

Analysis of Asymmetry of Traffic in
Full-duplex Wireless Local Area

Network

Felipe Soares

Dissertation submitted to School of Technology and Management to obtain the
degree of Master of Science in Information Systems at the Polytechnic Institute of

Bragança and the degree of Bachelor in Computer Science at the Federal
University of Technology – Paraná in a double degree program

Work done under the guidance of:

PhD. Luisa Maria Garcia Jorge

PhD. Manuel Paulo de Albuquerque Melo

Msc. Saulo Jorge Beltrão de Queiroz

Bragança
May 2019

TERMO DE APROVAÇÃO

ANALYSIS OF ASYMMETRY OF TRAFFIC IN FULL-DUPLEX WIRELESS LOCAL
AREA NETWORK

por

FELIPE SOARES

Este Trabalho de Conclusão de Curso (TCC) foi apresentado(a) em 02 de Julho de

2019 como requisito parcial para a obtenção do título de Bacharel em Ciência da

Computação. O(a) candidato(a) foi arguido pela Banca Examinadora composta pelos

professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o

trabalho aprovado.

Prof. Dra. Luisa Maria Garcia Jorge

Prof. Orientador IPB

Prof. Msc. Saulo Jorge Beltrão de Queiroz

Prof. Orientador UTFPR

Prof. Msc. Geraldo Ranthum
Responsável pelos Trabalhos

de Conclusão de Curso

Prof. Dr. José Eduardo Moreira Fernandes

Membro titular

Prof. Dr. Nuno Gonçalves Rodrigues

Membro titular

Prof. Msc. Saulo Jorge Beltrão de Queiroz

Coordenador do Curso
UTFPR - Campus Ponta Grossa

Ministério da Educação

Universidade Tecnológica Federal do Paraná
Campus Ponta Grossa

Diretoria de Graduação e Educação Profissional

iii

Dedication

To God, to my parents, Glaiton Soares and Maria Aparecida Soares and to my love,

Rafaela Lunelli.

v

Abstract

The standard commodity wireless hardware is half-duplex because there are challenges

in full-duplex wireless that need attention and improvement. The self-interference in

radios is one of the big challenges, but, even though there is no standard yet, there are

several proposals that cancel enough self-interference that it is possible for

communication to be successfully made. The standard half-duplex rules of the media

access control (MAC) protocol contained on wireless cards do not accept simultaneous

transmissions, because simultaneous transmissions are likely to collide with each other.

Therefore, full-duplex wireless networks need a new MAC protocol to be able to handle

the different full-duplex transmissions, namely, symmetric and asymmetric.

Symmetric full-duplex transmissions ocurr between just two stations, which can be

managed trivially by a suitable MAC protocol. On the other hand, asymmetric

transmissions occur in communications involving three stations, and those transmissions

are likely to produce collisions if one station receives simultaneously signals from the

two others. From the different difficulties of each transmission type, emerges the doubt

about how many opportunities are there for a full-duplex wireless network to make each

type of transmission. With the focus on this question, this research proposes a method to

collect traffic data from a real half-duplex wireless local area network (WLAN) to

measure the amount of full-duplex symmetric and asymmetric transmission opportunities.

The proposed method relies on: the brcmfmac driver, to collect the traffic data in kernel

space; the Ftrace tracing utility framework, to send the data from kernel to user space; a

Raspberry Pi 3 B+, in which is installed the modified driver and tracing utility; and an

estimate of the travel time of frames between the kernel and firmware.

The results of this research include a method to collect traffic data with the goal of

measuring the amount of full-duplex transmissions opportunities and their types in a real

half-duplex WLAN. It is also presented the analysis of a small amount of data collected

during four days as an example of the proposed method, which shows that 4.096% of the

frames presented the proper conditions to symmetric transmissions, while only 0.025%

in the case of asymmetric transmissions.

Keywords: wireless networks, full-duplex, traffic symmetry

vii

Resumo

Os dispositivos sem fio padrão são half-duplex, pois o full-duplex sem fio apresenta

desafios que precisam receber atenção e melhorias. A auto-interferência presente é um

dos desafios, mas, ainda que não haja padrão, existem algumas propostas que cancelam a

auto-interferência a ponto de comunicações serem realizadas com sucesso. As regras

padrão do protocolo de controle de acesso ao meio (MAC) half-duplex contido nas placas

sem fio não permitem transmissões simultâneas, já que são propensas a causar colisões.

Portanto, redes full-duplex sem fio precisam de um novo protocolo MAC para que os

diferentes tipos de transmissão full-duplex (simétrico e assimétrico) sejam utilizados.

As transmissões simétricas ocorrem em comunicações entre apenas duas estações, o que

pode ser gerido de forma trivial por um protocolo MAC apropriado. Por outro lado, as

transmissões assimétricas envolvem comunicações entre três estações, e estas

transmissões são propensas a gerar colisões no caso de uma das estações receber sinal das

outras duas, simultaneamente. Devido às diferentes dificuldades de cada tipo de

transmissão, surge a dúvida sobre quantas oportunidades existem para comunicação full-

duplex de cada tipo de transmissão. Com foco nessa questão, esta pesquisa propõe um

método para coleta de dados de tráfego de uma rede de área local sem fio (WLAN) half-

duplex com o objetivo de calcular a quantidade de oportunidades de transmissões full-

duplex simétricas e assimétricas.

O método proposto conta com: o driver brcmfmac, para coleta de dados de tráfego em

ambiente de kernel; o Ftrace, ferramenta utilitária de rastreamento, usado para enviar os

dados do kernel para o ambiente do usuário; um Raspberry Pi 3 B+, no qual é instalado o

driver modificado e o utilitário de rastreamento; e, um cálculo para estimar o tempo de

viagem de pacotes entre o kernel e o firmware.

Os resultados desta pesquisa incluem um método de coleta de dados de tráfego com o

objetivo de quantificar as oportunidades de transmissões full-duplex e seus tipos em uma

WLAN real. Também é apresentado uma coleta feita por quatro dias como um exemplo

do mesmo. A análise mostra que 4.096% dos pacotes apresentam condições adequadas

para transmissões simétricas, e apenas 0.025% para transmissões assimétricas.

Palavras-chave: redes sem fio, full-duplex, simetria de tráfego

ix

General Index

Dedication .. iii
Abstract ... v
Resumo ... vii
General Index .. ix
List of Acronyms ... xi
Figures Index ... xiii
Table Index ... xv
Listing Index ... xvii
Chapter 1 Introduction .. 1

1.1. Organization of the work .. 3
Chapter 2 State of the art ... 5

2.1. Introduction .. 5
2.2. Full-duplex.. 5

2.3. Self-interference ... 6
2.4. Medium Access Problem in Full-Duplex WLANs... 7
2.5. Radio Data Path .. 8
2.6. Conclusion .. 10

Chapter 3 Methodology ... 11

3.1. Introduction .. 11
3.2. Tools ... 12

3.2.1. Nexmon .. 13
3.2.2. Raspberry Pi ... 14
3.2.3. Ftrace .. 14

3.3. Collecting network data .. 15

3.3.1. Driver changes .. 18
3.3.2. Collecting data from Ftrace .. 20

3.4. Handling raw data ... 20
3.5. Conclusion .. 22

Chapter 4 Results and discussion .. 23

4.1. Environment of data collection... 23
4.2. Analysis of the collected data ... 23
4.3. Conclusion .. 26

Chapter 5 Conclusion .. 29
5.1. Future works ... 29

x

Bibliography ... 31
Appendix A – Code files .. 35

xi

List of Acronyms

ADC Analog-to-Digital Converter

ATT Average Time Travel

CSMA Carrier Sense Multiple Access

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSMA/CD Carrier Sense Multiple Access with Collision Detection

DAC Digital-to-Analogic Converter

FD Full-duplex

FIFO First In First Out

IBFD In-Band Full-Duplex

MAC Media Access Control

MIMO Multiple-Input Multiple-Output

MLME MAC (sub)Layer Management Entity

OFDMA Orthogonal Frequency Division Multiple Access

RTT Round-Trip Time

SDIO Secure Digital Input Output

TCP Transmission Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

WLAN Wireless Local Area Network

xiii

Figures Index

Figure 1: Representation of self-interference domains (reproduced from [15]) 7
Figure 2: Asymmetric transmission (adapted from [10]) ... 8
Figure 3: Broadcom/Cypress FullMAC internal (reproduced from [19]) 9
Figure 4: Station A and station B make FD transmission (adapted from [6]) 12
Figure 5: Round-trip scheme .. 16
Figure 6: Firmware round-trip route ... 17
Figure 7: Socket buffer layout (reproduced from [29]) .. 18
Figure 8: Populated socket buffer (reproduced from [29])... 18
Figure 9: Number of frames and FD opportunities per day ... 24

 xv

Table Index

Table 1: Ftrace files (Based on information available in [26]) 14
Table 2: Collected information. .. 19
Table 3: Relation of frames size on symmetric FD opportunities 26
Table 4: Relation of frames size on asymmetric FD opportunities 26

 xvii

Listing Index

Listing 1: Ftrace raw data ... 21
Listing 2: Output of prepare_string.cpp ... 22
Listing 3: Function trace_printk_frame .. 35
Listing 4: Script collector.sh ... 36
Listing 5: Script auto_email.sh ... 36
Listing 6: crontab -e configuration ... 36
Listing 7: C++ program prepare_string.cpp ... 36

1

Chapter 1 Introduction

New possibilities are often created by the development and advancement of technologies.

Those possibilities should be investigated to understand their growth possibility. It is clear

the impact wireless systems have on people’s lives, since they are used for all sorts of

things, for everyday use such as in smartphones and laptops, for the internet of things

devices, for mesh networks, etc. However, despite its popularity, wireless connections

also present some disadvantages when compared with wired connections.

Stations connected to a single wireless network share the same medium. As a result, they

contend to transmit units of informations (frames) through the medium. If more than one

station simultaneously sends a frame, the frames likely collide, which means they cannot

be properly decoded at the receiver. The carrier sense multiple access (CSMA) is a

method created with the goal to prevent collisions, but it is not able to eliminate them.

Stations using CSMA checks whether the medium is idle (no other station is transmitting

at the moment) before sending each frame. A collision can still occur when the medium

is idle and two stations transmit their frames at the same time. In wired networks, an

improved CSMA method is applied, called carrier sense multiple access with collision

detection (CSMA/CD). CSMA/CD was developed because it is possible to send and

receive information simultaneously in wired networks. Hence, if station A is sending a

frame and starts reading signals different from the ones it sent in the media, it means there

is a collision, and the transmission is aborted. Another improvement for CSMA is the

carrier sense multiple access with collision avoidance (CSMA/CA) that says that even

with an idle medium, a station has to wait a random amount of time before starting

transmitting its frame, in order to reduce the chance of collisions. In wireless local area

networks, the CSMA/CA is needed to avoid simultaneous transmissions.

CHAPTER 1.INTRODUCTION

2

In contrast with the wireless connections, the wired connections are able to detect

collisions, transfer and receive data at the same time. They also present lower latency in

comparison to WLANs and do not suffer from problems like the hidden station or exposed

station [1]. On the other hand, advantages of wireless connections are the convenience of

being connected everywhere, its ease of use and allowing for the creation of tiny devices

that are able to be connected wirelessly. Therefore, all the limitations of wireless

connections can be used as an incentive for research to be made to mitigate those

limitations.

There are publications in wireless communications suggesting improvements by applying

mixed radio techniques. E.g.: the multiple-input multiple-output (MIMO) system is

defined by a station with a set of multiple antennas to transmit and receive frames from/to

another station [2]; beamforming is a technique that takes advantages of channel

information to improve the signal-to-noise ratio on the receiver [3]; and, the orthogonal

frequency division multiple access (OFDMA) uses multiple orthogonal frequencies (do

not interfere with each other) by dividing the bandwidth, which allows simultaneous

transmissions to several users and improves robustness and scalability of connections [4],

[5].

In-Band Full-Duplex (IBFD) is another radio technique that can leverage the performance

of a wireless link. With a IBFD radio, a station can receive and transmit simultaneously

within the same frequency band [6]. Some works show how to design IBFD-capable

radios e.g., [7], [8]. The design presented in [8] achieved an improvement of 87% over

the half-duplex mode. However, this (and other similar physical layer IBFD results)

consider a single link. To translate the gains of IBFD radios into higher performance for

actual WLANs, the medium access layer need to be able to identify and exploit the IBFD

opportunities. These opportunies are classified as either symmetric, in which the

transmissions happen between two stations; and, asymmetric, in which the transmissions

happen between three stations. With the goal to implement in-band FD in WLANs

transmissions, it is needed to understand its nature and to design processes to be applied

to WLAN transmissions. Collecting data relating to the behavior of a working WLAN

can help researchers understand the opportunities of in-band FD transmissions, and it can

also encourage them to focus their work according to the behavior details of a real WLAN

flow.

CHAPTER 1.INTRODUCTION

 3

1.1. Organization of the work

This research is organized as follows. In Chapter 2, the state of the art is discussed,

including concepts fundamental to this research, as well as existing problems on

improving today's wireless technology and the attempts to work around them. In Chapter

3, the methodology is presented, divided into discussions of fundamental strategies, goals,

tools, the of collection method of and other choices taken. In Chapter 4, the data collection

environment is explained and the results are discussed. Finally, in Chapter 5, the impact

of this research in its field is reasoned about, and some possible future works are

suggested.

5

Chapter 2 State of the art

This chapter is dedicated to present the technologies that motivated this research and
its basic concepts and issues, including in-band full-duplex and half-duplex radios,
self-interference and medium access problem.

2.1. Introduction

In this chapter are discussed some ideas related to wireless characteristics, such as the

strategies usually applied to wireless networks. The discussion also includes attempts and

challenges to make wireless more efficient, through the use of technologies already in use

in the wired networks, such as full-duplex transmissions.

2.2. Full-duplex

A transmission is called full-duplex (FD) if it occurs between two stations

simultaneously. If these simultaneous transmissions use the same frequency band, the

transmission is classified as In-Band FD. Otherwise it is classified as Out-of-Band FD.

When the transmission happens between two stations, but it cannot be at the same time,

the transmission is called half-duplex. Finally, if only one station is able to transmit and

the other station is only able to receive, the transmission is called simplex [1].

In WLANs following the IEEE 802.11 standard, transmissions are half-duplex. FD

transmissions provide the theoretical benefit of doubling the network throughput in

CHAPTER 2.STATE OF THE ART

6

contrast to half-duplex transmissions, but they are only possible by using the concept of

the out-of-band FD.

This work focus on in-band FD, therefore in-band FD is going to be simply referred to as

FD. In the following sections, two challenges of FD WLANs are discussed, namely, self-

interference and the medium access problem.

2.3. Self-interference

FD is attractive, but it includes serious challenges. When a station starts transmitting, its

own receptor gets the transmitting signal. This is called self-interference and it makes the

radio unable to properly demodulate signals from other stations. The self-interfering

signal acts at the radio’s signal reception path with practically no loss, whereas the signal

coming from a third party radio arrives at the same receiver much weaker, because of the

path propagation loss. Therefore, self-interference prevents reception from other nodes.

Some works describe self-interference cancellation strategies, as in [6], [8], [9], [10], [11],

[12] and [13]. The self-interference cancellation techniques can be classified into digital

circuit domain, analogue circuit domain or propagation domain [14]. Figure 1 presents a

scheme with the three types of self-interference cancellation:

• The digital domain cancellation is applied in the digital signal processing, after

the frame is received by the antenna and converted to digital;

• The analog cancellation takes place after the transmitting signal is converted to

analog. A copy of the analog signal is sent to the canceller circuit, which processes

it and sends it to the receptor to cancel the self-interference; and,

• The propagation cancellation acts in the transmitter/receptor and it takes

advantages of electromagnetic properties to suppress the self-interference.

CHAPTER 2.STATE OF THE ART

 7

Figure 1: Representation of self-interference domains (reproduced from [15])

2.4. Medium Access Problem in Full-Duplex WLANs

The opportunities to FD transmissions depends on traffic behavior and can be classified

into two transmission types.

A symmetric FD transmission opportunity can happen when two stations have packets to

each other. The symmetric transmissions can be considered trivial since the two stations

are communicating exclusively with each other and its assumed that no other node can

transmit any frame at the same time.

In an asymmetric FD type, the transmission can happen between three stations, as

illustrated in Figure 2. Station A starts transmitting a frame after gaining the CSMA/CA

contention. After demodulating A’s frame header, station B verifies that there is no

queued frame to A but there is a frame to station C and starts this new transmission.

However, if station C is in the range of the signal from station A (dotted arrow), there

will be a collision between the frame from A and the frame from B at C. In this situation,

it is not trivial for station B to detect whether it is safe to make the asymmetric

transmission or not.

CHAPTER 2.STATE OF THE ART

8

Figure 2: Asymmetric transmission (adapted from [10])

The CSMA/CA based media access control (MAC) used in half-duplex does not exploit

FD opportunities. To fill this gap, novel MAC protocols haven been proposed in the

literature [6], [16] and [17].

In spite of the fact that novel MAC protocols are mandatory for future IBFD-based

WLANs, they do not suffice to ensure the expected throughput gain. In fact, the IBFD

gain also depends on the existence of symmetric or asymmetric frames during a

transmission opportunity. In turn, benefiting from these opportunities is not only a matter

of protocol stack design but also of the traffic pattern in the network. Therefore, the

central question of this work is: how often the IBFD opportunities arises in a real-world

WLAN? Aiming to answer this question, Oliveira [18] presents results assuming different

probability distributions in a simulated environment. Under that assumption, the author

verifies that the IBFD opportunities happens in 36.93% of times for symmetric

transmissions and 42.21% of times for asymmetric transmissions. Although the relevance

of this contribution is remarkable, the assumed traffic patterns were not verified in an

actual WLAN.

The current work, presents a methodology identify FD opportunities in a real-world half-

duplex WLAN. The methodology comprises collecting and analyzing real-world data,

based on which different IBFD MAC protocols can be compared.

2.5. Radio Data Path

The identification of IBFD opportunities in a half-duplex radio is not a trivial task. The

reason is that such opportunities have to be identified just after the header of the incoming

CHAPTER 2.STATE OF THE ART

 9

frame is processed at the primary receiver, which constitutes a hard real-time deadline to

meet. To support this study, in this section we explain the basic transmission and

reception paths followed by a frame within a half-duplex radio.

Figure 3: Broadcom/Cypress FullMAC internal (reproduced from [19])

As Figure 3 shows, when a device receives a wireless frame, the antenna demodulates the

signal and sends the frame to the analog-to-digital converter (ADC). The digital frame is

then sent to the firmware of the network chip on that device (D11 MAC Processor), in

which the frame is added to the receive FIFO and sent to MLME handling. The next step

is to send up the frame to the device driver running in the host, then to the kernel and

finally, to the operating system.

On the other hand, on transmission, the data follows opposite steps: the frame is sent from

the operating system kernel and then to the driver, where the frame is included in the

transmission queue. It is then sent to the firmware, where it is added to the transmit FIFO,

it is sent to the digital-to-analog converter (DAC), then finally to the antenna circuit,

going through the OFDM modulator, then the transmission is made.

Any device communication goes through the MAC (sub)Layer Management Entity

(MLME), which performs the physical layer MAC. Depending on the chip, the MLME

CHAPTER 2.STATE OF THE ART

10

is handled in different steps of communication. If the MLME is managed in hardware,

the chip is called a FullMac wireless card, and if the MLME is managed in software, the

chip is called a SoftMAC wireless card [20].

2.6. Conclusion

It is straightforward to understand why the wireless routers people have at home are not

yet able to execute FD transmissions: FD in the WLAN environment is still in

development, and it still has challenges that needs attention and research.

In this context, some solutions to the self-interference problem (which was the main

reason FD was never considered to be used in WLANs) were presented in this section.

Publications as [8] and [6] show results that cancel the self-interference sufficiently,

which makes FD technology one step closer to be implemented. But there is still a lot to

be studied, as new ways for MAC process to fulfill FD needs. This work contributes to

this environment by providing the investigation of a methodology to identify the FD

connection opportunities and its types (symmetric and asymmetric).

11

Chapter 3 Methodology

This chapter discusses the publications that fundament the goals of this work, the
concepts that motivate them and how to achieve them. In section 3.1 and 3.2, it is
reasoned about existing concepts that support the core of this research, as an FD MAC
protocol, tools, and equipment. Finally, sections 3.3 and 3.4 presents the development
of the resulting methodology to collect and handle the data.

3.1. Introduction

In order to properly study the behavior of a real WLAN, a suitable environment must be

set up and a strategy to collect the data defined.

In [6] the design and implementation of a real-time FD MAC process is described. This

MAC process is based on the strategy presented in [10], which is limited to symmetric

communications only. Figure 4 shows the way an FD transmission is handled in this

process. Station A sends a frame to station B. B first receives the frame header, then

checks if there is a frame in its transmission queue with A as its destination. If B finds

such a frame, it immediately starts the FD transmission to A, as presented in Figure 4 (a).

In this case, both transmissions finish at the same time, meaning that the body of the frame

from A is the same size as the whole frame (header and body) from B. Those frames can

be defined as compatible. However, if the frames are incompatible, as in Figure 4 (b), one

station will finish the transmission before the reception is finished, so a busy tone is sent

until the communication fully ends (on both sides). Finally, Figure 4 (c) shows that, if B

finds no frame destined to A, it immediately starts sending a busy tone. Those actions

prevent the hidden terminal problem, because any other station in the range of A or B will

notice that the media is busy and, therefore will not send any frame.

CHAPTER 3.METHODOLOGY

12

Figure 4: Station A and station B make FD transmission (adapted from [6])

A data collection process is proposed assuming the stations will follow the MAC process

just presented (originally defined in [6]). In order to check if there are opportunities for

symmetric FD communication, the following goals for this data collection were set:

• Identify the moment the header of a frame is received by the station, then

• Get access to the transmission queue of the station, and

• Store offline data from the header of the receiving frame and the headers of the

entire transmission queue.

Once the data is collected, it is possible to check the network behavior and the nature of

the possible transmissions, that is, to check if it would be possible to make use of the full-

duplex concepts and send a frame, at the same time, back to the origin station.

In order to have an accurate data collection, the ideal scenario would be to identify the

exact moment the station receives a header of a frame. That happens in the MLME and,

as explained in Chapter 2, it depends on the wireless card. A SoftMAC card seems more

direct and accessible way to achieve the goals since there are free and open source drivers

as the ath9k [21]. On the other hand, a set of FullMAC cards by Broadcom/Cypress are

supported by the Nexmon framework, which simplifies the process of collecting

information by enabling firmware patches.

3.2. Tools

The data collection is not a trivial task and needs to handle low-level data in a very

specific moment. The tools selected to make data collection possible are presented in this

section.

CHAPTER 3.METHODOLOGY

 13

3.2.1. Nexmon

Nexmon, presented in [19], is a firmware patching framework for Broadcom cards. It

aims to provide to the community means to edit the proprietary Wi-Fi firmware. With this

method, the researchers do not need to use custom hardware, which is expensive, more

energy consuming and hard for cross-layer evaluation. The reasons Nexmon do not focus

on SoftMAC cards are that those cards can be patched by updating the driver code

(commonly available, as the ath9k and br43) and many common devices, e.g.

smartphones and Raspberry Pi, use Broadcom FullMAC cards, according to [19].

To learn how the firmware works, it was necessary for Nexmon developers to reverse

engineer essential parts of the firmware. Then, they were able to design a patching tool

that uses C code as an input, compiles it and patches the binary into the firmware. This is

possible because Nexmon compresses the D11 core (the component that handles MAC-

layer events), and this compression frees up a little space that can be used to store patch

symbols.

Nexmon provides, by default, a patch to enable monitor mode and frame injection for

most of the supported chips. All patches need to be called from inside the firmware,

hence, if there is research to do requiring experiments with firmware features not present

on the default patches, the effort to write a completely new feature is considerably larger,

since there is the need to know the firmware address to insert the call to the new patch.

The attempts made to actually install Nexmon resulted in several internal issues, even

though the installation instructions were followed. Tests were made with the goals to

activate the monitor mode (not available by default in the device without Nexmon) and

to collect frames. Another test was made using the device in AP mode, which would be

the way to collect data to this research. But unfortunately, after some effort applied to this

matter with no success, an issue was opened in Nexmon project page [22], and the answer

was that it was needed to reverse engineer the firmware in order to write a new patch that

would satisfy this project needs. After some time studying the firmware code, it was

estimated that there would not be enough time to use Nexmon in this research.

Nevertheless, the Nexmon work is relevant for providing an explanation of the workflow

of the firmware, as well as presenting experiments and results in the low-level that are

used in this research.

CHAPTER 3.METHODOLOGY

14

3.2.2. Raspberry Pi

Raspberry Pi is a small size single board computer with ARM architecture used to learn

programming, embedded projects or regular computer use. Its recommended operating

system is called Raspbian, but many other ARM distros work fine, as Ubuntu Mate, or

even Windows 10 IoT Core [23], [24].

The model used for experiments in this work is the Raspberry Pi 3B+, whose wireless

card is the Broadcom bcm43455 (also called Cypress cyw43455), a FullMAC chip

supported by Nexmon. The driver used to handle this card is the brcmfmac [25]. The

Raspberry Pi 3B+ was used as an access point to collect spontaneous traffic data.

3.2.3. Ftrace

Ftrace, described in [26], is a framework with tracing utilities, included on Linux Kernel

since version 2.6.27, which can be used as a debugger and also to analyze latencies and

performance in kernel space. Ftrace has the capabilities to trace functions calls in the

Kernel in real time and send it to userspace using a set of files. The possible trace utilities

(tracers) include listing function calls, function entry and exit and hardware latency.

Table 1: Ftrace files (Based on information available in [26])

File name Type Description

current_trace Input Holds the current tracer name. The value nop is used to disable all
tracers and it is the default value.

tracing_on Input/output Holds/sets the current tracing state. 0 means Ftrace is disabled and
1 means Ftrace is enabled. The kernel functions tracing_off() and

tracing_on() can be used directly in kernel code to the same
purpose.

trace Output Holds the current information in a human-readable form, sent from
Ftrace to user space. Its contents are consumed as the buffer gets

full.

trace_pipe Output The output of reading this file is the same as reading from trace,
however reading from this file causes its contents to be consumed,

that is, the same content will not be available to be read again.

buffer_size_kb Input Holds the number of kilobytes used as buffer to each CPU.

CHAPTER 3.METHODOLOGY

 15

Ftrace files are used to configure Ftrace and to store its functions output data. Its files are

located in the folder /sys/kernel/debugging/tracing by default. Table 1 describes the files

used in this project. By default, Ftrace is disabled.

In order to write in the Ftrace buffer, one of the functions that can be used is

trace_printk(). It works exactly as the standard C language printf() function, except that

its output is directed to the Ftrace buffer only.

3.3. Collecting network data

The goals of this research will be pursued via an estimation, using values collected from

the kernel.

To do so, timing data from previous research will be used. In [19] is described an

experiment (using Nexmon) to manage the ping application directly from the firmware in

the same way the kernel manages it. It used two Android smartphones (with Linux

Kernel) and it sent exactly one frame per ping request and reply. The authors report the

round-trip time (RTT) of frames. The data was collected using a third station, a laptop

running in monitor mode. The result shows that, for a complete round-trip of pings

handled in the firmware, it takes 230μs, while for pings handled in the kernel it takes

around 2ms for more than 28 frames per second.

Based on RTT results, it is possible to infer the average time of frame travel between

kernel and firmware (ATT). The idea is illustrated in Figure 5. First, subtract the firmware

RTT (dotted arrow) from kernel RTT, resulting in the remaining sum of all travels

between kernel and firmware (continuous arrows). Then devide the result by 4, resulting

in the ATT (442.5μs). This reasoning is summarized in Equation (1).

CHAPTER 3.METHODOLOGY

16

Figure 5: Round-trip scheme

 (𝑅𝑇𝑇𝑘𝑒𝑟𝑛𝑒𝑙 − 𝑅𝑇𝑇𝑓𝑖𝑟𝑚𝑤𝑎𝑟𝑒)
4⁄ = 𝐴𝑇𝑇 (1)

With the ATT computed it is now trivial to estimate when a frame collected in the kernel

was/will be in the firmware. For incoming frames, subtracting the ATT from the frame

timestamp results in the timestamp the frame was sent from the firmware to the kernel.

And for outgoing frames, summing up the ATT to the frame timestamp results in the

timestamp the frame arrives in the firmware, coming from the kernel.

As explained in Chapter 2, when a frame to be transmitted reaches the firmware, it is

inserted into a FIFO. It is only removed from the FIFO when the antenna is ready to

transmit it. As explained in [6], according to the FD MAC process presented, to identify

the opportunities for symmetric FD transmissions means to search in the transmission

FIFO for a frame destined to A every time the station receives a frame from A.

This calculation that uses ATT, results in one timestamp per frame. With this, the

calculation does not provide the amount of time that a frame will spend on the firmware

FIFO before transmitted. However, using the firmware RTT presented in [6], it is possible

to estimate this value.

CHAPTER 3.METHODOLOGY

 17

Figure 6: Firmware round-trip route

Figure 6 illustrates the round trip path, which, as discussed, takes 230μs. If the firmware

RTT path is divided into four parts, it results in the average time to process each part,

namely, 57,5μs per part. The path from In to Out in the same firmware is an RTT step

that may take less time than the path from Station 1 Out to Station 2 In. For this reason,

the average value (57,5μs) is a lower bound to identify FD opportunities.

Let us say that, according to Figure 6, Station 1 has a frame to be sent to Station 2, and

Station 2 has a frame to be sent to Station 1. When the frame from Station 1 leaves the

firmware output, the timestamp value is Xμs. As discussed, the input process of the frame

on Station 2 will take 57,5μs. If the frame Station 2 wants to send has arrived on its output

queue at timestamp X-57,5μs, then it is possible to infer that there it is an opportunity for

an FD transmission.

With the discussed values, it is possible now to collect frame information from the kernel

and estimate the behavior on the firmware. Hence, it is needed to discuss the kernel

changes in order to access and collect the proper information.

CHAPTER 3.METHODOLOGY

18

3.3.1. Driver changes

As discussed, the Raspberry Pi 3B+ wireless card is handled by the brcmfmac driver,

which is included in Raspbian. The driver communicates to the wireless card according

to its interface, which in the case of the BCM43455 is the SDIO [27].

The main data type to handle reception and transmission of frames is a complex socket

buffer called struct sk_buff [28]. Its basic layout is presented in Figure 7.

Figure 7: Socket buffer layout (reproduced from [29])

Figure 8: Populated socket buffer (reproduced from [29])

Figure 8 shows an example of a frame with header and user data included. The poiters in

the buffer are constantly changing to handle the inclusion and exclusion of any needed

CHAPTER 3.METHODOLOGY

 19

data as the frame is being processed or created. Usecases includes handling fragmented

and linear data, control frames, UDP and TCP frames, etc. Because of this dynamic

behavior, the structrure needs a set of functions of access the correct data, independent of

the frame status.

The file skbuff.h introduces a set of functions and macro definitions to support the use of

the structure. It includes the definition of the struct sk_buff itself, functions to deliver

frame information (as those explained in Table 2), and macros to handle the sk_buff

queue, e.g. skb_queue_walk(), skb_dequeue() and skb_queue_empty().

In the file bcmsdh.c of the driver, there is a function called brcmf_sdiod_send_pkt(),

which is responsible to send the frames from the kernel queue to the firmware. Before the

function sends each frame, it was added a call the function trace_printk_frame()

(available in Appendix A).

The function brcmf_rx_frame(), located in the file core.c of the driver, receives frames

from the interfaces (e.g. SDIO or USB), process them and then send them to another

function that will be part of the path for the frame to reach the operating system. After the

frame is process in brcmf_rx_frame(), a call to trace_printk_frame() was added.

 Table 2: Collected information.

Frame field (function called/accessed variable) Definition
Length (skb->len) Total number of bytes

Data length (pkt->data_len) Number of bytes of fragmented data [30]
Head length (skb_headlen()) Number of bytes of linear data [30]

MAC header length (skb_mac_header_len()) Number of bytes of the MAC header
Network header length (skb_network_header_len()) Number of bytes of the network header

MAC header source address
(skb_mac_header()->h_source)

6 bytes source address

MAC header destination address
(skb_mac_header()->h_dest)

6 bytes destination address

The utility of the function trace_printk_frame() is to collect the information and print it

into a temporary file using the tracing utility Ftrace. Before the core of

trace_printk_frame(), it is added a call to the function tracing_on() in order to activate

Ftrace, then the function trace_printk() is used to print the required information and, at

the end of trace_printk_frame(), it is added a call to the function tracing_off() in order to

stop the writing on the debug temporary file. It is important to turn off the tracing utility

CHAPTER 3.METHODOLOGY

20

to prevent loss of data, because, once the temporary file fills up, old data is removed from

it and new data is written.

The function trace_printk_frame() collects the timestamp of the moment the frame is

being sent to the firmware, and it also collects from the frame the pieces of information

presented in Table 2.

Once the changes are made in the kernel, the current Raspbian installed on the station

needs to have its kernel rebuilt using the data collector driver code.

3.3.2. Collecting data from Ftrace

As discussed, Ftrace print functions store the values on consumable debugging trace files.

To automate the data collection from Ftrace files, the cron program runs the collector.sh

script every minute. The script checks if the trace file is empty and it registers in a log

file if any data was recorded or not. The verification process is applied every 3 seconds.

The auto_email.sh script is responsible for compacting all the files generated in the

current day, including the result of the df command, which gives it information about the

station storage. Those files are sent to an email at 23:59h every day.

Both scripts and the cron configuration are available in Appendix A.

3.4. Handling raw data

After the data is collected by Ftrace and it is organized in files by the collector.sh script,

the data looks like the example in Listing 1 and it needs to be parsed to format to be

imported into Excel.

In Listing 1, the relevant data is located after the trace_printk_frame function name

(which indicated where the Ftrace call came from). All the data before (including) the

function name can be discarded. Each frame starts with the symbol ">>", and it is

followed by the frame type (out/in) in the next line. The following lines follow a pattern,

which is a title followed by its value in the next line. Finally, the frame ends with the

symbol "<<".

CHAPTER 3.METHODOLOGY

 21

The raw data example shows two frames. The first frame (lines 1 to 19) is outgoing from

the address 101682148359480 to the address 614646115652650. And the second frame

(lines 20 to 38) is incoming from the address 101682148359480 to the address

614646115652650.

Listing 1: Ftrace raw data

1 <...>-508 [003] ... 1903.517622: trace_printk_frame: >>
2 <...>-508 [003] ... 1903.517628: trace_printk_frame: out
3 <...>-508 [003] ... 1903.517630: trace_printk_frame: current_tstamp:
4 <...>-508 [003] ... 1903.517637: trace_printk_frame: 1557255063046762
5 <...>-508 [003] ... 1903.517639: trace_printk_frame: pkt->len:
6 <...>-508 [003] ... 1903.517641: trace_printk_frame: 90
7 <...>-508 [003] ... 1903.517643: trace_printk_frame: pkt->data_len:
8 <...>-508 [003] ... 1903.517644: trace_printk_frame: 0
9 <...>-508 [003] ... 1903.517646: trace_printk_frame: pkt_headlen:
10 <...>-508 [003] ... 1903.517647: trace_printk_frame: 90
11 <...>-508 [003] ... 1903.517649: trace_printk_frame: pkt_mac_header_len:
12 <...>-508 [003] ... 1903.517650: trace_printk_frame: 14
13 <...>-508 [003] ... 1903.517652: trace_printk_frame: pkt_network_header_len:
14 <...>-508 [003] ... 1903.517668: trace_printk_frame: 20
15 <...>-508 [003] ... 1903.517670: trace_printk_frame: pkt_mac_header->h_source
16 <...>-508 [003] ... 1903.517672: trace_printk_frame: 101682148359480
17 <...>-508 [003] ... 1903.517673: trace_printk_frame: pkt_mac_header->h_dest
18 <...>-508 [003] ... 1903.517675: trace_printk_frame: 614646115652650
19 <...>-508 [003] ... 1903.517677: trace_printk_frame: <<
20 <...>-508 [003] ... 1906.195180: trace_printk_frame: >>
21 <...>-508 [003] ... 1906.195185: trace_printk_frame: in
22 <...>-508 [003] ... 1906.195186: trace_printk_frame: current_tstamp:
23 <...>-508 [003] ... 1906.195192: trace_printk_frame: 1557255063292862
24 <...>-508 [003] ... 1906.195194: trace_printk_frame: pkt->len:
25 <...>-508 [003] ... 1906.195212: trace_printk_frame: 52
26 <...>-508 [003] ... 1906.195213: trace_printk_frame: pkt->data_len:
27 <...>-508 [003] ... 1906.195213: trace_printk_frame: 0
28 <...>-508 [003] ... 1906.195214: trace_printk_frame: pkt_headlen:
29 <...>-508 [003] ... 1906.195215: trace_printk_frame: 52
30 <...>-508 [003] ... 1906.195216: trace_printk_frame: pkt_mac_header_len:
31 <...>-508 [003] ... 1906.195216: trace_printk_frame: 4294967214
32 <...>-508 [003] ... 1906.195217: trace_printk_frame: pkt_network_header_len:
33 <...>-508 [003] ... 1906.195218: trace_printk_frame: 65535
34 <...>-508 [003] ... 1906.195219: trace_printk_frame: pkt_mac_header->h_source
35 <...>-508 [003] ... 1906.195220: trace_printk_frame: 614646115652650
36 <...>-508 [003] ... 1906.195221: trace_printk_frame: pkt_mac_header->h_dest
37 <...>-508 [003] ... 1906.195221: trace_printk_frame: 101682148359480
38 <...>-508 [003] ... 1906.195222: trace_printk_frame: <<

A C++ program called prepare_string.cpp (available in Appendix A) was written with

the goal to parse the raw data file into a comma separated text file.

CHAPTER 3.METHODOLOGY

22

Listing 2: Output of prepare_string.cpp

1
id,type,begin,end,alterated,pkt->len,pkt->data_len,pkt_headlen,pkt_mac_header_len,p
kt_network_header_len,pkt_mac_header->h_source,pkt_mac_header->h_dest
2 out,1557255063046762,90,0,90,14,20,101682148359480,614646115652650
3 in,1557255063292862,52,0,52,4294967214,65535,614646115652650,101682148359480

The Listing 1, after processed by the prepare_string.cpp program will be converted to the

data presented in Listing 2. After this conversion, the data is now ready to be imported in

Excel and analyzed.

3.5. Conclusion

In this chapter, it was the goals of this research and the tools used to achieve them were

discussed. The decision to do not use the Nexmon framework was explained, as well as

a way to try to circumvent its consequences through the use of previous Nexmon results

in the firmware environment. The equipment used to collect data, the software

modifications required and the logic of the data collection methodology were also

presented.

23

Chapter 4 Results and discussion

In this chapter, it is discussed the environment of collection of data, its characteristics,
and the way the equipment was installed. It is shown the results of the data, its
meaning and tendency.

4.1. Environment of data collection

To demonstrate the method proposed in Chapter 3, it was made a collection of data in a

classroom on ESTiG of the Polytechnic Institute of Bragança during four weekdays. The

Raspberry Pi 3B+ was used as an access point, and it was placed inside the classroom.

This particular classroom was chosen because it does not have a good wifi reception from

the regular access points available in ESTiG. This fact would contribute as an incentive

for people to connect to the new access point.

4.2. Analysis of the collected data

Once the data is collected and imported to Excel, a macro is used to calculate the ATT

value for each frame, honoring ATT definition: for incoming frames, ATT is subtracted

from the frame timestamp, and for outgoing frames, ATT is added to the frame timestamp.

Then, the macro is now able to identify the existing symmetric and asymmetric FD

opportunities.

CHAPTER 4.RESULTS AND DISCUSSION

24

For symmetric transmissions, the macro searches for pairs of incoming and outgoing

frames with the same source and destination addresses, respectively. In each pair, the

incoming frame timestamp must be at most 57,5μs bigger than the outgoing frame

timestamp, according to the discussion on Chapter 3.

Although the MAC protocol presented in [6] does not handle asymmetric transmissions,

the asymmetric opportunities were calculated similarly to the symmetric opportunities.

But for asymmetric opportunities, each pair of the incoming and outgoing frames must

have different source and destination addresses, respectively.

The number of collected frames per day and its respective amount of symmetric and

asymmetric FD opportunities are shown in Figure 9. The total amount of collected frames

is 1.961.233, the symmetric opportunity amount is 80.337, and the asymmetric

opportunity amount is 494. There were 1.498.568 incoming frames and 462.665 outgoing

frames.

Figure 9: Number of frames and FD opportunities per day

The symmetric opportunities represent 4.096% of the total amount, while the asymmetric

opportunities represent 0.025% only. Even thought the collected data amount is not

enough to a proper comparision, the result discussed in [18] (36.93% of symmetric

opportunities and 42.21% of asymmetric opportunities) is significantly higher than the

result of this reseach.

CHAPTER 4.RESULTS AND DISCUSSION

 25

During the four days, 22 users were connected to the access point as follow: 3 users on

day one, 9 users on day two, 5 users on day three, and 5 users on day four. The small

percentage of symmetric and asymmetric opportunities is directly related to the number

of frames and users connected, as explained in [18], which shows that there is a strong

correlation between the amount of traffic and the percentage of FD opportunities, this is,

the more intense the network traffic is, the more FD opportunities there are.

The asymmetric opportunity, by its definition, depends mainly on the number of

connected stations. As this scenario shows, a number of users as small as 22 and not

simultaneously connected are not even enough to generate more asymmetric

opportunities than symmetric ones.

On the other hand, a small number of users connected simultaneously results in more

opportunities for symmetric transmissions, this is, with a high amount of traffic, the fewer

the users connected simultaneously, the higher the chance for the access point to have

frames to any stations communicating with the access point.

As discussed, an FD transmission might need to transmit the busy tone in the MAC

proposed in [6]. The decision to transmit a busy tone is made according to the

compatibility of the size of the frames. With the goal to verify the compatibility of frame

sizes on FD opportunities, Table 3 and Table 4 show and classify the number of

incoming/outgoing frames used on FD opportunities. Both tables, in the collumns, show

the number of outgoing frames that are larger than the incoming frames, and show the

opposite as well. The lines classify the frames by size relation between frames, e.g., on

Table 3, line 1, column 1, it shows that 50 outgoing frames are between 0% and 25%

larger than its correspondent incoming frame.

In both tables, the outgoing frame size is larger than double of the incoming frame size

for most FD opportunities. The same occurs (but less markedly so) when the incoming

frame size is greater than the outgoing frame size.

As the Table 3 shows, in the symmetric FD opportunities found, the outgoing frame was

bigger in 79.865 cases, the incoming frame was bigger in only 471 cases, and in only one

opportunity the outgoing and incoming frames were the same size.

CHAPTER 4.RESULTS AND DISCUSSION

26

Table 3: Relation of frames size on symmetric FD opportunities

Number of larger
outgoing frames

Number of larger
incoming frames

Number of equal size
frames

0% - 25% 50 33

1

25% - 50% 45 25

50% - 75% 507 23

75% - 100% 228 19

> 100% 79035 371

Total 79865 471

In asymmetric FD opportunities found, presented in Table 4, the outgoing frame was

bigger in 447 cases, the incoming frame was bigger in 32 cases, and the outgoing and

incoming frames were the same size in 15 cases.

Table 4: Relation of frames size on asymmetric FD opportunities

Number of larger
outgoing frames

Number of larger
incoming frames

Number of equal size
frames

0% - 25% 13 3

15

25% - 50% 5 2

50% - 75% 22 1

75% - 100% 35 4

> 100% 372 22

Total 447 32

Although there are results of this data collection, the amount of data is insufficient to

provide a proper answer regarding FD opportunities and must be seen as a demonstration

of the proposed methodology.

4.3. Conclusion

The results presented in this chapter can be interpreted as a demonstration of the

methodology discussed in Chapter 3. The data were analyzed according to the operation

of the MAC protocol presented in [6].

CHAPTER 4.RESULTS AND DISCUSSION

 27

The focus of the analysis was to count the number of FD opportunities of each type,

symmetric and asymmetric. The size of the frames was also used to understand the

number of FD transmissions that would need to send the busy tone, because of the

incompatibility of incoming and outgoing frame sizes.

29

Chapter 5 Conclusion

In this reseach it was discussed that FD technologies for real WLANs are the next step to

improve the WLANs efficiency. Even though FD technologies already exist, namely out-

of-band full-duplex, the in-band full-duplex brings a set of advantages. It also brings

challenges, but once those are solved, FD has the potential to become the next standard

in commodity routers and general WLANs.

The self-interference used to be one of the main problems to the FD WLANs, but there

are already techniques to sufficiently cancel the self-interference and allows successful

FD transmissions. Another present problem on FD WLANs is the absence of a standard

MAC protocol to take as much advantage of FD opportunities as possible (although there

are some proposals, as in [10], [12], [16] and [17]).

The main result of this research is the methodology based on estimations to collect

information from incoming and outgoing frames of a device with Linux kernel and a

Broadcom chip that uses the brcmfmac driver. It was also presented the result of the

analysis of collected data in a real WLAN with spontaneous traffic as a form of validation

of the proposed methodology of data collection.

5.1. Future works

The results presented by this research can be enhanced with follow-up studies.

CHAPTER 5.CONCLUSION

30

The referred Nexmon framework is a powerful tool for low-level investigations, and it

could be used to identify the FD opportunities with better precision than the estimates

made in this research.

The methodology presented in this research can be extended to collect information about

the amount of users connected simultaneously, with the goal to verify the relation between

simultaneous users and each type of FD opportunities. It can also be applied in a different

scenario, for a longer period of time and with more spontaneous users at the same time,

in order to verify the relation between symmetric and asymmetric FD opportunities.

Statistics about the behavior of the real WLANs can be very useful as fundamental

information for studies proposing new MACs for cards to be used in FD WLANs.

31

Bibliography

[1] B. A. Forouzan, "Data Communications," in Data Communications and
Networking, 4th ed., McGraw-Hill, 2007, pp. 6-7.

[2] J. Gong, M. R. Soleymani and J. F. Hayes, "A Rigorous Proof of MIMO Channel
Capacity’s Increase with Antenna Number," Wireless Personal Communications,
vol. 49, pp. 81-86, April 2009.

[3] Y. Jing and H. Jafarkhani, "Network Beamforming Using Relays With Perfect
Channel Information," IEEE Transactions on Information Theory, vol. 55, pp.
2499-2517, May 2009.

[4] H. Yin and S. Alamouti, "OFDMA: A Broadband Wireless Access Technology,"
in 2006 IEEE Sarnoff Symposium, Princeton, USA, 2006.

[5] G. Miao, N. Himayat, Y. Li and D. Bormann, "Energy-Efficient Design in
Wireless OFDMA," in 2008 IEEE International Conference on Communications,
2008.

[6] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti
and P. Sinha, "Practical, real-time, full duplex wireless," in Proceeding MobiCom
'11 Proceedings of the 17th annual international conference on Mobile computing
and networking, Las Vegas, 2011.

[7] D. Korpi, L. Anttila, V. Syrjälä and M. Valkama, "Widely Linear Digital Self-
Interference Cancellation in Direct-Conversion Full-Duplex Transceiver," IEEE
Journal on Selected Areas in Communications, vol. 32, pp. 1674-1687, September
2014.

[8] D. Bharadia, E. McMilin and S. Katti, "Full Duplex," in Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, Hong Kong, 2013.

[9] D. Korpi, M. Turunen, L. Anttila and M. Valkama, "Modeling and Cancellation of
Self-interference in Full-Duplex Radio Transceivers: Volterra Series–Based
Approach," in 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), Kansas City, USA, 2018.

[10] B. Radunovic, D. Gunawardena, A. Proutiere, N. Singh, V. Balan and P. Key,
"Efficiency and Fairness in Distributed Wireless Networks Through Self-
interference Cancellation and Scheduling," Microsoft Research, Cambridge, 2009.

[11] S. Sen, N. Santhapuri, R. R. Choudhury and S. Nelakuditi, "Successive
Interference Cancellation: A Back-of-the-Envelope Perspective," in IX
Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
Monterey, 2010.

32

[12] J. I. Choi, M. Jain, K. Srinivasan, P. Levis and S. Katti, "Achieving Single
Channel, Full Duplex Wireless Communication," Proceedings of the 16th Annual
International Conference on Mobile Computing and Networking, September 2010.

[13] S. Gollakota and D. Katabi, "Zigzag decoding: combating hidden terminals in
wireless networks," Proceedings of the ACM SIGCOMM 2008 Conference on
Data Communication, pp. 159-170, 2008.

[14] C. D. Nwankwo, L. Zhang, A. Quddus, M. A. Imran and R. Tafazolli, "A Survey
of Self-Interference Management Techniques for Single Frequency Full Duplex
System," IEEE Access, vol. 6, pp. 30242-30268, 20 November 2017.

[15] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan and R. Wichman,
"In-Band Full-Duplex Wireless: Challenges and Opportunities," IEEE Journal on
Selected Areas in Communications, vol. 32, pp. 1637-1652, 12 June 2014.

[16] Y. Liao, K. Bian, L. Song and Z. Han, "Full-Duplex MAC Protocol Design and
Analysis," IEEE Communications Letters, vol. 19, pp. 1185-1188, July 2015.

[17] S. Goyal, P. Liu, O. Gurbuz, E. Erkip and S. Panwar, "A distributed MAC
protocol for full duplex radio," in 2013 Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, USA, 2013.

[18] L. F. S. Oliveira, “Avaliação de redes sem fio com rádios full duplex,” Niterói,
2013.

[19] M. T. Schulz, "Teaching Your Wireless Card New Tricks: Smartphone
Performance and Security Enhancements Through Wi-Fi Firmware
Modifications," Darmstadt, 2018.

[20] "Glossary," Linux Wireless, [Online]. Available:
https://wireless.wiki.kernel.org/en/developers/documentation/glossary.

[21] "About ath9k," Linux Wireless, [Online]. Available:
https://wireless.wiki.kernel.org/en/users/Drivers/ath9k.

[22] "Get raw frames with Raspberry Pi 3B+ #282," Nexmon, [Online]. Available:
https://github.com/seemoo-lab/nexmon/issues/282.

[23] "FAQs - Raspberry Pi Documentation," Raspberry Pi, [Online]. Available:
https://www.raspberrypi.org/documentation/faqs.

[24] "Raspberry Pi Downloads - Software for the Raspberry Pi," Raspberry Pi,
[Online]. Available: https://www.raspberrypi.org/downloads/.

[25] "Techdata: Raspberry Pi Foundation Raspberry Pi 3 B+," OpenWrt, [Online].
Available:
https://openwrt.org/toh/hwdata/raspberry_pi_foundation/raspberry_pi_3_bplus.

[26] S. Rostedt, "ftrace - Function Tracer," [Online]. Available:
https://www.kernel.org/doc/Documentation/trace/ftrace.txt.

33

[27] "Broadcom brcmsmac(PCIe) and brcmfmac(SDIO/USB) drivers," Linux Wireless,
[Online]. Available:
https://wireless.wiki.kernel.org/en/users/drivers/brcm80211#sdio_devices.

[28] S. Venkateswaran, Essential linux device drivers, Prentice Hall Press, 2008.

[29] D. S. Miller, "SKB data," [Online]. Available:
http://vger.kernel.org/~davem/skb_data.html.

[30] D. S. Miller, "SKB," [Online]. Available: http://vger.kernel.org/~davem/skb.html.

35

Appendix A – Code files

Listing 3: Function trace_printk_frame

1 #define PKT_ETH_ALEN 6 /* Octets in one ethernet addr */
2 #define PKT_IN 1
3 #define PKT_OUT 0
4
5 struct pkt_ethhdr {
6 unsigned char h_dest[PKT_ETH_ALEN]; /* destination eth addr */
7 unsigned char h_source[PKT_ETH_ALEN]; /* source ether addr */
8 __be16 h_proto; /* packet type ID field */
9 };
10
11
12 void trace_printk_frame(struct sk_buff *pkt, int pkt_in)
13 {
14 u16 *pkt_temp;
15 struct pkt_ethhdr *pkt_mac_header;
16 u16 pkt_headlen;
17 u32 pkt_mac_header_len, pkt_network_header_len,
18 pkt_inner_network_header_len;
19 tracing_on();
20
21 trace_printk(">>\n");
22 if (pkt_in)
23 trace_printk("in\n");
24 else
25 trace_printk("out\n");
26
27 pkt_mac_header = (struct pkt_ethhdr *) skb_mac_header(pkt);
28 pkt_headlen = skb_headlen(pkt);
29 pkt_mac_header_len = skb_mac_header_len(pkt);
30 pkt_network_header_len = skb_network_header_len(pkt);
31 pkt_inner_network_header_len = skb_inner_network_header_len(pkt);
32
33 trace_printk("current_tstamp:\n");
34 trace_printk("%lld\n", ktime_to_us(ktime_get_real()));
35 trace_printk("pkt->len:\n");
36 trace_printk("%u\n", pkt->len);
37 trace_printk("pkt->data_len:\n");
38 trace_printk("%u\n", pkt->data_len);
39 trace_printk("pkt_headlen:\n");
40 trace_printk("%u\n", pkt_headlen);
41 trace_printk("pkt_mac_header_len:\n");
42 trace_printk("%u\n", pkt_mac_header_len);
43 trace_printk("pkt_network_header_len:\n");
44 trace_printk("%u\n", pkt_network_header_len);
45 if(pkt_mac_header) {
46 pkt_temp = (u16 *) pkt_mac_header->h_source;
47 trace_printk("pkt_mac_header->h_source\n");
48 trace_printk("%hu%hu%hu\n", pkt_temp[0], pkt_temp[1], pkt_temp[2]);
49

36

50 pkt_temp = (u16 *) pkt_mac_header->h_dest;
51 trace_printk("pkt_mac_header->h_dest\n");
52 trace_printk("%hu%hu%hu\n", pkt_temp[0], pkt_temp[1], pkt_temp[2]);
53 }
54 trace_printk("<<\n");
55 tracing_off();
56 }

Listing 4: Script collector.sh

1 #!/bin/bash
2
3 basis_folder=/home/pi/trace_frames
4 trace_folder=$basis_folder/trace_backup
5
6 for ((secs=0; secs<60; secs+=$1)); do
7 if ! diff -q /sys/kernel/debug/tracing/trace $basis_folder/std_trace.txt ;
then
8 cat /sys/kernel/debug/tracing/trace_pipe >> $(echo -e
$trace_folder/trace_$(date "+%Y-%m-%d_%H-%M-%S").txt);
9 echo -e +$(date "+%Y-%m-%d_%H-%M-%S") >> $(echo -e
$trace_folder/log_trace_$(date "+%Y-%m-%d").txt);
10 else
11 echo -e -$(date "+%Y-%m-%d_%H-%M-%S") >> $(echo -e
$trace_folder/log_trace_$(date "+%Y-%m-%d").txt);
12
13 fi
14 /bin/sleep $1;
15 done

Listing 5: Script auto_email.sh

1 basis_folder=/home/pi/trace_frames
2 trace_folder=$basis_folder/trace_backup
3 report_folder=$basis_folder/reports
4 today_date=$(date "+%Y-%m-%d")
5
6 df > $(echo -e $report_folder/df_$today_date.txt)
7
8 tar -zcf $report_folder/report_$today_date.tar.gz --directory=$basis_folder
$trace_folder/*$today_date* $report_folder/df_$today_date.txt
9
10 echo | mutt -a $report_folder/report_$today_date.tar.gz -s $(echo -e "Report-
$today_date") -- email@address.com

Listing 6: crontab -e configuration

1 * * * * * /home/pi/trace_frames/collector.sh 3
2 59 23 * * * /home/pi/trace_frames/auto_email.sh

Listing 7: C++ program prepare_string.cpp

1 #include <iostream>
2 #include <fstream>
3 #include <string>

37

4 #include <bits/stdc++.h>
5 #include <filesystem>
6 namespace fs = std::filesystem;
7 using namespace std;
8
9 int main(int argc, char const *argv[])
10 {
11 if (argc == 1)
12 return -1;
13 ifstream coleta;
14 ofstream table;
15 string line, util_line, data_row;
16 bool valid_block = false;
17 int begin_idx, qtd_line_block = 0, count_block = 1, count_args = 0,
18 count_all_blocks = 0, count_files = 0, count_invalid = 0, count_valid = 0;
19 std::vector<std::string> vec;
20 std::string path{argv[1]};
21 table.open (argc == 3 ? argv[2] : "comma-separated-table.txt");
22 table <<
"id,type,begin,end,alterated,pkt->len,pkt->data_len,pkt_headlen,pkt_mac_header_len,
pkt_network_header_len,pkt_mac_header->h_source,pkt_mac_header->h_dest\n";
23 for (const auto & entry : fs::directory_iterator(path))
24 {
25 vec.push_back(entry.path());
26 }
27 sort(vec.begin(), vec.end());
28 // It walks through all files in the folder
29 for (const auto entry : vec)
30 {
31 if(entry.find(".DS_Store") != string::npos) continue;
32 // It opens each file
33 coleta.open (entry);
34 if (coleta.is_open())
35 {
36 cout << "File #" << ++count_files << ":" << entry << endl;
37 // It walks through each line of the file
38 while (std::getline (coleta,line))
39 {
40 if(!line.size()) continue;
41 // It searches the beggining of useful string
42 begin_idx = 20+line.find("trace_printk_frame");
43 if (begin_idx == string::npos)
44 begin_idx = 0;
45 util_line = line.substr(begin_idx, line.size()-begin_idx);
46 // >> means it is a new frame
47 if (!util_line.compare(">>"))
48 {
49 valid_block = true;
50 count_all_blocks++;
51 count_args = 0;
52 data_row = to_string(count_block);
53 // >> means the frame ended
54 } else if (!util_line.compare("<<"))
55 {
56 if (valid_block && count_args == 18)
57 {

38

58 count_block++;
59 count_valid++;
60 table << data_row << endl;
61 } else
62 count_invalid++;
63 valid_block = false;
64 }
65 if (valid_block)
66 {
67 // it checks if the current line is valid
68 if(count_args > 18 || (count_args == 1 && util_line.compare("out") &&
util_line.compare("in"))
69 || (count_args%2 && (util_line.find("pkt") != string::npos ||
util_line.find("S") != string::npos)))
70 {
71 valid_block = false;
72 }
73 // Separate timestamp in two collumns
74 else if (count_args == 3 && util_line.size() > 6)
75 {
76 data_row+=","+util_line.substr(0, 5)+","+util_line.substr(5,
util_line.size()-6)+",";
77 }
78 // it handles all other valid lines
79 else if (count_args%2)
80 {
81 data_row+=","+util_line;
82 }
83 count_args++;
84 }
85 }
86 }
87 else cout << "Unable to open file " << entry << endl;
88 coleta.close();
89 }
90 cout << "Invalid blocks: " << count_invalid << endl;
91 cout << "Valid blocks: " << count_valid << endl;
92 cout << "Blocks collected: " << count_all_blocks << endl;
93 table.close();
94 return 0;
95 }

	Dedication
	Abstract
	Resumo
	General Index
	List of Acronyms
	Figures Index
	Table Index
	Listing Index
	Chapter 1 Introduction
	1.1. Organization of the work

	Chapter 2 State of the art
	2.1. Introduction
	2.2. Full-duplex
	2.3. Self-interference
	2.4. Medium Access Problem in Full-Duplex WLANs
	2.5. Radio Data Path
	2.6. Conclusion

	Chapter 3 Methodology
	3.1. Introduction
	3.2. Tools
	3.2.1. Nexmon
	3.2.2. Raspberry Pi
	3.2.3. Ftrace

	3.3. Collecting network data
	3.3.1. Driver changes
	3.3.2. Collecting data from Ftrace

	3.4. Handling raw data
	3.5. Conclusion

	Chapter 4 Results and discussion
	4.1. Environment of data collection
	4.2. Analysis of the collected data
	4.3. Conclusion

	Chapter 5 Conclusion
	5.1. Future works

	Bibliography
	Appendix A – Code files

