minutes after a certain number of requests.

The process of hydrating the tweets took approximately 3 months, between Decem-

ber/2020 and February/2021, due to the waiting time after a certain amount of requests

to the Twitter platform and a loss of data in the meantime. Although the dataset was

7https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-dataset
8https://developer.twitter.com/

37

https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-dataset
https://developer.twitter.com/

collected at the end of 2020 and the beginning of 2021, it contained tweets only until

August/2020 because of the available dataset.

3.2.1 Labeling

One of the challenges of this work was to find a dataset that was already labeled for the

task of finding symptoms or self-report tweets of Covid-19, but until the implementation

of this work is was not possible to find one. Therefore, it was necessary to label the data

before the implementation of the models and the training. The dataset obtained from

Lamsal9 [93] contained only tweets with keywords referring to Covid-19, but no further

annotations. Therefore the work of Sarker [94] was used as reference to label the tweets,

using regular expressions and keywords to filter it.

At first, keywords like Positive were used in combination with one or more of the

Covid-19 symptoms described in Section 2.1.2, provided by the WHO [14]. The tweets

of the positive class were labeled with the value 1, while those of the negative class were

labeled with 0. At first, tweets that contained the word Negative or Tested Negative were

labeled as class Negative. However at the end of the labeling, the dataset was unbalanced,

with a larger number of positive instances. To label the classes based on the symptoms,

regular expressions were used.

To balance the dataset, more negative tweets were collected by selecting the ones

that did not contained Covid-19 symptoms, Tested Positive or Positive keywords up to a

quantity close to the number of positive tweets. Further manual verification was made in

attempt to ensure that the data labels were correct and to minimize the errors in labeling.

3.2.2 Pre-processing

Before the training and testing phase, it was necessary to perform a cleaning on tweets to

remove unknown and special characters like hashtag (#), that directs the user to a page

with the same topic, @ to tag a user in a post and emoticons.
9https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-dataset

38

https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-dataset

In order to clean the dataset, we performed the following steps were performed:

• Emoticon removal: emoticons are expressed by a set of hexadecimal codes that

represent a small figure on the text. A list of emoticons codes10 that was used to

remove them from the text; for example, the code U+1F642 represents a slightly

smiling face;

• Text decapitalization: consisted in converting all the words in the sentence into the

decapitalized form. This could avoid the problem of having two same words in the

dictionary, for example, Tomorrow -> tomorrow. To decapitalize the words, the

String library from Python was used;

• User tagging removal: the removal of the tags was done using regular expressions.

Tagging users in tweets is made by adding a “@” character before the user name,

or page. So in the regular expression the words starting with this character were

removed, for example, @someUser.

• URL Removal: in several tweets it was possible to verify the presence of references

to other pages through links. The removal of these links was also done using regular

expressions to locate full URLs that were then removed.

• White Space merging/removal: This consisted of replacing multiple spacing with

single spacing. The removal of the original content from the tweets left gaps of

multiple spaces in the middle of the text. These gaps were replaced with single

spaces. If it was at the end or the beginning of the text, it was simply removed

instead of being replaced. To remove unnecessary spaces in the text, the String

library from Python was used;

• Stop Words Removal: Stop Words are words that occur very frequently in the text

but do not usually have much importance in the sentence context, and can cause

a higher processing cost when passed on the classification models [95]. For this
10List of Emoticons codes: https://www.alt-codes.net/smiley_alt_codes.php

39

https://www.alt-codes.net/smiley_alt_codes.php

reason, words like as, the, be, are, etc, were removed from the sentences. NLTK has

a list of Stop Words of the English language, which was used to remove the Stop

Words from the dataset.

• Lematization: transforming inflected words into their canonical forms, for example,

the plural of a noun into the singular form, or a conjugated verb into its infinitive

form. WordNetLemmatizer is an NLTK library used to perform this part of the

pre-processing, for example, Plays, playing, plays -> play.

3.2.3 Characteristics of the Tweets

The collected tweets included words related to covid terms. The dataset collected amounted

to 22991 tweets; from this total, 9680 tweets were classified as negative and 13311 as pos-

itive. For the whole dataset, the 10 most frequent words in tweets are show in Figure

3.1.

Figure 3.1: The 10 most frequent words in dataset

The Python library, for topic modelling in NLP, Gensim11 has a feature that presents

the most similar words to a given term. It computes the cosine similarity between a simple

11Official website: https://radimrehurek.com/gensim/

40

https://radimrehurek.com/gensim/

mean of the projection weight vectors of the given word and the vectors for each word in

the model. The words most similar to “Covid” are shown in Table 3.1.

Word Similarity
rapid 0.7554

antibody 0.7390
inconclusive 0.7301

pcr 0.7294
corona 0.7160

retested 0.7048

Table 3.1: Similarity level with the term covid

The same is shown in Figures 3.2a and 3.2b for the classes labeled as positive and

negative, respectively.

(a) Positive (b) Negative

Figure 3.2: The 10 most frequent words for the positive and negative classes

The tweets were filtered based on symptoms that were declared by the persons that

published the tweets. The 5 symptoms that appeared the most on the tweets were fever,

cough, breathe, taste and smell as presented in Figure 3.3.

Were also checked the bi-grams of the the entire dataset and of the positive and

negative classes . Bi-grams are a sequence of two elements of a set of tokens. The tokens

in this work represent words. The bi-grams frequency for the entire dataset are show

in Figure ??. According to Figure 3.4b, the most frequent bi-grams that appeared in

the positive class were (test,positive), (positive,covid), (test,covid), (covid,positive), etc.

41

Figure 3.3: Symptoms that appeared the most in the positive class

For the negative class, the most frequent bi-grams that appeared were (test,negative),

(covid,test), (negative,covid), (corona,virus), etc, and are shown in Figure 3.4c.

3.3 Training

The dataset was divided in training and testing, using 70% and 30% of the original data,

respectively. The dataset was used to train and test KNN, Naive Bayes, Decision Tree,

Random Forest, SVM, MLP, CNN and BERT models.

In the paper done by Hsu [96], comparisons were made between 8 supervised models

for text classification, including the models MLP, Naive Bayes, SVM, Decision Tree and

Random Forest. For the same models, the hypeparameters that obtained the best results

were also adopted. Using textual data, the hyperparameters configuration that performed

best in MLP had hidden layers with 100 neurons and activation=ReLU. In SVM, the

regularization parameter was set to C = 4 and the tolerance for stopping criterion was

set to tol = 1e − 04. In Decision Tree it was used criterion=entropy, and in Random

Forest was used n_estimators = 200 and also criterion=entropy.

For CNN the configuration of the hyperparameters was according to the work of Kr-

ishnakumari [97] which compared different hyperparameters for document classification.

42

(a) Dataset (b) Positive

(c) Negative

Figure 3.4: Most frequent bi-grams in the whole dataset and in the positive and negative
instances

43

The performance values in the results varied according to the type of hyperparameter.

The size of the filters were 3, 4 and 5, the dropout rate was 0.5, the feature map was 128

and the Softmax activation function was used. The architecture of the CNN is represented

in Figure 3.5. In the Figure, the input is represented as a matrix of size 7x5 as the author

used as an example. The size of the input matrix in the paper should be set as dxl where

d is the dimension of the embedding and l the size of the sentence. For this work, we used

embedding dimension of 128 was used.

The BERT model was obtained from a course available on the online educational

platform Udemy 12, and taught by Professor Jones Granatyr 13 that made an implemen-

tation of the official BERT model described in Chapter 2. As the model implemented

by Granatyr was used to question answering, some changes were made on the output in

order to return only the value that should be the classification of the model.

12https://www.udemy.com/
13https://iaexpert.academy/teacher/jones-granatyr/

44

https://www.udemy.com/
https://iaexpert.academy/teacher/jones-granatyr/

Figure 3.5: Proposed CNN architecture [97]

45

46

Chapter 4

Results and Discussion

This chapter will present the results of the tests performed according to what was de-

scribed in Chapter 3 with a discussion about the results.

It is important to mention that the computational cost was low for this amount of

data and did not present much difference between the models. The time spent in the

training was less than 4 minutes for all the models.

4.1 Analysis of Results

To evaluate the results, confusion matrices were obtained from each model after the tests.

A confusion matrix shows the classification frequencies for each class of the model, pre-

senting the amount of True Positives, False Positives, True Negatives and False Negatives,

whose meaning are in the following:

• True Positive is when the model classifies an instance as positive and the real class

is positive;

• False Positive is the classification of an instance as positive but its real class is

negative;

• True Negative is the classification of an instance as negative and the real class is

negative;

47

• False Negative is the classification of an instance as negative but its real class is

positive.

In addition to this, were calculated and compared the accuracy, precision, recall and

F-Measure of all models tested. The meaning of these metrics is as follows:

• Precision quantifies the number of positive class predictions that actually belong to

the positive class. To calculate the precision of the model, the following formula is

used: Precision = TruePositives
(TruePositives+FalsePositives)

.

• Recall quantifies the number of positive class predictions made out of all positive

examples in the dataset. To calculate the recall of the model, the following formula

is used: Recall = TruePositives
(TruePositives+FalseNegatives)

.

• F-Measure provides a single score that balances both the concerns of precision and

recall in one number. To calculate the F-Measure of the model, the following formula

is used: F-Measure = (2∗Precision∗Recall)
(Precision+Recall)

.

• Accuracy presents an overall performance of the model, among all instances, how

many of them were correctly classified. To calculate the accuracy of the model, it is

used the following formula: Accuracy = TruePositive+TrueNegative
TruePositive+TrueNegative+FalsePositive+Falsenegative

4.2 Confusion Matrices

The results obtained with the tests performed for each model on the dataset are presented

in Table 4.1, where TP, TN, FP and FN are the short form of True-Positive, True-Negative,

False-Positive and False-Negative respectively. In this table it is possible to observe that

KNN has the greatest number of incorrect classifications of all the models when classifying

as False-Positive. However, Naive Bayes has greatest amount of instances classified as

False-Negative. When both the False-Positive and False-Negative are summed in all the

models these two present the greatest number of incorrect classification.

48

Model TP TN FP FN
KNN 1709 2592 2285 312

Naive Bayes 3614 1833 380 1071
Decision Tree 3732 2675 262 229

Random Forest 3801 2706 193 198
SVM 3695 2726 299 178
MLP 3641 2609 353 295
CNN 3721 2693 273 211
BERT 3699 2734 295 170

Table 4.1: Confusion matrices table of all models

Table 4.1 also shows that regarding the correct classifications, Random Forest has the

greatest number of correct predictions when classifying the instances as Positive. Although

this model presents a high number of hits in the True-Negative classification, compared

to the other models, BERT presents best number of correct prediction for the negative

instances. Nevertheless, the models with the best results for both the True-Positive and

True-Negative classification do not have a huge difference between them.

As KNN and Naive Bayes have the worst results in FP and FN, respectively, they also

present the worst results when classifying correctly the instances: KNN has the smallest

number of TP of all models while Naive Bayes presents the worst number of TN.

4.3 Metrics

In Table 4.1 we presented the values of the confusion matrices of all models. From

these initial values we have already pointed out some observations about the models that

presented the best results in number of correct and incorrect classifications. Based on

the values of Table 4.1, it was possible to calculate the Precision, Recall, F-Measure and

Accuracy of the models in order to have more measures to evaluate their performance.

All the metric values calculated for each model are presented in Table 4.2 in percentage

format.

49

Model Precision Recall F-Measure Accuracy
KNN 84.6% 42.8% 56.8% 62.3%

Naive Bayes 77.1% 90.4% 83.2% 79.0%
Decision Tree 94.2% 93.4% 93.8% 92.9%

Random Forest 95.0% 95.1% 95.2% 94.3%
SVM 95.4% 92.5% 93.9% 93.1%
MLP 92.5% 91.2% 91.9% 90.6%
CNN 94.6% 93.2% 93.9% 93.0%
BERT 95.6% 92.6% 94.0% 93.3%

Table 4.2: Metrics of all models tested

4.3.1 Precision

Precision deals with the amount of variation that arises from a set of measurements

performed. The more precise a measurement, the smaller the variability between the

values obtained. Therefore, the precision of the analyzed models will not check the overall

correctness of each one, which should be measured by the accuracy, but rather the degree

of variation and correctness in the positive class.

According to Table 4.2 it is possible to see that BERT, SVM and Random Forest

are the models that present the highest precision in the tests, with BERT having the

maximum (95.6%). This suggests that there is not a large variation in the test results

for the models with the highest precision, and that these are the models that present the

greatest correctness in classifying the instances of the positive class. It is also possible

to verify that the Naive Bayes algorithm is the one that present the lowest precision

among all the models tested. This means, that of all the instances classified as positive,

it behaved the worst, obtaining a precision of only 77.1%.

4.3.2 Recall

Recall deals with the frequency that the model finds instances of a class. This measure

will verify when an instance is actually of the class being observed.

Of the models analyzed in test, and arranged in Table 4.2 shows also the recall of all

models tested. The one with the highest recall was the Random Forest algorithm which

50

achieved 95.1% (of the instances that this algorithm classified as positive 95.1% were

expected to belong to this class). On the other hand, the KNN algorithm is the one that

presents the worst result, with only 42.8%.

In the KNN algorithm, similar data tends to be concentrated in the same region of

the data scatter space. In the dataset, is used some tweets were found to have reports of

Covid-19 symptoms but normally used to jokes or sarcasms. These tweets were classified

in the dataset as negative. In this case, the algorithm may have grouped words that

represent a Covid-19 symptom to classify the instances as positive class.

4.3.3 F-Measure

It is represented as the harmonic mean of the Precision and Recall, seeking to bring a

number that indicates the overall quality of a model. F-Measure values can range from

0.0 to 1.0 which indicates the perfection of the precision and recall results.

Among the models analyzed in the tests, the one that presents the highest F-Measure

is Random Forest (95.2%), which indicates a better balance between precision and recall.

On the other hand, the model that presents a much lower result than the others is KNN,

which obtained an F-Measure of only 42.8%. This result is due to the imbalance between

the accuracy of this model (which presented a value of 84.6%), and its recall (that obtained

42.8%), while in the other models the difference between them was not so high.

4.3.4 Accuracy

Accuracy gives an overall result of how the model performed during testing. It typically

serves to answer the question of what is the overall success rate of the model. In this case,

Table 4.2 presents also the result of the accuracy of all models. It is possible to verify

that the model that exhibits the highest accuracy of all those tested is Random Forest

with 94.3%, and the one with obtained the lowest accuracy is KNN with just 62.3%.

It is also possible to note that BERT, SVM and CNN have very close results, all

within the 93% accuracy range, with a slight superiority for the BERT model, which is

51

the second best model.

4.4 Best Results

For the dataset used, and taking into consideration the relatively small size, the Random

Forest algorithm was the one that presented the best results among all the models analyzed

in this investigation. BERT and CNN models are more robust than Random Forest, but

may suffer from over-fitting when the training data is too small, as exemplified by Pasupa

[98], where CNN models with multiple hidden layers were compared with those with

shallower layers and also SVM. It was concluded that CNN models with fewer hidden

layers and SVM performed better than those with deeper layers for a small dataset.

Although Random Forest performed better than BERT, CNN and SVM, they all

showed metrics very close to each other and could switch their order of performance

ranking if the dataset were larger or the hyperparameters of the models were modified.

52

Chapter 5

Conclusions and Future works

The goal of this work was to analyze and compare machine learning and deep learning

models for the classification of text, more specifically Covid-19 related tweets, where

the content of the text presented indications of symptoms of the disease or self-reported

contamination. After the end of the tests it was possible to achieve the general objective

of studying and applying machine learning models to identify symptoms and text with

self-diagnostic content in social networks, as well as the the specific objectives listed in

Chapter 1.

This work was important for understanding how different models work for text clas-

sification in a small dataset and also for the analysis and identification of symptoms of

diseases that may appear in social media texts.

Unlike what might be expected, the result of the tests proved to be a surprise, as

Random Forest managed to outperform models that currently pose as state-of-the-art in

Natural Language Processing tasks such as BERT [86], or even CNN.

5.1 Challenges during the project

The biggest challenge in performing the work was obtaining and labeling the dataset. The

dataset from which the tweets for training and testing were obtained contained only texts

that referenced Covid-19, as explained in Chapter 3, but in the process of filtering the

53

relevant tweets, some were not adequately filtered, which required a further finer filtering.

In addition, requesting tweets from the internet took more time than expected, as

after a number of requests it was necessary to wait for a period of time for the tool to

work again.

Also, the cleaning of the tweets was a challenge: some emoticons did not have the

hexadecimal codes available to allow automated removal, and so this had to be done

manually.

5.2 Future Directions

In this work, different hyperparameters for each model were not tested, which could

improve the performance of the algorithms and bring better practical results. Therefore,

for future work, there is the possibility of testing the models in this work, together or

individually, with different types of hyperparameters to verify which combinations of

hyperparameters provide the best results.

For this work, the collected dataset had a small size. Probably more data was gen-

erated and is available since the dataset was collected. With more data available the

dataset could be increased and further analysis be made.

One approach used by Pasupa [98] in the treatment of emoticons was the replacement

with the respective sentiment from a dictionary of emoticons. This kind of approach

can be checked during the cleaning of the dataset and analyzed to check if provides any

improvement in the results.

Another possibility for future work is to use other information that is returned by

Twitter in the “hydration” process. During the data request, various information is re-

turned in a JSON format for each tweet, and within this information is the region from

where the tweet was posted. With this, it is possible to make a study of the relationship

between regions and certain diseases or symptoms.

54

Bibliography

[1] M. A. Al-Garadi, Y.-C. Yang, S. Lakamana, and A. Sarker, “A text classification

approach for the automatic detection of twitter posts containing self-reported covid-

19 symptoms”, 2020.

[2] G. Eysenbach, “Infodemiology and infoveillance: Framework for an emerging set of

public health informatics methods to analyze search, communication and publica-

tion behavior on the internet”, Journal of medical Internet research, vol. 11, no. 1,

e11, 2009.

[3] M. A. Al-Garadi, M. S. Khan, K. D. Varathan, G. Mujtaba, and A. M. Al-Kabsi,

“Using online social networks to track a pandemic: A systematic review”, Journal

of biomedical informatics, vol. 62, pp. 1–11, 2016.

[4] P. Kathiravan, S. Makila, H. Prasanna, and P. Vimala, “Over View- The Machine

Translation in NLP”, vol. 2, no. 7, 2016.

[5] J. Carter, V. Saunders, and V. A. Saunders, Virology: principles and applications.

John Wiley & Sons, 2007.

[6] A. M. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, “Virus taxonomy”,

Ninth report of the International Committee on Taxonomy of Viruses, pp. 486–487,

2012.

[7] L. Bruslind, The viruses. [Online]. Available: https://open.oregonstate.education/

generalmicrobiology/chapter/the-viruses/.

55

https://open.oregonstate.education/generalmicrobiology/chapter/the-viruses/
https://open.oregonstate.education/generalmicrobiology/chapter/the-viruses/

[8] W. Levinson, P. Chin-Hong, E. A. Joyce, J. Nussbaum, and B. Schwartz, Review of

medical microbiology and immunology. McGraw-Hill Medical Estados Unidos, 2008.

[9] J. T. Patton, Segmented double-stranded RNA viruses: structure and molecular bi-

ology. Horizon Scientific Press, 2008.

[10] J. A. Levy, The retroviridae. Springer Science & Business Media, 2013.

[11] L. D. Kramer, Visão geral dos vírus - doenças infecciosas. [Online]. Available: https:

//www.msdmanuals.com/pt-pt/profissional/doen%C3%A7as-infecciosas/v%

C3%ADrus/vis%C3%A3o-geral-dos-v%C3%ADrus.

[12] T. Singhal, “A review of coronavirus disease-2019 (COVID-19)”, The Indian Journal

of Pediatrics, vol. 87, no. 4, pp. 281–286, Apr. 1, 2020, issn: 0973-7693. doi: 10.

1007/s12098-020-03263-6. [Online]. Available: https://doi.org/10.1007/

s12098-020-03263-6 (visited on 03/06/2021).

[13] G. Li, Y. Fan, Y. Lai, T. Han, Z. Li, P. Zhou, P. Pan, W. Wang, D. Hu, X. Liu,

Q. Zhang, and J. Wu, “Coronavirus infections and immune responses”, Journal

of Medical Virology, vol. 92, no. 4, pp. 424–432, Apr. 2020, issn: 0146-6615. doi:

10.1002/jmv.25685. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC7166547/ (visited on 03/06/2021).

[14] W. H. Organization, Coronavirus. [Online]. Available: https://www.who.int/

health-topics/coronavirus#tab=tab_3.

[15] Vacinacao - covid-19. [Online]. Available: https : / / covid19 . min - saude . pt /

vacinacao/.

[16] M. van Algemene Zaken, Order of vaccination for people who do not work in health-

care. [Online]. Available: https://www.government.nl/topics/coronavirus-

covid-19/dutch-vaccination-programme/order-of-vaccination-against-

coronavirus/order- of- vaccination- for- people- who- do- not- work- in-

healthcare.

56

https://www.msdmanuals.com/pt-pt/profissional/doen%C3%A7as-infecciosas/v%C3%ADrus/vis%C3%A3o-geral-dos-v%C3%ADrus
https://www.msdmanuals.com/pt-pt/profissional/doen%C3%A7as-infecciosas/v%C3%ADrus/vis%C3%A3o-geral-dos-v%C3%ADrus
https://www.msdmanuals.com/pt-pt/profissional/doen%C3%A7as-infecciosas/v%C3%ADrus/vis%C3%A3o-geral-dos-v%C3%ADrus
https://doi.org/10.1007/s12098-020-03263-6
https://doi.org/10.1007/s12098-020-03263-6
https://doi.org/10.1007/s12098-020-03263-6
https://doi.org/10.1007/s12098-020-03263-6
https://doi.org/10.1002/jmv.25685
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166547/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166547/
https://www.who.int/health-topics/coronavirus#tab=tab_3
https://www.who.int/health-topics/coronavirus#tab=tab_3
https://covid19.min-saude.pt/vacinacao/
https://covid19.min-saude.pt/vacinacao/
https://www.government.nl/topics/coronavirus-covid-19/dutch-vaccination-programme/order-of-vaccination-against-coronavirus/order-of-vaccination-for-people-who-do-not-work-in-healthcare
https://www.government.nl/topics/coronavirus-covid-19/dutch-vaccination-programme/order-of-vaccination-against-coronavirus/order-of-vaccination-for-people-who-do-not-work-in-healthcare
https://www.government.nl/topics/coronavirus-covid-19/dutch-vaccination-programme/order-of-vaccination-against-coronavirus/order-of-vaccination-for-people-who-do-not-work-in-healthcare
https://www.government.nl/topics/coronavirus-covid-19/dutch-vaccination-programme/order-of-vaccination-against-coronavirus/order-of-vaccination-for-people-who-do-not-work-in-healthcare

[17] Vacina já: Governo do estado de são paulo. [Online]. Available: https://vacinaja.

sp.gov.br/.

[18] X. Shen, H. Tang, C. McDanal, K. Wagh, W. Fischer, J. Theiler, H. Yoon, D. Li,

B. F. Haynes, K. O. Sanders, et al., “Sars-cov-2 variant b. 1.1. 7 is susceptible to

neutralizing antibodies elicited by ancestral spike vaccines”, Cell Host & Microbe,

2021.

[19] A. Fontanet, B. Autran, B. Lina, M. P. Kieny, S. S. A. Karim, and D. Sridhar,

“Sars-cov-2 variants and ending the covid-19 pandemic”, The Lancet, 2021.

[20] N. G. Davies, S. Abbott, R. C. Barnard, C. I. Jarvis, A. J. Kucharski, J. D. Munday,

C. A. Pearson, T. W. Russell, D. C. Tully, A. D. Washburne, et al., “Estimated

transmissibility and impact of sars-cov-2 lineage b. 1.1. 7 in england”, Science,

2021.

[21] G. Iacobucci, “Covid-19: New uk variant may be linked to increased death rate,

early data indicate”, bmj, vol. 372, p. 230, 2021.

[22] J. W. Tang, O. T. Toovey, K. N. Harvey, and D. D. Hui, “Introduction of the south

african sars-cov-2 variant 501y. v2 into the uk”, The Journal of infection, 2021.

[23] C. K. Wibmer, F. Ayres, T. Hermanus, M. Madzivhandila, P. Kgagudi, B. Oosthuy-

sen, B. E. Lambson, T. de Oliveira, M. Vermeulen, K. van der Berg, et al., “Sars-cov-

2 501y. v2 escapes neutralization by south african covid-19 donor plasma”, Nature

medicine, pp. 1–4, 2021.

[24] A. Lopez-Rincon, C. Perez-Romero, A. Tonda, L. Mendoza-Maldonado, E. Claassen,

J. Garssen, and A. D. Kraneveld, “Design of specific primer sets for the detection of

b. 1.1. 7, b. 1.351 and p. 1 sars-cov-2 variants using deep learning”, bioRxiv, 2021.

[25] G. A. Poland, I. G. Ovsyannikova, S. N. Crooke, et al., “Sars-cov-2 vaccine devel-

opment: Current status”, in Mayo Clinic Proceedings, Elsevier, 2020.

[26] F. Amanat and F. Krammer, “Sars-cov-2 vaccines: Status report”, Immunity, vol. 52,

no. 4, pp. 583–589, 2020.

57

https://vacinaja.sp.gov.br/
https://vacinaja.sp.gov.br/

[27] W. H. Organization, Coronavirus disease (covid-19): Vaccines, Oct. 2020. [Online].

Available: https : / / www . who . int / news - room / q - a - detail / coronavirus -

disease-(covid-19)-vaccines?adgroupsurvey=%7Badgroupsurvey%7D&gclid=

CjwKCAiAhbeCBhBcEiwAkv2cY_ij4pce_wCZuKfU4o-bkMJpkPyMPjSUH0b93ZVumjv8q0WY4H7CtxoCKHkQAvD_

BwE.

[28] Aadhityan A, “A novel method for implementing artificial intelligence, cloud and

internet of things in robots”, in 2015 International Conference on Innovations in

Information, Embedded and Communication Systems (ICIIECS), 2015, pp. 1–4. doi:

10.1109/ICIIECS.2015.7193238.

[29] R. J. Schalkoff, Artificial intelligence: an engineering approach. McGraw-Hill New

York, 1990.

[30] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;

Pearson Education Limited, 2016.

[31] M. Campbell, A. Hoane, and F.-h. Hsu, “Deep blue”, Artificial Intelligence, vol. 134,

no. 1, pp. 57–83, 2002, issn: 0004-3702. doi: https : / / doi . org / 10 . 1016 /

S0004-3702(01)00129-1. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0004370201001291.

[32] F.-Y. Wang, J. J. Zhang, X. Zheng, X. Wang, Y. Yuan, X. Dai, J. Zhang, and

L. Yang, “Where does alphago go: From church-turing thesis to alphago thesis and

beyond”, IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 2, pp. 113–120, 2016.

[33] V. Kaul, S. Enslin, and S. A. Gross, “The history of artificial intelligence in medicine”,

Gastrointestinal endoscopy, 2020.

[34] M. VAZIRGIANNIS, “Artificial intelligence–challenges for the future”, 2020.

[35] J. Rodrigues. (2017). O que é o processamento de línguagem natural, [Online].

Available: https://medium.com/botsbrasil/o-que-%C3%A9-o-processamento-

de-linguagem-natural-49ece9371cff.

58

https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines?adgroupsurvey=%7Badgroupsurvey%7D&gclid=CjwKCAiAhbeCBhBcEiwAkv2cY_ij4pce_wCZuKfU4o-bkMJpkPyMPjSUH0b93ZVumjv8q0WY4H7CtxoCKHkQAvD_BwE
https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines?adgroupsurvey=%7Badgroupsurvey%7D&gclid=CjwKCAiAhbeCBhBcEiwAkv2cY_ij4pce_wCZuKfU4o-bkMJpkPyMPjSUH0b93ZVumjv8q0WY4H7CtxoCKHkQAvD_BwE
https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines?adgroupsurvey=%7Badgroupsurvey%7D&gclid=CjwKCAiAhbeCBhBcEiwAkv2cY_ij4pce_wCZuKfU4o-bkMJpkPyMPjSUH0b93ZVumjv8q0WY4H7CtxoCKHkQAvD_BwE
https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines?adgroupsurvey=%7Badgroupsurvey%7D&gclid=CjwKCAiAhbeCBhBcEiwAkv2cY_ij4pce_wCZuKfU4o-bkMJpkPyMPjSUH0b93ZVumjv8q0WY4H7CtxoCKHkQAvD_BwE
https://doi.org/10.1109/ICIIECS.2015.7193238
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://www.sciencedirect.com/science/article/pii/S0004370201001291
https://medium.com/botsbrasil/o-que-%C3%A9-o-processamento-de-linguagem-natural-49ece9371cff
https://medium.com/botsbrasil/o-que-%C3%A9-o-processamento-de-linguagem-natural-49ece9371cff

[36] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep convolutional

networks for text classification”, arXiv preprint arXiv:1606.01781, 2016.

[37] Y. Wu, H. Mao, and Z. Yi, “Audio classification using attention-augmented convo-

lutional neural network”, Knowledge-Based Systems, vol. 161, pp. 90–100, 2018.

[38] X. Zhang and Y. LeCun, “Which encoding is the best for text classification in

chinese, english, japanese and korean?”, arXiv preprint arXiv:1708.02657, 2017.

[39] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word rep-

resentations in vector space”, arXiv preprint arXiv:1301.3781, 2013.

[40] T. M. Mitchell, Machine Learning, 1st ed. USA: McGraw-Hill, Inc., 1997, isbn:

0070428077.

[41] H. Honda, M. Facure, and P. Yaohao, Os três tipos de aprendizado de máquina, Jul.

2017. [Online]. Available: https://lamfo-unb.github.io/2017/07/27/tres-

tipos-am/.

[42] J. C. d. Silva, Algoritmos de aprendizagem de máquina: Qual deles escolher?, Mar.

2018. [Online]. Available: https://medium.com/machina-sapiens/algoritmos-

de-aprendizagem-de-m%C3%A1quina-qual-deles-escolher-67040ad68737.

[43] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learn-

ing”, in Machine learning proceedings 1994, Elsevier, 1994, pp. 157–163.

[44] Y. Wang and Z.-O. Wang, “A fast knn algorithm for text categorization”, in 2007

International Conference on Machine Learning and Cybernetics, IEEE, vol. 6, 2007,

pp. 3436–3441.

[45] I. Jose, Knn (k-nearest neighbors), Sep. 2018. [Online]. Available: https://medium.

com/brasil-ai/knn-k-nearest-neighbors-1-e140c82e9c4e.

[46] J. Joyce, “Bayes’ theorem”, in Stanford Encyclopedia of Philosophy, 2008.

[47] L. Breiman, “Random forests”, Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[48] P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random forests for land

cover classification”, Pattern recognition letters, vol. 27, no. 4, pp. 294–300, 2006.

59

https://lamfo-unb.github.io/2017/07/27/tres-tipos-am/
https://lamfo-unb.github.io/2017/07/27/tres-tipos-am/
https://medium.com/machina-sapiens/algoritmos-de-aprendizagem-de-m%C3%A1quina-qual-deles-escolher-67040ad68737
https://medium.com/machina-sapiens/algoritmos-de-aprendizagem-de-m%C3%A1quina-qual-deles-escolher-67040ad68737
https://medium.com/brasil-ai/knn-k-nearest-neighbors-1-e140c82e9c4e
https://medium.com/brasil-ai/knn-k-nearest-neighbors-1-e140c82e9c4e

[49] R. Gandhi, Support vector machine - introduction to machine learning algorithms,

Jul. 2018. [Online]. Available: https : / / towardsdatascience . com / support -

vector-machine-introduction-to-machine-learning-algorithms-934a444fca47.

[50] C. Huang, L. Davis, and J. Townshend, “An assessment of support vector machines

for land cover classification”, International Journal of remote sensing, vol. 23, no. 4,

pp. 725–749, 2002.

[51] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for histogram-

based image classification”, IEEE transactions on Neural Networks, vol. 10, no. 5,

pp. 1055–1064, 1999.

[52] D. Mahmoodi, H. Marvi, M. Taghizadeh, A. Soleimani, F. Razzazi, and M. Mah-

moodi, “Age estimation based on speech features and support vector machine”, Jul.

2011. doi: 10.1109/CEEC.2011.5995826.

[53] D. J. S. Ribeiro, “Support vector machines na previsão do comportamento de uma

etar”, PhD thesis, 2012.

[54] G. Palm, “Warren McCulloch and walter pitts: A logical calculus of the ideas imma-

nent in nervous activity”, in Brain Theory, G. Palm and A. Aertsen, Eds., Berlin,

Heidelberg: Springer, 1986, pp. 229–230, isbn: 978-3-642-70911-1. doi: 10.1007/

978-3-642-70911-1_14.

[55] T. H. Abraham, “(physio) logical circuits: The intellectual origins of the mcculloch–

pitts neural networks”, Journal of the History of the Behavioral Sciences, vol. 38,

no. 1, pp. 3–25, 2002.

[56] G. L. Shaw, “Donald hebb: The organization of behavior”, in Brain Theory, G.

Palm and A. Aertsen, Eds., Berlin, Heidelberg: Springer, 1986, pp. 231–233, isbn:

978-3-642-70911-1. doi: 10.1007/978-3-642-70911-1_15.

[57] C. Van Der Malsburg, “Frank rosenblatt: Principles of neurodynamics: Perceptrons

and the theory of brain mechanisms”, in Brain Theory, G. Palm and A. Aertsen,

60

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://doi.org/10.1109/CEEC.2011.5995826
https://doi.org/10.1007/978-3-642-70911-1_14
https://doi.org/10.1007/978-3-642-70911-1_14
https://doi.org/10.1007/978-3-642-70911-1_15

Eds., Berlin, Heidelberg: Springer, 1986, pp. 245–248, isbn: 978-3-642-70911-1. doi:

10.1007/978-3-642-70911-1_20.

[58] M. Minsky and S. Papert, “An introduction to computational geometry”, Cambridge

tiass., HIT, 1969.

[59] B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptive pattern

recognition”, Computer, vol. 21, no. 3, pp. 25–39, 1988.

[60] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Perceptron,

madaline, and backpropagation”, Proceedings of the IEEE, vol. 78, no. 9, pp. 1415–

1442, 1990.

[61] I. M. Quintanilha, “End-to-end speech recognition applied to brazilian portuguese

using deep learning”, Ph. D. dissertation, MSc dissertation, 2017.

[62] T. W. Rauber, “Redes neurais artificiais”, Universidade Federal do Espı́rito Santo,

2005.

[63] S. Haykin, Redes neurais: princı́pios e prática. Bookman Editora, 2007.

[64] T. M. Leite. (2018). Redes neurais, perceptron multicamadas e o algoritmo back-

propagation, [Online]. Available: https : / / medium . com / ensina - ai / redes -

neurais-perceptron-multicamadas-e-o-algoritmo-backpropagation-eaf89778f5b8

(visited on 05/10/2018).

[65] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation

learning: The rprop algorithm”, in Proceedings of the IEEE international conference

on neural networks, San Francisco, vol. 1993, 1993, pp. 586–591.

[66] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[67] G. S. d. S. Gomes and T. B. Ludermir, “Redes neurais artificiais com funções de

ativação complemento log-log e probit para aproximar funções na presença de ob-

servações extremas”, Revista da Sociedade Brasileira de Redes Neurais (SBRN),

vol. 6, no. 2, pp. 142–153, 2008.

61

https://doi.org/10.1007/978-3-642-70911-1_20
https://medium.com/ensina-ai/redes-neurais-perceptron-multicamadas-e-o-algoritmo-backpropagation-eaf89778f5b8
https://medium.com/ensina-ai/redes-neurais-perceptron-multicamadas-e-o-algoritmo-backpropagation-eaf89778f5b8

[68] H. Demuth, M. Beale, and M. Hagan, “Neural network toolbox”, For Use with

MATLAB. The MathWorks Inc, vol. 2000, 1992.

[69] B. Karlik and A. V. Olgac, “Performance analysis of various activation functions in

generalized mlp architectures of neural networks”, International Journal of Artificial

Intelligence and Expert Systems, vol. 1, no. 4, pp. 111–122, 2011.

[70] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks”, in

Proceedings of the fourteenth international conference on artificial intelligence and

statistics, 2011, pp. 315–323.

[71] J. Schmidt-Hieber et al., “Nonparametric regression using deep neural networks

with relu activation function”, Annals of Statistics, vol. 48, no. 4, pp. 1875–1897,

2020.

[72] S. Sharma, Activation functions in neural networks, Feb. 2019. [Online]. Available:

https://towardsdatascience.com/activation-functions-neural-networks-

1cbd9f8d91d6.

[73] D. S. Academy. (2019). Deep learning book, [Online]. Available: http://deeplearningbook.

com . br / algoritmo - backpropagation - parte - 2 - treinamento - de - redes -

neurais/.

[74] A. L. Koerich, “Aprendizagem de máquina”, PhD thesis, Pontifı́cia Universidade

Católica do Paraná, 1999.

[75] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network

for modelling sentences”, arXiv preprint arXiv:1404.2188, 2014.

[76] M. Z. Amin and N. Nadeem, “Convolutional neural network: Text classification

model for open domain question answering system”, arXiv preprint arXiv:1809.02479,

2018.

[77] K. O’Shea and R. Nash, “An introduction to convolutional neural networks”, arXiv

preprint arXiv:1511.08458, 2015.

62

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
http://deeplearningbook.com.br/algoritmo-backpropagation-parte-2-treinamento-de-redes-neurais/
http://deeplearningbook.com.br/algoritmo-backpropagation-parte-2-treinamento-de-redes-neurais/
http://deeplearningbook.com.br/algoritmo-backpropagation-parte-2-treinamento-de-redes-neurais/

[78] G. Alves, Entendendo redes convolucionais (cnns), Dec. 2018. [Online]. Available:

https://medium.com/neuronio-br/entendendo-redes-convolucionais-cnns-

d10359f21184.

[79] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional

neural network”, in 2017 International Conference on Engineering and Technology

(ICET), Ieee, 2017, pp. 1–6.

[80] A. M. Clappis, Uma introdução as redes neurais convolucionais utilizando o keras,

Jul. 2019. [Online]. Available: https://medium.com/data-hackers/uma-introdu%

C3%A7%C3%A3o- as- redes- neurais- convolucionais- utilizando- o- keras-

41ee8dcc033e.

[81] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need”, arXiv preprint arXiv:1706.03762,

2017.

[82] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly

Learning to Align and Translate”, pp. 1–15, Sep. 2014. arXiv: 1409.0473. [Online].

Available: http://arxiv.org/abs/1409.0473.

[83] L. Dong, S. Xu, and B. Xu, “Speech-transformer: A no-recurrence sequence-to-

sequence model for speech recognition”, in 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp. 5884–5888.

[84] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization”, arXiv preprint

arXiv:1607.06450, 2016.

[85] O. Press and L. Wolf, “Using the output embedding to improve language models”,

arXiv preprint arXiv:1608.05859, 2016.

[86] Open sourcing bert: State-of-the-art pre-training for natural language processing,

Nov. 2018. [Online]. Available: https://ai.googleblog.com/2018/11/open-

sourcing-bert-state-of-art-pre.html.

63

https://medium.com/neuronio-br/entendendo-redes-convolucionais-cnns-d10359f21184
https://medium.com/neuronio-br/entendendo-redes-convolucionais-cnns-d10359f21184
https://medium.com/data-hackers/uma-introdu%C3%A7%C3%A3o-as-redes-neurais-convolucionais-utilizando-o-keras-41ee8dcc033e
https://medium.com/data-hackers/uma-introdu%C3%A7%C3%A3o-as-redes-neurais-convolucionais-utilizando-o-keras-41ee8dcc033e
https://medium.com/data-hackers/uma-introdu%C3%A7%C3%A3o-as-redes-neurais-convolucionais-utilizando-o-keras-41ee8dcc033e
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

[87] W. L. Taylor, ““cloze procedure”: A new tool for measuring readability”, Journalism

quarterly, vol. 30, no. 4, pp. 415–433, 1953.

[88] Y. Jernite, S. R. Bowman, and D. A. Sontag, “Discourse-based objectives for fast

unsupervised sentence representation learning”, CoRR, vol. abs/1705.00557, 2017.

arXiv: 1705.00557. [Online]. Available: http://arxiv.org/abs/1705.00557.

[89] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-

rectional transformers for language understanding”, arXiv preprint arXiv:1810.04805,

2018.

[90] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning”,

in 12th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 16), 2016, pp. 265–283.

[91] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing

text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[92] E. Bisong, “Google colaboratory”, in Building Machine Learning and Deep Learning

Models on Google Cloud Platform, Springer, 2019, pp. 59–64.

[93] R. Lamsal, Coronavirus (covid-19) tweets dataset, 2020. doi: 10.21227/781w-ef42.

[Online]. Available: https://dx.doi.org/10.21227/781w-ef42.

[94] A. Sarker, S. Lakamana, W. Hogg-Bremer, A. Xie, M. A. Al-Garadi, and Y.-C.

Yang, “Self-reported covid-19 symptoms on twitter: An analysis and a research

resource”, Journal of the American Medical Informatics Association, vol. 27, no. 8,

pp. 1310–1315, 2020.

[95] W. J. Wilbur and K. Sirotkin, “The automatic identification of stop words”, Journal

of information science, vol. 18, no. 1, pp. 45–55, 1992.

[96] B.-M. Hsu, “Comparison of supervised classification models on textual data”, Math-

ematics, vol. 8, no. 5, p. 851, 2020.

64

https://arxiv.org/abs/1705.00557
http://arxiv.org/abs/1705.00557
https://doi.org/10.21227/781w-ef42
https://dx.doi.org/10.21227/781w-ef42

[97] K. Krishnakumari, E. Sivasankar, and S. Radhakrishnan, “Hyperparameter tuning

in convolutional neural networks for domain adaptation in sentiment classification

(htcnn-dasc)”, Soft Computing, vol. 24, no. 5, pp. 3511–3527, 2020.

[98] K. Pasupa and W. Sunhem, “A comparison between shallow and deep architecture

classifiers on small dataset”, in 2016 8th International Conference on Information

Technology and Electrical Engineering (ICITEE), IEEE, 2016, pp. 1–6.

65

Appendix A

Implemented Code

Code implemented in Python to filter tweets by symptoms and remove emoticons using

regular expressions.

import r e

import os

import pandas as pd

def g e t _ l i s t _ o f _ f i l e s (fo lde r_path= ’ . / ’) :

l i s t _ o f _ f i l e s =[]

for _, _, f i l e s in os . walk (fo lde r_path) :

l i s t _ o f _ f i l e s . extend (f i l e s)

return [l for l in l i s t _ o f _ f i l e s i f ’ . t x t ’ in l]

def deEmoji fy (t ex t) :

r eg rex_patte rn = re . compile (pa t t e rn = ” [”

u”\U0001F600−\U0001F64F” # emoticons

u”\U0001F300−\U0001F5FF” # symbols & p i c t o g r a p h s

u”\U0001F680−\U0001F6FF” # t r a n s p o r t & map symbols

u”\U0001F1E0−\U0001F1FF” # f l a g s (iOS)

A1

u”\U00012702−\U000127B0” # Dingbat s

u”\U000124C2−\U0001F251” # Enclosed c h a r a c t e r s

u”\U0001F30D−\U0001F567” # Other A d i t i o n a l Symbols

u”\U0001F681−\U0001F6C5” # t r a n s p o r t & map symbols

u”\U0001F600−\U0001F636” # A d d i t i on a l Emoticons

u”\U00010000−\U0001FFFF” # A d d i t i on a l Emoticons

”]+” , f l a g s = re .UNICODE)

return r eg rex_patte rn . sub (r ’ ’ , t e x t)

def g e t _ t x t _ f i l e (f i le_name , path= ’ . / ’) :

i f ’ . t x t ’ not in f i l e_name :

f i l e_name = fi le_name . s t r i p () + ’ . tx t ’

f i l e_to_open = path . s t r i p ()+ f i le_name

with open (f i l e_to_open , ’ r ’ , encod ing= ’ u t f 8 ’) as s ou r c e :

tweet s = sour c e . read ()

t w e e t s _ l i s t = [i . s t r i p () for i in tweet s . s p l i t (’ \n ’)]

tweets_with_id = []

for t in t w e e t s _ l i s t :

t = t . r e p l a c e (’ [’ , ’ ’) . l s t r i p ()

t = t . r e p l a c e (’] ’ , ’ ’) . r s t r i p ()

id_tweet = t [: 1 9]

t w e e t _ i t s e l f = t [2 0 :]

tweets_with_id . append ([id_tweet , t w e e t _ i t s e l f])

return tweets_with_id

def re_text (t e x t s) :

symptoms = [’ cough ’ , ’ f e v e r ’ , ’ breath ’ , ’ b r ea th ing ’ , ’ t a s t e ’ , ’ d i a r rh ea ’ , ’ aches ’ , ’ pa in ’ , ’ t i r e d ’ , ’ headache ’ , ’ sme l l ’]

pronoumns=[’ i ’ , ’we ’ , ’ us ’ , ’my ’ , ’ her ’ , ’ h i s ’]

A2

annota t ed_pos i t i v e_text s = []

annotated_negat ive_texts = []

for tweet in t e x t s :

tweet_id = tweet [0]

tweet_text = deEmoji fy (tweet [−1])

i f r e . f i n d a l l (’ p o s i t i v e ’ , tweet_text . lower ()) :

for s in symptoms :

i f s in tweet_text :

for p in pronoumns :

i f p in tweet_text and [tweet_id , tweet_text , ’ 1 ’] not in annota t ed_pos i t i v e_text s :

annota t ed_pos i t i v e_text s . append ([tweet_id , tweet_text , ’ 1 ’])

else :

annotated_negat ive_texts . append ([tweet_id , tweet_text , ’ 0 ’])

return annotated_pos i t ive_text s , annotated_negat ive_texts

def save_csv (l i s t _ f i l e , f i le_name , path= ’ . / ’) :

columns = [’ i d s ’ , ’ t e x t ’ , ’ annotat ion ’]

dt = pd . DataFrame (l i s t _ f i l e , columns = columns)

dt = dt . drop_dup l i ca te s (subse t= ’ t ex t ’ , keep= ’ f i r s t ’)

f i l e_name = fi le_name + ’ . csv ’

dt . to_csv (f i le_name , sep= ’ \ t ’ , columns=columns , index=Fa l s e)

print (’ F i l e ␣ saved ’)

path_to_save = ’ . / annotated / ’

A3

for f i l e _ i t e m in g e t _ l i s t _ o f _ f i l e s (’ . / hydrated_json ’) :

print (f i l e _ i t e m)

t e x t s = g e t _ t x t _ f i l e (f i l e_ i t em , ’ . / hydrated_json / ’)

pos , neg = re_text (t e x t s)

name = f i l e _ i t e m . r e p l a c e (’ . t x t ’ , ’ ’) . s t r i p ()

save_csv (pos , ’ po s i t i v e_ ’+f i l e_ i t em , path_to_save)

save_csv (neg , ’ negat ive_ ’+f i l e_ i t em , path_to_save)

A4

	Introduction
	Background
	Objectives
	Document Structure

	Context and Technologies
	Coronavirus
	Virus
	Covid-19
	SARS-CoV-2 Variants
	Vaccines

	Artificial Intelligence
	Natural Language Processing
	Machine Learning
	K-Nearest Neighbors
	Naive Bayes
	Decision Tree and Random Forest Classifier
	Support Vector Machine

	Artificial Neural Network
	Neuron
	Perceptron
	MultiLayer Perceptron
	Activation Functions
	MultiLayer Perceptron Training
	Convolutional Neural Network

	Advances in Natural Language Processing Models
	Transformers
	Bidirectional Encoder Representations from Transformers

	Materials and Methods
	Tools
	Hardware

	Dataset
	Labeling
	Pre-processing
	Characteristics of the Tweets

	Training

	Results and Discussion
	Analysis of Results
	Confusion Matrices
	Metrics
	Precision
	Recall
	F-Measure
	Accuracy

	Best Results

	Conclusions and Future works
	Challenges during the project
	Future Directions

	Implemented Code

