
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSITÀ DI MODENA E REGGIO EMILIA

GIOVANNI BRAGLIA

UM SISTEMA EMBARCADO PARA MONITORAMENTO DE CARGA
NÃO INTRUSIVA USANDO APRENDIZADO DE MÁQUINA

THESIS

CURITIBA / MODENA

2021

GIOVANNI BRAGLIA

UM SISTEMA EMBARCADO PARA MONITORAMENTO DE
CARGA NÃO INTRUSIVA USANDO APRENDIZADO DE

MÁQUINA

An Embedded System for Non-Intrusive Load Monitoring using
Machine Learning

Trabalho de conclusão de curso de Tese apre-
sentada como requisito para obtenção do
título de Mestre em Engenharia Elétrica e
Informática Industrial da Universidade Tec-
nológica Federal do Paraná (UTFPR).

Supervisor: Prof. Dr. André Eugenio Lazza-
retti

Thesis presented as a requirement to obtain
the title of Doctor in Electronics Enginee-
ring for the University of Modena and Reg-
gio Emilia (Unimore).

Supervisor: Prof. Dr. Laura Giarrè
Co-Supervisor: Prof. Dr. Giovanni Frances-
chini

CURITIBA / MODENA

2021

4.0 Internacional

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do
trabalho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s)
autor(es).
Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são
cobertos pela licença.

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

11/3/21, 9:05 PM -

https://sistemas2.utfpr.edu.br/dpls/sistema/aluno01/mpCADEDocsAssinar.pcTelaAssinaturaDoc?p_pesscodnr=227672&p_cadedocpescodnr=17694&… 1/1

Ministério da Educação

Universidade Tecnológica Federal do Paraná
Campus Curitiba

GIOVANNI BRAGLIA

UM SISTEMA EMBARCADO PARA MONITORAMENTO DE CARGA NÃO INTRUSIVA USANDO
APRENDIZADO DE MÁQUINA

Trabalho de pesquisa de mestrado apresentado como requisito
para obtenção do título de Mestre Em Ciências da Universidade
Tecnológica Federal do Paraná (UTFPR). Área de concentração:
Engenharia De Computação.

Data de aprovação: 20 de Outubro de 2021

Prof Andre Eugenio Lazzaretti, Doutorado - Universidade Tecnológica Federal do Paraná

Prof Fabio Kurt Schneider, Doutorado - Universidade Tecnológica Federal do Paraná

Prof.a Laura Giarre, Doutorado - Università Degli Studi Di Modena e Reggio Emilia

Prof Luiz Felipe Ribeiro Barrozo Toledo, Doutorado - Instituto de Tecnologia para Desenvolvimento, Departamento
de Eletricidade, Divisão de Sistemas Elétricos - Lactec

Prof Paolo Pavan, Doutorado - Università Degli Studi Di Modena e Reggio Emilia

Documento gerado pelo Sistema Acadêmico da UTFPR a partir dos dados da Ata de Defesa em 22/10/2021.

ACKNOWLEDGEMENTS

Quando penso al fatto che 5 anni fa ero esattamente agli inizi del mio percorso univer-

sitario, penso a quanto questo intervallo di tempo abbia inciso su di me, sulle mie idee, sulle

mie ambizioni. Eppure se guardo indietro sembra che sia durato tutto 5 minuti, momenti che

non potrò rivivere ma che posso ricordare, grazie a quali non potrei essere la stessa persona che

scrive queste righe.

Vorrei dunque sfruttare questo momento per ricordare e ringraziare tutte quelle persone che

hanno partecipato, in piccola o grande parte, alla realizzazione di quello che per me è un grande

traguardo.

Innanzitutto non sarei riuscito a laurearmi se non fosse stato per i professori che ho

avuto, quelli che ti motivano, quelli sempre disponibili, quelli disordinati, quelli noiosi, quelli

che ti fanno studiare tanto e quelli che ti costringono a risolvere i problemi da solo. Sono certo

che con ognuno di loro ha avuto qualcosa da apprendere, i loro insegnamenti saranno sempre le

basi su cui proietterò la mia vita lavorativa di ingegnere. Ringrazio in particolare i professori

Giarré e Franceschini, per la loro disponibilità a seguirmi in questo progetto di tesi e a scambiare

opinioni su un campo che non era sempre il loro.

Se dovessi ricordare in particolare uno di questi 5 anni di università non posso che

finire a parlare del 2020, anno della pandemia per tanti, ma anno del Brasile per me. Ringrazio

dunque Francesca e Paolo, per il progetto di scambio meraviglioso che hanno creato tra Unimore

e UTFPR, per la loro constante presenza, per gli aiuti che hanno saputo darmi prima, durante e

dopo il periodo di mobilità, per l’incredibile opportunità che mi hanno dato.

Volevo dunque ringraziare tutti quelli che hanno fatto parte della mia esperienza in Brasile.

Ringrazio UTFPR per la sua accoglienza, per il riguardo verso la mia situazione. I professori,

per la loro disponibilità, per il loro interesse verso gli alunni. Ringrazio in particolare André, per

la passione che ha saputo trasmettermi su tematiche a me nuove, per la sua premura nei miei

confronti, per le chiamate con lui al venerdì e per avermi portato una chitarra durante il periodo

di quarantena. E’ sicuramente grazie lui se, nei primi mesi del 2020, ho deciso di rimanere in

Brasile nonostante il dilagare dell’epidemia.

Ringrazio poi tutte le persone che mi sono state vicine, quelle che ci hanno tenuto a farmi

conoscere le usanze brasiliane, ringrazio i miei coinquilini, i miei amici. Ringrazio Cacau,

mentre scrivo queste righe la sto aspettando in aeroporto ed è notte inoltrata. La ringrazio perchè

da quando l’ho conosciuta non cè stato un secondo in cui non mi abbia dimostrato quanto mi

volesse bene, perchè sà starmi vicina, per la calma e l’allegria che sà trasmettermi.

Ringrazio tutte le persone, amici, conoscenti e parenti che in un qualche modo hanno

saputo contribuire con poco ad attimi di felicità. In particolare ringrazio i ragazzi del campo

Rwanda 2019, perchè pur non vedendoci spesso sanno sempre dar un valore particolare alla

nostra amicizia, mantenendo i contatti e soprattutto organizzando rimpatriate che sanno sempre

rendere speciali.

Gli anni dell’università sono poi stati anche gli anni della band, vorrei dunque ringraziare i

MangoStreet, per avermi aspettato, perchè suonare con voi alla fine è sempre una scusa per

vederci, per avermi insegnato che si riesce sempre a trovare del tempo per dedicarsi alle proprie

passioni.

Ringrazio poi Claudio, Luca, Marta, Simone, Stefano e Valeria, per essere sempre stati una

sicurezza, per la loro presenza in tutti i momenti più importanti, per la loro amicizia che cè

sempre.

Ringrazio infine la mia famiglia, perchè hanno sempre saputo appoggiarmi in qualsiasi

scelta, darmi una soluzione o dirmi che tutto andrà bene. Grazie Valeria e Matteo, perchè quando

siete a casa o siamo insieme tutto ha colore. Grazie mamma e papà, perchè mi ispirate giorno

dopo giorno.

RESUMO

BRAGLIA, Giovanni. Um Sistema Embarcado para Monitoramento de Carga nao
Intrusiva usando Aprendizado de Màquina. 2021. 116 f. Thesis (Double Degree em
Engenharia Elétrica e Informática Industrial e Electronics Engineering) – Universidade
Tecnológica Federal do Paraná e Università di Modena e Reggio Emilia. Curitiba / Modena,
2021.

O interesse em sistemas de gerenciamento de energia tem crescido nos últimos anos, como que
a maioria das plantas industriais ou domésticas adotam técnicas para reduzir com eficiência a
demanda de energia e os custos relacionados a ela. Uma solução atrativa são os sistemas de
monitoramento de carga não intrusiva (NILM), cujo objetivo principal é encontrar uma forma
mais adequada de acompanhar o consumo de energia causado por cada uma das cargas que
estão conectadas à planta monitorada. Uma possível implementação na vida real de um sistema
NILM é abordada neste trabalho, discutindo todos os blocos fundamentais em sua estrutura,
incluindo detecção de eventos, extração de features e classificação de carga, usando dataset
disponíveis publicamente. Além disso, oferecemos uma solução para um sistema embarcado,
capaz de analisar formas de onda agregadas e reconhecer a contribuição de cada aparelho nas
mesmas. O projeto é então completado por medições de cargas realizadas em laboratório, com o
intuito de validar ainda mais o algoritmo proposto e sua viabilidade, envolvendo a criação de um
novo dataset de dados de carga e características. A metodologia adotada, suas características,
desvantagens e implementação são explicados, mostrando os desafios atuais e futuros para a
aplicação final.

Palavras chave: Sistemas Embarcados. Aprendizado de Maquina. NILM. Gerenciamento de
Energia. Processamento de Sinais.

ABSTRACT

BRAGLIA, Giovanni. An Embedded System for Non-Intrusive Load Monitoring using
Machine Learning. 2021. 116 p. Thesis (Double Degree in Engenharia Elétrica e Informática
Industrial and Electronics Engineering) – Universidade Tecnológica Federal do Paraná and
Università di Modena e Reggio Emilia. Curitiba / Modena, 2021.

The interest in power managing systems has been growing in recent years since every industrial
or domestic plant moves towards techniques to efficiently reduce energy demand and costs
related to it. An attractive solution is represented by Non-Intrusive Load Monitoring (NILM)
systems, whose primary purpose is to find a more appropriate way of keeping track of the
power consumption caused by each of the loads that are connected to the monitored plant.
A possible real-life implementation of a NILM system is addressed in this work, discussing
all the fundamental blocks in its structure, including detecting events, feature extraction, and
load classification, using publicly available datasets. Additionally, we provide a solution for
an embedded system, able to analyze aggregated waveforms and to recognize each appliance’s
contribution in it. The project is then completed by real loads’ measurements performed in lab,
with the intention of further validate the proposed algorithm and its feasibility, involving the
creation of a new load and features dataset. The adopted methodology, its features, drawbacks,
and implementation are thus explained, showing current and future challenges for the final
application.

Keywords: Embedded System. Machine Learning. NILM. Power Management. Signal Proces-
sing.

LIST OF FIGURES

Figure 1 – Events detection in an aggregate signal . 24
Figure 2 – 𝑡𝑠 and 𝑡𝑒 detection for a Drill signal in COOLL Dataset 27
Figure 3 – 𝑡𝑠 and 𝑡𝑒 detection for a composed signal (Led Pannel, Oil Heater Power 1

and Incandescent Lamp) in LIT Dataset 27
Figure 4 – Graphical representation of the Sigmoid function. Adapted from (RASCHKA;

MIRJALILI, 2019). 33
Figure 5 – Schematic of Logistic Regression. Adapted from (RASCHKA; MIRJALILI,

2019). 33
Figure 6 – Graphical interpretation of SVM. Adapted from (RASCHKA; MIRJALILI,

2019) . 34
Figure 7 – Working principle of KNN. Adapted from (RASCHKA; MIRJALILI, 2019) 36
Figure 8 – Project schematic. 37
Figure 9 – Fourier transform of the variance for the 3E0N0Q0 signal in LIT Dataset . 39
Figure 10 – 3E0N0Q0 transients detection with FFT-based threshold. 39
Figure 11 – 3E0N0Q0 transients detection with FFT-based threshold augmented by a

factor of 𝐹 . 40
Figure 12 – 3E0N0Q0 transients with local peaks-based threshold. 41
Figure 13 – 3E0N0Q0 transients with local peaks-based threshold decreased by a factor 𝐹 . 41
Figure 14 – LIT dataset: the signal pointed with the red arrow will be now extrapolated. 43
Figure 15 – In this case 𝑝𝑎𝑟𝑡 =′ 𝑠′, thus a W0’s steady state interval of 𝑛_𝑐𝑦𝑐𝑙𝑒𝑠 has been

extrapolated . 43
Figure 16 – W0, after being extrapolated and aligned, is subtracted by a factor of 𝑡𝑒𝑚𝑝 to

be isolated from other appliances . 44
Figure 17 – Graphical visualization of overfitting and underfitting. Adapted from (RAS-

CHKA; MIRJALILI, 2019). 49
Figure 18 – Typical way of splitting data. Adapted from (RASCHKA; MIRJALILI, 2019). 50
Figure 19 – SBS: the graph tracks the accuracy achieved by a classifier over the algorithm

iterations; in this example, even with three features a very good accuracy
level can be reached. 51

Figure 20 – PCA – KNN model evaluation: in this case reducing the dataset to 23 features
the best result is reached. 53

Figure 21 – NVIDIA Jetson TX1 Developer Kit . 55
Figure 22 – 8E0P0I0M0N0H0W0Y0 signal analyzed with the modified detector: here all

the transients are detected correctly. 57
Figure 23 – Third load overlapped with the previous ones and is not detected because its

amplitude is relatively small. 58
Figure 24 – Third load is characterized by a transient that swings two times leading to

two detections instead of one. 58
Figure 25 – A highly noised signal produce many wrong detections. 59
Figure 26 – Validation curve with respect to the C parameter. 62
Figure 27 – Learning curve Logistic Regression. 62
Figure 28 – ROC curve Logistic Regression. 63
Figure 29 – Validation curve with respect to C parameter. 64
Figure 30 – Learning Curve SVM. 64

Figure 31 – ROC curve for SVM. 64
Figure 32 – Validation curve with respect to the number of neighbors. 65
Figure 33 – Learning curve K-Neighbors. 66
Figure 34 – ROC for K-Neighbors. 66
Figure 35 – Validation curve with respect to the number of estimators. 67
Figure 36 – Learning curve Random Forest. 67
Figure 37 – ROC for Random Forest. 67
Figure 38 – Monitoring test process. 68
Figure 39 – Saw_5 load classification. 69
Figure 40 – Sander_1 load classification. 69
Figure 41 – Drill_1 load classification. 70
Figure 42 – Drill_5 load classification. 70
Figure 43 – Hair_Dryer_2 load classification. 70
Figure 44 – Hair_Dryer_3 load classification. 71
Figure 45 – Hedge_Trimmer_2 load classification. 71
Figure 46 – Paint_Stripper_1 load classification. 71
Figure 47 – Router_1 load classification. 72
Figure 48 – Lamp_2 load classification. 72
Figure 49 – Results obtained from different waveforms including 1 appliance. 73
Figure 50 – Results obtained from different waveforms including 2 and 3 appliances. . . 74
Figure 51 – Results obtained from different waveforms including 8 appliances. 75
Figure 52 – Logistic Regression Confusion Matrix. 78
Figure 53 – Support Vector Machine Confusion Matrix. 78
Figure 54 – K-Neighbors Confusion Matrix. 79
Figure 55 – Random Forest Confusion Matrix. 79
Figure 56 – Scheme of the possible implementation of a NILM module: the cores of an

embedded device, with its own operative system, could be partitioned to work
with different tasks, as the communication with some DSPs or the exchange
of loads and energy consumption information with other devices. 85

LIST OF TABLES

Table 1 – COOLL Dataset . 44
Table 2 – LIT Dataset . 46
Table 3 – Lab Dataset . 47
Table 4 – Detector tests: aggregate signals with 8 appliances (D0, G0, P0, Q0, M0, N0,

H0, E0) in LIT Dataset (RENAUX et al., 2018b) 57
Table 5 – COOLL Dataset Test Accuracies (%) . 60
Table 6 – LIT Dataset Test Accuracies (%) . 60
Table 7 – Lab Dataset Accuracies in Optimization process (%) 76
Table 8 – Lab Dataset Preliminary Test results . 77
Table 9 – Lab Dataset Final Test results . 80

LIST OF ACRONYMS

ABBREVIATIONS

art. Article
cap. Chapter
fig. Figure
sec. Section
tab. Table

INITIALISM

AC Alternate Current
angp Angle between maximum and minimum point
APP Appliance
ar Area
asy Asymmetry
AUC Area Under Curve
CNN Convolutional Neural Networks
COOLL Controlled On/Off Loads Library
CPU Central Processing Unit
DC Direct Current
dpb Distance between maximum and minimum point
DSP Digital Signal Processor
DWT Discret Wavelet Transform
FFT Fast Fourier Transform
FLAC Free Lossless Audio Codec
FP/FN False Positive/Negative
GPU Graphical Processing Unit
HAND High Accuracy NILM Detector
HCapP Half-Cycle Apparent Power
IDE Integrated Development Environment
IG Information Gain
itc Current Span
KNN K-Neighbors Classifier
L Length
LIT Laboratory for Innovation and Technology in Embedded Systems
lpa Area with loop direction

LR Logistic Regression
M Mean Line
md Maximum distance
MElting Lab Industrial Automation and Power Electronics Laboratory
NaN Not a Number
NILM Non-Intrusive Load Monitoring
OVR One-Versus-Rest
P Active Power
PCA Principal Component Analysis
Q Reactive Power
r Curvature of mean line
RBF Radial Basis Function
RF Random Forest
RMS Root Mean Square
ROC Receiving Operating Characteristic
S Apparent Power
SBS Sequential Backward Selection
sc Number of self intersections
SVD Singular Value Decomposition
SVM Support Vector Machine
TED Total Even Harmonics Distortion
TOD Total Odd Harmonics Distortion
TP/TN True Positive/Negative

SUMMARY

1 INTRODUCTION . 15
1.1 MOTIVATION . 15
1.2 OBJECTIVES . 17
1.2.1 General Objective . 17
1.2.2 Specific Objectives . 17
1.3 STRUCTURE OF THIS DOCUMENT 17

2 RELATED WORKS . 18
2.1 NON-INTRUSIVE LOAD MONITORING 18
2.2 EVENT DETECTION . 19
2.3 FEATURE EXTRACTION . 20
2.4 CLASSIFICATION METHODS . 21
2.5 CONTRIBUTIONS OF THIS WORK 23

3 THEORETICAL ASPECTS . 24
3.1 DETECTION ALGORITHM . 24
3.2 FEATURES . 28
3.2.1 Common Features . 28
3.2.2 Electrical Power Features . 29
3.2.3 V-I Trajectory Features . 29
3.3 CLASSIFIERS . 32
3.3.1 Logistic Regression . 32
3.3.2 Support Vector Machine . 34
3.3.3 Random Forest . 35
3.3.4 K-Nearest-Neighbors . 36

4 METHODS . 37
4.1 DETECTION METHOD AND TUNING 38
4.1.1 Detector Tuning . 38
4.1.1.1 FFT-based threshold . 38
4.1.1.2 Local Peak-based Threshold . 39
4.1.2 Disaggregation . 40
4.2 DATASETS . 43
4.2.1 COOLL Dataset . 44
4.2.2 LIT Dataset . 45
4.2.3 Lab Dataset . 47
4.3 TRAINING AND MODEL EVALUATION 48
4.3.1 Data Pre-processing . 49
4.3.2 Sequential Backward Selection . 50
4.3.3 Principal Component Analysis . 51
4.3.4 Grid Search . 52
4.4 MODEL EVALUATION METRICS . 53
4.5 EMBEDDED SYSTEM . 54

5 RESULTS AND DISCUSSIONS . 56

5.1 DETECTION . 56
5.2 CLASSIFICATION RESULTS . 59
5.2.1 Detailed Analysis . 61
5.2.1.1 Logistic Regression . 62
5.2.1.2 Support Vector Machine . 63
5.2.1.3 K-Nearest-Neighbors . 65
5.2.1.4 Random Forest . 66
5.3 RESULTS IN THE EMBEDDED SYSTEM 68
5.3.1 COOLL Dataset . 69
5.3.2 LIT Dataset . 72
5.4 LAB TESTS ON REAL MEASUREMENTS 75
5.4.1 Building a new feature dataset for the optimization of classifiers 76
5.4.2 Validation of NILM algorithm on test dataset 80

6 CONCLUSIONS AND FUTURE WORKS 82

APPENDIX 86

APPENDIX A – PYTHON CODES . 87
.1 DETECTOR . 87
.2 MOVING AVERAGE FILTER . 88
.3 PEAK . 89
.4 MEDIAN . 89
.5 COVARIANCE . 90
.6 STEADY STATE . 90
.7 FFT . 90
.8 ACTIVE POWER . 92
.9 REACTIVE POWER . 92
.10 APPARENT POWER . 92
.11 EXTRAPOLATE CYCLE / CURRENT SPAN 92
.12 ANGLE / DISTANCE BETWEEN MAXIMUM AND MINIMUM POINT 93
.13 AREA WITH LOOP DIRECTION . 94
.14 ASYMMETRY . 94
.15 LENGTH . 95
.16 MAXIMUM DISTANCE . 95
.17 CURVATURE OF MEAN LINE . 95
.18 NUMBER OF SELF INTERSECTIONS 96
.19 AREA . 97
.20 FFT-BASED THRESHOLD . 97
.21 LOCAL PEAK-BASED THRESHOLD 97
.22 CONVERSION FLAC FILES (COOLL) 98
.23 CONVERSION MAT FILES (LIT) . 99
.24 SEQUENTIAL BACKWARD SELECTION 99
.25 PRINCIPAL COMPONENTS ANALYSIS 101
.26 GRID SEARCH . 102
.27 DATASET PREPROCESSING . 103
.28 CLASSIFIER MODEL SAVING AND LOADING 104

.29 COOLL DATASET TEST CODE . 104

.30 LIT DATASET TEST CODE . 105

.31 DISAGGREGATION . 107

.32 FINAL LAB TESTS RESULTS . 109

REFERENCES . 113

15

1 INTRODUCTION

1.1 MOTIVATION

Energy saving always had an important role in all fields. From companies, houses or

devices (being small or even huge), one of the parameters that can really make the difference

in terms of costs is power consuming. Moreover, we are globally facing a huge environmental

crisis, mainly due to carbon dioxide emissions.

Fossil fuels finite quantities are forcing us to move to renewable energy sources, since

the huge growth of population will increase energy demand. Therefore, a way to reduce energy

consumption is needed, which can be achieved with new sources, but also finding a way to wisely

manage those ones.

NILM (Non-Intrusive Load Monitoring) is part of a research field whose goal is propose

energy savings solutions. Here the keyword is efficiency, since NILM aims at producing systems

for power consumption monitoring, basically developing a device able to recognize loads

connected to an electrical system and display the amount of energy that is being used. In this

way, people will always be aware in real-time about the devices that are on, knowing exactly

how much energy they are using (HART, 1992).

A first way to do that could be install a sensor for every electric socket of the system

that has to be monitored, to directly get information from the latter. However, for large systems,

being monitored means needing a high amount of sensors which of course will be translated into

higher costs (CHANG, 2012).

NILM provides in this case another solution, which is performing a non-intrusive analy-

sis of loads by monitoring the whole system power consumption in one point, thus disaggregating,

from the whole bunch of devices connected in the same bar, individual appliances ready to be

processed and classified.

According to Picon et al. (2016) and Figueiredo et al. (2012), usually the approach used

for NILM considers the following steps:

• Data Acquisition;

• Features Extraction;

16

• Load Identification.

Even though the first step might be obvious, the way data are acquired should be

coherent with the next steps of the approach. For example, one of the parameters we must care

about is the sampling frequency, as it determines the type of information that can be extracted

from the electrical signals.

Low-frequency systems, for example, allows to capture common power features as

active, reactive or apparent power and are more suitable for commerce purposes since they are

less costly. However, because of their reduced bandwidth, those systems may lose some important

information in signals’ transients as well as high-order harmonics, thus loosing important features

for the classification process.

The process of feature extraction follows the one of data acquisition. Here the signal

referring to a single appliance, after being detected and isolated, will be analyzed in order to

extract the features necessary for the appliance classification.

During this last passage, the load will be identified by a classifier embedded in the

NILM system. The use of a classifier implies that it was already evaluated and selected. In fact,

among the steps listed above, the model should be trained over the available data for improving

its classification performance.

Different types of classifiers can be used based on their accuracy over tests. In particular,

training methods can be split into two categories: on-line and off-line (MULINARI et al., 2019).

In case of on-line training, time window based methods for real-time detection and learning of

appliances’ features are used. However, upon detection of load events, manual labeling of the

appliances is challenging and complex as only the aggregated load values are observed instead

of individual appliance measurements (ZOHA et al., 2012). In this work, since two datasets

were used, an off-line method was employed. Off-line simply means that the classifier has been

trained over a dataset built upon signals that were collected and then correctly labeled, in a way

to have specific references to the appliances belonging to each signal.

Off-line training methods are usually the most employed ones (ZOHA et al., 2012),

although we are always limited by the amount of information provided by datasets, where it’s

often difficult to find large variety of devices that could be useful to generalize over new data.

17

1.2 OBJECTIVES

1.2.1 General Objective

In this work, the main purpose is to develop the algorithm for an embedded system able

to perform NILM with high-sampled voltage and current signals.

1.2.2 Specific Objectives

The whole general objective can then be divided in smaller tasks that are:

• Build a features dataset from the existing signals;

• Evaluate the dataset by maximizing classifiers’ accuracy;

• Test if the whole system is working on the two datasets: COOLL (PICON et al., 2016) and

LIT Dataset (RENAUX et al., 2018b).

• Develop an algorithm for signal detection and load disaggregation;

• Integrate the algorithms into the selected system.

Moreover, this work includes a final experiment, were the whole algorithm was further

validated over lab measurements of different appliances.

1.3 STRUCTURE OF THIS DOCUMENT

This document is organized in six chapters. In the first one, an introduction was provided

touching the main topics that will be discussed throughout the document, then:

• Chapter 2 introduces state of the art techniques and related works, to have a more clear

view of the actual scenario;

• Chapter 3 presents theoretical aspects worth to mention for the purposes of the project;

• Chapter 4 will be the core of the document, analyzing the algorithms and sources used and

going through practical needs and implementations of the project;

• Chapter 5 shows the results obtained;

• Chapter 6 concludes this work.

https://coolldataset.github.io/
http://dainf.ct.utfpr.edu.br/~douglas/LIT_Dataset/index.html

18

2 RELATED WORKS

In this chapter, the main topics that have been used for the development of this work

are discussed. In particular, a first general view of the methods adopted is provided, giving the

big picture of NILM scenario, and going through state-of-the-art techniques and approaches.

2.1 NON-INTRUSIVE LOAD MONITORING

NILM may well become a widespread diagnostic and energy management solution, in

the context of Electrical Efficiency, available to every end-user. As a diagnostic tool, it identifies

energy waste and improper use for energy management and may, at the end, be employed by

residential and commercial/industrial users (Pöttker et al., 2018).

This non-intrusive technique aims at providing a solution to monitor energy consumption

in a centralized fashion, without having the need of using multiple sensors for the measures of

individual appliances. In practice, the system uses only aggregated power consumption data

from one instrument installed at main power distribution bus, then the disaggregated power

consumption data of the selected appliances is saved, analyzed and classified, displaying those

that are turned-on and off, and information about their power consumption. This will, therefore,

bring significant savings in energy consumption by improving energy management. Usually, the

NILM approach includes three steps:

1. Load detection and disaggregation;

2. Features extraction;

3. Classification.

It is useful to detect loads from the aggregated signal and isolate them properly. The

correct isolation of the load is fundamental for the next steps and will be discussed in the next

section. In the sequence, features extraction process is performed. This passage aims at extracting

all those characteristics of the signal that have to be evaluated from the classifiers, in order to

make their own prediction. The extracted appliance features are then further analyzed by the

load identification algorithms, in order identify appliance-specific states from the aggregated

measurement.

Most of the research works in NILM are focused on supervised machine learning

techniques that require labeled data for training the classifiers. Nowadays, most of the supervised

19

learning methods for loads classification are either optimization based or pattern recognition

approaches.

The optimization approach tries to match the observed power measurements 𝑝(𝑡) to a

possible combination of appliance power signals (present already in the database). Optimization

tries to find the minimum residue while comparing the unknown loads with a set of candidates

extracted from the known database (DU et al., 2010). However, one major drawback is that the

presence of unknown loads in 𝑝(𝑡) complicates the optimization problem as the method attempts

to provide a solution based on the combination of known appliances.

Therefore the pattern recognition approach has been a preferred method by researchers

for the task of load identification (WANG et al., 2018b; FIGUEIREDO et al., 2012). Similar to

pattern matching, extracted features are matched with a pool of load signatures already available

in the appliance feature database in order to identify an event associated with a operation of an

appliance.

Another approach could be based on unsupervised learning. Recently, researchers have

shown an increased interest in unsupervised methods for the load disaggregation so that the need

for data annotation can be eliminated (RUANO et al., 2019). Unlike most of the supervised load

disaggregation approaches that rely on detection of events for classification, the unsupervised

methods are non-event-based. These methods make use of unsupervised learning techniques and

attempts to disaggregate the aggregated load measurements directly without performing any sort

of event detection, detailed as follows.

2.2 EVENT DETECTION

Event detection is one of the most important steps when in load monitoring. One of the

main problems is that, as long as a detector is not working properly, result analysis will be very

laborious. Different technical problems are related to detection and will be discussed in Chapter

5.

Nowadays (RENAUX et al., 2018b), typically an ensemble of detectors is used for

augmenting the quality and the probability of an event being detected. Here, some of the most

common detectors will be presented.

In Nait Meziane et al. (2017), an algorithm called HAND (High Accuracy NILM

Detector) is proposed. This algorithm tracks the envelope of a signal and computes its variance,

in a way that transients can be associated to the parts of the variance with higher amplitudes.

20

This method turns out to be very accurate, but actually works well just on those transients whose

shape is sharp, since smooth transients does not have a higher variance oscillations.

Another proposed detection algorithm is the HCApP (Renaux et al., 2018). The HCApP

(Half-Cycle Apparent Power) is a technique that analyzes the apparent power signal transforming

it into a binary signal having two values: stable and transient. This method combines the analysis

of power triangle components for detect power changes in the signal, thus determining the

transient window for both the turn-on and turn-off events.

Similar to HCApP, Discrete Wavelet Transform (DWT) (UKIL; ŽIVANOVIć, 2008)

is another detection method that performs the segmentation of the signal by using a wavelet

decomposition. Here, what matters is not just that events detection accuracy is improved, but

even its automatization, since this method leads to an universal threshold, enabling the whole

process to work without defining an empirical threshold.

Even a Kalman Filter could be used for spotting the turn-on and turn-off intervals in a

signal (BOLLEN; GU, 2006). The Kalman Filter is able to estimate parameters relative to the

signal harmonics, thus reconstructing the signal. The reconstructed signal will have some errors

due to the estimation operated by the filter. As expected, the errors will be higher in the region of

the signal where more changes occur, which are the turn-on and turn-off events we were looking

for. Therefore, from an analysis of the errors between the real and the estimated signal, event

detection can be performed.

The last detection approach that is presented uses vectorization (DANTAS et al., 2019;

RENAUX et al., 2018a). This method characterized the samples of a signal into valid and non-

valid states by considering two parameters to set the constraints. The case of samples considered

non-valid is the one relative to events such as abrupt transitions, high derivatives values or high

frequency oscillation that are typical of transient states and can thus be used for event detection.

Even though the above mentioned detection approaches could be even grouped together

to increase the accuracy of events detection, thus joining their results in an optimal fashion, still

this may not be a robust solution since it is difficult to generalize over all the appliances signals.

The problems related to detection will be better analyzed in Chapter 5.

2.3 FEATURE EXTRACTION

In NILM, the step after signal acquiring is its processing, so that we can extract

the features relevant for our classification purposes. Even this passage could have different

21

approaches, mainly due to loads characteristics or even to the tools available for building the

monitoring system.

Steady-state methods, for example, identify devices based on variations in their steady-

state signatures, such as Active, Reactive and Apparent power as well as, for example, current

harmonics. Several steady-state features are already present in literature and can be extracted,

thus facilitating load identification at even low-cost hardware because of low-sampling rate

requirements.

Despite those benefits, these methods show their limitation when loads have more or

less the same steady-state shape (ANCELMO et al., 2019). In cases where two or more loads

have similar demand levels, algorithms use decision analysis techniques to distinguish among

them, based on the assumptions regarding to the usage of these appliances, such as the daily

on-time or the length of usage. Another limitation to identify the load using, for example, real

and reactive power is that it is based on steady-state power consumption. Therefore, it requires

waiting until the transient behavior settles down so that steady-state values can be measured.

To provide a further mean of discrimination, transient state methods for features extrac-

tion were introduced (DU et al., 2010). The transient behavior of a load is typically related to the

physical task that the load performs. Therefore, most loads observed in the field have repeatable

transient profiles, which provide the possibility for identification of variable loads. Transient

harmonics power can provide extra information for variable loads, besides the transient power. It

is also very useful to identify variable drive connected loads, since the drive startup is generally

repeatable, controlled by a microprocessor.

However, in order to analyze the transient power, one of the major drawbacks is that

high sampling rate is required, needing then, a more expensive hardware (LIANG et al., 2010).

One of the solutions might be joining both steady and transient features extraction, in a way to

exploit more expensive hardware even for calculating steady-state features with higher accuracy,

thus improving the quality of appliances clustering for classification. This was actually what was

done in this work, where a NILM system was developed on an embedded system to analyze two

high sampled datasets.

2.4 CLASSIFICATION METHODS

The last step in the sequence is classification. This process aims at analyzing the features

we mentioned in the previous section, to effectively recognize the load that has been detected and,

22

therefore, giving as an output its power consumption. Even here, different classification methods

are available, each one providing a different way of approaching the classification problem.

The most widely used approach is the supervised disaggregation methods. Supervised

learning requires labeled datasets to train the classifier, so it would be able to recognize appliance

operations from the aggregated load measurement (ZOHA et al., 2012). In particular, supervised

methods can be mainly divided into optimization or pattern recognition based algorithms.

Optimization methods deal with the task of load disaggregation as an optimization

problem. In the case of single load recognition, it compares the extracted feature vector of an

unknown load with the ones of known loads present in the pool of the appliance database, then it

tries to minimize the error between them to find the closest possible match (MULINARI et al.,

2019).

On the other hand, pattern recognition methods exploit databases features to cluster

appliances based on their characteristics. In this way, loads are classified by being included in

the cluster whose features are more similar to them (NAIT-MEZIANE et al., 2019).

Even though supervised learning is the most robust classification methods because

excellent accuracy performances can be obtained, its strong dependency on the datasets used for

training the model avoid having good generalization over new appliances. This implies as well

an huge effort to build datasets with new appliances, which requires years of data collection.

This is the reason why recently researchers have shown an increased interest in unsu-

pervised learning techniques. These methods make attempt to disaggregate the aggregated load

measurements directly without performing any sort of event detection and without evaluating

previous information – such as the ones provided by datasets in the case of supervised learning.

For the purposes of building a plug-and-play device to monitor power consumption

in different environments, unsupervised approach provides the best solution for the NILM

systems to be installed in a target environment with a minimal setup cost, not as supervised load

identification whose training requirements for load identification algorithms are expensive and

laborious.

Good results (accuracies > 90%) has been reached by the research, suggesting that

unsupervised learning might be a good solution in NILM (NAIT-MEZIANE et al., 2017).

However, still some very non-trivial problems need to be solved. For example, in the case of

multi-state appliance source reconstruction becomes even more challenging as they form several

clusters due to multiple states, which results in mixing of the events. For this reason, other

23

classification techniques, such as deep learning, are considered.

Deep learning was actually conceived in the early 1940 with the first studies on artificial

neural networks, but it was never exploited as nowadays because of high algorithms’ computa-

tional cost. However, deep learning has been recently becoming popular due to the growth of

GPUs and libraries such as TensorFlow (ABADI et al., 2015), able to boost performances highly

parallelizing codes and thus, reducing computational effort.

One way of using deep learning can be, for example, training a number of neural

networks in cascade, which are then used as pattern classifiers to identify the various loads. Each

network classifies the family in a specific level. This is the case, for example, of Convolutional

Neural Networks (CNN) that extract features directly from signals and fed them into some

models made of multiple layers, where filters act over data in order to perform classification.

Steady-state appliance signatures, such as fundamental frequency quantities, current,

power and impedance contours, and harmonic frequency current information and distortion

power are considered as the inputs of neural networks (DU et al., 2010).

2.5 CONTRIBUTIONS OF THIS WORK

The proposal of this work is to elaborate a load monitoring module able to perform

appliances detection and classification. The embedded system that will host all the algorithm has

been chosen in a way to process multiple signals in parallel, thus increasing the capacity of the

system.

The idea behind the choice of the embedded system was using a powerful board,

provided with a GPU, to exploit parallel programming and calculus accuracy and see how

far performances can be increased without cost constrains related to the hardware. It is worth

mentioning that studies in this context are still underexplored in the literature, which reinforces

the need for such developments.

This is actually just a small part of the project presented in (MULINARI et al., 2019;

RENAUX et al., 2018b; RENAUX et al., 2018c; Linhares et al., 2018), where the intentions are

to use several load monitoring module units controlled by a Center of Operation, whose task is

managing each units and analyze power consuming from the data collected.

24

3 THEORETICAL ASPECTS

In the next sections the main theoretical aspects used in this work will be detailed, also

providing pseudo-code implementations and references to the Appendix, where all the codes in

Python are detailed.

3.1 DETECTION ALGORITHM

Even though event detection is not the core concept behind NILM, it turns out to be

a very critical aspect that has to be carefully managed. By event detection it is meant to find a

way to label the on and off instants of every appliance inside the aggregated signal (Figure 1).

However, since features are calculated for both the transient and the steady-state, the problem

reduces to analyze just a window of the signals by detecting start and end instants of the transient,

thus taking an interval of the steady state of the same size.

Figure 1 – Events detection in an aggregate signal

Source: Own Autorship

The detector used here is called High Accuracy NILM Detector (HAND) (Nait Meziane

et al., 2017). HAND algorithm working principle is very simple and intuitive: the variation of the

standard deviation 𝜎𝑑(𝑡) of the signal current’s envelope 𝑒𝑑(𝑡) is tracked using a moving window.

Then, a threshold separates the events characterized by high 𝜎𝑑(𝑡) amplitude variations and the

25

one with low variations, referring to the steady-state of signal. The algorithm is summarized as

follows:

1. Detect current signal envelope 𝑒𝑑(𝑡);

2. Fix the moving window size 𝑊 (𝑊 = 4 for our simulations);

3. Initialize 𝜎𝑑(𝑡), for 𝑘 = 1,...,𝑊 , with the standard deviation of 𝑒𝑑(𝑡), 𝑡 = 𝑡1, ..., 𝑡𝑊 ;

4. Compute iteratively the mean 𝜇𝑑(𝑡𝑘) and the standard deviation 𝜎𝑑(𝑡𝑘) of 𝑒𝑑(𝑡), 𝑘 =

𝑊 + 1, . . . , 𝑁 using:

𝜇𝑑(𝑡𝑘) = 𝜇𝑑(𝑡𝑘−1) +
1

𝑊
[𝑒𝑑(𝑡𝑘)− 𝑒𝑑(𝑡𝑘−𝑊)], (1)

𝜎2
𝑑(𝑡𝑘) =

1

𝑊 2
𝜎2
𝑑(𝑡𝑘−1) +

1

𝑊 − 1
[𝑒𝑑(𝑡𝑘)− 𝜇𝑑(𝑡𝑘)]

2. (2)

5. Choose the detection threshold value and find the starting and stopping time for each event

such that:

• start time 𝑡𝑠 is defined as the first point of an event where 𝜎𝑑(𝑡) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
𝑑𝜎𝑑(𝑡)
𝑑𝑡

> 0 and 𝑑𝑒𝑑(𝑡)
𝑑𝑡

> 0 ;

• end time 𝑡𝑒 is defined as the last point of an event where 𝜎𝑑(𝑡) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑/3 and
𝑑𝜎𝑑(𝑡)
𝑑𝑡

< 0 ;

In the sequence, the pseudo-code for the implementation of the detector (please, refer

to the python code .1 in the Appendix A) is presented:

FUNCTION DETECTOR(signal, threshold, W = 4)

temp← 0

on-instants : empty array

off-instants : empty array

envelope← LocalMaxima(Module(signal))

signal-variance : zeroes array of dimension length(envelope)

signal-mean : zeroes array of dimension length(envelope)

for i in [0, W] :

signal-variance[i]← Variance(envelope)

signal-mean[i]← Mean(envelope)

EndFor

v-gradient← Gradient(signal-variance)

26

env-gradient← Gradient(envelope)

for i in [0, Lengthenvelope] :

If (signal-variance[𝑖] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and (v-gradient[𝑖] >

0) and (env-gradient > 0) and (temp == 0) Then

temp← 1

on-instants[𝑖]← 𝑖

EndIf

If (signal-variance[𝑖] < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and (v-gradient[𝑖] <

0) and (temp == 1) Then

temp← 0

on-instants[𝑖]← 𝑖

EndIf

EndFor

Return on-instants, off-instants

It is noteworthy that 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 = 𝑒𝑑(𝑡) , 𝑠𝑖𝑔𝑛𝑎𝑙 −𝑚𝑒𝑎𝑛 = 𝜇𝑑(𝑡𝑘) and 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

𝜎𝑑(𝑡). As one can see, for the conditions of step 5, a temporary variable 𝑡𝑒𝑚𝑝 was included. Since for

this work we made an assumption that, for composed signals, each appliance is turned on just when the

previous one’s transient already finished, 𝑡𝑒𝑚𝑝 simply avoid that no other 𝑡𝑠 event is detected until the

end of the transient that is being measured. This assumption is actually coherent with the signals in both

the dataset used (PICON et al., 2016) (RENAUX et al., 2018b). Moreover, in order to avoid wrong

detections due to the possible presence of noise, 𝑒𝑑(𝑡) has been smoothed with a moving average filter

(please, refer to the python code .2 in the Appendix A).

27

Figure 2 – 𝑡𝑠 and 𝑡𝑒 detection for a Drill signal in COOLL Dataset

Source: Own Autorship

Figure 3 – 𝑡𝑠 and 𝑡𝑒 detection for a composed signal (Led Pannel, Oil Heater Power 1 and Incandescent
Lamp) in LIT Dataset

Source: Own Autorship

Figures 2 and 3 show some results from the detection algorithm. Note that, for our purposes,

it is just needed to detect turn-on events, thus in the HAND algorithm, a condition over the envelope’s

gradient was introduced.

28

3.2 FEATURES

Being able to classify patterns means, in supervised learning, that classifiers were already trained

over a dataset that can be basically split into two parts:

1. Label column: gives to every element a target, which is the results that we expect from a correct

classification process;

2. Features column: characteristics of an element taken into account to perform classification.

Both COOLL and LIT datasets provide current and voltage signals for each appliance. For

the two datasets the same type of features were extrapolated from the signals and collected. In the next

sections, the features used to build the dataset for training the classifiers will be shown.

3.2.1 Common Features

Here some of the most common features for signal processing are presented. In particular,

in this work, the following features were calculated for the instantaneous power signal calculated as

𝑝(𝑡) = 𝑣(𝑡)× 𝑖(𝑡), but those could be applied to other type of signals as well.

• Peak: Outputs the maximum value of the vector of values (the signal in our case) passed to the

function (please, refer to the python code .3 in the Appendix A).

• Median: Outputs the value separating the higher half from the lower half of a data sample (please,

refer to the python code .4 in the Appendix A).

• Covariance: Outputs a value that measures the joint variability between two random variables A

and B, in our case the current and the voltage (please, refer to the python code .5 in the Appendix

A).

• Steady-State: This feature calculates the steady-state value of a signal by taking its envelope,

targeting its steady interval and then compiling the mean value (please, refer to the python code .5

in the Appendix A).

• Harmonics: This function takes the harmonics of the signal. In particular, we decided to take the

harmonics up to the 12th order, since it corresponds to the typical harmonic content of classified

loads (ANCELMO et al., 2018). Of course, the more harmonics we take into account, the higher

the amount of possible information would be. On the other hand, a high complexity regarding

the harmonics computation could cause unacceptable computation burden for the disaggregation

mode of the NILM algorithm. Moreover, in Bouhouras et al. (2017) authors say that, for harmonic

orders higher than 5, the phase of the harmonic currents cannot be ignored, meaning that the

harmonic currents should be formed as vectors. In this latter case, voltage measurements should

also be performed and synchronized with the measurement of the instantaneous current in order

29

to obtain the phase of each harmonic. Therefore, as suggested in Hassan et al. (2014), in the final

experiments over real load measurements just the first five harmonics were individually maintained,

while the rest of the harmonic content was included in two different features called TED and TOD,

respectively the total even and odd harmonic distortion (please, refer to the python code .7 in the

Appendix A).

3.2.2 Electrical Power Features

• Active Power (P): Calculated as the mean value of the power, basically gives its DC value of the

instantaneous power 𝑝(𝑡) (please, refer to the python code .8 in the Appendix A).

• Reactive Power (Q): It represents the amount of power that is stored and oscillates back and forth

from the source to the device (please, refer to the python code .9 in the Appendix A).

• Apparent Power (S): The apparent power S can be view as the potential power that can be

transmitted from the source to the device and it is calculated as the product of root mean square

(RMS) value of voltage and current (please, refer to the python code .10 in the Appendix A).

3.2.3 V-I Trajectory Features

The following set of features takes into account V-I trajectories of appliances. The codes for

calculating those features are the Python interpretation of Matlab codes explained in (Mulinari et al.,

2019) . .

As said in Wang et al. (2018a), before calculating the features, we need to extrapolate one

cycle of the steady-state part of the signal (both for current and voltage), which has to be smoothed with

a moving average filter in order to attenuate possible noise components. To generalize more over the

analyzed signal interval, instead of taking one of the 𝑁 cycles inside the latter, the algorithm calculates a

cycle where every sample is the average of all the elements with the same phase inside the interval we are

analyzing.

The algorithm for cycle extrapolation is detailed as follows (please, refer to the python code .11

in the Appendix A):

FUNCTION EXTRAPOLATE CYCLE (current-signal, voltage-signal, n-

samples)

n-cycles← int(voltage-signal/(n-samples))

current-cycles← current-signal[0 : n-cycles * n-samples]

voltage-cycles← voltage-signal[0 : n-cycles * n-samples]

30

c-cycles-matrix[n-samples,n-cycles]← n-cycles vectors

of n-samples elements from current-cycles

v-cycles-matrix[n-samples,n-cycles]← n-cycles vectors

of n-samples elements from voltage-cycles

c-cycle[n-samples, 1]← Average(c-cycles-matrix)

v-cycle[n-samples, 1]← Average(v-cycles-matrix)

Return c-cycle, v-cycle

According to Wang et al. (2018a), once cycles have been extrapolated, the trajectory is divided

in two parts named A and B according to the maximum and minimum points of voltage, thus vmax leads to

(𝑉𝑣𝑚𝑎𝑥,𝐼𝑣𝑚𝑎𝑥) and vmin to (𝑉𝑣𝑚𝑖𝑛,𝐼𝑣𝑚𝑖𝑛). The variable vmax then will be the first point of the trajectory,

which brings to:

𝐴 = (𝑉𝑞, 𝐼𝑞)|𝑞 ∈ 1,2,...,𝑣𝑚𝑖𝑛, (3)

𝐵 = (𝑉𝑞, 𝐼𝑞)|𝑞 ∈ 𝑣𝑚𝑖𝑛+ 1,...,𝑁, (4)

where N is the number of samples in a cycle. Once the current and voltage cycles are extrapolated, we are

ready to calculate the next features:

• Angle / distance between maximum and minimum points (angp, dpb): The first feature, na-

med as 𝑎𝑛𝑔𝑝, refers to the value of the angle between the x-axis and the straight line passing

through the minimum and the maximum current point of the V-I trajectory. The second one, named

as 𝑑𝑝𝑏, is simply the distance between the minimum and the maximum (please, refer to the python

code .11 in the Appendix A).

• Area (ar): This feature represents the area inside the V-I trajectory calculated through the Shoelace

formula in Equation 5 for the calculus of polygons’ areas (please, refer to the python code .19 in

the Appendix A):

𝑎𝑟𝑒𝑎 =
1

2
|
𝑛−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖+1 + 𝑥𝑛𝑦1 − (
𝑛−1∑︁
𝑖=1

𝑥𝑖+1𝑦𝑖 + 𝑥1𝑦𝑛)|. (5)

From a coding point of view, the area ar of V-I trajectories is calculated as:

𝑎𝑟 =
∑︁
𝑖

1

2
|𝑉𝑗 − 𝑉𝑖|(|𝐼𝑖′ − 𝐼𝑖|+ |𝐼𝑗′ − 𝐼𝑗 |) 𝑖 ∈ [1,...,𝑣𝑚𝑖𝑛− 1] (6)

31

where i’ and j’ denote the points on part B for which the voltage is closest to the two consecutive

points i and j, respectively, and they are calculated as shown in Equation 7 and 8.

argmin
𝑖′
|𝑉𝑖′ − 𝑉𝑖| 𝑖′ ∈ (𝑣𝑚𝑖𝑛+ 1,...,𝑁), (7)

argmin
𝑗′
|𝑉𝑗′ − 𝑉𝑗 | 𝑗′ ∈ (𝑣𝑚𝑖𝑛+ 1,...,𝑁). (8)

• Current Span (itc): This feature, named 𝑖𝑡𝑐, calculates the value of the current span as 𝑖𝑡𝑐 =

𝐼𝑀𝐴𝑋 − 𝐼𝑀𝐼𝑁 . Since calculating this feature over just one cycle of the steady state will make it

very selective, it is preferable to calculate 𝑖𝑡𝑐 as the difference between the average of the local

maxima and the one of local minima inside the steady-state interval (please, refer to the python

code .11 in the Appendix A).

• Length (L): This feature named 𝑙𝑒𝑛 calculates the length of the V-I trajectory, obtained summing

the distances between consecutive points (please, refer to the python code .15 in the Appendix A).

• Area with loop direction (lpa): This feature named 𝑙𝑝𝑎 measures, differently to 𝑎𝑟𝑒𝑎, the value

of the integrated trajectory. Therefore 𝑙𝑝𝑎 > 0 means that the direction of the loop is clockwise, and

counterclockwise if 𝑙𝑝𝑎 < 0. The code is the interpretation of the following expression (WANG et

al., 2018a) (please, refer to the python code .13 in the Appendix A):

𝑙𝑝𝑎 =
∑︁
𝑢

1

2
(𝑉𝑢+1 − 𝑉𝑢)(𝐼𝑢+1 − 𝐼𝑢), 𝑢 = 0,1, . . . , length(signal)− 1. (9)

• Maximum Distance (md): Named 𝑚𝑑, calculates the maximum distance from a point in the

trajectory and the origin (please, refer to the python code .16 in the Appendix A).

• Asymmetry (asy): This feature is used to indicate whether the current conduction of the appliance

is the same between positive and negative voltage waves. Rotate the trajectory 180∘ around its own

symmetry center: trajectory asymmetry is defined by the Hausdorff distance between the rotated

trajectory and the original trajectory (please, refer to the python code .14 in the Appendix A).

• Curvature of mean line (r): This feature characterizes the non-linearity of the appliance. In this

feature we first calculate the mean line of VI trajectory as:

𝑀 = (𝑥𝑀,𝑖, 𝑦𝑀,𝑖)|𝑥𝑀,𝑖 =
𝑉𝑖 + 𝑉𝑖′

2
, 𝑦𝑀,𝑖 =

𝐼𝑖 + 𝐼𝑖′

2
𝑖 ∈ (1,2, . . . , 𝑣𝑚𝑖𝑛). (10)

Equation 10 shows that average voltage and current points i and i’ are taken as the 𝑥𝑀,𝑖 and

𝑦𝑀,𝑖, respectively, which refer to the coordinate of point i in M. The mean line of the trajectory is

composed of the points in M and its curvature is defined by the linear correlation coefficient of all

points in M (please, refer to the python code .17 in the Appendix A).

32

• Self-intersection (sc): This feature is related to high-order harmonic characteristic of the appli-

ance. To determine whether there is an intersection or not, Equation 11 was used (please, refer to

the python code .18 in the Appendix A):

((
−→
𝑖𝑗)× (

−→
𝑖𝑖′) · (−→𝑖𝑗)× (

−→
𝑖𝑗′)) < 0. (11)

3.3 CLASSIFIERS

A classifier is the core of every machine learning project, since it is the element that enables

learning and the capacity of a machine to analyze data and suddenly make choices. It is, therefore, always

stressed out how the selection of a good classifier is very important for our system’s performances, that

are usually evaluated by means of some metrics whose values can varies from classifier to classifier.

Two are the macro-categories when we are talking about machine learning (RASCHKA; MIR-

JALILI, 2019). Supervised learning aims at learning a model from labeled training data that allows us

to make predictions about unseen future data. On the other hand, unsupervised learning usually tries to

cluster data, approaching the classification problem with little or no idea on what our true labels should

look like.

In this work a supervised approach will be used, and that is why datasets were analyzed and new

ones were built. The approach adopted is intuitively deeply connected to our data, that may differ in the

number of features or samples, the amount of noise or whether the classes are linearly separable or not.

That is why it is important to evaluate a bunch of classifiers before deciding what really suits our problem.

Here in this section, the theory behind the four classifiers used for the project will be discussed,

in a way to have an idea of their working principles. In Chapter 4, the tuning process of those classifiers

will be shown, followed by the evaluation process discussed in Chapter 5.

3.3.1 Logistic Regression

Logistic regression is a classification model that is easy to implement and performs very well on

linearly separable classes (RASCHKA; MIRJALILI, 2019). For this algorithm, 𝑧 is the net input and is

calculated as a linear combination of weights 𝑤 and sample features 𝑥. Supposing that 𝑥 ∈ R𝑚 yields:

𝑧 = 𝑤𝑡𝑥 = 𝑤0𝑥0 + 𝑤1𝑥1 + ...+ 𝑤𝑚𝑥𝑚. (12)

The basic idea of logistic regression is to feed the input into a function called Sigmoid function

𝜑(𝑧) that enables to predict the probability that a particular sample belongs to a particular class (See

Figures 4 and 5)).

𝜑(𝑧) =
1

1 + 𝑒−𝑧
. (13)

33

Figure 4 – Graphical representation of the Sigmoid function. Adapted from (RASCHKA; MIRJALILI,
2019).

Source: (RASCHKA; MIRJALILI, 2019)

Figure 5 – Schematic of Logistic Regression. Adapted from (RASCHKA; MIRJALILI, 2019).

Source: (RASCHKA; MIRJALILI, 2019)

Calling 𝑦 the prediction made from the classifier, from the graph of the Sigmoid function comes

the intuition that:

𝑦 =

⎧⎪⎨⎪⎩
1, if 𝑧 ≥ 0,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(14)

Note that, even though this model seems to apply just to binary classification, it can be extended

to multiclass classification via the One-versus-Rest technique (RASCHKA; MIRJALILI, 2019). Since we

are using supervised learning, the classifier model has to be fitted with the training data. This process will

iteratively update the weight of a cost function 𝐽(𝑤) in a way to minimize its value. The cost function can

be defined, for logistic regression, as follows:

𝐽(𝑤) = −
∑︁
𝑖

𝑦(𝑖)𝑙𝑜𝑔(𝜑(𝑧(𝑖)) + (1− 𝑦(𝑖))𝑙𝑜𝑔(1− 𝜑(𝑧(𝑖)). (15)

The weights are updated in each iteration over a new training sample with a technique called

gradient descent:

∆𝑤𝑗 = −𝜂
𝜕𝐽

𝜕𝑤𝑗
= 𝜂

𝑛∑︁
𝑖=1

(𝑦(𝑖) − 𝜑(𝑧(𝑖)))𝑥(𝑖)𝑗 . (16)

34

3.3.2 Support Vector Machine

This classifier aims at maximizing a margin defined as the distance between the separating

hyperplane (decision boundary) and the training samples that are closest to this hyperplane, which are the

so called support vectors.

Figure 6 – Graphical interpretation of SVM. Adapted from (RASCHKA; MIRJALILI, 2019)

Source: (RASCHKA; MIRJALILI, 2019)

The margin that is maximized during training (Figure 6), under the constraint that samples are

classified correctly, is represented by the left side of the following equation (RASCHKA; MIRJALILI,

2019):
𝑤𝑡(𝑥𝑝𝑜𝑠 − 𝑥𝑛𝑒𝑔)

||𝑤||
=

2

||𝑤||
, (17)

where 𝑥𝑝𝑜𝑠 and 𝑥𝑛𝑒𝑔 come respectively from the positive and negative hyperplanes that are parallel to the

decision boundary.

An interesting characteristic of the Support Vector Machine (SVM) classifier is that it works

very well even with the presence of non-linearly separable data. This for mainly two reasons:

1. A slack variable was introduced in Scholkopf et al. (1997) allowing to relax linear constraint

and control the penalty of misclassification (this will be better describe in Chapter 5 during the

evaluation process);

2. SVM classifier can exploit the kernel trick to find separating hyperplanes in high-dimensional

space.

In particular, the latter enables us to transform the training data onto a higher dimensional

feature space via a mapping function 𝜓 and train a linear SVM model to classify the data in this new

feature space. This could be achieved because a similarity function enables to ensure the linearity of the

SVM model in the higher dimensional space, leading to a very powerful transformation with excellent

35

performances in terms of computational costs. One of the most widely used kernels is the Radial Basis

Function (RBF) kernel, usually called Gaussian kernel:

𝒦(𝑥(𝑖),𝑥(𝑗)) = 𝑒𝑥𝑝(−||𝑥
(𝑖) − 𝑥(𝑗)||2

2𝜎2
), (18)

where 𝒦(𝑥(𝑖),𝑥(𝑗)) = 𝜓(𝑥(𝑖))𝑡𝜓(𝑥(𝑗)) is the kernel function.

3.3.3 Random Forest

Random forest is another type of classifier which basically can be considered as an ensemble

of decision trees (PAL, 2005). A decision tree is a classifier that elaborates a sort of map composed of

multiple branches and multiple nodes. Metaphorically speaking, a data will go through this map (or tree)

where each node correspond to a question, and whose result enable the classifier to select the next node

the data will be forward to. This process repeats until one of the so called leaf nodes is reached, moment

in which the classifier made its prediction.

Mathematically speaking, decision tree splits data over the features that results in the largest

Information Gain (IG) with an iterative process to go down the tree and reach the leaf nodes. The

information gain is defined as follows:

𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝)−
𝑚∑︁
𝑗=1

𝑁𝑗

𝑁𝑝
𝐼(𝐷𝑗), (19)

where 𝑓 is the feature to perform the split, 𝐷𝑝 and 𝐷𝑗 are the dataset of the parent and 𝑗th child node, 𝐼

is the impurity measure, 𝑁𝑝 is the total number of samples at the parent node, and 𝑁𝑗 is the number of

samples in the 𝑗th child node.

However, to reduce computational complexity and the combinatorial search space, usually

binary decision trees are used, meaning that each parent node is split into two child nodes as follows:

𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝)−
𝑁𝑙𝑒𝑓𝑡

𝑁𝑝
𝐼(𝐷𝑙𝑒𝑓𝑡)−

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁𝑝
𝐼(𝐷𝑟𝑖𝑔ℎ𝑡). (20)

Now, the three impurity measures or splitting criteria that are commonly used in binary decision

trees are Gini impurity (𝐼𝐺), entropy (𝐼𝐻) and the classification error (𝐼𝐸).

To conclude, the idea behind Random Forest is to average multiple decision trees, that individu-

ally suffer from high variance, to build a more robust model that has a better generalization and is less

susceptible to over-fitting. The random forest algorithm can be summarized in four simple steps:

1. Draw a random bootstrap sample of size 𝑛 (randomly choose 𝑛 samples from the training set with

replacement).

2. Grow a decision tree from the bootstrap sample. At each node:

• Randomly select 𝑑 features without replacement.

36

• Split the nodes using the features that provides the best split according to the objective

function, for instance, maximizing the information gain.

3. Repeat the steps 1-2 𝑘 times.

4. Aggregate the prediction by each tree to assign the class label by majority voting.

3.3.4 K-Nearest-Neighbors

The last supervised learning algorithm is the k-nearest-neighbor (KNN) classifier. KNN classifier

operates in a very simple fashion following three steps:

1. Choose the number of 𝑘 and a distance metric;

2. Find the k-nearest neighbors of the sample that we want to classify;

3. Assign the class label by majority vote.

Figure 7 – Working principle of KNN. Adapted from (RASCHKA; MIRJALILI, 2019)

Source: (RASCHKA; MIRJALILI, 2019)

Based on the chosen distance metric, the KNN algorithm finds the 𝑘 samples in the training

dataset that are closest to the point that we want to classify – for example the element (?) in Figure 7. The

class label of the new data point is then determined by a majority vote among its 𝑘 nearest neighbors.

The reason why this type of classifier is different than the ones of the previous sections is that it

does not learn a discriminative function from the training data, but instead memorizes the training dataset.

The main advantage of such a memory-based approach is that the classifier immediately adapts as we

collect new training data.

37

4 METHODS

In this chapter, the implementation of the whole project is presented. The sketch of the model

that has been developed for this work is displayed in Figure 8.

Figure 8 – Project schematic.

L
a

b
e

ls

Features

LIT / COOLL
Feature

Database

LIT / COOLL
Dataset

Features
Extraction

Features
ExtractionDetection Disaggregation Classifier

Training & Model
Evaluation

LR SVM

KNN RF

Steady-state

Transient-state

VI trajectories

t_start / t_end

I1 ,V1 , P1

I2 ,V2 , P2

IN ,VN ,PN

[...]

Appliance
identification

& Power
consumpition
informations

Embedded System

V
I

Source: Own Autorship

The NILM algorithm proposed in this work has to analyze current and voltage waveforms

characterized by the presence of multiple appliances, with the respective turn-on and off events. Therefore,

the proposed method has to be capable of detecting those events, disaggregate appliances and recognize

them. To do so, machine learning techniques have been applied to train models for load classification. In

particular, the project’s workflow used two publicly available dataset of load waveforms to optimize and

evaluate a possible prototype of a NILM algorithm. This procedure is represented on the lower branch of

Figure 8.

Moreover, the algorithm was finally validated in laboratory with some measurements from real

appliances. This procedure consisted in two phases:

1. collect waveforms from different appliances and build a new feature dataset for classifiers’ training

and model evaluation;

2. perform new measurements for testing the algorithm performances.

Laboratory measurements were useful to study the feasibility of the project, since this allowed

to study NILM in the perspective of its final implementation, enabling to understand better what should

be improved or changed. In the next paragraphs, we detail each of the blocks presented in Figure 8 and

explain their function or utility.

38

4.1 DETECTION METHOD AND TUNING

In this work, all the current and voltage signal were already registered in the respective data-

sets (RENAUX et al., 2018b) and (PICON et al., 2016). Even in a real life application of the project, the

same approach would be used: a finite time window from signal of the monitored system is extrapolated,

then appliances detection, extrapolation and classification is performed. It is important to emphasize that,

during this work, it was taken into account the assumption that transients of signals always appear in

sequence.

4.1.1 Detector Tuning

In Chapter 3, the detector working principle and pseudo-codes implementation were discussed.

However, the latter was not completely automatize since every time we had to manually choose the

threshold value, used for transient detection. Since the whole project has to be a plug-in device able to

perform NILM, here two ways of automatically setting a threshold are presented.

4.1.1.1 FFT-based threshold

A first way to calculate an adaptive threshold could be considering the Fourier transform of

the signal envelope variance (remember that in our case the envelope is taken from the current signal).

The intuition behind the calculation is that, for our cases, the variance shape will always follow the same

pattern: high values intervals (corresponding to the transients) alternated with the presence of very low

values intervals (corresponding to the steady-states).

Hence, the Fourier transform will be characterized by a set of high frequency components with

high amplitude, while the remaining frequencies will have a low amplitude. By taking the absolute value

of the FFT and computing its mean value, an adaptive threshold could be directly calculate inside the

detector algorithm without passing it as a parameter (please, refer to the python code .20 in the Appendix

A).

The signal analyzed (Figure 9) comes in this case from the LIT dataset and corresponds to

an aggregate signal with three loads connected. However, as shown in Figure 10, the threshold might

appear to be too low: in this way even some noise in the signal could be wrongly detected as a start/end

instant of a transient. Smoothing the signal in this case will not be a good solution because, even though

noise is reduced, the threshold will be reduced as well. A way to reduce wrong detections can then be

increasing the threshold, done in this work by simply multiplying it by the 𝐹 parameter already present in

the detector algorithm (Figure 11).

39

Figure 9 – Fourier transform of the variance for the 3E0N0Q0 signal in LIT Dataset

Source: Own Autorship

Figure 10 – 3E0N0Q0 transients detection with FFT-based threshold.

Source: Own Autorship

While increasing the threshold yields good results in this case, further simulations show that

even in this case, we will face another trade-off, since the higher is the number of appliances in the same

signal, the higher the threshold will be, and so some low power signals may not be detected.

4.1.1.2 Local Peak-based Threshold

A second approach to find an adaptive threshold for the transient detection could be analyze the

variance in a way to find its local peaks. Once those are founded, we can simply average their values to

40

Figure 11 – 3E0N0Q0 transients detection with FFT-based threshold augmented by a factor of 𝐹 .

Source: Own Autorship

obtain the value of the threshold (please, refer to the python code .21 in the Appendix A).

The intuition behind this method is that we know that, as said in the previous section, the

variance signal shape always follows the same pattern alternating high values intervals with ones with

very small values.

We know that the presence of noise in the signal might confuse our detector by giving some

false positives. However, noise will be likely a low amplitude component compared to the peaks relative

to transient intervals. Therefore, the solution proposed in this section avoids wrong transient detection due

to the possible presence of noise.

Of course we can suddenly observe that this solution might come out with a threshold too much

high and, thus, some low amplitude signals may not be detected. Figure 12 shows, for example, that the

first appliance has not been detected. One solution in this case could be decrease the threshold by a factor

𝐹 (Figure 13) already present in the detector algorithm.

However, even this kind of approach shows the same trade-off discussed for the FFT-based

threshold, thus a very precise tuning is necessary.

4.1.2 Disaggregation

While for the COOLL dataset, only waveforms referring to one single appliance are registered,

it is not the same for the LIT dataset, where waveforms with 1, 2, 3, or even 8 appliances connected to

the same system are present. This actually represents a more realistic scenario, since NILM should be

41

Figure 12 – 3E0N0Q0 transients with local peaks-based threshold.

Source: Own Autorship

Figure 13 – 3E0N0Q0 transients with local peaks-based threshold decreased by a factor 𝐹 .

Source: Own Autorship

performed over systems in which multiple devices are connected and need to be monitored. In this case,

to perform a good classification, isolating the various appliances from the whole signal analyzed must be

done.

The disaggregation process employed in this project works very simply and accomplish the

following steps, as suggested in Wang et al. (2018b):

1. Isolate one transient through the respective start and end instants provided by the detector;

42

2. Buffer a part of the signal (𝑐− 𝑝𝑟𝑒) right before the transient and with its same length;

3. Buffer as well a part of the signal right after the transient and with its same length for the calculation

of steady state features;

4. Align both the transient and the steady-state intervals with the signal 𝑐− 𝑝𝑟𝑒;

5. Subtract 𝑐− 𝑝𝑟𝑒 from both the signals, in a way to isolate the appliance that has to be analyzed by

cleaning it from the components of the previous appliances;

6. Smooth the signal to compensate errors from the subtraction operation.

In particular, the algorithm could be written as follows:

FUNCTION DISAGGREGATION (on-instant, off-instant,current-signal,

voltage-signal)

length← (off-instant - on-instant)

c-transient← current-signal[on-instant : off-instant]

v-transient← voltage-signal[on-instant : off-instant]

c-steady← current-signal[off-instant : off-instant + length]

v-steady← voltage-signal[off-instant : off-instant + length]

c-pre← current-signal[on-instant− length : on-instant]

𝜃𝑡 ← Align(c-transient, c-pre)

𝜃𝑠 ← Align(c-steady, c-pre)

c-transient← current-signal[on-instant + 𝜃𝑡 : off-instant + 𝜃𝑠]− c-pre

c-steady← current-signal[off-instant + 𝜃𝑠 : off-instant + length + 𝜃𝑠]−

c-pre

Return c-steady, c-transient, v-steady, v-transient

The function returns the transient and steady-state intervals isolated from other signals compo-

nents. Single appliances are isolated, as presented in point 5, subtracting them from the previous part of

the whole signal. This is actually not the most appropriate approach, because implies a linear simplifi-

cation that obviously is not correct for appliances. However, even though not theoretically correct, the

simplification presents relevant classification results, as presented in Mulinari et al. (2019) and Ancelmo

et al. (2019).

In Figures 14, 15 and 16, the performance of the function implemented in this project is shown

(please, see the python code .31 and its explanation in the Appendix A).

43

Figure 14 – LIT dataset: the signal pointed with the red arrow will be now extrapolated.

Source: Own Autorship

Figure 15 – In this case 𝑝𝑎𝑟𝑡 =′ 𝑠′, thus a W0’s steady state interval of 𝑛_𝑐𝑦𝑐𝑙𝑒𝑠 has been extrapolated

Source: Own Autorship

4.2 DATASETS

In this section, the datasets used will be described. One of them is a reduced dataset, conceived

to validate the NILM algorithm with real appliance measurements. On the other hand, the initial tests

required a more ideal environment, therefore two publicly available datasets were use, i.e.:

44

Figure 16 – W0, after being extrapolated and aligned, is subtracted by a factor of 𝑡𝑒𝑚𝑝 to be isolated from
other appliances

Source: Own Autorship

• COOLL Dataset: https://coolldataset.github.io/

• LIT Dataset: http://dainf.ct.utfpr.edu.br/~douglas/LIT_Dataset/index.html

4.2.1 COOLL Dataset

The Controlled On/Off Loads Library (COOLL) is a dataset of high-sampled electrical current

and voltage measurements representing individual appliances consumption (PICON et al., 2016). The

measurements were taken on June 2016 at the PRISME laboratory of the University of Orléans, France.

The appliances are mainly controllable appliances (meaning that we can precisely control their turn-on/off

time instants). In total, 42 appliances of 12 types were measured at a 100 kHz sampling frequency. All the

loads of COOLL Dataset are collected in Table 1.

Table 1 – COOLL Dataset
N° Appliance type Number of appliances Number of current signals (20 per appliance)

1 Drill 6 120
2 Fan 2 40
3 Grinder 2 40
4 Hair dryer 4 80
5 Hedge trimmer 3 60
6 Lamp 4 80
7 Paint stripper 1 20
8 Planer 1 20
9 Router 1 20
10 Sander 3 60
11 Saw 8 160
12 Vacuum cleaner 7 140

Source: (PICON et al., 2016)

https://coolldataset.github.io/
http://dainf.ct.utfpr.edu.br/~douglas/LIT_Dataset/index.html

45

The appliances in the COOLL dataset are measured individually, one at a time. The dataset does

not contain a scenario where several appliances are measured simultaneously. Moreover, the selected

appliances are chosen so that the control of the turn-on time instant is possible, thus by pressing the

switch-on button beforehand, the appliance can be operated electronically (with controlled triacs). Each

measurement lasts 6 seconds with a pre-trigger duration of 0.5 second (the pre-trigger of the first few

measurements being different and equal to 1 second) and a post-stop duration of 1 second. These durations

correspond, respectively, to the time where the appliance is off before the turn-on and after the turn-off.

For each appliance, 20 controlled measurements are made, for a total of 840 waveform for both

current and voltage signals. Each measurement corresponds to a specific action delay ranging from 0 to

19 ms with a step of 1 ms. This way, it is possible to cover the whole time-cycle duration of the 50 Hz

mains voltage which is 20 ms. This action delay corresponds to the time with which the turn-on action is

delayed with respect to the beginning of a specific time-cycle of the mains voltage. The turn-off action

delay is fixed to 0 ms for all measurements.

Since this dataset contains just single appliance waveform, it was considered more suitable for

the first simulations of the algorithm. As a matter of fact, in this scenario we can, for instance, use an

algorithm which analyze a waveform, calculate some features and send them to a classifier. This allowed to

have a first evaluation of the algorithm without the possible bias given by the introduction of the detection

and disaggregation algorithms.

In the dataset all the waveforms are provided as .𝑓 𝑙𝑎𝑐 files, where FLAC (Free Lossless Audio

Codec) is an audio format similar to MP3, but lossless, meaning that audio is compressed in FLAC without

any loss in quality. Moreover the waveforms are all normalized, meaning that once extracted they will

have to be multiplied by the respective scale factor (already provided in the dataset specifications). Please,

see .22 in Appendix A for the python code.

4.2.2 LIT Dataset

The LIT Dataset was conceived and engineered to provide data for evaluation of NILM Systems.

The development process behind the LIT Dataset started by the evaluation of exiting datasets, comparing

their features and then by stating the requirements of the recorded waveforms of voltage and current when

single and multiple loads were monitored under several conditions. In particular, this dataset is composed

of three distinct classes of load monitoring: Synthetic, Simulated, and Natural.

For this work, the Synthetic dataset was used, characterized by waveforms collected with a jig

that precisely controls the on and off times in a scenario of controlled load shaping. The jig controls each

individual load, up to eight, using TRIACs and relays, hence, allowing for on-times at specified angles of

the mains sine wave. The on and off times are recorded in the waveform with a resolution better that 5 ms,

46

allowing the identification of the mains semi-cycle where the on or off load-event occurred. Typically,

waveforms are 30 seconds long at sampling rates above 15 KHz, achieving 256 samples per cycle. All the

appliances of LIT Dataset are presented in Table 2.

Table 2 – LIT Dataset
ID Load Model Brand Avg. Power

A0 Microwave Oven Standby CMS18BBHNA Consul 4.5 W
B0 Led Lamp TKL 06 Taschibra 6 W
C0 CRT Monitor CPD-17SF1 Sony 10 W
D0 Led Pannel DL500 Citiaqua 13 W
E0 Fume Extractor TS-153 Toyo 23 W
F0 Led Monitor DL-500 AOC 26 W
G0 Asus Phone Charger AD2037020 Asus 38 W
H0 Soldering Station WLC100 Weller 40 W
I0 Motorola Phone Charger SA-A390M Motorola 50 W
J0 Lenovo Laptop LS-PAB70 Lenovo 70 W
K0 Fan V-45 Mondial 80 W
L0 Resistor 100R 10 % Ohmtec 80 W
M0 Vaio Laptop PCG-61112L Sony 90 W
N0 Incandescent Lamp Centra A CL 100 Osram 100 W
O0 Drill Speed 1 Impact Drill (0.46hp) Bosch 165 W
P0 Drill Speed 2 Impact Drill (0.46hp) Bosch 350 W
Q0 Oil Heater Power 1 NYLA-7 Pelonis 520 W
R0 Oil Heater Power 2 NYLA-7 Pelonis 750 W
S0 Microwave Oven On CMS18BBHNA Consul 950 W
T0 Nilko Air Heater KN565 Nilko 1120 W
U0 Hair Dryer Eleganza - Fan 1 Eleganza 2200 GAMA Italy 365 W
V0 Hair Dryer Eleganza - Fan 2 Eleganza 2200 GAMA Italy 500 W
W0 Hair Dryer Super 4.0 - Heater 1 SL-S04 Super 4.0 660 W
X0 Hair Dryer Super 4.0 - Heater 2 SL-S04 Super 4.0 1120 W
Y0 Hair Dryer Parlux - Fan 1 Advance Parlux 660 W
Z0 Hair Dryer Parlux - Fan 2 Advance Parlux 660 W

Source: (RENAUX et al., 2018b)

The LIT Synthetic dataset provides, in particular, four type of waveforms:

• 26 groups of 16 waveforms, each group measuring 1 single appliance.

• 42 groups of 16 waveforms, each group measuring 2 appliances.

• 33 groups of 16 waveforms, each group measuring 3 appliances.

• 6 groups of 16 waveforms, each group measuring 8 appliances.

The fundamental difference between COOLL and LIT dataset is the presence of aggregated

waveforms in the latter, which allows to reproduce a more real scenario where more appliances could

switch on together. In this case, simulations required the use of a detection and disaggregation algorithm

as mentioned in the sections above. Another important characteristic is that, for every waveform, turn-on

and turn-off events are registered, meaning that we can use them to evaluate the performance and the

accuracy of the detection algorithm before going on with real measurements.

Each waveform is provided as a .𝑚𝑎𝑡 file that includes:

47

• iShunt: A vector containing the current signal collected by shunt sensor;

• iHall: A vector containing the current signal acquired by hall sensor;

• vGrid: A vector containing the voltage grid signal acquired;

• events: A numbered vector with the turn-on and turn-off events information. The value ’1’ is set at

the exact sample of a turn-on event and its complementary ’-1’ is set for a turn-off event. All the

other samples are set with a null value;

• labels: A string valued vector to correlate each turn-on and turn-off event indicated at the i events

and i vector with the correspondent load ID;

• duration: This is a single integer to identify the acquisition duration in seconds.

For this work the 𝑖𝑆ℎ𝑢𝑛𝑡 and 𝑣𝐺𝑟𝑖𝑑 signals where used as a current and voltage signal;

moreover the events vector was used from the modified detector to know the starting instants of the

appliances in each waveform (to use a .𝑚𝑎𝑡 file in python, please see .23 in Appendix A).

4.2.3 Lab Dataset

This small dataset was conceived for a final validation of the whole algorithm over a real task

of measuring and analyzing appliance waveforms. The whole dataset was built in May-June 2021 in the

MElting Lab (Industrial Automation and Power Electronics Laboratory) of the engineering department

Enzo Ferrari of the University of Modena and Reggio Emilia. With the help of a Tektronix TBS2104

oscilloscope, we performed the measurements of the 5 appliances in Table 3.

Table 3 – Lab Dataset
N° Label Load Appliance type

1 LA0 Coffee Machine Caffitaly Capsule Machine
2 LB0 PC Off Charge Lenovo ideapad 330S-15IKB
3 LC0 PC On Charge Lenovo ideapad 330S-15IKB
4 LD0 Solder On Sleep Soldering Station JBC CD-25QE
5 LF0 Solder On Start Soldering Station JBC CD-25QE

Source: Own Authorship

Waveforms here are provided as interval of 10 seconds at a sampling rate of 2.5 kHz and they

correspond to current measurements obtained with the TCP0030A CAL Tektronix current probe, which

provides greater than 120 MHz of bandwidth with selectable 5 A and 30 A measurement ranges. It

also provides good low-current measurement capability and accuracy to current levels as low as 1 mA.

However, no voltage measurements were done and the corresponding signals were virtually created by

means of an algorithm that creates a 220V, 50Hz signal and aligns it with the current one. In this way we

ensure the calculus of features such as active, reactive, apparent power, or VI trajectories. In particular,

Lab Dataset provides three type of waveforms:

48

• 5 groups of 10 waveforms each measuring 1 single appliance.

• 7 groups of 10 waveforms each measuring 2 appliances.

• 2 groups of 10 waveforms each measuring 3 appliances.

All those waveforms were used to test and validate the NILM algorithm written and optimally

tuned to work with LIT and COOLL datasets. In this case, no turn-on and turn-off instance were recorded

and this represents a real scenario where we are required to apply a detection algorithm to spot whether

there is an appliance or not.

4.3 TRAINING AND MODEL EVALUATION

In Chapter 3, the way features were extracted from signals was shown. Since a supervised

learning approach has been used, every voltage and current signals from the COOLL, LIT and Lab

datasets were analyzed in order to extract and register the corresponding features, thus building three

datasets collecting those results labeled with the respective appliance.

The next step in the sequence will be training a classifier. Training means that a classifier is

fitted with the data of a dataset and compiled, in a way to update and adapt its inner structure to the data

we want to classify. Doing the training process, two are the most common problems that are worth to

tackle, thus having a more robust classifier:

• Overfitting, that is when a model performs very well on training data but does not generalize well

to test data.

• Underfitting, which means that our model is not complex enough to capture well the patterns in the

training data and therefore suffers of low performance on unseen data (see Figure 17).

In particular, overfitting is caused by high variance, where the variance measures the consistency

of the model prediction for a particular sample instance if we were to re-train the model multiple times,

for example, on different subsets of the training dataset. On the other hand, underfitting is caused by high

bias, where the bias measures how far off the predictions are from the correct values in general if we

re-build the model multiple times on different training datasets.

The trained process turned out to be the most computational expensive part of this work, since

lot of calculus for classifier training and model evaluation are required. In fact, before saving the model of

the classifier, some previous analysis are usually execute to increase its performances.

The whole training passage was done on Google Colab, which is an online platform that allows

to write and execute arbitrary python code through the browser, and is specially well suited for machine

learning, data analysis and education, giving the possibility of exploiting the power of Google servers. In

the next sections training and model evaluation techniques are explained.

49

Figure 17 – Graphical visualization of overfitting and underfitting. Adapted from (RASCHKA; MIRJA-
LILI, 2019).

Source: (RASCHKA; MIRJALILI, 2019)

4.3.1 Data Pre-processing

Before being fed into a classifier, a dataset has to be pre-processed. This is because classifier

training quality may depend on the dataset it has been fitted, therefore building good training sets can

make the difference in the final classification performance.

First of all is important to identify missing values in tabular data, for example NaN (not a

number) data, that can be related to a whole sample or a single feature. When its a whole sample which is

corrupted, this one is simply eliminated from the dataset. By the way, more often just one or few features

are corrupted: in this case the elements are individuated and substituted. Many ways of substituting the

elements are available but, for this work, mean imputation was used, simply replacing each single NaN

with the mean value of the entire feature column.

Another tip applied is class labels encoding. Many machine learning libraries require that class

labels are encoded as integers values. Although most estimators for classification convert class labels to

integers internally, it is considered good practice to provide class labels as integer arrays to avoid technical

glitches. Then, once the labels are encoded, we can always come back to the original label’s name by

using, for example, a dictionary.

Finally, a training dataset is built. To do that we split the dataset into a training dataset and into

a test one for model evaluation. The split procedures allows to generalize over the used dataset and to

evaluate model performance for both training and test datasets by checking their prediction accuracy. The

whole algorithm in python for the dataset pre-processing has been made available in the Appendix A at

.27.

Many machine learning and optimization algorithms also require feature scaling for optimal

performance. Usually standardization is used for this purpose. Standardization shifts the mean of each

feature so that it is centered at zero and each feature has a standard deviation of one:

𝑥′𝑗 =
𝑥𝑗 − 𝜇𝑗
𝜎𝑗

. (21)

50

This, for instance, can help gradient descent learning in logistic regression to converge more

quickly (RASCHKA; MIRJALILI, 2019).

A further data splitting could be done. A model selection will follow the pre-processing step,

where the term model selection refers to a given classification problem for which we want to select the

optimal values of tuning parameters. However, if we reuse the same test dataset over and over again

during model selection, it will become part of our training data and thus the model will be more likely

to overfit (XU; GOODACRE, 2018). Thus usually data are separated into three parts: a training set, a

validation set and a test set. Figure 18 shows how this process works.

Figure 18 – Typical way of splitting data. Adapted from (RASCHKA; MIRJALILI, 2019).

Source: (RASCHKA; MIRJALILI, 2019)

In particular, in the next sections some model selection techniques will be discussed and all of

them employ a validation set, being very robust techniques for optimizing classifiers’ performances.

4.3.2 Sequential Backward Selection

Sequential Backward Selection (SBS) is a feature selection technique. The reason why we

need to select some features is that there might be the possibility that some features are decreasing the

performance of our classifier.

This feature selection algorithm automatically selects a subset of features that are most relevant

to the problem, to improve computational efficiency or reduce the generalization error of the model by

removing irrelevant features or noise (Figure 19). SBS, in particular, simply sequentially removes features

from the full feature subset until the new feature subspace contains the desired number of features. The

steps operated by the SBS algorithm are presented as follows (RASCHKA; MIRJALILI, 2019):

1. Initialize the algorithm with 𝑘 = 𝑑, where 𝑑 is the dimensionality of the full feature space 𝑋𝑑;

51

2. Determine the feature 𝑥− that maximizes the criterion: 𝑥− = 𝑎𝑟𝑔𝑚𝑎𝑥𝐽(𝑋𝑘 − 𝑥) , where 𝑥 ∈ 𝑋𝑘;

3. Remove the feature 𝑥− from the feature set : 𝑋𝑘−1 = 𝑋𝑘 − 𝑥− ; 𝑘 = 𝑘 − 1;

4. Terminate if 𝑘 equals the number of desired features, otherwise go to step 2.

For example, the criterion calculated by the criterion function can simply be the difference

between in performance of the classifier before and after the removal of a particular feature (please, refer

to the python code .24 in the Appendix A).

Figure 19 – SBS: the graph tracks the accuracy achieved by a classifier over the algorithm iterations; in this
example, even with three features a very good accuracy level can be reached.

Source: (RASCHKA; MIRJALILI, 2019)

4.3.3 Principal Component Analysis

As seen in previous section, dimensionality reduction might be a good idea when build a

new dataset, because we may not be sure that all features really provide discriminative information to

our classifiers. Actually, there are two main categories of dimensionality reduction techniques: feature

selection and feature extraction. With feature selection, we select a subset of the original features, whereas

in feature extraction, we derive information from the features set to construct a new feature subspace.

In practice, feature extraction is not only used to improve storage space or the computational

efficiency of the learning algorithm, but can also improve the predictive performance (NASREEN, 2014).

Principal Component Analysis (PCA) is an unsupervised linear transformation for features extraction and

dimensionality reduction.

PCA helps us to identify patterns in data based on the correlation between features. PCA aims

to find the directions of maximum variance in high-dimensional data and projects it onto a new subspace

with equal or fewer dimensions than the original one. The orthogonal axis (principal components) of the

new subspace can be interpreted as the directions of maximum variance given the constraint that the new

feature axes are orthogonal to each other.

52

In particular, PCA directions are highly sensitive to data scaling, thus we need to standardize

the features before PCA if the features were measured on different scales and we want to assign equal

importance to all features. The approach of PCA can be summarized in the next steps:

1. Standardize the 𝑑-dimensional dataset;

2. Construct the covariance matrix;

3. Decompose the covariance matrix into its eigenvectors and eigenvalues;

4. Sort the eigenvalues by decreasing order to rank the corresponding eigenvectors;

5. Select 𝑘 eigenvectors which correspond to the 𝑘 largest eigenvalues, where 𝑘 is the dimensionality

of the new feature subspace (𝑘 ≤ 𝑑);

6. Construct a projection matrix W from the top 𝑘 eigenvectors;

7. Transform the 𝑑-dimensional input dataset X using the projection matrix W to obtain the new

𝑘-dimensional feature subspace.

All the math behind PCA is described in details in Raschka e Mirjalili (2019) (please, refer to

the python code .25 in the Appendix A). An example of the employment of PCA is shown in Figure 20.

4.3.4 Grid Search

When training our classifiers, having a good dataset can make the difference in the final

classification performances. However, not just the dataset determines the goodness of our final results,

since lot of parameters of the classifiers themselves play a big role in the process. In this section, a

technique called Grid Search for parameters tuning is discussed.

In machine learning, we have two types of parameters: those that are learned from the training

data, for example, the weights in the logistic regression, and the parameters of a learning algorithm that

are optimized separately. The latter are the tuning parameters, also called hyperparameters of a model,

such as for example the regularization parameter in logistic regression or the depth parameter of a decision

tree (RASCHKA; MIRJALILI, 2019).

Grid Search is a tuning technique that can further helps improving the performance of a model

by finding the optimal combination of hyperparameters values. Its approach is very simply: Grid Search

evaluates the model performance by studying the results obtained for each possible combination of the

parameters given in terms of prediction accuracy (please, refer to the python code .26 in the Appendix A).

Notice that the values of the parameters we want to analyze have to be provided manually. Grid

Search helps us in finding the correct tuning of the parameters, but actually those are the parameters values

directly chosen by us, meaning that probably better combinations of the parameters with different values

exist and are not among the ones provided.

53

Figure 20 – PCA – KNN model evaluation: in this case reducing the dataset to 23 features the best result is
reached.

Source: Own Autorship

4.4 MODEL EVALUATION METRICS

For model evaluations, in this work, results in terms of accuracy over class predictions were

always taken into account. In a measurement of a set, accuracy is the closeness of the measurements to a

specific value, being a really suitable metric for classification purposes. More commonly, it is a description

of systematic errors, a measure of statistical bias. Low accuracy causes a difference between a result and a

true value. In our case, accuracy will be defined as follows:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
= 1− 𝐸𝑅𝑅, (22)

where 𝑇𝑃 (𝐹𝑃) are the true (false) positive events and 𝑇𝑁 (𝐹𝑁) are the true (false) negative ones, while

𝐸𝑅𝑅 can be understood as the sum of all false predictions divided by the number of total ones:

𝐸𝑅𝑅 =
𝐹𝑃 + 𝐹𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
. (23)

54

In particular, the techniques used for evaluation purposes base their results on the accuracy.

Validation curve, for example, is a tool that can be implemented to observe how the train and test datasets

behave as a parameter of the classifier is varied. This method is useful when we want to address over and

under fitting.

Another tool is the learning curve, which again helps to spot over and under fitting by looking

at the performances of train and test datasets, this time as we vary the number of samples that belong

to them (RASCHKA; MIRJALILI, 2019). It is therefore a tool to find out how much a machine model

benefits from adding more training data and whether the estimator suffers more from a variance error or a

bias error.

However, base the results just on one single metric is not a good approach at all, since we might

not focus on characteristic of the dataset which are impacting in some way the final performance of

the classifier. For example, suppose that an unbalanced dataset is being analyzed. Usually this kind of

datasets are characterized by classes provided by a large number of samples and others with just a few

number of them. In this case, a large number of true positive events in the former might overshadow bad

classification results for the classes with few samples, leading to a high model accuracy even though some

misclassifications occur.

For this reason, the Receiver Operating Characteristics (ROC) was introduced (FAWCETT,

2006). This technique is used to evaluate the dataset, measuring how finely the classes are separated

among each other by looking at the true positive and false positive rate. Therefore, this method allows to

analyze the quality of the dataset we are working with, which of course will has a direct impact over the

performances of the classifiers.

4.5 EMBEDDED SYSTEM

The whole project was first conceived in python with the help of Spyder (RAYBAUT, 2009)

editor and Google Colab (LLC, 2014) . However, the idea was to implement the whole project in

an embedded system, in a way to have a device ready to be plugged in some system to operate load

monitoring.

For this work the NVIDIA Jetson TX1 was chosen as the embedded system. The NVIDIA Jetson

TX1 is a full-featured development platform for visual computing; it is ideal for applications requiring

high computational performance in a low power envelope (the whole board just consumes 10 watts of

power).

Jetson TX1 comes with a GNU/Linux environment, includes support for many common APIs

and is supported by NVIDIAs complete development tool chain. In particular, the board employs quad-core

ARM Cortex-A57, 4GB LPDDR4, integrated 256-core Maxwell GPU, where Maxwell is the codename

https://www.spyder-ide.org/

55

for a GPU microarchitecture developed by NVIDIA.

The GPU is the main reason why the board has been chosen: despite CPU who always runs

codes in sequence, the main feature of GPU is the ability of parallelizing codes and increasing speed

more easily easily than a CPU. Therefore, the use of GPU could enhance our system performance a lot,

allowing to analyze more signals at the same moment, thus increasing capacity of our system, being able

to monitor larger enviroments.

Figure 21 – NVIDIA Jetson TX1 Developer Kit

Source: https://www.nvidia.com

The board (presented in Figure 21), as previously said, uses a Linux environment with Ubuntu

18.04 and a 64 bit architecture. In particular the board was provided with python 3.5, that was upgraded to

the 3.6 version since some scikit-learn libraries had this requirements (PEDREGOSA et al., 2011).

https://scikit-learn.org/stable/

56

5 RESULTS AND DISCUSSIONS

This chapter summarizes the main results obtained in this work. Fist, we present the detection

results. In the sequence, results for the classification are discussed. Then, results for the embedded system

are detailed. Finally, results for the Lab Datasets are showed.

5.1 DETECTION

This section presents the results obtained for detecting transient events. The non-trivial problem

of the detection comes from the fact that we have to find a robust solution that also generalizes over a wide

multiplicity of signal, whose shapes cannot be checked one by one because of their very large number.

In this work, good classification performance (>98%) was achieved, but this would not be

possible without adapting our detection method in a different fashion for both the COOLL and the LIT

dataset. The used algorithms are based on already known information about the datasets, giving the

security that appliances have been detected properly. For example, in COOLL dataset all the waveforms

last 6 seconds and around 3 to 5 seconds the devices are always in their steady state, being sure that our

steady features are properly calculated. Moreover, for the final results, it turned out that it was not useful

to calculate the features in the transient interval to have excellent (>98%) classification performances.

Additionally, COOLL dataset only provides single appliance waveforms, therefore no detector was needed.

The LIT dataset is a bit different, since even multiple appliance waveforms are present and

thus a detector is needed. In this case a modified detector was used, working with the same principle of

the HAND algorithm, but exploiting the start instants directly provided by the LIT dataset, as shown in

Figure 22.

However, this does not represent the real scenario, where we are not suppose to know information

about loads’ signals (specially about turn on and off events). In this case, we already discussed in chapter

3 that the HAND algorithm for transients detection was implemented (Nait Meziane et al., 2017). The

reason why the project moved to the use of a modified detector is that the HAND algorithm was not

too precise in aggregated waveforms. In fact, HAND uses the variance of the current envelope to detect

transient intervals, by intuitively capture those parts of the signals where the current varies the most.

Table 4 refers to tests conducted with the HAND detector over a group of 16 waveforms (LIT

Dataset), each having 8 loads connected. As we can observe, not all the loads’ transients are captured,

loosing the acquisition of the respective features.

During this work, the approach of HAND highlighted in particular three problems:

1. the settling of an adaptive threshold could avoid the detector to sense appliances operating at very

57

Figure 22 – 8E0P0I0M0N0H0W0Y0 signal analyzed with the modified detector: here all the transients are
detected correctly.

Source: Own Authorship

Table 4 – Detector tests: aggregate signals with 8 appliances (D0, G0, P0, Q0, M0, N0, H0, E0) in LIT Dataset
(RENAUX et al., 2018b)

Waveform Number D0 G0 P0 Q0 M0 N0 H0 E0

80000 No No Yes Yes No No No No
80001 Yes No Yes Yes No Yes No No
80002 Yes Yes Yes Yes Yes No No No
80003 Yes Yes Yes Yes Yes No No No
80004 Yes Yes Yes Yes Yes Yes No No
80005 Yes Yes Yes Yes Yes Yes No No
80006 Yes Yes Yes Yes Yes No No No
80007 Yes Yes Yes Yes No Yes No No
80008 Yes No Yes Yes No Yes No No
80009 Yes No Yes Yes No Yes No No
80010 Yes Yes Yes Yes Yes No No No
80011 Yes Yes Yes Yes Yes Yes No No
80012 Yes Yes Yes Yes Yes No No No
80013 Yes Yes Yes Yes Yes No No
80014 Yes Yes Yes Yes Yes No No No
80015 Yes Yes Yes Yes No Yes No No

Source: Own Authorship

low current values (see Figure 23);

2. the appliances whose transient swings many times before reaching the steady-state will be detected

multiple times: this can result in different features values that can lead to wrong predictions (see

Figure 24);

3. since variance is sensitive to signal variations, the presence of noise can cause false positive events

detection (see Figure 25).

58

Figure 23 – Third load overlapped with the previous ones and is not detected because its amplitude is relati-
vely small.

Source: Own Authorship

Figure 24 – Third load is characterized by a transient that swings two times leading to two detections instead
of one.

Source: Own Authorship

Moreover, it was observed that the algorithm also has problems in targeting those signals whose

transient changes very smoothly, hence signals with very low envelope variance. Therefore the following

results will not be related to signals "realistically detected", since the uncertainties connected to HAND

detector required the signals to be checked one by one, and also not giving the security that good results

could be achieved.

59

Figure 25 – A highly noised signal produce many wrong detections.

Source: Own Authorship

5.2 CLASSIFICATION RESULTS

In this section, the results of the classifiers’ training are presented. For the project, the choice of

a proper model was conducted taking into account the prediction accuracy of four classifiers: Logistic

Regression (LR), Support Vector Machine (SVM), K-Nearest-Neighbors (KNN), and Random Forest (RF).

For the training process always the same procedure was employed, which consists in using in sequence:

• Grid Search;

• Sequential Backward Selection (SBS);

• Grid Search;

• Principal Components Analysis (PCA).

A first analysis with grid search allows to optimize the choice of the hyperparameters to increase

model accuracy. Then, SBS is performed to target the features of the dataset who lowers prediction

performances: those features will be then removed to reduce the dimension of the dataset, also decreasing

the computational complexity of the system. Grid search is therefore applied another time, to search for

a new optimal combination of parameters over the reduced dataset. In the end, a control with PCA is

conducted, to see if there is actually some way of further increase the performances of classifiers. Here

follows the results obtained, written in term of the percentage of the prediction accuracy over the test

dataset:

In the case of Table 5, PCA was not employed in the end, since it would be just an additional

task for classifiers that already have excellent (>98%) performances. Even after SBS, where for all cases

60

Table 5 – COOLL Dataset Test Accuracies (%)
Classifier Preliminary test Grid Search SBS Grid Search

LR 99.4 99.4 99.4 99.4
SVM 99.4 99.4 99.4 99.4
KNN 98.2 98.2 98.8 98.8
RF 99.4 99.4 99.4 99.4

Source: Own Authorship

the dimension of the dataset was reduce from 26 to 17 features, the accuracy of classifiers does not change

at all, an indication that the selected features are robust.

The results of Table 5 are promising. In this case, the dataset played a big role, since it provides

just waveforms relative to individual appliance measurements. As well as we will see for the LIT dataset,

individual appliances are easier to analyze, since no disaggregation is performed and detection can be

more accurate.

On the other hand, even though the accuracy reached are very good (>98%), our main purpose

is to generalize as much as we can to possibly classify other appliances or, at least, correctly classify

the appliances already present in the dataset under different conditions. For example, when appliances

overlap because they are connected at the same system, their time constants could change. That is why

just analyzing individual waveforms is not enough to implement a NILM module, therefore we moved to

LIT dataset:

Table 6 – LIT Dataset Test Accuracies (%)
Classifier 1 APP 2 APP 3 APP 8 APP Preliminary test Grid Search SBS Grid Search PCA

LR 97.6 98.5 94.3 90.3 88.2 88.7 87.4 87.4 94.3
SVM 97.6 98.9 98.4 90.9 96.2 96.2 97.0 95.4 97.3
KNN 95.2 98.9 96.5 91.6 94.5 94.5 95.6 95.6 96.8
RF 98.8 99.3 97.5 96.8 97.6 97.9 98.1 98.1 97.3

Source: Own Authorship

To analyze better the results obtained for the LIT dataset (Table 6), we decided first to investigate

the feature datasets relative single appliance waveforms (1 APP), then analyze the ones with two (2 APP),

three (3 APP) and eight appliances (8 APP) alone, in order to understand how the algorithm works in

different scenarios.

From the results, it is evident that the dataset referring to waveforms having 8 appliances brings

down classifiers’ accuracy. Probably, despite the detection algorithm that we already said not to be that

robust, a simple reason could be that the waveforms are not enough to give useful information (MULINARI

et al., 2019).

In fact, while 2 APP and 3 APP features dataset recorded respectively 1344 and 1584 measure-

ments, 8 APP has just 768. That’s because 2 APP waveform dataset, for example, contains information

about just 7 different appliances providing an amount of 672 signals. On the other hand, 8 APP dataset

61

provides only 96 waveforms that must be used to calculate the features for 17 different appliances, meaning

that we have relatively low information content for every appliance .

However, if compared to the 1 APP dataset where each appliance is analyzed just 16 times, 8

APP should have better results. The reason why accuracies are not as we expected, is the same reason

why COOLL dataset achieve good results in the order of 98% of accuracy: the detection in waveforms

containing just one appliance is far more simple and does not need disaggregation, leading to more

accurate and selective results, thus facilitating appliances’ clustering. It is true then that in 8 APP same

appliances are evaluated more times, but we have also to take into account that:

• performing disaggregation inevitably introduces some errors;

• detection is not completely reliable;

• appliances waveforms slightly changes when overlap with others.

Therefore this might explain why 8 APP does not achieve the same good accuracy values of 1, 2

and 3 APP (note that this is not the same for the random forest classifier, as will be explained later).

It is important to say that the LR, SVM and KNN classifiers require, for optimal performance,

feature scaling before model fitting. Returning to Table 6, after SBS the dataset dimension was reduce

from 30 features to:

• 23 for LR;

• 28 for SVM;

• 21 for KNN;

• 24 for RF.

Once again, the control made by SBS is useful, since it enables us to target those features who

are limiting and confusing our classifiers. Of course the features that has been deleted are not the same for

every classifier because of their internal properties. In fact with the results obtained, the choice for the

best model was made between SVM and RF classifier.

5.2.1 Detailed Analysis

As already discussed in section 4.4, some other tools can be used to see if the models were

chosen correctly, taking into account the possibility that, despite the results obtained, there might be a

further improvement in terms of over/under fitting or problems in the dataset. In particular, Learning and

Validation curves have been evaluated, as well as the Receiver Operating Characteristic (ROC) for every

classifier that was used in the case of the LIT Dataset. In the following sections the curves obtained are

shown and analyzed.

62

5.2.1.1 Logistic Regression

Figure 26 shows the performance of the Logistic Regression model as we varying the C

parameter. As we can observe, for values higher than 𝐶 = 10, the accuracy seems to saturate. In this case

we might want to keep 𝐶 = 10 instead of higher values so we have an higher strength of the regularization

parameter 𝜆 (𝐶 = 1/𝜆) and therefore staying away from an over fitting scenario.

Figure 26 – Validation curve with respect to the C parameter.

10 3 10 1 101 103

C Parameter

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Logistic Regression Validation Curve

Training accuracy
Validation accuracy

Source: Own Authorship

Figure 27 shows that for values higher than 1500 training samples there’s a very low variance

between the two models compared, meaning that increase the number of training samples is not really

worth it.

Figure 27 – Learning curve Logistic Regression.

500 1000 1500 2000 2500
Number of training samples

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Logistic Regression Learning Curve

Training accuracy
Validation accuracy

Source: Own Authorship

63

Figure 28 shows different ROC curves, each one calculated for a different appliance using the

One-Versus-Rest technique. This curves allow us to explore more classifiers, understanding their true/false

negative prediction rate. Figure 28 also displays curves’ area (AUC area), whose values gets closer to 1

when we have a high number of true/false positive, thus correct classifications. Here we can observe how

all the calculated curves are close to an ideal curve with AUC = 1 , meaning that the model performs very

well over our multi-class classification problem.

Figure 28 – ROC curve Logistic Regression.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Logistic Regression ROC Curve

Class 1 curve (area = 0.986)
Class 3 curve (area = 0.984)
Class 4 curve (area = 0.998)
Class 11 curve (area = 0.998)
Class 12 curve (area = 0.973)
Class 13 curve (area = 0.988)

Source: Own Authorship

5.2.1.2 Support Vector Machine

Figure 29 shows that, in this case, if we chose values of C higher than 100 we start to over-fit

the dataset: even though we can observe that the variance in this interval is not that high, it is important to

keep variance as low as possible if we want the model to generalize over new appliances.

Figure 30 shows that for a number of samples higher than 2000 variance between the validation

and the training set starts to reduce very slowly. In this case, we could think about using and higher

number of training samples, for instance 2500. Nevertheless, remember that the validation set is a subset

of training samples, therefore an higher number of training samples could cause over-fitting when we have

to compare results with test dataset.

Figure 31 shows the behavior of the ROC curve for the SVM model: even here we can observe

results similar to LR, although with better AUC values, meaning that the SVM model is able to distinguish

very well among the different classes of the dataset. Notice that for some classes the AUC value is equal

to 1, meaning that for those loads SVM is able to classify correctly every sample.

64

Figure 29 – Validation curve with respect to C parameter.

10 3 10 1 101 103

C Parameter

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Support Vector Machine Validation Curve

Training accuracy
Validation accuracy

Source: Own Authorship

Figure 30 – Learning Curve SVM.

500 1000 1500 2000 2500
Number of training samples

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Support Vector Machine Learning Curve

Training accuracy
Validation accuracy

Source: Own Authorship

Figure 31 – ROC curve for SVM.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 Po
sit

ive
 R

at
e

Support Vector Machine ROC Curve

Class 1 curve (area = 0.998)
Class 3 curve (area = 0.981)
Class 4 curve (area = 0.999)
Class 11 curve (area = 1.000)
Class 12 curve (area = 0.972)
Class 13 curve (area = 0.997)

Source: Own Authorship

65

5.2.1.3 K-Nearest-Neighbors

We observe here from Figure 32 that the variance obtained through out all the curves should not

affect too much, since it is always maintained very low. However, we can look at the curves with more

meticulous eyes and observe that there seems to be a trade off between bias and variance as the number of

neighbors is increased, therefore the latter should not be higher than 4 or 5.

Figure 32 – Validation curve with respect to the number of neighbors.

1012 × 100 3 × 100 4 × 100 6 × 100

Number of Neighbors

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

K-Neighbors Validation Curve

Training accuracy
Validation accuracy

Source: Own Authorship

Figure 33 suggests that for a training dataset with a number of elements higher than 2000, the

bias between the training and the validation dataset is reduced and acceptable. Again, we always have to

think that our dataset is usually split into training and test set, for the purposes of model evaluation. The

validation set was introduced to avoid the problem of over fitting and helps in generalize more our model.

However, the validation set is extracted directly from the training dataset, thus we have to pay attention in

increasing is number of training samples, because we might fall into an over fitting condition again.

Figure 34 shows the behavior of the ROC curve for the KNN model: as we can observe even

here the KNN model seems to be able to distinguish very well among the different classes of the dataset.

66

Figure 33 – Learning curve K-Neighbors.

500 1000 1500 2000 2500
Number of training samples

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

K-Neighbors Learning Curve

Training accuracy
Validation accuracy

Source: Own Authorship

Figure 34 – ROC for K-Neighbors.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 Po
sit

ive
 R

at
e

K-Neighbors ROC Curve

Class 1 curve (area = 0.998)
Class 3 curve (area = 0.981)
Class 4 curve (area = 0.999)
Class 11 curve (area = 1.000)
Class 12 curve (area = 0.972)
Class 13 curve (area = 0.997)

Source: Own Authorship

5.2.1.4 Random Forest

Figure 35 shows a particular situation. First of all, we observe that the profile of the two curves

is the same and is more or less constant, meaning that augmenting the complexity of the classifier by

increasing the number of estimators does not really worth it. Second, we noticed that even though the level

of bias is good (meaning that a low error is obtained), there is a constant variance that does not reduce,

which might be a symptom of overfitting.

Figure 36 shows that for a training dataset’s dimension higher than 2000 the performance of the

validation set are better and the variance remains approximately constant.

Figure 37 shows the behavior of the ROC curve for the Random Forest model: also here

classifier performs very well in separating different classes.

67

Figure 35 – Validation curve with respect to the number of estimators.

2 × 101 3 × 101

Number of Estimators

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Random Forest Validation Curve

Training accuracy
Validation accuracy

Source: Own Authorship

Figure 36 – Learning curve Random Forest.

500 1000 1500 2000 2500
Number of training samples

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Random Forest Learning Curve

Training accuracy
Validation accuracy

Source: Own Authorship

Figure 37 – ROC for Random Forest.

Source: Own Authorship

68

5.3 RESULTS IN THE EMBEDDED SYSTEM

This section shows the results obtained after the implementation of the algorithms on the board.

In particular, the test were conducted off-line with already recorded waveforms as shown in the scheme of

Figure 38.

Figure 38 – Monitoring test process.

Source: Own Authorship

The classifier model represents the already trained classifier that has been chosen for the tests.

Fortunately, python provides a way to save models once they are trained and import them for classification,

in a way that we will not have to repeat the training session every time we need to make predictions

(please, refer to the python code .28 in the Appendix A).

NVIDIA Jetson TX1 comes with the python version 3.5 that was updated to 3.6 because of

some libraries requirements. In particular, since the board embed a Linux operational system, it was more

practical to run all the tests directly from the terminal. In particular, the following algorithm will be used

to test our two datasets:

FUNCTION TEST(signal-to-analyze)

Import : Classifier

Import : Standard-Scaler (if required)

Import : Detector

Import : Disaggregator

Import : Features

(on-instants, off-instants)← Detector(signal-to-analyze)

For (i,j) in (on-instants, off-instants)

(load-I, load-V)← Disaggregator(signal-to-analyze[i:j])

load-features← Standard-Scaler(Features(load-I,load-V))

OUTPUT Classifier.Prediction(load-features)

EndFor

69

EndTEST

where we suppose that signal-to-analyze contains both the current and the voltage signal .

5.3.1 COOLL Dataset

In the case of COOLL Dataset, all classifiers achieved excellent accuracies (≥ 98%), as

demonstrated in the previous sections, hence the tests were run with all of them. The next figures

(Figure 39 – 48) will show some of the results obtained on the NVIDIA Jetson TX1 board (please, refer to

the python code .29 in the Appendix A).

Figure 39 – Saw_5 load classification.

Source: Own Authorship

Figure 40 – Sander_1 load classification.

Source: Own Authorship

Figure 39 – 48 show how tests were conducted from terminal of the NVIDIA board. A python

script is executed, then its result displays what was the predicted class name of the analyzed appliance and

also how much it took, in terms of milliseconds, from the whole algorithm to be run.

70

Figure 41 – Drill_1 load classification.

Source: Own Authorship

Figure 42 – Drill_5 load classification.

Source: Own Authorship

Figure 43 – Hair_Dryer_2 load classification.

Source: Own Authorship

As one can observe, the result achieved are almost perfect (100%). Figure 48 shows the case in

which both the KNN and RF classifiers misclassifies the load. One of the solutions to compensate the

error might be, for example, providing the dataset with some additional features to add informations for

the classifiers, thus improving selectivity. Another solution, which is a common practice when multiple

classifiers has very good accuracies, could be using together the classifiers to build an ensemble model,

71

Figure 44 – Hair_Dryer_3 load classification.

Source: Own Authorship

Figure 45 – Hedge_Trimmer_2 load classification.

Source: Own Authorship

Figure 46 – Paint_Stripper_1 load classification.

Source: Own Authorship

able to make its prediction by majority voting.

In conclusion, it is also interesting to see how the complexity of a classifier influences the

execution time (reported in Figures 39 – 51) in milliseconds). The tests evidence, as a matter of fact, that

in general the Random Forest classifier takes almost 100 times more than other classifiers to be executed:

that is because multiple decision trees are evaluated for the final classification.

72

Figure 47 – Router_1 load classification.

Source: Own Authorship

Figure 48 – Lamp_2 load classification.

Source: Own Authorship

5.3.2 LIT Dataset

For the LIT Dataset the accuracies achieved by the classifiers were not as good as for the COOLL

Dataset: here the best one is the 98.1% obtained using Random Forest. Therefore the tests have been

conducted just using the RF model, because in this tests we were pretty much interested in seeing how

the NILM algorithm works with aggregated waverforms, thus higher prediction accuracy was needed.

Figures 49 – 51 show some of the results obtained (please, see how the tests were done in python .30).

Even in this case the system works very well. However, sometimes some errors appeared in

tests, specially when waveforms measuring 8 appliances are examined more likely some misclassifications

can occur. In particular, note that when analyzing waveforms with 8 appliances always 9 are detected:

this happens because, when building the LIT dataset, the team faced a bug in the script that automate

the waveform acquisition (RENAUX et al., 2018c), thus always repeating at the end of a signal the first

appliance that turned on.

As previously discussed for the results obtained in the COOLL dataset, in Figures 49 – 51,

we can see that the execution times are the same in LIT dataset (≈ 0.14𝑚𝑠) when signals with just one

73

Figure 49 – Results obtained from different waveforms including 1 appliance.

Source: Own Authorship

appliance are analyzed. Of course, when appliances started to be more, the execution time increases, even

because the function for disaggregation (.31) will be involved.

To conclude we can say that, after the model evaluation process, the classifier was included in

an algorithm that, in sequence, applies detection, disaggregation, features’ calculation, and classification

processes. This algorithm was used in simulations over the test dataset to emulate a device capable of

collecting external data and recognize the respective loads. In the simulation, the execution time of all the

classifier models, when analyzing one single appliance, were recorded:

• LR: 1.47550± 0.0054 𝜇𝑠;

• SVM: 2.71± 0.6 𝜇𝑠;

• KNN: 4.140± 0.09 𝜇𝑠;

• RF: 117.74± 1.4 𝜇𝑠.

It is interesting to see how the complexity of a classifier influences the execution time. The

tests evidence that, in general, the RF classifier takes almost 100 times more than other classifiers to be

executed. That is because multiple decision trees (18 in our case) are evaluated for the final classification.

Moreover, to see how much the whole process takes, also the execution times related to aggregated

waveforms were analyzed, i.e.:

• 1APP: 0.13094± 0.0020 ms;

• 2APP: 0.426± 0.07 ms;

• 3APP: 0.688± 0.08 ms;

• 8APP: 2.987± 0.08 ms.

Note that, in this case, the RF classifier was implemented. In particular, for 1APP waveforms,

74

Figure 50 – Results obtained from different waveforms including 2 and 3 appliances.

Source: Own Authorship

the execution time takes a little bit longer than the RF result previously registered due to the detection

and disaggregation processes. As expected, we can see that higher the number of appliances, the longer it

takes to analyze them. This problem may be solved if all the signals are processed in parallel.

75

Figure 51 – Results obtained from different waveforms including 8 appliances.

Source: Own Authorship

5.4 LAB TESTS ON REAL MEASUREMENTS

In this section the result obtained for the Lab dataset are shown. As we said in section 4, a part

of the project, whose aim was to produce an algorithm prototype for a NILM system, was dedicated to

realize some appliance measurements on a real scenario to test the project even on real world applications.

In section 5.2 and 5.3 we saw that, despite some issues about detection, classifiers reached good

accuracies (> 97%) over test waveforms of LIT and COOLL datasets. Moreover, results on NVIDIA board

confirmed that the algorithm can be easily implemented on an embedded system in order to analyze loads’

waveforms. But what happens when we analyze real signals? For this purpose we create in laboratory a

reduced set of waveforms with new appliances to further analyze the NILM algorithm.

As explained in Section 4, here, no turn-on or off events were recorded because there was no

such a precise way of doing so, but even because this scenario resembles more the task of a possible

real implementation of the algorithm. Even though aggregated waveforms are available in Lab dataset

76

and are named with the label of the corresponding loads, we do not have the possibility of determine a

priori where turn-on and off events are located and whose load they correspond to. However, in case of a

single load waveform we can simply use the detection algorithm and, if something is detected, we will

know for sure that the load is the one the waveform refers to. This consideration leads to the decision of

building a training features dataset using just single load waveforms, which ended in a smaller amount

of information that classifiers could use to generalize over tests. This influenced considerably the final

results.

5.4.1 Building a new feature dataset for the optimization of classifiers

To start, all the 5 groups of 10 waveforms related to the 5 analyzed appliances where fed into

the HAND algorithm, followed by the features extrapolation process. In particular, 21 features were

extrapolated, i.e.: peak of power signal, active, reactive and apparent power, ict, ar, lpa, asy, r, sc, dpb,

angp, L, md, magnitude of 50Hz, 100Hz, 150Hz, 200Hz and 250Hz harmonics, TED and TOD (please

refer to section 3.2 for the meaning of features’ labels). Note that in this case, as suggested in Hassan et

al. (2014), we just use the first 5 harmonics instead of using a more extended content as in the case of

COOLL and LIT dataset. This was done because in previous results the SBS process always filtered out

higher harmonics, therefore it was decided to group harmonics with order greater than 5 in TED and TOD

features, respectively total even and odd harmonic distortion. This allowed to reduce the features dataset

dimension without completely get rid of high harmonics’ information content.

The resulting features dataset is thus composed by 432 entries, which is sufficient for classifiers

to learn how discriminate among 5 different appliances: earlier results shows that LIT features dataset, with

its 4112 entries, was enough to learn how to classify among 26 different loads as well as COOLL features

dataset, with 840 entries to distinguish 12 devices. Table 7 shows the results obtained for classification

task during the model optimization procedure.

Table 7 – Lab Dataset Accuracies in Optimization process (%)
Classifier Preliminary test Grid Search SBS Grid Search

LR 93.8 93.8 96.2 92.3
SVM 91.5 96.9 96.9 97.7
KNN 90.8 91.5 93.8 91.5
RF 92.3 92.3 95.4 93.8

Source: Own Authorship

In particular, after SBS the dataset dimension was reduce from 21 features to:

• 19 for LR;

• 13 for SVM;

• 13 for KNN;

77

• 12 for RF.

Once the training and optimization process was finished, the classifiers model were saved and

plug inside the NILM algorithm for some tests on aggregated waveforms. This was done to further analyze

classifiers ability to generalize over new datas, since the feature training dataset was based just on single

appliance measurements, thus no errors due to disaggregation appeared.

In this preliminary test 28 aggregated waveforms of 2 appliances were analyzed. At the end,

the detection algorithm produce a total of 144 measurements, each of them was then disaggregated to

calculate the features needed for classification. The results obtained follow in Table 8.

Table 8 – Lab Dataset Preliminary Test results
LR SVM KNN RF

Accuracy (%) 91.5 97.7 92.3 94.6
Number of measurements 144 144 144 144

Errors 36 55 49 51
Percentage of errors 25 % 38 % 34 % 35 %

Source: Own Authorship

Table 8 shows that the results obtained are not reliable at all since, the best that we can obtain are,

in the case of Logistic Regression classifier, 36 errors over 144 measurements, which is too much. This

indicates that there were something wrong during the training and optimization process, classifiers might

over-fit training datas leadining to poor generalization capabilities. However, to avoid this, validation and

learning curve has already been used to check whether the models were over-fitting data or not (as showed

in section 5.2).

Therefore we checked at confusion matrix of the different classifiers as reported in Figures 52 –

55. Note that every time the number of false positives and false negatives for label LB0 and LC0 are

the same, but mirrored. This fact indicates that classifiers have some difficulties in distinguish among

those 2 classes: this happens because they can be though as the same class actually. As a matter of fact,

in section 4.2.3, we saw that LB0 measurements were realized for the charge of a PC while it was OFF;

LC0 measurements, instead, were realized for the same PC in charge, this time while it was ON. It turned

out, by looking at their respective waveforms, that those two classes share the same behavior and the only

difference is that when PC is ON it consumes a little bit more.

This fact is interesting, because if instead of considering the classes PC On/Off Charge we group

them into a unique class (it can be PC Charge for instance) we expect a reduction in the number of errors.

Moreover, to reduce wrong classifications, it was decided to increase the amount of information in the

dataset by manually calculating features from waveforms. In particular, manually means that features

were calculated from parts of the waveforms chosen without using HAND, but targeting some specific

intervals of interest. This allowed to introduce more good-quality information to possibly separate more

the distinction among the classes.

78

Figure 52 – Logistic Regression Confusion Matrix.

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

99 0

0 31

Confusion Matrix for the class - LA0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

106 1

5 18

Confusion Matrix for the class - LB0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

102 5

1 22

Confusion Matrix for the class - LC0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

103 1

0 26

Confusion Matrix for the class - LD0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

103 0

1 26

Confusion Matrix for the class - LF0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Source: Own Authorship

Figure 53 – Support Vector Machine Confusion Matrix.

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

99 0

0 31

Confusion Matrix for the class - LA0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

106 1

2 21

Confusion Matrix for the class - LB0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

105 2

1 22

Confusion Matrix for the class - LC0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

103 1

0 26

Confusion Matrix for the class - LD0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

103 0

1 26

Confusion Matrix for the class - LF0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Source: Own Authorship

79

Figure 54 – K-Neighbors Confusion Matrix.

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

98 1

0 31

Confusion Matrix for the class - LA0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

102 5

5 18

Confusion Matrix for the class - LB0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

102 5

5 18

Confusion Matrix for the class - LC0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

104 0

0 26

Confusion Matrix for the class - LD0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

103 0

1 26

Confusion Matrix for the class - LF0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Source: Own Authorship

Figure 55 – Random Forest Confusion Matrix.

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

99 0

0 31

Confusion Matrix for the class - LA0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

100 7

3 20

Confusion Matrix for the class - LB0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

104 3

7 16

Confusion Matrix for the class - LC0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

104 0

0 26

Confusion Matrix for the class - LD0

N Y
Predicted label

N

Y

Tr
ue

 la
be

l

103 0

0 27

Confusion Matrix for the class - LF0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Source: Own Authorship

80

5.4.2 Validation of NILM algorithm on test dataset

After the considerations of the section above, the dataset was manually modified adding some

new features to augment its information content. Moreover, we now neglect all the mistakes due to a swap

between LB0 and LC0, or vice-versa.

Once those changes were include, the NILM algorithm was finally validated over new lab

measurements. LA0, LB0, LC0, LD0, and LF0 were recorded singularly and simultaneously in aggregated

waveforms with two appliances, for a total of 12 different groups, each one with 4 waveforms. Then,

every waveform was analyzed and fed into the NILM algorithm where HAND realize a total of 551 event

detected and whose features were sent to LR, SVM, KNN, and RF classifiers, in order to further evaluate

their performances. The results achieved are shown in Table 9.

Table 9 – Lab Dataset Final Test results
LR SVM KNN RF

Accuracy (%) 94.6 96.9 91.5 92.3
Number of measurements 551 511 551 551

Errors 169 53 83 43
Percentage of errors 31 % 10 % 15 % 8 %

Source: Own Authorship

All the measurements were included in an excel page and reported at the end of the appendix

to show the result achieved (please see Appendix .32). During experiments, we consider correct all the

predictions whose label belongs to its waveform group, except for LB0 and LC0 that could be swap. In

the excel page, all errors were marked in red and summed at the end of each group measurement.

Table 9 shows some relevant changes in the results. If we compare with Table 8, apart from

LR, all other classifiers significantly improve their own prediction accuracy. In particular, SVM and RF

worked even better than the preliminary tests, where they respectively made 55 and 51 errors over 144

measurements: here, instead, they made 53 and 43 errors over 551 measurements. Thus a reduction of

wrong prediction even with an higher number of measurements. Those results, obtained in a lab on real

devices, validate what was presented in previous sections with LIT and COOLL datasets, still pointing out

that SVM and RF (and in particular the latter) best fit our NILM algorithm purposes.

However, we can appreciate in the results shown in Appendix .32, that if we take into account,

for instance, one line of one group, the predictions of the four classifiers might not be the same, even

though they are considered correct and that’s because there were no information about where loads’ events

were located inside the waveform. What was known is that, since a waveform belonged to a certain group

of loads, an appliance from that group was expected, no matter where inside the signal. This discrepancy,

for sure introduced some errors that were not take into account, since that means check one by one all

detected signals’ intervals and see if the predicted label actually match the measured load, and this would

81

take too much time.

Nevertheless, further analysis on waveforms shown that, in the case of LD0 and LF0 some errors

from classifiers could be neglected. As a matter of fact, those two classes come from the same load (i.e. a

soldering station) in two different states. The respective signals don’t have similar shapes as in the case of

LB0 and LC0, but once LF0 was recorded always some spurs of LD0 appeared, likely because waveforms

in Lab Dataset were recorded over an interval of 10 seconds, giving the possibility to the soldering station

to change from state LF0 to LD0. Therefore, a further analysis on that could reduce the number of errors

registered in Table 9, giving more credits to the robustness of the whole algorithm.

82

6 CONCLUSIONS AND FUTURE WORKS

In these days, it is almost impossible to find some devices not using an electrical power supply.

Moreover, the increasing demand of energy caused by a growth of the world population claims for

renewable energy sources, since fossil fuels are running out of stock and strongly impact our climate.

As well as the need of new sources, save energy, to reduce its waste and increase its use

efficiency, is what we might want to do, either to save costs or to be more responsible . NILM aims to find

a solution for power saving, trying to measure the aggregate power signal of a system and thus displaying

the amount of power which is being used, targeting each of the loads consuming energy. Lot of projects

are nowadays studying the best approach to complete this task and a wide variety of research literature is

available, showing that there is a big interest moving towards a NILM solution.

In this work, a possible real implementation of a NILM system has been presented. Exploiting

two loads datasets, it was shown that we can actually have an algorithm that recognizes the appliances

connected to a target system that we want to monitor. Moreover, the results obtained from simulations

were finally applied on loads measurements performed in a real scenario, giving a chance to further

validate the NILM algorithm proposed in this work.

In particular, we saw from chapter 5 that the algorithm could be loaded on an embedded

system, i.e., an NVIDIA TX1 Developer kit in our case. The latter, together with the developed algorithm,

demonstrates its ability in recognizing loads from waveforms, after a detection, disaggregation and features

extrapolation process, with a particular tendency to reduce the number of errors in the case where Random

Forest Classifier is used. With a test accuracy of 99.4% in the case of COOLL and 98.1% for LIT dataset,

we saw that RF classifier totalized 43 wrong predictions over 551 measurements during lab experiments,

once again confirming that the proposed NILM algorithm works and RF is more suitable for its purposes.

However, during the project some problems were outlined. First of all, even though the accuracy

reached from the classifiers are very good (>98%), sometimes some misclassifications appear, making the

system not fully reliable if used for loads out of the analyzed datasets. By the way, the features datasets

built for this project are composed of just a few transient state, steady-state and VI trajectory features.

In Zoha et al. (2012) and Du et al. (2010), different types of features are discussed. The latter

for example presents two different methods, one based on Eigenvalue Analysis and SVD (Singular Value

Decomposition) and one on the wavelet transform of current waveform, that could be exploited to build a

new set of features, thus improving the amount of information available for the classifiers.

The other problem we faced is the lack of a robust and reliable detector. Although the core part

of the recognition task is the classifier, as long as a proper algorithm for detection is not found, some

important error components will prevent features to be extracted correctly, therefore yieldings errors in

83

classifiers’ predictions. HAND algorithm has a very intuitive way of detecting turn-on/off events, even

though its methodology is fully based on the shape of waveforms, rather than the informative content that

we want to extrapolate from them. As written in section 5.1, transients could have different shapes that

should be addressed in different ways in order to get the necessary content needed from classifiers. For

example, a transient characterized by multiple ups and downs could cause multiple detection, thus the

disaggregation algorithm might subtract one interval from another coming from the transient of the same

load.

In Chapter 2 some of the state-of-the-art detection algorithms have been presented: in particular

those algorithms turn out to be very precise for certain cases, but not that helpful in others. An interesting

solution is provided in Renaux et al. (2018b), were the selectivity of detectors is combined together in an

ensemble detector, able to chose the best interval that has been target from its sub-units.

Detection is probably where the proposed algorithm weakens, and that calls for new solutions. In

particular, in the case of supervised monitoring, the nowadays available technologies in terms of learning

algorithms are good enough for NILM purposes: what it is actually missing is a robust structure that

helps extrapolating correctly signal features. Moreover, the wide variety of electrical devices suggest that

supervised approach is likely to move towards custom solution for specific loads monitoring, otherwise

too much effort will be spent on building appliances dataset that helps in generalize over a very large

scenario. However, we proved that classifiers could generalize once they face appliances with the same

nature of the ones used in the training process. That was the case of the experiments on Lab dataset, where

the classes LB0 and LC0 merges together because they were different states of the same appliance.

Some other methods, instead, might want to use an unsupervised learning approach to get rid

(or at least reduce) the dependence of classifiers models on datasets. This could save all the efforts made

to realize tons of measurements in order to provide more data during the training process of learning

algorithms. Moreover, those algorithms have an higher ability to generalize over new data, since the

way data are clustered changes as long as we realize more measurements. However this could be also a

drawback, because correct class separation won’t be successful until we provide a considerable amount of

data to those algorithms.

At the end of lab simulations, as presented in section 5.4, satisfactory results were achieved

despite some improvements could be included in the methodology proposed in chapter 4. Here, in

particular, follows the list of future works that could be applied to this project:

1. Improve detector performance, maybe using ensemble of detectors, to have a more robust and

generalized system;

2. Build a new features dataset, trying to use new features in a way to increase the amount of

information for classification purposes;

84

3. Exploit GPU capabilities for higher speed and computation efficiency;

4. Find a way to let the board analyze multiples signals in parallel.

While for point 1 we previously said that the approach mentioned in Renaux et al. (2018b)

could be a further improvement, what can be done for point 2 is, apart from finding new features, try

to realize more measurements of aggregated waveforms. The latter, must always include the use of a

disaggregation process and this will enhance the information content of datasets, since we will even have

data from appliance on their disaggregated version. This could be achieved producing new datasets where

is fundamental to use an approach similar to LIT dataset, where turn-on and off events were always

recorded and labeled with the load they belongs to. For example, Lab dataset was built just with single

appliance signals, since there where no way of recognizing a priori where each appliance was located

inside the recorded waveforms.

Moreover, simulations over the NVIDIA TX1 board gave some hints about a possible imple-

mentation of a NILM module accordingly to future works mentioned in point 3 and 4, since we proved

that the proposed algorithm runs smoothly without considerable computational requirements. As a matter

of fact, multiple embedded systems as the ones provided by NVIDIA, Raspberry or STM microelectronics

are already provided with optimized machine learning modules and multiple cores architectures, all with

affordable costs. Therefore, we might think about a structure were one core is dedicated for the machine

learning processes (whose execution could be optimized through a GPU) while others could manage other

routines, as Wi-fi or Bluetooth communications, if our aim is to communicate with a phone application.

Then another core could be dedicated to the communication with different real time systems, such as

digital signal processors (DSP), whose assignment could be to realize all the signal processing required for

the detection, disaggregation and feature extrapolation as shown in Figure 56. In this way, we could design

a centralize system able to manage alone multiple external units, each of them in charge of processing

power information of the assigned monitored environment.

85

Figure 56 – Scheme of the possible implementation of a NILM module: the cores of an embedded device,
with its own operative system, could be partitioned to work with different tasks, as the commu-
nication with some DSPs or the exchange of loads and energy consumption information with
other devices.

CORE
1

CORE
2

CORE
N

. . .

EMBEDDED
SYSTEM

1. DETECTION
2. DISAGGREGATION
3. FEATURES

EXTRAPOLATION

1. DETECTION
2. DISAGGREGATION
3. FEATURES

EXTRAPOLATION

1. DETECTION
2. DISAGGREGATION
3. FEATURES

EXTRAPOLATION

DSP 1

DSP 2

DSP K

[...]

REAL TIME SYSTEMS

Other Routines

Source: Own Authorship

APPENDIX

87

APPENDIX A – PYTHON CODES

.1 DETECTOR

import numpy as np

def detector(signal, nsamples, window=4):

temp = 0

ts = [] # turn-on instants

te = [] # turn-off instants

create envelope of signal

peak, _ = find_peaks(signal, distance = nsamples)

env = np.array(signal[peak])

signal_std = np.zeros(len(env)) # variance vector

signal_mean = np.zeros(len(env)) # mean vector

initialize variance and mean vector

signal_std [0:window] = np.std(env[0:window])

signal_mean[0:window] = np.mean(env[0:window])

for i in np.arange(window, len(env)-window , window):

for j in np.arange(0, window):

signal_mean[i+j] = signal_mean[i+j-1] +

(env[i+j]-env[i+j-window])/window

signal_std [i+j] = np.sqrt((1/window**2) *

signal_std[i+j-1]**2 + 1/(window-1) *

(env[i+j]-signal_mean[i+j])**2)

std_grad = np.gradient(signal_std)

env_grad = np.gradient(env)

88

tmin = 2.0 # empirical low threshold

tmax = 6.0 # empirical high threshold

for i in np.arange(0,len(env)):

if (signal_std[i] > tmax and std_grad[i] > 0 and env_grad[i]

> 0 and temp == 0) :

temp = 1

ts.append(peak[i])

if (signal_std[i] < tmin and std_grad[i] < 0 and temp == 1) :

te.append(peak[i])

temp = 0

ts = np.array(ts)

te = np.array(te)

return ts, te, env, signal_std

Note that, in the first for cycle, the variance and mean vector (𝑠𝑖𝑔𝑛𝑎𝑙_𝑠𝑡𝑑 and 𝑠𝑖𝑔𝑛𝑎𝑙_𝑚𝑒𝑎𝑛,

respectively) are defined following eq.(1)-(2) as suggested in (Nait Meziane et al., 2017). tmin and tmax

represent two empirical thresholds defined through tests of HAND algorithm over load signals. The reason

why two thresholds were exploited instead of one is that this allow to reduce the detection interval: while

tmin is used to turn-on the detector, tmax is used for its turn-off enabling detection of adjacent transients.

As a matter of fact, tests show that when two transients are close to each other the resulting variance

sometimes remains over tmin, which end up in two transients being detected together. With the help of

tmax we prematurely switch off HAND algorithm ensuring correct detection.

In section 5.1 we discussed about HAND problems and the use of a modified detector for LIT

Dataset, which uses the appliances turn on instances already provided by the dataset manufacturers. From

a practical point of view, this means basically substitute those instances in the algorithm instead of using

tmin.

.2 MOVING AVERAGE FILTER

import pandas as pd

89

def moving_average(signal,window_size):

numbers_series = pd.Series(signal)

windows = numbers_series.rolling(window_size)

moving_averages = windows.mean()

moving_averages_list = moving_averages.tolist()

without_nans = moving_averages_list[window_size - 1:]

return without_nans

While the moving average filter is very easy to understand, during the process of algorithm

validation we implemented even another type of low pass filter called Butter Low Pass filter, which

was useful since it allow to choose the order and the cutoff frequency of the filter, thus the slope of its

stop-band and the amount of harmonic content that should be removed. The code is the following:

from scipy.signal import butter,filtfilt

def butter_lowpass_filter(data, cutoff, fs, order):

nyq = 0.5 * fs

normal_cutoff = cutoff / nyq

Get the filter coefficients

b, a = butter(order, normal_cutoff, btype=’low’, analog=False)

y = filtfilt(b, a, data)

return y

.3 PEAK

import numpy as np

def peak(power):

peak_ = np.max(power)

return peak_

.4 MEDIAN

90

def median(power):

median_ = np.median(power)

return median_

.5 COVARIANCE

def covariance(current,voltage):

cov_ = np.cov(current,voltage) #returns a matrix 2x2

cov_ = cov_[0,1]

return cov_

The reason why a value in the right diagonal was taken is because the function 𝑛𝑝.𝑐𝑜𝑣 returns a

matrix 2x2 where the left diagonal represents the square variance of the relative element .

.6 STEADY STATE

import numpy as np

from scipy.signal import find_peaks

def P_envelope(power, nsamples):

a = power

peak , _ = find_peaks(a, distance = nsamples)

power_p_env = a[peak]

return power_p_env

def Steadystate_mean(power, nsamples):

env = P_envelope(power, nsamples)

steady_ = np.mean(env)

return steady_

.7 FFT

def Harmonics(signal, fs, f0):

N = len(signal)

91

fstep = fs/N; #freq interval

f = np.linspace(0, (N-1)*fstep, N)

X = np.fft.fft(signal)

X_mag = np.abs(X)/N

f_plot = f[0:int(N/2+1)]

X_mag_plot = 2*X_mag[0:int(N/2+1)]

X_mag_plot[0] = X_mag_plot[0]/2

mag_harm = np.zeros(int(round(f_plot[-1] / f0))) # array

of harmonics magnitudes

harmonics_index = np.array([round(i*f0*len(f_plot)/f_plot[

-1]) for i in np.arange(round(f_plot[-1] / f0))])

dist = 2 #round(10/fstep)

if dist == 0:

dist = 2

for ind, j in enumerate(harmonics_index):

if ind == 0:

mag_harm[ind] = X_mag_plot[0]

else:

mag_harm[ind] = np.max(X_mag_plot[int(j-dist):int(

j+dist)])

TED = np.sum(mag_harm[2::2]) # Even Harmonics Distortion

TOD = np.sum(mag_harm[3::2]) # Odd Harmonics Distortion

MAG = mag_harm[1:6,] # Take the first 5 harmonics

return MAG, TED, TOD

The FFT function provided by the numpy library of Python takes into account the sampling

frequency of the signals which is provided by 𝑓𝑠 in the algorithm. On the other hand, 𝑓0 is the fundamental

92

frequency, which was always 50Hz in our case.

Note that the final algorithm was intended to work for the latest experiments on real loads

signals’ waveforms: in those case just the first fifth harmonics were used, while the remaining harmonic

content was grouped in two features called TED and TOD in the upper function.

.8 ACTIVE POWER

def active_p(power):

P = np.mean(power)

return P

.9 REACTIVE POWER

def reactive_p(current,voltage,power):

P = active_p(power)

S = apparent_p(current,voltage)

theta = np.arccos(P/S)

Q = S * np.sin(theta)

return Q

.10 APPARENT POWER

def apparent_p(current,voltage):

Irms = np.sqrt(np.mean(current**2))

Vrms = np.sqrt(np.mean(voltage**2))

S = Irms*Vrms

return S

.11 EXTRAPOLATE CYCLE / CURRENT SPAN

import numpy as np

from scipy.signal import find_peaks

93

def build_VI_cycle(c_signal, v_signal, nsamples, fs, f0):

N_cycles = int(len(c_signal)/nsamples)

d = np.diag(np.ones(nsamples))

curr = c_signal[0:nsamples*N_cycles]

volt = v_signal[0:nsamples*N_cycles]

Av_matrix = d

for i in np.arange(N_cycles-1):

Av_matrix = np.concatenate((Av_matrix, d), axis=1)

c_cycle = np.matmul(Av_matrix, curr)/(N_cycles)

v_cycle = np.matmul(Av_matrix, volt)/(N_cycles*np.max(volt))

itc = np.max(c_cycle)-np.min(c_cycle)

c_cycle = c_cycle/np.max(c_cycle)

return c_cycle, v_cycle, itc

The algorithm, once it knows the length nsamples of one cycle of the signal, elaborate an average

I and V cycle over the 𝑁_𝐶𝑌 𝐶𝐿𝐸𝑆 available on the current (𝑐_𝑠𝑖𝑔𝑛𝑎𝑙) and voltage (𝑣_𝑠𝑖𝑔𝑛𝑎𝑙) signals

passed to the function. In particular, from the average I cycle (𝑐_𝑐𝑦𝑐𝑙𝑒), the algorithm calculates the

current span ITC.

.12 ANGLE / DISTANCE BETWEEN MAXIMUM AND MINIMUM POINT

import numpy as np

def Distance_angle_maxminpoint(c_cycle, v_cycle):

m = np.argmin(c_cycle)

M = np.argmax(c_cycle)

94

dpb = ((c_cycle[M] - c_cycle[m])**2 + (v_cycle[M] -

v_cycle[m])**2)**0.5

angp = np.arctan((c_cycle[M] - c_cycle[m])/(v_cycle[M]

- v_cycle[m]))

return dpb, angp

.13 AREA WITH LOOP DIRECTION

import numpy as np

def lpa(current_cycle,voltage_cycle):

lpa_ = np.sum(0.5*(np.array(voltage_cycle[1:-1])

-np.array(voltage_cycle[0:-2]))*

(np.array(current_cycle[1:-1])-np.array(current_cycle[0:-2])))

return lpa_

.14 ASYMMETRY

from scipy.spatial.distance import directed_hausdorff

def Asymmetry(c_cycle, v_cycle):

c_cycle180 = -c_cycle

v_cycle180 = -v_cycle

u = np.array([c_cycle, v_cycle]).transpose()

v = np.array([c_cycle180, v_cycle180]).transpose()

asy = max(directed_hausdorff(u, v)[0], directed_hausdorff(v,

u)[0])

return asy

95

.15 LENGTH

def Length(c_cycle, v_cycle):

lenght = 0

for i in np.arange(len(c_cycle)-1):

x = v_cycle[i+1] - v_cycle[i]

y = c_cycle[i+1] - c_cycle[i]

lenght += np.linalg.norm([x, y])

return lenght

.16 MAXIMUM DISTANCE

def Maximum_distance(c_cycle, v_cycle):

c2 = c_cycle**2

v2 = v_cycle**2

md = np.max((c2+v2)**0.5)

return md

.17 CURVATURE OF MEAN LINE

In the next three features the arguments of the functions will always be (𝑐𝐴, 𝑐𝐵, 𝑣𝐴, 𝑣𝐵).

def Curvature_of_mean_line(cA, cB, vA, vB):

mean_line = np.zeros((len(cA), 2))

for i in np.arange(len(cA)):

ip = np.argmin(vB-vA[i])

xm = 0.5*(vA[i]+vB[ip])

ym = 0.5*(cA[i]+cB[ip])

96

mean_line[i, 0] = xm

mean_line[i, 1] = ym

r = np.correlate(mean_line[:, 0], mean_line[:, 1])[0]

return r

.18 NUMBER OF SELF INTERSECTIONS

def Self_intersection(cA, cB, vA, vB):

sc = 0

for i in np.arange(len(cA)-1):

j = i+1

ip = np.argmin(vB-vA[i])

jp = np.argmin(vB-vA[j])

ij = Versor(Vector2D([vA[i], cA[i]], [vA[j], cA[j

]]))

iip = Versor(Vector2D([vA[i], cA[i]], [vB[ip], cB[

ip]]))

ijp = Versor(Vector2D([vA[i], cA[i]], [vB[jp], cB[

jp]]))

if(np.dot(np.cross(ij, iip), np.cross(ij, ijp))):

sc += 1

return sc

Where the two functions Vector2D and Versor are respectively:

def Vector2D(a, b):

x = a[0] - b[0]

y = a[1] - b[1]

vector = [x, y]

97

return vector

def Versor(vector):

y = vector/np.linalg.norm(vector)

return y

.19 AREA

def Area(cA, cB, vA, vB):

ar = 0

for i in np.arange(len(cA)-1):

j = i+1

ip = np.argmin(vB-vA[i])

jp = np.argmin(vB-vA[j])

vdiff = 0.5*np.abs(vA[j]-vA[i])

ar += vdiff*(np.abs(cB[ip] - cA[i]) + np.abs(cB[jp]

- cA[j]))

return ar

.20 FFT-BASED THRESHOLD

import numpy as np

fft = np.fft.fft(variance)

threshold = np.mean(np.abs(fft)/len(variance)*2)

.21 LOCAL PEAK-BASED THRESHOLD

import numpy as np

from scipy.signal import argrelextrema

98

c = argrelextrema(variance,np.greater) # gives the index of local

maxima

threshold = np.mean(variance[c])

.22 CONVERSION FLAC FILES (COOLL)

Here follows the algorithm for correctly extracting the files, from a .𝑓 𝑙𝑎𝑐 format to a numpy

array in python. Code :

import numpy as np

import soundfile as sf

def

loadfiles(current_audiofiles,voltage_audiofiles,c_scalef,v_scalef):

current=[]

voltage=[]

for i in np.arange(len(current_audiofiles)): #np.arange(20):

audio, freq = sf.read(current_audiofiles[i])

current.append([audio])

for i in np.arange(len(voltage_audiofiles)):

audio, freq = sf.read(voltage_audiofiles[i])

voltage.append([audio])

current=np.array(current)

voltage=np.array(voltage)

#scale factor processing

for i in np.arange(len(current_audiofiles)):

current[i,0]*=c_scalef[i]

voltage[i,0]*=v_scalef[i]

99

time=(np.arange(0,len(audio))/freq)

current = current.reshape(840,-1)

voltage = voltage.reshape(840,-1)

return current,voltage,time,freq

This algorithm extrapolates all the .𝑓 𝑙𝑎𝑐 signals giving 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 which are

two vectors of dimension [840,599996], a time vector that contains the signals instants of dimension

[1,599996] and 𝑓𝑟𝑒𝑞 = 100000 that gives the sampling frequency .

.23 CONVERSION MAT FILES (LIT)

import scipy.io as sp

mat = sp.loadmat(’your/address/to/the/waveform.mat’)

current = mat[’iShunt’].reshape(1,-1)

current = curr[0,:]

voltage = mat[’vGrid’].reshape(1,-1)

voltage = volt[0,:]

start_instants = []

for i,el in enumerate(mat[’events_r’]):

if el == 1 :

start_instants.append(i)

.24 SEQUENTIAL BACKWARD SELECTION

Here follows the python code of the function (RASCHKA; MIRJALILI, 2019) :

from sklearn.base import clone

from itertools import combinations

class SBS():

def __init__(self, estimator, k_features, scoring=accuracy_score,

100

test_size=0.20, random_state=1):

self.scoring = scoring

self.estimator = clone(estimator)

self.k_features = k_features

self.test_size = test_size

self.random_state = random_state

def fit(self, X, y):

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=self.test_size,

random_state=self.random_state)

dim = X_train.shape[1]

self.indices_ = tuple(range(dim))

self.subsets_ = [self.indices_]

score = self._calc_score(X_train, y_train,

X_test, y_test, self.indices_)

self.scores_ = [score]

while dim > self.k_features:

scores = []

subsets = []

for p in combinations(self.indices_, r=dim - 1):

score = self._calc_score(X_train, y_train,

X_test, y_test, p)

scores.append(score)

subsets.append(p)

best = np.argmax(scores)

self.indices_ = subsets[best]

self.subsets_.append(self.indices_)

dim -= 1

101

self.scores_.append(scores[best])

self.k_score_ = self.scores_[-1]

return self

def transform(self, X):

return X[:, self.indices_]

def _calc_score(self, X_train, y_train, X_test, y_test, indices):

self.estimator.fit(X_train[:, indices], y_train)

y_pred = self.estimator.predict(X_test[:, indices])

score = self.scoring(y_test, y_pred)

return score

.25 PRINCIPAL COMPONENTS ANALYSIS

Despite what we see for SBS, here fortunately the PCA class is already present in the scikit-learn

python’s library, thus its implementation will be really easy by using the following code :

from sklearn.decomposition import PCA

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.neighbors import KNeighborsClassifier

from sklearn.decomposition import PCA

for i in np.arange(6,len(df.columns)-1):

pipe = make_pipeline(StandardScaler(),PCA(n_components=i), knn)

pipe.fit(X_train, y_train)

print(i, ’Test accuracy %.3f’ % pipe.score(X_test,y_test))

In the previous code, an example with the K-Neighbors classifier was made. As you can see,

the model evaluation here was done by simply reduce the number of principal components, in a way to

observe if we can obtain better classification accuracy by reducing the dimension of the new subspace,

102

therefore operating features extraction.

.26 GRID SEARCH

from sklearn.model_selection import GridSearchCV

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

svm = SVC(kernel=’linear’, C=10000.0, random_state=0)

pipe_svm = make_pipeline(StandardScaler(),svm)

param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0,

1000.0,10000.0]

param_grid = [{’svc__C’: param_range,

’svc__kernel’: [’linear’],

’svc__random_state’:[0]},

{’svc__C’: param_range,

’svc__gamma’: param_range,

’svc__kernel’: [’rbf’],

’svc__random_state’:[1]}]

gs = GridSearchCV(estimator=pipe_svm,

param_grid=param_grid,

scoring=’accuracy’,

refit=True,

cv=10,

n_jobs=-1)

gs = gs.fit(X_train, y_train)

print(gs.best_score_)

print(gs.best_params_)

clf = gs.best_estimator_

103

print(’Test accuracy: %.3f’ % clf.score(X_test, y_test))

In the previous code the SVM classifier was evaluated. As you can see here the classifier was evaluated

over three parameters : the regulation parameter C, the type of kernel used and the value of the random

state (RASCHKA; MIRJALILI, 2019).

.27 DATASET PREPROCESSING

import numpy as np

import pandas as pd

from sklearn.impute import SimpleImputer

from sklearn.model_selection import train_test_split

#Substitution of NaN

imr = SimpleImputer(missing_values=np.nan,strategy=’mean’)

imr=imr.fit(df.values)

imputed_data=imr.transform(df.values)

df=pd.DataFrame(data=imputed_data)

#Label encoding

class_mapping= {label : idx for idx,label in

enumerate(np.unique(df[’Appliance’]))}

df[’Appliance’]=df[’Appliance’].map(class_mapping)

#Dataset splitting

X,y = df.iloc[:,1:].values, df.iloc[:,0].values

X_train, X_test, y_train, y_test

=train_test_split(X,y,test_size=0.20,random_state=0)

In the code above 𝑑𝑓 is the dataset being processed. In particular, when 𝑑𝑓 is split into the

training and the test dataset 𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒 = 0.20 means that the 20% of the dataset will be used for the test

procedure; with the 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 parameter, instead, we provide a fixed random seed for the internal

pseudo-random number generator that is used for shuffling the dataset before splitting.

104

.28 CLASSIFIER MODEL SAVING AND LOADING

from sklearn.ensemble import RandomForestClassifier

import joblib

forest = RandomForestClassifier(n_components=22, n_jobs=-1,

random_state=0)

forest.fit(X_train,y_train)

#save model

joblib.dump(forest, ’random_forest_classifier’) # (classifier,

file_name)

#import model

forest = joblib.load(’your/path/to/random_forest_classifier’)

.29 COOLL DATASET TEST CODE

import joblib

import get_file as gf

lr = joblib.load(’logistic_regression’)

std = joblib.load(’std_scaler’)

test = gf.x

class_labels = gf.class_mapping

prediction = lr.predict(std.transform(test))

for label,number in class_labels.items():

if prediction == number :

print("Appliance name: ", label)

where 𝑔𝑒𝑡_𝑓𝑖𝑙𝑒 is a function that elaborates the .𝑓 𝑙𝑎𝑐 file of the waveform the system has been fed,

and calculates its features saving them into a vector 𝑥; this function also provide a dictionary called

105

𝑐𝑙𝑎𝑠𝑠_𝑚𝑎𝑝𝑝𝑖𝑛𝑔 for giving as an output the label of the detected load. Notice that, since the example

refers to logistic regression, even the model of the standard scaler has been imported, after being

previously fitted with training data and saved .

.30 LIT DATASET TEST CODE

import scipy.io as sp

import function as fn

import align_detect as adb

import numpy as np

import pandas as pd

import joblib

forest = joblib.load(’random_forest’)

class_labels = {’A0’:0,’B0’:1,’C0’:2,’D0’:3,’E0’:4,’F0’:5,’G0’:6,

’H0’:7,’I0’:8,’J0’:9,’K0’:10,’L0’:11,’M0’:12,’N0’:13,’O0’:14,

’P0’:15,’Q0’:16,’R0’:17,’S0’:18,’T0’:19,’U0’:20,’V0’:21,

’W0’:22,’X0’:23,’Y0’:24,’Z0’:25}

def test(file) :

mat = sp.loadmat(file)

curr = mat[’iShunt’].reshape(1,-1)

curr = curr[0,:]

volt = mat[’vGrid’].reshape(1,-1)

volt = volt[0,:]

instants = []

for i,el in enumerate(mat[’events_r’]):

if el == 1 :

instants.append(i)

te,_,_ = adb.mod_detector(curr,instants)

106

for j in np.arange(len(instants)):

if j == 0 :

if te[j,1] - instants[j] < 1024 or

(te[j,1]-instants[j])>instants[j] :

It,Vt = curr[instants[j]:instants[j]+20*256] ,

volt[instants[j]:instants[j]+20*256]

Is,Vs = curr[te[j,1]+22*256:te[j,1]+42*256] ,

volt[te[j,1]+22*256:te[j,1]+42*256]

else :

It,Vt = curr[instants[j]:te[j,1]],

volt[instants[j]:te[j,1]]

Is,Vs = curr[te[j,1]+2*256:te[j,1] + 22*256],

volt[te[j,1]+2*256:te[j,1] + 22*256]

else :

if te[j,1] - instants[j] < 1024 or

(te[j,1]-instants[j])>instants[j]:

It,Vt,_ =

adb.buffer(instants[j],instants[j]+20*256,curr,volt,

part=’t’)

Is,Vs,_ =

adb.buffer(instants[j]+22*256,instants[j]+42*256,curr,volt,

part=’s’)

else :

It,Vt,_ =

adb.buffer(instants[j],te[j,1],curr,volt,part=’t’)

Is,Vs,_ =

adb.buffer(instants[j],te[j,1],curr,volt,part=’s’)

test_s = fn.features_steady(Is,Vs,Is*Vs)

107

test_t = fn.features_transient(It,Vt,It*Vt)

test = np.concatenate((test_t,test_s), axis=1)

prediction = forest.predict(test)

for label,number in class_labels.items():

if prediction == number :

print("Appliance", j+1, " name: ", label)

The function 𝑡𝑒𝑠𝑡 gets the .𝑚𝑎𝑡 file as an input and extrapolate the current, the voltage signals

and, also, the turn-on instants for using the modified detector, this one imported from the .𝑝𝑦 file called

𝑎𝑙𝑖𝑔𝑛_𝑑𝑒𝑡𝑒𝑐𝑡.

Then the transient detection is performed: note that if the detected transient is too short or too long, the

algorithm decides to take an interval of 20 cycles of the signal. Then, after detection, disaggregation is

made (in a sequence of loads, not needed for the first one) always calling a function from the 𝑎𝑙𝑖𝑔𝑛_𝑑𝑒𝑡𝑒𝑐𝑡

file.

Finally features are calculated with the help of 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.𝑝𝑦, where all the features’ algorithms explained

in Chapter 3 are contained, and then the RF model elaborates its prediction.

.31 DISAGGREGATION

def buffer(t_start,t_end,c_signal,v_signal, part, n_cycles = 10):

phi = (t_start - t_end)%256

if part == ’s’ :

temp_c = c_signal[t_start - (n_cycles+2)*256 : t_start -2*256]

curr_ = c_signal[t_end +2*256 + phi: t_end+ (n_cycles+2)*256 +

phi]

x = np.argmax(np.correlate(curr_,temp_c,mode = ’full’))%256

curr_ = c_signal[t_end +2*256 + x + phi : t_end+

(n_cycles+2)*256 + x + phi] - temp_c

108

volt_ = v_signal[t_end +2*256 + x + phi :

t_end+(n_cycles+2)*256 + x + phi]

if part == ’t’ :

diff = t_end - t_start

temp_c = c_signal[t_start - (2 + int(diff/256))*256 : t_start -

(2 + int(diff/256))*256 + diff]

curr_ = c_signal[t_start : t_end] , c_signal[t_start : t_end

]

x = np.argmax(np.correlate(curr_,temp_c,mode = ’full’))%256

curr_ = c_signal[t_start + x + phi : t_end + x + phi] - temp_c

volt_ = v_signal[t_start + x + phi : t_end + x + phi]

curr_ = np.array(moving_average(curr_,4))

volt_ = np.array(moving_average(volt_,4))

return curr_,volt_

The function use to make disaggregation is called 𝑏𝑢𝑓𝑓𝑒𝑟 and takes as parameters the start and end

instants of the transient, the whole current and voltage signals that has to be analyzed, a parameter called

𝑝𝑎𝑟𝑡 ∈ [𝑠,𝑡] to decide if isolate the transient or the steady state of the signal, and 𝑛_𝑐𝑦𝑐𝑙𝑒𝑠, which value

correspond to the length of the steady state interval to extrapolate.

The most important part of the algorithm, to be sure that isolation has been made correctly,

is review 𝑡𝑒𝑚𝑝 and the current signal phase, to subtract one from each other correctly . Note that no

subtraction will be made over the voltage signal, since the voltage line is very robust and its signal only

slightly changes when some appliances turned on.

To ensure phase alignment, first of all the variable 𝑝ℎ𝑖 is calculated. This variable takes into account the

number of samples per cycles and ensures a correct alignment from a sample point view, by granting that

the start instants of both 𝑡𝑒𝑚𝑝 and 𝑐𝑢𝑟𝑟_ have the same initial phase.

This should be enough for alignment, but actually is not. Infact appliances with different power factors

can introduce, when they turn on, a phase component in the signal. To compensate this additional phase a

further shift component 𝑥 has been added.

The variable 𝑥 has been calculated as the index who maximizes the correlation between 𝑐𝑢𝑟𝑟_ and 𝑡𝑒𝑚𝑝.

109

Correlation is infact a tool that we can use to look for a specific shape of, for example, a signal inside

another signal. In this process the two signals will be overlapped, shifted sample by sample and the

correlation will tracks qualitatively how much the two signals line up.

All the source codes has been made available on the GitHub online repository :

https://github.com/giobraglia/Signal-Processing-Features

.32 FINAL LAB TESTS RESULTS

In the next pages the final results obtained for the evaluation of the proposed NILM algorithm

in MElting Lab of Unimore are presented. For each group of waveform all the predicted labels for each

classifier were recorded. Each group is marked by a "Waveform number", to retrieve the waveform in

the Lab Dataset, and the "GROUP"number, which indicates the appliances recorded in the waveform. In

particular, the cells highlighted in red represents the errors; at the end of each columns the number of

errors is resumed.

https://github.com/giobraglia/Signal-Processing-Features

CLASSIFICATION TEST

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LD0 LD0 LD0 LA0 LA0 LA0 LA0
LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0
LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 0 0 0 0

0 0 0 0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0
0 0 0 0 0 1 1 1

GROUP : 1LB0 GROUP : 1LB0 GROUP : 1LB0 GROUP : 1LB0
Waveform number: 10005 Waveform number: 10006 Waveform number: 10007 Waveform number: 10008
LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LB0 LB0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LC0 LB0 LB0
LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LA0 LC0 LB0 LB0
LB0 LC0 LC0 LC0 LA0 LB0 LB0 LB0 LB0 LC0 LC0 LC0 LA0 LC0 LB0 LC0
LB0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LA0 LC0 LB0 LB0
LB0 LC0 LC0 LC0 LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LB0 LC0 LC0 LC0
LB0 LC0 LC0 LC0 LF0 LC0 LC0 LC0 LB0 LC0 LB0 LB0 LF0 LC0 LC0 LC0
LA0 LC0 LB0 LB0 LB0 LC0 LB0 LC0 LB0 LC0 LB0 LB0 LF0 LC0 LC0 LC0
LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LF0 LC0 LC0 LC0
LB0 LB0 LB0 LC0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LC0 LC0 LC0
LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LB0 LB0 LB0 LA0 LB0 LB0 LC0
LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LB0 LC0 LB0 LB0 LA0 LC0 LB0 LB0
LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0
LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0
LD0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LF0 LC0 LC0 LB0 LB0 LC0 LC0 LB0
LA0 LC0 LB0 LC0 LB0 LB0 LB0 LB0 LF0 LC0 LC0 LC0 LB0 LB0 LB0 LB0
LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LC0 LC0 LC0 LB0 LB0 LB0 LB0

6 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LC0 LC0 LC0 LD0 LC0 LB0 LC0
LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LC0 LC0 LC0 LB0 LB0 LB0 LB0
LB0 LC0 LB0 LC0 LA0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0
LB0 LC0 LD0 LB0 LA0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0
LB0 LB0 LB0 LB0 LA0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0
LB0 LC0 LC0 LC0 LD0 LC0 LB0 LC0 LB0 LB0 LB0 LB0 LF0 LC0 LC0 LC0
LF0 LC0 LC0 LB0 LF0 LC0 LC0 LC0 LB0 LC0 LB0 LC0 LF0 LC0 LC0 LF0
LF0 LC0 LC0 LC0 LF0 LC0 LC0 LC0 LB0 LC0 LB0 LC0 LA0 LC0 LD0 LC0
LF0 LC0 LC0 LC0 LF0 LC0 LC0 LF0 LB0 LB0 LB0 LB0 LF0 LC0 LC0 LF0
LF0 LC0 LC0 LB0 LF0 LC0 LC0 LC0 LB0 LB0 LB0 LB0 LF0 LC0 LC0 LC0
LA0 LC0 LD0 LB0 LF0 LC0 LC0 LC0 LB0 LB0 LB0 LB0 LD0 LC0 LB0 LB0
LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LB0 LB0 LB0 LB0 LD0 LC0 LB0 LB0
LF0 LC0 LC0 LC0 LB0 LB0 LB0 LB0 LB0 LC0 LB0 LB0 LA0 LC0 LB0 LB0
LB0 LC0 LC0 LC0 LB0 LB0 LB0 LB0 LB0 LC0 LB0 LC0 LB0 LC0 LB0 LB0
LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LA0 LC0 LB0 LB0 9 0 0 2
LA0 LB0 LD0 LB0 LB0 LC0 LB0 LB0 LB0 LC0 LC0 LC0
LB0 LB0 LB0 LB0 9 0 0 0 1 0 0 0

8 0 3 0

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LD0 LD0 LD0 LD0 LA0 LA0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0
LA0 LD0 LD0 LD0 LA0 LA0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0
LA0 LA0 LD0 LD0 LA0 LA0 LD0 LD0 LA0 LD0 LD0 LD0 LD0 LD0 LD0 LD0
LA0 LD0 LD0 LD0 LA0 LA0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0
LD0 LD0 LD0 LD0 LA0 LA0 LD0 LD0 LA0 LD0 LD0 LD0 LD0 LD0 LD0 LD0
LD0 LD0 LD0 LD0 LA0 LA0 LD0 LD0 LA0 LA0 LD0 LD0 LD0 LD0 LD0 LD0
LA0 LD0 LD0 LD0 6 6 0 0 LD0 LA0 LD0 LD0 LD0 LD0 LD0 LD0
LA0 LA0 LD0 LD0 LD0 LA0 LD0 LD0 LA0 LD0 LD0 LD0

5 2 0 0 LA0 LA0 LD0 LD0 LD0 LD0 LD0 LD0
4 4 0 0 LA0 LA0 LD0 LD0

LD0 LD0 LD0 LD0
LD0 LD0 LD0 LD0

2 1 0 0

GROUP : 1LA0 GROUP : 1LA0 GROUP : 1LA0 GROUP : 1LA0
Waveform number: 10001 Waveform number: 10002 Waveform number: 10003 Waveform number: 10004

GROUP : 1LC0 GROUP : 1LC0 GROUP : 1LC0 GROUP : 1LC0
Waveform number: 10009 Waveform number: 10010 Waveform number: 10011 Waveform number: 10012

GROUP : 1LD0 GROUP : 1LD0 GROUP : 1LD0 GROUP : 1LD0
Waveform number: 10013 Waveform number: 10014 Waveform number: 10015 Waveform number: 10016

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LA0 LA0 LD0 LD0 LA0 LF0 LF0 LF0 LA0 LF0 LF0 LF0 LA0 LF0 LF0 LF0
LA0 LA0 LD0 LD0 LA0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 1 0 0 0
LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LA0 LA0 LD0 LD0
LA0 LF0 LF0 LF0 LA0 LA0 LD0 LD0 3 2 2 2

4 3 3 3 4 3 3 3

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LA0 LA0 LA0 LA0 LA0 LC0 LD0 LB0 LB0 LB0 LA0 LA0 LA0 LD0 LD0 LB0
LA0 LD0 LD0 LB0 LA0 LC0 LD0 LB0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0
LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LD0 LD0 LD0 LA0 LA0 LD0 LB0
LA0 LD0 LD0 LD0 LA0 LD0 LD0 LB0 LA0 LC0 LD0 LB0 LB0 LB0 LD0 LD0
LA0 LA0 LD0 LB0 LA0 LD0 LD0 LB0 LA0 LC0 LD0 LB0 LA0 LC0 LB0 LB0
LA0 LD0 LD0 LB0 LA0 LA0 LD0 LB0 LA0 LA0 LA0 LA0 LA0 LA0 LD0 LB0
LA0 LA0 LA0 LA0 LA0 LA0 LD0 LB0 LA0 LA0 LA0 LA0 LB0 LC0 LA0 LA0
LA0 LC0 LD0 LB0 LA0 LA0 LD0 LB0 LA0 LC0 LC0 LB0 LB0 LC0 LD0 LB0
LA0 LA0 LD0 LB0 LA0 LC0 LD0 LB0 LA0 LC0 LD0 LB0 LA0 LD0 LD0 LC0
LA0 LA0 LA0 LA0 LB0 LB0 LA0 LA0 LA0 LA0 LD0 LB0 0 2 3 1
LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 0 1 5 1

0 3 4 1 0 2 8 0

GROUP : 2LA0LC0 GROUP : 2LA0LC0 GROUP : 2LA0LC0 GROUP : 2LA0LC0
Waveform number: 20005 Waveform number: 20006 Waveform number: 20007 Waveform number: 20008
LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LA0 LC0 LD0 LB0 LA0 LC0 LC0 LB0 LA0 LC0 LD0 LC0 LA0 LC0 LD0 LD0
LA0 LA0 LD0 LB0 LA0 LA0 LA0 LD0 LA0 LA0 LD0 LC0 LA0 LA0 LD0 LD0
LA0 LC0 LC0 LB0 LA0 LA0 LA0 LA0 LA0 LC0 LC0 LB0 LA0 LA0 LD0 LB0
LA0 LC0 LC0 LB0 LB0 LB0 LD0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LB0
LA0 LC0 LC0 LC0 LB0 LC0 LD0 LB0 LA0 LA0 LA0 LA0 LA0 LC0 LD0 LB0
LA0 LA0 LA0 LA0 LA0 LC0 LD0 LB0 LB0 LB0 LD0 LA0 LA0 LA0 LD0 LB0
LA0 LD0 LD0 LB0 LA0 LA0 LA0 LA0 LA0 LC0 LD0 LB0 LA0 LC0 LD0 LB0
LA0 LC0 LD0 LB0 LB0 LB0 LA0 LA0 LA0 LC0 LD0 LB0 LA0 LC0 LD0 LB0
LB0 LB0 LD0 LD0 LA0 LB0 LD0 LB0 LA0 LA0 LA0 LA0 LA0 LA0 LD0 LB0
LA0 LC0 LD0 LB0 LA0 LC0 LD0 LB0 LA0 LC0 LD0 LB0 LA0 LC0 LD0 LA0
LA0 LA0 LA0 LA0 0 0 5 1 LA0 LB0 LD0 LB0 0 0 9 2

0 1 6 1 0 0 7 0

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LB0 LB0 LD0 LD0 LA0 LA0 LA0 LA0 LA0 LA0 LD0 LB0 LA0 LD0 LD0 LB0
LB0 LB0 LD0 LD0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA0
LA0 LD0 LD0 LB0 LB0 LC0 LA0 LA0 LA0 LD0 LD0 LB0 LA0 LA0 LD0 LB0
LA0 LD0 LD0 LB0 LA0 LA0 LA0 LA0 LB0 LB0 LD0 LD0 LA0 LD0 LD0 LB0
LA0 LA0 LD0 LB0 LB0 LB0 LA0 LA0 LA0 LD0 LD0 LB0 0 0 0 3
LA0 LA0 LA0 LA0 LA0 LD0 LD0 LB0 1 1 0 2
LA0 LB0 LD0 LB0 2 2 0 1
LA0 LA0 LA0 LA0

2 3 0 4

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LB0 LC0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LB0 LC0 LC0 LB0 LC0 LB0 LB0
LB0 LC0 LB0 LC0 LD0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LF0 LC0 LC0 LC0
LA0 LC0 LB0 LB0 LD0 LD0 LD0 LD0 LF0 LF0 LC0 LC0 LF0 LC0 LC0 LD0
LB0 LB0 LB0 LB0 LF0 LC0 LC0 LD0 LF0 LC0 LC0 LC0 LF0 LC0 LC0 LC0
LF0 LF0 LA0 LD0 LB0 LC0 LB0 LB0 LF0 LC0 LC0 LF0 LF0 LF0 LB0 LD0
LF0 LC0 LC0 LD0 LD0 LD0 LD0 LD0 LF0 LC0 LC0 LC0 LF0 LC0 LC0 LC0
LF0 LC0 LC0 LF0 LB0 LC0 LB0 LB0 LF0 LC0 LB0 LC0 LB0 LC0 LB0 LB0
LF0 LC0 LC0 LF0 LD0 LD0 LD0 LD0 LF0 LC0 LD0 LD0 LB0 LC0 LB0 LB0
LB0 LB0 LD0 LD0 LF0 LC0 LC0 LC0 LF0 LC0 LC0 LC0 LD0 LD0 LD0 LD0
LB0 LC0 LB0 LB0 LF0 LF0 LC0 LC0 LB0 LC0 LC0 LC0 LF0 LC0 LC0 LC0
LD0 LC0 LB0 LD0 LA0 LC0 LB0 LB0 LF0 LC0 LC0 LC0 LD0 LD0 LD0 LD0
LF0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LB0 LC0 LB0 LC0 LB0 LC0 LB0 LB0
LF0 LC0 LC0 LF0 LB0 LC0 LB0 LB0 LB0 LB0 LB0 LB0 LF0 LD0 LD0 LD0
LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LD0 LD0 LB0 LD0 LF0 LC0 LC0 LC0
LB0 LC0 LB0 LB0 LF0 LF0 LC0 LC0 LF0 LD0 LD0 LD0 LF0 LC0 LC0 LC0
LA0 LD0 LD0 LD0 LD0 LC0 LB0 LC0 LB0 LB0 LB0 LB0 LF0 LC0 LC0 LC0
LB0 LC0 LC0 LB0 LD0 LB0 LD0 LD0 10 1 0 1 LF0 LC0 LC0 LC0

8 1 1 2 5 2 0 0 11 1 0 0

GROUP : 1LF0 GROUP : 1LF0 GROUP : 1LF0 GROUP : 1LF0
Waveform number: 10017 Waveform number: 10018 Waveform number: 10019 Waveform number: 10020

GROUP : 2LA0LB0 GROUP : 2LA0LB0 GROUP : 2LA0LB0 GROUP : 2LA0LB0
Waveform number: 20001 Waveform number: 20002 Waveform number: 20003 Waveform number: 20004

GROUP : 2LA0LD0 GROUP : 2LA0LD0 GROUP : 2LA0LD0 GROUP : 2LA0LD0
Waveform number: 20009 Waveform number: 20010 Waveform number: 20011 Waveform number: 20012

GROUP : 2LB0LD0 GROUP : 2LB0LD0 GROUP : 2LB0LD0 GROUP : 2LB0LD0
Waveform number: 20013 Waveform number: 20014 Waveform number: 20015 Waveform number: 20016

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LB0 LB0 LB0 LB0 LB0 LC0 LB0 LB0 LA0 LC0 LC0 LC0 LA0 LC0 LB0 LB0
LA0 LD0 LD0 LD0 LA0 LC0 LB0 LB0 LD0 LC0 LB0 LC0 LB0 LC0 LB0 LB0
LB0 LB0 LD0 LB0 LA0 LC0 LB0 LC0 LF0 LC0 LC0 LC0 LF0 LC0 LC0 LC0
LA0 LC0 LB0 LB0 LF0 LC0 LC0 LC0 LB0 LC0 LB0 LC0 LF0 LC0 LC0 LC0
LD0 LD0 LD0 LC0 LF0 LC0 LC0 LC0 LA0 LC0 LB0 LB0 LF0 LF0 LF0 LF0
LF0 LF0 LF0 LF0 LB0 LC0 LB0 LB0 LA0 LF0 LF0 LF0 LB0 LC0 LC0 LC0
LF0 LC0 LC0 LC0 LB0 LB0 LB0 LB0 LF0 LC0 LC0 LC0 LB0 LB0 LB0 LB0
LF0 LC0 LC0 LF0 LF0 LF0 LF0 LF0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LB0
LF0 LC0 LC0 LF0 LF0 LC0 LC0 LC0 LA0 LC0 LB0 LB0 LA0 LC0 LB0 LB0
LB0 LC0 LC0 LC0 LF0 LC0 LC0 LF0 LA0 LC0 LB0 LC0 LB0 LC0 LB0 LB0
LB0 LC0 LB0 LB0 LB0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LB0 LC0 LB0 LB0
LB0 LB0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0 LB0 LB0 LB0 LB0
LA0 LC0 LB0 LB0 LB0 LC0 LB0 LC0 LB0 LC0 LB0 LB0 LB0 LC0 LB0 LB0
LB0 LC0 LC0 LC0 LA0 LC0 LB0 LB0 LA0 LC0 LB0 LB0 LA0 LC0 LB0 LB0
LB0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LB0 LC0 LC0 LB0 LB0 LC0 LB0 LB0
LB0 LB0 LB0 LB0 LB0 LC0 LC0 LC0 LB0 LC0 LB0 LC0 LA0 LC0 LD0 LB0

4 2 3 1 3 0 0 0 LB0 LC0 LB0 LB0 7 0 1 0
7 0 0 0

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LD0 LB0 LD0 LB0 LB0 LC0 LC0 LB0 LB0 LC0 LB0 LB0 LF0 LF0 LC0 LD0
LB0 LC0 LB0 LB0 LD0 LD0 LD0 LD0 LF0 LF0 LC0 LD0 LF0 LF0 LC0 LC0
LD0 LD0 LD0 LD0 LB0 LC0 LB0 LB0 LD0 LD0 LB0 LD0 LF0 LC0 LC0 LC0
LB0 LC0 LB0 LC0 LA0 LC0 LB0 LB0 LD0 LD0 LC0 LC0 LB0 LC0 LC0 LC0
LB0 LC0 LB0 LB0 LA0 LD0 LD0 LB0 LB0 LC0 LB0 LB0 LD0 LD0 LD0 LB0
LB0 LC0 LC0 LC0 LD0 LC0 LD0 LB0 LD0 LD0 LD0 LD0 LD0 LD0 LD0 LD0
LB0 LC0 LC0 LB0 LD0 LD0 LD0 LD0 LF0 LD0 LD0 LD0 LB0 LC0 LB0 LC0
LF0 LC0 LC0 LC0 LB0 LC0 LC0 LD0 LA0 LC0 LB0 LB0 LF0 LC0 LC0 LC0
LF0 LF0 LB0 LC0 LB0 LC0 LB0 LC0 LB0 LB0 LD0 LB0 LF0 LC0 LC0 LC0
LF0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LD0 LD0 LB0 LC0 LF0 LC0 LC0 LC0
LF0 LC0 LB0 LC0 LB0 LC0 LC0 LC0 LD0 LD0 LB0 LD0 LB0 LC0 LB0 LD0
LD0 LD0 LB0 LB0 LF0 LD0 LC0 LD0 LA0 LC0 LB0 LB0 LD0 LC0 LC0 LD0
LA0 LD0 LD0 LB0 LD0 LC0 LD0 LB0 LB0 LC0 LB0 LB0 LD0 LD0 LD0 LD0
LD0 LD0 LD0 LB0 LD0 LC0 LD0 LB0 LF0 LC0 LB0 LD0 LD0 LD0 LD0 LD0

5 1 0 0 LF0 LC0 LC0 LF0 5 1 0 0 LB0 LB0 LC0 LC0
4 0 0 1 6 2 0 0

LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF LR SVM KNN RF
LA0 LC0 LB0 LB0 LB0 LC0 LC0 LC0 LF0 LC0 LC0 LF0 LB0 LC0 LC0 LC0
LB0 LC0 LB0 LD0 LB0 LC0 LC0 LC0 LF0 LC0 LC0 LF0 LF0 LC0 LC0 LC0
LB0 LC0 LC0 LC0 LA0 LD0 LD0 LD0 LF0 LC0 LC0 LC0 LF0 LC0 LC0 LC0
LB0 LC0 LC0 LC0 LB0 LC0 LD0 LB0 LD0 LB0 LD0 LB0 LF0 LC0 LC0 LC0
LB0 LC0 LC0 LC0 LB0 LC0 LB0 LB0 LF0 LC0 LC0 LB0 LF0 LC0 LC0 LC0
LD0 LD0 LB0 LB0 LF0 LF0 LF0 LF0 LB0 LB0 LD0 LB0 LB0 LC0 LB0 LD0
LD0 LC0 LD0 LB0 LF0 LC0 LB0 LC0 LD0 LB0 LD0 LB0 LB0 LC0 LB0 LC0
LB0 LD0 LD0 LB0 LB0 LC0 LB0 LF0 LC0 LB0 LB0 LB0 LA0 LC0 LB0 LC0
LB0 LB0 LD0 LD0 LA0 LD0 LD0 LD0 LA0 LB0 LD0 LB0 LB0 LB0 LD0 LB0
LB0 LB0 LD0 LB0 LB0 LC0 LC0 LD0 LC0 LB0 LB0 LB0 LD0 LC0 LD0 LB0
LB0 LB0 LB0 LB0 LF0 LC0 LC0 LC0 LB0 LC0 LD0 LB0 LF0 LF0 LF0 LF0
LA0 LF0 LF0 LF0 LF0 LC0 LC0 LC0 LB0 LC0 LD0 LB0 LB0 LB0 LC0 LC0
LB0 LC0 LC0 LC0 LB0 LC0 LC0 LC0 LD0 LB0 LD0 LB0 LD0 LC0 LB0 LC0
LB0 LC0 LC0 LC0 LB0 LB0 LD0 LB0 LB0 LB0 LB0 LB0 LF0 LC0 LC0 LC0
LF0 LC0 LC0 LC0 LA0 LD0 LD0 LD0 LB0 LB0 LD0 LB0 LF0 LC0 LB0 LD0
LF0 LC0 LB0 LC0 LB0 LC0 LC0 LD0 4 0 8 0 LF0 LC0 LC0 LB0
LF0 LC0 LC0 LC0 LF0 LC0 LC0 LF0 LA0 LB0 LD0 LD0
LF0 LC0 LC0 LC0 3 3 5 5 LB0 LB0 LD0 LB0

4 2 4 2 4 0 4 3

GROUP : 2LB0LF0 GROUP : 2LB0LF0 GROUP : 2LB0LF0 GROUP : 2LB0LF0
Waveform number: 20017 Waveform number: 20018 Waveform number: 20019 Waveform number: 20020

GROUP : 2LC0LD0 GROUP : 2LC0LD0 GROUP : 2LC0LD0 GROUP : 2LC0LD0
Waveform number: 20021 Waveform number: 20022 Waveform number: 20023 Waveform number: 20024

GROUP : 2LC0LF0 GROUP : 2LC0LF0 GROUP : 2LC0LF0 GROUP : 2LC0LF0
Waveform number: 20026 Waveform number: 20027 Waveform number: 20028 Waveform number: 20029

113

REFERENCES

ABADI, Martín; AGARWAL, Ashish; BARHAM, Paul; BREVDO, Eugene; CHEN, Zhifeng; CITRO,
Craig; CORRADO, Greg S.; DAVIS, Andy; DEAN, Jeffrey; DEVIN, Matthieu; GHEMAWAT,
Sanjay; GOODFELLOW, Ian; HARP, Andrew; IRVING, Geoffrey; ISARD, Michael; JIA, Yangqing;
JOZEFOWICZ, Rafal; KAISER, Lukasz; KUDLUR, Manjunath; LEVENBERG, Josh; MANé, Dan;
MONGA, Rajat; MOORE, Sherry; MURRAY, Derek; OLAH, Chris; SCHUSTER, Mike; SHLENS,
Jonathon; STEINER, Benoit; SUTSKEVER, Ilya; TALWAR, Kunal; TUCKER, Paul; VANHOUCKE,
Vincent; VASUDEVAN, Vijay; VIéGAS, Fernanda; VINYALS, Oriol; WARDEN, Pete; WATTENBERG,
Martin; WICKE, Martin; YU, Yuan; ZHENG, Xiaoqiang. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015. Software available from tensorflow.org. Disponível em:
http://tensorflow.org/.

ANCELMO, Hellen; MULINARI, Bruna Machado; POTTKER, Fabiana; LAZZARETTI, André;
BAZZO, Thiago de Paula Machado; OROSKI, Elder; RENAUX, Douglas; LIMA, Carlos Erig;
LINHARES, Robson. A new simulated database for classification comparison in power signature analysis.
In: 20th International Conference on Intelligent Systems Applications to Power Systems. [S.l.: s.n.],
2019. p. 1 – 7.

ANCELMO, Hellen Cristina; GRANDO, Flavio Lori; COSTA, Clayton Hilgemberg; MULINARI,
Bruna Machado; OROSKI, Elder; LAZZARETTI, Andre Eugenio; POTTKER, Fabiana; RENAUX,
Douglas Paulo Bertrand. Automatic power signature analysis using prony method and machine
learning-based classifiers. In: 2nd European Conference on Electrical Engineering and Computer
Science. [S.l.: s.n.], 2018.

BOLLEN, M.H.J.; GU, I.Y.H. Signal Processing of Power Quality Disturbances. [S.l.]: John Wiley &
Sons, 2006.

BOUHOURAS, Aggelos S.; GKAIDATZIS, Paschalis A.; CHATZISAVVAS, Konstantinos C.;
PANAGIOTOU, Evangelos; POULAKIS, Nikolaos; CHRISTOFORIDIS, Georgios C. Load signature
formulation for non-intrusive load monitoring based on current measurements. Energies, v. 10, n. 4, 2017.
ISSN 1996-1073. Disponível em: https://www.mdpi.com/1996-1073/10/4/538.

CHANG, Hsueh-Hsien. Non-intrusive demand monitoring and load identification for energy management
systems based on transient feature analyses. Energies, v. 5, n. 11, p. 4569–4589, 2012.

DANTAS, Pierre; SABINO, Waldir; BATALHA, Maryana. Energy disaggregation via data mining. In:
Proceedings of the 4th Brazilian Technology Symposium. [S.l.: s.n.], 2019. p. 541–546.

DU, Yi; DU, Liang; LU, Bin; HARLEY, R.G.; HABETLER, Thomas. A review of identification and
monitoring methods for electric loads in commercial and residential buildings. In: . [S.l.: s.n.], 2010. p.
4527 – 4533.

FAWCETT, Tom. Introduction to roc analysis. Pattern Recognition Letters, v. 27, p. 861–874, 06 2006.

http://tensorflow.org/
https://www.mdpi.com/1996-1073/10/4/538

114

FIGUEIREDO, Marisa; ALMEIDA, Ana; RIBEIRO, Bernardete. Home electrical signal disaggregation
for non-intrusive load monitoring systems. Neurocomputing, v. 96, p. 66–73, 2012. ISSN 0925-2312.

HART, G. W. Nonintrusive appliance load monitoring. Proceedings of the IEEE, v. 80, p. 1870 – 1891,
04 1992.

HASSAN, Taha; JAVED, Fahad; ARSHAD, Naveed. An empirical investigation of V-I trajectory based
load signatures for non-intrusive load monitoring. IEEE Transactions on Smart Grid, v. 5, n. 2, p.
870–878, 2014.

LIANG, J.; NG, S. K. K.; KENDALL G.AND CHENG, J. W. M. Load signature study –part i: Basic
concept, structure and methodology. IEEE Transactions on Power Delivery, v. 25, n. 2, p. 870–878,
2010.

Linhares, R. R.; Lima, C. R. E.; Renaux, D. P. B.; Pottker, F.; Oroski, E.; Lazzaretti, A. E.; Mulinari, B. M.;
Ancelmo, H. C.; Gamba, A.; Bernardi, L. A.; Lima, L. T. One-millisecond low-cost synchronization of
wireless sensor network. In: VIII Brazilian Symposium on Computing Systems Engineering. [S.l.:
s.n.], 2018.

LLC, Google. Google Colab. 2014. Disponível em: https://colab.research.google.com/notebooks/
welcome.ipynb?hl=it.

Mulinari, B. M.; de Campos, D. P.; da Costa, C. H.; Ancelmo, H. C.; Lazzaretti, A. E.; Oroski, E.;
Lima, C. R. E.; Renaux, D. P. B.; Pottker, F.; Linhares, R. R. A new set of steady-state and transient
features for power signature analysis based on v-i trajectory. In: 2019 IEEE PES Innovative Smart
Grid Technologies Conference - Latin America (ISGT Latin America). [S.l.: s.n.], 2019. p. 1–6.

MULINARI, Bruna Machado; LINHARES, Robson; CAMPOS, Daniel; COSTA, Clayton; ANCELMO,
Hellen; LAZZARETTI, André; OROSKI, Elder; LIMA, Carlos Erig; RENAUX, Douglas; POTTKER,
Fabiana. A new set of steady-state and transient features for power signature analysis based on v-i
trajectory. In: IEEE PES Innovative Smart Grid Technologies Conference - Latin America. [S.l.:
s.n.], 2019. p. 1–6.

NAIT-MEZIANE, Mohamed; RAVIER, Philippe; ABED-MERAIM, Karim; LAMARQUE, Guy;
BUNETEL, Jean-Charles; RAINGEAUD, Yves. Electrical transient modeling for appliance
characterization. EURASIP Journal on Advances in Signal Processing, v. 55, p. 1–19, 12 2019.

Nait Meziane, M.; Ravier, P.; Lamarque, G.; Le Bunetel, J.; Raingeaud, Y. High accuracy event detection
for non-intrusive load monitoring. In: 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). [S.l.: s.n.], 2017. p. 2452–2456.

NAIT-MEZIANE, Mohamed; RAVIER, Philippe; LAMARQUE, Guy; BUNETEL, Jean-Charles Le;
RAINGEAUD, Yves. High accuracy event detection for non-intrusive load monitoring. In: International
Conference on Acoustics, Speech, and Signal Processing. [S.l.: s.n.], 2017.

https://colab.research.google.com/notebooks/welcome.ipynb?hl=it
https://colab.research.google.com/notebooks/welcome.ipynb?hl=it

115

NASREEN, Shamila. A survey of feature selection and feature extraction techniques in machine
learning,sai,2014. In: . [S.l.: s.n.], 2014.

PAL, M. Random forest classifier for remote sensing classification. International Journal
of Remote Sensing, Taylor and Francis, v. 26, n. 1, p. 217–222, 2005. Disponível em:
https://doi.org/10.1080/01431160412331269698.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL, O.;
BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.;
COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, v. 12, p. 2825–2830, 2011.

PICON, Thomas; MEZIANE, Mohamed Nait; RAVIER, Philippe; LAMARQUE, Guy; NOVELLO,
Clarisse; BUNETEL, Jean-Charles Le; RAINGEAUD, Yves. COOLL: Controlled on/off loads
library, a public dataset of high-sampled electrical signals for appliance identification. arXiv preprint
arXiv:1611.05803 [cs.OH], 2016.

Pöttker, F.; Lazzaretti, A. E.; Renaux, D. P. B.; Linhares, R. R.; Lima, C. R. E.; Ancelmo, H. C.; Mulinari,
B. M. Non-intrusive load monitoring: A multi-agent architecture and results. In: 2018 2nd European
Conference on Electrical Engineering and Computer Science (EECS). [S.l.: s.n.], 2018. p. 328–334.

RASCHKA, Sebastian; MIRJALILI, Vahid. Python Machine Learning, 3rd Ed. 3. ed. Birmingham,
UK: Packt Publishing, 2019. ISBN 978-1789955750.

RAYBAUT, Pierre. Spyder-documentation. Available online at: pythonhosted. org, 2009.

Renaux, D.; Linhares, R.; Pottker, F.; Lazzaretti, A.; Lima, C.; Coelho Neto, A.; Campaner, M. Designing
a novel dataset for non-intrusive load monitoring. In: 2018 VIII Brazilian Symposium on Computing
Systems Engineering (SBESC). [S.l.: s.n.], 2018. p. 243–249.

RENAUX, Douglas P. B.; LIMA, Carlos R. Erig; POTTKER, Fabiana; OROSKI, Elder; LAZZARETTI,
Andre E.; LINHARES, Robson R.; ALMEIDA, Andressa R.; COELHO, Adil O.; HERCULES, Mateus C.
Non-Intrusive Load Monitoring: an Architecture and its evaluation for Power Electronics loads. In: IEEE
International Power Electronics and Application Conference and Exposition (PEAC). [s.n.], 2018.
p. 1–6. Disponível em: https://ieeexplore.ieee.org/document/8590472/.

RENAUX, Douglas Paulo Bertrand; LINHARES, Robson Ribeiro; POTTKER, Fabiana; LAZZARETTI,
Andre Eugenio; LIMA, Carlos Eduardo Erig de; COELHO-NETO, Adil; CAMPANER, Mateus Hercules.
Designing a novel dataset for non-intrusive load monitoring. In: VIII Brazilian Symposium on
Computing Systems Engineering. [S.l.: s.n.], 2018.

RENAUX, Douglas Paulo Bertrand; LINHARES, Robson Ribeiro; POTTKER, Fabiana; LAZZARETTI,
Andre Eugenio; LIMA, Carlos Eduardo Erig de; COELHO-NETO, Adil; CAMPANER, Mateus Hercules.
Designing a novel dataset for non-intrusive load monitoring. In: VIII Brazilian Symposium on
Computing Systems Engineering. [S.l.: s.n.], 2018.

https://doi.org/10.1080/01431160412331269698
https://ieeexplore.ieee.org/document/8590472/

116

RUANO, Antonio; HERNANDEZ, Alvaro; UREñA, Jesús; RUANO, Maria; GARCíA, Juan. Nilm
techniques for intelligent home energy management and ambient assisted living: A review. Energies,
v. 12, p. 2203, 06 2019.

Scholkopf, B.; Kah-Kay Sung; Burges, C. J. C.; Girosi, F.; Niyogi, P.; Poggio, T.; Vapnik, V. Comparing
support vector machines with gaussian kernels to radial basis function classifiers. IEEE Transactions on
Signal Processing, v. 45, n. 11, p. 2758–2765, 1997.

UKIL, Abhisek; ŽIVANOVIć, Rastko. Adjusted haar wavelet for application in the power systems
disturbance analysis. Digital Signal Processing, v. 18, n. 2, p. 103 – 115, 2008.

WANG, A.; CHEN, B.; WANG, C.; HUA, D.D. Non-intrusive load monitoring algorithm based on
features of v–i trajectory. Electric Power Systems Research, v. 157, p. 134–144, 04 2018.

WANG, A. Longjun; CHEN, B. Xiaomin; WANG, C. Gang; HUA, D. D. Non-intrusive load monitoring
algorithm based on features of V–I trajectory. Electric Power Systems Research, v. 157, p. 134–144,
2018.

XU, Yun; GOODACRE, Royston. On splitting training and validation set: A comparative study of
cross-validation, bootstrap and systematic sampling for estimating the generalization performance of
supervised learning. Journal of Analysis and Testing, v. 2, 10 2018.

ZOHA, Ahmed; GLUHAK, Alexander; IMRAN, Muhammad; RAJASEGARAR, Sutharshan.
Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors (Basel,
Switzerland), v. 12, p. 16838–16866, 12 2012.

	Capa
	Title Page
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Summary
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.2.1 General Objective
	1.2.2 Specific Objectives

	1.3 Structure of this Document

	2 Related Works
	2.1 Non-Intrusive Load Monitoring
	2.2 Event Detection
	2.3 Feature Extraction
	2.4 Classification Methods
	2.5 Contributions of This Work

	3 Theoretical Aspects
	3.1 DETECTION ALGORITHM
	3.2 FEATURES
	3.2.1 Common Features
	3.2.2 Electrical Power Features
	3.2.3 V-I Trajectory Features

	3.3 CLASSIFIERS
	3.3.1 Logistic Regression
	3.3.2 Support Vector Machine
	3.3.3 Random Forest
	3.3.4 K-Nearest-Neighbors

	4 Methods
	4.1 DETECTION METHOD AND TUNING
	4.1.1 Detector Tuning
	4.1.1.1 FFT-based threshold
	4.1.1.2 Local Peak-based Threshold

	4.1.2 Disaggregation

	4.2 Datasets
	4.2.1 COOLL Dataset
	4.2.2 LIT Dataset
	4.2.3 Lab Dataset

	4.3 TRAINING AND MODEL EVALUATION
	4.3.1 Data Pre-processing
	4.3.2 Sequential Backward Selection
	4.3.3 Principal Component Analysis
	4.3.4 Grid Search

	4.4 Model Evaluation Metrics
	4.5 Embedded System

	5 Results and Discussions
	5.1 Detection
	5.2 Classification Results
	5.2.1 Detailed Analysis
	5.2.1.1 Logistic Regression
	5.2.1.2 Support Vector Machine
	5.2.1.3 K-Nearest-Neighbors
	5.2.1.4 Random Forest

	5.3 Results in the Embedded System
	5.3.1 COOLL Dataset
	5.3.2 LIT Dataset

	5.4 Lab Tests on real measurements
	5.4.1 Building a new feature dataset for the optimization of classifiers
	5.4.2 Validation of NILM algorithm on test dataset

	6 Conclusions and Future Works
	Appendix
	A Python Codes
	.1 Detector
	.2 Moving Average Filter
	.3 Peak
	.4 Median
	.5 Covariance
	.6 Steady State
	.7 FFT
	.8 Active Power
	.9 Reactive Power
	.10 Apparent Power
	.11 Extrapolate Cycle / Current Span
	.12 Angle / Distance between maximum and minimum point
	.13 Area with Loop Direction
	.14 Asymmetry
	.15 Length
	.16 Maximum Distance
	.17 Curvature of Mean Line
	.18 Number of Self Intersections
	.19 Area
	.20 FFT-based Threshold
	.21 Local peak-based Threshold
	.22 Conversion Flac files (COOLL)
	.23 Conversion MAt files (LIT)
	.24 Sequential Backward Selection
	.25 Principal Components Analysis
	.26 Grid Search
	.27 Dataset Preprocessing
	.28 Classifier model saving and loading
	.29 COOLL Dataset test code
	.30 LIT Dataset test code
	.31 Disaggregation
	.32 Final Lab Tests Results

	References

