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RESUMO

A epilepsia é uma das doenças mais comuns e afeta aproximadamente 50 milhões de pessoas

em todo o mundo. Seu diagnóstico requer a análise de um eletroencefalograma, que mede

a atividade elétrica cerebral representada por séries temporais. A análise dos segmentos

do eletroencefalograma depende da interpretação humana, o que pode levar a resultados

divergentes, ser tedioso, impreciso e propenso a erros. Além disso, estima-se que mais de 80%

dos exames de epilepsia não retornam nenhuma anomalia, desperdiçando o esforço de análise.

Este artigo propõe uma maneira automática de analisar segmentos de eletroencefalograma.

A abordagem é baseada na combinação de métodos de análise multiespectral, seleção de

características e aprendizado de máquina para redução de dimensionalidade na classificação

de eletroencefalograma. Como nossa principal contribuição, propusemos uma metodologia

para minimizar o número de características necessários para o treinamento do classificador,

minimizando a interferência de medidas irrelevantes. As características selecionadas foram

utilizadas como entrada de cinco algoritmos de aprendizado de máquina para classificar

segmentos de eletroencefalograma. Um conjunto mínimo de características é escolhido para

cada método de seleção, e os resultados são comparados selecionando o melhor subconjunto

de características. Neste trabalho, características baseadas em estatística, energia, entropia e

medidas específicas foram extraídas das quatro representações do eletroencefalograma. Essas

características foram selecionados por técnicas de seleção de características e usadas como

entrada em algoritmos de aprendizado de máquina. Na avaliação experimental, os resultados

comprovam estatisticamente que essa abordagem é tão eficiente quanto usar o conjunto

de dados de características completo para a construção do classificador. Os classificadores

propostos superam as métricas avaliativas de trabalhos já publicados na literatura, alcançando

uma precisão entre 87,2 e 90,99%, além de reduzirem consideravelmente a quantidade de

características necessárias, de 285 para 30, mantendo a acurácia do modelo.

Palavras-chave: classificação multiclasse; eletroencefalograma; epilepsia; redução de dimen-

sionalidade; seleção de características.



ABSTRACT

Epilepsy is one of the most common diseases and affects approximately 50 million people

worldwide. Its diagnosis requires analyzing an electroencephalogram (EEG), which measures

brain electrical activity represented by time series. The analysis of EEG segments depends

on human interpretation, which may lead to divergent results, and be tedious, imprecise, and

error-prone. Moreover, one estimates more than 80% of the epilepsy exams return no anomalies

at all, wasting the effort of analysis. This paper proposes an automatic way to analyze EEG

segments. The approach is based on the combination of multispectral analysis, feature selection

and machine learning (ML) methods for dimensionality reduction in EEG classification. As our

main contribution, we proposed a methodology to minimize the number of features required

for classifier training, minimizing the interference of irrelevant measures. The selected features

were used as input of five ML algorithms to classify EEG segments. A minimum set of features

is chosen for each selection method, and the results are compared select the best feature

subset. In this work, features based on statistics, energy, entropy and specific measures were

extracted from the four representations of the EEG. These features were selected by feature

selection techniques and used as input in ML algorithms. In the experimental evaluation, results

statistically prove that this approach is as efficient as using the complete feature dataset for

classifier building. The proposed classifiers improve the related literature, reaching an accuracy

between 87.2 and 90.99%, and considerably reduce the number of features, from 285 to 30,

under the same accuracy scores.

Keywords: dimensionality reduction; electroencephalogram; epilepsy; feature selection; multi-

class classification.
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1 INTRODUCTION

Epilepsy is a term used to designate a group of diseases whose main characteristic is

the manifestation of excessive electrical activity in nerve cells (MANOLIS et al., 2019). These

diseases affect around 50 million people worldwide, of which 80% live in developing countries

(World Health Organization, 2019). Of these, about 75% do not have access to adequate tre-

atment, even though in 70% of cases, the disease is controllable with the use of medication or

electrical stimulation (World Health Organization, 2014).

Epilepsy is commonly diagnosed through electroencephalography tests, which result

from monitoring the brain’s electrical activity (TATUM, 2007). This test results in time-series (TS)

called electroencephalograms (EEGs) (SHIN et al., 2014). An expert visually analyzes the EEG

to detect epileptiform patterns, which are classified into four distinct (FISHER; SCHARFMAN;

DECURTIS, 2014; HWANG; GOODMAN; STEVENS, 2019) periods:

• Ictal : moment of the epileptic seizure;

• Post-ictal : clinical and electroencephalographic manifestations that follow the end of an

epileptic seizure;

• Interictal : neurological oscillations between the end of the post-ictal period and the

beginning of the next crisis. This neurological event is also common in healthy patients,

particularly often during sleep;

• Pre-ictal : neurological activity immediately before the ictal period.

These neurological periods can still have variations, for example, signals being captured

in a hippocampal formation of the brain (TATUM, 2007). So, selecting these signals demands

a lot of time and analysis effort, and it is also susceptible to errors of human interpretation and

divergence of opinions among specialists on the same abnormality evidenced in EEGs (OLIVA;

ROSA, 2019).

Computational approaches emerge as alternatives to assist medical experts in identifying

events related to epilepsy in EEGs (LI et al., 2020; VARGAS; OLIVA; TEIXEIRA, 2021; RAMA-

KRISHNAN; MURUGAVEL, 2019; TÜRK; ÖZERDEM, 2019). However, the implementation of

such approaches is considered complex because the EEG segments present aspects of non-

stationarity and non-linearity (FREEMAN; QUIROGA, 2012). One of the ways to try to alleviate

the difficulty in such studies is by dividing these signals into segments. Also, the extraction of

features can aid in tasks such as pattern finding and classifier building. For example, statisti-

cal measures (e.g. mean and standard deviation) can be computed and used as signal features.

This step is also known as feature engineering (HEATON, 2016). These measurements are used

as input to machine learning (ML) methods for building models1 that automate the EEG signal

classification process.
1 In this work, (predictive) models and classifiers are used as synonyms.
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Feature extraction is commonly explored in the literature. In signals, features are ex-

tracted considering their representations in time domain (TD), frequency domain (FD), time-

frequency domain (TFD), and non-linear approach(ACHARYA et al., 2013). However, the combi-

nation and relevance of features in the classifier performance is often an imprecise factor. Con-

sequently, this makes it difficult to choose suitable classification models with minimum expected

performance (CURA; AKAN, 2021).

As the number of features to be considered increases, so does the computational cost

for training and using predictive models for classification. Therefore, too many features can also

negatively affect the performance of classifiers. This problem is addressed in the literature as the

curse of dimensionality (BELLMAN, 1966).

In the feature set, preprocessing techniques can be applied to improve the classifier

performance, such as feature selection, which selects a representative feature subset(KHALID;

KHALIL; NASREEN, 2014). By removing elements considered irrelevant, these techniques can

positively affect the performance of the ML algorithms for classifier building (WEI et al., 2020;

PRASETIYOWATI; MAULIDEVI; SURENDRO, 2020).

In the literature, several feature selection techniques are addressed in processes related

to ML for classifying EEG segments (GHAYAB et al., 2016; LI et al., 2016; MURSALIN et al.,

2017; MEHLA et al., 2021). However, these works do not make a comparison among these

techniques.

Thus, this work presents an approach to finding the smallest subset of features of the

respective original set needed to train accurate classifiers. For this, this work proposes to extract

a set of characteristics of the four main representations of EEGs explored in the literature. This

set of features can be too large for the application of algorithms, causing model overfitting. To

improve the classifiers, feature selection techniques are applied and compared to predict the

influence that features have on each other and on the final result.

The remaining of this paper is organized as follows: In Section 2 some EEG processing

methods developed in related works are presented; in Section ?? presents signal processing

methods for signal conversion and feature extraction, ML methods for classifier construction

and evaluation techniques are also presented; in Section 4 presents the proposed method and

Section 5 presents the final considerations, main contributions of this work and proposals for

continuation.

1.1 Objectives

1.1.1 General objective

Select most representative feature sets, based on feature selection techniques, for clas-

sification EEG segments related to epileptic seizures.
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1.1.2 Specific objectives

• Investigate the relationship that the characteristics have with each other;

• Check which machine learning algorithms can result in building more efficient models;

• Assess whether feature selection methods affect the performance of models.
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2 RELATED WORKS

Some works applied for EEG classification to detect epilepsy activities are briefly descri-

bed in this section. It is important to emphasize that not all related studies used feature selection

methods in their experimental evaluation. Works that apply feature selection such as such as

Molla et al. (2020) and Mehla et al. (2021) are found in the literature, however, this step is trea-

ted as part of the development of the classification model. The authors do not show the impact

that the feature selection implies in the final result because they do not compare models without

a selection of features and verify if there was a gain in the results.

In Mursalin et al. (2017), classifiers were trained to differentiate ictal activity from other

EEG segments. For this, TD and FD features are selected through improved correlation. For

classifier building, the Random Forests (RF) method was used, which reached an accuracy of

98.45%.

In Ramakrishnan e Murugavel (2019) models were built to classify five classes of EEGs

using features extracted from FD and nonlinear analysis (NLA) in different sub-bands of EEGs

signals. The authors introduced fuzzy rules for selecting features and models based on SVM to

build classifiers. As a result, they obtained 95% accuracy.

Oliva e Rosa (2019) proposed an intelligent report generation method based on ML using

characteristics of TD, FD, TFD, and NLA to classify five EEG classes. In all, a total of 75 different

classifiers were built. As a result, a model based on artificial neural networks (ANN) obtained the

highest accuracy, which was 86%.

Molla et al. (2020) proposed classifiers that separated normal, interictal and ictal seg-

ments. TD, FD, and NLA features were extracted in an algorithm based on Graph Eigen Decom-

position (GED), which selects the most relevant measures. Finally, ANN was used as a classifier,

which obtained an accuracy of 99.55% for binary classification.

The study of Mehla et al. (2021) was based on Fourier decomposition methods for non-

stationary EEG segments. The Kruskal-Wallis test selected the extracted features. Finally, the

selected features were used to train SVM classifiers, obtaining the maximum accuracy of 99.96%

for binary classification.

In the literature, approaches based on deep learning are still used, which generally use

raw data directly for feature learning and classifier training. Although this approach determines

the characteristics automatically, these methods are not dealt with in the present work because

they require large databases for the classifier training, and their interpretation is considered

complex compared to other types of models (KOHLI et al., 2016; MARCUS, 2020), for example,

decision trees (DT).

Table 1 presents comparisons among proposed methods for classifying EEGs and this

work. These comparisons were made considering the following criteria:
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• Feature domain: indicates whether features were extracted from time domain (TD),

frequency domain (FD), time-frequency domain (TFD), and non-linear analysis (NLA);

• Feature selection: indicates whether any feature selection technique was used;

• Classification Algorithms: determines which methods were applied to build the predic-

tive models;

• Number of classes: maximum amount of classes explored in the article;

• Evaluation metrics: measures used to evaluate predictive models;

• Cross validation: indicates which cross-validation approach was used;

• Statistical tests: indicates whether statistical tests were performed to analyze the re-

sults.
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In this work, we combine features extracted from four different domains (TD, FD, TFD,

and NLA). The features were subjected to attribute selection techniques, contributing to accurate

classifier building. Evaluative metrics and statistical tests prove that these models can accurately

classify five types of EEG segments.
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3 PROPOSAL FOR CLASSIFICATION OF EEG SEGMENTS BY MULTIDOMAIN ANALYSIS

An overview of the process of elaborating models for classifying segments of EEGs ai-

med at diagnosing epilepsy can be seen in Figure 1. The solid lines expose topics explored in

this work, while the dashed lines represent options from the literature not emphasized here.

Figura 1 – Proposed methodology for the classification of EEG segments aimed at epilepsy

As shown in Figure 1, EEG segment classification problems are commonly divided into

six steps:

3.1 Representations of EEGs

The EEG segments may contain difficult or impossible standards to observe in TD. For

example, interictal events may have similar patterns to those found in normal EEG in this domain

(TATUM, 2007). In this context, analyzing the signal in other domains, such as in FD, can be more

informative (BABADI; BROWN, 2014), as specific frequencies manifest more in some periods of

EEGs.

3.1.1 Frequency Domain

For the transposition of time domain observations to the frequency domain, firstly, the

signals in TD must be converted using mathematical methods, such as the Fourier (BRIGHAM,

1988) transform. However, the conventional Fourier transform imposes limitations that skewed

spectral components can be generated and may affect the reliability of representation (PERCI-

VAL; WALDEN et al., 1993).

In this sense, the Multitaper method (THOMSON, 1982) was proposed as an improve-

ment to Fourier’s transform. This method can be computed by Equation (1), in which ℎ𝑖,𝑘 is the
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𝑘th eigenvector used as a window function (tapering), 𝑥[𝑘] is the 𝑘-th frequency component, 𝑛th

is the length of the signal, 𝑗 is the imaginary unit of the complex expression, and 𝜔 is the angular

frequency.

𝑋[𝑘] =
𝑁∑︁
𝑖=1

ℎ𝑖,𝑘𝑥[𝑛]𝑒
−𝑗𝜔𝑛. (1)

This method consists of the cross-correlation operation between a signal, represented

in the TD, and the Euler equation, including k-tapers (BABADI; BROWN, 2014; OLIVA; ROSA,

2021), which are generated by Slepian sequences (SLEPIAN; POLLAK, 1961). These sequen-

ces are obtained using Equation (2) where, 0 < |𝑓 | < 𝑡/2 is the frequency band analyzed, 𝑡 is

the frequency rate of signal and 0 < 𝜆(𝑓) < 1 (SLEPIAN; POLLAK, 1961).

𝜆(𝑓) =

∫︀ 𝑓

−𝑓
|𝑋[𝑘]|2𝑑𝑓∫︀ 𝑇/2

−𝑇/2
|𝑋[𝑘]|2𝑑𝑓

. (2)

The tapers are orthogonal with each other and, therefore, 𝑘 samples, called sub-

spectrums, are generated and averaged, resulting in one-dimensional FD components. The

results generated by the multitaper method are represented as complex numbers. To simplify

the components, they can be computed by means of Equation (3) to obtain the Power Spectrum

(PS) (KRAMER; GERHARDT, 2012).

𝑃𝑆(𝑘) = |𝑋[𝑘]|2 (3)

3.1.2 Time-Frequency Domain

EEGs have non-stationary behavior with respect to frequency components present in

the signal that vary over time (MARTÍNEZ-VARGAS; GODINO-LLORENTE; CASTELLANOS-

DOMINGUEZ, 2012). Therefore, separate analyses in time and frequency domains may not

provide complete signal information. For example, if you wish to observe which frequencies are

most incident at a given moment, the information in TD and FD would be insufficient. Thereby,

from an adaptation in the Short Time Fourier Transform (STFT), it is possible to use the multitaper

method to transform a time domain signal into a time-frequency domain representation (OLIVA

et al., 2016).

In the time-frequency domain, the signals are analyzed in time and frequency simultane-

ously (COHEN, 1995). In this domain, the spectrogram (SG) is generated, which is the dynamic

representation of the energy spectral density.

Commonly, the SG can be computed from a STFT that maps a one-dimensional real

function 𝑓(𝑡) into a complex function 𝐹 (𝑘,𝜔) defined in a two-dimensional space (POULARIKAS,

2010). When related to the SG of EEG segments, considering 𝑡 time, and 𝑘 frequency.
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The multitaper method can be adapted in Equation (1) to generate SG. In this adaptation,

defined by Equation (4), time (𝑡), the window length (𝑤) and the number of tapers of data (𝑞) used

for processing signal must be considered (OLIVA, 2019).

𝑆𝐺𝑡,𝑘 =

⃒⃒⃒⃒
⃒1𝑞

𝑞−1∑︁
𝑙=0

𝑡+𝑤−1∑︁
𝑖=𝑡

ℎ𝑖−𝑘+1,𝑙𝑋𝑛𝑒
−𝑗𝜔 𝑖

𝑛

⃒⃒⃒⃒
⃒
2

. (4)

For SG generation, the adapted multitaper method applies the data tapers with length 𝑤

as sliding windows, while STFT uses a window function in signals (OLIVA, 2019). In Figure 2, a

SG example is presented.

Figura 2 – SG example of a normal signal from the Bonn database (OLIVA; ROSA, 2020).

3.1.3 Non-linear Analysis

Some works related to EEG classification for epilepsy detection address the data repre-

sentation in the form of nonlinear analysis (LI et al., 2007; RAMAKRISHNAN; MURUGAVEL,

2019; OLIVA; ROSA, 2019; MOLLA et al., 2020) aiming to minimize computational problems



26

related to this kind of signal, such as non-stationarity and non-linearity. Several nonlinear ap-

proaches can be applied to EEG segments, for example, those based on higher order spectrum

analysis that uses higher-order statistical measurements for spectral representations (NIKIAS;

MENDEL, 1993).

The bispectrum (𝐵) is a third-order statistic commonly applied for EEG analysis. Equation

(5) presents a way to obtain bispectrum, where 𝑓1 and 𝑓2 are frequency variables and 𝑋𝑓 is the

result of the multitaper application for the frequency 𝑓 .

𝐵𝑓1,𝑓2 = 𝑋𝑓1𝑋𝑓2𝑋
*
𝑓1+𝑓2. (5)

From a bispectrum, the bispectrogram (BG) can be obtained by Equation (6), where

𝑀𝑓1,𝑓2 is the magnitude measure that represents the relationship between component frequen-

cies 𝑓1 and 𝑓2 . In this way, BG measures frequency dependency on a signal. Figure 3 repre-

sents an example of BG extracted from a normal signal from the Bonn database, where lower

frequencies have more dependency than higher frequencies.

𝑀𝑓1,𝑓2 = |𝐵𝑓1,𝑓2|. (6)

Figura 3 – BG of a normal EEG segment from Bonn base (OLIVA; ROSA, 2020).
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The representation of EEGs in the forms presented in Section 3.1 can be used for feature

extraction, which is applied as input of ML algorithms. In Section 3.2, some measures computed

from these representations are presented.

3.2 Features Extraction

Feature extraction transforms raw data into numerical values by calculating measure-

ments, which can preserve the information of the original data. Generally, feature extraction

produces better results than applying the ML algorithm directly to raw database (PAGE et al.,

2014).

Several approaches for feature extraction from EEG segments and their representati-

ons are proposed. For example, statistical metrics can be computed from TS, PS, and SG,

aiming to represent EEG patterns. Commonly computed measures are average, variance, stan-

dard deviation, and momentum measurements such as mode, median, asymmetry, and kurtosis

(FREEDMAN ROBERT PISANI, 2007).

The minimum and maximum values are also used to quantify the data range and the

amplitude defined by the difference between these two metrics. Another statistical parameter in-

cludes the coefficient of variation, defined as the ratio between standard deviation and the sam-

ple average, representing data dispersion compared to the population average (ZHOU; GAN;

SEPULVEDA, 2008).

The first (Q1), second (Q2), and third quartile (Q3) quantify the density of the data. The

interquartile interval measures the deviation between the Q1 and Q3. Another measure com-

monly obtained in EEGs is the line length, which reflects the waveform dimensionality changes,

sensitive to signal amplitude variation and frequency (FREEDMAN ROBERT PISANI, 2007).

Energy-based features can also be extracted from TS, PS and SG, such as nonlinear

energy, average quadratic value, and crest value (KEETON, 2015).

Other measures commonly computed in TD and FD are entropies. These measures are

related to the degree of signal disorder. In other words, the greater the signal disorder, the greater

the entropy (SHANNON, 1948). Some entropies are used in the literature as features for EEGs

classification models, including the following:

• Shannon Entropy: it is used to estimate data distribution and is computed by Equation

(7) (SHANNON, 1948), where 𝑋 represents a data vector defined for 𝑥1, 𝑥2, ..., 𝑥𝑛;

Shannon Entropy =
𝑛∑︁

𝑖=1

𝑋𝑖 * log𝑋𝑖. (7)

• Rényi Entropy : it is a generalization of Shannon Entropy to measure data entanglement

(RAMALINGAM; KRISHNAN, 2005). This feature can be defined by Equation (8), where
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0 ≤ 𝛼 e 𝛼 ̸= 1;

Rényi Entropy =
1

1− 𝛼
* log

𝑛∑︁
𝑖=1

(𝑋𝑖)
𝛼. (8)

• Approximate Entropy : it is a technique used to quantify the regularity and unpredic-

tability of fluctuations on data series (PINCUS; GLADSTONE; EHRENKRANZ, 1991).

Approximate Entropy is defined by Equation (9), where 𝐶𝑖𝑚(𝑟) measures, for a tole-

rance 𝑟, the regularity or frequency of the occurrence of standards similar to a certain

standard of length 𝑚, concerning a series of data of size 𝑁 .

Approximate Entropy = Φ𝑚(𝑟)− Φ𝑚+1(𝑟),

Φ𝑚(𝑟) =
1

𝑁 −𝑚− 1
*

𝑁−𝑚+1∑︁
𝑖=1

log𝐶𝑖𝑚(𝑟).
(9)

Additionally, the Hurst exponent (QIAN; RASHEED, 2004), which is used as a long-term

memory measure, is used for EEG representation. Hurst exponent values range from 0 to 1,

referring to the autocorrelations of the data series. Briefly, for values between 0 and 0.5, the

signal is characterized as anti-persistent, i.e. there is a greater probability that a value does not

repeat. For Hurst exponent values between 0.5 and 1, the signal is stated persistent, presenting

the likelihood of repeating a value. The signal is stated as aleatory when the value is exactly 0.5.

There are still certain measures that can only be used in certain signal representations,

such as the Hjorth parameters (HJORTH, 1970). These parameters are indicators of statistical

properties used in signal processing in TD. These parameters are named Activity, Mobility, and

Complexity and are defined by:

• Hjorth Activity : it represents the signal’s power, the variation of a time function. This me-

asure can indicate the surface of the PS at FD. Hjorth activity is computed by Equation

(10), where 𝑦(𝑡) represents the signal.

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑦(𝑡)). (10)

• Hjorth Mobility : it represents the average frequency or proportion of the standard devi-

ation of the PS. This measure can be defined by Equation (11).

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =

√︃
𝑣𝑎𝑟(𝑑𝑦(𝑡)

𝑑𝑡
)

𝑣𝑎𝑟(𝑦(𝑡))
. (11)

• Hjorth Complexity : it represents the change in frequency. The parameter compares the

similarity of the signal with a pure sine wave, where the value converges to 1 if the
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signal is similar. This parameter is defined by Equation (12).

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑑𝑦(𝑡)

𝑑𝑡
)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦(𝑡))
. (12)

Additionally, there are other features that can also be extracted from the FD, of which

some examples are presented below:

• Peak Frequency: frequency of the maximum power.

• Spectral Planity: points out that the spectrum has a similar amount of power in all spec-

tral bands (DUBNOV, 2004).

• Spectral Entropy: it is a normalized form of Shannon entropy, which uses the amplitude

components of the time series for entropy assessment (VAKKURI et al., 2004).

• Spectral Centroid: shows where the centre of mass of PS is located. This feature can

be computed using Equation (13), where 𝜑 represents the spectral component.

Spectral Centroid =

∑︀𝑓𝑚𝑎𝑥
𝑖=𝑓𝑚𝑖𝑛 𝜑 * 𝑃𝑆𝑖∑︀𝑓𝑚𝑎𝑥

𝑖=𝑓𝑚𝑖𝑛 𝑃𝑆𝑖

. (13)

The spectral centroid (SC) can also be extracted from SG, however, by Equation (14).

SC =

∑︀𝑓𝑚𝑎𝑥
𝑖=𝑓𝑚𝑖𝑛

∑︀𝐿
𝑗=1 𝜑𝑖𝑆𝐺𝑖,𝑗∑︀𝐿

𝑗=1 𝑆𝐺𝑖,𝑗

. (14)

From SG, other features can be extracted, such as spectral band energy (SBE) and spec-

tral bandwidth (SBW). The SBE (Equation (15)) indicates the energy of the spectrum. The SBW

is the average deviation of SG concerning SC, whose feature can be obtained by Equation (16) ,

where 𝐿 and 𝐹 are SG length in TD and frequency, respectively (HOSSEINZADEH; KRISHNAN,

2007; LIU; WANG; CHEN, 1998).

SBE =

∑︀𝑓𝑚𝑎𝑥
𝑖=𝑓𝑚𝑖𝑛

∑︀𝐿
𝑗=1 𝑆𝐺𝑖,𝑗∑︀𝐹

𝑖=𝑖

∑︀𝐿
𝑗=1 𝑆𝐺𝑖,𝑗

. (15)

SBW =

∑︀𝑓𝑚𝑎𝑥
𝑖=𝑓𝑚𝑖𝑛

∑︀𝐿
𝑗=1 𝑆𝐺𝑖,𝑗∑︀𝑓𝑚𝑎𝑥

𝑖=𝑓𝑚𝑖𝑛

∑︀𝐿
𝑗=1(𝜑𝑖 − 𝑆𝐶)2𝑆𝐺𝑖,𝑗

. (16)

Generally, in EEG analysis, the PS and SG are divided into representative sub-bands,

such as Delta (1 - 4Hz), Theta (4 - 8Hz), Alpha (8 - 12Hz), Beta (12 - 30Hz), and Gamma (30

- 60Hz) (FREEMAN; QUIROGA, 2012). This division is made because some periods of EEG

segments have a high incidence in different sub-bands (TATUM, 2007; LI, 2016; STUART et
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al., 2018). The EEG analysis by sub-band can significantly improve classification results and

considerably reduce the computational cost because irrelevant component frequencies are not

considered. Consequently, the same feature can be extracted six times, once for each sub-band

and once for the entire spectrum.

Finally, BG has specific features that can be extracted. In this paper, we are going to

cover the following (ZHOU; GAN; SEPULVEDA, 2008; ACHARYA; SREE; SURI, 2011; ZURLINI

et al., 2013):

• First Order Diagonal Amplitude (1DA): is the average of the diagonal of the BG that can

be calculated by Equation (17), where 𝑁𝑑 is the number of elements contained in the

diagonal of the BG;

1𝐷𝐴 =
∑︁
𝑖=1

𝑁𝑑𝑖 * log𝑀𝑖,𝑖. (17)

• Second Order Diagonal Amplitude (2DA): is the variance of the diagonal of BG, defined

by Equation (18):

2𝐷𝐴 =
∑︁
𝑖=1

𝑁𝑑(𝑖− 1𝐷𝐴)2 * log𝑀𝑖,𝑖. (18)

• Normalized Entropy (NE): is the measure that describes the order of regularity of the

BG components. It can be computed by Equation (19) where 𝑟 is the number of ele-

ments contained in the non-redundant area of BG, and Ω represents the positions of

the components within this area;

𝑁𝐸 = −
𝑟−1∑︁
𝑚=0

𝑝𝑚 log 𝑝𝑚, 𝑝𝑚 =
𝑀𝑓1,𝑓2∑︀
𝑖,𝑗∈Ω 𝑀𝑖,𝑗

(19)

• Normalized Quadratic Entropy (NQE): obtained by Equation (20), this feature quantifies

the order of regularity of the quadratic components of BG;

𝑁𝑄𝐸 = −
𝑟−1∑︁
𝑚=0

𝑞𝑚 log 𝑞𝑚, 𝑞𝑚 =
𝑀2

𝑓1,𝑓2∑︀
𝑖,𝑗∈Ω 𝑀2

𝑖,𝑗

(20)

• Average Magnitude (MM): is the average value of the components of the non-redundant

area of BG. This feature can be measured by Equation (21);

𝑀𝑀 =
1

𝑟

∑︁
𝑖,𝑗∈Ω

𝑀𝑖,𝑗. (21)
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• Weighted Center of the X Axis (XWC): it is the geometric centre of the BG on the X

axis. This measure can be obtained using Equation (22);

𝑋𝑊𝐶 =

∑︀
𝑖,𝑗∈Ω 𝑖 *𝑀𝑖,𝑗∑︀
𝑖,𝑗∈Ω 𝑀𝑖,𝑗

. (22)

• Weighted Center of the Y Axis (YWC): is the geometric centre of the BG on the Y axis.

This measure can be calculated using Equation (23);

𝑌𝑊𝐶 =

∑︀
𝑖,𝑗∈Ω 𝑗 *𝑀𝑖,𝑗∑︀

𝑖,𝑗∈Ω 𝑀𝑖,𝑗

. (23)

• Absolute Logarithmic Sum (ALS): is the logarithmic sum of BG. It can be calculated by

Equation (24)

𝐴𝐿𝑆 =
∑︁
𝑖,𝑗∈Ω

log𝑀𝑖,𝑗. (24)

3.3 Selection of Features

The quantity of data needed to achieve a better result exponentially impacts the number

of required features. However, the performance of classifiers tends to degrade from a certain

number of features, even if they are useful. This phenomenon is known as the curse of dimen-

sionality (BELLMAN, 1966). Thereby, feature (attribute) selection techniques can alleviate this

problem.

Feature selection techniques are widely explored in the ML area and are used to re-

duce the number of features for classifier training to improve time and classification performance

(GUYON; ELISSEEFF, 2006).

Some ML problems, like the one in this work, have many features for their representa-

tion. However, the greater the number of features, the higher the computational cost for training

models using ML algorithms. Also, large amounts of features can require a great deal of system

memory. Finally, irrelevant measures can negatively affect the performance of models (KUHN;

JOHNSON et al., 2013). In this sense, feature selection methods can alleviate these problems.

These methods can be grouped into filter, wrapper, and embedded approaches (KOHAVI; JOHN,

1997).

3.3.1 Filter

In this approach, features are selected before classifier building. Its operation aims to

filter out irrelevant features according to some criterion, such as correlation measures (JOHN;
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KOHAVI; PFLEGER, 1994). These techniques can evaluate each attribute independently of the

others, determining the degree of significance between each attribute and the class (YANG;

PEDERSEN, 1997).

The term filter derives from the idea that irrelevant features are filtered from the database

before applying the classification algorithm (BLUM; LANGLEY, 1997). The filters use information

from the training base itself to choose features to be used later.

In several cases, attribute ranking techniques are commonly used to calculate a metric for

the attribute in question and use the ones that rank best. However, these techniques are based

on correlation, e.g. Correlation-based Feature Selection (CFS). The CFS assume that a relevant

subset of features contains features with high correlation with the class and low correlation with

each other (HALL, 2000).

Thus, CFS evaluates the subset of features considering the individual predictive capacity

of each one together with the degree of redundancy among them. Subsets of features highly

correlated with the class while having a low correlation with each other are preferentially selected

in these cases.

3.3.2 Wrapper

In this approach, the attribute selection process occurs externally to the model-building

algorithm. However, this process uses the model to evaluate the selected features at each itera-

tion.

Thus, feature selection techniques applied to the wrapper approach generate a candidate

subset of features. This technique runs the ML algorithm with the selected subset and uses

the resulting predictive performance of the classifier as an important measure to evaluate the

investigated subset of features. This process is repeated for each subset of features until a given

stopping criterion is satisfied (FREITAS, 2002).

Recursive Feature Elimination (RFE) is commonly used in wrapper algorithms. The RFE,

based on a ML model, exhaustively traverses all possible subsets of features, eliminating each

irrelevant attribute until it reaches the stopping criterion, which can be a specific feature amount

or a metric to be achieved.

In general, exhaustive search techniques return better results than filter-based methods,

as their construction explores all possible combinations of features. On the other hand, this

method takes a long time to execute, making it unfeasible for applications in large search spaces

since its complexity grows in the order of 𝑛!, where 𝑛 represents the total number of features

(PHUONG; LIN; ALTMAN, 2005).

As many features are extracted in this work, the RFE method is unfeasible for this study.

So, in our experimental evaluation, the exact search is replaced by feature selection based on a

genetic algorithm that reduces the wrapper approach’s complexity.
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The feature selection algorithm based on a genetic algorithm is performed in the following

steps (Figure 4) (ROSTAMI; BERAHMAND; FOROUZANDEH, 2020; BABATUNDE et al., 2014):

1. a population is created, where each individual has a random set of features from the

extraction of features step;

2. these individuals are evaluated by a ML algorithm. As a result, an evaluation metric for

each individual is obtained;

3. verify whether individuals have met any specified stopping criterion. If so, the features

of the best individual in the population are used. If this stopping criterion is not met,

the individuals with the lowest classification metric are discarded, and the others are

produced at random until the population reaches the amount of the initial population.

In this reproduction process, some individuals can mutate and receive some attribute

that did not belong to the parents, reducing the chance of the algorithm falling into

local minima. The generation is incremented, and the evaluation cycle from step two is

repeated.

Figura 4 – Flowchart of the operation of the wrapper technique based on genetic algorithm.
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3.3.3 Embedded

In this approach, feature selection is performed internally by the ML algorithm itself. The-

refore, techniques applied according to the embedded approach select the subset of features

during the classifier training(LAL et al., 2006). The main advantage of this approach is that se-

lection works as part of the learning process, which commonly makes them less expensive and

allows them to be practicable in high dimensional data. However, as a disadvantage, these ap-

proaches are specific to some learning algorithms, for example, those that implement methods

based on DT.

3.4 Construction of Classifiers

For the classifier building, selected features are used as input in ML algorithms. Thus,

part of the instances represented by these features are used for model training, and the remai-

ning examples are used for the classifier evaluation. How this division is done is discussed in

Section 3.5.2.

As seen in Section 2, several classifiers based on ML are used in the literature to clas-

sify EEG segments. In this work, we consider some of the commonly used methods, such as

Naïve Bayes (NB), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Artificial Neu-

ral Networks (ANN) based on Multi-Layer Perceptron (MLP) and Random Forests (RF) architec-

ture. In this Section, these methods are going to be briefly detailed.

3.4.1 Naïve Bayes

The NB model is a Bayesian learning method that classifies an object into a given class

based on the probability that this object belongs to it (MITCHELL et al., 1997). Additionally,

this reasoning is based on the assumption that probability distributions govern the quantities of

interest and that optimal decisions can be made by reasoning among these probabilities and the

observed data(ZHANG, 2004).

The NB algorithm is a direct application of Bayes’ theorem, whose fundamental principle

describes the probability of the occurrence of an event based on prior knowledge of the conditi-

ons that may be related to that fact. This principle is defined by Equation (25), given class 𝑦 and

feature 𝑋 .

𝑃 (𝑦|𝑋) =
𝑃 (𝑋|𝑦) * 𝑃 (𝑦)

𝑃 (𝑋)
. (25)

The objective is to calculate the posterior probability 𝑃 (𝑦|𝑋) from the likelihood 𝑃 (𝑋|𝑦),
the prior probability of the hypothesis 𝑃 (𝑦), and the prior probability that the evidence is true

𝑃 (𝑋). In other words, the probability that the feature 𝑋 belongs to the class 𝑦 depends on the
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probability survey in the training step. In the training stage, the probability that samples of class

𝑦 have presented the feature 𝑋 , the probability that a class 𝑦 occurs, and the probability that the

feature with the value of 𝑋 is evaluated (ZHANG, 2004).

3.4.2 K-Nearest Neighbors

KNN is a method based on the concept of distance, that is, on the proximity among the

data. The base hypothesis is that similar data tend to be concentrated in the same region in the

feature space (LORENA; GAMA; FACELI, 2011). This algorithm classifies a new example ac-

cording to the proximity of the k-neighbours belonging to the training dataset, where the majority

class of the closest 𝑘 sets is assigned (FIX; HODGES, 1989).

The KNN method requires a low computational effort since the algorithm does not build

a model for the data, i.e. it only memorizes the elements of the training set. For the classification

of new examples, the model calculates the distance of each of them in relation to the test set

elements (AHA; KIBLER; ALBERT, 1991).

Different distance measures can be applied to KNN, of which the Euclidean distance is

the most common and can be defined by Equation (26), where 𝑑(𝑎,𝑏) is the distance between the

points 𝑎 and 𝑏, represented by vectors whose elements are the values of each of the 𝑛 features.

𝑑(𝑎,𝑏) =

⎯⎸⎸⎷ 𝑛∑︁
1

(𝑎𝑖 − 𝑏𝑖)2. (26)

A particular case, which coincides with the simplest version of KNN, is 1-Nearest Neigh-

bor, which assigns the class of the new element to the closest element. However, for modelling

certain behaviour, it may be of interest to consider k-neighbors nearest, with 𝑘 greater than 1,

where each neighbour belongs to a class, and the test object is classified according to the majo-

rity class. In classification problems, it is usual to use odd or prime numbers greater than two to

avoid ties. Also, you can assign a weight to the contribution of each neighbour so that the nearest

neighbours have more influence on the decision to which class the element belongs (HASTIE et

al., 2009).

3.4.3 Support Vector Machines

This method represents the elements as points in space and finds the best possible se-

paration boundary between classes of a dataset to make them linearly separable. These boun-

daries are called hyperplanes, and their dimensions are directly proportional to the feature di-

mension related to the problem (CORTES; VAPNIK, 1995).

Limits are created to choose the best fit for the hyperplane using training data close to the

decision boundary, the so-called support vectors. When it is possible to separate the classes,
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the algorithm selects the hyperplane with the most significant distance between the support

vectors. If it is impossible to do the classification using a hyperplane directly, a kernel function

is applied to map the elements in a higher dimension. In this case, the problem would not be

linearly separable (LORENA; GAMA; FACELI, 2011; HAYKIN, 2008).

In this way, SVM first separates the elements of each class by a hyperplane and then

maximizes the distance between the hyperplane and the closest element. Finally, the test set

data is mapped into the same space and predicted to belong to a class based on which side of

the hyperplane they are allocated (HEARST, 1998).

3.4.4 Artificial Neural Networks

As a model of ANN, the MLP architecture was used, represented by a parallel distributed

system with simple processing units, called artificial neurons, which calculate mathematical func-

tions and are activated or not by this activation function. These neurons are spatially arranged in

at least three layers: an input layer, an output layer, and one or more hidden layers. When related

to classification, the input layer has several source nodes equal to the number of features of the

data set, and the output layer has several neurons equal to the number of classes in the problem

(GOODFELLOW; BENGIO; COURVILLE, 2016). These layers are interconnected to each other

by weighted connections. The weights of the connections between neurons store the knowledge

of the model.

The algorithm backpropagation (RUMELHART; HINTON; WILLIAMS, 1986) is commonly

used to train these networks, and it is divided into two stages: forward and backward.

The forward step uses the training set as the network input and propagates it layer by

layer until the outputs are produced. These outputs are compared with the true outputs, whose

difference is called error.

In the second step, called backward, the error is backpropagated through the network by

adjusting the weights for the true classes of the training set.

In short, the successive applications of the forward and backward phases adjust the

weights to each interaction, implying a reduction in errors and making the network learn from

the sampled data. These cycles are repeated until a stopping criterion is reached, which can

be a maximum number of cycles or a specific value in an evaluated metric (LORENA; GAMA;

FACELI, 2011). In the testing stage, an unknown model is propagated through the network and

computed by the layers until the output.

3.4.5 Random Forests

The RF method is a ML method that builds a set of DT, a directed acyclic graph where

each node can be of division or leaf. The division nodes have a rule that evaluates data set
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features which, depending on their result, forwards the flow to another division node or a leaf

node. The leaf nodes define the class that the processed example belongs to (LORENA; GAMA;

FACELI, 2011).

For improvement of the usual DT, it is common to use the combination of several indivi-

dual classifiers, where the result of most DT gives the final result. This approach represents the

function of the RF method, which combines several DT classifiers, whose final result consists of

a majority vote (HO, 1995).

The RF algorithm introduces extra randomness when creating DT. The RF uses a pre-

defined number (𝑚) of features in training set to perform the divisions of the nodes. When a tree

node is evaluated for splitting, only the randomly chosen 𝑚 features are considered for the divi-

sion node (DIETTERICH, 2000). Searching for random features for each tree node characterizes

the embedded attribute selection technique.

In the test step, a new example is evaluated by the trees in the forest. The class as-

signed to the new example is the one that got the most votes, i.e. the class that had the most

assignments.

3.5 Classifier Evaluation

The classifiers generated by the methods presented in Section 3.4 were evaluated using

three approaches: confusion matrix (CM), k-fold cross-validation, and statistical hypothesis tests.

3.5.1 Confusion Matrix

The Confusion Matrix (CM) is a commonly used approach to evaluate predictive mo-

dels. In Table 2, a binary classification CM is represented. The rows display the model’s rating,

while the columns represent the true prediction. The elements of CM cells can be defined by

(THARWAT, 2020):

• True Positives (TP): number of examples of the positive class correctly classified.

• True Negatives (TN): quantity of predictions of the negative class correctly classified.

• False Positives (FP): number of predictions of the positive class incorrectly classified.

• False Negatives (FN): quantity of examples of the positive class incorrectly classified.

True classification
Class Positive Negative

Model
Forecast

Positive TP FP
Negative FN TN

Tabela 2 – Binary classification confusion matrix.
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This concept allows it to expand from a binary CM to a multiclass CM. In the multiclass

evaluation of a CM, the values of TP, TN, FP, and FN vary according to the observed class

(GRANDINI; BAGLI; VISANI, 2020). Table 3 represents a five class CM for evaluating class B

individually. The intersection of column and row B represents the value of TP. The sum of row

B, except for the intersection with column B (value of TP), forms the value of FP. The sum of

column B, except the intersection of row B (value of TP), results in the value of FP. The sum of

the other elements is the value of TN.

True classification
Classes A B C D E

Model
Forecast

A TN FN TN TN TN
B FP TP FP FP FP
C TN FN TN TN TN
D TN FN TN TN TN
E TN FN TN TN TN

Tabela 3 – Multiclass classification confusion matrix analyzing the values of TP, TN, FP and FN of
class B.

From the CM, metrics can be extracted to evaluate the predictive models (HOSSIN; SU-

LAIMAN, 2015), such as Accuracy (Acc.), Sensitivity (Sen.), Specificity (Spe.), Precision (Pre.),

among others. The Acc., defined by Equation 27, represents the rate of samples correctly clas-

sified by the classifier, where 𝑖 and 𝑗 are the rows and columns of CM, respectively, and 𝐾 is the

number of problem classes.

𝐴𝑐𝑐. =

∑︀𝐾
𝑖=1𝐶𝑀𝑖,𝑖∑︀𝐾

𝑖=1

∑︀𝐾
𝑗=1𝐶𝑀𝑖,𝑗

. (27)

Using Equation (28), it is also possible to evaluate the hit rate per class (HRC) for a

multiclass CM (OLIVA; ROSA, 2021). For two-class (binary) problems, HRC equals Acc..

𝐻𝑅𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
. (28)

The concept of TP, TN, FP, and FN can be used to calculate other metrics commonly

used in binary problems, such as:

• Specificity (Spe.): percentage of negative samples correctly predicted as negative by

the classifier is computed by Equation (29).

𝑆𝑝𝑒. =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (29)

• Precision (Pre.): rate of predictions as a positive class was indeed positive and is defi-

ned by Equation (30).

𝑃𝑟𝑒. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (30)
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• Sensitivity (Sen.): rate of positive samples correctly predicted as positive by the classi-

fier. This measure can be calculated using Equation (31).

𝑆𝑒𝑛. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (31)

Another metric commonly used in evaluating predictive models is the Macro F1-Score

(MaF1), which evaluates the model considering all classes, as is done with the Acc. measure.

This metric is interpreted as a harmonic mean of Sen. and Pre. (OPITZ; BURST, 2019). Firstly,

the arithmetic mean of Pre. and Sen. is calculated using Equation (32) and (33), respectively.

Finally, MaF1 can be defined by Equation (34).

Mean Pre. =

∑︀𝐾
𝑘=1 𝑃𝑟𝑒.𝑘
𝐾

. (32)

Mean Sen. =

∑︀𝐾
𝑘=1 𝑆𝑒𝑛.𝑘
𝐾

. (33)

𝑀𝑎𝐹1 = 2 * Mean Pre. * Mean Sen.
Mean Pre. + Mean Sen.

. (34)

3.5.2 K-Fold Cross-Validation

Cross-validation is a technique that evaluates the generalization of a model from a data

set associated with a ML method (KOHAVI et al., 1995). This method helps in the evaluation of

the model, in addition, to revealing the overfitting. The 𝑘-fold involves randomly dividing the data

set into 𝑘 groups, also called folds. One of the folds is separated for testing, and the others are

used as training data. The cross-validation process is repeated 𝑘 times so that each of the 𝑘

groups is used once as a test data model (ANGUITA et al., 2012).

This process will result in 𝑘 evaluative metrics, one for each fold. The process obtains

the metric to account for that model mean of the k-fold (REFAEILZADEH; TANG; LIU, 2009).

Commonly, for ML problems, 10-fold (𝑘 = 10) are used to validate results because the average

error values are close to those obtained when 𝑘 is equal to the length of the data set (MARKATOU

et al., 2005).

3.5.3 Statistical Hypothesis Tests

Even with cross-validation, the survey of evaluative metrics is error-prone arising from

chance and randomness (DEMŠAR, 2006). In this sense, statistical hypothesis tests are perfor-

med to verify differences and validate the results. Although these tests are not often applied to

the classification of signs of epilepsy (OLIVA; ROSA, 2021), they can be essential for comparing
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models. The main function of a statistical test for evaluating ML models is to verify whether the

difference in ability to classify between two models is real or due to a statistical chance (DIET-

TERICH, 1998).

Different tests can be applied, but the choice of the appropriate method depends on

several factors, such as presented next (DEMŠAR, 2006):

• Distribution: if the 𝑘 cross-validation results are within the normal distribution;

• Pairing: also known as a dependency, indicates whether the models are trained from

the same dataset.

The Shapiro-Wilk normality test (SHAPIRO; WILK, 1965) can be used to verify the dis-

tribution, whose main advantages include its easy application and recommendation for small

samples (MIOT, 2017).

The assumption of a statistical test is called the null hypothesis, and one can calculate

statistical measures and interpret them to decide whether the null hypothesis is accepted or

rejected. In the case of the Shapiro-Wilk test, the null hypothesis is that the k-fold are normally

distributed (SHAPIRO; WILK, 1965). If the test comes positive, the null hypothesis is accepted.

Statistical tests are used in this work to compare models with different input features (due

to the feature selection). In this way, the data from our experiments will not have a dependency. In

this case, the t-Student test is appropriate if the model results are within the normal distribution.

Otherwise, the test that should be applied is the Mann-Whitney (KIM, 2015) test.

If the test result suggests insufficient evidence to reject the null hypothesis, then any

observed difference in the model’s skill is likely due to statistical chance. In other words, statisti-

cally, the two models have the same classification capacity. If the test result suggests that there

is sufficient evidence to reject the null hypothesis, then the observed difference in the skill of the

models is real (DEMŠAR, 2006).

Statistical hypothesis tests result in a 𝑝 − 𝑣𝑎𝑙𝑢𝑒. It is said that there is a statistical sig-

nificance or that the result is statistically significant when the observed 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than

the significance 𝛼 defined for the study (ZILIAK, 2017). For this type of study, the value of 𝛼 is

commonly 5%, i.e. the null hypothesis is accepted if the 𝑝− 𝑣𝑎𝑙𝑢𝑒 resulting from the test is less

than 0.05.
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4 EXPERIMENTAL EVALUATION AND RESULTS

Our experimental evaluation is divided into six steps (Figure 1), as the literature suggests:

1. EEG database acquisition (Section 4.1).

2. EEG segment representations (Section 4.2).

3. Feature extraction (Section 4.3).

4. Feature selection 4.4).

5. Classifier building (Section 4.5).

6. Classifier evaluation (Section 4.6).

4.1 EEG Database Acquisition

For the evaluation of the proposed models, the base Bonn EEG time series database 1

(ANDRZEJAK et al., 2001), available to the public free of charge, was used in this work.

As the database has the widest class variety related to epilepsy, it is used in several

studies on the application of ML methods for epilepsy detection(MURSALIN et al., 2017; MOLLA

et al., 2020; VARGAS; OLIVA; TEIXEIRA, 2021; SHOEIBI et al., 2021). This database is divided

into five subsets of EEG segments from healthy volunteers and patients at different stages of

seizures:

A: healthy volunteers with eyes open;

B: healthy volunteers with eyes closed;

C: the hippocampal formation of the opposite hemisphere of the brain in which the ictal

phase of epilepsy is occurring. These segments are very similar to interictal signs;

D: the interictal activity of the epileptogenic zone of patients with epilepsy;

E: seizure activity, selected from all recording places that exhibit ictal activity from patients

with epilepsy.

Each subset contains 100 single-channel EEG segments, represented as TS with a du-

ration of 23.6 seconds, a sample rate of 173.61 Hz, and a resolution of 12 bits. In Figure 5, five

samples of the Bonn database are illustrated, one for each subset. Some differences can be

observed, such as segment B (normal with eyes closed), which contains more oscillations per

second compared to segment A (normal with eyes open). Also, the segment of class E (ictal)

has greater amplitudes than the others.
1 http://bitly.ws/ooaQ
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Figura 5 – Examples of EEG segments from the five subsets (A-E) of the Bonn database.

4.2 EEG Segment Representations

For each EEG segment, the multitaper method was applied to generate PS, SG, and BG,

as described in Section 3.1.1, 3.1.2 and 3.1.3 respectively.

Figure 6 shows examples of PS from five samples, one from each set of the Bonn basis.

The EEG E segment, ictal, contains the highest incidence of Alpha waves (8-12 Hz).

SG examples of five samples from the Bonn base are illustrated in Figure 7(a). In seg-

ments A, B, and D, a high magnitude band near 50Hz is observed, generated by interference

from the electrical network while collecting the signals2.

Five BG examples are illustrated in Figure 7(b). Comparing the representations, the E

segment, ictal, presents higher magnitudes than the others.

Each Bonn database segment is represented as TS, PS, SG, and BG. These represen-

tations are used for feature extraction.

4.3 Feature Extraction

The third step corresponds to feature extraction from the EEG segments. After transfor-

ming the segments, each representation has specific features extracted, as shown in Section

3.2. The number of extracted features from each EEG segment is shown below:

2 The example of EEG used to generate SG was collected in the city of Bonn, Germany, where the
power grid is 50Hz
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Figura 6 – PS examples of EEG segments from subsets of the Bonn database.

(a) Spectrogram

(b) Bispectrogram

Figura 7 – Examples of EEG representations of subsets from the Bonn database.

• Time domain: 25 features extracted from TS;

• Frequency domain: 156 features extracted from PS (26 from each sub-band and 26

from the entire spectrum);

• Time-frequency domain: 96 features extracted from SG (16 from each sub-band and

16 from the entire spectrum);

• Nonlinear analysis: 8 features of the complete BG.

Features extracted from each EEG representation are summarized in Table 4.
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Tabela 4 – Features extracted from the EEG segment.
Time Serie Power Spectrum Spectrogram Bispectrogram
Amplitude Amplitude Asymmetry 1st Order Diagonal Amplitude
Approximate Entropy Approximate Entropy Coefficient of variation 2nd Order Diagonal Amplitude
Asymmetry Asymmetry Crest Factor Absolute Logarithmic Sum
Coefficient of variation Coefficient of variation Interquartile Size Mean Magnitude
Crest factor crest factor Kurtosis Normalized Entropy
Hjorth activity Hurst exponent Maximum Normalized Quadratic Entropy
Hjorth complexity Interquartile Size Mean X Weighted Center
Hjorth mobility Kurtosis Mean Square Value Y Weighted center
Hurst exponent Line Length Minimum
Interquartile Size Maximum Q1
Kurtosis Mean Q2
Line Length Mean Square Value Q3
Maximum Median Spectral Band Energy
Mean Minimum Spectral Band Width
Mean Square Value Mode Spectral Centroid
Median Non-linear energy Standard deviation
Minimum Peak Frequency
Mode Q1
Non-Linear Energy Q2
Q1 Q3
Q2 Renyi entropy
Q3 Shannon entropy
Renyi entropy Spectral Centroid
Shannon entropy Spectral Entropy
Standard deviation Spectral Flatness

Standard deviation

In total, 285 features were extracted from each EEG segment evaluated. However, this

large quantity of measures can make the convergence of ML algorithms difficult. Compared

to related works, a much smaller amount of features are used. In this case, feature selection

methods are applied to estimate a suitable feature subset for building predictive models.

4.4 Feature Selection

This work proposes two feature selection techniques: one based on filter and another on

the wrapper. They are detailed in this Section.

4.4.1 Filter by Pearson’s Correlation Coefficient

The features were first analyzed by the filter method. The proposed algorithm was a CFS

based on Pearson’s correlation. A Pearson correlation coefficient matrix is generated to estimate

the significance of each feature. Only features with more than 50% correlation with the output

variable are selected for dimensionality reduction. This parameter setting is applied because it
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was enough to represent the knowledge in the database, according to a previous study (still

unpublished). In the next step, extracted features are compared, and those with a correlation

greater than 50% are selected. Features with the lowest correlation with the output variable are

excluded from the correlated pair.

Figure 8 illustrates results of the proposed filter method. This figure shows a reduction

from 285 features to 37 in the first stage and 4 in the final stage.

Figura 8 – Feature selection by Pearson’s correlation coefficient.

These four features were evaluated by the methods of ML NB, KNN, SVM, and ANN. The

settings for each algorithm are covered in Section 4.5. In the evaluation, ten-fold cross-validation

is used. The NB model reached the lowest accuracy, 58.4%. Among the MLP classifiers, the

model that stood out was the model with the RELU activation function in the intermediate layer,

which obtained an accuracy of 67.8%. Of the KNN models, the one that achieved the highest

classification was the one that used five nearest neighbours, which reached an accuracy of

73.6%. The SVM model, trained using a third-order polynomial kernel function, achieved the

highest accuracy among all classifiers, which was 77.8%.

It is understood that the low amount of features, despite considerable correlation with the

output variable, could not represent enough knowledge for ML algorithms to achieve satisfactory

performance. Thus, increasing the feature amount, considering Pearson’s correlation coefficient,

could improve the performance of ML methods. For this, the minimum correlation threshold with

the output variable was reduced from 50% to 40%, and measures were removed until a minimum

quantity in the evaluated set was reached. This experiment was repeated for sets of 50, 40, 30,

20 and 10 features.

4.4.2 Wrapper Technique Based on Genetic Algorithm

Based on the technique presented in Section 3.3.2, an initial population of 90 individuals

was used in the experimental evaluation. For classifier building, the third-order polynomial SVM

is used since it was the setting that obtained the highest accuracy in the previous experiment.

As a metric for evaluating the models, accuracy is used. The considered chance of an individual

mutating is 5%. The difference between the best and the worst individual less than 0.01% is set
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as a stopping criterion, so the chances of getting better samples than the current ones are almost

non-existent. These parameters were determined by previous experiments (still not published).

Unlike what were done in the filter technique, cross-validation was not used in the wrap-

per. In this case, the data was divided into two sets, 80% for training and 20% for testing. As this

method is tested several times, for each feature subset generation, a new evaluation is made by

training an SVM model, resulting in different validation and test subsets. This approach is similar

to the division that occurs in cross-validation, allowing fast convergence.

The wrapper technique was used to generate subsets of 4, 10, 20, 30, 40, and 50 features

and compare them with those generated by the filter method. Figure 9 shows the difference, in

accuracy, between the best and worst individuals from each subset, according to the generation

evolution. The dashed black line represents the stopping criterion.

Figura 9 – Difference in accuracy between the best and worst individual of each population per
generation.

The experiment with 50 features was the fastest to converge, with only 29 generations.

The experiment with four features required more generations for convergence, which was 113.

Apparently, the smaller the number of features, the more generations it takes for this algorithm

to converge. However, the experiment with 30 features took fewer generations to converge than

with 40 features. This fact probably occurred due to the algorithm having randomly made better

choices at the time of reproduction or evolution of individuals.

4.4.3 Selected Features

The two feature selection methods used in this work presented distinct feature sets. In

the filter selection, features from a subset of size four are kept until the selection of the size fifty

subset. This operation is due to how the filter technique is implemented, always looking for the

features that most correlate with the output class.

In the wrapper method, due to its randomness, the sets were formed by features that

were not repeated often, forming highly distinct subsets.
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Among the 285 features, 157 features were selected at least once by the proposed se-

lection of feature methods. The comparison among the features selected by each method can

be seen in the supplementary material3.

4.5 Classifier building

The classifiers were constructed using the selected feature subsets as input to ML algo-

rithms. In this work, variations of the methods described in Section 3.4 were discussed.

The model based on NB was the Multinomial Variation Naïve Bayes (RENNIE et al.,

2003), which adapts the versatility of the traditional algorithm for the classification of multiclass

models. For the models based on KNN, described in the algorithm of Section 3.4.2, different 𝑘s

were used: 1, 3, 5, and 7.

For SVM model building, the C-Support Vector Classification variation of libsvm (CHANG;

LIN, 2011) is used. This tool is recommended for small samples (less than tens of thousands)

and handles multiclass problems as one against one, decreasing the chances of the algorithm

being spatialized in just one class. In the SVM approach, linear, polynomial (third, fifth, and

seventh order polynomials), radial base function (RBF), and sigmoid function were evaluated

because they are the most common in problems of this nature.

As a basis for the ANN models based on the MLP architecture, fully connected three-

layer topologies were used. The input layer has the number of source nodes equal to the feature

subset length. The output layer comprises five neurons with activation softmax, which returns a

probability vector of the EEG segment of the network input referring to one of the five classes

considered in this study. Only one middle (hidden) layer can implement any continuous function

(CYBENKO, 1989) in addition to Heaton (2008)’s suggestion, in which this layer must have the

number of two-thirds of the nodes input layer sources plus the quantity of output layer neurons.

In this article, six different activation functions for the middle (hidden) layer are discussed:

hyperbolic tangent, sigmoid, softplus, Exponential Linear Unit (ELU), Scaled Exponential Linear

Unit (SELU) and Rectified Linear Unit (RELU), as they were functions used in previous works

that showed satisfactory results (VARGAS; OLIVA; TEIXEIRA, 2021).

As the algorithm’s stopping criterion metric, the mean square error (MSE) was used,

defined according to Equation (35), where 𝑛 is the number of samples, 𝑌 is the true value of the

output, and 𝑌 is the predicted value. The higher the MSE, the worse the model performance. As

a stopping criterion, during susceptible iterations of the training algorithm, MSE could not have

a reduction in the subsequent ten iterations.

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖−1

(𝑌𝑖 − 𝑌 𝑖)
2. (35)

3 https://ddsl.me/vZy7AYr
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Although some ML algorithms can use embedded methods, such as ANN that implement

L1 regularization to select features, these parameters were not changed in the implementation.

So, only RF models are considered embedded in our experiments.

The 17 model variations (one NB, four KNN, six SVM, and six MLP) are tested for the

12 feature subsets selected by the selection techniques (six by the filter and six by the wrapper)

proposed. So, 204 models were built for feature selection evaluation. On the other hand, 60 RF

models were built, whose variations change the depth of the tree and the number of features

used per node. RF techniques internally use built-in feature selection. Models that use the entire

set of features, that is, do not use dimensionality reduction techniques, were also analyzed to

compare the results.

In total, 281 variations of classification models were evaluated4.

4.6 Classifier Evaluation

ML classifiers built from the selected feature subsets are evaluated using the ten-fold

cross-validation technique. Figure 10 presents the accuracy distribution (Y-axis) of the most ac-

curate model for each ML algorithm, considering the length of each feature subset (X-axis).

In this figure, the long dashed line represents the second quartile, and the short dashed lines

represent the first and third quartiles of the ten-fold.

For NB models (Figure 10(a)), the accuracy increases when the amount of selected fea-

tures increases for both attribute selection techniques. In most cases, the filter-based method’s

performance reached superior accuracy compared to the wrapper. The filter-based model built

from a subset with four features achieved the worst mean accuracy, which was 58.4%. The

highest mean accuracy filter-based model (70.8%) is built from a subset with 40 features. Howe-

ver, the models that used features selected by the wrapper method achieved the highest (71.2%)

and lowest (43.2% ) accuracy for the NB algorithm when applied in 40 and four features, respec-

tively.

The classifiers based on MLP (Figure 10(b)) obtained the lowest variation of mean accu-

racy (approximately 10%) among the ML algorithms used in this work. The filter-based models

obtained a slightly superior performance compared to the wrapper-based models. The filter-

based model built from ten selected features and set with ELU activation function achieved the

highest mean accuracy (73.2%). The most accurate wrapper-based model (mean accuracy of

71.4%) was constructed using 40 selected features and set with SELU activation function.

For the KNN algorithm (Figure 10(c)), the filter-based model achieved the highest ave-

rage accuracy (86.6%). It was built with 40 features, considering five nearest neighbours during

classification. The wrapper-based model with the highest average accuracy (82.6%) was trained

using 50 features, considering seven nearest neighbours.

4 102 models with feature selection by the filter method, 102 models with feature selection by the wrapper
method, 60 models based on the RF algorithm, and 17 models without feature selection
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(a) NB (b) MLP

(c) KNN (d) SVM

Figura 10 – 10-fold distribution for the proposed filter and wrapper feature selection techniques.

Among the algorithms presented so far, the models that used SVM were the ones that

obtained the best results, mainly using the third-order polynomial kernel. These models reached

the better metrics, except one built from a subset with four features. The wrapper-based models

obtained mean accuracy values between 71% (four feature subset) and 87.6% (30 feature sub-

set). The filter-based classifiers reached mean accuracy of 87.2% (the highest in this setting)

for subsets with 40 and 50 features. As a tie-breaking criterion, the filter-based model with 40

features performs better because it needs fewer computational resources to achieve the same

result compared to one built from 50 features.

The results presented in Figure 10 suggest that, among all the models, the ML algorithm

that obtained the best metrics was the SVM with third order polynomial kernel for both selection

techniques of features. For the filter method, a mean accuracy of 87.2% is reached. For the

wrapper method, a mean accuracy of 87.6% is achieved.

It is also noteworthy that in most of the evaluated algorithms, the distribution and the

interquartile distance of the models with 30 and 40 features are more compact. This distribution

directly impacts the accuracy standard deviation. Thus, the results are less distributed in the
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evaluated folds. In this sense, our experimental evaluation suggests that more homogeneous

and representative features belong to the sets of 30 and 40 features.

RF-based models were also evaluated. The RF models were taken into account to com-

pare with the highest results of the Filter and Wrapper methods. Due to how RF selects the

characteristics, the models generated based on RF did not obtain great variation between their

results (less than 1% between the highest and lowest average accuracy of the 10 folds), obtai-

ning their best performance with a forest of 40 trees and an average accuracy of 90.99%.

Additionally, models generated using attribute extraction methods are compared to clas-

sifiers built using all 285 features. This comparison aims to verify whether the attribute selection

method improved the performance of ML algorithms in our study. The accuracy distribution of

the models that obtained the best metrics is presented in Figure 11.

Figura 11 – 10-fold distribution for all extracted features compared by the ML methods used in this
study.

According to Figure 11, the NB algorithm obtained the lowest mean accuracy, reaching

74.8% accuracy. The MLP classifier that obtained the highest accuracy (82.2%) was the one that

used the ELU activation function. The KNN model, with a 1-nearest neighbour, reached a mean

accuracy of 89.0% and the lowest standard deviation (3.16%). The best metrics were obtained

again by the SVM models trained using a seventh-order polynomial kernel, reaching a mean

accuracy of 90.2%.

The evaluative metrics by class, according to Section 3.5.1, of the models that obtained

the highest average accuracy by attribute selection technique are presented in Table 5.
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A B C D E

H
R

C

Filter 96.40 96.80 91.60 90.80 98.80
Wraper 97.40 97.60 91.60 90.60 98.00
Embeding 97.40 97.20 94.60 94.00 98.80
Without selection 98.20 98.40 92.60 92.20 99.00

S
pe

.

Filter 97.18 98.26 92.50 96.18 99.76
Wraper 97.74 98.48 93.23 95.75 99.23
Embeding 97.49 98.75 95.57 97.55 99.31
Without selection 98.06 99.74 95.29 95.18 99.52

S
en

.

Filter 93.02 91.14 87.74 67.69 94.27
Wraper 95.17 94.43 83.71 70.90 93.38
Embeding 97.00 90.51 90.64 80.86 97.56
Without selection 98.89 94.01 80.77 79.39 97.11

P
re

.

Filter 90.74 93.45 74.56 80.63 99.00
Wraper 91.31 94.12 75.14 81.12 97.06
Embeding 90.99 94.21 85.51 88.15 95.83
Without selection 92.44 99.17 80.68 79.69 97.75

Tabela 5 – Percentage(%) of HRC, Pre., Sen., and Spe. by class of the best ML models for attribute
selection techniques and without selection.

In this table, it is possible to visualize the relationship between classifiers and classes. All

four models present larger HRC for class E. These results demonstrate that these models can

more easily distinguish the samples from the ictal segments, which refer to the moment of the

crisis, as they present higher metrics in the E class. The lowest values are observed for Sen.

and Pre. of class D models. These values occur because several segments of classes C and D

have high similarities, making their differentiation difficult.

With the Table 5 it is possible to compute the metrics as presented in Section 3.5.1

which are represented by Table 6. The RF model stands out in all the metrics evaluated, even

surpassing the accuracy obtained by the model without feature selection. It is worth noting that

the filter-based and wrapper-based models obtained similar results, although the model that

uses the wrapper filter reached slightly higher metrics. Also, there is a variation of less than 5%

between the metrics of the four models. This fact highlights the possibility that the models have

the same selection capability. Additionally, the RF model results must be highlighted since they

surpassed those obtained by the model without attribute selection.

Features
Selection

Selected
Features

ML
Algorithm

Model
Accuracy

Average by Class Macro
F1-ScoreHRC Spe. Sen. Pre.

Filter 40 SVM 87.20% 94.88% 96.78% 86.77% 87.67% 87.22%
Wraper 30 SVM 87.60% 95.04% 96.89% 87.52% 87.75% 87.63%
Embeding - RF 90.99% 96.40% 97.74% 91.32% 90.94% 91.13%
Without selection 285 SVM 90.20% 96.08% 97.56% 90.03% 89.95% 89.99%

Tabela 6 – Accuracy, macro F1-Score, averages of HRC, specificity, precision, and sensitivity of
the models with the best performance.

Despite the difference in metrics between the models, it is not yet possible to prove that

a model has a superior performance in relation to others. For this, hypothesis statistical tests
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Feature
Selection Method

p-Value
Shapiro-Wilk t-Student

Filter 0.95347 0.14513
Wraper 0.47262 0.15914
Embeding 0.39603 0.70219
Without selection 0.41498 -

Tabela 7 – Results of the Shapiro-Wilk and t-Student tests.

must be conducted, whose chosen methods and their respective results are presented in the

next section.

4.6.1 Statistical Evaluation

Two tests were applied to verify if there is a statistically significant difference between the

models: the Shapiro-Wilk test; and the t-Student or Mann-Whitney test, depending on the result

of the first test.

Firstly, it was verified if the distribution of the accuracy of the k-fold behaved like a normal

distribution. Although Figure 10 and 11 represent, approximately, a normal distribution for the

models that obtained the best result by the selection of feature technique, this conclusion can

only be reached with a test of normality, like Shapiro-Wilk.

Table 7 presents the results of the Shapiro-Wilk test application. In all cases, the null

hypothesis is rejected. Thus, the alternative hypothesis is accepted that accuracy values are

normally distributed. As the samples are normally distributed, the t-Student test is chosen. In

this case, the null hypothesis suggests that differences between the models are merely due to

randomness. In contrast, the alternative hypothesis suggests that the difference among models

is due to their capacity to classify. After the statistical hypothesis testing, it was stated that the

null hypothesis was accepted. Therefore, the models have the same classification capacity.

The t-Student test was also used to compare the two proposed selection of feature

methods, such as Pearson correlation (filter) and genetic algorithm (wrapper). As a result, this

test reached a p-value of 0.82558. In this way, the null hypothesis that the two models may have

different results is also rejected, with 5% significance.

4.6.2 Comparison of Results

In this Section, our results are compared with related studies. All compared works pre-

sented the classification of the five classes, i.e. the same database is used. Table 8 compares

the following metrics: sensitivity, specificity, macro F1-Score, and accuracy.

Our result surpassed the metrics of related works, exposing a classification potential si-

milar to those considered state of the art. Most existing works surpass the classification capacity

of the models proposed in this work using deep learning techniques. These approaches have
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Spe. Sen. MaF1 Acc.
Tzallas, Tsipouras e Fotiadis (2009) 89.10% 89.00% - 89.00%
Liang, Wang e Chang (2010) - - - 85.90%
Nicolaou e Georgiou (2012) 93.23% 94.38% - 86.10%
Ramakrishnan e Murugavel (2019) 93.00% 97.00% - 95.00%
Oliva e Rosa (2019) - - - 86.00%
Tsipouras (2019) - - - 91.20%
Türk e Özerdem (2019) 98.33% 93.60% 93.57% 93.60%
Li et al. (2020) - - 94.59% 94.60%
Vargas, Oliva e Teixeira (2021) 96.05% 84.45% 85.20% 84.20%
Filter 96.78% 86.77% 87.22% 87.20%
Wraper 96.89% 87.52% 87.63% 87.60%
Embeding 97.74% 91.32% 91.13% 90.99%
Without selection 97.56% 90.03% 89.99% 90.20%

Tabela 8 – Comparison of the results obtained with works found in the literature for the classifica-
tion of 5 classes of the Bonn database.

difficult explainability and reproducibility and require large databases for training (KOHLI et al.,

2016; MARCUS, 2020). Thus, it is argued that although they show compelling results, the prac-

tical applicability of these models may expose a significant gap.

It is also possible to point out that some related works do not use cross-validation

methods such as Nicolaou e Georgiou (2012), which only divides the samples into 60% for

training and 40% for testing. This approach is similar to using only one fold. In comparison, the

analysis of the results separately from the folds in the experiments previously conducted by us

(still not published) showed accuracy of 96%, surpassing that obtained in all the related works

mentioned.

Other works such as Tzallas, Tsipouras e Fotiadis (2009) use unconventional cross-

validation. A division of 10 folds is done, but the division between training and testing is 50%

randomly. This method can eventually use similar training sets by adjusting the models to the

exposed data.

Other references, like Ramakrishnan e Murugavel (2019) and Türk e Özerdem (2019),

make use of the ten-fold cross-validation, but it is not clear how the training and testing sets

are divided. In this way, the direct comparison of the results is inconclusive since the validation

methods were conducted differently and directly affected the final result.

It has not yet been possible to make a comparison through statistical tests with related

works because, in general, only the mean of cross-validation folds are exposed, compromising

the comparative stage.
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5 CONCLUSION

In this article, predictive models were built to classify EEG segments among five diffe-

rent classes. For this, firstly, PS, SG, and BG are generated by the multitaper method, from

each EEG segment. A total of 285 measurements were extracted from the EEG representations.

Subsequently, features were selected by two proposed techniques, and the resulting subsets

were evaluated by classifiers constructed from variations of ML algorithms. The evaluation of

the results was carried out through cross-validation, confusion matrix, and statistical hypothesis

tests.

Although it was impossible to define the best classifier for epilepsy detection, the expe-

rimental evaluations reached competitive results concerning previously published works, which

are achieved mainly by models that use deep learning approaches. Even though many methods

based on deep learning have been used in recent research, conventional ML methods are still

effective for classification problems, as they demand smaller databases and less computational

power. Furthermore, training efficient classifiers require only a small and representative database

instead of extensive and commonly redundant ones. It is also believed that the performance of

the proposed predictive models can be improved by extracting new features, using other ML

algorithms to construct classifiers, and adjusting parameters of already used ML algorithms.

The models proposed in this work benefit from using feature selection by computational

techniques, thus facilitating signal processing by ML methods. The experimental results confirm

that the proposed methods reduce the computational effort by considerably reducing the number

of features extracted from the EEG segments to obtain equivalently equal results.

5.1 Contributions

EEG segments in the form of time series were converted into three representations used

in the literature through variations of the multitaper method. A total of 285 features were extracted

from the EEG.

This work used feature selection techniques to assemble representative subsets that 281

predictive models evaluated.

With a reduced but representative set of characteristics, it was possible to achieve signi-

ficant results, reaching metrics close to works considered state of the art.

5.2 Limitations

The database used is limited to only one channel. Encephalographic equipment acquisi-

tions make use of multiple data channels in the exam process. It was not possible to statistically
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compare related works because, in a usual way, the works do not present the results in the form

of folds. Only the average of the folds is presented as the final result.

5.3 Future works

Future works include the implementation of other measures for feature extraction, new

feature selection techniques, and using different ML algorithms to build classifiers. The evaluated

models can also be used in more complex databases, such as epileptic signal databases with

more channels.



56

REFERÊNCIAS

ACHARYA, U. R.; SREE, S. V.; SURI, J. S. Automatic detection of epileptic eeg signals using
higher order cumulant features. International journal of neural systems, World Scientific,
v. 21, n. 05, p. 403–414, 2011.

ACHARYA, U. R. et al. Automated eeg analysis of epilepsy: A review. Knowledge-Based
Systems, v. 45, p. 147–165, 2013. ISSN 0950-7051.

AHA, D. W.; KIBLER, D.; ALBERT, M. K. Instance-based learning algorithms. Machine learning,
Springer, v. 6, n. 1, p. 37–66, 1991.

ANDRZEJAK, R. G. et al. Indications of nonlinear deterministic and finite-dimensional structures
in time series of brain electrical activity: Dependence on recording region and brain state.
Physical Review E, APS, v. 64, n. 6, p. 061907, 2001.

ANGUITA, D. et al. The ‘k’in k-fold cross validation. In: I6DOC. COM PUBL. 20th European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN). [S.l.], 2012. p. 441–446.

BABADI, B.; BROWN, E. N. A review of multitaper spectral analysis. IEEE Transactions on
Biomedical Engineering, IEEE, v. 61, n. 5, p. 1555–1564, 2014.

BABATUNDE, O. et al. A genetic algorithm-based feature selection. International Journal of
Electronics Communication and Computer Engineering, v. 5, p. 889–905, 07 2014.

BELLMAN, R. Dynamic programming. Science, v. 153, n. 3731, p. 34–37, 1966.

BLUM, A. L.; LANGLEY, P. Selection of relevant features and examples in machine learning.
Artificial Intelligence, v. 97, n. 1, p. 245–271, 1997. ISSN 0004-3702. Relevance.

BRIGHAM, E. O. The fast Fourier transform and its applications. [S.l.]: Prentice-Hall, Inc.,
1988.

CHANG, C.-C.; LIN, C.-J. Libsvm: a library for support vector machines. ACM transactions on
intelligent systems and technology (TIST), Acm New York, NY, USA, v. 2, n. 3, p. 1–27, 2011.

COHEN, L. Time-frequency analysis. [S.l.]: Prentice hall New Jersey, 1995. v. 778.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20, n. 3, p.
273–297, 1995.

CURA, O. K.; AKAN, A. Analysis of epileptic EEG signals by using dynamic mode decomposition
and spectrum. Biocybernetics and Biomedical Engineering, Elsevier, v. 41, n. 1, p. 28–44,
2021.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, Springer, v. 2, n. 4, p. 303–314, 1989.

DEMŠAR, J. Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research, JMLR. org, v. 7, p. 1–30, 2006.

DIETTERICH, T. G. Approximate statistical tests for comparing supervised classification
learning algorithms. Neural computation, MIT Press One Rogers Street, Cambridge, MA
02142-1209, USA journals-info . . . , v. 10, n. 7, p. 1895–1923, 1998.



57

DIETTERICH, T. G. Ensemble methods in machine learning. In: SPRINGER. International
workshop on multiple classifier systems. [S.l.], 2000. p. 1–15.

DUBNOV, S. Generalization of spectral flatness measure for non-gaussian linear processes.
IEEE Signal Processing Letters, IEEE, v. 11, n. 8, p. 698–701, 2004.

FISHER, R. S.; SCHARFMAN, H. E.; DECURTIS, M. How Can We Identify Ictal and Interictal
Abnormal Activity? Dordrecht: Springer Netherlands, 2014. 3–23 p. ISBN 978-94-017-8914-1.

FIX, E.; HODGES, J. L. Discriminatory analysis. nonparametric discrimination: Consistency
properties. International Statistical Review/Revue Internationale de Statistique, JSTOR,
v. 57, n. 3, p. 238–247, 1989.

FREEDMAN ROBERT PISANI, R. P. D. Statistics. 4th. ed. [S.l.]: W. W. Norton & Company,
2007. ISBN 0393929728,978-0393929720.

FREEMAN, W.; QUIROGA, R. Q. Imaging brain function with EEG: advanced temporal and
spatial analysis of electroencephalographic signals. [S.l.]: Springer Science & Business
Media, 2012.

FREITAS, A. A. Data mining and knowledge discovery with evolutionary algorithms. [S.l.]:
Springer Science & Business Media, 2002.

GHAYAB, H. R. A. et al. Classification of epileptic eeg signals based on simple random sampling
and sequential feature selection. Brain informatics, SpringerOpen, v. 3, n. 2, p. 85–91, 2016.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press, 2016.

GRANDINI, M.; BAGLI, E.; VISANI, G. Metrics for multi-class classification: an overview. arXiv
preprint arXiv:2008.05756, 2020.

GUYON, I.; ELISSEEFF, A. An introduction to feature extraction. In: Feature extraction. [S.l.]:
Springer, 2006. p. 1–25.

HALL, M. A. Correlation-based feature selection of discrete and numeric class machine
learning. Computer Science Working Papers, University of Waikato, Department of Computer
Science, 2000.

HASSAN, K. M. et al. Epileptic seizure detection from eeg signals using multiband features with
feedforward neural network. In: IEEE. 2019 International Conference on Cyberworlds (CW).
[S.l.], 2019. p. 231–238.

HASTIE, T. et al. The elements of statistical learning: data mining, inference, and
prediction. [S.l.]: Springer, 2009. v. 2.

HAYKIN, S. Neural Networks and Learning Machines. 3rd. ed. [S.l.]: Prentice Hall, 2008.
ISBN 0131471392.

HEARST, M. A. Trends & controversies: Support vector machines. IEEE Intell. Syst., v. 13, p.
18–28, 1998.

HEATON, J. Introduction to neural networks with Java. [S.l.]: Heaton Research, Inc., 2008.

HEATON, J. An empirical analysis of feature engineering for predictive modeling. In:
SoutheastCon 2016. [S.l.: s.n.], 2016. p. 1–6.

HERNÁNDEZ, D. et al. Detecting epilepsy in eeg signals using time, frequency and
time-frequency domain features. In: Computer science and engineering—theory and
applications. [S.l.]: Springer, 2018. p. 167–182.



58

HJORTH, B. Eeg analysis based on time domain properties. Electroencephalography and
clinical neurophysiology, Elsevier, v. 29, n. 3, p. 306–310, 1970.

HO, T. K. Random decision forests. In: IEEE. Proceedings of 3rd international conference
on document analysis and recognition. [S.l.], 1995. v. 1, p. 278–282.

HOSSEINZADEH, D.; KRISHNAN, S. Combining vocal source and mfcc features for enhanced
speaker recognition performance using gmms. In: 2007 IEEE 9th Workshop on Multimedia
Signal Processing. [S.l.: s.n.], 2007. p. 365–368.

HOSSIN, M.; SULAIMAN, M. N. A review on evaluation metrics for data classification
evaluations. International journal of data mining & knowledge management process,
Academy & Industry Research Collaboration Center (AIRCC), v. 5, n. 2, p. 1, 2015.

HWANG, S. T.; GOODMAN, T.; STEVENS, S. J. Painful seizures: a review of epileptic ictal pain.
Current pain and headache reports, Springer, v. 23, n. 11, p. 1–7, 2019.

JOHN, G. H.; KOHAVI, R.; PFLEGER, K. Irrelevant features and the subset selection problem.
In: Machine learning proceedings 1994. [S.l.]: Elsevier, 1994. p. 121–129.

KEETON, G. What is crest factor and why is it important? 2015. Disponível em:
https://encr.pw/lDA1n. Acesso em: 09 abr. 2021.

KHALID, S.; KHALIL, T.; NASREEN, S. A survey of feature selection and feature extraction
techniques in machine learning. In: 2014 Science and Information Conference. [S.l.: s.n.],
2014. p. 372–378.

KIM, T. K. T test as a parametric statistic. Korean journal of anesthesiology, Korean Society
of Anesthesiologists, v. 68, n. 6, p. 540, 2015.

KOHAVI, R.; JOHN, G. H. Wrappers for feature subset selection. Artificial Intelligence, v. 97,
n. 1, p. 273–324, 1997. ISSN 0004-3702. Relevance.

KOHAVI, R. et al. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: MONTREAL, CANADA. Ijcai. [S.l.], 1995. v. 14, p. 1137–1145.

KOHLI, N. et al. Hierarchical representation learning for kinship verification. IEEE Transactions
on Image Processing, IEEE, v. 26, n. 1, p. 289–302, 2016.

KRAMER, C.; GERHARDT, H. J. Advances in wind engineering. [S.l.]: Elsevier, 2012.

KUHN, M.; JOHNSON, K. et al. Applied predictive modeling. [S.l.]: Springer, 2013. v. 26.

LAL, T. N. et al. Embedded methods. In: Feature extraction. [S.l.]: Springer, 2006. p. 137–165.

LI, D. et al. A sequential method using multiplicative extreme learning machine for epileptic
seizure detection. Neurocomputing, v. 214, p. 692–707, 2016. ISSN 0925-2312.

LI, L. M. et al. Demonstration project on epilepsy in brazil: situation assessment. Arquivos de
neuro-psiquiatria, SciELO Brasil, v. 65, p. 5–13, 2007.

LI, X. Signal processing in neuroscience. [S.l.]: Springer, 2016. 288 p. ISBN 9811018219,978-
9811018213.

LI, Y. et al. Epileptic seizure detection in eeg signals using a unified temporal-spectral
squeeze-and-excitation network. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, IEEE, v. 28, n. 4, p. 782–794, 2020.

https://encr.pw/lDA1n


59

LIANG, S.-F.; WANG, H.-C.; CHANG, W.-L. Combination of eeg complexity and spectral
analysis for epilepsy diagnosis and seizure detection. EURASIP journal on advances in
signal processing, Springe, v. 2010, p. 1–15, 2010.

LIU, Z.; WANG, Y.; CHEN, T. Audio feature extraction and analysis for scene segmentation
and classification. Journal of VLSI signal processing systems for signal, image and video
technology, Springer, v. 20, n. 1, p. 61–79, 1998.

LORENA, A. C.; GAMA, J.; FACELI, K. Inteligência artificial: uma abordagem de
aprendizado de máquina. [S.l.]: Grupo Gen-LTC, 2011. ISBN 8521618808.

MANOLIS, T. A. et al. Sudden unexpected death in epilepsy: The neuro-cardio-respiratory
connection. Seizure, v. 64, p. 65–73, 2019. ISSN 1059-1311.

MARCUS, G. The next decade in ai: four steps towards robust artificial intelligence. arXiv
preprint arXiv:2002.06177, 2020.

MARKATOU, M. et al. Analysis of variance of cross-validation estimators of the generalization
error. Journal of Machine Learning Research 6, p. 1127–1168, 2005.

MARTÍNEZ-VARGAS, J. D.; GODINO-LLORENTE, J. I.; CASTELLANOS-DOMINGUEZ,
G. Time–frequency based feature selection for discrimination of non-stationary biosignals.
EURASIP Journal on Advances in Signal Processing, Springer, v. 2012, n. 1, p. 1–18, 2012.

MEHLA, V. K. et al. An efficient method for identification of epileptic seizures from eeg signals
using fourier analysis. Physical and Engineering Sciences in Medicine, Springer, v. 44, n. 2,
p. 443–456, 2021.

MIOT, H. A. Avaliação da normalidade dos dados em estudos clínicos e experimentais.
SciELO Brasil, 2017. 88–91 p. Disponível em: https://www.t.ly/D4ip.

MITCHELL, T. M. et al. Machine learning. [S.l.]: McGraw-hill New York, 1997.

MOLLA, M. et al. Graph eigen decomposition-based feature-selection method for epileptic
seizure detection using electroencephalography. Sensors, Multidisciplinary Digital Publishing
Institute, v. 20, n. 16, p. 4639, 2020.

MURSALIN, M. et al. Automated epileptic seizure detection using improved correlation-based
feature selection with random forest classifier. Neurocomputing, Elsevier, v. 241, p. 204–214,
2017.

NICOLAOU, N.; GEORGIOU, J. Detection of epileptic electroencephalogram based on
permutation entropy and support vector machines. Expert Systems with Applications,
Elsevier, v. 39, n. 1, p. 202–209, 2012.

NIKIAS, C.; MENDEL, J. Signal processing with higher-order spectra. IEEE Signal Processing
Magazine, v. 10, n. 3, p. 10–37, 1993.

OLIVA, J. T. Geração automática de laudos médicos para o diagnóstico de epilepsia por
meio do processamento de eletroencefalogramas utilizando aprendizado de máquina.
2019. Tese (Doutorado) — Universidade de São Paulo, 2019.

OLIVA, J. T. et al. Prototype system for feature extraction, classification and study of medical
images. Expert Systems with Applications, Elsevier, v. 63, p. 267–283, 2016.

OLIVA, J. T.; ROSA, J. L. G. Predictive models for differentiation between normal and abnormal
eeg through cross-correlation and machine learning techniques. In: Towards Integrative
Machine Learning and Knowledge Extraction. [S.l.]: Springer, 2017. p. 134–145.

https://www.t.ly/D4ip


60

OLIVA, J. T.; ROSA, J. L. G. Classification for EEG report generation and epilepsy detection.
Neurocomputing, Elsevier, v. 335, p. 81–95, 2019.

OLIVA, J. T.; ROSA, J. L. G. Binary and multiclass classifiers based on multitaper spectral
features for epilepsy detection. arXiv e-prints, p. arXiv–2004, 2020.

OLIVA, J. T.; ROSA, J. L. G. Binary and multiclass classifiers based on multitaper spectral
features for epilepsy detection. Biomedical Signal Processing and Control, v. 66, p. 102469,
2021. ISSN 1746-8094.

OPITZ, J.; BURST, S. Macro f1 and macro f1. arXiv preprint arXiv:1911.03347, 2019.

PAGE, A. et al. Comparing raw data and feature extraction for seizure detection with deep
learning methods. In: The Twenty-Seventh International Flairs Conference. [S.l.: s.n.], 2014.
p. 284–287.

PERCIVAL, D. B.; WALDEN, A. T. et al. Spectral analysis for physical applications. [S.l.]:
cambridge university press, 1993.

PHUONG, T. M.; LIN, Z.; ALTMAN, R. B. Choosing snps using feature selection. In: IEEE.
2005 IEEE Computational Systems Bioinformatics Conference (CSB’05). [S.l.], 2005. p.
301–309.

PINCUS, S. M.; GLADSTONE, I. M.; EHRENKRANZ, R. A. A regularity statistic for medical data
analysis. Journal of clinical monitoring, Springer, v. 7, n. 4, p. 335–345, 1991.

POULARIKAS, A. D. Transforms and applications handbook. 3ed.. ed. [S.l.]: CRC, 2010.
914 p. ISBN 1420066528,978-1420066524.

PRASETIYOWATI, M. I.; MAULIDEVI, N. U.; SURENDRO, K. The speed and accuracy evaluation
of random forest performance by selecting features in the transformation data. In: Proceedings
of the 2020 The 9th International Conference on Informatics, Environment, Energy and
Applications. New York, NY, USA: Association for Computing Machinery, 2020. (IEEA 2020),
p. 125–130. ISBN 9781450376891. Disponível em: https://doi.org/10.1145/3386762.3386768.

QAISAR, S. M.; HUSSAIN, S. F. Effective epileptic seizure detection by using level-crossing eeg
sampling sub-bands statistical features selection and machine learning for mobile healthcare.
Computer Methods and Programs in Biomedicine, Elsevier, v. 203, p. 106034, 2021.

QIAN, B.; RASHEED, K. Hurst exponent and financial market predictability. In: PROCEEDINGS
OF THE IASTED INTERNATIONAL CONFERENCE CAMBRIDGE, MA. IASTED conference
on Financial Engineering and Applications. [S.l.], 2004. p. 203–209.

RAGHU, S. et al. A novel approach for classification of epileptic seizures using matrix
determinant. Expert Systems with Applications, Elsevier, v. 127, p. 323–341, 2019.

RAMAKRISHNAN, S.; MURUGAVEL, A. Epileptic seizure detection using fuzzy-rules-based
sub-band specific features and layered multi-class svm. Pattern Analysis and Applications,
Springer, v. 22, n. 3, p. 1161–1176, 2019.

RAMALINGAM, A.; KRISHNAN, S. Gaussian mixture modeling using short time fourier
transform features for audio fingerprinting. In: IEEE. 2005 IEEE International Conference on
Multimedia and Expo. [S.l.], 2005. p. 1146–1149.

REFAEILZADEH, P.; TANG, L.; LIU, H. Cross-validation. Encyclopedia of database systems,
Springer, v. 5, p. 532–538, 2009.

https://doi.org/10.1145/3386762.3386768


61

RENNIE, J. et al. Tackling the poor assumptions of naive bayes classifiers (pdf). ICML., 2003.
Disponível em: https://www.t.ly/lyQ4.

RIAZ, F. et al. Emd-based temporal and spectral features for the classification of eeg signals
using supervised learning. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, IEEE, v. 24, n. 1, p. 28–35, 2016.

ROSTAMI, M.; BERAHMAND, K.; FOROUZANDEH, S. A novel community detection based
genetic algorithm for feature selection. arXiv: Learning, 2020.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. nature, Nature Publishing Group, v. 323, n. 6088, p. 533–536, 1986.

SHANNON, C. E. A mathematical theory of communication. The Bell system technical
journal, Nokia Bell Labs, v. 27, n. 3, p. 379–423, 1948.

SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete samples).
Biometrika, JSTOR, v. 52, n. 3/4, p. 591–611, 1965.

SHARMA, M.; BHURANE, A. A.; Rajendra Acharya, U. Mmsfl-owfb: A novel class of orthogonal
wavelet filters for epileptic seizure detection. Knowledge-Based Systems, v. 160, p. 265–277,
2018. ISSN 0950-7051.

SHIN, H. W. et al. Review of epilepsy-etiology, diagnostic evaluation and treatment. Int J
Neurorehabilitation, v. 1, n. 130, p. 2376–0281, 2014.

SHOEIBI, A. et al. A comprehensive comparison of handcrafted features and convolutional
autoencoders for epileptic seizures detection in EEG signals. Expert Systems with
Applications, Elsevier, v. 163, p. 113788, 2021.

SLEPIAN, D.; POLLAK, H. O. Prolate spheroidal wave functions, Fourier analysis and
uncertainty—I. Bell System Technical Journal, Wiley Online Library, v. 40, n. 1, p. 43–63,
1961.

STUART, S. et al. Cortical activity during walking and balance tasks in older adults and in
people with parkinson’s disease: A structured review. Maturitas, v. 113, p. 53–72, 2018. ISSN
0378-5122.

TATUM, W. O. Handbook of EEG Interpretation. [S.l.]: Demos Medical Pub, 2007. 276 p. ISBN
1933864117,978-1933864112.

THARWAT, A. Classification assessment methods. Applied Computing and Informatics,
Emerald Publishing Limited, 2020.

THOMSON, D. J. Spectrum estimation and harmonic analysis. Proceedings of the IEEE,
IEEE, v. 70, n. 9, p. 1055–1096, 1982.

TSIPOURAS, M. G. Spectral information of EEG signals with respect to epilepsy classification.
EURASIP Journal on Advances in Signal Processing, SpringerOpen, v. 2019, n. 1, p. 1–17,
2019.

TÜRK, Ö.; ÖZERDEM, M. S. Epilepsy detection by using scalogram based convolutional neural
network from eeg signals. Brain sciences, Multidisciplinary Digital Publishing Institute, v. 9,
n. 5, p. 115, 2019.

TZALLAS, A. T.; TSIPOURAS, M. G.; FOTIADIS, D. I. Epileptic seizure detection in eegs using
time–frequency analysis. IEEE transactions on information technology in biomedicine,
ieee, v. 13, n. 5, p. 703–710, 2009.

https://www.t.ly/lyQ4


62

VAKKURI, A. et al. Time-frequency balanced spectral entropy as a measure of anesthetic drug
effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta
Anaesthesiologica Scandinavica, Wiley Online Library, v. 48, n. 2, p. 145–153, 2004.

VARGAS, D. L. d.; OLIVA, J. T.; TEIXEIRA, M. Uma abordagem baseada em redes neurais
artificiais sobre o espectro de potência de eletroencefalogramas para o auxílio médico na
classificação de crises epiléticas. In: SBC. Anais do XXI Simpósio Brasileiro de Computação
Aplicada à Saúde. [S.l.], 2021. p. 141–152.

WEI, G. et al. A novel hybrid feature selection method based on dynamic feature importance.
Applied Soft Computing, v. 93, p. 106337, 2020. ISSN 1568-4946.

World Health Organization. Epilepsy fact and world health organization and others sheet.
Planned Parenthood Federation of America, 2014.

World Health Organization. Epilepsy: a public health imperative. [S.l.]: World Health
Organization, 2019.

YANG, Y.; PEDERSEN, J. O. A comparative study on feature selection in text categorization. In:
NASHVILLE, TN, USA. Icml. [S.l.], 1997. v. 97, p. 35.

ZHANG, H. The optimality of naive bayes. Aa, v. 1, n. 2, p. 3, 2004.

ZHOU, S.-M.; GAN, J. Q.; SEPULVEDA, F. Classifying mental tasks based on features of
higher-order statistics from eeg signals in brain–computer interface. Information Sciences,
v. 178, n. 6, p. 1629–1640, 2008. ISSN 0020-0255.

ZILIAK, S. P values and the search for significance. Nature Methods, v. 14, n. 1, p. 3–4, 2017.

ZURLINI, G. et al. Highlighting order and disorder in social–ecological landscapes to foster
adaptive capacity and sustainability. Landscape Ecology, Springer, v. 28, n. 6, p. 1161–1173,
2013.


	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introduction
	1.1 Objectives
	1.1.1 General objective
	1.1.2 Specific objectives


	2 Related Works
	3 Proposal for Classification of EEG segments by Multidomain Analysis
	3.1 Representations of EEGs
	3.1.1 Frequency Domain
	3.1.2 Time-Frequency Domain
	3.1.3 Non-linear Analysis

	3.2 Features Extraction
	3.3 Selection of Features
	3.3.1 Filter
	3.3.2 Wrapper
	3.3.3 Embedded

	3.4 Construction of Classifiers
	3.4.1 Naïve Bayes
	3.4.2 K-Nearest Neighbors
	3.4.3 Support Vector Machines
	3.4.4 Artificial Neural Networks
	3.4.5 Random Forests

	3.5 Classifier Evaluation
	3.5.1 Confusion Matrix
	3.5.2 K-Fold Cross-Validation
	3.5.3 Statistical Hypothesis Tests


	4 Experimental Evaluation and Results
	4.1 EEG Database Acquisition
	4.2 EEG Segment Representations
	4.3 Feature Extraction
	4.4 Feature Selection
	4.4.1 Filter by Pearson's Correlation Coefficient
	4.4.2 Wrapper Technique Based on Genetic Algorithm
	4.4.3 Selected Features

	4.5 Classifier building
	4.6 Classifier Evaluation
	4.6.1 Statistical Evaluation
	4.6.2 Comparison of Results


	5 Conclusion
	5.1 Contributions
	5.2 Limitations
	5.3 Future works

	Referências

