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RESUMO

Conforme o uso de sistemas baseados em agentes tem crescido, cada vez mais o público

geral tem acesso a eles e é influenciado pelas decisões tomadas por tais sistemas. Isto torna

mais necessário que tais sistemas sejam capazes de explicarem suas decisões para usuários

leigos. Beliefs-Desires-Intentions é um modelo de agentes comumente utilizado. Ele pode ser

bem complexo, uma vez que o agente possui um processo de deliberação interno para decidir

quais objetivos ele irá perseguir baseado nas crenças que possui. Tal processo deliberativo é

chamado de seleção de objetivos. Quando pessoas explicam coisas umas às outras, elas fazem

uso de uma série de diferentes tipos de explicações. Um tipo de explicação muito comum é a

explicação contrastiva, onde dois cenários são comparados e a explicação é apresentada como

a diferença entre ambos. Desta forma, ao usar casos conhecidos e desconhecidos, é possível

apresentar as causas que diferenciam os dois cenários. O interesse em inteligência artificial

explicável tem crescido nos últimos anos, ainda assim poucos trabalhos são fundamentados

em estudos das ciências sociais e cognitivas em como humanos geram e avaliam explicações.

Assim sendo, esta dissertação busca identificar quais informações precisam ser apresentadas

para explicações contrastivas, baseado em achados das ciências sociais e cognitivas, e como

gerar tais explicações no contexto da seleção de objetivos de agentes Beliefs-Desires-Intentions

(BDI). Um método para gerar explicações contrastivas para seleção de objetivos baseada

em BDI foi proposto, fundamentado nos trabalhos de Bouwel e Weber (2002) e Grice (1975).

A estrutura das perguntas contrastivas propostas no trabalho de Bouwel e Weber (2002)

servem de base para a forma das perguntas e respostas que o método proposto atende.

O trabalho de Grice (1975) por sua vez estabelece requisitos para comunicação entre duas

partes, no caso deste trabalho, um agente e um usuário, que estão cooperando. Tais requisitos,

propostos por Grice na forma de quatro grupos de máximas (Quantidade, Qualidade, Relação

e Modo), estabelecem restrições e boas práticas em relação às informações que são trocadas

entre as partes. Ao basear-se nas máximas de Grice, espera-se que as explicações geradas

sejam próximas a duas pessoas conversando e explicando algo entre si. O método gera

um conjunto de possíveis explicações, onde cada uma é uma possível resposta, com seus

respectivos conjuntos de informações relevantes. Um estudo de caso mostra como os cálculos

das informações necessárias são feitos, e como os requisitos baseados no trabalho de Grice

são abordados no método. O método atende a três das quatro máximas de Grice, uma vez

que a máxima de Modo foi desconsiderada, já que depende da interação com o usuário, que



está fora do contexto deste trabalho. As máximas de Qualidade, Relação e Quantidade são

atendidas pelas formulações de cada tipo de pergunta utilizadas no primeiro procedimento.

O segundo procedimento auxilia na satisfação da máxima de Quantidade. A seleção de uma

única resposta precisa ser feito antes que a explicação possa ser apresentada para o usuário

final. Tanto a seleção quanto a apresentação da explicação estão fora do escopo deste trabalho.

Palavras-chaves: agente bdi; seleção de objetivos; explicação contrastiva; inteligência artificial

explicável.



ABSTRACT

As agent-based systems have been growing, more and more people have access to them

and are influenced by decisions taken by such systems. This increases the necessity for such

systems to be capable of explaining themselves to a lay user. The Beliefs-Desires-Intentions

is a commonly used agent model. It can be fairly complex because an agent has an internal

deliberation process to decide what goals it will pursue based on its beliefs. This deliberative

process is called goal selection. When humans explain things to each other, they make use of a

series of different types of explanations. One very common explanation type is the contrastive

explanation, where two scenarios are compared and the explanation presents the differences

between the cases. In such a way, by using a known case and an unexpected one, it is

possible to present only the causes that differentiate both. Interest in explainable artificial

intelligence has been increasing in recent years, yet few works are grounded on social and

cognitive sciences studies on how humans generate and evaluate explanation. As such, this

dissertation aims to identify what information should be part of contrastive explanations, based

on findings of social and cognitive sciences, and how to generate such explanations in the

context of the Beliefs-Desires-Intentions (BDI) agent’s goal selection. A method for generating

contrastive explanations for BDI-based goal selection was proposed, with groundings in the

works of Bouwel and Weber (2002) and Grice (1975). The structure of contrastive questions

proposed by Bouwel and Weber (2002) is used as a foundation for the questions and answers

addressed by the proposed method. In turn, Grice’s (1975) work provides requirements for the

communication between two cooperating parties, in the context of this work, an agent and a

user. Such requirements, proposed by Grice as four sets of maxims (Quantity, Quality, Relation

and Manner), establish restrictions and good practices concerning the information exchanged

between the parties. By basing the method on Grice’s maxims, the generated explanations are

expected to be closer to two people conversing and explaining some event among themselves.

The method generates a set of possible explanations, such that each of them represents a

possible answer, with its respective set of relevant information. A case study shows how the

calculations of the required information are made and how requirements based on Grice’s work

are accounted for. The method addresses three out of four of Grice’s maxims, as the maxim

of Manner was disregarded since it is dependent on the user interaction, which is outside the

scope of this work. The Quality, Relation, and Quantity maxims are addressed by each question

type formulation used in the first procedure. The second procedure contributes to the satisfaction



of the Quantity maxim. The selection of a single explanation needs to be done before presenting

the answer to the final user. Both selection and presentation of the explanation are outside the

scope of this work.

Keyword: bdi agent; goal selection; contrastive explanations; explainable artificial intelligence.
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1 INTRODUCTION

The usage of agents has been growing, ranging from simulation of natural and social phe-

nomena (LIU et al., 2014), autonomous robot controlling (ROBERTS et al., 2015; FLOYD et al.,

2017), to agents on virtual environments (DANNENHAUER et al., 2018; MOLINEAUX; DANNEN-

HAUER; AHA, 2018). An agent is a computer system situated in some environment and capa-

ble of autonomous action in this environment to meet its delegated objectives (WOOLDRIDGE,

2009). With the growing complexity of the computational systems used in everyday life, compre-

hension and trust problems have increased, and agent-based systems are no exception.

Agent-based systems are concurrent, distributed, and often situated in dynamic environ-

ments (WINIKOFF, 2017). Agents can have different complexity levels, ranging from a reflexive

agent that has a defined behavior for a given perception to agents that can deliberate about their

perceptions and internal model of the world and, in doing so, choose the best course of action

(BERMÚDEZ, 2014). This latter type of agent is what we call an intelligent agent. Intelligent

agents can further increase the complexity of such systems since, in contrast to reflexive agents,

their actions depend not just on their perceptions but also on their internal representation of their

goals and environment. As such, the agent’s ability to explain their practical reasoning – reason-

ing responsible for deciding what to do, thus, action-oriented – in its respective environment is

advantageous for experts to model and evaluate the agent and users who interact or are affected

by the agent.

An explanation can be described as the assignment of causal responsibility, as it presents

possible causes for what is being explained (JOSEPHSON, 1994). What explanations are is

further discussed in section 2.2.

Explanations need to take into account their targeted audience. When the audience is

composed of people, basing the requirements of the explanation on how people generate and

evaluate explanations for one another could improve their reception and understanding (MILLER,

2019). Why-questions are contrastive, following the form “Why P rather than Q?", where P is the

fact to be explained, and Q is some foil case that was expected. Even when the question is posed

as “Why P ?", there is an implicit contrast case (MILLER; HOWE; SONENBERG, 2017). When

people interact with a system, they will have different types of questions (HAYNES; COHEN;

RITTER, 2009). Different explanations complement each other; under different circumstances, a

different type of explanation is required.

Explanations of facts need to be differentiated from explanations of contrasts both in

structure and in motivation (BOUWEL; WEBER, 2002). While explanations of plain facts are

motivated by curiosity or to better understand the circumstances in which an event can hap-

pen, explanations of contrast present the differences in the causal history between the fact and

the contrast case. Bouwel and Weber (2002) present a structure for three different types of

contrastive questions: Property-contrast (P-contrast); Object-contrast (O-contrast); and Time-

contrast (T-contrast). Together with these three structures, the authors present one instance of
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an adequate answer for each question type, with its respective structure. Van Bouwel and We-

ber’s structures of contrastive questions and explanations are further discussed in the subsection

2.2.2.

It is worth mentioning that a contrastive explanation is not the same as a contrastive

question. A contrastive question poses a comparison, but it does not require that such compar-

ison to be used in the answer. An example of work that presents contrastive questions, but not

contrastive answers, is (WINIKOFF, 2017), where why-questions are used, but no contrast is

employed on the answer. A contrastive explanation/answer necessarily presents the differences

between the elements being compared. Those explanations are usually more simple and shorter.

Since the explanation process is an exchange of information most likely involving a per-

son, it should follow the rules of conversation. Grice (1975) presents the Cooperation Principle

with four categories – Quantity, Quality, Relation and Manner –, each with a set of maxims that

two entities in a cooperative dialogue are expected to follow. The “Quantity” category is of par-

ticular interest in this work. Its maxims state that one should be as informative as necessary, but

not more than that. Further discussion about Grice’s Cooperation Principle is presented in the

section 2.2.5.

Interest in explainable artificial intelligence (XAI) grounded in social and cognitive sci-

ences studies has grown recently (MILLER; HOWE; SONENBERG, 2017), as well as contrastive

explanations (STEPIN et al., 2021). Despite such growth, relatively few works approach expla-

nations directed to the general public with such grounding (KAPTEIN et al., 2017; STANGE;

KOPP, 2020; HARBERS; BOSCH; MEYER, 2010). Besides, when focusing on an explainable

agent’s goal selection, the process by which an agent selects which goals it is going to pur-

sue, to the best of our knowledge, no contrastive explanation generation approach was found.

However, there are some related approaches for generating ontological and causal explanations

(WINIKOFF, 2017; MORVELI-ESPINOZA; POSSEBOM; TACLA, 2019).

This work tackles the explainability problem in belief-based intelligent agents’ goal selec-

tion process. It proposes a method for generating contrastive explanations constructed from the

agent’s execution log. The method is based on Van Bowel and Weber’s structure of contrastive

explanations and Grice’s Cooperation Principles as requirements for the quality of explanations.

The method does not present a final, user-ready explanation. It provides a set of possible ex-

planations, where each possible explanation is a set of conditions required to attribute a causal

relation to the contrastive question posed. The agent is considered to be cooperative and honest.

It does not lie or withhold any information from the user (except for the simplicity of the explana-

tion). Next is presented the motivation, followed by the problem and research goals, and finishes

with this dissertation’s structure.
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1.1 Motivation

Miller et al. (2019) writes of how specialists have built explanations in artificial intelligence

(AI) with little to no study of the requirements for a broader audience. They made an analogy of

this situation as the “inmates running the asylum”. As such, many of the "explainable" and "trans-

parent" approaches still require understanding some of the internal mechanics of the system in

use.

Each day more commonly available systems employ complex AI techniques, and the

decisions of those algorithms can have profound impacts on people’s lives. The explanations

generated from these systems should aim at the general public.

Having the general public as consumers of the explanations of such systems raises new

challenges in how to convey explanations in an accessible way. To that end, the studies of how

people generate and evaluate explanations serve as a good foundation for explaining complex

systems (MILLER; HOWE; SONENBERG, 2017).

Besides the lack of grounding in cognitive and social sciences, Haynes et al. (2009)

show in their study that during people’s interaction with a system, different types of questions

are posed, and those different types of questions require different types of answers.

Contrastive explanations are commonly employed by people and can bring benefits to

the exchange process during the explanation. Contrastive questions provide an insight into the

questioner’s mental model, allowing to have a better understanding of what they do not know, and

contrastive explanations usually are more straightforward, more feasible, and less demanding

both for the questioner and explainer (MILLER, 2021).

Although an increasing amount of works related to contrastive explanations have been

published in the last few years, there are still few frameworks that account for contrastive ex-

planations, especially those grounded on social and cognitive sciences findings (STEPIN et al.,

2021).

Given the high complexity of an agent’s goal selection process, non-contrastive expla-

nations can become too complex for a lay user. On the other hand, contrastive explanations

can provide simplicity by using the knowledge the user already has about the agent and only

complementing the gaps in the explanation, like many humans explain things to one another.

For example, when asked “Why the barn cough fire?” a human explainer will say that there was

a short circuit and some inflammable material near it. However, the explainer will omit the fact

that there was oxygen in the barn, as it is common knowledge, there is no necessity in stating

it, even though without oxygen, there would be no fire. By comparing the barn that coughs fire

to an ideal barn, the explainer can provide explanations targeted to the gaps of knowledge or

misconceptions of the explainee.



20

1.2 Problem and Research Objectives

The Belief-Desire-Intention (BDI) is one of the most known agent models and is widely

used. According to Georgeff et al. (1999), beliefs represent the state of the world, desires repre-

sent some end state that an agent deems as desirable, and intentions are desires that the agent

is currently committed to, with their respective plans (means to achieve the desired state). The

agent must express some resistance to dropping an intention out but also must be capable of

such when the conditions of the world change. Another commonly used concept is goals, which

are a state of affairs that is desirable and that the agent seeks to achieve. In that sense, both

desires and intentions are goals, and when the term “goal” is employed, it refers to both.

People commonly attribute mental attitudes to complex systems to better understand

their behavior. The BDI model already incorporates mental attitudes; these are the agent’s be-

liefs, desires, and intentions. This positively affects the interpretability of the system. Many works

deal with various aspects of agent explanation, ranging from beliefs, plans, and actions; however,

few of them have tackled the goal selection process (WINIKOFF, 2017; MORVELI-ESPINOZA;

POSSEBOM; TACLA, 2019).

At least there are three types of different answers: ontological, causal, and contrastive.

Different motivations for asking a question require different answers. As such, no single answer

type can fulfill every need of the requested explanation. Again, many works on XAI provide onto-

logical and causal answers (KAPTEIN et al., 2019; STANGE; KOPP, 2020; HARBERS; BOSCH;

MEYER, 2010; FAN, 2018). In turn, contrastive answers are just starting to grab the researcher’s

attention (STEPIN et al., 2021).

In order to bridge the gap of lack of grounding in social and cognitive sciences and lack

of contrastive explanations, a contrastive explanatory model for BDI-based agents goal selection

is required. From the social sciences area, Van Bouwel and Weber (2002) proposed a general

structure of contrastive questions and the requirements for an adequate explanation, which can

be adapted to explain an agent’s behavior. For this work, the agent is considered to be fully

cooperative, and does not withhold any information or lies. As such, Grice’s (1975) Cooperation

Principles are employed as guidelines for the explanation generation.

Still, the problem of answering a question is context-dependent. There are many valid

explanations for a single event, as people do not list every cause for the event (which would be

even impossible in many cases) but present a subset of causes. The subset is selected according

to the explainee and explainer’s intentions, background knowledge, applicable roles, and many

other aspects. Besides, how to present the explanation is another challenge, not just on how to

structure a textual explanation but also if a purely textual approach is the best option.

As such, the following research question is posed:

Grounded on social and cognitive sciences works, what information is required to construct

contrastive explanations for BDI-based agent’s goal selection process and how to generate

such contrastive explanations?
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The lack of social and cognitive science grounding on XAI approaches is addressed by

employing Van Bouwel and Weber’s work to derive the proposed explanation method in this

work.

It is expected that by using the agent’s beliefs and the causal relationship between them

and their goals, contrastive explanations can be constructed.

Against this background, the main goal of this work is to: propose and evaluate a method

for BDI-based agents capable of generating contrastive explanations for queries related to the

goal selection process; such explanations are comprised of a set of beliefs that are causally

related to the goal being questioned, grounded on Bouwel and Weber’s work.

To achieve such a goal, the following tasks were set:

• Adapting Van Bouwel and Weber structure of contrastive questions to a BDI-based goal

selection method.

• Proposing a method to satisfy Grice’s Quantity maxims in the generated explanations.

• Evaluating the method in a case study.

1.3 Structure of This Work

The next chapter presents the previous works in the area, containing a brief review of

agents and the Belief-Desire-Intention model and a review of explanations from works on social

sciences that are used as the foundation for the method proposed.

Chapter 3 presents the proposed method of explanation generation, that is, how an ex-

planans (the explanation for a given event) is generated for a given explanandum (the event, or

events, to be explained)1. It starts with an overview of the method, followed by the formalization

of the question types and their respective adequate answers, and lastly, the method for gener-

ating possible explanans. Chapter 4 follows up with a case study of the method, based on the

Cleaner World Scenario.

Chapter 5 concludes with some of the limitations of the proposed method, the related

work, and explores some future directions for improving the proposed method.

1 Both explanans and explanandum are defined in subsection 2.2.3
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2 LITERATURE REVIEW

This chapter presents the background upon which this work is built. First, core concepts

about agents are presented. Next, explainability in artificial intelligence, focusing on explanations

for agents and contrastive explanations.

2.1 Goal-Based Agents

Intelligent Agents is a well-studied topic in artificial intelligence. The following concepts

were obtained from (WOOLDRIDGE, 2009). An agent is a computer system situated in some

environment and capable of autonomous action in this environment to meet its delegated objec-

tives. The core concepts are that an agent is inserted in some environment and performs actions

autonomously in such environment to accomplish its objectives. In reasonably complex domains,

the agent will not have complete control over the environment, being able simply to influence it.

In order to interact with the environment, the agent has some way of sensing the en-

vironment and some way of acting in it. Besides those two elements, there is some decision

mechanism that rules the agent’s behavior.

It is a common practice to attribute agents with mental states, like beliefs, desires, wishes,

hopes, and so on. This approach is called intentional stance (WOOLDRIDGE, 2009). It helps us

when dealing with complex behaviors that are hard to make sense of, by relating those agents

to a human-like behavioral motivation.

The specific kind of agent that this work is interested in falls under the category of practi-

cal reasoning agents. Practical reasoning is the reasoning directed to action. There are at least

two activities related to this type of reasoning for humans: deciding what to do, called delibera-

tion; and deciding how to do it, called means-end reasoning. When an agent chooses a course of

action and commits itself to its pursuit, it is called an intention. Intentions play the following roles

in practical reasoning: they drive means-end reasoning; persist, in the sense that an intention is

not easily dismissed; constrain future deliberation; influence beliefs upon which future practical

reasoning is based.

The BDI model is a well-known and adopted model for practical reasoning agents. In

(RAO; GEORGEFF, 1995), the authors present an abstract architecture for an interpreter of the

BDI model. It consists of the initialization, three deliberative steps, the execution of a goal, and

three knowledge revision steps. The interpreter pseudo-code can be seen in Figure 1.

The initialize-state() is responsible for initializing the data structures and other necessary

elements. The option-generator(event-queue) is responsible for enumerating the possible op-

tions the agent has, based on the event-queue. The deliberate(options) selects a subset of the

options that the agent must pursue. The update-intentions(selected-options) add the selected

subset of options to the intention structure. In the execute() step, the agent executes an atomic

action that is available (if any). The get-new-external-events() adds any events that happened
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Figure 1 – BDI-interpreter pseudo-code.
BDI-interpreter
initialize-state();
repeat

options := option-generator(event-queue);
selected-options := deliberate(options);
update-intentions(selected-options);
execute();
get-new-external-events();
drop-successful-attitudes();
drop-impossible-attitudes();

end repeat
Source: (RAO; GEORGEFF, 1995).

during the cycle execution to the event-queue. The drop-successful-attitudes() clear any satis-

fied desires and intentions. Lastly, the drop-impossible-attitudes() clear any impossible desires

and intentions.

Castelfranchi and Paglieri (2007) proposed an extension of the BDI model, called Belief-

Based Goal Processing (BBGP), that increases the dependency on beliefs. In it, the agent’s

decision to change the state of a goal can be defined entirely as a function of its beliefs. They

define a four-stage model: a) activation stage is where the agent starts a goal based on its

motivating beliefs; b) evaluation stage is where the agent evaluates if there are any beliefs that

a goal should not be pursued; c) deliberation stage is where the agent checks for conflicting

goals and selects a subset of preferred non-conflicting goals; and d) checking stage is where

the agent evaluates if there are means-end beliefs to achieve a goal. The goal is required to pass

through each stage, in order, to become ready to be executed.

Morveli-Espinoza et al. (2019) proposed a computational formalization of the BBGP

model based on computational argumentation. It uses rules to decide when a goal should be

allowed to advance its state. A rule in the context of the agent’s stage rules is a set of premises

and a conclusion. The set of premises must be composed entirely of beliefs. The conclusion of

the rule is a single literal representing a goal. The conclusion holds if all premises also hold. Be-

sides the stage rules, standard rules (with beliefs in the conclusion) are also part of the model;

they just are not directly responsible for the goal progression, but can be chained with stage rules

and interact with goals in that way. When a goal is selected to progress to the next stage, it is

called Active, Pursuable, Chosen, or Executive, according to the stage. Before a goal becomes

Active, it can be considered in a special state, that can be seen as the potential function of every

possible goal. Any possible goal before its instantiation is in this state called Sleeping.

2.2 Explainable Artificial Intelligence

In (MILLER, 2019), the author presents a review of about 250 works from the social, psy-

chology, and cognitive sciences areas, from the perspective of Explainable Artificial Intelligence

(XAI). His work lays a foundation for building explainable systems that are based on the finds of
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how people make their explanations and their preferences. It is used as a guide for selecting the

following works, where the criteria for a good explanation are defined.

2.2.1 Types of Questions

An explainee can have a wide range of motives for posing a question, and those differ-

ent motives define the information that better fulfills its needs. In (HAYNES; COHEN; RITTER,

2009), the authors present an explanatory framework for intelligent agents, constructed from a

cross-disciplinary review. The explanations are grouped by the kind of information required for

answering them:

• Ontological explanations: these request information about the state of the event being

explained, its properties, existing instances, or information about the concepts them-

selves (e.g., "What does X mean?");

• Mechanistic explanations: these request information about the causes and effects of

the event being explained (e.g., "What are the causes of X?");

• Operational explanations: these present instrumental or procedural information related

to goals and the means to achieve them (e.g., "What are the plans for achieving X?").

• Design rationale explanations: these seek to present the intended purpose of the event

being explained (e.g., "What is the goal behind action X?").

In order to construct ontological explanations, it is necessary to provide information about

“direct” properties. These properties are called direct because they are answered by accessing

the agent’s data to provide instances, values, spatial relations, or information about some event.

For mechanistic explanations, the agent’s causal history and model of causation are required. In

turn, operational explanations require information on how a certain behavior can be achieved,

which relates to a model of causation of the agent. Lastly, design rationale explanations require

a model of the agent to answer what is the purpose of the agent, its plans and actions, what are

the rules that it follows, and the relation between entities and/or events.

Haynes et al. (2009) evaluated how a user interacts with an intelligent agent and mea-

sured the frequency of explanations requested by type. They found that the most requested

categories, in decreasing order, are: Ontological (58%), Mechanistic (19%), Operational (12%),

and Design rationale (11%).

In this work, the focus is on contrastive questions in the context of goal selection, where a

comparison between some similar goals is made. The causal history and model of causation are

used to compare the goals. The types of questions that are answered fall in a subset between

the mechanistic and operational explanations.
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2.2.2 Contrastive Questions

Contrastive questions imply the contrast between the two scenarios referenced in the

question. In that sense, they can be seen as why-questions. In (BOUWEL; WEBER, 2002), the

authors distinguish four types of explanatory questions:

• (plain fact) Why does object 𝑎 have property 𝑃?

• (Property-contrast) Why does object 𝑎 have property 𝑃 , rather than property 𝑃 ′?

• (Object-contrast) Why does object 𝑎 have property 𝑃 , while object 𝑏 has property 𝑃 ′?

• (Time-contrast) Why does object 𝑎 have property 𝑃 at time 𝑡, but property 𝑃 ′ at time

𝑡′?

The authors claim that explanations of facts should be distinguished from explanations of con-

trasts, both in structure and in motivation.

Explanation of facts shows the causes of the observed fact, providing a non-interrupted

causal chain that ends with such fact. The motivation for such explanations can be for pure

curiosity or to acquire information to predict if and in what conditions a similar fact can happen.

In turn, an explanation of contrasts provides information about the features that differen-

tiate the factual case from its alternative. The motivation behind this type of explanation can be

to evidence causes that help to achieve an ideal (P-contrast) or to remove observed differences

(T- and O-contrast), and also to tell us why things had a different outcome than expected.

Van Bouwel and Weber (2002) then define how to present an adequate explanation to

each of the mentioned contrastive questions:

• (Property-contrast) The contrast of properties can be answered as: “Object 𝑎 has

property 𝑃 , rather than 𝑃 ′ because it does not have properties {𝐷1,...,𝐷𝑛}.", where

{𝐷1,...,𝐷𝑛} are absent properties that would have guarantied 𝑎 to acquire property

𝑃 ′.

• (Object-contrast) The contrast of objects can be answered as: “Object 𝑎 has property

𝑃 , while object 𝑏 has property 𝑃 ′ because 𝑎 has properties {𝐷1,...𝐷𝑛} which object 𝑏

does not have".

• (Time-contrast) The contrast of time can be answered as: “Object 𝑎 has property 𝑃

at 𝑡1 but 𝑃 ′ at 𝑡2 because it had properties {𝐷1,...,𝐷𝑛} in the relevant time interval

preceding 𝑡1, while these properties were absent in the relevant time interval preceding

𝑡2".

It is worth emphasizing that the authors recognize that the three mentioned types of

contrast are not the only ones and that the answer model is not the only adequate way to answer

the posed questions either.
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Contrastive explanations are complementary to ontological and causal types of explana-

tions. The agent’s observed behavior is a direct consequence of the goal selection process and

can be very complex. The ability to present to the explainee a more straight answer that makes

it easier to ground the new information to a previously known/expected knowledge is very entic-

ing. It is worth mentioning that causal and ontological explanations are still necessary to bridge

knowledge gaps in the explainee understanding.

2.2.3 Explanations

In (MILLER, 2019), the author presents a definition of explanation, where an explanation

is both a process and a product, and argues that an explanation consists of two processes and

a product. These being:

• A cognitive process: where abductive inference is used for filling the gaps to determine

an explanation of a given event, which is called explanandum.

• A product: the explanation resulting from the cognitive process, also called explanans.

• A social process: where the transference of the information between an explainer and

an explainee.

This definition sets the big picture, where there is an internal process of devising the

causes of a given event, determining which one is the most adequate, that is, the explanation

of choice, and lastly, relaying the explanation to the targeted audience. This last step is highly

dependent on the explainer and explainee. For instance: the interaction is face-to-face or is

conveyed through a media, the level of expertise of the explainee on the subject, the role of

the explainee in relation to the subject. This process of conveying the explanation is outside the

scope of this work.

Miller (2019) points out four main finds in his work:

• Explanations are contrastive – “[P]eople do not ask why event 𝑃 happened, but rather

why event 𝑃 happened instead of some event 𝑄.”

• Explanations are selected, in a biased way – “Humans are adept at selecting one or two

causes from a sometimes infinite number of causes to be the explanation. However, this

selection is influenced by certain cognitive biases.”

• Probabilities probably do not matter – “The most likely explanation is not always the best

explanation for a person, and importantly, using statistical generalizations to explain why

events occur is unsatisfying, unless accompanied by an underlying causal explanation

for the generalization itself.”
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• Explanations are social – “[Explanations] are a transfer of knowledge, presented as part

of a conversation or interaction, and are thus presented relative to the explainer’s beliefs

about the explainee’s beliefs.”

Miller (2019) argues that “[r]esearch shows that people do not explain the causes for an

event per se, but explain the cause of an event relative to some other event that did not occur".

With that, an explanation is always of the form "Why P rather than Q?", where P is the fact that

requires explanation and Q is the fictional contrast case (a.k.a. foil). Sometimes the foil can be

implicit in the question. The fact and the foil must share a broadly similar history; otherwise,

where to begin answering the question could not be determined. For instance, if asked “‘Would

John be run over if Bob had not drunk driving?”, at first glance, the question makes sense, but

if Bob was not the one to run over John, it became very hard to determine a causal relation.

Theoretically, if traced far back enough in time, any two events share some causes.

In the context of goal selection, an agent can save the history of its deliberative process,

guaranteeing that the explanation is deterministic. The social aspect is also disregarded, only

determining the set of relevant information is tackled, not how to select and relay such informa-

tion.

Next, how explanations are selected is reviewed.

2.2.4 Preferences in Explanations

When providing a causal explanation to an event, the number of causes that can be

ascribed is infinite. According to Hesslow (1988), there are three reasons for that. Firstly, the

dependence of the event on immediately previous occurrences. Secondly, the ability to trace a

causal chain backward in time. And thirdly, the cause can be conceptualized in infinitely many

different ways. Yet when we provide a causal explanation, we present only a few causes, some-

times a single one, to the event’s occurrence, even if other causes exist. This brings out the

challenge of how to select an appropriate cause for any given event?

Together with his proposed model, Hesslow (1988) presents a listing of what he called

the main approaches to the explanation selection problem:

• Unexpected condition: based on the idea that expected conditions – a condition being

some property of the world, e.g., availability of oxygen, a defective component, some-

one being late for an appointment – are omitted in the explanations, as they can be

understood without being said. The conditions that are expected are suppressed, and

the explanation focuses on the unexpected conditions that took place in the causal

history of the event.

• Precipitating causes: based on a temporal aspect of the explanation. We tend to select

conditions immediately preceding the event being explained.



28

• Abnormal conditions: similar to unexpected conditions, abnormal conditions focus on

conditions that, as the name implies, are abnormal. It differs from the unexpected con-

ditions as a condition can be unexpected but considered normal (e.g., the mail was not

delivered today, but I had forgotten that it is a holiday). An abnormal condition must

deviate from the normality (e.g., a defective cog can cause a manufacturing defect).

• Variability : the selection of conditions that are more variable than the others. Hesslow

defines it as a blend of the previous three.

• Deviation from the theoretical ideal : based on the idea that a theoretical ideal may be

used as a guide to identifying deviations. A couple of examples of a theoretical ideal are:

a healthy human being, a perfectly running market (for economics), Newtonian law of

motion. It differs from the abnormal conditions since no assumption that the theoretical

ideal is normal needs to be made.

• Responsibility : rooted in the idea that we identify the cause before assigning the blame

for the event. As such, the conditions selected are those that deviate from what is con-

sidered good, reasonable, or appropriate.

• Predictive value: based on the odds that the condition predicts the event, as such, if the

event is more probable to occur when a condition 𝑎 occurs than when another condition

𝑏, then 𝑎 is selected as a cause for the event.

• Replaceability and necessity : the strength of a condition as explanatory for the event is

pondered in relation to its necessity. If a condition is considered replaceable, its impor-

tance decreases in relation to the others.

• Instrumental efficacy : based on the idea of controllability of the conditions. If a condition

can be manipulated, it then is chosen as a more suitable explanatory cause than a

condition that can not.

• Interest : the idea that we chose a cause not by a shared sense of what is normal or by

some sort of rule, but based on personal preference.

On the premise that none of the above-mentioned selection criteria could be used in

every case and that choosing a selection criteria would be a recursive approach to the causal

selection issue, Hesslow (1988) proposes his contrastive approach, having similar ideas to what

Lipton (1990) would present closely afterward. A main aspect of the approach is that the ex-

planandum (the event that needs to be explained) is composed of an object a, another object of

comparison b, and a property E that is being compared, such that a has E and b does not. The

comparison narrows down the range of possible conditions that can explain the event a. Hesslow

concludes his approach with criteria for selecting the cause among the conditions that explain

the explanandum based on the explanatory relevance of the condition.
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Miller (2019) presents in his work some examples of studies evaluating the selection

criteria used by people.

2.2.5 Grice’s Conversation Rules

When two parties are engaged in a cooperative activity, their conversation can be ex-

pected to follow some rules (GRICE, 1975). Grice called these the Cooperative Principles and

categorized them into four groups of maxims:

• Quantity
– Make your contribution as informative as is required.
– Do not make your contribution more informative than is required.

• Quality
– Do not say what you believe to be false.
– Do not say that for which you lack adequate evidence.

• Relation
– Be relevant.

• Manner
– Avoid obscurity of expression.
– Avoid ambiguity.
– Be brief.
– Be orderly.

Let us evaluate how each category relates to a BDI-based cognitive agent.

The “Quantity” category is of particular interest in this work, as it is the one set of maxims

that can not be expected to be trivially achievable. Besides defining all possibly related condi-

tions to the message the agent wants to convey (in the scope of this work, an explanation), the

agent needs to define a subset of such conditions such that all the events being explained are

covered by the minimal amount of conditions as possible. The section 3.3 presents a method for

constructing subsets of explanation conditions, where each one follows the “Quantity” maxims.

Which subset is the most adequate is related to the agent’s domain, and several criteria can be

used. This work does not try to answer how to select the best subset for the explanation. Section

2.2.4 highlights some criteria of preference that can be used in the explanation selection.

Considering the cooperative agent, the “Quality” maxims are straightforward in this work.

The agent should have a clear notion of what it deems to be true, false, or undecidable. As such,

it should be simple to give only information considered true.

The “Relation” category can be met using only information that has some causal relation

to the message being relayed and the request. Lastly, the “Manner” is closely related to how

the message is presented, if it is clear and follows a meaningful order. Different cases require

different approaches to agent-person communication. It is outside of the scope of this work to

delve into the intricate subject of how to present any given explanation.
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3 EXPLANATIONS FOR GOAL SELECTION

In this chapter, a method for generating explanations for the goal selection process of

intelligent agents is proposed. The method has two very distinctive stages: a) generating the

set of conditions (in the BDI-based agent context of this work, the conditions are beliefs) that

are possible partial answers to the posed question (the explanandum); b) generating subsets of

conditions that cover all the events (in this context, events are goals achieving a certain state)

being explained. The subsets generated in b) are possible explanans, where the most adequate

one still needs to be selected. The selection of the explanans is not covered in this work. A

review of some applicable criteria is presented in subsection 2.2.4.

3.1 Method Architecture

The proposed method takes a few assumptions about the agent that is being explained:

• First, the agent is based on the BDI model, and as such, the beliefs have a central part

in the goal selection process.

• Second, the relation between the beliefs and the goals that take place within the goal

selection can be deemed as a causal relationship.

• Third, the agent uses first-order logic to represent his beliefs and rules.

• Fourth, the focus of the explanations is on the most basic beliefs, that is, those beliefs

that are deemed true by themselves, without the need for supporting beliefs. The rea-

soning for this is that the beliefs can usually be manipulated by a user without the need

for technical expertise about agents. For example, knowing that the agent believes that

the path is obstructed, the user can move an object so that a robot identify the path as

clear, or if the agent is capable of conversation, the user can change the agent’s belief

using the interface of communication (e.g., text or voice).

• Lastly, the agent has a cooperative stance, and for that reason, he follows the Conver-

sation Maxims to the best of his ability.

Predicate logic, or First-Order Logic (FOL), is a formal logical language that uses pred-

icates and terms to describe its facts. Terms can be constants or variables. Let ℒ be a finite

set of all literals defined in the language, ¬,∧,∨ be the logical negation, conjunction, and dis-

junction, respectively. An atom is denoted by 𝑝𝑟𝑒𝑑(𝑡𝑒𝑟𝑚1, 𝑡𝑒𝑟𝑚2, ..., 𝑡𝑒𝑟𝑚𝑛), where 𝑝𝑟𝑒𝑑 is the

predicate name, and {𝑡𝑒𝑟𝑚1, 𝑡𝑒𝑟𝑚2, ..., 𝑡𝑒𝑟𝑚𝑛} are terms. A literal is an atom or its negation.

A rule is denoted by ⟨𝑥, {𝑥1, 𝑥2, ..., 𝑥𝑛}⟩ (where 𝑥, 𝑥1, 𝑥2, ..., 𝑥𝑛 are literals), assume that the

rule name is 𝑟, 𝐻𝐸𝐴𝐷(𝑟) = 𝑥 is the head of the rule and 𝐵𝑂𝐷𝑌 (𝑟) = {𝑥1, 𝑥2, ..., 𝑥𝑛} the
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body. An atom, literal, rule or formula is said to be grounded iff. every term in it is a constant.

The following definitions were adapted from (AMGOUD; BESNARD, 2018):

Definition 1. (Theory). Let ℒ be the finite set of all literals in the language, a theory 𝒯 is a tuple

𝒯 = ⟨ℬ,ℛ⟩ where ℬ ⊆ ℒ is a set of literals, and ℛ is a set of rules.

A sentence 𝜙 is said to be a logical consequence of a set of sentences Γ (in symbols:

Γ |= 𝜙) if and only if there is no model ℐ in which all members of Γ are true, and 𝜙 is false.

An agent in the context of this work is an artificial entity, embodied or not, that possesses

beliefs, represented as literals, goals, represented as atoms, and rules, all expressed in first-

order logic (FOL).

The temporal aspect of the agent execution is captured by the cycle identification. A cycle

is considered to be a single iteration of the deliberative process, and an ordered number is used

to identify it. The agent have an ordered sequence of tests that a goal must pass in order to be

executed. After each test, the goal is said to achieve a state (e.g. for BDI models Desire and

Intention).

Definition 2. (Agent). An agent 𝐴 is a tuple 𝐴 = ⟨𝐵,𝐺,𝑅, 𝑃 ⟩, where 𝐵 is the finite set of

beliefs, expressed as literals in FOL, the agent deems true, 𝐺 is the finite set of goals, 𝑅 is the

finite set of rules, and 𝑃 is the list of plans. Let 𝑔 ∈ 𝐺 be a goal such that 𝑔 = ⟨𝑔𝑖𝑑, 𝑠𝑡⟩, where

𝑔𝑖𝑑 is a unique literal representing a goal 𝑔, and 𝑠𝑡 is the state of goal 𝑔. Let 𝑟 ∈ 𝑅 be a rule

such that 𝑟 = ⟨ℎ,𝐵𝑜𝑑𝑦⟩, where ℎ is the head of the rule and can be a literal representing a

belief or goal, and 𝐵𝑜𝑑𝑦 is a set of beliefs that constitutes the premises of rule 𝑟. Let 𝑝 ∈ 𝑃 be a

plan such that 𝑝 = ⟨𝑔,𝐺𝑑,𝐴𝑐𝑡⟩, where 𝑔 is a goal (potentially not grounded atom), 𝐺𝑑 is the set

of guard clauses that act as a precondition for the plan execution and are expressed as literals,

and 𝐴𝑐𝑡 is an ordered list of actions that, if successful, allows the agent to achieve the goal 𝑔.

By isolating an agent’s beliefs and rules, it is possible to create a theory. This theory

(Definition 1) is referred to as knowledge base in the rest of this work.

Definition 3. (Agent Knowledge Base). Let 𝐴 = ⟨𝐵,𝐺,𝑅, 𝑃 ⟩ be an agent, where 𝐵 is its

set of beliefs, 𝐺 is the set of goals, 𝑅 is the set of rules, and 𝑃 is the set of plans, the agent’s

knowledge base is defined as 𝐾𝐵 = ⟨𝐵,𝑅⟩.

For this method, the nature of the agent’s plan library and the actions list are not relevant.

The goal and the guard clause are the only required information.

Since a causal relation is drawn between the beliefs and goals, the rules and plans

of the agent knowledge base can be used to define this relationship. Section 4.2 presents an

example of how that can be achieved, but the agent’s implementation and model may influence

the process. A cause in this method is a relation between a set of beliefs and a single event,

which is either a belief or a goal.
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Definition 4. (Cause). Let 𝐾𝐵 be the agent’s knowledge base, 𝐶 be the finite set of causes, 𝐵

be the set of the agent’s beliefs, 𝐺𝐼𝑑 be the set of the agent’s goal identifiers, and 𝐸 be the finite

set of events such that 𝐸 = {𝐵 ∪𝐺𝐼𝑑}. A cause 𝑐 ∈ 𝐶 is a tuple 𝑐 = ⟨𝑒, 𝐶𝑜𝑛𝑑⟩, where 𝑒 ∈ 𝐸

is the event, and 𝐶𝑜𝑛𝑑 ⊂ 𝐵 is a set of conditions, if 𝐾𝐵 |= 𝐶𝑜𝑛𝑑 then event 𝑒 is expected to

happen. Cause 𝑐 is said to be a cause for 𝑒. A belief 𝑏 ∈ 𝐶𝑜𝑛𝑑 is said to be causally related to

𝑒. If ∀𝑐𝑜𝑛𝑑 ∈ 𝐶𝑜𝑛𝑑 such that 𝐾𝐵 |= 𝑐𝑜𝑛𝑑 then the cause 𝑐 is said to be activated, in contrast,

if ∃𝑐𝑜𝑛𝑑 ∈ 𝐶𝑜𝑛𝑑 such that 𝐾𝐵 ̸|= 𝑐𝑜𝑛𝑑 then cause 𝑐 is said to be deactivated.

When two events share a piece of causal history, they are said to be causally related.

The causal history of an event is called a causal tree.

Definition 5. (Causal tree). Let 𝐶 be the set of causes, 𝑐 = ⟨𝑒, 𝐶𝑜𝑛𝑑⟩ and 𝑐′ = ⟨𝑒′, 𝐶𝑜𝑛𝑑′⟩ ∈
𝐶 be two causes, 𝑐′ and 𝑐 are said to be in a causal tree if 𝑒′ ∈ 𝐶𝑜𝑛𝑑, or if there is another

cause 𝑐′′ = ⟨𝑒′′, 𝐶𝑜𝑛𝑑′′⟩ ∈ 𝐶 such that 𝑒′′ ∈ 𝐶𝑜𝑛𝑑 ∧ 𝑒′ ∈ 𝐶𝑜𝑛𝑑′′.

Note that the agent’s knowledge base is considered to be acyclic, that is, there is no

sequence of rules ⟨𝑟1, 𝑟2, ..., 𝑟𝑛⟩, such that:

• ℎ𝑒𝑎𝑑(𝑟𝑖) ∈ 𝑏𝑜𝑑𝑦(𝑟𝑖+1)

• ℎ𝑒𝑎𝑑(𝑟𝑛) ∈ 𝑏𝑜𝑑𝑦(𝑟1)

Definition 6. (Causally related). Let 𝐶 be the set of causes, 𝑐 = ⟨𝑒, 𝐶𝑜𝑛𝑑⟩ and 𝑐′ =

⟨𝑒′, 𝐶𝑜𝑛𝑑′⟩ ∈ 𝐶 be two causes, they are said to be causally related iff. 𝑐 and 𝑐′ are in a causal

tree (Definition 5). Such relations in denoted by 𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑐, 𝑐′) = [𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒].

The set of causes describes a general relation from beliefs to another belief or goal.

This relation is extracted from the agent’s knowledge base. The most common sources of causal

relations are rules and plans, but more complex agent models can have other elements that

should be mapped to causal relations. Rules and plans can be converted to causes as follows:

Definition 7. (Plan to cause conversion). Given a plan 𝑝 = ⟨𝑔,𝐺𝑑,𝐴𝑐𝑡⟩, a cause 𝑐 can be

built as 𝑐 = ⟨𝑔,𝐺𝑑⟩, assuming that none of the actions of 𝐴𝑐𝑡 fails.

Definition 8. (Rule to cause conversion). Let 𝐵 be the set of beliefs, and 𝐺𝐼𝑑 be the set of

goal identifiers. Given a standard rule 𝑟 = ⟨ℎ,𝐵𝑜𝑑𝑦⟩, a cause 𝑐 can be built as 𝑐 = ⟨ℎ,𝐵𝑜𝑑𝑦⟩,
iff. ℎ ∈ {𝐵 ∪𝐺𝐼𝑑}.

To generate the mentioned explanations, it is necessary to reproduce the agent’s knowl-

edge base when the events being explained happened. As such, a memory of the execution

needs to be kept. Four components are necessary for the proposed method, as shown in Figure

2. It depicts the interface the agent needs to implement and the explanation generator. In the in-

terface, four elements are required: i) the execution history is a log-like ordered list of events, the

minimum data requirements of the entries are explored next; ii) the preference function encodes
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a preference relationship between two events; iii) the causal function is responsible for mapping

events to the set of conditions that are causally related to it; finally, iv) the conflict function respon-

sible for identifying if two given goals have any sort of incompatibilities between them. In turn, the

explanation generator has three domain-independent elements: a) the presumptions functions

that, given a set of beliefs, return the subset containing only the presumptions (beliefs that need

no support); it is not part of the interface since it is model-independent; b) the generate related

conditions procedure is responsible for receiving the posed question, retrieve the required in-

formation using the interface defined functions and the presumption function, and outputs the

set of related conditions; lastly, c) the generate possible explanans procedure takes as input

the set of related conditions, and outputs sets of possible explanans, where each possible ex-

planans is a subset of the related conditions that are related to every event in the explanandum.

Procedures b) and c) are formally defined in subsections 3.2 and 3.3, respectively.

Figure 2 – Interface scheme for the explanation generation method.

The four elements in the “Interface” need to be implemented by the agent. The elements in the “Expla-
nationGenerator” are domain-independent. After the possible explanans are generated, one needs to be
selected. This selection is not covered in the method.

Source: Author’s own.

Each entry in the execution history needs to encapsulate, for each reasoning cycle, the

set of goals that changed state and the set of beliefs that were added or removed from the

agent’s knowledge base. Note that the goals changes happened during the deliberation, but

the beliefs changes are updated after the deliberation has finished. That way, for a cycle 𝑖, the

reconstructed knowledge base needs to apply the changes only up to cycle 𝑖− 1.

Definition 9. (Execution history entry). Let 𝐵 be a set of beliefs, 𝐺𝐼𝑑 a set of goal identifiers,

𝒮 be a list of possible state of a goal, 𝐼 be the set of possible cycle indexes, 𝐻 is the execution

history, and ℎ an entry from the execution history such that ℎ = ⟨𝑖,𝐺𝐻 ,𝐵𝐻⟩, where 𝑖 ∈ 𝐼 is

the cycle identifier, the set of changed goals 𝐺𝐻 = {⟨𝑔𝑖𝑑, 𝑠𝑡⟩ such that 𝑔𝑖𝑑 ∈ 𝐺𝐼𝑑 is the
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identifier of a goal and 𝑠𝑡 ∈ 𝒮 the new value of its state }, and the set of changes in beliefs

𝐵𝐻 = {⟨𝑏, 𝑣⟩ such that 𝑏 ∈ 𝐵 and 𝑣 = [𝐴𝐷𝐷,𝑅𝐸𝑀 ], representing the beliefs addition or

removal, respectively }.

The causal function maps each event to its conditions for every causal relation that can

be ascribed to the agent’s knowledge base. Note that this function returns causes even if their

set of conditions is not currently satisfied by the agent’s KB.

Definition 10. (Causal Function). Let 𝐵 be a set of beliefs, and 𝐺𝐼𝑑 a set of goal identifiers,

𝐸 = {𝐵 ∪𝐺𝐼𝑑} be the set of possible events that the agent can explain, and 𝐶 the set of every

cause modeled in the agent’s interface. 𝑐𝑎𝑢𝑠𝑒𝑠 : 𝐸 → 2𝐶 is a function that maps an event 𝑒 ∈ 𝐸

to the set of every cause related (Definition 4) to it, such that 𝑐𝑎𝑢𝑠𝑒𝑠(𝑒) = {< 𝑒𝑥, 𝐶𝑜𝑛𝑑𝑥 > | <
𝑒𝑥, 𝐶𝑜𝑛𝑑𝑥 > ∈ 𝐶 ∧ 𝑒𝑥 = 𝑒}.

The preference function represents the precedence of a goal over another. This relation-

ship is defined in the agent’s model, by the developer. If a preference relation is not defined in the

agent’s model, the modeler must declare the selected goals as preferred over the non-selected

ones in the function. If necessary, the cycle can be included as a function parameter so that

changes in preference over time can be represented.

Definition 11. (Preference Function). Let 𝐺𝐼𝑑 be the set of goal identifiers, 𝐼 be the set of

possible cycle indexes, 𝑔𝑖𝑑1, 𝑔𝑖𝑑2 ∈ 𝐺 be two goal identifiers, and 𝑖 ∈ 𝐼 be a cycle index,

𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 : 𝐺𝐼𝑑2 × 𝐼 → [−1, 0, 1] such that 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑(𝑔𝑖𝑑1, 𝑔𝑖𝑑2, 𝑖) = [−1, 0, 1], where

−1, 0, 1 represents “𝑔𝑖𝑑1 is less preferred than 𝑔𝑖𝑑2”, “𝑔𝑖𝑑1 is equally preferred than 𝑔𝑖𝑑2”, and

“𝑔𝑖𝑑1 is preferred than 𝑔𝑖𝑑2”, respectively. If the agent’s model uses a fixed goal preference the

cycle index 𝑖 is optional.

The preference function complexity is dependent on the agent’s model. For instance, if

the model has no proper preference defined, and instead randomly selects goals each cycle,

the function must then make use of the optional parameter for the cycle id, and every selected

goal must return that it is preferred over every non-selected goal from the given cycle, it can

return equally preferred (denoted by 0) to every other case. The method does not impose any

restrictions on the preference of goals.

The conflict function identifies if there are any conflicts between two given goals. The

types of conflicts to be considered may vary with the agent’s model (e.g., a model can introduce

resources, and two goals can be conflicting because there is not enough of a given resource for

both).

Definition 12. (Conflict Function). Let 𝐺𝐼𝑑 be the set of goal identifiers, 𝑔𝑖𝑑1, 𝑔𝑖𝑑2 ∈ 𝐺𝐼𝑑 be

two goal identifiers, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 : 𝐺𝐼𝑑2 → [𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒], where 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑1,𝑔𝑖𝑑2) = 𝑇𝑟𝑢𝑒 iff

there is a conflict between 𝑔𝑖𝑑1 and 𝑔𝑖𝑑2, 𝐹𝑎𝑙𝑠𝑒 otherwise.
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Given the types of questions mentioned in the previous section: ontological questions

can be answered by querying an ontology of the agent about a given element or retrieving a

property of the element; causal questions require a history of the agent’s execution; and con-

trastive questions are more complex, requiring the execution history and also comparing one

element with another, be it factual or not.

To generate contrastive explanations, first, they need to be formalized. The structure of

contrastive explanations of Van Bouwel and Weber presented in the subsection 2.2.2, was used

as a basis and adapted to the context of goal selection in intelligent agents, more specifically,

BDI-based agents.

The agent is considered fully committed to cooperating with a human (expert or regular

user); that is, the agent has no reason to withhold any information. One could argue that there

are instances where an agent should keep some information from the requester, if the requester

is not meant to access some information, or even that relaying some information can hinder the

agent’s goals, but those (and similar) cases are not covered in this work. The basic beliefs of

the agent do not need further evidence. That is required as one could request evidence for in-

formation the agent received and has no control over. As such, Grice’s maxims of Quantity and

Relation are considered during the possible explanans generation. The Quality is straightforward

because all information in the knowledge base is deemed true. The Relation is achieved by the

causal relationship of beliefs and goals and its use while defining the related conditions. The

Quantity is achieved both by the contrast of two goals, when applicable, and the generate possi-

ble explanans procedure. The Manner maxim is not relevant, as the convey of the explanation is

beyond the scope of this method.

The following subsection presents a general formalization for explaining BDI-based in-

telligent agents that use beliefs and some form of causal relationships based on such beliefs,

during the goal selection.

3.2 Related Conditions: Explanations for Goal Selection

This subsection presents the first procedure: Generate Related Conditions. As shown in

section 2.2.2, Van Bouwel and Weber defined three types of contrastive questions: Property-

Contrast (P-Contrast), Object-Contrast (O-Contrast), and Time-Contrast (T-Contrast). In addition

to that, a new type is introduced, the Object-Time-Contrast (OT-contrast). For these four ques-

tions types, there are two different sets of elements: a) the object(s) of the question, and b) the

properties of the object(s). The T-contrast and OT-contrast have a third element: the instances of

time being compared.

When focusing on the goal selection phase of an agent reasoning cycle, questions about

beliefs, plans, and actions are not influenced or explained by the deliberation that takes place

during the goal selection. In contrast, goals are directly influenced by the deliberation. The delib-

eration process aims to manipulate the agent’s goals by determining which ones should advance
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their state and associating viable plans with the intentions. A goal can be at different states during

the agent’s execution, according to the model that the agent is based on.

Given that only goals can be the object of the questions in this context, only the proper-

ties of goals can be used. The main property of goals is their state. Intentions also have their

associated plan, but it is not considered a valid property for the explanandum. This is not an

issue, as to ask why goal g had plan p1 instead of plan p2 can be in turn expressed as why goal

gp1 (g with plan p1) instead of gp2 (g with plan p2), that is, instead of comparing two possible

plans of a goal, two goals, each using one of the plans, are compared.

Lastly, time is seen as a modifier of the goal, which determines the frame of the history

of the goal to be considered in the comparison. It is worth mentioning that in the context of goal

selection, time is seen as a discrete ordered list of cycles. A cycle can be seen as an atomic time

instance, where all the belief revision – the addition and removal of beliefs – already took place

for the current cycle.

The formalization for each type of contrastive question is presented in the following sub-

sections. At first, for directly subsequent states of a goal, and then for arbitrarily arranged states.

Note that in some models, a goal accumulates states. One example of such models is the BBGP,

where the four main states that a goal goes through during the goal processing (Active, Pur-

suable, Chosen, and Executive, in that order) require that the goal maintain the state it previously

acquired, that is, if a goal has achieved the state Active, and then Pursuable, if for some reason it

were to lose the Active state, the Pursuable would also be dropped. A metaphor with the towers

of Hanoi, where the larger discs are the initial states, getting smaller at each subsequent state.

In that sense, a goal not necessarily loses a state and goes to the next, but actually, it depends

on previous stages to achieve and maintain the later ones. In these cases, when referencing a

state, it refers to the most advanced state the goal has achieved.

Different patterns could be observed when analyzing how an agent can answer the ques-

tions. Such patterns represent how the reasoning mechanism deliberates about the selected

goal in each step of the goal selection. The three observed patterns are: a) positive filter beliefs,

composed of a set of beliefs {𝐷1, ..., 𝐷𝑛} that can lead to the advance of the targeted goal to

the next state 𝑠𝑡; b) negative filter beliefs, which comprises of a set of beliefs {𝐷′
1, ..., 𝐷

′
𝑚} that

can impede the advance of a given goal to the next state 𝑠𝑡; and c) preference filters, which

express the preference relationship between conflicting goals. A belief can be a positive or neg-

ative literal, for both positive and negative filters. What differentiates a positive from a negative

filter is that positive filters beliefs support the goal progress, while negative filter beliefs act as

an obstruction to such progress. Note that positive and negative filters are based on the agent’s

beliefs, evaluating if the conditions for the goal progress holds on the agent’s knowledge base.

In turn, the preference filter models a selection of a non-conflicting subset of goals, that is, given

that several goals can progress at a given time, but there are conflicts between them, which

subset of non-conflicting goals takes preference over the others. By definition, the preference

filter requires that any necessary conditions, other than conflicting with other goals, must be met,
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the preference filter is mutually exclusive in relation to both positive and negative filters. That

is, the conditions that trigger the positive and negative filter impede a goal of being evaluated

by preference. In contrast, the process of evaluating the goal’s progress for a certain state can

combine positive and negative filters. Keep in mind that since positive filter beliefs assert that 𝑎

should progress and negative filter beliefs assert that 𝑎 should not progress, a knowledge base

needs a mechanism to only accept one of the outcomes. One simple mechanism to resolve such

conflicts is to give preference to negative filters, in doing so, the agent will avoid pursuing goals

that may have obstructions that it does not know how to overcome. Different conflict resolution

mechanisms can be used according to the intended use.

The output of the filters is the related conditions set.

Definition 13. (Related Conditions). Let 𝑅𝐶 be the set of related conditions resulting from a

filter. A related condition 𝑟𝑐 ∈ 𝑅𝐶 is a presumption (Definition 17) or a preference assertion. If

𝑅𝐶 results from a preference filter, |𝑅𝐶| = 1.

Before the related conditions of each question type are defined, a few required definitions

need to be presented first.

The agent’s goals always have some associated state. The set of possible states is de-

pendent on the agent model. For example, the BDI model defines two states: Desire and In-

tention; in turn, the BBGP model defines four: Active, Pursuable, Chosen, and Executive. The

possible states of a goal are ordered. Considering that order, a state can be regarded as subse-

quent to another if it comes afterward in the list.

Definition 14. (Directly Subsequent States). Let 𝒮 = {𝑠𝑡1, 𝑠𝑡2, ..., 𝑠𝑡𝑛} be a finite ordered list

of possible goal states. For 𝑠𝑡𝑗 , 𝑠𝑡𝑘 ∈ 𝒮, 𝑠𝑡𝑘 is said to be directly subsequent to 𝑠𝑡𝑗 iff. 𝑘 = 𝑗+1.

Definition 15. (Subsequent States). Let 𝒮 = {𝑠𝑡1, 𝑠𝑡2, ..., 𝑠𝑡𝑛} be a finite ordered list of pos-

sible goal states. For 𝑠𝑡𝑗 , 𝑠𝑡𝑘 ∈ 𝒮, 𝑠𝑡𝑘 is said to be subsequent to 𝑠𝑡𝑗 iff. 𝑘 > 𝑗, and is denoted

by 𝑠𝑡𝑘 ⊂ 𝑠𝑡𝑗
1.

The expanded knowledge base, denoted by 𝐾𝐵+, is the knowledge base 𝐾𝐵 of the

agent and everything that entails from it. It contains everything that the agent considers as true.

It is especially useful in the following subsections when referring to knowledge that the agent is

missing, that is, beliefs that are undecidable for the agent.

Definition 16. (Expanded Knowledge Base). Let 𝐾𝐵 be the finite knowledge base of the

agent, the finite expanded knowledge base 𝐾𝐵+ = {𝜙|𝐾𝐵 |= 𝜙}, and ∄𝜙 ∈ 𝐾𝐵+|𝐾𝐵 |=
𝜙 ∧ 𝜙 /∈ 𝐾𝐵+.

The explanations are built using the most fundamental beliefs of the agent, called pre-

sumptions, as they need no support to be considered true.
1 The symbol ‘⊂’ was chosen because the relationship between goal states mandates that for a given goal state

to hold, all previous goal states must also hold. As such, the set of goals that are in a goal state 𝑠𝑡𝑘 is a subset
of goals that are in goal state 𝑠𝑡𝑘−1.
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Definition 17. (Presumptions). Let ℒ be the set of every possible literal in the language, 𝐵 be

the set of beliefs of the agent, and 𝑅 his set of rules, ∀𝑏 ∈ 𝐵 𝑏 is a presumption, and ∀𝑟 ∈ 𝑅 if

𝑏𝑜𝑑𝑦(𝑟) = {∅} ∧ ℎ𝑒𝑎𝑑(𝑟) ∈ ℒ , then ℎ𝑒𝑎𝑑(𝑟) is a presumption.

There are two types of presumption extraction functions, one for when the desired out-

come is that a causal rule be activated and the other for when the desired outcome is that a

causal rule be deactivated. The function d_pre maps a set of causes to the corresponding set of

presumptions used in them. The following disjunctive form of the function is required for answers

that need to deactivate a cause, as it represents the idea that if a single cause were removed,

the event would not have happened.

Definition 18. (Disjunctive Presumptions). Let 𝐵 be the set of beliefs, 𝐸 be the set of events

and 𝑒 ∈ 𝐸 a given event, 𝐶 = {𝑐1,...,𝑐𝑛} be a set of causes where ∀𝑐 = ⟨𝑒′, 𝐶𝑜𝑛𝑑⟩ ∈ 𝐶, 𝑒′ =

𝑒, 𝑑_𝑝𝑟𝑒 : 𝐶𝑛 → 2𝐵 such that:

𝑑_𝑝𝑟𝑒(𝐶) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if |𝐶| > 1,
𝑛⋃︀

𝑖=1

𝑑_𝑝𝑟𝑒(𝑐𝑖)

else if 𝐶 = ⟨𝑏, {∅}⟩ ∧ 𝑏 ∈ 𝐵, {𝑏}

else 𝐶 = ⟨𝑒, {𝑏′1,...,𝑏′𝑚}⟩,
𝑚⋃︀
𝑗=1

𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑏′𝑗))

In an analogous way to 𝑑_𝑝𝑟𝑒, 𝑐_𝑝𝑟𝑒 provides the set of presumptions of the causes,

but in a conjunctive form. Every presumption in a cause of event 𝑒 forms a single conjunctive

formula. There is one formula for each different cause of 𝑒. This conjunctive form is used for

answers that need to activate a cause, as it represents the idea that if all the beliefs that are

missing were to become true, the event would have happened.

Definition 19. (Conjunctive Presumptions). Let 𝐹 be the set of possible formulas constructed

from ℒ, 𝐸 be the set of events and 𝑒 ∈ 𝐸 a given event, 𝐶 = {𝑐1,...,𝑐𝑛} be a set of causes

where ∀𝑐 = ⟨𝑒′, 𝐶𝑜𝑛𝑑⟩ ∈ 𝐶 𝑒′ = 𝑒, 𝑐_𝑝𝑟𝑒 : 𝐶𝑛 → 𝐹 𝑛 such that:

𝑐_𝑝𝑟𝑒(𝐶) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if |𝐶| > 1,
𝑛⋃︀

𝑖=1

𝑐_𝑝𝑟𝑒(𝑐𝑖)

else if 𝐶 = ⟨𝑏, {∅}⟩ ∧ 𝑏 ∈ 𝐵, {𝑏}

else 𝐶 = ⟨𝑒, {𝑏′1,...,𝑏′𝑚}⟩,
𝑚⋀︀
𝑗=1

𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑏′𝑗))

Figure 3 shows an example of applying the presumption functions on the causes for the

goal ¬𝑚𝑜𝑝(𝑋,𝑌 ), which states the need for the agent to mop a region (𝑋,𝑌 ) (the definition of

the scenario, and the goal ¬𝑚𝑜𝑝(𝑋,𝑌 ), is presented in subsection 4.1). Rectangle denotes the

event, ellipses denote causes, dashed lines denote that the causes are directly related to the

event, solid lines denote that the causes are in a causal tree. If two solid lines are joined by a
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line, it denotes that their causes are connected by logic conjunction. In a) it is possible to see

the conjunctive function, where the presumptions for each cause form a single formula. In b) it is

possible to see that the causes are disjoint.

Figure 3 – Example of presumption functions on ¬𝑚𝑜𝑝(𝑋,𝑌 ).

¬𝑚𝑜𝑝(𝑋,𝑌 )

𝐶𝑎𝑢𝑠𝑒1 𝐶𝑎𝑢𝑠𝑒2 𝐶𝑎𝑢𝑠𝑒3

𝑃𝑟𝑒𝑠1 𝑃𝑟𝑒𝑠4 𝑃𝑟𝑒𝑠2 𝑃𝑟𝑒𝑠4 𝑃𝑟𝑒𝑠3 𝑃𝑟𝑒𝑠4

(a) 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑚𝑜𝑝(𝑋,𝑌 ))) = {𝑃𝑟𝑒𝑠1 ∧ 𝑃𝑟𝑒𝑠4, 𝑃 𝑟𝑒𝑠2 ∧ 𝑃𝑟𝑒𝑠4, 𝑃 𝑟𝑒𝑠3 ∧ 𝑃𝑟𝑒𝑠4}

¬𝑚𝑜𝑝(𝑋,𝑌 )

𝐶𝑎𝑢𝑠𝑒1 𝐶𝑎𝑢𝑠𝑒2 𝐶𝑎𝑢𝑠𝑒3

𝑃𝑟𝑒𝑠1 𝑃𝑟𝑒𝑠4 𝑃𝑟𝑒𝑠2 𝑃𝑟𝑒𝑠4 𝑃𝑟𝑒𝑠3 𝑃𝑟𝑒𝑠4

(b) 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑚𝑜𝑝(𝑋,𝑌 ))) = {𝑃𝑟𝑒𝑠1, 𝑃 𝑟𝑒𝑠2, 𝑃 𝑟𝑒𝑠3, 𝑃 𝑟𝑒𝑠4}
Source: Author’s own.

There is a preference relation between goals. This relation is especially important be-

tween conflicting goals since it is the reason for selecting one over the other. This preference is

expressed as:

Definition 20. (Preference of goals). Let 𝐺𝐼𝑑 be the set of goal identifiers, 𝑔𝑖𝑑, 𝑔𝑖𝑑′ ∈ 𝐺𝐼𝑑 be

two goal identifiers, such that 𝑔𝑖𝑑 ̸= 𝑔𝑖𝑑′, where 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑(𝑔𝑖𝑑, 𝑔𝑖𝑑′, _) = 1 (Definition 11) can

be denoted as 𝑔𝑖𝑑 > 𝑔𝑖𝑑′. Conversely, 𝑔𝑖𝑑 < 𝑔𝑖𝑑′ expresses that 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑(𝑔𝑖𝑑, 𝑔𝑖𝑑′, _) = −1.

Sometimes two sets of goals need to be compared, especially when the goal being ex-

plained has a low overall preference and other compatible goals help it to become selected. The

preference of a set of goals, since the explanation is post-hoc, can be inferred by the goals that

progressed and the ones that did not. That is, the set of goals that progressed must be internally

compatible and is preferred over any other possible subsets of goals at the time that the decision

mas made. Note that both sets of goals must be internally compatible. This relation is expressed

as:

Definition 21. (Preference over sets of goals). Let 𝐺 be the set of goals, 𝐺′ ⊂ 𝐺 and 𝐺′′ ⊂ 𝐺

be two internally non-conflicting sets of goals, 𝐺′ > 𝐺′′ expresses that 𝐺′ is preferred over 𝐺′′.
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Sometimes a single goal has a very high preference, where it is preferred over a set of

other goals. This is important when the high preference of said goal can explain its selection and

of any other compatible goals.

Definition 22. (Maximally preferred). Let 𝐺 be the set of goals, 𝑔 ∈ 𝐺 be a goal, and 𝐺′ ⊂ 𝐺.

Goal 𝑔 is said to be maximally preferred over 𝐺′ when ∀𝑔′ ∈ 𝐺′|𝑔 > 𝑔′, denoted by 𝑔 ≫ 𝐺′.

When two distinct goals are compared, their predicates commonly won’t match. Consider

two goals 𝑔1 = ⟨𝑔𝑜(𝑥1, 𝑦1), 𝑠𝑡1⟩ and 𝑔2 = ⟨𝑔𝑜(𝑥2, 𝑦2), 𝑠𝑡2⟩, whose predicates represent the

goal “go to destination (X,Y)”, each with a difference set of coordinates (𝑥1 ̸= 𝑥2 ∧ 𝑦1 ̸= 𝑦2).

Now consider that a predicate 𝑐𝑙𝑒𝑎𝑟_𝑝𝑎𝑡ℎ(𝑋,𝑌 ) that returns true iff. the path from the robot’s

current location (𝑋 ′,𝑌 ′) (𝑎𝑡(𝑋 ′,𝑌 ′)) and the destination (𝑋,𝑌 ) is clear. Considering that 𝑔1
and 𝑔2 have different destinations, it is still a valid comparison to be made: “the path to 𝑔1 is

obstructed, while 𝑔2 has a clear path”, so the beliefs 𝑐𝑙𝑒𝑎𝑟_𝑝𝑎𝑡ℎ(𝑥1,𝑦1) and 𝑐𝑙𝑒𝑎𝑟_𝑝𝑎𝑡ℎ(𝑥2, 𝑦2)

in the causal tree of each goal need to be matched even thought their constants are not the same.

When comparing predicates, the terms may differ, but the comparison still may be necessary.

For example, suppose an embodied agent, like a robot, needs to move to different locations in

a certain area. As such, when comparing distinct goals the predicate of their presumption are

compared without their respective terms. To achieve that, only the name of the predicates are

compared, disregarding the terms. The two following functions are defined:

Definition 23. (Predicate name of a literal). Let ℒ be the set of all literals in the language,

𝜙 ∈ ℒ, 𝒫𝒩 the set of predicate names defined in ℒ, and 𝑝𝑟𝑒𝑑 ∈ 𝒫𝒩 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 : ℒ →
𝒫𝒩 , maps a literal to the predicate that is used. 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝜙) = 𝑝𝑟𝑒𝑑.

Definition 24. (Predicates names of a formula). Let 𝐹 be the set of possible formulas con-

structed from ℒ, 𝜙 ∈ 𝐹 , 𝑙 be a literal in ℒ, 𝒫𝒩 the set of predicate names defined in ℒ, and

𝑝𝑟𝑒𝑑 ∈ 𝒫𝒩 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 : 𝐹 → 2𝒫𝒩 , maps a formula to the predicates that it uses.

𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝜙) = {𝑝𝑟𝑒𝑑|𝑝𝑟𝑒𝑑 ∈ 𝒫𝒩 ∧ ∃𝑙 ∈ 𝜙 such that 𝑝𝑟𝑒𝑑 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝑙)}.

Note that the function predicate_name has a polymorphic definition: if the parameter is

a literal, the result is a single predicate name; if the parameter is a formula, the result is a set of

every predicate name used in said formula.

The following function uses_pred is responsible for filtering out formulas that use pred-

icates not in a set of predicate names. The two parameters are a set of formulas to be filtered

and a set of predicate names to be used as a filter.

Definition 25. (Uses predicate). Let ℒ be the set of literals, 𝒫𝒩 be the set of every predicate

name defined in ℒ, 𝑃𝑟𝑒𝑑 ⊂ 𝒫𝒩 be a set of predicate names, 𝐹 be the set of possible formulas

constructed from ℒ, and Φ ⊂ 𝐹 a subset of formulas with size 𝑛, 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑 : 𝒫𝒩 ×𝐹 𝑛 → 2𝐹 ,

returns the formulas 𝜙 ∈ Φ whose literals are in 𝑃𝑟𝑒𝑑 (Definition 24). 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝑃𝑟𝑒𝑑,Φ) =

{𝜙|𝜙 ∈ Φ ∧ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝜙) ⊂ 𝑃𝑟𝑒𝑑 }.
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In the following subsections, the explanations for each of the four types of contrastive

questions defined in this work are presented. Each type of contrastive question represents a case

that is selected in accordance with the explanandum posed. They all share some characteristics:

i) there are three patterns that are defined for each (positive, negative, and preference filters);

ii) the answer is a set 𝑅𝐶 of related conditions, that is either a combination of the positive

and negative filters resulting presumptions or the first matched case of the preference filter, this

latter is called a preference assertion; iii) there are two sets of the patterns defined over the

relation between the two states used in the explanandum 𝑠𝑡 and 𝑠𝑡′, one for when 𝑠𝑡 ⊂ 𝑠𝑡′ (𝑠𝑡

is more advanced than 𝑠𝑡′), and the other for 𝑠𝑡′ ⊂ 𝑠𝑡 (𝑠𝑡′ is more advanced than 𝑠𝑡); iv) the

filter that needs to be evaluated is the one related to the stage that grants the most advanced

state between 𝑠𝑡 and 𝑠𝑡′ (after the correction of the non-subsequent state), the related stage is

dependent on the agent model. For instance, the BDI model has no clear distinction between the

beliefs used at each state, and it is possible that all three patterns, or only a subset of them, are

used for each state evaluation stage. In turn, the BBGP has a clear distinction on the beliefs for

each state, where Activated uses a positive filter, Pursuable uses a negative filter, Chosen uses

a preference filter, and Executive uses a positive filter.

The positive and negative filters are based on causal relations, what differentiates them

is the value of the literal that represents the event. If the literal is positively evaluated, it is a cause

supporting the event, and is managed by the positive filter. In turn, if the literal is negatively eval-

uated, the cause is said to be against, obstructing or impeding the event, being then managed

by negative filters.

Definition 26. (Supporting and Impeding causes). Let 𝐶 be the set of causes, 𝑐 =

⟨𝑒, 𝐶𝑜𝑛𝑑⟩ ∈ 𝐶 be a cause, if 𝑒 is a positive literal, then 𝑐 is said to be a supporting cause

for 𝑒. If 𝑒 is a negative literal, then 𝑐 is said to be an impeding cause for 𝑒.

Positive and negative filters follow the same rationale in relation to the construction of its

formulation:

• First, get all direct causes (Definition 10) of goal 𝑔𝑖𝑑: 𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑).

• Second, extract the presumptions (Definitions 18 and 19): 𝑐_𝑝𝑟𝑒(...) or 𝑑_𝑝𝑟𝑒(...).

• Third, compare the presumptions with the agent’s beliefs (Definition 16): −𝐾𝐵+ or

∩𝐾𝐵+, for “not a belief” and “is a belief”, respectively.

• Lastly, when applicable, compare the resulting presumptions from both goals (function

Definition 25): 𝑃𝑟𝑒𝑑− 𝑃𝑟𝑒𝑑′, 𝑃𝑟𝑒𝑑 ∩ 𝑃𝑟𝑒𝑑′, or 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(...).

In turn, the preference filter is an ordered list of criteria, where the output is the first satisfied

criteria. It makes use of the 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑′) function (Definition 12) and preference relations

(Definitions 20, 21, and 22).
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3.2.1 P-Contrast

Property-Contrast questions are of the form: “Why goal 𝑔𝑖𝑑 is in state 𝑠𝑡, rather than in

state 𝑠𝑡′?", having a single goal, being compared in a single instance of time with a hypothetical

version of itself whose state is 𝑠𝑡′. The resulting set is interpreted as “a set of absent conditions

𝑅𝐶 that would ensure that 𝑔𝑖𝑑 achieves state 𝑠𝑡′”.

Two sub-cases are defined in accordance with the states (Definition 15):

• 𝑠𝑡′ ⊂ 𝑠𝑡, that is, "Why have not 𝑔𝑖𝑑 advanced its state?"

• 𝑠𝑡 ⊂ 𝑠𝑡′, that is, "Why have not 𝑔𝑖𝑑 receded its state?"

For 𝑠𝑡′ ⊂ 𝑠𝑡, each deliberative pattern is defined as follows:

• Positive – it can be inferred from the question that the goal 𝑔𝑖𝑑 did not advance its

state. The explanation needs to present the set presumptions that, if present, would

have ensured the goal’s progress. This set can be obtained with:

𝑅𝐶 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑))−𝐾𝐵+

• Negative – it can be inferred that the goal 𝑔𝑖𝑑 did not advance its state because some

presumptions impeded it. The explanations need to present a set of presumptions that,

if were made absent, would have allowed the goal to progress freely. The set is obtained

by:

𝑅𝐶 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑)) ∩𝐾𝐵+

• Preference – it can be inferred that, although no presumption was missing or impeding

the goal progression, a conflict of goals and a lack of preference made the goal not to be

selected to advance. As such, the explanation is an assertion of preference, identifying

why 𝑔𝑖𝑑 was not selected. The first case that applies:

– 𝑅𝐶 = “Goal 𝑔𝑖𝑑 has conflict with 𝑔𝑖𝑑′”, defined as:

𝑔𝑖𝑑′ ≫ 𝐺𝑠𝑡 ∧ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑′,𝑔𝑖𝑑), where 𝑔𝑖𝑑′ ̸= 𝑔𝑖𝑑,

and 𝐺𝑠𝑡 is the set of goals on stage 𝑠𝑡

– 𝑅𝐶 = “Goal 𝑔𝑖𝑑 is not compatible with a preferable set of goals”, defined as:

Let 𝐺𝑆𝑒𝑙 = {𝑔𝑖𝑑1, ..., 𝑔𝑖𝑑𝑛} be the set of compatible goals that were selected,

and 𝐺𝑔 = {𝑔𝑖𝑑, 𝑔𝑖𝑑′1, ..., 𝑔𝑖𝑑′𝑛} be the set of goals compatible with 𝑔𝑖𝑑,𝐺𝑆𝑒𝑙 > 𝐺𝑔

For 𝑠𝑡 ⊂ 𝑠𝑡′, each deliberative pattern is as follows:

• Positive – it can be inferred from the question that the goal 𝑔𝑖𝑑 was expected to lose

its state 𝑠𝑡 and recede to a previous state 𝑠𝑡′. The explanation needs to present the set
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of presumptions that, if present, would have ensured the goal regression. This set can

be obtained with:

𝑅𝐶 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑)) ∩𝐾𝐵+

• Negative – it can be inferred that the goal 𝑔𝑖𝑑 did not regress its state because some

expected presumptions, that would have impeded it, were absent. The explanations

need to present a set of presumptions that, if in the 𝐾𝐵, would have impeded the goal

to stay with state 𝑠𝑡. The set is obtained by:

𝑅𝐶 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑))−𝐾𝐵+

• Preference – it can be inferred that, although no presumptions forced the goal regres-

sion, a conflict of goals was expected, but the preference made the goal to be selected

to continue with the state 𝑠𝑡. As such, the explanation is an assertion of preference,

identifying why 𝑔𝑖𝑑 was preferred. The first case that applies:

– 𝑅𝐶 = “𝑔𝑖𝑑 had no incompatibilities”:

∄𝑔𝑖𝑑′ ∈ 𝐺𝑠𝑡′|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑′) where 𝐺𝑠𝑡′ is the set of goals with state 𝑠𝑡′

– 𝑅𝐶 = “𝑔𝑖𝑑 was the most preferred goal”:

𝑔𝑖𝑑 ≫ 𝐺𝑠𝑡′ , where 𝐺𝑠𝑡′ represents the goals with state 𝑠𝑡′

– 𝑅𝐶 = “𝑔𝑖𝑑 was compatible with the most preferred goal”:

∃𝑔𝑖𝑑𝑚 ∈ 𝐺 such that 𝑔𝑖𝑑𝑚 ≫ 𝐺𝑠𝑡′∧¬𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑚), where 𝐺𝑠𝑡′ is the set of

goals with state 𝑠𝑡′

– 𝑅𝐶 = “𝑔𝑖𝑑 is compatible with the selected set of goals 𝐺𝑆𝑒𝑙”:

Let 𝐺𝑆𝑒𝑙 = {𝑔𝑖𝑑, 𝑔𝑖𝑑1, ..., 𝑔𝑖𝑑𝑛},∄𝐺′ ⊂ 𝐺𝑠𝑡′ |𝐺′ > 𝐺𝑆𝑒𝑙.

That concludes P-contrast for directly subsequent 𝑠𝑡 and 𝑠𝑡′, be it advancing or receding

its state. Non-subsequent state and special cases are discussed next in subsection 3.2.5.

3.2.2 O-Contrast

Object-contrast are questions of the form: “Why goal 𝑔𝑖𝑑𝑎 is in state 𝑠𝑡, while goal 𝑔𝑖𝑑𝑏
is in state 𝑠𝑡′?", having two goals 𝑔𝑖𝑑𝑎 and 𝑔𝑖𝑑𝑏, being compared in the same time frame. The

resulting set is interpreted as “a set of conditions 𝑅𝐶, absent for 𝑔𝑖𝑑𝑎 but present for 𝑔𝑖𝑑𝑏, that

if present for 𝑔𝑖𝑑𝑎 would ensure it to achieve state 𝑠𝑡′". It is expected that 𝑔𝑖𝑑𝑎 and 𝑔𝑖𝑑𝑏 to

have shared causes in its causal tree and that they should have the same state (inferred user

expectation from the nature of the question).

The two sub-cases are defined according to the states (Definition 15):

• 𝑠𝑡′ ⊂ 𝑠𝑡, interpreted as “Why have not 𝑔𝑖𝑑𝑎 advanced its state whereas 𝑔𝑖𝑑𝑏 have?”.

• 𝑠𝑡 ⊂ 𝑠𝑡′, interpreted as “Why have not 𝑔𝑖𝑑𝑎 receded its state whereas 𝑔𝑖𝑑𝑏 have?”.
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For 𝑠𝑡′ ⊂ 𝑠𝑡, the deliberative patterns are defined as:

• Positive – it is inferred that 𝑔𝑖𝑑𝑏 had some supporting presumptions that 𝑔𝑖𝑑𝑎 did not

had. The explanation needs to provide the set of presumptions that 𝑔𝑖𝑑𝑏 have in its

causal tree, that if present for 𝑔𝑖𝑑𝑎, would ensure that 𝑔𝑖𝑑𝑎 achieves state 𝑠𝑡′. Defined

as:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑎))−𝐾𝐵+

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑏)) ∩𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐴, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐵))

• Negative – it is inferred that 𝑔𝑖𝑑𝑎 had some impeding presumptions that 𝑔𝑖𝑑𝑏 did not

have. The explanation needs to provide the set of presumptions that 𝑔𝑖𝑑𝑎 have in its

causal tree and 𝑔𝑖𝑑𝑏 does not, that if made absent for 𝑔𝑖𝑑𝑎, would ensure that 𝑔𝑖𝑑𝑎
receded to state 𝑠𝑡′. Defined as:

𝐴 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+

𝐵 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑏))−𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐴, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐵))

• Preference – it is inferred that, although no supporting presumptions were absent nor

impeding presumptions were present to make 𝑔𝑖𝑑𝑎 not to be selected, a conflict of

goals and a lack of preference combined with an unexpected conflict made 𝑔𝑖𝑑𝑎 not to

be selected. The explanation is an assertion of preference, identifying why 𝑔𝑖𝑑𝑎 was not

selected and 𝑔𝑖𝑑𝑏 was. The first case that applies:

– 𝑅𝐶 = “𝑔𝑖𝑑𝑏 has no incompatibilities whereas 𝑔𝑖𝑑𝑎 does.”:

∄𝑔𝑖𝑑 ∈ 𝐺𝑠𝑡|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑𝑏,𝑔𝑖𝑑) ∧ ∃𝑔𝑖𝑑′ ∈ 𝐺𝑠𝑡|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑𝑎, 𝑔𝑖𝑑′)

– 𝑅𝐶 = “𝑔𝑖𝑑𝑏 is preferred over 𝑔𝑖𝑑𝑎, and they are incompatible”:

𝑔𝑖𝑑𝑏 > 𝑔𝑖𝑑𝑎 ∧ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑𝑏, 𝑔𝑖𝑑𝑎)

– 𝑅𝐶 = “𝑔𝑖𝑑𝑏 is compatible with another goal, with higher preference”:

Let 𝑔𝑖𝑑 ∈ 𝐺𝑠𝑡, 𝑔𝑖𝑑 > 𝑔𝑖𝑑𝑎 ∧ ¬𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑𝑏,𝑔𝑖𝑑) ∧ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎)

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 is incompatible with the selected goals”:

Let 𝐺𝑎 = {𝑔𝑖𝑑𝑎, 𝑔𝑖𝑑1, ..., 𝑔𝑖𝑑𝑛} and 𝐺𝑆𝑒𝑙 = {𝑔𝑖𝑑𝑏, 𝑔𝑖𝑑′1, ..., 𝑔𝑖𝑑′2}, 𝐺𝑆𝑒𝑙 > 𝐺𝑎

For 𝑠𝑡 ⊂ 𝑠𝑡′, the deliberative patterns are defined as:

• Positive – it is inferred that 𝑔𝑖𝑑𝑎 had some supporting presumptions that 𝑔𝑖𝑑𝑏 did not

had. The explanation needs to provide the set of presumptions that 𝑔𝑖𝑑𝑎 have in its
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causal tree but not for 𝑔𝑖𝑑𝑏, that if made absent for 𝑔𝑖𝑑𝑎, would ensure that 𝑔𝑖𝑑𝑎 recedes

to state 𝑠𝑡′. Defined as:

𝐴 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+

𝐵 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑏))−𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐵))

• Negative – it is inferred that 𝑔𝑖𝑑𝑏 had some impeding presumptions that 𝑔𝑖𝑑𝑎 did not

had. The explanation needs to provide the set of presumptions that 𝑔𝑖𝑑𝑏 have in its

causal tree and 𝑔𝑖𝑑𝑎 does not, that if present for 𝑔𝑖𝑑𝑎, would ensure that 𝑔𝑖𝑑𝑎 receded

to state 𝑠𝑡′. Defined as:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑏)) ∩𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐵))

• Preference – it is inferred that, although no supporting presumptions were absent nor

impeding presumptions were present to make 𝑔𝑖𝑑𝑏 not to be selected, a conflict of

goals and a lack of preference combined with an unexpected conflict made 𝑔𝑖𝑑𝑏 not to

be selected. The explanation is an assertion of preference, identifying why 𝑔𝑖𝑑𝑏 was not

selected and 𝑔𝑖𝑑𝑎 was. The first case that applies:

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 has no incompatibilities and 𝑔𝑖𝑑𝑏 does”:

∄𝑔 ∈ 𝐺𝑠𝑡|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑𝑎,𝑔𝑖𝑑) ∧ ∃𝑔𝑖𝑑′ ∈ 𝐺𝑠𝑡|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑𝑏, 𝑔𝑖𝑑′)

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 has a higher preference than 𝑔𝑖𝑑𝑏 and they are incompatible”:

𝑔𝑖𝑑𝑎 > 𝑔𝑖𝑑𝑏 ∧ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑𝑎, 𝑔𝑖𝑑𝑏)

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 is compatible with another goal, with higher preference”:

Let 𝑔𝑖𝑑 ∈ 𝐺𝑠𝑡 such that 𝑔𝑖𝑑 > 𝑔𝑖𝑑𝑏∧¬𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑𝑎,𝑔𝑖𝑑)∧𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑏)

– 𝑅𝐶 = “𝑔𝑖𝑑𝑏 is incompatible with the selected goals”:

Let 𝐺𝑏 = {𝑔𝑖𝑑𝑏, 𝑔𝑖𝑑1, ..., 𝑔𝑖𝑑𝑛} and 𝐺𝑆𝑒𝑙 = {𝑔𝑖𝑑𝑎, 𝑔𝑖𝑑′1, ..., 𝑔𝑖𝑑′2}, 𝐺𝑆𝑒𝑙 > 𝐺𝑏

If the goals being compared are not causally related, the result from a positive or negative

filter will be an empty set. In those cases, a follow-up question can be answered. This process is

better explored in subsection 3.2.5. Preference filters do not require a causal relationship for the

answer generation and, as such, do not result in an empty set.
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3.2.3 T-Contrast

Time-contrast questions has the form: “Why is 𝑔𝑖𝑑𝑎 in state 𝑠𝑡 at 𝑡1, while at 𝑡2 it is in

state 𝑠𝑡′?", having a single goal 𝑔𝑖𝑑𝑎 being compared with itself in two distinct time frames. The

resulting set is interpreted as “set of conditions 𝑅𝐶, absent at 𝑡1 but present at 𝑡2, that if present

at 𝑡1, would have ensured that 𝑔𝑖𝑑𝑎 achieved state 𝑠𝑡′. At a first, lets assume that 𝑡1 < 𝑡2, as it

is shown by the end of this subsection that 𝑡1 and 𝑡2 are interchangeable.

The two sub-cases are defined according to the states (Definition 15):

• 𝑠𝑡′ ⊂ 𝑠𝑡, interpreted as “Why 𝑔𝑖𝑑𝑎 have not advanced its state at 𝑡1 but it did at 𝑡2?”.

• 𝑠𝑡 ⊂ 𝑠𝑡′, interpreted as “Why 𝑔𝑖𝑑𝑎 have not receded its state at 𝑡1 but it did at 𝑡2?”.

For 𝑠𝑡′ ⊂ 𝑠𝑡, the deliberative patterns are as follows:

• Positive – it is inferred that 𝑔𝑖𝑑𝑎 had supporting presumption at 𝑡2 that it did not had at

𝑡1. The explanations needs to provide a set of presumptions, present at 𝑡2 but absent

at 𝑡1 that, if were made present at 𝑡1, would ensure 𝑔𝑖𝑑𝑎 had achieved 𝑠𝑡′ at 𝑡1. Defined

as:

𝑅𝐶 = (𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑎))−𝐾𝐵+
1 ) ∩ (𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+

2 )

• Negative – it is inferred that 𝑔𝑖𝑑𝑎 had impeding presumption at 𝑡1 that it did not had at

𝑡2. The explanations needs to provide a set of presumptions, present at 𝑡1 but absent

at 𝑡2 that, if were absent at 𝑡1, would ensure 𝑔𝑖𝑑𝑎 had achieved 𝑠𝑡′ at 𝑡1. Defined as:

𝑅𝐶 = (𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+
1 ) ∩ (𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+

2 )

• Preference – it is inferred that, although no supporting presumptions were absent nor

impeding presumptions were present to make 𝑔𝑖𝑑𝑎 not to be selected at 𝑡1, a conflict

of goals and a lack of preference made 𝑔𝑖𝑑𝑎 not to be selected at 𝑡1. The explanations

need to provide an assertion of preference, identifying why 𝑔𝑖𝑑𝑎 was not selected at 𝑡1,

but then it was selected at 𝑡2. The first case that applies:

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 had no incompatibilities at 𝑡2 after another goal 𝑔𝑖𝑑 ended”:

Let 𝑔𝑖𝑑 ∈ 𝐺1
𝑠𝑡 ∧ 𝑔𝑖𝑑 /∈ 𝐺2

𝑠𝑡 ∧ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎), where 𝐺1
𝑠𝑡 is the set

of goals with state 𝑠𝑡 at 𝑡1, and 𝐺2
𝑠𝑡 is the set of goals with 𝑠𝑡 at 𝑡2

– 𝑅𝐶 = “A goal 𝑔𝑖𝑑 has ended in 𝑡2 weakening the conflicting set of goals of

𝑔𝑖𝑑𝑎”:

Let 𝑔𝑖𝑑 ∈ 𝐺1
𝑠𝑡 ∧ 𝑔𝑖𝑑 /∈ 𝐺2

𝑠𝑡 ∧ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎), where 𝐺1
𝑠𝑡 is the set

of goals with state 𝑠𝑡 at 𝑡1, and 𝐺2
𝑠𝑡 is the set of goals with 𝑠𝑡 at 𝑡2

– 𝑅𝐶 = “A new goal 𝑔𝑖𝑑 compatible with 𝑔𝑖𝑑𝑎 is available at 𝑡2 strengthening

the set of compatible goals”:

Let 𝑔𝑖𝑑 /∈ 𝐺1
𝑠𝑡 ∧ 𝑔𝑖𝑑 ∈ 𝐺2

𝑠𝑡,¬𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎), where 𝐺1
𝑠𝑡 is the set
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of goals with state 𝑠𝑡 at 𝑡1, and 𝐺2
𝑠𝑡 is the set of goals with 𝑠𝑡 at 𝑡2

When 𝑠𝑡 ⊂ 𝑠𝑡′, the deliberation patterns are defined as:

• Positive – it is inferred that 𝑔𝑖𝑑𝑎 had supporting presumption at 𝑡2 that it did not had at

𝑡1. The explanations needs to provide a set of presumptions, present at 𝑡2 but absent

at 𝑡1 that, if were made absent at 𝑡2, would ensure 𝑔𝑖𝑑𝑎 to recede to state 𝑠𝑡′ at 𝑡2.

Defined as:

𝑅𝐶 = (𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+
1 ) ∩ (𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑎))−𝐾𝐵+

2 )

• Negative – it is inferred that 𝑔𝑖𝑑𝑎 had impeding presumption at 𝑡1 that it did not had at

𝑡2. The explanations needs to provide a set of presumptions, present at 𝑡1 but absent

at 𝑡2 that, if were present at 𝑡2, would ensure 𝑔𝑖𝑑𝑎 had recede to state 𝑠𝑡′ at 𝑡2. Defined

as:

𝑅𝐶 = (𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+
1 ) ∩ (𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+

2 )

• Preference – it is inferred that, although no supporting presumptions were absent nor

impeding presumptions were present to make 𝑔𝑖𝑑𝑎 not to be selected at 𝑡2, a lack of

conflicting goals or the preference made 𝑔𝑖𝑑𝑎 to be selected at 𝑡2. The explanations

needs to provide a assertion of preference, identifying a why 𝑔𝑖𝑑𝑎 was selected at 𝑡2
but not selected at 𝑡1. The first case that applies:

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 is incompatible with the new goal 𝑔𝑖𝑑 at 𝑡2”:

Let 𝑔𝑖𝑑 /∈ 𝐺1
𝑠𝑡′ ∧ 𝑔𝑖𝑑 ∈ 𝐺2

𝑠𝑡′ ∧ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎), where 𝐺1
𝑠𝑡′ is the set

of goals with state 𝑠𝑡′ at 𝑡1, and 𝐺2
𝑠𝑡′ is the set of goals with 𝑠𝑡′ at 𝑡2

– 𝑅𝐶 = “A new goal 𝑔𝑖𝑑 at 𝑡2 strengthened the set of goals conflicting with

𝑔𝑖𝑑𝑎”:

Let 𝑔𝑖𝑑 /∈ 𝐺1
𝑠𝑡′ ∧ 𝑔𝑖𝑑 ∈ 𝐺2

𝑠𝑡′ ∧ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎), where 𝐺1
𝑠𝑡′ is the set

of goals with state 𝑠𝑡′ at 𝑡1, and 𝐺2
𝑠𝑡′ is the set of goals with 𝑠𝑡′ at 𝑡2

– 𝑅𝐶 = “A goal 𝑔𝑖𝑑 compatible with 𝑔𝑖𝑑𝑎 has ended at 𝑡2 weakening the set of

compatible goals”:

Let 𝑔𝑖𝑑 ∈ 𝐺1
𝑠𝑡′ ∧ 𝑔𝑖𝑑 /∈ 𝐺2

𝑠𝑡′ ∧ ¬𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎)

To conclude T-contrast the cases where 𝑡1 > 𝑡2 need to be evaluated. In these cases, it

is possible to change the order of the properties and the time so that the first 𝑡 on the question is

< than the second one. That is possible because the question can be interpreted as: “Why 𝑔𝑖𝑑𝑎

advanced/receded in relation to before?". For instance, with the following question: “Why 𝑔𝑖𝑑𝑎

was in state 𝑠𝑡 at 𝑡𝑎, but state 𝑠𝑡′ at 𝑡𝑏?", by swapping the state an times results in “Why 𝑔𝑖𝑑𝑎

was in state 𝑠𝑡′ at 𝑡𝑏, but state 𝑠𝑡 at 𝑡𝑎?", as can be seen in figure 4.
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Figure 4 – Inversion of times instances in questions.

Note how both questions translate to the same states and intervals.

Source: Author’s own.

3.2.4 OT-Contrast

A more general form of the contrastive questions not presented in Bouwel and Weber’s

work is the Object-Time-Contrast was defined. This questions is of the form: “Why goal 𝑔𝑖𝑑𝑎 is

in state 𝑠𝑡 at 𝑡1, while goal 𝑔𝑖𝑑𝑏 is in state 𝑠𝑡′ at 𝑡2?”. The resulting set is interpreted as “a set

of conditions 𝑅𝐶, absent for 𝑔𝑖𝑑𝑎 at 𝑡1 but present for 𝑔𝑖𝑑𝑏 at 𝑡2, that is present at 𝑡1 would

have ensured that 𝑔𝑖𝑑𝑎 achieve state 𝑠𝑡′”. Goals 𝑔𝑖𝑑𝑎 and 𝑔𝑖𝑑𝑏 are expected to be causally

related, also, for the same reason as discussed in the T-contrast, let’s assume that 𝑡1 < 𝑡2, and

analogously with the O-contrast, the goals 𝑔𝑖𝑑𝑎 and 𝑔𝑖𝑑𝑏 are expected to be causally related.

The two sub-cases are defined according to the states (Definition 15):

• 𝑠𝑡′ ⊂ 𝑠𝑡, interpreted as “Why 𝑔𝑖𝑑𝑎 have not advanced its state at 𝑡1 and 𝑔𝑖𝑑𝑏 have

advanced at 𝑡2?”.

• 𝑠𝑡 ⊂ 𝑠𝑡′, interpreted as “Why 𝑔𝑖𝑑𝑎 have not receded its state at 𝑡1 and 𝑔𝑖𝑑𝑏 have

receded at 𝑡2?”.

For 𝑠𝑡′ ⊂ 𝑠𝑡, the deliberative patterns are as follows:

• Positive – it is inferred that 𝑔𝑖𝑑𝑏 had supporting presumption at 𝑡2 that 𝑔𝑖𝑑𝑎 did not had

at 𝑡1. The explanations needs to provide a set of presumptions, present at 𝑡2 for 𝑔𝑖𝑑𝑏
but that were absent for 𝑔𝑖𝑑𝑎 at 𝑡1 that, if were made present at 𝑡1, would ensure 𝑔𝑖𝑑𝑎

had achieved 𝑠𝑡′ at 𝑡1. Defined as:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒(𝑔𝑖𝑑𝑎))−𝐾𝐵+
1

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒(𝑔𝑖𝑑𝑏) ∩𝐾𝐵+
2

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐴, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐵))
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• Negative – it is inferred that 𝑔𝑖𝑑𝑎 had impeding presumption at 𝑡1 that 𝑔𝑖𝑑𝑏 did not had

at 𝑡2. The explanations needs to provide a set of presumptions, present at 𝑡1 for 𝑔𝑖𝑑𝑎
but absent for 𝑔𝑖𝑑𝑏 at 𝑡2 that, if were absent at 𝑡1, would had ensured 𝑔𝑖𝑑𝑎 achieved 𝑠𝑡′

at 𝑡1. Defined as:

𝐴 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒(¬𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+
1

𝐵 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒(¬𝑔𝑖𝑑𝑏)−𝐾𝐵+
2

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐴, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐵))

• Preference – it is inferred that, although no supporting presumptions were absent nor

impeding presumptions were present to make 𝑔𝑖𝑑𝑎 not to be selected at 𝑡1, a conflict of

goals and a lack of preference made 𝑔𝑖𝑑𝑎 not to be selected at 𝑡1 that did not affected

𝑔𝑖𝑑𝑏 at 𝑡2. The explanations needs to provide a assertion of preference, identifying a

why 𝑔𝑖𝑑𝑎 was not selected at 𝑡1 but 𝑔𝑖𝑑𝑏 was selected at 𝑡2. The first case that applies:

– 𝑅𝐶 = “𝑔𝑖𝑑𝑏 has no incompatibilities at 𝑡2”:

∄𝑔𝑖𝑑 ∈ 𝐺2
𝑠𝑡|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑏)

– 𝑅𝐶 = “A subset of goals incompatible with 𝑔𝑖𝑑𝑎 are not present at 𝑡2”:

Let 𝐺′ = ∀𝑔𝑖𝑑 ∈ 𝐺1
𝑠𝑡|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎) ∧ 𝑔𝑖𝑑 /∈ 𝐺2

𝑠𝑡

– 𝑅𝐶 = “A subset of goals selected with 𝑔𝑖𝑑𝑏 are not present at 𝑡1, weakening

𝑔𝑖𝑑𝑎”:

Let 𝐺′ = ∀𝑔𝑖𝑑 ∈ 𝐺2
𝑆𝑒𝑙|¬𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎) ∧ 𝑔𝑖𝑑 /∈ 𝐺1

𝑠𝑡

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 and 𝑔𝑖𝑑𝑏 have different preference relationships”.

When 𝑠𝑡 ⊂ 𝑠𝑡′, the deliberative patterns are as follows:

• Positive – it is inferred that 𝑔𝑖𝑑𝑎 had supporting presumption at 𝑡1 that 𝑔𝑖𝑑𝑏 did not had

at 𝑡2. The explanations needs to provide a set of presumptions, present at 𝑡1 for 𝑔𝑖𝑑𝑎
but that were absent for 𝑔𝑖𝑑𝑏 at 𝑡2 that, if were made absent at 𝑡1, would ensure 𝑔𝑖𝑑𝑎

had recede to state 𝑠𝑡′ at 𝑡1. Defined as:

𝐴 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒(𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+
1

𝐵 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒(𝑔𝑖𝑑𝑏))−𝐾𝐵+
2

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐵))

• Negative – it is inferred that 𝑔𝑖𝑑𝑏 had impeding presumption at 𝑡2 that 𝑔𝑖𝑑𝑎 did not had

at 𝑡1. The explanations needs to provide a set of presumptions, present at 𝑡2 for 𝑔𝑖𝑑𝑏
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but absent for 𝑔𝑖𝑑𝑎 at 𝑡1 that, if were present at 𝑡1, would had ensured 𝑔𝑖𝑑𝑎 receded to

state 𝑠𝑡′ at 𝑡1. Defined as:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+
1

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒(¬𝑔𝑖𝑑𝑏)) ∩𝐾𝐵+
2

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝐵))

• Preference – it is inferred that, although supporting presumptions were present and

impeding presumptions were absent, 𝑔𝑖𝑑𝑎 was expected to have not been selected,

as happened to 𝑔𝑖𝑑𝑏 at 𝑡2, a lack of conflicting goals or a preference made 𝑔𝑖𝑑𝑎 to

be selected at 𝑡1 that impeded 𝑔𝑖𝑑𝑏 selection at 𝑡2. The explanations needs to provide

a assertion of preference, identifying a why 𝑔𝑖𝑑𝑎 was selected at 𝑡1 but 𝑔𝑖𝑑𝑏 was not

selected at 𝑡2. The first case that applies:

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 has no incompatibilities at 𝑡1”:

∄𝑔𝑖𝑑 ∈ 𝐺1
𝑠𝑡′ |𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎)

– 𝑅𝐶 = “A subset of goals incompatible with 𝑔𝑖𝑑𝑏 are not present at 𝑡1”:

𝐺′ = ∀𝑔𝑖𝑑 ∈ 𝐺2
𝑠𝑡′|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑏) ∧ 𝑔𝑖𝑑 /∈ 𝐺1

𝑠𝑡′

– 𝑅𝐶 = “A subset of goals selected with 𝑔𝑖𝑑𝑎 are not present at 𝑡2, weakening

𝑔𝑖𝑑𝑏”:

𝐺′ = ∀𝑔𝑖𝑑 ∈ 𝐺1
𝑆𝑒𝑙|¬𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑,𝑔𝑖𝑑𝑎) ∧ 𝑔𝑖𝑑 /∈ 𝐺2

𝑠𝑡′

– 𝑅𝐶 = “𝑔𝑖𝑑𝑎 and 𝑔𝑖𝑑𝑏 have different preference relationships”.

Notice that the rationale of this type of question is that the results of both goals were

expected to be the same, even in different time frames. That expectation does not follow for

O-contrast.

To conclude OT-contrast, when 𝑡1 > 𝑡2, the pair goal-state can be inverted, in the same

way as with T-contrast. By doing that, the requirement of the first pair happening before the

second can be achieved, with an equivalent result set of conditions.

This concludes every explanation for directly subsequent state a goal can have. Next,

how non-directly subsequent state interplay and possible special cases are discussed.

3.2.5 Non-Directly Subsequent States and Special Cases

In practical applications, it is expected to have some goal state beyond the sequential

states for the goal selection. Two of such states are the Cancelled and Completed, both being

terminal states, that is, once a goal transitions to such states, it can not change again. If the

goal is still applicable, a new instance should be raised. Another example is the state Paused.
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It differs from the previous two by not being terminal, the goal can still return to the sequential

states of the goal selection.

The conditions for a goal changing to these states generally are simple, for instance, to

treat exceptional circumstances (an error during the processing time), to avoid queuing issues

(a goal that never progresses), or to signal the completion without loss of information (a goal that

has been complete, instead of simply excluding the goal, a special state is achieved). For this

reason, there is no conflicting cases or comparison applicable. To answer why a goal is in such

state, it requires only to specify the causal conditional for the state transition.

When evaluating two subsequent states that do not fall on the conditions previously ad-

dressed, that is, two states that are not directly subsequent (Definition 14), such questions can

be answered based on the previous constructions.

Two cases can be differentiated: a) when a goal has a state more advanced than ex-

pected, and b) when a goal is in a state previous to the expected. In the first scenario, the

contrastive case shows us that it was expected that a condition blocking the goal’s progress to

hold. As such, by presenting the beliefs that allowed the goal to progress, it is shown that the

missing blocking condition did not hold. So the answer can be provided by changing the more

advanced goal state to a directly subsequent state in relation to the least advanced.

In the second scenario, where the contrast tells that a goal has not advanced as ex-

pected, some unexpected condition blocking the goal’s progress holds. To answer the question,

the unexpected condition needs to be provided, and, as in the first scenario, by replacing the

most advanced state with a directly subsequent to the least advanced one, the set of conditions

is obtained.

When the question is of the type O-contrast or OT-contrast, if the set of conditions is

empty, it means that the compared goals do not share a relevant cause.

Definition 27. (Unrelated goals). Let 𝐺𝐼𝑑 be the set of goal identifiers, 𝑔𝑖𝑑, 𝑔𝑖𝑑′ ∈ 𝐺𝐼𝑑 be two

goal identifiers, if ∀𝑐 ∈ 𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑) ∀𝑐′ ∈ 𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑′) |𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑐,𝑐′) = 𝐹𝑎𝑙𝑠𝑒 (Definitions 10

and 6) then goals 𝑔𝑖𝑑 and 𝑔𝑖𝑑′ are said to be causally unrelated.

In such cases, an answer saying that both goals are not causally related can be given,

but often it will not be a satisfactory answer. It is possible to convert the question to a P-contrast,

using the first goal and the same states of the posed O/OT-contrast. The first goal is usually

the one that was unexpected for the explainee. That way, the explainee receives an answer to

what would probably be his following question. For example, take the O-contrast question “Why

goal 𝑔𝑖𝑑𝑎 has state 𝑠𝑡, while goal 𝑔𝑖𝑑𝑏 has state 𝑠𝑡′?”, where 𝑠𝑡′ ⊂ 𝑠𝑡, now let’s say that the

conditions returned as an empty set, instead of giving a simple answer that goals 𝑔𝑖𝑑𝑎 and 𝑔𝑖𝑑𝑏

do not share a causal history, one can provide an answer to what possibly would be a followup

question. In our example, the question would be “Why goal 𝑔𝑖𝑑𝑎 has state 𝑠𝑡(, instead of 𝑠𝑡′)?”,

which is translates to answering why the goal 𝑔𝑖𝑑𝑎 had a certain state, since posing the original
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question indicates that situation to be unexpected. Notice that it is still necessary to inform that

𝑔𝑖𝑑𝑎 and 𝑔𝑖𝑑𝑏 are not causally related.

3.3 Possible Explanans: calculating the set of possible explanans

The method presented in the previous section results in a set of all conditions that could

be used to formulate an explanation. The explanation can have more than a single event (goal

achieving a certain goal state) to be explained. As such, the conditions (presumptions or pref-

erence assertion) used in the explanation should have a causal relation with all such events. If

the related conditions is made of a preference assertion, then the resulting possible explanans

is the preference assertion. When the related conditions is made of presumptions, it is required

to construct the sets that cover all the events, this set is the possible explanans. It is worth men-

tioning that to select a single explanation, several criteria can be used, being dependent on the

context. A brief overview of these criteria is presented in subsection 2.2.4. The following method

does not seek to select the answer, only to create subsets of beliefs covering all goal states to

be explained. The selection should be made next, but it is outside the scope of this work.

Let 𝑅𝐶 be the set of related conditions (the presumptions or preference assertion) and 𝐸

the set of events to be explained (explanandum – the goals with their respective state). In order

to define the subsets of 𝑅𝐶 to be used as answers, a non-directed graph 𝐺𝑝 is built, such that

𝐺𝑝 = (𝑉 𝑒𝑟, 𝐸𝑑𝑔). Lets call such graphs explanation graphs. The set of vertex 𝑉 𝑒𝑟 = {𝑥|𝑥 ∈
(𝑅𝐶 ∪ 𝐸)}, and the set of edges 𝐸𝑑𝑔 is:

If 𝑅𝐶 is obtained with 𝑑_𝑝𝑟𝑒 (Definition 18) : ∀𝑒 ∈ 𝐸 and ∀𝑟𝑐 ∈ 𝑅𝐶,

if ∃𝑙 ∈ 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑒)) ∧ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝑙) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝑟𝑐)

then (𝑟𝑐,𝑒) ∈ 𝐸𝑑𝑔.

If 𝑅𝐶 is obtained with 𝑐_𝑝𝑟𝑒 (Definition 19) : ∀𝑒 ∈ 𝐸 and ∀𝑟𝑐 ∈ 𝑅𝐶,

if ∃𝜙 ∈ 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑒)) ∧ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝜙) ⊂ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑛𝑎𝑚𝑒(𝑟𝑐)

then (𝑟𝑐,𝑒) ∈ 𝐸𝑑𝑔.

With that, every condition is connected to every event that it explains.

A possible explanans is defined as:

Definition 28. (Possible explanans - PE) Let 𝑅𝐶 be a set of related conditions and 𝐸 a set of

events, 𝑃𝐸 ⊂ 𝑅𝐶 is a possible explanans iff. ∀𝑒 ∈ 𝐸,∃𝑟𝑐 ∈ 𝑃𝐸|(𝑟𝑐,𝑒) ∈ 𝐸𝑑𝑔.

Remembering Grice’s Cooperation Principles, there are two relevant maxims: Quantity

and Relation. The Relation maxim is satisfied by the previous step, that is, let 𝑅𝐶 be the set

of related conditions outputted by the Generate Related Conditions procedure, and 𝐸𝑥𝑝 ⊂ 𝐸
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be the set of events in the explanandum, ∀𝑟𝑐 ∈ 𝑅𝐶 ∃𝑒 ∈ 𝐸𝑥𝑝|𝑟𝑐 is causally related to 𝑒.

The Quantity maxim requires that only the necessary conditions, and nothing more, to be part

of the explanation. A possible explanans guarantees that all the events in the explanandum

are accounted for by some condition. To avoid redundant conditions, and by that satisfying the

Quantity maxim, it is necessary to provide only minimal possible explanans:

Definition 29. (Minimal Possible explanans). Let 𝐺𝑝 be an explanation graph, and 𝒫ℰ be the

set of all possible explanans of 𝐺𝑝. 𝑃𝐸 ∈ 𝒫ℰ is minimal iff. ∄𝑃𝐸 ′ ∈ 𝒫ℰ|𝑃𝐸 ′ ⊂ 𝑃𝐸 and 𝑃𝐸 ̸=
𝑃𝐸 ′.

3.3.1 Algorithm for MPE

To calculate the Minimal Possible Explanans (MPE) set, Algorithm 1 is presented. The

procedure presented is recursive, with five inputs: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑛𝑠, which is a set of sets of

conditions; 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡, which is the ordered list (with respect to the node degree) of all events;

𝑖𝑛𝑑𝑒𝑥 representing the current event of the 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 being evaluated; 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 which is a set

of events currently covered in the branch; lastly, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑐𝑜𝑣𝑒𝑟 is a set of conditions that is a

partial cover for the events in the branch. From these five inputs, only one needs to be initialized,

the 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡. The other four need to be empty sets, and in the case of the 𝑖𝑛𝑑𝑒𝑥 = 0. Every

set needs to be passed by reference. The output of the procedure is the 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑛𝑠 at

its final state.

Besides the 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 being ordered, another prerequisite is imposed over the explana-

tion graph 𝐺𝑝. A relation over the conditions needs to be calculated beforehand, such that every

condition node has the list of its proper subsets (this list is denoted by: condition.supersetOf).

For simplicity, a second list is defined, denoted by ‘node.neighbors’. Both conditions and events

are nodes, and 𝑛𝑜𝑑𝑒.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = {𝐴|(𝐵,𝐴) ∈ 𝐸𝑑𝑔 ∧ (𝐴,𝐵) ∈ 𝐸𝑑𝑔}, where 𝐵 is a different

node. Note that if 𝑛𝑜𝑑𝑒 is a condition, its neighbors are always events, and if 𝑛𝑜𝑑𝑒 is an event,

all its neighbors are conditions.

In short, Algorithm 1 has four statements (denoted by $#, where # is a number): $1

checks for the end of the search branch; $2 checks if the branch is repeating; $3 checks if the

event being evaluated (by the current 𝑖𝑛𝑑𝑒𝑥) is already covered (this can be the case when

a condition previously selected covers more than one event); and $4 branches out to every

condition that can cover the evaluated event. Conditions $1 and $2 are stopping conditions,

while $3 and $4 are recursive steps. This calculation can be done in 𝑂(𝑁2
𝐶 * 𝑁2

𝐸), where 𝑁𝐶

are the condition nodes, and 𝑁𝐸 are the event nodes.

The Algorithm 1 can have its complexity evaluated as a depth-first tree, where the maxi-

mum height is of the length of the 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡, and the branching factor is at most the maximum

degree of 𝐺𝑛𝑑. The time complexity of the minimal possible explanans is 𝑂(𝐻2 *𝐺𝑝2𝑑𝑒𝑔 *𝐺𝑝𝑠𝑢𝑝),

where 𝐻 is the length of the 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡, 𝐺𝑝𝑑𝑒𝑔 is the maximum degree of 𝐺𝑝, and 𝐺𝑝𝑠𝑢𝑝 is the
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maximum length of condition’s superset list. In the current state of the question types formaliza-

tion, at most, two events (𝐻) are evaluated, which significantly limits the search space for the

MPE algorithm. The other two complexity factors (𝐺𝑝𝑑𝑒𝑔, 𝐺𝑝𝑠𝑢𝑝) are deeply related to the causal

model of the agent.

The spacial complexity of Algorithm 1 is 𝑂(2𝐻2 + 2𝐻 + 𝐻 * 𝐺𝑝𝑑𝑒𝑔), where 𝐻 is the

length of the 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡, and 𝐺𝑝𝑑𝑒𝑔 is the maximum degree of 𝐺𝑝. The input 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 of the

algorithm is constant and shared between all active recursion calls. As such, it requires 𝑂(𝐻)

space. A second input is shared, the 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑛𝑠 set, but different from the 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 it

changes during execution. The worst-case scenario of such input is a combination of all possible

conditions for each event. As such, its spacial complexity is 𝑂(𝐻 * 𝐺𝑝𝑑𝑒𝑔), that is, using every

possible condition to each event, for all events. The next three inputs are copied (and changed)

in each procedure call. First, the 𝑖𝑛𝑑𝑒𝑥, which is trivially an integer, requires constant space (for

each call). Next, the 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 list, which is an auxiliary list of all events that are currently covered

by the 𝑏𝑎𝑠𝑒_𝑐𝑜𝑣𝑒𝑟; as such, its spatial complexity is 𝑂(𝐻). Lastly, the 𝑏𝑎𝑠𝑒_𝑐𝑜𝑣𝑒𝑟 is a list of

conditions that are selected and being evaluated as possible explanans, and as such, no more

than one condition for each event is ever necessary, requiring 𝑂(𝐻) space. The last step of the

spatial analysis is to determine the number of procedures that can be active at any single time.

Since the algorithm behaves itself as a depth-first search tree, and the maximum height of the

tree is 𝐻 , being the maximum number of calls in the stack. As such, the spacial requirement of

the copied inputs is 𝑂(𝐻) for 𝑖𝑛𝑑𝑒𝑥, and 𝑂(𝐻 *𝐻) for both 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and 𝑏𝑎𝑠𝑒_𝑐𝑜𝑣𝑒𝑟.

To illustrate how each different sub-call of Algorithm 1 impacts the search space, Figure

5 is presented. In a) a fictional explanation graph is presented, with three events 𝑎, 𝑏, and 𝑐,

represented by squares, and six conditions 1, 2, 3, 4, 5, and 6, represented by circles. The edges

of the graph represent which conditions can explain which events. In b) a representation of the

final search tree is shown. At each level, the event that is evaluated is presented on the left as

a header. Each node represents a condition selected for evaluation. In each edge, identified by

the prefix $, the type of sub-call used is seen. The type of call is defined by the same identifier

as a comment in Algorithm 1.

A Java implementation of this algorithm is available 2. It was built as a library, with a test

case included. The user of such library needs only to define the explanation graph 𝐺𝑝, with the

event node, condition nodes, and the relation between those two. The ordering of the events

and the subset calculation are included in the recommended function. Also, an object-oriented

version of the algorithm is available in Appendix A.

Next chapter a case study using both methods is presented.

2 MPE algorithm at: https://github.com/henriquermonteiro/MinimalPossibleExplanans

https://github.com/henriquermonteiro/MinimalPossibleExplanans
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Source Code 1 – Algorithm for calculating the Minimal Possible Explanans from an Explanation Graph 𝐺𝑝.
1: procedure MPE(𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑛𝑠, 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡, 𝑖𝑛𝑑𝑒𝑥, 𝑐𝑜𝑣𝑒𝑟𝑒𝑑, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑐𝑜𝑣𝑒𝑟)
2: ◁ If the branch has ended, the partial_cover is a possible explanans.
3: if index > | event_list | then
4: return { possible_explanans ∪ part_cover } ◁ $1
5: end if
6:
7: ◁ If partial_cover is an explored branch, returns partial_cover.
8: if partial_cover ∈ possible_explanans then
9: return possible_explanans ◁ $2

10: end if
11:
12: ◁ If the current event is covered already, skip to next event.
13: if event_list[index] ∈ covered then
14: return MPE(possible_explanans, event_list, index + 1, covered, base_cover) ◁ $3
15: end if
16:
17: ◁ Branches out to each condition that can cover the current event.
18: for all condition from event_list[index].neighbors do
19:
20: ◁ Creates a copy of covered and partial_cover for the different branches.
21: copy_partial_cover = { partial_cover ∪ condition }
22: copy_covered = { covered ∪ condition.neighbors }
23:
24: ◁ Removes from copy_partial_cover the conditions that are a subset of condition
25: copy_partial_cover = { copy_partial_cover − condition.supersetOf }
26:
27: MPE(possible_explanans, event_list, index + 1, copy_covered, copy_partial_cover) ◁ $4
28: end for
29:
30: return possible_explanans
31: end procedure

Source: Author’s own.
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Figure 5 – Search tree (a) of the MPE algorithm for an explanation graph (b).
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(a) Search tree, where each level corresponds to an event that is being explained (a, b, c), each circle
represents a condition selected. The edges have an identifier for the respective instruction in Algorithm
1 that creates the branching. Branches ending in ■ successfully generated a new minimal possible
explanans, while ending in 𝜒 are pruned branches.
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(b) Explanation graph used in a), where a, b, c are events to be explained and 1, 2, 3, 4, 5, 6 are conditions
related to the events. Note that the degree of a=4, b=4, c=3. As such, the order of events for the MPE
algorithm must be 𝑐 > 𝑎 > 𝑏 or 𝑐 > 𝑏 > 𝑎.

Source: Author’s own.
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4 BBGP AGENT CASE STUDY

In this chapter, a case study is presented. Based on the cleaner world scenario, where a

robot is responsible for cleaning an area from solid and liquid dirt. From the example situation,

both steps of the method are demonstrated.

4.1 Cleaner World Scenario

In this case study, the Cleaner World scenario is used. The agent is a robot in charge

of cleaning a certain area. In the robot’s representation, the area is divided into cells referred

to by a coordinate system (𝑋,𝑌 ). The robot can move along the cells, clean solid and liquid

dirt by sweeping and mopping, respectively, recharging itself when necessary, replacing some

broken parts, and disposing of the dirt in its internal storage. Lastly, for the robot not to disrupt

the passage when there are no jobs at the moment, there is a command for it to rest. There are

two special locations for the robot, the workshop and the dumpster. In the workshop, the robot

can find replacement parts, recharge, and is where it is assigned to rest. The dumpster is where

the dirt is disposed of. To do the mopping, the robot needs a functional mop part, and to sweep,

the robot needs a functional vacuum. The mop is a part that the robot can replace by itself, given

that there is a replacement available.

On a given day, the following series of events were observed. Each event is denoted by a

time instance 𝑡𝑛, where 𝑛 ∈ N such that if 𝑛 < 𝑛′ then the event 𝑡𝑛 occurred before 𝑡𝑛′ . At time

𝑡0, three cells were dirty, where (2,2) and (3,2) had liquid dirt and (3,4) solid dirt. At 𝑡1, the robot

went cleaning (2,2). Followed by cell (3,4) at 𝑡2. The robot proceed to go back to the workshop at

𝑡3. Next, the robot dump its reservoir in the dumpster (𝑡4) and returned to the workshop (𝑡5). At

𝑡6 a new 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2) was spilled. Later, the robot proceeded to clean (3,2) at 𝑡7, clean (4,2)

at 𝑡8, and dump it’s reservoir in the dumpster (𝑡9), and went back to the workshop at 𝑡10.

Figure 6 – Depiction of the scenario in two key time instances of cleaner world scenario.

(a) World at 𝑡0, at the beginning of execution; (b) World at 𝑡6, when a new perception was added.

Source: Author’s own.

Figure 6 depicts the state of the world in two time instances: a) the starting conditions

before the first deliberation cycle, and b) when the new perception of 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2) was added.
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4.1.1 Knowledge Base and Plans

The agent’s knowledge base and plans that created the scenario are described next.

Figure 7 – Starting beliefs.
workshop(1,1)
dumpster(4,1)
¬ available(mop)
at(1,1)
have(battery, 75.0)
have(cargo, 65.0)
solid_dirt(3,4)
liquid_dirt(3,2)
liquid_dirt(2,2)

Source: Author’s own.

Let us begin describing the agent’s starting beliefs, that is, the beliefs it had at 𝑡0 be-

fore the first deliberation cycle. Figure 7 depicts the initial beliefs. The interpretation of all belief

predicates from 𝐵 defined in the language are as follows:

• workshop(X,Y) : the workshop is located at coordinates (X,Y);

• dumpster(X,Y) : the dumpster is located at coordinates (X,Y);

• at(X,Y) : the agent is located at coordinates (X,Y);

• have(R,Q) : the agent has Q or more of the resource R;

• solid_dirt(X,Y) : there is solid dirt in coordinates (X,Y);

• liquid_dirt(X,Y) : there is liquid dirt in coordinates (X,Y);

• broken(P) : part P is broken;

• available(I) : item I is available;

The goals from 𝐺 also have predicates representing them, whose interpretations are:

• replace(X) : replace component X;

• mop(X,Y) : mop cell at coordinates (X,Y);

• sweep(X,Y) : sweep cell at coordinates (X,Y);

• recharge : go recharge battery;

• dispose : go dispose the internal reservoir in the dumpster;
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Figure 8 – Activation and Evaluation Rules.
Activation Rules Evaluation Rules
⟨𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑋), {𝑏𝑟𝑜𝑘𝑒𝑛(𝑋)}⟩ ⟨¬𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑋), {¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑋)}⟩
⟨𝑚𝑜𝑝(𝑋,𝑌 ), {𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩ ⟨¬𝑚𝑜𝑝(𝑋,𝑌 ), {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 40), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩
⟨𝑠𝑤𝑒𝑒𝑝(𝑋,𝑌 ), {𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩ ⟨¬𝑚𝑜𝑝(𝑋,𝑌 ), {ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 80), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩
⟨𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒, {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 15)}⟩ ⟨¬𝑚𝑜𝑝(𝑋,𝑌 ){𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩
⟨𝑑𝑖𝑠𝑝𝑜𝑠𝑒, {ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 0.1)}⟩ ⟨¬𝑠𝑤𝑒𝑒𝑝(𝑋,𝑌 ), {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 30), 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩
⟨𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒, {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 80)}⟩ ⟨¬𝑠𝑤𝑒𝑒𝑝(𝑋,𝑌 ), {ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 90), 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩
⟨𝑟𝑒𝑠𝑡, {∅}⟩

Source: Author’s own.

Next, the agent’s rules are described. The robot’s rules are depicted in Figure 8. Only the

activation and evaluation rules are depicted, as the deliberation and checking stages are fixed

since they are domain-independent.

For this study case, assume that the robot has a plan library that describes the steps

required to achieve each goal. As per Definition 2, a plan 𝑃 = {𝑔,𝐺𝑑,𝐴𝑐𝑡}, where 𝑔 is the goal

for which the plan is applicable, 𝐺𝑑 is the set of preconditions that act as guard clauses, that

is, beliefs that must hold for the safe/successful execution of the plan, and 𝐴𝑐𝑡 is the ordered

list of actions that are performed during the plan execution. The contents of the plan library are

disregarded for the case study.

The preference order of goals (for Definition 11) is exactly the activation rules order,

in decreasing order. That is, 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑋) has the highest preference, and 𝑟𝑒𝑠𝑡 has the lowest

one. Assume also that the plans also have a preference order that is inversely proportional to

the distance from the robot’s position to the position the goal takes place. In that way, the goal

preference takes precedence, followed by the plan preference. In this way, two conflicting goals

with the same goal preference will have their conflict resolved by how far each one is from the

targeted cell.

4.2 Interface Implementation for a BBGP-like Agent

The proposed method uses an interface that requires four elements to be implemented:

the execution history (Definition 9), the causal function (Definition 10), the preference function

(Definition 11), and the conflict function (Definition 12). The requirements for these elements are

described in Chapter 3.

For our example scenario, the agent’s execution generated the log depicted in Table

1, where each row is an entry of the log. The log allows for the reconstruction of the agent

knowledge base and tracks the goal state changes.

The causal function can be defined from the agent’s rules and plans. This function returns

a set of causes (𝑐 = ⟨𝑒, 𝐶𝑜𝑛𝑑⟩ as per Definition 4) whose event 𝑒 matches the input. As the

plans were not defined for our study case, their respective causes will be omitted. The activation

and evaluation rules can be easily converted simply by attributing the consequent (the goal) as

𝑒 and the set of beliefs in the antecedent as 𝐶𝑜𝑛𝑑. Table 2 shows the mapping generated. The
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Table 1 – Execution History.
Cycle Changed Goals Changed Beliefs
0 {∅} { ∅ }

1

⟨𝑟𝑒𝑠𝑡1, Pursuable⟩,
⟨𝑚𝑜𝑝(2,2)1, Executive⟩,
⟨𝑚𝑜𝑝(3,2)1, Pursuable⟩,
⟨𝑠𝑤𝑒𝑒𝑝(3,4)1, Pursuable⟩

⟨𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝), ADD⟩, ⟨𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(2,2), REM⟩,
⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 75), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 35), ADD⟩,
⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 65.0), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 85.0), ADD⟩,

⟨𝑎𝑡(2,2), ADD⟩, ⟨𝑎𝑡(1,1), REM⟩

2

⟨𝑠𝑤𝑒𝑒𝑝(3,4)1, Executive⟩,
⟨𝑚𝑜𝑝(3,2)1, Active⟩,

⟨𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑚𝑜𝑝)1, Active⟩,
⟨𝑑𝑖𝑠𝑝𝑜𝑠𝑒1, Pursuable⟩

⟨𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(3,4), REM⟩,
⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 35), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 5), ADD⟩,
⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 85.0), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 95.0), ADD⟩,

⟨𝑎𝑡(3,4), ADD⟩, ⟨𝑎𝑡(2,2), REM⟩

3 ⟨𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒1, Executive⟩ ⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 5), REM⟩,⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 100), ADD⟩,
⟨𝑎𝑡(1,1), ADD⟩, ⟨𝑎𝑡(3,4), REM⟩

4 ⟨𝑑𝑖𝑠𝑝𝑜𝑠𝑒1, Executive⟩
⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 95.0), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 0.0), ADD⟩,
⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 100), REM⟩,⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 90), ADD⟩,

⟨𝑎𝑡(4,1), ADD⟩, ⟨𝑎𝑡(1,1), REM⟩

5 ⟨𝑟𝑒𝑠𝑡1, Executive⟩ ⟨𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝), ADD⟩, ⟨¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝), REM⟩,
⟨𝑎𝑡(1,1), ADD⟩, ⟨𝑎𝑡(4,1), REM⟩

6
⟨𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑚𝑜𝑝)1, Executive⟩,

⟨𝑟𝑒𝑠𝑡1, Pursuable⟩
⟨𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2), ADD⟩, ⟨𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝), REM⟩,
⟨¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝), ADD⟩, ⟨𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝), REM⟩

7 ⟨𝑚𝑜𝑝(3,2)1, Executive⟩

⟨𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2), REM⟩,
⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 90), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 50), ADD⟩,
⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 0.0), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 20.0), ADD⟩,

⟨𝑎𝑡(3,2), ADD⟩, ⟨𝑎𝑡(1,1), REM⟩

8
⟨𝑠𝑤𝑒𝑒𝑝(4,2)1, Executive⟩,
⟨𝑑𝑖𝑠𝑝𝑜𝑠𝑒2, Pursuable⟩

⟨𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2), REM⟩,
⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 50), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 20), ADD⟩,
⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 20.0), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 30.0), ADD⟩,

⟨𝑎𝑡(4,2), ADD⟩, ⟨𝑎𝑡(3,2), REM⟩

9 ⟨𝑑𝑖𝑠𝑝𝑜𝑠𝑒2, Executive⟩ ⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 30.0), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 0.0), ADD⟩,
⟨𝑎𝑡(4,1), ADD⟩, ⟨𝑎𝑡(4,2), REM⟩

10 ⟨𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒2, Executive⟩ ⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 20), REM⟩, ⟨ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 100), ADD⟩,
⟨𝑎𝑡(1,1), ADD⟩, ⟨𝑎𝑡(4,1), REM⟩

11 ⟨𝑟𝑒𝑠𝑡1, Executive⟩ {∅}
Source: Author’s own.

BBGP model has two more stages: deliberation and checking. The deliberation has no rules

to be converted, as it evaluates conflicts and preferences among goals, it will be encoded by

the conflict and preference functions. The checking stage and belief rules will be discussed

afterward in this subsection.

In the example, the model defines a preference, which was described with the scenario,

as such, using the execution history, the total (decreasing) preference relation for the scenario

is as follows:

𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑚𝑜𝑝)1 > 𝑚𝑜𝑝(2,2)1 > 𝑚𝑜𝑝(3,2)1 > 𝑠𝑤𝑒𝑒𝑝(3,4)1 > 𝑠𝑤𝑒𝑒𝑝(4,2)1 >

> 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒1 > 𝑑𝑖𝑠𝑝𝑜𝑠𝑒1 = 𝑑𝑖𝑠𝑝𝑜𝑠𝑒2 > 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒2 > 𝑟𝑒𝑠𝑡1

The conflict function must return 𝑇𝑟𝑢𝑒 if the two input goals have any conflict between

them. Given the nature of the scenario and the defined goals, every goal is incompatible with

each other. This is the case because the goals are localized in space, and the robot needs to
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Table 2 – Mapping of the Activation and Evaluation rules to causes.
Input Causes
𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑋) ⟨𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑋),{𝑏𝑟𝑜𝑘𝑒𝑛(𝑋)}⟩
¬𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑋) ⟨¬𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑋), {¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑋)}⟩
𝑚𝑜𝑝(𝑋,𝑌 ) ⟨𝑚𝑜𝑝(𝑋,𝑌 ),{𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩

¬𝑚𝑜𝑝(𝑋,𝑌 )
⟨¬𝑚𝑜𝑝(𝑋,𝑌 ),{¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 40), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩,
⟨¬𝑚𝑜𝑝(𝑋,𝑌 ),{ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 80), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩,
⟨¬𝑚𝑜𝑝(𝑋,𝑌 ),{𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩

𝑠𝑤𝑒𝑒𝑝(𝑋,𝑌 ) ⟨𝑠𝑤𝑒𝑒𝑝(𝑋,𝑌 ),{𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩

¬𝑠𝑤𝑒𝑒𝑝(𝑋,𝑌 )
⟨¬𝑠𝑤𝑒𝑒𝑝(𝑋,𝑌 ),{¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 30), 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩,
⟨¬𝑠𝑤𝑒𝑒𝑝(𝑋,𝑌 ),{ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜, 90), 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(𝑋,𝑌 )}⟩

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒
⟨𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒,{ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,15)}⟩
⟨𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒,{¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,80)}⟩

𝑑𝑖𝑠𝑝𝑜𝑠𝑒 ⟨𝑑𝑖𝑠𝑝𝑜𝑠𝑒,{ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,0.1)}⟩
𝑟𝑒𝑠𝑡 ⟨𝑟𝑒𝑠𝑡,{∅}⟩

Source: Author’s own.

be at the specified place to perform the actions to achieve the goal. Even different goals that

happen all in the same space (e.g., 𝑟𝑒𝑠𝑡 and 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒) are considered to be in separate spaces

within the workshop. The function is then trivially defined as:

Let 𝐺𝐼𝑑 be the set of goal identifiers, 𝑔𝑖𝑑, 𝑔𝑖𝑑′ ∈ 𝐺𝐼𝑑,

𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑔𝑖𝑑, 𝑔𝑖𝑑′) =

⎧⎪⎨⎪⎩ if 𝑔𝑖𝑑 ̸= 𝑔𝑖𝑑′, return 𝑇𝑟𝑢𝑒

else return 𝐹𝑎𝑙𝑠𝑒

4.3 Calculating the Possible Explanans

Based on the scenario defined in section 4.1 and the defined interface functions from

section 4.2, this section presents the calculus of six different explanations using the proposed

method.

Each question is answered by first identifying the information provided in the question,

then rebuilding the agent knowledge base on the necessary time instance. The two explanation

procedures are applied in sequence, and the set of possible explanans is presented at the end.

Note that each explanans is a possible explanation, the selection of the single best explanation

is outside of the scope of this work, as it is very sensitive to the domain and to whom the answer

is destined.

4.3.1 Why mop(3,2)1 is active, instead of executive?

The rationale of this question is very straightforward: why a goal is not being executed?

First lets identify the information in the question:

• Question type – P-contrast

– Goal – 𝑚𝑜𝑝(3,2)1
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– State – Active
– Foil State – Pursuable (from Executive)
– Cycle id – 2

Notice that in the posed question, the contrasting states are Active and Executive. Chap-

ter 3 describes only directly subsequent states comparisons, and for non-direct one, one of the

states is converted to a previous one, as stated in section 3.2.5. In this example, Executive is

converted to Pursuable, a previous case from Executive and directly subsequent to Active.

Since the question requires a single time frame such that the required goal was in the

Active state, it being cycle 2, the knowledge base for that cycle can be reconstituted using the

execution history by adding and removing the beliefs for each cycle to the initial beliefs, until the

desired cycle. The relevant beliefs (𝐾𝐵) are:

workshop(1,1)
dumpster(4,1)
¬ available(mop)
at(2,2)
have(battery, 35.0)
have(cargo, 85.0)
solid_dirt(3,4)
liquid_dirt(3,2)
broken(mop)

Related Conditions Procedure: First, it is necessary to evaluate the relation of the

states. Be 𝑠𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑒 the factual state, and 𝑠𝑡′ = 𝑃𝑢𝑟𝑠𝑢𝑎𝑏𝑙𝑒 the foil state, 𝑠𝑡′ ⊂ 𝑠𝑡, as such

the relevant patterns are for “not advanced its state”.

Next, the type of filter in use must be known. From the BBGP model used, it is known

that the Evaluation stage uses only negative filters. The formula for this filter is:

𝑅𝐶 = 𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+

For this scenario, 𝐾𝐵+ = 𝐾𝐵, since there are no standard rules. The formula is re-

solved as follows:

𝑐𝑚 : 𝑐𝑎𝑢𝑠𝑒𝑠(𝑚𝑜𝑝(3,2)1) = {⟨𝑚𝑜𝑝(3,2)1, {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40),𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)}⟩,

⟨𝑚𝑜𝑝(3,2)1, {ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80),𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)}⟩,

⟨𝑚𝑜𝑝(3,2)1, {𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝),𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)}⟩}

𝑝𝑐 : 𝑑_𝑝𝑟𝑒(𝑐𝑚) = {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2),

ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80), 𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝)}
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𝑅𝐶 = 𝑝𝑐 ∩𝐾𝐵+ = {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2), ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80), 𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝)}

That concludes the first procedure. Its output is the set 𝑅𝐶

Possible Explanans Procedure: The second procedure takes the 𝑅𝐶 set in order to

create the explanation graph. The set of events from the explanadum is 𝐸𝐸𝑥 = {𝑚𝑜𝑝(3,2)1}.

Since |𝐸𝐸𝑥| = 1, every condition in 𝑅 is causally related to that single event. As such, every

condition in 𝑅 is a possible explanans. A depiction of the explanatory graph is shown in Figure

9.

For this case, the resulting set 𝑅𝐶 = { 𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝), 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2),

¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40), ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80)} is also the output of the second procedure. By looking

into the output set, its possible to see that three of the elements are significant presumptions:

𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝), ¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40), and ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80). The 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2) is said not to be

significant as it is the activation condition of the goal. It is in the premises of the evaluation rules

to avoid that the rule triggers when there is no goal to be obstructed. It serves as an example

of how design decisions can improve efficiency (avoid unnecessary rules triggering) and, at the

same time, make the explanation more confusing.

Figure 9 – Explanation graph of the question “Why mop(3,2) is active, instead of executive?”.

¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40) ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80)

𝑚𝑜𝑝(3,2)1

𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝) 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)

Ellipses with solid lines are the conditions (beliefs), while the dashed ellipses are the events (goals).

Source: Author’s own.

4.3.2 Why sweep(3,4)1 is executive, but mop(3,2)1 is active?

This time the rationale possibly concerns the fact that mop takes precedence over sweep.

Yet the robot swept instead.

First lets identify the information in the question:

• Question type – O-contrast

– Goala – 𝑠𝑤𝑒𝑒𝑝(3,4)1
– Goalb – 𝑚𝑜𝑝(3,2)1
– Statea – Pursuable (from Executive)
– Stateb – Active
– Cycle id – 2
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The question requires a single time frame where 𝑠𝑤𝑒𝑒𝑝(3,4)1 was Executive and

𝑚𝑜𝑝(3,2)1 Active at the same time, it being cycle 2, the same as the previous question. Once

again, the state Executive is converted to the previous state Pursuable. The relevant beliefs

(𝐾𝐵) are:

workshop(1,1)
dumpster(4,1)
¬ available(mop)
at(2,2)
have(battery, 35.0)
have(cargo, 85.0)
solid_dirt(3,4)
liquid_dirt(3,2)
broken(mop)

Related Conditions Procedure: First, it is necessary to evaluate the relation of the

states. Be 𝑠𝑡 = 𝑃𝑢𝑟𝑠𝑢𝑎𝑏𝑙𝑒 the state of the first goal, and 𝑠𝑡′ = 𝐴𝑐𝑡𝑖𝑣𝑒 the state of the second,

𝑠𝑡 ⊂ 𝑠𝑡′, as such the relevant patterns are for “not receded its state”.

Next, the type of filter in use must be known. From the BBGP model used, it is known

that the Evaluation stage uses only negative filters. The formula for this filter is:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑏)) ∩𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐵))

As 𝐾𝐵+ = 𝐾𝐵, the formula is resolved as follows:

𝑐𝑠 : 𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑠𝑤𝑒𝑒𝑝(3,4)1) ={⟨¬𝑠𝑤𝑒𝑒𝑝(3,4)1,{¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,30),𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(3,4)}⟩,

⟨¬𝑠𝑤𝑒𝑒𝑝(3,4)1, {ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,90),𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(3,4)}⟩}

𝑝𝑠 : 𝑐_𝑝𝑟𝑒(𝑐𝑠) = {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,30) ∧ 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(3,4), ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,90) ∧ 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(3,4)}

𝐴 = 𝑝𝑠 −𝐾𝐵+ ={¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,30) ∧ 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(3,4),

ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,90) ∧ 𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(3,4)}
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𝑐𝑚 : 𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑚𝑜𝑝(3,2)1) ={⟨¬𝑚𝑜𝑝(3,2)1,{¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40),𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)}⟩,

⟨¬𝑚𝑜𝑝(3,2)1,{ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80),𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)}⟩,

⟨¬𝑚𝑜𝑝(3,2)1,{𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝),𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)}⟩}

𝑝𝑚 : 𝑐_𝑝𝑟𝑒(𝑐𝑚) ={¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40) ∧ 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2),

ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80) ∧ 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2), 𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝) ∧ 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)}

𝐵 = 𝑝𝑚 ∩𝐾𝐵+ ={¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40) ∧ 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2),

ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80) ∧ 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2), 𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝) ∧ 𝑙𝑖𝑞𝑢𝑖𝑑_𝑑𝑖𝑟𝑡(3,2)}

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐵)) = {¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40), ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80)}

That concludes the first procedure, the output is a set of preconditions that

did not influenced 𝑠𝑤𝑒𝑒𝑝(3,4)1 but impeded 𝑚𝑜𝑝(3,2)1, defined by the set 𝑅𝐶 =

{¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40), ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80)}.

Possible Explanans Procedure: The explanandum defines two events to be explained

𝐸𝐸𝑥 = {𝑠𝑤𝑒𝑒𝑝(3,4)1,𝑚𝑜𝑝(3,2)1}. With the set of related conditions 𝑅𝐶, the explanation graph

𝐺𝑝 =< 𝑉 𝑒𝑟, 𝐸𝑑𝑔 >, such that:

𝑉 𝑒𝑟 ={𝑠𝑤𝑒𝑒𝑝(3,4)1,𝑚𝑜𝑝(3,2)1,¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40), ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80)}

𝐸𝑑𝑔 ={(ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80), 𝑠𝑤𝑒𝑒𝑝(3,4)1), (ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80),𝑚𝑜𝑝(3,2)1),

(¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40), 𝑠𝑤𝑒𝑒𝑝(3,4)1), (¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40),𝑚𝑜𝑝(3,2)1)}

A graphical depiction of 𝐺𝑝 is shown in Figure 10. Knowing that the MPE Algorithm

avoids redundancy in the causes, it is easy to see that there are two minimal possible explanans

for 𝐺𝑝. The output of the second procedure is 𝒫ℰ = {{¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40)}, {𝑚𝑜𝑝(3,2)1)}}.

Each possible explanans (𝑃𝐸) can be interpreted as:

• ¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40) – the agent had battery to perform 𝑠𝑤𝑒𝑒𝑝(3,4)1, but not enough to

perform 𝑚𝑜𝑝(3,2)1.
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• 𝑚𝑜𝑝(3,2)1 – the agent had enough internal storage left to perform 𝑠𝑤𝑒𝑒𝑝(3,4)1, but not

enough to perform 𝑚𝑜𝑝(3,2)1.

It is worth mentioning that 𝑚𝑜𝑝(3,2)1 had another reason not to become Pursuable, which is

the 𝑏𝑟𝑜𝑘𝑒𝑛(𝑚𝑜𝑝). But since the mop is not related to sweeping, this piece of information was

disregarded. Other types of questions can preserve that information, as shown in the previous

case in 4.3.1.

Figure 10 – Explanation graph of the question “Why sweep(3,4) is executive, but mop(3,2) is active?”.

¬ℎ𝑎𝑣𝑒(𝑏𝑎𝑡𝑡𝑒𝑟𝑦,40) ℎ𝑎𝑣𝑒(𝑐𝑎𝑟𝑔𝑜,80)

𝑠𝑤𝑒𝑒𝑝(3,4)1 𝑚𝑜𝑝(3,2)1

Ellipses with solid lines are the conditions (beliefs), while the dashed ellipses are the events (goals).

Source: Author’s own.

4.3.3 Why sweep(4,2)1 is not executive, but rest1 is?

Again the rationale is: rest is the last activity that the robot should do, and there are tasks

pending. Why?

• Question type – O-contrast

– Goala – 𝑠𝑤𝑒𝑒𝑝(4,2)1
– Goalb – 𝑟𝑒𝑠𝑡1
– Statea – Sleeping (from not Executive)
– Stateb – Active (from Executive)
– Cycle id – 5

In this case, first, the not Executive state needs to be resolved. The state from goal

𝑠𝑤𝑒𝑒𝑝(4,2)1 needs to be retrieved at a time frame when goal 𝑟𝑒𝑠𝑡1 is Executive. Such time

frame corresponds to cycle 5. In cycle 5, the goal 𝑠𝑤𝑒𝑒𝑝(4,2)1 is unknown, that is, it was not

active. For this reason, 𝑠𝑡𝑎𝑡𝑒𝑎 is converted from not Executive to Sleeping (the fictional state

that a goal has before being activated). In turn 𝑠𝑡𝑎𝑡𝑒𝑏 is converted from 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑣𝑒 to 𝐴𝑐𝑡𝑖𝑣𝑒.

The reconstructed knowledge base for cycle 5 is as follows:

workshop(1,1)
dumpster(4,1)
¬ available(mop)
at(4,1)
have(battery, 90.0)
have(cargo, 0.0)
liquid_dirt(3,2)
broken(mop)



67

Related Conditions Procedure: The states relationship is 𝑠𝑡 = 𝑆𝑙𝑒𝑒𝑝𝑖𝑛𝑔 for the first

goal, and 𝑠𝑡′ = 𝐴𝑐𝑡𝑖𝑣𝑒 the state of the second one, 𝑠𝑡′ ⊂ 𝑠𝑡, as such the relevant patterns are

for “not advanced it’s state”.

Next, the type of filter in use must be known. From the BBGP model used, it is known

that the Activation stage uses only positive filters. The formula for this filter is:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑎))−𝐾𝐵+

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑏)) ∩𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐴, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐵))

Solve the formula results in:

𝑐𝑠 : 𝑐𝑎𝑢𝑠𝑒𝑠(𝑠𝑤𝑒𝑒𝑝(4,2)1) = {⟨𝑠𝑤𝑒𝑒𝑝(4,2)1, {𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2)}⟩}

𝑝𝑠 : 𝑐_𝑝𝑟𝑒(𝑐𝑠) = {𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2)}

𝐴 = 𝑝𝑠 −𝐾𝐵+ = {𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2)}

𝑐𝑏 : 𝑐𝑎𝑢𝑠𝑒𝑠(𝑟𝑒𝑠𝑡1) = {⟨𝑟𝑒𝑠𝑡1, {∅}⟩}

𝑝𝑏 : 𝑐_𝑝𝑟𝑒(𝑐𝑏) = {∅}

𝐵 = 𝑝𝑏 ∩𝐾𝐵+ = {∅}

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐴, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐵)) = {∅}

Notice that the resulting set is empty, as 𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑠𝑤𝑒𝑒𝑝(4,2)1, 𝑟𝑒𝑠𝑡1) = 𝐹𝑎𝑙𝑠𝑒. Since

both goals do not share presumptions, instead of stating that both goals are not causally related,

the follow-up question “why sweep(4,2) is not active?” is answered instead, as recommended in

section 3.2.5. The question information is:

• Question type – P-contrast

– Goal – 𝑠𝑤𝑒𝑒𝑝(4,2)1
– State – Sleeping (from not Active)
– Foil State – Active
– Cycle id – 5

The knowledge base remains the same.

Related Conditions Procedure: The states relationship is 𝑠𝑡 = 𝑆𝑙𝑒𝑒𝑝𝑖𝑛𝑔 for the first

goal, and 𝑠𝑡′ = 𝐴𝑐𝑡𝑖𝑣𝑒 the state of the second one, 𝑠𝑡′ ⊂ 𝑠𝑡, as such the relevant patterns are

for “not advanced it’s state”.
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The type of filter in use is the positive filter. The formula is:

𝑅𝐶 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(𝑔𝑖𝑑𝑎))−𝐾𝐵+

Which solution is:

𝑐𝑠 : 𝑐𝑎𝑢𝑠𝑒𝑠(𝑠𝑤𝑒𝑒𝑝(4,2)1) = {⟨𝑠𝑤𝑒𝑒𝑝(4,2)1,{𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2)}⟩}

𝑝𝑠 : 𝑐_𝑝𝑟𝑒(𝑐𝑠) = {𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2)}

𝑅𝐶 = 𝑝𝑠 −𝐾𝐵+ = {𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2)}

Possible Explanans Procedure: Since |𝑅𝐶| = 1, there is no need to construct the

explanation graph. The answer is trivially given by “𝑠𝑜𝑙𝑖𝑑_𝑑𝑖𝑟𝑡(4,2) is unknown”.

4.3.4 Why dispose2 was executive at t9, but dispose1 was pursuable at t3?

This time the questions seek the difference between two similar scenarios: after the robot

sweeps, it needs to dump its reservoir, but why, in one instance, did he not go to the dumpster?

The question information are:

• Question type – OT-contrast

– Goala – 𝑑𝑖𝑠𝑝𝑜𝑠𝑒2
– Goalb – 𝑑𝑖𝑠𝑝𝑜𝑠𝑒1
– State1 – Chosen (from Executive)
– State2 – Pursuable
– Cycle id1 – 9
– Cycle id2 – 3

First make 𝐶𝑦𝑐𝑙𝑒 𝑖𝑑1 < 𝐶𝑦𝑐𝑙𝑒 𝑖𝑑2. For that end, every pair of elements are swapped:

• Question type – OT-contrast

– Goala – 𝑑𝑖𝑠𝑝𝑜𝑠𝑒1
– Goalb – 𝑑𝑖𝑠𝑝𝑜𝑠𝑒2
– State1 – Pursuable
– State2 – Chosen (from Executive)
– Cycle id1 – 3
– Cycle id2 – 9

Also, 𝑠𝑡𝑎𝑡𝑒1 is converted from Executive to Chosen.

Two knowledge bases need to be reconstructed: a) 𝐾𝐵1 for cycle 3:

workshop(1,1)
dumpster(4,1)
¬ available(mop)
at(3,4)
have(battery, 10.0)
have(cargo, 95.0)
liquid_dirt(3,2)
broken(mop)
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and b) 𝐾𝐵2 for cycle 9:

workshop(1,1)
dumpster(4,1)
at(4,2)
have(battery, 20.0)
have(cargo, 30.0)
¬ available(mop)

Related Conditions Procedure: The states relationship is 𝑠𝑡 = 𝑃𝑢𝑟𝑠𝑢𝑎𝑏𝑙𝑒 for the first

goal, and 𝑠𝑡′ = 𝐶ℎ𝑜𝑠𝑒𝑛 the state of the second one, 𝑠𝑡′ ⊂ 𝑠𝑡, as such the relevant patterns are

for “not advanced it’s state”.

Next, the type of filter in use must be known. From the BBGP model used, it is known

that the Chosen stage uses only preference filters. The preference filters require a series of

ordered tests. The first satisfied one is the answer.

• “𝑔𝑖𝑑𝑏 has no incompatibilities at 𝑡2” is false as:

𝐺2
𝑠𝑡′ = {𝑟𝑒𝑠𝑡1, 𝑑𝑖𝑠𝑝𝑜𝑠𝑒2} and they are conflicting.

• “A subset of goals incompatible with 𝑔𝑖𝑑𝑎 are not present at 𝑡2” is true:

𝐺1
𝑠𝑡′ = {𝑟𝑒𝑠𝑡1, 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒2, 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒1, 𝑑𝑖𝑠𝑝𝑜𝑠𝑒1}, 𝐺2

𝑠𝑡′ = {𝑟𝑒𝑠𝑡1, 𝑑𝑖𝑠𝑝𝑜𝑠𝑒2, 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒2},
which results in 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒1 /∈ 𝐺2

𝑠𝑡′ ∧ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒1,𝑑𝑖𝑠𝑝𝑜𝑠𝑒1)

As such, the result set of conditions 𝑅𝐶 = {“A subset of goals incompatible with

𝑑𝑖𝑠𝑝𝑜𝑠𝑒1 are not present at cycle 9”}. Since 𝑅𝐶 is a preference assertion, the Possible Ex-

planans procedure is not required.

4.3.5 Why replace(mop)1 was not executive at t2, but it was at t6?

This question seeks why an action happened at a given time and not before.

The question informations are:

• Question type – T-contrast

– Goal – 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑚𝑜𝑝)1
– State1 – Active
– State2 – Pursuable (from Executive)
– Cycle id1 – 2
– Cycle id2 – 6

The cycles are ordered. The 𝑠𝑡𝑎𝑡𝑒2 is converted from Executive to Evaluated. The two

knowledge bases required are: a) 𝐾𝐵1 for cycle 2:
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workshop(1,1)
dumpster(4,1)
¬ available(mop)
at(2,2)
have(battery, 40.0)
have(cargo, 85.0)
solid_dirt(3,4)
liquid_dirt(3,2)
broken(mop)

and b) 𝐾𝐵2 for cycle 6:

workshop(1,1)
dumpster(4,1)
at(1,1)
have(battery, 90.0)
have(cargo, 0.0)
liquid_dirt(3,2)
broken(mop)
available(mop)

Related Conditions Procedure: The states relationship is 𝑠𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑒 for the first goal,

and 𝑠𝑡′ = 𝑃𝑢𝑟𝑠𝑢𝑎𝑏𝑙𝑒 as the state of the second one, 𝑠𝑡′ ⊂ 𝑠𝑡, as such, the relevant patterns

are for “not advanced it’s state”.

Next, the type of filter used for the Pursuable stage is negative filters. The formula for

this filter is:

𝑅𝐶 = (𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎)) ∩𝐾𝐵+
1 ) ∩ (𝑑_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+

2 )

Solving the formula:

𝑐𝑟 : 𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑚𝑜𝑝)1) = {⟨¬𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑚𝑜𝑝)1, {¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝)}⟩}

𝑝𝑟 : 𝑑_𝑝𝑟𝑒(𝑐𝑟) = {¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝)}

𝑅𝐶1 : 𝑝𝑟 ∩𝐾𝐵1 = {¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝)}

𝑅𝐶2 : 𝑝𝑟 −𝐾𝐵2 = {¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝)}

𝑅𝐶 = 𝑅𝐶1 ∩𝑅𝐶2 = {¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝)}

Possible Explanans Procedure: As |𝑅𝐶| = 1, the output is 𝑅𝐶.

The next chapter discusses the case study results and the limitations of the method.
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5 DISCUSSION

The method presented allows the construction of contrastive answers for general purpose

questions about an agent’s goal selection process. The posed questions need to fall in one of

the four types described in the formalization: P-contrast, O-contrast, T-contrast, or OT-contrast.

Using Miller’s definition of explanation, the method is entirely within the cognitive process

of determining the explanation. Yet it is not sufficient to complete it. One important step required

to obtain the product of the cognitive process is the selection of the explanans, that is, given the

possible answers, which one will be presented. Other than that, the social process is outside the

scope, both in relaying the answer to the explainee as to receiving the question. This problem

requires Human-Computer-Interaction and possibly Natural-Language-Processing, depending

on the intended use.

Next, it is discussed how the method addresses Grice’s Cooperation Principles, then

some of the method’s limitations are discussed. Next, the reasoning for the restriction on the goal

state property always needing to be distinct is discussed. Lastly, the related work is presented.

5.1 Grice’s Cooperation Principle as Requirements

Grice’s Cooperation Principles, or Grice’s Maxims, is a group of four categories of re-

quirements for a conversation between cooperating parties. The maxims were proposed as an

analysis of how people communicate when cooperating and the effects of deviating from an

expected pattern. Its summary is presented in subsection 2.2.5.

For this work, the maxims were used as a guide for how the agent should present its

explanations, as the explanation process is a kind of conversation. For this reason, for each

of the maxims, how well the method can address them is discussed. Note that the method is

evaluated in relation to explanations, but the maxims are for general conversation.

• Manner – first, let us begin with the category of maxims that are not addressed. Since

each of the maxims is related to the relaying of the explanation, and that task is outside

the scope of this work, the category is left as an open problem.

• Relation – the relation category is very brief, as it has a single maxim “Be relevant”.

The maxim is addressed by guaranteeing that every piece of information that the agent

considers relevant to the explanation is causally related. This requirement is related to

one of the method’s assumptions, that the relationship of goals and beliefs is causal.

From the rule-based nature of the agents, it is a fair assumption to be made, as remov-

ing a belief that is part of the premises of a rule will make that rule not active, and the

opposite is also true, adding all missing beliefs of a rule will cause it to become active.
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Take as an example the formulation from the O-contrast, “not receded” negative filter:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑏)) ∩𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐵))

The causes function ensures the causal relation of the presumptions to the events. In

short, by designing the method around causal rules derived from the relation of goals

and beliefs (that can be encoded in the agent’s model as rules, plans, or other ele-

ments), every information considered is relevant to the explanation.

• Quality – the quality category is concerned with how trustworthy is the information

used in the explanation. There are two maxims that, in short, say “do not lie” and “do

not say what you do not know”. This requirement is dependent on the agent’s reasoning

mechanism, that is, if the agent follows the open-world assumption – in which the only

beliefs that are true are the ones that can be derived from the knowledge base, and

everything else is unknown – then the requirement is met. Since it was designed that

the knowledge base evaluates the causes and filter what is derivable and what is not,

the agent does “believe” in the explanations it provides, even if factually they are wrong

(e.g., the robot may say that ¬𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑚𝑜𝑝), but the user knows he delivered one

earlier, even the robot being wrong, it is not trying to deceive the user, it is just what he

believes to be true). A compromise can be made by using a closed world assumption

– everything that is not derivable from the knowledge base is false –, as the agent may

make a decision on an inferred negation that ends up being wrong. Note that the agent

can be factually wrong about its view of the world in both cases. Again, using the same

previous example formulation:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑏)) ∩𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐵))

The usage of 𝐾𝐵+ ties the presumptions of possible causes to the agent’s beliefs.

Note that before the operations with 𝐾𝐵, the formula gathers every cause that could

be related to the event. The ∩𝐾𝐵+ then guarantees that only factual presumptions

are considered. In turn, the −𝐾𝐵+ guarantees that only unknown presumptions are

considered. They are both used to evaluate if a cause needs to be activated – all the

presumptions made true –, or deactivated – some presumptions, for every active cause,

made false –, respectively.



73

• Quantity – the quantity category is concerned with the amount of information provided,

as in short, it requires that “be as informative as required, and no more than that”. It is

subjective how informative a piece of information is. Not just in the sense that it depends

on who receives the information, it is also not measurable. In a sense, this is part of the

selection problem – how to select the most adequate answer – as knowing the “most

informative” explanans could be a solution to the problem. How the method addresses

this requirement is twofold: i) by contrasting with another goal, when applicable; and ii)

by avoiding repetitive information, that is, if a condition 𝑐1 can answer all the required

events, there is no need to include a second condition. For example, using the same

case as before:

𝐴 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑎))−𝐾𝐵+

𝐵 = 𝑐_𝑝𝑟𝑒(𝑐𝑎𝑢𝑠𝑒𝑠(¬𝑔𝑖𝑑𝑏)) ∩𝐾𝐵+

𝑅𝐶 = 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑(𝐵, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐴) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐵))

The 𝑢𝑠𝑒𝑠_𝑝𝑟𝑒𝑑 function, in this scenario, looks for presumptions that are shared be-

tween the goals – this narrows down the number of presumptions that are considered.

Next, the (Minimal) Possible Explanans procedure is responsible for generating subsets

from this narrowed set of presumptions that are, in turn, related to every event of the

explanandum.

In summary, three of the four maxims are addressed. They influenced the method’s de-

sign: first, in how the sets of related conditions were formulated; and secondly, by proposing the

second procedure, responsible for removing redundancies.

Next, some of the limitations of the method are discussed.

5.2 Limitations

Two limitations are discussed in the following subsection: i) the dependence on the

agent’s model; and ii) the developer’s responsibility in implementing the agent’s interface.

5.2.1 The impact of the belief-goal relationship

The proposed method is dependent on the agent’s beliefs and the ability to associate

them with the goals. As such, the resulting explanations can only be as rich and precise as the

agent’s knowledge base and causal function provided through the interface.

Many classical BDI models have a very limited relationship between goals and beliefs.

Take as an example the AgentSpeak framework: the only required relation between a belief and
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a goal is the plan library, with the guard clauses. The motivation of a new goal is a trigger that

can be received as a message, a result of plan execution, or a belief rule. As such, the motivation

for a goal may not be clear. If it can not be expressed as beliefs – in the AgentSpeak, it is only

possible when using rules – then the motivation is oversimplified.

Suppose the following snippet of a AgentSpeak code, containing every reference to 𝑐𝑙𝑒𝑎𝑛

for the same cleaner world scenario:

solid_dirt(3,4)
+liquid_dirt(X,Y) <- !clean(X,Y)
+solid_dirt(X,Y) <- !clean(X,Y)
+!clean(X,Y) : clear_path(X,Y), liquid_dirt(X,Y), has_battery(20.0) <- !go(X,Y); !mop(X,Y)
+!clean(X,Y) : clear_path(X,Y), solid_dirt(X,Y), has_battery(20.0) <- !go(X,Y); !sweep(X,Y)
+!clean(X,Y) : not liquid_dirt(X,Y), not solid_dirt(X,Y) <- .drop_intention(clean(X,Y))

For this snippet, the explanation method can obtain a belief that motivates the goal of

cleaning: the solid dirt at (3,4).

Now comparing to this snippet, again for the same problem, with the same behavior:

solid_dirt(3,4)
!clean(3,4)
+!clean(X,Y) : clear_path(X,Y), liquid_dirt(X,Y), has_battery(20.0) <- !go(X,Y); !mop(X,Y)
+!clean(X,Y) : clear_path(X,Y), solid_dirt(X,Y), has_battery(20.0) <- !go(X,Y); !sweep(X,Y)

It is easy to conceive a code that achieves the same behavior, yet the ability to track the

motivation of the goal is lost. The robot wants to clean because it received a message to do so. It

has an applicable plan, but what belief, if any, from the guard clause is related to the motivation?

In this case, the explanation method can not narrow the options for the activation of the goal,

and it is possible that the correct explanation may not even be part of the robot’s beliefs.

The BBGP model used in the case study is a good example of a model that encourages

and enforces a rich goal-belief relationship. The goal needs to progress over several stages,

each requiring a set of beliefs to be present or absent. A goal has a motivating belief that, if the

domain model allows, can make clear the belief that leads to a goal being pursued.

5.2.2 Adherence to Agent’s Deliberation

One important point to be considered is that the method is entirely post-hoc. As such, the

adherence – that is, how closely a model can represent another model – to the constructed ex-

planations will be only as good as the adherence between the interface implementation (causal,

conflict, and preference functions and the execution history) and the agent’s deliberative process.

The correctness of the provided information falls under the developer’s responsibility.

As discussed before, the agent’s model plays an important role in the explanation rich-

ness, as the explanation should be only as rich as the used model. Trying to extend the agent’s

model would only negatively impact the adherence of the explanation to the deliberation process,
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as new assumptions and relations not used by the agent would be added to the explanation

model. That can generate explanations that induce the user to make false assumptions about

the agent’s behavior and mechanisms.

It is worth noting that the method was designed having in mind a cooperative agent. That

is, at this point, the agent is deemed as fully cooperative, providing any information requested

without any reason to withhold data or even to lie. As such, the agent keeps a history of its

execution that tells the agent’s intentions factually, even if some of its beliefs are wrong.

5.3 Single State Property Questions

Posed questions necessarily have different states being compared. Upon looking at the

elements that compose the formalized question types, three elements are used: the goal as

the event being compared, the property as the state of the goal, and the time instance upon

which the comparison takes place. Considering these three elements like dimensions, with two

possible values (equal or distinct), eight possibilities for question types could be formulated.

Nonetheless, only four are provided. That is the case because the property element is always

considered distinct for a contrastive question to be considered valid.

For three of the formalized question types (O/T/OT-contrast), the answer requires com-

paring goals or time instances: O-contrast compares two distinct goals in a single time instance;

T-contrast compares a single goal in two distinct time instances, and OT-contrast compares two

distinct goals in two distinct time instances. The P-contrast compares a goal with a hypothetical

version of itself, but in different states, in a single time instance. In all cases, the goal states being

compared are always different.

When the goal properties are the same, the intention behind the questions lacks the

requirement for a comparison to be made:

• P-contrast – If all the properties are the same, the question is malformed: “why goal 𝑎

(at time 𝑡1) is ‘Pursuable’ instead of ‘not Pursuable’?”. The question is a contradiction,

as 𝑎 can not have state 𝑆𝑡 ∧ ¬𝑆𝑡 at the same time.

• O-contrast – When asked why two distinct goals have the same states at the same

time, it is likely that both were expected to be mutually exclusive – if one goal is being

pursued, the other one can not be –, which they were not. As such, the explanation

should provide a reason for the mutual exclusion criteria not holding (e.g., another non-

conflicting parallel activation path), or if such criteria can not be identified, simply the

factual reason why both have the observed state. In both cases, no comparison is made.

• T-contrast – When asking why the same goal at two distinct times have the same

states, the question entails that the goal was expected to have changed. As such, the

question is possibly asking why the goal did not change. A better way of posing this
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question is by identifying if it was expected that goal had advanced or receded and

then posing a question with distinct properties. Excluding this case, no intention can be

defined for the question posed. As such, an adequate answer can not be constructed.

• OT-contrast – Lastly, for two different goals, at different times, with the same states,

the question becomes too arbitrary, as both goals are not happening concomitantly,

not even a mutual exclusion criterion can be assumed. The intention behind such a

question is also not clear.

This shows that the property needs to be distinct in the question.

5.4 Related Work

Research in contrastive explanations grounded in social and cognitive sciences is still in

its early stages (MILLER; HOWE; SONENBERG, 2017; STEPIN et al., 2021).

In (KAPTEIN et al., 2019), the authors present their evaluation of a virtual assistant sys-

tem, to assess the use of emotions in the explanation and its effects on the adoption of the given

suggestions. Although grounded on social sciences, this work does not encompass the agent’s

goal selection and focuses on the human-agent interaction. In a similar approach, Stange and

Kopp (2020) uses emotions and BDI concepts to frame the generated explanations. It also is

focused on the human-agent interaction. In (HARBERS; BOSCH; MEYER, 2010) the authors

evaluate explanations types and when actions or goals are better explanations for the posed

question. It also has a grounding in social sciences. All these approaches have social science’s

grounding but do not provide contrastive explanations.

Fan (2018) proposes a method using argumentation to explain plans. It does not seem

to have social or cognitive grounding, and the method does not address goal selection.

Chakraborti et al. (2019) evaluates in his work the human-agent interaction aspect of

the explanation as well. His work is grounded in social sciences and is capable of providing

some contrastive answers, but it focuses on plan explanation. Somewhat similar to Chakraborti’s

work is (CRUZ; IGARASHI, 2021), where the explanation is used for debugging a reinforcement

learning rule of an autonomous agent in a game, allowing the user to compare and visualize the

behavior that will ensue from the changed rule.

Sklar and Azhar (2018) proposes a dialogue protocol, which is based on social sciences,

but does not focus on explanation generation. It also does not encompass contrastive expla-

nations. Another dialogue protocol was proposed by Dennis and Oren (2021), but his approach

does not seem to have any grounding in social or cognitive sciences, nor is it capable of providing

contrastive explanations.

Some works in computational argumentation present a somewhat similar approach to the

one presented in this work, in such a way that the present problem could be reduced to use the

explanation methods of these works. In (FAN; TONI, 2015) is presented an explanation semantic,
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where a targeted argument and its defendants compose an explanation. The difference between

both approaches is in the focus of the explanations: Fan and Toni’s (2015) approach is based on

the argument’s claim, while the approach proposed in this work is based on the agent’s beliefs

that are used on the premises of arguments. The beliefs are used because they are the elements

that will change the agent’s behavior. García et al. (2013) uses dialectical trees to generate its

explanations, but again it is based on the claims of the arguments.

On the scope of intelligent agents, several works deal with different aspects of agency

explainability: using goal hierarchy to explain behavior (HARBERS; BOSCH; MEYER, 2010);

explaining the outcome of an inter-agent dialogue (RAYMOND; GUNES; PROROK, 2020); de-

bugging the agent’s behavior (WINIKOFF, 2017); and how to model and use emotions on expla-

nations (KAPTEIN et al., 2017).

The works mentioned above do not explain what motivates and enable a goal. In (MAD-

UMAL et al., 2020), the authors present a method for explaining the actions an agent performs

by using structural causal models that allow a counterfactual comparison. But again, the work

does not explain the agent’s motivation and enabling beliefs.

In (MORVELI-ESPINOZA; POSSEBOM; TACLA, 2019) and (MORVELI-ESPINOZA;

TACLA; JASINSKI, 2020) is presented an explanation method for goal selection. It explains the

agent’s goal selection but lacks social sciences grounding and does not account for contrastive

explanations.

Table 3 presents an overview of the related works. It shows the works with some type of

contrastive explanations and which works have social or cognitive sciences grounding.

To the best of our knowledge, no work has been published addressing contrastive expla-

nations for goal selection.

Related Work
Contrastive
Explanation

Social/Cognitive
Grounding

(KAPTEIN et al., 2019) X
(STANGE; KOPP, 2020) X
(HARBERS; BOSCH; MEYER, 2010) X
(FAN, 2018)
(CHAKRABORTI et al., 2019) Partial X
(CRUZ; IGARASHI, 2021) X
(SKLAR; AZHAR, 2018) X
(DENNIS; OREN, 2021)
(RAYMOND; GUNES; PROROK, 2020)
(WINIKOFF, 2017)
(KAPTEIN et al., 2017) X
(MADUMAL et al., 2020) X
(MORVELI-ESPINOZA; POSSEBOM; TACLA, 2019) X
(MORVELI-ESPINOZA; TACLA; JASINSKI, 2020) X

Table 3 – List of related work.
Source: Author’s own.
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6 CONCLUSIONS AND FUTURE WORKS

This chapter concludes the dissertation and presents some future directions.

6.1 Conclusion

First, let us recall the research question posed in this work:

Grounded on social and cognitive sciences works, what information is required to construct

contrastive explanations for BDI-based agent’s goal selection process and how to generate

such contrastive explanations?

Two social sciences works were used as a foundation for the method proposed:

• Bouwel and Weber’s (2002) work provided the underlying structure of what is a good ex-

planation for P/O/T-contrast questions, which was adapted to the BDI agent model and

extended with the proposal of OT-contrast questions. This extended structure of con-

trastive questions provides a definition of the information that is required for answering

contrastive questions about the goal selection, in this work, the set of presumptions that

differentiate the two cases being compared.

• Grice’s (1975) work provided some requirements that shaped the assumptions of the

method – being for cooperative agents – and influenced the designed formulations of

the related conditions. Besides, the second procedure, Possible Explanans, was in-

cluded to meet the Quantity maxim. The formulations for the four question types in the

first procedure addresses the Quality (say only what is believed to be true) and Relation

(say only what is related to the question) maxims by only generating sets of presump-

tions that are part of a causal tree to the events, and by grounding the presumptions

to the agent’s knowledge base (at the time of the decision making). The MPE algo-

rithm (second procedure) addresses the Quantity maxim (say only what is needed) by

removing redundant presumptions from the final possible explanans.

A method was proposed in chapter 3 for generating contrastive possible explanans for

contrastive questions about a BDI-based goal selection process. A possible explanans is the set

of information to be relayed to the questioner to present a relevant and simple answer. Given the

BDI-agent focus, answers are always based on presumptions – beliefs without premises or facts

– as they are a more volatile element in the agent’s knowledge base and can, in some cases, be

easily manipulated without the need for expertise in agent modeling. Allowing a lay user not only

to understand a behavior but having the chance of influencing it. Chapter 4 presented a case

study based on the cleaner world scenario. This shows how to implement the agent’s interface,

how the possible explanans are calculated in the method, and demonstrates how to interpret

some of the resulting possible explanans.
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The method does not cover two important steps required for providing a final user-ready

explanation: a) it does not tackle the selection problem of deciding which single explanans will be

used as an answer; and b) the interface to the user – how to receive and interpret the question

and how to present the explanation – is outside the scope of this work.

Next, some future directions are presented.

6.2 Future Work

Given the deep connection with the work of Bouwel and Weber (2002), other contrastive

question types can be used with the proposed method. For that, the new question type needs to

be formally defined. It is worth mentioning that the formalization grows (potentially) exponentially

with the number of types. Let’s take as an example the Spatial-contrast (S-contrast), mentioned

in Bouwel and Weber’s work, it can be combined with every other type of question, effectively

adding a new dimension to the question. It would be possible: the plain S-contrast, Object-

Spatial-contrast, Time-Spacial-contrast, and Object-Time-Spatial-contrast. If a combination does

not result in a malformed question, then the number of resulting types is in the order of 2𝑛−1, 𝑛

being the number of question types.

Another possible improvement is to include special questions that can better explain

internal behaviors of the agent that are beyond the standard BDI model. A good example would

be a special question type to explain trust deliberation in an agent. Since trust is another type of

deliberation that the agent must perform, a dedicated question type can potentially give simpler

answers.

For practical applications, an important improvement to the explanation method is to

support stochastic plans. This would allow the generation of probabilistic explanations, that is,

explanations of the type: “It is probable that event 𝑒 happened because of conditions {𝑐1, ..., 𝑐𝑛}”,

by including a representation of the odds of a plan being chosen and succeeding.

The selection problem is left open in the method, and integrating it into the method would

allow a complete explanation generation, requiring only to relay it to the user. Many criteria were

proposed for this problem, and to implement them, it is necessary to include some informa-

tion about the causes. For instance, knowing what presumptions can be controlled by the user

would allow the use of the instrumental efficacy criteria. Also, knowing what presumptions are

unexpected conditions for the user allows the usage of the unexpected or abnormal conditions

criteria.

Some of such selection criteria require extra information about the causes. It requires

causes to be compared or classified based on some characteristics. To name a few: controlla-

bility, unexpectedness, and responsibility. This extra information can be helpful (in some cases

required) to tackle the selection problem.

The method can only compare sequential goal states. If the finite state machine (FSM)

describing the goals state progression is not a directed acyclic graph (DAG), the method cannot
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properly perform the comparisons. The special cases discussed (Cancelled, Completed, and

Paused) are not based on beliefs and, as such, are not comparable. The method could be

extended to accommodate for a more general goal state state-machine.

This work did not tackle how a lay user could interact with the agent. One challenge

arising from such interaction is “how a lay user can question the agent without knowing about

the goal states and deliberation cycles?”. It is possible that only by using the observed behavior

of the agent, that is, the actions it did or did not perform, the question could be mapped to the

particular goal states required to satisfy the user’s query. A deeper analysis of such interactions

is still required.

Lastly, the explanation method can deal with contrastive questions and provide con-

trastive answers. Although counterfactual answers are a type of contrastive answers, the method

still lacks a way of generating the hypothesized scenario (beliefs, goals, preferences, etc.). With

an efficient method for generating counterfactual scenarios, that is, generating such scenarios

without the need of executing an agent with the required changes, the formalized question types

should be capable of providing adequate answers. Integrating such a method into the proposed

method can significantly improve the quality and usefulness of the explanations, as it will increase

the range of questions that the agent can answer.
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APPENDIX A – Extended Minimum Possible Explanans Algorithm
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Source Code 2 – Object-Oriented Minimal Possible Explanans Algorithm.
1: procedure MPE(𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑛𝑠, 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡, 𝑖𝑛𝑑𝑒𝑥, 𝑐𝑜𝑣𝑒𝑟𝑒𝑑, 𝑏𝑎𝑠𝑒_𝑐𝑜𝑣𝑒𝑟)
2: ◁ If all events were checked, add base_cover to possible_explanans and return.
3: if event_list.size() <= index then
4: possible_explanans.add(base_cover)
5: return possible_explanans ◁ $1
6: end if
7:
8: ◁ If base_cover is in possible_explanans, returns.
9: if possible_explanans.contains(base_cover) then

10: return possible_explanans ◁ $2
11: end if
12:
13: ◁ If the current_event is covered, skip to next event.
14: current_event = event_list.get(index)
15: if covered.contains(current_event) then
16: return MPE(possible_explanans, event_list, index + 1, covered, base_cover) ◁ $3
17: end if
18:
19: ◁ Branch to each condition that can cover the current_event.
20: for all condition from current_event.conditions do
21: ◁ Creates a copy of covered and base_cover for the different branches.
22: copy_base_cover = base_cover.clone()
23: copy_base_cover.add(condition)
24: copy_covered = covered.clone()
25: copy_covered.addAll(condition.events)
26:
27: ◁ Remove all conditions that are a proper subset of the current condition from base_cover.
28: supersetSwap = false
29: for all subset from condition.supersetOf do
30: if base_cover.contains(subset) then
31: copy_base_cover.remove(subset)
32: supersetSwap = true
33: end if
34: end for
35:
36: if supersetSwap then
37: copy_base_cover.add(condition)
38: copy_covered.addAll(condition.events)
39: end if
40: MPE(possible_explanans, event_list, index + 1, copy_covered, copy_base_cover) ◁ $4
41: end for
42:
43: return possible_explanans
44: end procedure

Source: Author’s own.
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