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“There is a theory which states that if ever anyone

discovers exactly what the Universe is for and why

it is here, it will instantly disappear and be

replaced by something even more bizarre and

inexplicable.

There is another theory which states that this has

already happened.”

— Douglas Adams



ABSTRACT

ITABORAHY FILHO, Marco Antonio. Bio-inspired Optimization Algorithms Applied to the GAPID
Control of a Buck Converter. 2021. 59 p. Dissertation (Master’s Degree in Electrical Engineering) –
Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2021.

The objective of this work is to realize a comparative study of which bio-inspired metaheuristic strate-
gies are the best to be used when finding the optimal gains for a Gaussian Adaptive PID control system
applied to a Buck Converter. This comes from two necessities, the first one is that to surpass the per-
formance of linear control systems a more advanced strategy such as adaptive control is required; the
second is that since there are no deterministic optimization methods for such strategies, the use of
metaheuristics is deemed necessary, and according to the No Free Lunch theorem such comparative
studies ought to be made to understand what optimization techniques ares better suitable for such a
problem. The chosen techniques were the Genetic Algorithm, the Particle Swarm Optimization and the
Differential Evolution. The Gaussian function is employed as the adaptive rule because it is a smooth
curve with smooth derivatives that avoids the potential of chattering and abrupt control changes. After
evaluating the responses found from simulating all variations of each of the optimization strategies
we were able to create an analytical and statistical comparison of each technique and show how an
adaptive control system can create a faster and more robust response when compared to the linear
PID.

Keywords: Adaptive PID control. Genetic Algorithm. PSO. Differential Evolution.



RESUMO

ITABORAHY FILHO, Marco Antonio. Bio-inspired Optimization Algorithms Applied to the GAPID
Control of a Buck Converter. 2021. 59 f. Dissertation (Master’s Degree em Electrical Engineering)
– Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2021.

O objetivo deste trabalho é criar um estudo comparativo de quais estratégias metaheurísticas bioinspi-
radas podem ser as melhores para otimizar os ganhos ótimos de um sistema de controle PID Adap-
tativo Gaussiano para um Conversor Buck. Isso vem de duas necessidades, a primeira é que para
superar o desempenho dos sistemas de controle linear é necessária uma estratégia mais avançada
como o controle adaptativo; a segunda é que como não existem métodos de otimização determinís-
ticos para tais estratégias, o uso de metaheurísticas é considerado necessário, e de acordo com o
teorema do No Free Lunch tais estudos comparativos devem ser feitos para entender quais técni-
cas de otimização são mais adequadas para tal problema. As técnicas escolhidas foram o Algoritmo
Genético, a Otimização do Enxame de Partículas e a Evolução Diferencial. O Gaussian Adaptive PID
(GAPID) foi escolhido para o controle adaptativo por ser ser baseado na função Gaussiana, que é
uma curva suave com derivadas suaves que evita vibrações e mudanças bruscas no controle. Depois
de avaliar as respostas encontradas na simulação de todas as variações de cada uma das estratégias
de otimização, foi criada uma comparação analítica e estatística de cada técnica mostrando como um
sistema de controle adaptativo pode gerar uma resposta mais rápida e robusta quando comparado
ao PID linear.

Keywords: Adaptive PID control. Genetic Algorithm. PSO. Differential Evolution.
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1 INTRODUCTION

Modern automatic control is essential for any engineering and science fields, from manu-

facturing systems, robotics, vehicles or any process that involves the control of flow, temperature, hu-

midity, speed. Among the various control techniques available, the PID (proportional, integrative and

derivative) stands out, due to its good effectiveness, robustness and well established design methodol-

ogy; According to Ogata (2001) more than half of the industry relies on PID control systems, indicating

the importance of studying such systems.

Despite their popularity in the industry, linear control mechanisms such as PID are con-

strained by their linearity. Such limitations can be circumvented by employing nonlinear controllers.

Optimal controllers include LQR and SDRE, that are based primarily on the Ricatti equation for op-

timization (TUSSET et al., 2013). Sliding-mode controllers represent a class of discontinuous con-

trollers, with advantages, like fast response and robustness, but also disadvantages, like chattering

in the control signal, which limits its application (TAKAHASHI; PERES; BARBOSA, 1999; KASTER;

PAGANO, 2006). Adaptive controllers are a special class of such controllers that use adaptive rules to

govern the controller behavior (ASTROM; WITTENMARK, 2008). It is very common to employ adaptive

rules to the PID controller, to enhance its performance and overcome the limitations of the traditional

linear PID. Adaptive control systems such as the GAPID (Gaussian adaptive PID) can generate fast

and robust control systems with no loss in quality responses, such as instability against disturbances

and plant changes, or high overshoot values.

The use of a GAPID controller was proposed by Kaster et al. (2011), and later on Puchta et

al. (2016), introduced the use of bio-inspired metaheuristics for the control optimization, followed by

Borges (2019), that included parameters variations in the plant to enhance control robustness.

In this dissertation, the focus is not as much on the plant control such as previous works,

but a wider analysis on different metaheuristic optimization algorithms and how they affect the control

system’s performance.

Such adaptive system are classified as unconstrained continuous optimization problem that

do not present deterministic solving methods, thus posing a new problem of finding the best parame-

ters for the controller.

The control parameters that are being optimize are 9 constants for the three Gaussian curves
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that characterize the adaptive nature of the PID gains of the GAPID (three for each curve), however,

with the use of linked parameters (section 2.5) the optimization algorithms have a 6 dimensions prob-

lem to solve, rather than a 9 dimensions one.

Some of the most popular mechanisms of non-linear optimization are bio-inspired meta-

heuristics such as Genetic Algorithms, Differential Evolution and PSO, which will be focused in this

work. These strategies were chosen for being some of the most popular metaheuristics in the current

research literature and as such, there is a vast bibliography in which to base our studies.

For each of the three optimization strategies used there were 10 different variations applied,

resulting in a total of 30 different optimization algorithms, all applied to a GAPID controlling a DC/DC

Step Down converter, those optimizations are then simulated and their results are discussed.

1.1 OBJECTIVES

1.1.1 General Objective

The general objective of this dissertation is to utilize different GAPID (Gaussian Adaptive

PID) adaptation rules for the control system’s parameters for a Buck converter, developing several Bio-

inspired Metaheuristic optimization variations of three main strategies that access the step response

of the converter.

1.1.2 Specific Objectives

• Design a computational model of a Buck Converter for simulations.

• Investigate the functionality of Adaptive Control strategies.

• Elaborate algorithms for Genetic Algorithms, Particle Swarm optimization, Differential Evolution

and their respective variations.

• Run optimization simulations of each metaheuristic variation available and compare the results

to the original PID control.

• Study the results obtained and create a comparative analyze their performance utilizing statis-

tical analysis.
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• Create documentation and scientific publications based on the research done.

1.2 STRUCTURE OF THE DISSERTATION

This work has the following structure:

Chapter 2 describes the operation of a buck converter, and its usual control strategy, that

is the linear PID, the chapter then proceeds to discuss the Gaussian adaptive PID control, how each

of its parameters are linked and the performance measurement technique utilized on the optimization

process for this paper.

Chapter 3 presents a description of bio-inspired metaheuristics and its advantages over de-

terministic or heuristic optimization strategies. The chapter then expands on the three metaheuristic

strategies that were utilized and their respective variations, those being the Genetic Algorithm, Particle

Swarm Optimization and Differential evolution.

Chapter 4 characterizes how each of the simulation experiments were done, what variations

and parameters where used and how those results were classified qualitatively utilizing the Fitness

function.

Chapter 5 presents the results found after simulating the optimization process for a GAPID

controlled buck converter of each of the algorithms presented in the previous chapter, the results for

each variation were then analyzed and the best optimization strategies were presented.

Chapter 6 describes the process of researching and developing this work, then presents a

few interpretations of the results from Chapter 4 and finishes with a few ideas for the expansion of this

paper for the future.
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2 GAPID CONTROL

2.1 INTRODUCTION

This chapter will introduce the Application Plant, the Buck Converter, while also introducing

the concepts of Linear PID control and its evolution, the Adaptive PID. The concept of linked parame-

ters are also presented and finally the method chosen for measuring the performance of each control

strategy.

2.2 BUCK CONVERTER

A Buck converter (Figure 1) is a DC-DC step-down power converter, supplying an output

voltage lower than the input voltage and consequently increasing current from input to its load (output)

(MANIAS, 2017). This converter topology currently is extremely popular as the main power supply in

a large range of electric and electronic equipment, from DC motors to USB chargers.

Figure 1 – Diagram of a Buck Converter

source: Own Authorship, Adapted from Barbi, 2019

where:

𝑑(𝑡) is the state of the switch (1 is on, 0 is off);

𝑣𝑖 is the input DC voltage;

𝑖𝐿 is the current in the inductor;

𝑖𝑜 is the current in the load;

𝑖𝐶 is the current in the capacitor;

𝐿 is the inductance value;

𝐶 is the capacitance value;
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𝑅 is the load resistance value;

𝑣𝑜 is the output voltage on the load.

The Buck converter is an electronic system that has the input voltage connected to a MOS-

FET generating a pulsed voltage that passes by a low-pass filter, represented by the inductor 𝐿 and

the capacitor 𝐶 , and resulting in a lower output voltage that is used to supply other circuits. The out-

put voltage level can be controlled by varying the duty-cycle 𝑑(𝑡) of the PWM signal applied to the

MOSFET.

Through nodal analysis it is possible to relate the inductor current as being the sum of the

currents going through the capacitor and the load as in equation (1):

𝑖𝐿(𝑡) = 𝑖𝑐(𝑡) + 𝑖𝑜(𝑡) (1)

Through mesh analysis, it is possible to determine the input voltage based on equation 2:

𝑑(𝑡)𝑉𝑖 = 𝑣𝐿(𝑡) + 𝑣𝑐(𝑡) (2)

The discrete function 𝑑(𝑡) can be referred as a continuous limited function 𝑢(𝑡) that repre-

sents the mean of 𝑑(𝑡) in one switching period of PWM.

The system can be described by the state-space Equations (3) and (4).

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= − 𝑣𝑐(𝑡) + 𝑢(𝑡) · 𝑣𝑖 (3)

𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
=𝑖𝐿(𝑡) − 1

𝑅
· 𝑣𝑐(𝑡) (4)

The step-down converter is a linear second-order system. By utilizing the Laplace transform

(ROWLEY; BATTEN, 2008) the Transfer Function for the duty-to-output can be obtained, as stated in

the equation (5).
𝑉𝑐(𝑠)

𝑈(𝑠)
=

𝑉𝑖

𝐿𝐶𝑠2 +
𝐿

𝑅
𝑠 + 1

(5)

where 𝑢(𝑡) is the PWM function, the control system’s input and 𝑈(𝑠) its Laplace Transform.

To assure that the converter works as intended, a closed loop control is necessary to stabilize

the output voltage at a desired value, which is the main purpose of the converter: to serve as a low-

voltage power supply. Actually the most common technique utilized in the industry are linear PID

strategies that will be explored in the Section 2.3. In the Section 2.4 the GAPID control is presented

as an improvement over the linear PID.
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For this project, the Buck converter’s desired functionality is to receive a 48 V voltage 𝑉𝑖 and

to put out the 𝑉𝑜 value of 30 V.

2.3 LINEAR PID

The PID is a feedback-based control strategy that uses the error between the plant output

and a given set-point to perform the control action, which applies the proportional, integral and deriva-

tive rules to this error, resulting the proper control action that cause the plant output to be equal to the

desired set-point (HAIDEKKER, 2020).

The control gains are as follow:

𝑔𝑝, the proportional term involved in the system’s gain.

𝑔𝑖, the integral term that works not only the error, but also the time it has persisted.

𝑔𝑑, the derivative term doesn’t consider the error, but only the change of rate of the error.

For the Buck converter, the output voltage in the the load is controlled by the PWM signal

𝑢(𝑡), as stated in the the equation (6)

𝑢(𝑡) = 𝑔𝑝

⎛⎝𝑒(𝑡) +
1

𝑇𝑖

𝑡∫︁
0

𝑒(𝜏)𝑑𝜏 + 𝑇𝑑
𝑑𝑒(𝑡)

𝑑𝑡

⎞⎠ (6)

where 𝑒(𝑡)is the error signal, 𝑇𝑖 is the integral time-constant, 𝑇𝑑 is the derivative time-constant, such

that 𝑔𝑖 = 𝑔𝑝
𝑇𝑖

and 𝑔𝑑 = 𝑔𝑝𝑇𝑑.

PID control is widely used in today’s industries, its general adaptability and usefulness have

inspired the creation of multiple methods of refining and tuning rules such that it’s possible to use

PID strategies in occasions where the general plant is unknown (OGATA, 2001). However, while linear

control methods such as classical PID systems are reliable, there are limitations. The figure 2 presents

the comparison of the step responses of two linear PID projects for the same plant and it is an example

of such limitations: A PID designed for faster transient responses tends to create overshooting, such

as the case of the orange curve. In many cases, the way to reduce that overshoot demands reducing

the overall control gain resulting a slower system, as in the blue curve.

The PID limitations are more apparent in complex systems such as those with time-delay,

non-linear and time-variant dynamics (HUANG; TAN; LEE, 2001) and researchers have been recurring

to adaptive control as better alternatives capable of overcoming such limitations that the simplistic

nature of the PID control impose (XU; HOLLERBACH; MA, 1995).
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distinct Gaussian curves based on the current value of set-point/output error. The Gaussian Curves

are given by the equations (7), (8) and (9).

𝑔𝑝(𝜎) = 𝑘𝑝 1 − (𝑘𝑝 1 − 𝑘𝑝 0)𝑒
−𝑞𝑝 𝜎2

(7)

𝑔𝑖(𝜎) = 𝑘𝑖 1 − (𝑘𝑖 1 − 𝑘𝑖 0)𝑒
−𝑞𝑖 𝜎

2

(8)

𝑔𝑑(𝜎) = 𝑘𝑑 1 (1 − 𝑒−𝑞𝑑 𝜎2

) (9)

where:

𝜎 is the current error

𝑔𝑝, 𝑔𝑖 and 𝑔𝑑 are current PID gains based on the error.

𝑘𝑝 1, 𝑘𝑖 1,and 𝑘𝑑 1, are the gain bound of the Gaussian when error→ ∞ of the Gaussian.

𝑘𝑝 0 and 𝑘𝑖 0 are the gain bound of the Gaussian when error→ 0 of the Gaussian.

𝑞𝑑,𝑞𝑖 and 𝑞𝑑 define the degree of concavity of the Gaussian.

As is observable in the equation (9), 𝑘𝑑0 has been set to zero in order to avoid noise amplifi-

cation issues in the PID derivative component when the setpoint is reached (Puchta; Siqueira; Kaster,

2020), leaving the GAPID with eight parameters to be designed:

[𝑘𝑝 0,𝑘𝑝 1,𝑘𝑖 0,𝑘𝑖 1,𝑘𝑑 1,𝑞𝑝,𝑞𝑖,𝑞𝑑] ∈ R8

Figure 4 shows examples of how each parameter affects the Gaussian function.

The Gaussian is a smooth function, which allows for a gradual change in the gains, as op-

posed to discontinuous adaptive functions that has the potential of causing chattering in the points of

discontinuity (BORGES, 2019).

The use of the adaptive PID strategy comes with many practical benefits such as the possi-

bility of improving control performance over a linear strategy without losing all the convenience of the

well-established support structure behind the linear PID.

Since the GAPID control is based on three Gaussian curves for the values of 𝑔𝑝, 𝑔𝑖 and 𝑔𝑑,

there are eight independent parameters, as defined in equations (7) to (9), that need to be determined

as opposed to the three parameters on the linear PID. Such design represents a hard problem o

solve, because there is no mathematical or other deterministic method to determine the parameters.

Furthermore it is possible that several distinct solutions can achieve similar performances, wich signals

a kind of multimodal problem. In this sense, metaheuristics optimization stands as an important tool to

help solving the problem.
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Figure 4 – Examples of Gaussian Curves with varying values of 𝑘0, 𝑘1 and 𝑞

source: Own Authorship

2.5 LINKED PARAMETERS

As cited previously, on the Section 2.4, the design of GAPID comprises a problem with eight-

parameters to be defined. This set of parameters is referred as the Free parameters case, where all

GAPID parameters will be considered for optimization.

The problem behind using this approach resides in the possibility of achieving good results,

that are optimal in the very specific conditions of the testing computational model, but may perform

poorly in real situations. This behavior has been reported by (Puchta; Siqueira; Kaster, 2020) and

referred as narrow specialized optimization solution, where the optimized GAPID can perform excep-

tionally at a specific plant condition but loosing considerable performance upon plant changes and

disturbances, meaning that the solution is not robust.

Another issue refers to the appeal to convince industry administrators to adopt a GAPID

controller into their processes, some of them with hardly tuned controllers. The fear to subject an

expensive industrial process to a new controller, with an unknown tuning process, that can be even

harder than the traditional PID, represents an obstacle to the adoption.

Kaster et al. (2011) proposed an alternative approach, by considering the gains of a previ-

ously tuned PID controller as a reference to the adaptive gains of the GAPID. In this approach, the

upper and lower limits of the Gaussian functions will be derived as direct and inverse relations of each
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PID reference gains. So, the relations will be expressed by variables 𝑥, 𝑦 and 𝑧 for the P-I-D reference

gains. It is referred to as the Linked parameters case. This strategy is summarized in equations (10) -

(14).

𝑘𝑝 1 = 𝑥 𝑘𝑝𝑃𝐼𝐷 (10)

𝑘𝑝 0 =
1

𝑥
𝑘𝑝𝑃𝐼𝐷 (11)

𝑘𝑖 1 = 𝑦 𝑘𝑖 𝑃 𝐼𝐷 (12)

𝑘𝑖 0 =
1

𝑦
𝑘𝑖 𝑃 𝐼𝐷 (13)

𝑘𝑑 1 = 𝑧 𝑘𝑑𝑃𝐼𝐷 (14)

Utilizing linked parameters it is possible to also lower the number of variables that need be adjusted

to six in the optimization process: [𝑥, 𝑦, 𝑧, 𝑞𝑝, 𝑞𝑖, 𝑞𝑑]∈ R6 thus reducing the complexity from 8 to 6

dimensions.

Linked parameters was chosen to facilitate the optimization process, by reducing the number

of variables, and its increased reliability, by being derived from an already established PID controller.

This chapter presented the application plant, a Buck converter, and discussed the proposed

adaptive control strategy, GAPID.

In the next chapter the optimization strategies chosen to use those parameters will be shown

in more detail.
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3 BIO INSPIRED METAHEURISTICS

3.1 INTRODUCTION

This chapter will introduce the concept of metaheuristics and will develop the ideas of each

of the bio-inspired algorithms utilized for unconstrained continuous optimization: Genetic Algorithms,

Differential Optimization, and Particle Swarm Optimization.

3.2 BIO-INSPIRED METAHEURISTICS

Most conventional optimization algorithms are deterministic, such as gradient-based meth-

ods. However, these methods often fail in cases where there are discontinuities or multiple local opti-

mum (LINDFIELD; PENNY, 2019).

The simplest non-deterministic methods are called Heuristics, meaning “trial and error”. They

are not expected to reach the global best result for 100% of the cases. However, it is expected the

ability to find fairly good solutions with a limited amount of processing and time.

Further development in the heuristic field were in the metaheuristics methods, with meta

meaning “further” or “higher level”. Such methods utilize both randomization and local search tech-

niques, in which the randomization is used as a technique for escaping local optimum points’ attraction

basins. Therefore, they also are suitable methods for global optimization (YANG, 2014).

In the current literature there are over 100 metaheuristics strategies and many other vari-

ations (YANG, 2014). According to the no Free Lunch (NFL) theorem “any algorithm, any elevated

performance over one class of problems is offset by performance over another class” (WOLPERT;

MACREADY, 1997), meaning that there is no single algorithm that presents the best performance for

every possible optimization problem, one of the reasons for this current study.

For our current problem (the optimization of a GAPID controller of a Buck converter) the cho-

sen metaheuristics methods were three of the most popular strategies found in the literature: Genetic

Algorithms (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE). Their functional-

ities are presented in this chapter. Also, a candidate solution is generically named as agent.
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3.3 LITERATURE REVIEW

The use of metaheuristics for control optimization is of common practice, since most

advanced control methods constitute NP-problems that cannot be answered by deterministic ap-

proaches, some examples from literature are:

Mendez et al. (2020) utilized the Earthquake Algorithm to optimize the inductance value on

a Buck converter to increase the circuit’s efficiency to up to 90%.

Jalilvand et al. (2011) was able to tune the PID gains of a DC motor based on PSO optimiza-

tion.

Ferreira and Coelho (2018) automatized the fine-tuning of a type 2 controller of a Buck con-

verter with Multi-Objective Variable Neighborhood Search.

Alqudah, Malkawi and Alwadie (2014) made use of the Simulated Annealing Optimization

method for optimizing the PID gains for control on DC-DC converters.

Puchta et al. (2016) utilized Genetic Algorithms for optimization of the GAPID control of a

Buck Converter.

Kaster et al. (2018) created a comparative study of different variations of Genetic Algorithms

and their performance when optimizing the control parameters of a Buck Converter through GAPID

control.

Borges (2019) expanded the use of not only Genetic Converters, but also PSO optimization

for the GAPID control of a Buck converter.

The main contribution of this work is creating a comparative study of a large number of differ-

ent variations of three main metaheuristic optimization strategies, the Genetic Algorithm, Differential

Evolution and Particle Swarm Optimization.

3.4 GENETIC ALGORITHMS

Genetic Algorithms (GA), developed by David E. Goldberg and John H. Holland, are evolu-

tionary search and optimization metaheuristics created with the intent of utilizing the ideas of survival

of the fittest elaborated by Charles Darwin in the 19th century (HOLLAND, 1975).
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3.4.1 Basic Concepts

The basic concept of a GA is that a group of candidate solutions (agents) are created with a

randomly generated set of parameters (genes), creating the population for the first generation. Each

agent has its own Fitness value based on its genes. Note that the Fitness is understood as a function

that evaluates the solution by giving a value that express how good it is to the current optimization

process (MICHALEWICZ, 1996). For our project the genes can be seen as a vector containing the

continuous Parameters of the GAPID:

[𝑥,𝑦,𝑧,𝑞𝑝,𝑞𝑖,𝑞𝑑] ∈ R6

According to Eiben and Smith (2015), each generation is submitted to two main genetic

operators: Crossover and mutation, together with a Selection process. The Selection is the procedure

that chooses agents for crossover based on their Fitness, creating a higher quality mating pool for

the next generation. In the crossover, the previously selected agents (parents) create an

offspring (children) based on their genes. In the mutation, random disturbances from a normal distri-

bution are added to the current gene pool by changing certain genes. The final population is the next

generation that will go through that same process until an specific condition is met. A flowchart of the

GA process can be observed on the figure 5.

3.4.2 Selection

In Genetic Algorithms, the parent selection is the operator responsible to distinguish high

fitness agents for mating. The higher the fitness, the higher the probability of an agent be part of

the crossover process. The selection is responsible for pushing the quality of the population through

probabilistic approaches.

The two most popular categories of selection strategies are roulette wheel and tournament-

based (Jinghui Zhong et al., 2005). For roulette-based strategies, the selection is made by picking out

agents from a roulette, in which the probability of each agent be picked is directly proportional to its

fitness value (figure 6). In tournament-based approaches, the selection is made by comparing two or

more random selected agents and choosing the one with highest fitness (figure 7).

The Selection variations chosen in this work are:

• The classic roulette, in which a number of agents are randomly picked out by using the roulette
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3.5 DIFFERENTIAL EVOLUTION

First introduced in 1995 by Reiner Storn and Kenneth Price, the Differential Evolution (DE)

was presented as a robust solution for continuous optimization (STORN; PRICE, 1997). DE is also an

evolutionary algorithm and its solutions are found using the same concepts of Selection, Crossover

and Mutation as in Genetic Algorithms.

3.5.1 Basic Concepts

The Differential Evolution algorithms start, as usual, with a randomly generated population of

candidate solutions, called Vectors. The current pool of agents are named Target Vectors. In the mu-

tation step a secondary population is created by adding the position of a Target Vector to the weighted

difference of two or more Agents. This mutated agent is called a Donor Vector. For the crossover, a

recombination is made utilizing Target and Donor vectors to create a new auxiliary population called

Trial Vector. For the Selection, Target and Trial Vectors compete to be the new Target Vector for the

next generation (TUSAR; FILIPIC, 2007).

Like the Genetic Algorithms, the agents take the form of the vector:

[𝑥,𝑦,𝑧,𝑞𝑝,𝑞𝑖,𝑞𝑑] ∈ R6

A simple flowchart of a DE process is shown in figure 9.

3.5.2 Mutation

The mutation can be considered the most important operator in DE. For each Target Vector

a new Donor Vector is created by adding one or more differences of random selected Agents. The

number of Agents used and which of those Agents will be used determine the type of mutation. All

mutation variations can be seen in equations (19) to (23).

• Rand/1:

𝑣𝑖 = 𝑥𝑟1 + 𝐹 × (𝑥𝑟2 − 𝑥𝑟3) (19)

• Best/1:

𝑣𝑖 = 𝑥𝑏𝑒𝑠𝑡 + 𝐹 × (𝑥𝑟1 − 𝑥𝑟2) (20)
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Figure 9 – Flowchart of a DE

source: Own Authorship

• Rand/2:

𝑣𝑖 = 𝑥𝑟1 + 𝐹 × (𝑥𝑟2 − 𝑥𝑟3) + 𝐹 × (𝑥𝑟4 − 𝑥𝑟5) (21)

• Target-to-Best/2:

𝑣𝑖 = 𝑥𝑟1 + 𝐹 × (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑟2) + 𝐹 × (𝑥𝑟3 − 𝑥𝑟4) (22)

• Best/2:

𝑣𝑖 = 𝑥𝑏𝑒𝑠𝑡 + 𝐹 × (𝑥𝑟1 − 𝑥𝑟2) + 𝐹 × (𝑥𝑟3 − 𝑥𝑟4) (23)

where:

𝑣𝑖 is the new Donor Vector Agent;

𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3, 𝑥𝑟4 and 𝑥𝑟5 are Random Target Vector Agents;

𝑥𝑏𝑒𝑠𝑡 is the highest fitness Agent on the current Target Vector;

𝐹 is a step-size constant, usually set between 0 and 2.

3.5.3 Crossover

The crossover in Differential Evolution creates the Trial Vector by combining both target and

donor vectors, mainly with two distinct variations, the binary crossover and exponential crossover (LIN;
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QING; FENG, 2011).

On the binary crossover, for each Agent on the Trial Vector, a Bernoulli trial is attempted.

The success chance is based on the variable 𝐶𝑅: if a trial succeeds, the variable is chosen to fill

that position with the Donor Vector. Otherwise the agent position is filled with the Target Vector. An

example of this process can be observed on figure 10.

Figure 10 – Example of Binary Crossover

source: Own Authorship

For the exponential crossover, the process starts in a random position on the new trial vec-

tor. From that position, the trial vector is filled with the Donor Vector and a Bernoulli trial is attempted

(affected by the same factor CR as in the binary crossover). If the trial succeeds, the crossover contin-

ues, whoever, the crossover process is ended. An example of an exponential crossover is presented

in figure 11.

Figure 11 – Example of Exponential Crossover

source: Own Authorship
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3.5.4 Selection

The selection process in differential evolution is relatively simple. It is made by comparing

the fitness of agents of both Target Vector and Trial Vector, and selecting the highest fitness Agent, a

greedy approach.

3.6 PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO), is a swarm-based optimization technique developed by

Kennedy and Eberhart in 1995. The strategy is inspired on the collective behavior of groups of animals,

such as school of fish in the open sea or flocks of birds searching for food (KENNEDY; J., 1995).

3.6.1 Basic Concepts

The PSO combines the past social and individual experiences to solve a problem in a col-

lective form. Each agent is named particle, which is able to remember the best solution that it found

until the current iteration and to communicate to other particles. The convergence to optimum points

happens by means of two forces: the locations of each particle’s own best position (𝑝𝑏𝑒𝑠𝑡) and the

best solution found by each particle’s neighborhood (𝑔𝑏𝑒𝑠𝑡) (KENNEDY; EBERHART; SHI, 2001).

As in the previous optimization strategies, each particle’s position is characterized by the

vector:

[𝑥,𝑦,𝑧,𝑞𝑝,𝑞𝑖,𝑞𝑑] ∈ R6

The PSO algorithm starts with a number of candidate solutions being randomly generated.

For each succeeding iteration, each particle’s fitness value is calculated, and its position for the next

iteration is determined by adding its current position to the speed (equations 24 and 25). This is

repeated, updating both (𝑝𝑏𝑒𝑠𝑡) and (𝑔𝑏𝑒𝑠𝑡), until a condition is met.

𝑥𝑖(𝑡 + 1) =𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (24)

𝑣𝑖(𝑡 + 1) =𝑤 · 𝑣𝑖(𝑡) + 𝑟1 · 𝑐1(𝑝𝑏𝑒𝑠𝑡𝑖(𝑡)− 𝑥𝑖(𝑡)) + 𝑟2 · 𝑐2(𝑔𝑏𝑒𝑠𝑡(𝑡)− 𝑥𝑖(𝑡)) (25)

where:

𝑖 is the particle.

𝑣𝑖 is the velocity of the particle.
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𝑤 is the inertial factor.

𝑟1 and 𝑟2 are random numbers between 0 and 1.

𝑐1 is the personal acceleration factor.

𝑐2 is the social acceleration factor.

𝑝𝑏𝑒𝑠𝑡 is the best position the particle has been on.

𝑔𝑏𝑒𝑠𝑡 is the best position on a particle’s topology.

𝑥𝑖 is the position of the particle at an instant.

The term 𝑐1(𝑝𝑏𝑒𝑠𝑡𝑖(𝑡)−𝑥𝑖(𝑡)) is called the cognitive component, affected by the particle’s

own information; The term 𝑟2·𝑐2(𝑔𝑏𝑒𝑠𝑡(𝑡)−𝑥𝑖(𝑡)) is the social component, which is affected by the

informations from all agents that can communicate with that particle; the variables 𝑐1 and 𝑐2 determine

how important is the contribution of each component (BLONDIN, 2009).

The inertial factor 𝑤 is responsible for increasing or decreasing the particle‘s speed. A value

higher than 1 has the potential to accelerate the particles speeds; a value lower than 1 will always

decrease the speed. The value of 𝑤 can have a lower bound limit because, despite converging faster,

the swarm can stagnate the search prematurely and lose the ability of searching for better solutions.

A basic Flowchart of a PSO algorithm can be observed on the figure 12.

3.6.2 PSO Variants

The first PSO variation explored was based on the topology, mainly the global and ring ones.

In the global topology every particle is able to communicate with every other, creating a single shared

𝑔𝑏𝑒𝑠𝑡 that all particles tend to follow. In the ring topology, each particle can only communicate with

other adjacent particles (PUCHTA et al., 2016). It Is important to note that this adjacency is structural

and not based on the particles’ positions in the search space. An example of both topologies can be

observed on figure 13.

The next approach is the inertial variation, with three options: the original method, with a

constant value of 𝑤 and 𝑣𝑖(0) = 0; the initial inertia method, where the value of 𝑤 is constant but

𝑣𝑖(0) is randomly generated; in the last case, the linear decreasing method, the value of 𝑤 starts at

a higher value. However, over iterations that value decreases while 𝑣𝑖(0) = 0 (ALFI, 2011).

Other variation explores means to escape from local minimum points and spread over the

search space. That can be done with two main strategies: the first one is borrowing the mutation
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employed in this study. In the next chapter, the simulations of all optimization strategies and each

variation of the three strategies will be presented and discussed.



34

4 EXPERIMENTS

4.1 INTRODUCTION

This chapter will stipulate the parameters and variations utilized on the optimization simula-

tions and also the performance measurement function utilized for the qualitative analysis of each of

the 30 algorithms.

4.2 PERFORMANCE MEASUREMENT

To evaluate the effectiveness of a set of adjusted gains it is necessary the use of a Perfor-

mance Measurement method that will be used to compare different results of the optimizations. The

standard performance measurement methods are, according to Åström and Hägglund (1995), the IAE

or Integral Absolute Error (Equation (26)) and ISE or Integral Square Error (Equation (27)), however

ISE applied to PID systems leads to poor gain and phase margins (ZITEK; FIšER; VYHLíDAL, 2016),

so the chosen method for our optimizations is the IAE.

𝐼𝐴𝐸 =

∫︁ ∞

0

|𝜎|𝑑𝑡 (26)

𝐼𝑆𝐸 =

∫︁ ∞

0

𝜎2𝑑𝑡 (27)

A visualization of the IAE is presented on the figure 14, where the total colored area is the integral of

the absolute error.

A fitness function is a performance classification rule that is used in optimization that allows

algorithms and humans to better understand the data from a process. In this sense, the highest fitness

value given by a determined candidate, the better suited that candidate is to solve the problem.

The fitness function utilized for the optimization of the buck converter was created for the

minimization of the error as a result of a step input on the plant and can be observed on the equation

(28), facilitating the observation of the Fitness value, since it is now a normalized value between 0 and

1 where the closer to the unit it is, the better.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1 + 𝐼𝐴𝐸
(28)
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Figure 14 – Example of a IAE

source: Own Authorship

4.3 TRANSIENT ANALYSIS

To verify a system’s performance, it is very usual to employ a reference change, which means

an input step. The resulting transient presents several important characteristics, where two are of

special interest in our case: the settling-time and the overshoot. By tanking into account only the

output signal, the best case is represented by a transient with the lowest overshoot and settling-time.

As stated previously in section 4.2, the IAE index represents a good performance indicator,

which balances well the overshoot and settling-time.

4.4 USED PARAMETERS

The following results were obtained considering the buck converter and the GAPID con-

trol, which were simulated in the platform Matlab/Simulink© utilizing a personal computer with an

i7-6700HQ, 2.6 GHz CPU with 8 cores, an NVIDIA GeForce GTX 960M GPU, and 16 GB RAM. Each

optimization variation was simulated 30 times, since, according to Hogg and Tanis (2010), this is a

sample size that creates statistical relevance to the performance analysis that was done.

The parameters used for each optimization strategy were:

• For Genetic Algorithms: a population of 50 individuals and 30 generations;
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• For Differential Evolution: a population of 50 agents and 100 iterations;

• For PSO: a population of 50 particles and 30 iterations.

The difference between the number of iterations from the DE and the other strategies comes

from the crossover rate CR of 0.3, since it is possible to generate a higher number of iterations with

the same computing power than other strategies.

Other parameters, defined empirically, were: for genetic algorithms, the mutation rate was

set to 5% in all variations but the dynamic mutation to one, in which the mutation rate varied from

1% to 30% depending on the mean fitness value of the population. A value of 𝑀 = 50 for the SBX

crossover on Genetic Algorithms, for DE, the value of 𝐹 was set as 0.8; for the PSO, in strategies with

constant inertia values, 𝑤 = 0.5, while in the the decreasing inertia the value of 𝑤 varied between

0.1 and 0.9.

4.5 GENETIC ALGORITHMS VARIATIONS

The ten variations of genetic algorithms chosen for optimization were:

1. Roulette, Single-point crossover, 70% crossover rate, fixed mutation rate;

2. Roulette , Single-point crossover, 100% crossover rate, fixed mutation rate;

3. Roulette with Survival Selection, Single-point crossover, 100% crossover rate, fixed mutation

rate;

4. Tournament, Single-point crossover, 100% crossover rate, fixed mutation rate;

5. Tournament with Survival Selection, Single-point crossover, 100% crossover rate, fixed mutation

rate;

6. Death Tournament, Single-point crossover, 100% crossover rate, fixed mutation rate;

7. Stochastic sampling, Single-point crossover, 100% crossover rate, fixed mutation rate;

8. Tournament, arithmetic crossover, 100% crossover rate, fixed mutation rate;

9. Tournament, Single-point crossover, 100% crossover rate, dynamic mutation rate;

10. Tournament, SBX crossover, 100% crossover rate, fixed mutation rate.
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4.6 DIFFERENTIAL EVOLUTION VARIATIONS

Differential Equations have a specific nomenclature pattern that facilitates the identification

of which strategy is being utilized. That pattern is “Type of mutation / Number of agent pairs used / Type

of crossover”. For example, a variation that utilizes a mutation with random Agents, two weighted agent

differences and an exponential crossover would be named “Rand/2/Exp” (TUSAR; FILIPIC, 2007).

All the DE variations utilized for the optimization were:

1. Rand/1/Bin

2. Best/1/Bin

3. Rand/2/Bin

4. Target-to-Best/2/Bin

5. Best/2/Bin

6. Rand/1/Exp

7. Best/1/Exp

8. Rand/2/Exp

9. Target-to-Best/2/Exp

10. Best/2/Exp

4.7 PSO

The PSO variations chosen for the GAPID simulations were:

1. No initial inertia, global topology

2. Initial Inertia, global topology

3. Decreasing Inertia, global topology

4. No initial inertia with mutation, global topology
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5. No initial inertia with a bomb, global topology

6. No initial inertia, ring topology

7. Initial Inertia, ring topology

8. Decreasing Inertia, ring topology

9. No initial inertia with with mutation, ring topology

10. No initial inertia with a bomb, ring topology

The next chapter discusses the results found on the experiments presented on this chapter.
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5 RESULTS

This chapter shows the preliminary results achieved by the optimization algorithms for each

variation previously presented. First it was calculated the median fitness of each different optimization

variations and the standard deviation for each one, and also created a boxplot of those values.

Then those results were analyzed utilizing the Shapiro Wilks test for parametrization, the

Kruskal-Wallis Test for comparing which samples are independent, the Dunn-Sidak correction for a

familywise test of the variations.

At the end, the graphics of voltage, error, and gain for the best set of parameters found for

each strategy and a brief discussion of the results found are made.

5.1 DESCRIPTIVE ANALYSIS

Utilizing the data that was acquired following the procedures cited in chapter 4, it was possi-

ble to create the tables 1, 2, and 3 that show the best Fitness values found for each strategy and the

median fitness together with the Standard Deviation.

Table 1 – Fitness values for different Variations of GA

GA Variation Highest Fit. Median Fit. Standard Deviation

GA 1 0.9934 0.9904 0.0021
GA 2 0.9927 0.9909 0.0017
GA 3 0.9927 0.9891 0.0029
GA 4 0.9935 0.9917 0.0024
GA 5 0.9930 0.9880 0.0031
GA 6 0.9933 0.9917 0.0015
GA 7 0.9933 0.9904 0.0020
GA 8 0.9915 0.9896 0.0015
GA 9 0.9929 0.9906 0.0022
GA 10 0.9940 0.9915 0.0012

Starting by GA, as It’s possible to see, the best solution found by the Genetic Algorithms was

GA 10 (Tournament, SBX crossover, fixed mutation rate) while the highest mean variation was GA 6

(Death Tournament, Single-point crossover, fixed mutation rate)

For PSO, the best solution was from PSO 2 (initial Inertia, global topology), both in terms of

the highest fitness value and the highest mean found.

For Differencial Evolution, the highest fitness was reached by the variation DE 2 (Best/1/Bin)

while the best mean came from DE 4 (Target-to-Best/2/Bin).
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Table 2 – Fitness values for different Variations of PSO

PSO Variation Highest Fit. Median Fit. Standard Deviation

PSO 1 0.9946 0.9920 0.0021
PSO 2 0.9951 0.9947 0.0012
PSO 3 0.9951 0.9935 0.0012
PSO 4 0.9946 0.9935 0.0006
PSO 5 0.9947 0.9934 0.0013
PSO 6 0.9937 0.9915 0.0012
PSO 7 0.9943 0.9939 0.0013
PSO 8 0.9947 0.9921 0.0013
PSO 9 0.9941 0.9919 0.0007

PSO 10 0.9940 0.9926 0.0011

Table 3 – Fitness values for different Variations of DE

DE Variation Highest Fit. Median Fit. Standard Deviation

DE 1 0.9943 0.9935 0.0009
DE 2 0.9965 0.9934 0.0009
DE 3 0.9947 0.9932 0.0007
DE 4 0.9962 0.9936 0.0016
DE 5 0.9962 0.9930 0.0012
DE 6 0.9933 0.9925 0.0010
DE 7 0.9956 0.9921 0.0007
DE 8 0.9934 0.9922 0.0010
DE 9 0.9947 0.9926 0.0012
DE 10 0.9954 0.9918 0.0013

Based of those same results, the Boxplot graph regarding the fitness from each algorithm

that resulted from the simulations can be observed in Figure 15 where it is possible to have a broad

view of how each one of the variations behaved during optimization.

5.2 STATISTICAL TESTS

The results of the simulations were submitted through a series of statistical tests with the

intent of analyzing the differences between each optimization method. Each test has a Null Hypothesis,

also known as the conjecture, that tries to be disproven (or rejected) by mathematical and statistical

analysis.

5.2.1 Shapiro Wilk Test

Before further analysis, the results must be categorized in regards of parametrization. Each

collected data was tested using the Shapiro-Wilk method, a test of normality used in statistics that can

determine if a sample of numbers came from a normal distribution (SHAPIRO; WILK, 1965).
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Figure 15 – Boxplot of Fitness Values found for each optimization strategy

source: Own Authorship
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For this test, the null hypothesis is: The sample comes from a normal distribution with un-

specified mean and variance. For this test the standard significance level of 5% was used, meaning

that every p-value found lower than 0.05 does reject the null hypothesis and does not come from a

normal distribution.

The formula for the Shapiro Test can be observed in the equation (29).

𝑊 =
(
∑︀𝑛

𝑖=1 𝑎𝑖 · 𝑥(𝑖))
2∑︀𝑛

𝑖=1(𝑥𝑖 − �̄�)2
(29)

where:

(𝑎1, · · · ,𝑎𝑛) =
𝑚𝑇 · 𝑉 −1

𝐶
𝐶 =

⃦⃦
𝑉 −1 ·𝑚

⃦⃦
= (𝑚𝑇 · 𝑉 −1 · 𝑉 −1 ·𝑚)1/2

The vector 𝑚 = (𝑚1, · · · ,𝑚𝑛)𝑡 is created from the expected values of the order statistics of

independent and identical distributed random variables sampled from a standard normal distribution.

𝑉 is the co-variance matrix of those normal order statistics.

And �̄� is the sample mean.

The test results for all samples from the simulations of each strategies’ variations are shown

on tables 8, 9 and 10 on Appendix A.

Utilizing the fact that in the Shapiro Wilk tests a large part of the results were deemed non-

parametric (GA 2, GA 3, GA 4, GA 6, GA 8, PSO 2, DE 1, DE 2, DE 4 AND DE 6) it is possible to treat

all samples as non-parametric for the future tests.

5.2.2 Kruskal–Wallis test

The second analysis was done through the Kruskal–Wallis test, a "non-parametric method

for testing whether samples originate from the same distribution" (KRUSKAL; WALLIS, 1952). The null

hypothesis of the test is: The mean ranks of each groups are the same, or come from populations of

the same distribution. A rejection of the null-hypothesis would signify that the different variations tested

do indeed create independent results, and therefore are meaningful for this study.

The formula for the Kruskal-Wallis test can be observed on the equation (30).

𝐻 = (𝑁 − 1) ·
∑︀𝑔

𝑖=1 𝑛𝑖(𝑟𝑖 − 𝑟)
2∑︀𝑔

𝑖=1

∑︀𝑛𝑖

𝑗=1(𝑟𝑖𝑗 − 𝑟)2
(30)

where:
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𝑛𝑖 is the number of observations in the 𝑖th group;

𝑟𝑖𝑗 is the rank (among all observations) of observation 𝑗 from group 𝑖;

𝑁 is the total number of observations across all groups;

𝑟𝑖 =
∑︀𝑛𝑖

𝑗=1 𝑟𝑖𝑗

𝑛𝑖
;

and 𝑟 = 1
2
· (𝑁 + 1) is the average rank of all observations on the 𝑖th group.

After applying the Kruskal-Wallis test to the data found from each variation of all three opti-

mization strategies the following p-values were found:

• For Genetic Algorithms: 9.566 · 10−11

• For Differential Evolution: 3.0844 · 10−28

• For PSO: 1.379 · 10−11

Considering the standard rejection p-value of 0.05, it can be said that the variations applied

to each strategy were, indeed, a differential factor for the GAPID control performance and the results

independent from each other.

5.2.3 Dunn-Sidak correction

The third statistical test applied was the Dunn-Sidak correction Post-Hoc analysis, a family-

wise error test that corrects for multiple comparisons. The equation (31) presents the test where, given

𝑘 different null hypothesis of 𝛼 significance level, each null hypothesis that has a p-value under 𝛼* will

be rejected.

𝛼* = 1 − (1 − 𝛼)
1
𝑘 (31)

The Null hypothesis of this test is: For each pair comparison, the probability of a randomly

selected value from one group be larger than a randomly selected value from the second group equals

one half, and this can be understood as a median comparison test. When rejecting the null hypothesis,

the test stipulates a significant difference between those two results.

To determine statistically the best variations for each strategy, the variations that presented

highest Fitness values (GA 10, ED 2 and PSO 2) were compared against all other variations from the

same strategy.

The results for those tests can be observed on the tables 4, 5 and 6.
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Table 4 – Dunn-Sidak test results for GA 10

GA Variation Q value Crit. Q Null-hypothesis

GA 1 No comparison made 3.2537 Accept Ho
GA 2 No comparison made 3.2537 Accept Ho
GA 3 5.2505 3.2537 Reject Ho
GA 4 No comparison made 3.2537 Accept Ho
GA 5 4.9960 3.2537 Reject Ho
GA 6 No comparison made 3.2537 Accept Ho
GA 7 No comparison made 3.2537 Accept Ho
GA 8 4.7385 3.2537 Reject Ho
GA 9 2.7636 3.2537 Fail to reject Ho

GA 10 — 3.2537 —

Table 5 – Dunn-Sidak test results for ED 2

ED Variation Q value Crit. Q Null-hypothesis

ED 1 6.6256 3.2537 Reject Ho
ED 2 — 3.2537 —
ED 3 2.7324 3.2537 Fail to reject Ho
ED 4 3.3917 3.2537 Reject Ho
ED 5 No comparison made 3.2537 Accept Ho
ED 6 8.3103 3.2537 Reject Ho
ED 7 No comparison made 3.2537 Accept Ho
ED 8 7.1971 3.2537 Reject Ho
ED 9 7.5528 3.2537 Reject Ho
ED 10 6.1434 3.2537 Reject Ho

Table 6 – Dunn-Sidak test results for PSO 2

PSO Variation Q value Crit. Q Null-hypothesis

PSO 1 No comparison made 3.2537 Accept Ho
PSO 2 — 3.2537 —
PSO 3 No comparison made 3.2537 Accept Ho
PSO 4 No comparison made 3.2537 Accept Ho
PSO 5 No comparison made 3.2537 Accept Ho
PSO 6 3.1610 3.2537 Fail to reject Ho
PSO 7 3.5316 3.2537 Reject Ho
PSO 8 3.7161 3.2537 Reject Ho
PSO 9 3.2949 3.2537 Reject Ho
PSO 10 4.4468 3.2537 Reject Ho

As observed, the best Genetic Algorithm variation GA 10 (Tournament, SBX crossover, 100%

crossover rate, fixed mutation rate) did not reject the null hypothesis on the cases for GA 1 (Roulette

with a 70% crossover rate, Single-point crossover, fixed mutation rate), GA 2 (Roulette, Single-point

crossover, fixed mutation rate), GA 4 (Tournament, Single-point crossover, fixed mutation rate), GA

6 (Death Tournament, Single-point crossover, fixed mutation rate) and GA 7 (Stochastic sampling,

Single-point crossover, fixed mutation rate) and GA 9 (Tournament, Single-point crossover, dynamic

mutation rate), meaning that they are statistically equivalent.

For the Particle Swarm Optimization, the variations the PSO1 (No initial inertia, global topol-
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Table 7 – Dunn-Sidak test results for DE 2 compared to other strategies

Variation Q value Crit. Q null hypothesis

PSO 1 No comparison made 3.8504 Accept Ho
PSO 2 No comparison made 3.8504 Accept Ho
PSO 3 No comparison made 3.8504 Accept Ho
PSO 4 No comparison made 3.8504 Accept Ho

ogy), PSO3 (Decreasing Inertia, global topology), PSO 4 (No initial inertia with with mutation, global

topology), PSO 5 (No initial inertia with a bomb, global topology) and PSO 6 (No initial inertia, ring

topology) variations were considered to be statistically similar to the best candidate PSO 2 (Initial

Inertia, global topology).

And for the DE algorithm with the best response overall, DE 2 (Best/1/Bin), the Null Hypoth-

esis was accepted for: DE3 (Rand/2/Bin), DE 4 (Target-to-Best/2/Bin), DE 5 (Best/2/Bin) and DE 7

(Best/1/Exp), and, when comparing it to variations of other strategies, PSO 1 (No initial inertia, global

topology), PSO2 (Initial Inertia, global topology) PSO 3 (Decreasing Inertia, global topology) and PSO

4 (No initial inertia with with mutation, global topology) were also considered to be sufficiently compa-

rable, while no GA variation was able to match that fitness value as observable on the table 7.

5.3 RESPONSE TO THE STEP

The response to the step input of 30V of the best set of parameters found by the Genetic

Algorithm, Differential and PSO and also the original PID control in which these parameters where

derived from (see Section 2.5) can be observed in figure 16.

As it’s possible to observe, there is a clear improvement on the performance of the system

without overshoot for both Genetic Algorithm and PSO strategies, while the Differential Evolution’s re-

sponse generated a response that was significantly faster than those strategies with a small overshoot

value.

It is also possible to observe the error between the Buck Converter’s voltage and the set-

point of 30 V on figure 17 where one can see how the lower error values would create lower IAE

values, and consequently, higher Fitness.

The value of the PID gains (𝑔𝑝, 𝑔𝑑 and 𝑔𝑖) of those parameters found during the transient

period of the GAPID are displayed on figures 18, 19 and 20.

It is possible to observe how, during the optimization process, the variance caused by the

adaptive nature of the GAPID causes the proportional and derivative gains decrease as the error



46

Figure 16 – Result of the best fitness values found in each optimization strategy applied
to the GAPID controller compared to the original PID control

source: Own Authorship

becomes zero, leaving the system to be controlled solely by the integral component when the Buck

converter’s output reaches the steady-state.

Another signal that can be analyzed is the effort spent by the control action, that can be

observed on figure 21, it is possible to notice that the adaptive control systems are faster due to the

higher control action right at the beginning of the step, while the pure PID system is slower right at the

start.

5.4 RESULTS ANALYSIS

Analyzing the Boxplots, the Shapiro-Wilks, Kruskal-Wallis and Dunn-Sidak test results and

the response to a step signal, it is possible to come up with some general observations:

For GAs:

• Roulette-based strategies (GA 1, and 2) have an overall worse performance when compared to

Tournament strategy (GA 4);

• The Stochastic Sampling selection (GA 7) had lower Fitness values when compared to the
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Figure 17 – Error values found in each optimization strategy applied to the GAPID
controller compared to the original PID control

source: Own Authorship

Figure 18 – Values of the gains 𝑔𝑝, 𝑔𝑑 and 𝑔𝑖 for the best GA 10

source: Own Authorship

Roulette strategy (GA 2) and Tournament (GA 4);

• The Survival Selection (GA 3 and 5) was not beneficial for this optimization problem;

• The Death Tournament (GA 6) resulted in a lower standard variation when compared to the

regular Tournament (GA 4);
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Figure 19 – Values of the gains 𝑔𝑝, 𝑔𝑑 and 𝑔𝑖 for the best PSO 2

source: Own Authorship

Figure 20 – Values of the gains 𝑔𝑝, 𝑔𝑑 and 𝑔𝑖 for the best DE 2

source: Own Authorship

• The Arithmetic Crossover (GA 8) achieved was not able to find high quality parameters;

• The Dynamic mutation (GA 9) had an increased the spread but with no real performance gain;

• The SBX crossover (GA 10) obtained the best results for the tested GA variations. However,

analyzing the Dunn-Sidak results this strategy is statistically similar to the strategies GA 1, GA

4, GA 6 and GA 7.
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Figure 21 – Comparison of control effort from the PID and each of the best GAPID strategies

source: Own Authorship

For PSO:

• Global Topology (PSO 1 through 5) performed better than their Ring Topology counterparts

(PSO 6 through 10);

• Both Decreasing Inertia strategies (PSO 3 and PSO 7) offered the second and third lowest PSO

errors, respectively;

• The Mutation variation (PSO 4 and 9) lowered the results spread and it’s optimizations were, on

average, better than the other variations;

• The bomb variation (PSO 5 and 10) did not appear to have improved the performance of opti-

mization;

• The Initial Inertia variation with Global Topology (PSO 2) offered the highest fitness values for

PSO strategies, but analyzing the Dunn-Sidak correction, this variation can be considered tied

in efficiency to PSO 5 and PSO 7.

For DEs:

• Overall, Differential Evolution strategies achieved lower error values than both GAs and PSO

strategies;
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• The Binary Crossover (DE 1 to 5) generally achieved better agents when compared to the

exponential crossover (DE 6 to 10);

• Rand/1 type strategies (DE 1 and 6) showed lower performance compared to other DEs;

• Best/1 variations (DE 2 and 7) was the best Mutation variation found on DE high quality results;

• Rand/2, Target-to-best, and Best/2 variations produced, overall, low Fitness individuals com-

pared to the best strategies;

The best metaheuristic variation found through the simulations for all three strategies was the

DE 2. However, the Dunn-Sidak results indicate that that variation is statistically tied in performance

to the variations DE 3, DE 4, DE 5, DE 7 as well as PSO 1, PSO 2, PSO 3 and PSO 4.
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6 CONCLUSIONS

This work started with the realization that there was no broad comparative study about dif-

ferent metaheuristic techniques applied to plants such as the Buck converter, and that it would be the

subject of research in this work.

The next step was the study of the most relevant bibliography about Buck converters, linear

and adaptive control and metaheuristic optimization, more importantly GA, DE and PSO.

Then, working models of a system with the GAPID controlling the Buck converter was created

on the platform Matlab/Simulink©. The algorithms for each of different variations of GAs, PSOs and

DEs were developed and applied to the optimization of the GAPID controller parameters, following the

rules described in the chapter 5.

After the simulations were concluded, the resulting responses and fitness values of each sim-

ulation were recorded and analyzed and presented in the chapter 5. A few conclusions were possible

to be done.

The fitness function in equation (28) proved to be a suitable choice for the optimization con-

sidering for the step response, converging on results of low settling-time, as presented on figure 16,

and the highest Fitness Value strategies were responsible for decrease the settling-times of the GAPID.

The GAPID control with Linked Parameters showed a significant improvement over the linear

PID control (figure 16), and the Friedman Tests demonstrated that a different variation of the three main

strategies were responsible for creating independent responses.

The Differential Evolution strategies were overall better suited for optimization, followed by

the PSO and the Genetic Algorithms. Although, all strategies and variations were able to improve the

step response over the original linear PID.

After the statistical analysis considering the Dunn-Sidak correction, the best Genetic Algo-

rithm variations found were: GA 1, GA 4, GA 6, GA 7 and GA 10. For Particle Swarm Optimization, the

best variation were the PSO 2, PSO 5 and PSO 7 and for the Differential Evolution the best variations

were the DE 2, DE 3, DE 4, DE 5 and DE 7.

The overall best strategies variations were PSO 1, PSO 2, PSO 3, PSO 4, DE 3, DE 4, DE 5

and DE 7, while DE 2 presented the highest Fitness. According to the Dunn-Sidak correction there’s

no statistical difference among them and the other strategies cited.
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As a result of this study, the following paper has been submitted to an open-access journal

and is under analysis as of the date of the final realease of this dissertation:

• PUCHTA, Erickson D. P.; BASSETO, Priscilla; BIUK, Lucas H.; ITABORAHY FILHO, Marco A.;

KASTER, Mauricio S.; SIQUEIRA, Hugo V. Swarm-Inpired Algoritms Applied to Optimize

Gaussian Adaptive PID Controller. MDPI Energies Open-access Journal. ISSN: 1996-1073.

Submitted on april/2021.

As a continuation of this investigation, further works can be proposed:

• Explore other metaheuristic algorithms in this application and make a wider analysis including

a broader range of algorithms.

• Make comparisons of metaheuristic optimization processes against deterministic ones.

• Perform robust optimization by taking into consideration variable parameters, like the output

load, and derive solutions that perform best under a specified range of variable parameter con-

ditions.

• Investigate strategies to perform optimization on-line, where in-place controllers should be able

to tune themselves while the process is running.

• Apply this control technique and optimization to other different plants, including nonlinear ones.

• Apply multi-objective optimization techniques.
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APPENDIX A – SHAPIRO-WILKS TEST RESULTS

Table 8 – Shapiro-Wilks test results for GA

PSO Variation P-Value null hypothesis

GA 1 0.3124 0
GA 2 0.0341 1
GA 3 0.0100 1
GA 4 0.0003 1
GA 5 0.1056 0
GA 6 0.0022 1
GA 7 0.2515 0
GA 8 0.0001 1
GA 9 0.0577 0

GA 10 0.9962 0

Table 9 – Shapiro-Wilks test results for PSO

PSO Variation P-Value null hypothesis

PSO 1 0.5330 0
PSO 2 0.0357 1
PSO 3 0.1113 0
PSO 4 0.6388 0
PSO 5 0.0838 0
PSO 6 0.7055 0
PSO 7 0.3818 0
PSO 8 0.0729 0
PSO 9 0.4756 0
PSO 10 0.3828 0

Table 10 – Shapiro-Wilks test results for DE

PSO Variation P-Value null hypothesis

DE 1 0.0000 1
DE 2 0.0001 1
DE 3 0.0754 0
DE 4 0.4394 0
DE 5 0.0008 1
DE 6 0.0070 1
DE 7 0.4101 0
DE 8 0.4819 0
DE 9 0.1726 0

DE 10 0.3508 0


	Cover
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Summary
	1 Introduction
	1.1 OBJECTIVES
	1.1.1 General Objective
	1.1.2 Specific Objectives

	1.2 Structure of the Dissertation

	2 GAPID Control
	2.1 Introduction
	2.2 Buck Converter
	2.3 Linear PID
	2.4 Gaussian Adaptive PID
	2.5 Linked Parameters

	3 Bio Inspired Metaheuristics
	3.1 Introduction
	3.2 BIO-INSPIRED Metaheuristics 
	3.3 Literature review
	3.4 Genetic Algorithms
	3.4.1 Basic Concepts
	3.4.2 Selection
	3.4.3 Crossover
	3.4.4 Mutation

	3.5 Differential Evolution
	3.5.1 Basic Concepts
	3.5.2 Mutation
	3.5.3 Crossover
	3.5.4 Selection

	3.6 Particle Swarm Optimization
	3.6.1 Basic Concepts
	3.6.2 PSO Variants


	4 Experiments
	4.1 Introduction
	4.2 Performance Measurement
	4.3 Transient Analysis
	4.4 Used Parameters
	4.5 Genetic Algorithms Variations 
	4.6 Differential Evolution Variations 
	4.7 PSO 

	5 Results
	5.1 Descriptive Analysis
	5.2 Statistical Tests
	5.2.1 Shapiro Wilk Test
	5.2.2 Kruskal–Wallis test
	5.2.3 Dunn-Sidak correction

	5.3 Response to the Step
	5.4 Results Analysis

	6 CONCLUSIONS
	References
	A Shapiro-Wilks test results

