UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS GUARAPUAVA COORDENAÇÃO DE ENGENHARIA CIVIL

Luan Negrelle Strechar

ANÁLISE DE TABULEIROS DE CONCRETO ARMADO PARA O VIADUTO DE ACESSO A CIDADE DOS LAGOS EM GUARAPUAVA - PR

Guarapuava Dezembro, 2018

LUAN NEGRELLE STRECHAR

ANÁLISE DE TABULEIROS DE CONCRETO ARMADO PARA O VIADUTO DE ACESSO A CIDADE DOS LAGOS EM GUARAPUAVA - PR

Trabalho de Conclusão de Curso apresentado à Coordenação de Engenharia Civil da Universidade Tecnológica Federal do Paraná, Câmpus Guarapuava, como parte dos requisitos para obtenção do título de Engenheiro Civil.

Orientador: Edson Florentino de Souza Coorientador: Carlos Francisco Pecapedra de Souza

> Guarapuava Dezembro, 2018

LUAN NEGRELLE STRECHAR

ANÁLISE DE TABULEIROS DE CONCRETO ARMADO PARA O VIADUTO DE ACESSO A CIDADE DOS LAGOS EM GUARAPUAVA – PR

Este Trabalho de Diplomação foi julgado adequado como pré-requisito para a obtenção do título de ENGENHEIRO CIVIL e aprovado em sua forma final pelo/a Professor/a Responsável pela disciplina Trabalho de Conclusão de Curso 2 da Universidade Tecnológica Federal do Paraná.

Guarapuava, dezembro de 2018

BANCA EXAMINADORA

Prof. Msc. Edson Florentino de Souza (UTFPR) - Orientador/PresidenteMestre pela Universidade Paulista Julio de Mesquita Filho

Prof. Msc. Carlos Francisco Pecapedra Souza (UTFPR) - CoorientadorMestre pela Universidade Federal de Santa Catarina

Prof. Msc. Rodrigo Scoczynski Ribeiro (UTFPR) Mestre pela Universidade Tecnológica Federal do Paraná

AGRADECIMENTOS

Agradeço primeiramente a Deus por me proporcionar capacidade física e mental de concluir o curso de Engenharia Civil.

Agradeço a minha família, por sempre me apoiar, e mesmo nas horas difíceis em que ausente estive, não se absteve de me trazer apoio e compaixão. A ela devo parcela imensurável de minha formação pessoal e profissional. Saber que minha família sempre esteve comigo fez com que a caminhada sempre fosse mais leve.

Agradeço aos Professores orientadores deste trabalho, que acreditaram no meu potencial e aceitaram me guiar nesta tarefa. Agradeço ao professor Pecapedra por sua dedicação e tempo para passar o conteúdo, livros e materiais para o estudo do dimensionamento das obras de arte. Agradeço ao professor Edson por todo o conteúdo passado nas disciplinas de Concreto Armado que foram indispensáveis para elaboração deste trabalho.

Agradeço a Universidade Tecnológica Federal e seu corpo docente pela formação em mim investida. Não será desperdiçada.

Por fim, agradeço a meus amigos e colegas que comigo que não se pesaram a comemorar momentos festivos no decorrer deste curso.

RESUMO

O presente trabalho consiste no comparativo de diferentes tabuleiros de concreto armado

dimensionados para um mesmo viaduto. A obra de arte está localizada na cidade de

Guarapuava-PR na PRC-466 (trecho urbano). Para o cálculo das lajes é utilizado as Tabelas de

Rusch. O cálculo das longarinas é feito embasado no método de Engesser-Courbon. Além das

soluções estruturais, como resultado deste trabalho é possível concluir quais são os pontos

positivos e negativos de cada uma das soluções analisadas, com foco principal nas taxas de

armaduras encontradas. Ao fim do trabalho, é apresentado um comparativo de materiais e

serviços utilizados para cada um dos tabuleiros.

Palavras-chave: Concreto Armado. Tabuleiro. Solução Estrutural.

LISTA DE FIGURAS

Figura 1 - Ponte Otávio Frias de Oliveira.	7
Figura 2 – Ponte Newton Navarro	7
Figura 3 – Viaduto do Chá década de 50	13
Figura 4 – Ponte Governador Orestes Quércia	16
Figura 5 – Estrutura de uma ponte em Concreto Armado	19
Figura 6 – Ponte sobre vigas de um só vão	20
Figura 7 - Pontes sobre vigas contínuas com vigas com curvas de concordância (a) e com perfil retilíneo (b)	
Figura 8 - Pontes sobre duas vigas	26
Figura 9 - Disposição do trem-tipo sobre a pista de rodagem	34
Figura 10 – Superfícies de Influência	37
Figura 11 - Convenção de apoios de lajes Tabelas de Rusch	38
Figura 12 -Projeção da Roda no eixo da Laje	40
Figura 13 - Modelo de compatibilização de momentos fletores em lajes centrais	42
Figura 14 - Esquema genérico de deformabilidade das transversinas pelo método de Leonhardt	46
Figura 15 - Exemplo de Grelha e seus respectivos coeficientes de repartição	48
Figura 16 - Esquema de distribuição transversal das cargas em uma transversina	49
Figura 17 – Fluxograma de etapas do projeto	54
Figura 18 - Layout T.Rusch 1.0	57
Figura 19 - Layout FTOOL V4.0	58
Figura 20 – Longarinas com seção reduzida com mísulas	62
Figura 21 - Modelo de seções para lajes	62
Figura 22 - Tipos de lajes convenção de Rusch Tabuleiro A	63
Figura 23 - Planta do Tabuleiro A	64
Figura 24 - Corte Longitudinal Longarinas - Tabuleiro A	66
Figura 25 - Seção Transversal Tabuleiro A	69
Figura 26 — Tipos de lajes convenção de Rusch Tabuleiro B	70
Figura 27 - Planta do Tabuleiro B	71
Figura 28 - Corte Longitudinal Longarinas - Tabuleiro B	73

Figura 29 - Seção Transversal Tabuleiro B	78
Figura 30 — Tipos de lajes convenção de Rusch Tabuleiro C	79
Figura 31 - Planta do Tabuleiro C	81
Figura 32 - Corte Longitudinal Longarinas - Tabuleiro C	83
Figura 33 - Seção Transversal Tabuleiro C	86
Figura 34 — Tipos de lajes convenção de Rusch Tabuleiro D	87
Figura 35 - Planta do Tabuleiro D	89
Figura 36 - Corte Longitudinal Longarinas - Tabuleiro D	91
Figura 37 - Seção Transversal Tabuleiro D	97
Figura 38 - Tipos de lajes convenção de Rusch Tabuleiro E	98
Figura 39 - Planta do Tabuleiro E	99
Figura 40 - Seção Transversal Tabuleiro E	100
Figura 41 - Seção Longitudinal Tabuleiro E	100

LISTA DE QUADROS

Quadro 1 - Tipos de Pórticos	22
Quadro 2 – Recomendações para pórticos de Pontes	25
Quadro 3 – Coeficiente de Impacto Vertical	32
Quadro 4 - Valores de Taguti (2002) para o Coeficiente α0	44
Quadro 5 - Coeficiente k método de Leonhardt	47
Quadro 6 - Coeficientes de combinação de ações	52
Quadro 7 - Tabuleiro A - Coeficientes de majoração cargas móveis Tabuleiro A	64
Quadro 8 - Entradas Tabelas de Rusch Tabuleiro A	65
Quadro 9 - Resumo de resultados lajes - Tabuleiro A	65
Quadro 10 - Coeficiente de majoração das cargas móveis para longarinas- Tabuleiro A	66
Quadro 11 -Resumo de resultados longitudinais Longarinas V1=V2 - Tabuleiro A	67
Quadro 12 - Armadura Transversal Longarinas - Tabuleiro A	68
Quadro 13 - Quantitativo de aço Longarinas - Tabuleiro A	69
Quadro 14 - Coeficientes de majoração cargas móveis Tabuleiro B	70
Quadro 15 - Entradas Tabelas de Rusch - Tabuleiro B	71
Quadro 16 - Resumo de resultados lajes tabuleiro B	72
Quadro 17 - Coeficiente de majoração das cargas móveis para longarinas- Tabuleiro B	72
Quadro 18 -Resumo de resultados longitudinais Longarinas - Tabuleiro B	74
Quadro 19 - Armadura Transversal Longarinas - Tabuleiro B	76
Quadro 20 - Quantitativo de aço Longarinas - Tabuleiro B	78
Quadro 21 - Coeficientes de majoração cargas móveis Tabuleiro C	80
Quadro 22 - Entradas Tabelas de Rusch - Tabuleiro C	81
Quadro 23 - Resumo de resultados lajes tabuleiro C	82
Quadro 24 - Coeficiente de majoração das cargas móveis para longarinas- Tabuleiro C	82
Quadro 25 -Resumo de resultados longitudinais Longarinas - Tabuleiro C	84
Quadro 26 - Armadura Transversal Longarinas - Tabuleiro C	85
Quadro 27 - Quantitativo de aço Longarinas - Tabuleiro C	86
Quadro 28 - Coeficientes de majoração cargas móveis Tabuleiro D	88
Quadro 29 - Entradas Tabelas de Rusch - Tabuleiro D	89
Ouadro 30 - Resumo de resultados laies tabuleiro D	90

Quadro 31 - Coeficiente de majoração das cargas móveis para longarinas- Tabuleiro D	.90
Quadro 32 -Resumo de resultados longitudinais Longarinas - Tabuleiro D	.92
Quadro 33 - Armadura Transversal Longarinas - Tabuleiro D	.94
Quadro 34 - Quantitativo de aço Longarinas - Tabuleiro D	.96
Quadro 35 - Coeficientes de majoração cargas móveis Tabuleiro E	.98
Quadro 36 - Entradas Tabelas de Rusch - Tabuleiro E	.99
Quadro 37 - Resumo de resultados lajes tabuleiro E	100
Quadro 38 - Orçamento para tabuleiros1	101
Quadro 39 - Análise de armaduras VIGAS/LAJES1	107
Quadro 40 – Peso Próprio das estruturas1	107

LISTA DE ABREVIATURAS E SIGLAS

AA Aparelhos de apoio

ABNT Associação Brasileira de Normas Técnicas

BDI Bonificação de despesas indiretas

CIA Coeficiente de impacto adicional

CIV Coeficiente de Impacto Vertical

CNF Coeficiente do número de faixas

CREA-PR Conselho Nacional de Engenharia e Agronomia do Paraná

C.P.U. Composição de preços unitários

DER-PR Departamento de Estradas de Rodagens do Paraná

DNIT Departamento Nacional de Infraestrutura de Transportes

OAE Obra de Arte Especial

RH Recursos Humanos

SUMÁRIO

1	INTR	ODUÇÃO	6
	1.1	PONTES E VIADUTOS	6
	1.2	OBJETIVOS DO TRABALHO	10
	1.2.1	Objetivo principal	10
	1.2.2	Objetivos secundários	10
	1.3	JUSTIFICATIVA	11
2	REV	SÃO BIBLIOGRÁFICA	12
	2.1	RECOMENDAÇÕES AO PROJETO DE OBRAS DE PONTES	12
	2.1.1	CONSTRUÇÕES DE PONTES NO BRASIL	12
	2.1.2	ESTADO DA ARTE	14
	2.1.3	CONCEPÇÃO DE PONTES	15
	2.1.4	ANTEPROJETO	17
	2.1.5	SISTEMAS ESTRUTURAIS	19
	2.1.6	PROCESSOS DE CONSTRUÇÃO	23
	2.1.7	ALTURA CONSTRUTIVA	24
	2.1.8	SEÇÃO TRANSVERSAL	25
	2.1.9	DETALHES DE ACABAMENTOS DE PONTES	27
	2.1.10	TIPOS DE APOIOS - PILARES	27
	2.1.1	APARELHOS DE APOIO	28
	2.2	COMPOSIÇÃO DE PREÇOS UNITÁRIOS E ORÇAMENTO DE OBRAS PÚBLICAS	29
3	PRO.	ETO E DIMENSIONAMENTO DE PONTES	30
	3.1	ESFORÇOS EM PONTES	30
	3.1.1	Ações Permanentes	31
	3.1.2	Ações Variáveis: Cargas móveis	31
	3.1.3	Cargas móveis: Efeitos dinâmicos	35
	3.1.4	Cargas móveis: Forças horizontais	35
	3.1.5	Ações excepcionais	36
	3.2	MECÂNICA ESTRUTURAL	36
	3.2.1	Cálculo das lajes	37
	3.2.2	Tabelas de Rusch	38
	3.2.3	Cálculo das vigas longarinas	44
	3.2.4	Cálculo das vigas transversinas	49
	3.3	NORMAS	50
	3.4	MATERIAIS E MÉTODOS	53
	3.5	ETAPAS DO DIMENSIONAMENTO	55
	3.6	SOFTWARES UTILIZADOS	
	3.6.1	T.Rusch 1.0	56
	3.6.2	FTOOL V4.0	57
	3.6.3	Planilhas eletrônicas	58

4 ESTUDO DE CASO	60
4.1 DEFINIÇÃO DO PROBLEMA	60
4.2 DELIMITAÇÃO DO TEMA	60
4.3 PARÂMETROS COMUNS A TODOS OS TABULEIROS	60
4.4 TABULEIRO A	63
4.4.1 Cálculo das lajes	63
4.4.2 Cálculo das Longarinas	66
4.5 TABULEIRO B	69
4.5.1 Cálculo das lajes	69
4.5.2 Cálculo das Longarinas	72
4.6 TABULEIRO C	78
4.6.1 Cálculo das lajes	78
4.6.2 Cálculo das Longarinas	82
4.7 TABULEIRO D	87
4.7.1 Cálculo das lajes	87
4.7.2 Cálculo das Longarinas	90
4.8 TABULEIRO E	97
4.8.1 Cálculo das lajes	97
5 RESULTADOS	101
6 CONCLUSÕES	108
SUGESTÕES PARA TRABALHOS FUTUROS	108
REFERÊNCIAS	110
ANEXOS	112
ANEXO A – Projeto arquitetônico de OAE licitado pelo DER-PR	113
ANEXO B – C.P.U. de OAE	116
APÊNDICES	118
APÊNDICE A – MEMÓRIA DE CÁLCULO	119
MATERIAS	119
TABULEIRO A	120
Cálculo das lajes	120
Cálculo das Longarinas	141
TABULEIRO B	154
Cálculo das lajes	154
Cálculo das Longarinas	176
TABULEIRO C	187
Cálculo das lajes	187
Cálculo das Longarinas	202
TABULEIRO D	
Cálculo das lajes	211
Cálculo das Longarinas	
TABULEIRO E	
Cálculo das lajes	
-	

APÊNDICE B – MODELO TAXA ARMADURA LAJES	247
APÊNDICE C – MODELO QUANTITATIVO AÇO LAJES	248
APÊNDICE D – MODELO TAXA ARMADURA LONGITUDUDINAL DAS LONGARINAS	249
APÊNDICE E – MODELO TAXA DE ARMADURA TRANSVERSAL NAS LONGARINAS	253

1 INTRODUÇÃO

1.1 PONTES E VIADUTOS

O projeto de uma ponte ou grande estrutura é o produto de um processo criativo constituído de uma sequência de alternativas, onde cada uma procura melhorar a anterior, até que se atinja uma solução suficientemente boa para ser construída (STUCCHI, 2006). Denomina-se Ponte a obra destinada a permitir a transposição de obstáculos, a continuidade de uma via de comunicação qualquer. Os obstáculos podem ser: rios, braços de mar, vales profundos, outras vias etc. As pontes são as obras que tem por objetivo superar rios, braços de mares, córregos, ou seja, obstáculos que com água. Os viadutos são obras semelhantes às pontes, mas que tem por objetivo vencer obstáculos sem água, bem como outras vias ou vales.

Devido ao processo criativo, intuitivo e da sequência de alternativas para se atingir um produto final adequado às pontes são usualmente chamadas de "Obras de Arte". A quantidade de materiais e técnicas construtivas que podem ser empregadas na construção de uma ponte são parte da complexidade envolvida em um projeto satisfatório. O projetista de uma ponte deve ter grande conhecimento técnico dos materiais e técnicas construtivas, analisando todas as possíveis soluções que esta poderá ter.

Quando as obras mudam completamente o cenário que são alocadas, a sua estética é apontada como fator relevante para escolha do projeto. Algumas obras são consideradas cartões postais das cidades, bem como a ponte estaiada Octávio Frias de Oliveira (Figura 1) sobre o rio Pinheiros em São Paulo e a ponte estaiada Newton Navarro (Figura 2) na cidade de Natal – RN. Sobretudo, deve-se levar em consideração o quanto o financiador da obra está disposto a elevar os custos da obra em função da beleza proporcionada por uma solução arquitetônica e estrutural espetaculosa. Existem vezes em que a solução estrutural adequada para a obra já não é considerada como um aspecto da concepção da obra, mas sim como fator preponderante na escolha. Dá-se exemplo disso obras de pontes rurais com pequeno fluxo de veículos e que proporcionam custos de transporte de materiais industrializados alto.

Figura 1 - Ponte Otávio Frias de Oliveira

(Fonte: TRIP TIMES¹)

Figura 2 – Ponte Newton Navarro

 $^{^1}$ Disponível em: < https://www.triptimes.com/sao-paulo/ >. Acesso em 12/11/2018.

(Fonte: Versátil News²)

Ao projetista dá-se o trabalho de levantar como será a utilização da obra. Para tanto, deve-se determinar qual é a carga rodoviária que a ponte ou viaduto vai suportar, e se essa carga irá aumentar na vida útil na obra. O DNIT, órgão federal que rege a construção de rodovias brasileiras oferece um manual e normas para cargas dinâmicas e estáticas que as pontes em geral estão sujeitas. Entretanto cabe ao projetista o trabalho de estudar qual é a influência das cargas de utilização na obra que está projetando. Como exemplos podem ser dadas as pontes urbanas, construídas no interior das cidades que tendem a possuir um trânsito mais denso e de automóveis de pequeno porte, ao oposto, por exemplo, de pontes rodoviárias que possuem um fluxo de veículos maior que transitam em maior velocidade e que podem estar sujeitas a vários tamanhos e pesos de veículos.

Os princípios básicos urbanísticos também devem ser levados em consideração para a construção da obra, haja vista a possibilidade não só do modal rodoviário, mas também de possíveis ciclistas e pedestres que possam utilizar a ponte. A segurança dos pedestres e ciclistas deve ser de extrema importância para o projeto, o que gerará ao projetista possíveis escolhas para a implantação das faixas não rodoviárias. Essas escolhas poderão influenciar diretamente na estrutura da obra. A escolha de uma área de passeio construída em concreto armado e em balanço, por exemplo, pode gerar momentos fletores negativos no tabuleiro da ponte. Já escolha de um sistema construtivo alternativo, bem como a construção da área de passeio em estrutura metálica pode reduzir o peso próprio da estrutura e pode até acelerar o cronograma da obra, haja vista, a não necessidade de cura das lajes ou preparação de formas de madeira para o lançamento do concreto.

Os custos das construções de obras de arte são assunto de muitas discussões públicas. A análise de custos das construções das obras de interesse público, como são as obras de arte, é complexa e possui inúmeras variáveis. Um dos aspectos de relevância no custo de vida útil da obra é o quanto está irá demandar de manutenção, e consequentemente, quanto esta

 $^{^2}$ Disponível em: < http://www.versatilnews.com.br/2018/05/natal-tem-atividades-dentro-da-campanha-maio-amarelo/ > Acesso em 12/11/2018.

manutenção custará ao responsável pela conservação da mesma. Soluções como a de concreto armado devem ser regularmente periciadas quanto à despassivação das armaduras a fim de garantir a integridade estrutural da obra.

A comparação de soluções estruturais é fator preponderante para elaboração de soluções mais eficientes que visam diminuir as solicitações estruturais. Segundo O'Connor (1976) um bom projeto estrutural é baseado no conhecimento profundo da teoria estrutural, na imaginação e na coragem em desenvolver novas ideias e na disposição para se beneficiar da experiência alheia. A escolha de um bom projeto não deve se basear apenas no custo mínimo, mas deve levar em consideração fatores como aparência e funcionalidade. É interessante notar projetistas terceiros poderão analisar uma ponte sem que analisem o custo. O autor cita ainda que devem estudadas alternativas ao projeto original e estas deverão ser consideradas associadas a outros fatores.

Sabendo que o projetista deve analisar tantas variáveis e escolher a mais adequada para sua obra, este deve possuir criticidade e assertividade nas escolhas do projeto. A escolha ideal não é fácil para de ser elaborada, mas deve ser ao máximo buscada, verificando o mais elevado número de soluções. Segundo Stucchi (2006), para a concepção de pontes e grandes estruturas é preciso boa formação, isto é, todos esses dados devem ser interiorizados, compreendidos na sua essência e interligados entre si de forma a dar ao engenheiro capacidade crítica. Interiorizar o comportamento da estrutura corresponde a desenvolver o que se chama de sensibilidade estrutural. Sabendo-se que concepção estrutural demanda de criatividade e intuição, quanto mais esta for trabalhada, maior será a chance de uma boa concepção estrutural.

1.2 OBJETIVOS DO TRABALHO

1.2.1 Objetivo principal

O objetivo principal deste trabalho é elaborar uma análise estrutural e quantitativa de soluções para o tabuleiro (conjunto de vigas e lajes) de um viaduto comparando estruturas em grelha e pontes em laje.

1.2.2 Objetivos secundários

Os objetivos secundários deste trabalho são:

- Analisar taxas de armaduras longitudinais e transversais encontradas para elementos de concreto armado em combinações diferentes;
- Analisar os quantitativos de materiais para diversas soluções de tabuleiro em concreto armado;
- Analisar o custo de cada uma das estruturas com base nas composições unitárias do DER-PR;
- Analisar a viabilidade de pontes sobre vigas para o viaduto problema.

1.3 JUSTIFICATIVA

O estudo consiste no dimensionamento de um viaduto de acesso a um novo bairro da cidade de Guarapuava-PR, nomeado por "Cidade dos Lagos". O bairro possui contempla a Universidade Tecnológica Federal do Paraná campus Guarapuava, um Shopping, no momento de apresentação deste trabalho um hospital Regional em construção. A obra servirá como acesso para o novo bairro e como conexão para bairros vizinhos. A obra faz parte de uma revitalização do trecho urbano da PRC-466 que estará sendo ampliada e duplicada a fim de atender ao crescente volume de tráfego.

A grande quantidade de recursos empregados nas obras de concreto armado faz com que os projetos sejam cada vez mais questionados quanto a sua eficiência. Neste trabalho, é analisado se o tabuleiro dimensionado para a obra de arte do estudo de caso é o mais econômico comparado a outras soluções também em concreto armado. O CREA-PR (2010) afirma que a engenharia, a arquitetura e a agronomia são profissões caracterizadas pelas realizações de interesse social e humano, através de ações técnicas específicas. Dá-se aí a importância de obter-se sempre as soluções mais adequadas para obras públicas.

2 REVISÃO BIBLIOGRÁFICA

O dimensionamento estrutural de viadutos é feito com os mesmos conceitos do dimensionamento de pontes conforme normativas e recomendações da literatura. Portanto, no presente trabalho todo o dimensionamento do viaduto irá se embasar nas normativas e literaturas de pontes. Denomina-se Viaduto, *Viaduct* ou *Valley bridge* uma ponte sobre um vale (LEONHARDT, 1982).

2.1 RECOMENDAÇÕES AO PROJETO DE OBRAS DE PONTES

2.1.1 CONSTRUÇÕES DE PONTES NO BRASIL

As primeiras pontes registradas na história são de madeira, e até hoje esse tipo de solução é utilizada na Europa e nos Estados Unidos foram construídas pontes que duraram séculos. Até o presente momento destaca-se a importância e viabilidade econômica de pontes mistas de concreto e madeira para estradas vicinais. No Brasil, na Amazônia, devido a fartura de madeira para matéria prima, muitas pontes são construídas deste material, algumas atingindo vãos de até 50m (VITÓRIO, 2002; SORIANO e MASCIA, 2009).

As estruturas mistas podem proporcionar soluções mais viáveis em muitos casos, a solução mista de madeira-concreto para pontes diminui os efeitos permanentes na estrutura, já que a madeira possui um peso próprio mais baixo do que o concreto, isso implica na redução de cargas sobre a infraestrutura, admitindo assim, fundações menos robustas e com maior exequibilidade. A construção de pontes em estradas vicinais demanda de soluções mais simples com baixo custo. Isso é proporcionado com a construção de soluções mistas de madeira-concreto, a confecção do tabuleiro de madeira é bem mais simples do que a construção um tabuleiro de concreto armado. Também, o tabuleiro de madeira não necessita de madeiramento para formas. A madeira também é um material que possui uma manutenção mais fácil de ser executada do que o concreto, haja vista, que basta apenas trocar as peças para manutenção (SORIANO e MASCIA, 2009).

Apesar da grande quantidade de madeira disponível no Brasil, as pontes são utilizadas apenas para estradas vicinais. Destaca-se no Brasil as obras realizadas em concreto armado e concreto protendido, além das pontes estaiadas que são em menor quantidade, mas não menos importantes já que garantem as mais belas soluções do ponto de vista estético da obra.

Algumas obras brasileiras merecem destaque pela importância histórica, bem como o "Viaduto do Chá" (figura 3) no vale do Anhangabaú em São Paulo-SP, que foi inicialmente construído em estrutura metálica e 36 anos depois foi substituído por uma estrutura de concreto, e que foi de extrema importância durante o crescimento da cidade de São Paulo conectando dois hemisférios da cidade de São Paulo. Outra construção importante é a "Ponte Grande" sobre o Rio Tietê que futuramente iria se chamar "Ponte das Bandeiras". Também instalada em São Paulo, a obra é parte de um plano de estruturação da cidade e chegou a ser chamada pelo engenheiro responsável de *memorial bridge* e "Principal entrada da cidade" (MENDONÇA, 2012).

Figura 3 – Viaduto do Chá década de 50

Novo viaduto do Chá, com projeto de Elisário Bahiana, inaugurado em 1938. Foto c.1950

(Fonte: Mendonça, 2012, p.45)

Outras construções brasileiras devem ser reconhecidas pelo aspecto estético e espetaculoso que apresentam, bem como a Ponte Juscelino Kubitschek em Brasília. Esta recebeu em 2003 a Medalha Gustav Lindenthal da Sociedade dos Engenheiros do Estado da Pensilvânia (Estados Unidos). A obra é formada por três arcos metálicos que tem por objetivo representar o movimento de uma pedra quicando sobre a água. O projeto arquitetônico faz com

que a estrutura tenha um caráter harmônico com o meio e ao mesmo tempo monumental como toda a cidade de Brasília.

2.1.2 ESTADO DA ARTE

O estudo de diferentes técnicas construtivas para pontes cria uma demanda por aplicativos de dimensionamento estrutural, que visam acelerar o tempo de projeto dedicado ao dimensionamento da estrutura. Além disso, os softwares são elaborados para oferecer gráficos de envoltória mais completos que possibilitam analisar uma enorme quantidade de solicitações que a estrutura possa estar sujeita.

Diversos estudos surgem a partir desta demanda, o aplicativo Dualong e foi criado por Souza (2011) com o objetivo de encontrar os momentos fletores em vigas. Forte (2014) elaborou um estudo comparativo de diferentes longarinas para pontes de concreto armado através do aplicativo, dimensionando as armaduras de flexão e avaliando o consumo de materiais para diferentes soluções construtivas de pontes.

O Sistema SALT-UFRJ é um software elaborado pela Universidade Federal do Rio de Janeiro e proporciona dados, diagramas e envoltórias para o dimensionamento de estruturas 3D (espaciais) estáticas e dinâmicas. O software é utilizado por vários engenheiros e também é base de dados para trabalhos acadêmicos. Souza e Mota (2004) utilizaram como base de dados os resultados obtidos do SALT-UFRJ para o dimensionamento de uma ponte em concreto armado de vão total de 38 metros com seção caixão de três células. Os autores utilizaram as informações do sistema para encontrar os diagramas de solicitações axial, cortante e momento fletor. Também utilizaram para encontrar as linhas de influência da estrutura e envoltória dos esforços.

Além da utilização de softwares e construção de aplicativos para dimensionamento de estruturas, também muitas rotinas de cálculo são elaboradas em diferentes linguagens. Souza (2015) estudou a distribuição de momentos fletores em pontes bi-apoiadas obtendo gráficos de envoltória através de procedimentos computacionais em linguagem de programação XOJO. A rotina computacional elaborada pelo autor permitiu a entrada de dados paramétrica, o que diminuiu quantidade de dados necessários para o modelamento de disversos casos. O autor cita ainda a relevância das rotinas computacionais para aproximar os modelos estudados da

realidade e que diversos métodos analíticos e numéricos foram adaptados para utilização computacional, bem como o método dos elementos finitos e método dos deslocamentos que são fruto da era digital.

2.1.3 CONCEPÇÃO DE PONTES

A concepção de pontes é demasiadamente complexa e existem artigos que se delimitam ao assunto, tendo isto em vista, neste trabalho serão trazidos apenas conceitos básicos para a concepção de pontes.

Marchetti (2008) cita cinco requisitos principais para a construção de uma ponte, são eles:

- a) Funcionalidade: deverá a ponte satisfazer de forma perfeita as exigências de tráfego, vazão etc.
- b) Segurança: a ponte deve ter seus materiais constituintes solicitados por esforços que neles provoquem tensões menores que as admissíveis ou que possam provocar ruptura.
- c) Estética: a ponte deve apresentar aspecto agradável e se harmonizar com o ambiente em que se situa.
- d) Economia: deve-se fazer sempre um estudo comparativo de várias soluções, escolhendo-se a mais econômica, desde que atendidos os itens 1, 2, 3, 4 e 5.
- e) Durabilidade: a ponte deve atender às exigências de uso durante certo período previsto.

A grandiosidade das obras de pontes faz com que a estética seja levada em consideração na concepção de pontes no Brasil ao redor do mundo. Mendonça (2012) cita o perigo em se utilizar esse tipo de obra como cartão postal de cidades, em detrimento das necessidades básicas de urbanidade, ou seja, quando se colocam os olhos apenas na estética e não analisam-se os outros fatores ligados a concepção de pontes. O autor cita ainda as pontes de Octávio Frias de Oliveira, sobre o rio Pinheiros, e a Ponte Governador Orestes Quércia (Figura 4), sobre o rio Tietê, que são obras de intenso apelo estético e alteram o cenário local completamente, entretanto, as pontes não dão condições a pedestres e ciclistas de circularem. O autor cita ainda que os gastos gigantescos da construção da obra foram justificados pela estética do formato arquitetônico espetaculoso escolhido.

Figura 4 – Ponte Governador Orestes Quércia

(Fonte: Flickr³)

Uma ponte que se destina exclusivamente ao modal rodoviário pode ser classificada como "rodoviarista", em contraposição com pontes que oferecem o usuário a opção da multimodalidade, estas por sua vez podem ser chamadas de pontes "urbanas". As pontes urbanas concretizam uma efetiva articulação entre os tecidos urbanos nas duas margens do rio, ou nos dois lados do obstáculo que estão ligando. As pontes urbanas dão suporte a vida cotidiana da cidade: vias públicas, praças passarelas, postes de iluminação pública e os demais serviços de abastecimento. Uma ponte não deixa de ser rodoviarista por oferecer condições precárias de passagem ao pedestre, é preciso que a ponte não privilegie o modal rodoviário mas que proporcione ao usuário conforto e segurança (MENDONÇA, 2012).

O custo de uma ponte compreende o custo inicial, distribuído sobre sua vida útil, e o custo anual de manutenção. Este é o mais evidente ônus em projetos de ponte e deve sempre ser estimado com detalhe e cuidado. Entretanto, é errôneo considerar o custo como o único fator

³ Disponível em: < https://www.flickr.com/photos/daiaoliver/6415893625 >. Acesso em: 12/11/2018.

importante que afeta a convivência de um projeto. O projeto de custo mínimo não é necessariamente o melhor. Ao contrário, a escolha do melhor projeto deve levar em conta fatores como funcionalidade e aparência. Comparado com esses fatores, o custo inicial é uma desvantagem temporária e intermitente. Além disso, para o usuário da ponte o custo é um ônus que não aparece. É interessante notar que mesmo um projetista julgará uma ponte projetada por outro sem conhecer seu custo. A um projetista pode ser perfeitamente razoável recomendar a aceitação de um ônus de 20% do custo em benefício da funcionalidade e da aparência, mas seria incorreto recomendar um projeto baseado na aparência, sem primeiro estimar o ônus que possa correr (FERNANDES e CORREIA, 2017).

Conforme Stucchi (2006) o processo criativo, ou de concepção, exige do engenheiro boa informação ao nível dos materiais e técnicas construtivas, bem como dos tipos estruturais e suas teorias. O autor também cita que devem ser analisadas quais são as qualidades e limitações de diferentes materiais e técnicas construtivas diferentes. De forma que, o essencial para estruturas não é sua geometria, mas o seu comportamento, isto é, como ela trabalha. Sabese que a estrutura deforma sob a atuação de um determinado carregamento, e conhecendo que as cargas caminham ao longo da estrutura, qualquer parcela esquecida do caminhamento das cargas pode representar um elo fraco.

2.1.4 ANTEPROJETO

No caso de grandes pontes, deve-se mudar as variantes do projeto, estudar diferentes vãos e analisar mais de um tipo de estrutura, para fazer comparações e confirmar a melhor solução (LEONHARDT, 1982). Para a elaboração de um projeto surge a necessidade de uma grande quantidade de dados. Leonhardt (1982) cita o seguintes dados para elaboração de um projeto de ponte:

- a) Planta de Situação, contendo indicações dos obstáculos a serem transpostos, como cursos d'água, estradas, caminhos, ferrovias (e, em vales, as curvas de nível). É desejável que se tenha o alinhamento vertical da nova via de tráfego.
- b) Seção longitudinal, ao longo do eixo projetado da ponte, com indicação das exigências quanto a gabaritos e seção de vazão. É desejável que se tenha o perfil longitudinal da via de tráfego a ser construída.
- c) Largura da ponte, com indicações da largura das faixas de tráfego, acostamentos, passeios, etc.
- d) Condições de fundações, sondagens, se possível com relatórios geológicos e de mecânica dos solos. Indicação dos valores característicos das camadas do

- solo. O graus de dificuldade das fundações tem uma enorme influência sobre o sistema estrutural e sobre o valor econômico do vão.
- e) Condições locais, tais como vias de acesso para o transporte de equipamentos, materiais e componentes; quais os materiais que – tendo em vista a localização da obra – podem ser conseguidos em condições vantajosas, tanto técnica como economicamente? Existe suprimento de força e de água pura? Existem, à disposição, técnicas de execução altamente desenvolvidas ou a obra deve ser executada com métodos primitivos e com poucos operários especializados?
- f) Condições meteorológicas e ambientais, como cheias, marés, níveis d'água, períodos de seca, temperaturas médias e extremas, períodos de congelamento.
- g) Estética e meio ambiente: paisagem livre, terreno plano, suavemente ondulado ou montanhoso. Cidades com prédios antigos de pequenas dimensões ou grandes prédios modernos. A escala do meio ambiente desempenha um importante papel no projeto.
- h) Exigências relativas ao ambiente, tais como qualidades relacionadas à beleza: pontes em regiões urbanas que influenciam a vista da cidade e que frequentemente são vistas de perto especialmente pontes para pedestres exigem um tratamento estético mais refinado do que pontes situadas em um ambiente com grandes espaços abertos. É necessário que haja proteção dos pedestres contra respingos e ruídos? É necessário proteger os vizinhos contra ruídos?

Spernau⁴ (2013) salienta a importancia dos levantamentos geométricos, topográficos, hidrológicos, geotécnicos e complementares para o projeto de pontes. Destacam-se os seguintes pontos que ainda não foram abordados neste trabalho:

- Geométricos: os elementos geométricos dependem das condições técnicas estabelecidas pelo órgão público a cuja jurisdição pertence a obra, DNIT, DEINFRA, DER, Prefeituras, etc.
- Topográficos: Deve-se obter uma planta do terreno que exceda 30m de cada extremidade do comprimento provável da obra, com curvas de nível de metro em metro, contendo o eixo locado e a indicação da esconsidade da estrutura. Nos trechos submersos deve-se obter as cotas de fundo em intervalos não superiores a 5m.
- Hidrológicos: Indicação das cotas dos níveis de máxima cheia e de estiagem do curso d'água, das épocas de duração dessas ocorrências. Dados de vazão da seção a fim de saber a velocidade máxima da água no local. Informações sobre pontes vizinhas e seus tipos de fundações assim como a possibilidade de águas agressivas.

٠

⁴ SPERNAU, W. (2013). Notas de Aula: Pontes ECV-5260. *Disciplina do Curso de graduação de Engenharia Civil*. ECV/CTV/UFSC. Arquivo cedido pelo Professor C. F. Pecapedra de Souza.

- Geotécnicos: sondagens de reconhecimento do subsolo, pelo menos no centro de cada apoio, com precisão das camadas atravessadas e com referência de nível. Também estudos específicos do solo sempre que os aterros de acesso possam comprometer a estabilidade da estrutura.
- Complementares: Possíveis jazidas de materiais que possam ser empregados na execução da obra. E a indicação da época mais favorável para execução dos serviços, considerando as épocas de chuva e regime do rio analisado.

2.1.5 SISTEMAS ESTRUTURAIS

Marchetti (2008) separa as pontes em concreto armado em três partes, Superestrutura, Mesoestrutura e Infraestrutura conforme ilustrado na figura 5. Segundo o autor, superestrutura é a parte útil da obra, onde trafegam os veículos e pessoas, e é constituída pelo tabuleiro de vigas e lajes. Mesoestrutura é o conjunto de pilares que tem por finalidade transmitir as cargas da Superestrutura para a Infraestrutura. Infraestrutura é o conjunto de fundações, blocos, estacas, tubulões, que destinam a apoiar a obra no solo. Tanto Mesoestrutura quanto Infraestrutura podem estar em contato com a água. A infraestrutura pode estar contato com a água já que o solo está saturado e dessa maneira a cota piezométrica é maior do que a cota das fundações. A mesoestrutura comumente está em contato direto com a água, haja vista a ação de direta de empuxo da água nos pilares.

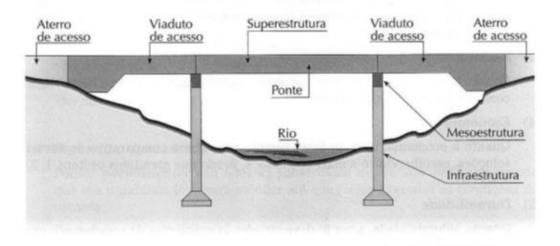


Figura 5 – Estrutura de uma ponte em Concreto Armado

(Fonte: MARCHETTI, 2008)

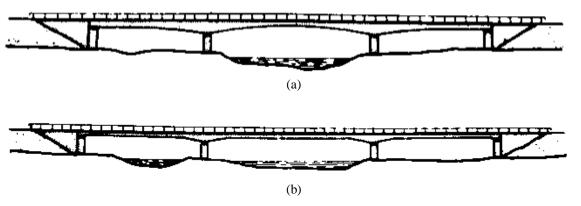
O conceito de superestrutura, mesoestrutura e infraestrutura pode ser extrapolado para qualquer tipo de ponte, não somente de concreto armado, mas também para pontes de estrutura metálica, estrutura de madeira ou estrutura mista.

Cinco sistemas estruturais são destacados pela literatura para projetos de pontes, Leonhardt (1982) destaca as pontes em viga, pontes em pórtico, pontes em arco, pontes pênseis e pontes estaiadas. O autor cita que as pontes pênseis são interessantes no caso de cargas móveis leves, como no caso de pontes para pedestres, o que não é o caso deste projeto. As pontes em arco e pontes estaiadas são recomendadas para grandes vãos e possuem custos instalação altos, desta forma, não serão aqui analisadas para o projeto haja vista que o vão estudado possui ordem de grandeza menor do que 25m. Portanto, o presente trabalho irá se ater nas soluções de pontes sobre vigas e pontes em pórtico.

Usualmente a superestrutura das pontes sobre vigas é formada pelas vigas longarinas, vigas transversinas e laje (tabuleiro). As principais pontes sobre vigas são as pontes sobre dois apoios (único vão), pontes sobre vigas contínuas e pontes sobre balanços suscessivos ou pontes sobre vigas Gerber também chamadas (LEONHARDT, 1982).

As vigas sobre dois apoios devem ser dimensionadas para um momento máximo M_0 e exigem juntas em cada extremidade. A melhor forma para as vigas desse tipo de ponte é a de "banzos paralelos", isto é, o bordo inferior se desenvolve paralelamente à linha do greide e a altura estrutural é constante. Isto também se aplica quando o greide for inclinado ou quando estiver em uma curva de concordância vertical (LEONHARDT, 1982). A figura 6 representa uma ponte com viga sobre um só vão.

Figura 6 – Ponte sobre vigas de um só vão

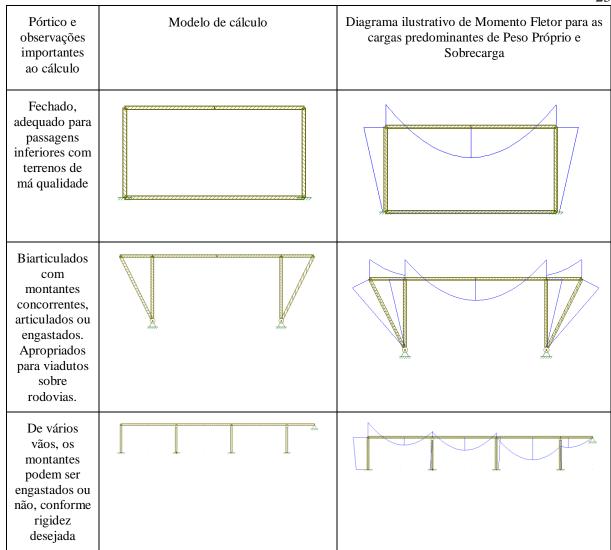


(Fonte: Adaptado de Leonhardt, 1982)

Os projetos de pontes sobre vigas contínuas devem atentar-se para os deslocamentos horizontais, via de regra, reúnem-se 3 a 4 vãos sem juntas. No caso das pontes com vigas

continuas as vigas preferencialmente são de banzos paralelos, principalmente quando tem-se vãos aproximadamente iguais. Entretanto, podem ser utilizadas outras soluções como vigas convexas para baixo para acompanhar orelevo de grandes vales a fim de diminuir altura e seção dos pilares. No caso de pontes de três vãos, em que o vão central possui alta solicitação, utilizase a diminuição da altura estrutural a fim de diminuir o peso próprio, para tanto, lança-se mão das mísulas. A figura 7 ilustra dois tipos de mísulas que podem ser aplicadas, uma com perfil com curvas de concordância (a) e outra com perfil retilíneo (b) (LEONHARDT, 1982).

Figura 7 - Pontes sobre vigas contínuas com vigas com curvas de concordância (a) e com perfil retilíneo (b).



(Fonte: adapatado de Leonhardt, 1982)

Afim de diminuir uma parcela do momento fletor no centro do vão são utilizadas as pontes em pórticos, em que as vigas são engastadas nos pilares, aumentando assim o momento negativo nas extremidades da viga e diminuindo o momento positivo no centro da viga. Existem vários tipos de combinações de apoios para os pórticos, cada uma delas irá resultar em uma envoltória de momentos fletores diferentes. Leonhardt (1982) cita oito tipos de combinções para pórticos visando abranger o máximo de combinações. O quadro 1 ilustra os oito possiveis pórticos trazidos pelo autor e diagramas ilustrativos de momento fletor para as cargas predominantes de peso próprio e sobrecarga. O quadro elaborado no FTOOL tem por objetivo demonstrar grosseiramente o comportamento dos pórticos analisando apenas as solicitações de Momento Fletor, o que não exime ao projetista de analisar as outras solicitações inerentes a estrutura de uma ponte, bem como esforços axiais, cortantes e momento de torção quando a estrutura é analisada espacialmente.

Quadro 1 - Tipos de Pórticos

Pórtico e observações importantes ao cálculo	Modelo de cálculo	Diagrama ilustrativo de Momento Fletor para as cargas predominantes de Peso Próprio e Sobrecarga
Triarticulado (isostático)		
Triarticulado com pilar tipo pêndulo (isostático). É preciso tomar cuidado com a deslocabilidad e horizontal do pêndulo		\(\frac{1}{1111}\)
Biarticulado, com ou sem tirante protendido		
Biarticulado, providos de tramos adjacentes apoiados, com montantes verticais ou inclinados	Acido Section	
Engastado, indicados para pequenas travessias e viadutos		

(Fonte: Adaptado de Leonhardt, 1982)

2.1.6 PROCESSOS DE CONSTRUÇÃO

Os processos de construção têm enorme influência sobre a escolha da seção transversal da ponte (LEONHARDT, 1982). Existem vários tipos de processos construtivos para pontes, para as pontes em concreto, a escolha deverá partir inicialmente se a ponte será com concreto moldado *in situ* ou concreto pré-moldado. Para as pontes em concreto moldado *in situ* os principais processos construtivos são:

- Formas sobre escoramentos fixos;
- Fôrmas sobre escoramentos deslizantes;
- Concretagem sobre escoramentos;

• Balanços sucessivos com concreto moldado *in situ*;

Para as pontes em concreto pré-moldado, os principais processos construtivos são:

- Elementos pré-moldados de vão inteiro;
- Seguimentos Pré-moldados.

Quando o Engenheiro Construtor opta pela construção em Concreto pré-moldado, a mesma deve ser dimensionada por suportar o transporte até o local de uso. Para tanto, faz lançamento das armaduras de içamento a fim de suportar os esforços oriundos do transporte vertical da estrutura.

Para as pontes em estrutura metálica deve-se analisar qual será o tipo de concreto utilizado no tabuleiro da ponte, se este será moldado *in situ* ou pré-moldado.

2.1.7 ALTURA CONSTRUTIVA

Spernau (2013) cita três fatores como sendo os principais para a altura construtiva da superestrutura, para o autor são fatores determinantes o tamanho dos vãos a vencer, o tipo estrutural adotado e o material que será empregado na construção das pontes. O autor ainda traz algumas recomendações para pontes em concreto sobre as dimensões dos elementos. As recomendações são brevemente resumidas no Quadro 2.

Sistema Estrutural	Recomendação sobre dimensões	Observações Relevantes ao projeto
Pontes formadas por duas longarinas enrijecidas por transversinas	Altura construtiva na ordem de 1/10 a 1/12 do vão quando isostáticas	Se a superestrutura não for isostática, ou seja, for contínua, poderão ser utilizados 1/12 a 1/15 como altura construtiva
Superestrutura em seção celular simples ou múltipla (vigas caixão) em concreto armado	Altura construtiva na ordem de 1/10 a 1/12 do vão quando isostáticas	Se a superestrutura não for isostática, ou seja, for contínua, poderão ser utilizados 1/12 a 1/18 como altura construtiva
Superestrutura em seção celular simples ou múltipla (vigas caixão) em concreto protendido	Altura construtiva na ordem de 1/12 a 1/15 do vão quando isostáticas	Se a superestrutura não for isostática, ou seja, for contínua, poderão ser utilizados 1/15 a 1/20 como altura construtiva
Superestrutura em longarinas pré-moldadas protendidas, com ou sem transversinas	Altura construtiva na ordem de 1/12 a 1/18 do vão quando isostáticas	

(Fonte: Adaptado de Spernau, 2013)

2.1.8 SEÇÃO TRANSVERSAL

Para a escolha da seção transversal, o autor Leonhardt (1982) cita cinco fatores principais:

- I. Tamanho do vão referido ao sistema estrutural adotado;
- II. Altura estrutural disponível ou esbeltez desejada, expressa por l:h ou por li:h, no caso de continuidade, sendo li = distância aproximada entre os pontos de momento nulo (Mg);
- III. Processo de construção, meios disponíveis, equipamento, etc;
- IV. Economia de processo construtivo escolhido. Estruturas esbeltas exigem um consumo maior de aço do que as menos esbeltas; por outro lado, deve-se levar em consideração as consequências sobre as rampas de acesso;
- V. Relação q:g = carga móvel : peso próprio. Valores grandes de q:g implicam, no caso de vigas de concreto protendido, em quantidades adicionais de concreto no banzo tracionado como, por exemplo, na adoção de seções em duplo T ou em caixão.

Para as lajes, devem ser utilizadas expessuras na ordem de 1/20 do vão quando o sistema construtivo for de pontes em laje (sem transversinas e longarinas). Se as lajes forem sobre longarinas e transversinas poderão ser adotadas lajes de 0,015*l + 12 cm onde l é o vão entre longarinas (em centímetros), para lajes em balanço deve-se tomar l o dobro do vão entre

longarinas. Não deverão ser adotadas lajes com expessura inferior a 15 cm. Quando forem adotadas mísulas, estas devem ser estendidas até 20 a 25% do vão e ter expessura de aproximadamente 10% da dimensão do vão, se as mísulas forem aplicadas em lajes em balanço, devem ser estendidas até o bordo livre (SPERNAU, 2013).

Para os tabuleiros em longarinas e transversina devem ser adotadas longarinas de expessura na ordem de 25% de sua altura construtiva, porém no mínimo 30 cm e no máximo 50 cm. As transversinas deverão possuir largura de 20 a 30 cm e possuir altura de pelo menos 75% da altura das vigas principais (SPERNAU, 2013).

Conforme Leonhardt (1982) são indicadas pontes de laje maciça para vãos de até 20 m, aproximadamente; ou para pontes contínuas de até 30 m ou 36 m, quando dotadas de mísulas e lajes não superando 25 a 70 cm.

Pontes sobre duas vigas é uma solução muito utilizada para diferentes vãos e objeto de inúmeros estudos. O uso das transversinas enrijece a estrutura e faz com que a mesma seja mais resistente ao efeito da torção (SOUZA, 2015). Para obter-se as menores solicitações de momento fletor nas pontes, deve-se dispor as longarinas em 0,2*b a 0,25*b da borda do vão transversal, como ilustra a figura 8 (SPERNAU, 2013). Devido a esta recomendação da literatura, só se utilizaram vigas nas extremidades quando a quantidade de vigas do tabuleiro é de 5 ou mais vigas.

barreira New
Jersey

mísula da laje

transversina

0,2 a 0,25 *b

0,5 a 0,6 *b

0,2 a 0,25 *b

Figura 8 - Pontes sobre duas vigas

(Fonte: Adaptado de Spernau, 2013)

2.1.9 DETALHES DE ACABAMENTOS DE PONTES

Os detalhes de acabamento do projeto consistem em vigas de acabamento, guarda rodas, guarda corpos, proteção contra vento, proteção contra ruídos, faixas centrais. As barreiras laterais devem ser suficientemente capazes de absorver choques de laterais de veículos desgovernados e devem atender as recomendações do órgão vigente da obra (DER, DNIT). O meio-fio deve suportar uma carga horizontal de 100 kN aplicada perpendicularmente a direção do tráfego. O guarda corpo deve ser dimensionado para uma carga distribuída transversal de 2,0 kN/m e deve atender uma altura mínima para a segurança dos pedestres, além de apresentar boa estética ABNT (2013) n° 7188.

2.1.10TIPOS DE APOIOS - PILARES

A escolha dos pilares vai interferir diretamente nas solicitações da estrutura. Dependendo da rigidez escolhida para a ligação viga-pilar os esforços podem ser diminuídos ou acrescidos. Como representado no Quadro 1, ligações rígidas provocam maiores momentos fletores negativos, que aumentam a armadura na parte superior das vigas, entretanto diminui a armadura positiva já que diminui os momentos atuantes no meio do vão. Dois tipos de pilares são mais destacados pelos autores para pontes, os pilares comuns e pilares-parede.

Os pilares-parede são mais recomendados para pontes fluviais por razões hidráulicas, e também por possuírem a capacidade de suportar impactos de navegações. Leonhardt (1982) ressalta as vantagens da escolha de pilares comuns em relação a pilares-parede, são elas:

- I. Menor consumo de material;
- II. Visibilidade praticamente desobstruída embaixo da ponte;
- III. Melhores possibilidades para cruzamentos esconsos;
- IV. Aspecto mais leve (estética);

A ABNT (2013) nº7188 faz considerações sobre ações excepcionais (colisões) no item 5.2.3 determinando verificações no estado-limite último e de estabilidade global. A norma traz considerações sobre colisões em pilares e colisões ao nível do tabuleiro. A norma não garante a eliminação do colapso da estrutura total ou parcial devido a magnitude da colisão.

Os pilares situados junto a faixas rodoviárias devem ser verificados para uma carga horizontal de colisão de 1000 kN na direção do tráfego e 500 kN na direção perpendicular ao

tráfego, não ocorrendo ao mesmo tempo e aplicadas a uma altura de 1,25 do terreno ou pavimento. As colisões no nível do pavimento são prevenidas com os dispositivos de proteção meio-fio, guarda corpo, dispositivos de contenção e dispositivos de contenção do tipo cortina. Os dispositivos de contenção gerais devem ser dimensionados a suportar uma carga de 100 kN e carga concomitante de 100 kN, já os dispositivos de contenção do tipo cortina devem ser dimensionados para uma força horizontal perpendicular do tráfego de 450 kN e carga concomitante de 100 kN aplicada a 1,5m acima do pavimento.

2.1.11APARELHOS DE APOIO

O aparelho de apoio (AA) é um dos elementos que deve ser dimensionados no projeto de uma ponte. Segundo Marchetti (2008, p. 219) "um aparelho de apoio é um elemento de ligação disposto entre uma estrutura e seu suporte, destinado a transmitir reações, sem impedir rotações". Já Cordeiro (2014) enumera cinco diferentes funções para os AA, são elas:

- a) Estabelecer a ligação da superstrutura com a substrutura, acomodando a transferência das forças dinâmicas e vibrações que podem causar a instabilidade da ponte ou mesmo a sua destruição;
- b) Permitir movimentos de translação horizontais e de rotação;
- c) Garantir que as deformações, que ocorrem na superestrutura da ponte, não geram elevadas forças e movimentos na substrutura;
- d) Reduzir o corte entre o tabuleiro e a cabeça dos pilares;
- e) AA mais recentes protegem ainda das ações sísmicas, dissipando a energia;

Os AA são imprescindíveis para o bom funcionamento de uma obra de arte especial (OAE), e para que o AA tenha o melhor funcionamento possível se faz necessário determinar os esforços e deslocamentos presentes na estrutura. Também a escolha correta do AA é essencial para a segurança da estrutura, por mais difícil que pareça devido a grande variedade no mercado. O Neoprene e Pot-Bearings são os AA mais utilizados atualmente e possuem uma vida útil de 12,5 anos, o que é inferior a vida útil média dos AA que é de 23,6 anos, período que pode ser aumentado caso haja manutenção correta dos aparelhos (CORDEIRO, 2014).

2.2 COMPOSIÇÃO DE PREÇOS UNITÁRIOS E ORÇAMENTO DE OBRAS PÚBLICAS

Com o fim de estabelecer regras e critérios para elaboração de orçamentos de referência de obras e serviços de engenharia, contratados e executados com recursos orçamentários da União, com base no Decreto 7983/2013 e na lei 13.303/2016, foram criadas fontes referenciais de preços de insumos e de custos de composições (SINAPI⁵). Cada órgão possui o seu referencial, as obras de rodovias federais utilizam as composições do SICRO publicados pelo Departamento Nacional de Infraestrutura de Transportes (DNIT), as obras de construção civil federais utilizam as composições do SINAPI publicado pela CAIXA ECONÔMICA FEDERAL e as obras das rodovias estaduais do Estado do Paraná utilizam as composições do DER-PR publicado pelo próprio Departamento de estradas de rodagens do Paraná.

O SINAPI (2014) define que a formação dos custos de um serviço é subdividida em duas partes: Custos diretos e indiretos. Os custos diretos são referentes a materiais, mão de obra, equipamentos, ferramentas, E.P.I., Construção de canteiro, entre outros. Já os custos indiretos são referentes a RH gestão técnica, RH administrativo, manutenção de canteiro, veículos, mobilização, entre outros.

A formação de preços de uma obra, que é a informação empresas utilizam para orçar uma obra, depende da estimativa de custos e despesas, e da definição de margem de lucro que se espera obter sobre uma obra. O valor que a empresa será onerada que representa tributos, despesas financeiras, risco, administração central e lucro é compreendido no BDI (Bonificação e Despesas Indiretas) (SINAPI, 2014)

O BDI é balizado pelo tribunal de contas da união pelo acórdão 2622/2013. O acórdão apresenta planilhas diferenciadas por tipo de obra alíquotas médias, além daquelas localizadas no primeiro e no terceiro quartil da amostra estudada. As obras do DER-PR possuem um cálculo de BDI específico para suas obras que é disponibilizado em cada uma de suas licitações no portal de compras do Paraná (DER-PR⁶).

⁵ Disponível em: < http://www.caixa.gov.br/poder-publico/apoio-poder-publico/sinapi/Paginas/default.aspx >. Acesso em 14/11/2018.

⁶ Disponível em: < http://www.comprasparana.pr.gov.br/ >. Acesso em 14/11/2018.

3 PROJETO E DIMENSIONAMENTO DE PONTES

Concepção e anteprojeto da ponte, todos os parâmetros descritos na revisão bibliográfica deste trabalho e outros aqui não citados que possam envolver o projeto específico. Aqui deve-se pensar em todos os fatores externos que possam afetar na obra da ponte, desde aspectos urbanísticos e paisagísticos até fontes de materiais e possibilidades de execução;

Primeiramente deve-se analisar qual Trem-Tipo irá se utilizar, que dependerá do tamanho dos vãos e grau de classificação da ponte quanto ao uso, segue os parâmetros da ABNT NBR 7188 (2013);

Cálculo das lajes, que segue a teoria das placas conforme Spernau (2013) e pode ser calculado através de métodos clássicos com o as Tabelas de Rusch ou por modelagens complexas em softwares baseados na teoria dos elementos finitos, bem como no software SAP 2000;

Cálculo das Transversinas, esta etapa demanda de decidir qual será a influência das transversinas no tabuleiro, isto é, qual será o engastamento das transversinas com as lajes centrais. Basicamente, podem ser ligadas ou desligadas das lajes centrais, e isso irá determinar seu comportamento elástico na estrutura e suas consequentes taxas de materiais (SPERNAU, 2013);

Cálculo das Longarinas, que pode ser calculado por métodos clássicos e métodos computacionais. Os métodos clássicos que são utilizados neste trabalho são Método de Engesser-Courbon e Método de Leonhardt (SPERNAU, 2013).

3.1 ESFORÇOS EM PONTES

De acordo com a ABNT NBR 7188 (2014) são carregamentos a ser considerados no projeto de uma ponte:

- Peso próprio dos elementos estruturais e não estruturais;
- Ações variáveis: São ações varáveis em pontes, as cargas móveis, as provenientes de condições específicas de construção e as cargas provenientes de ações de frenagem e aceleração;

 Ações excepcionais: São em chamadas de cargas acidentais e provenientes de colisões de veículos, com pouca probabilidade de acontecer e de duração extremamente curta;

3.1.1 Ações Permanentes

O peso próprio dos elementos estruturais dependerá do material empregado na construção da obra. Para os elementos em concreto simples deve-se tomar 22 kN/m³ e para concreto armado 25 kN/m³ (ABNT, 2003).

Segundo Souza (2015) são elementos não estruturais que agem no tabuleiro de uma ponte:

- Pavimentação: pode-se adotar o valor de 24 kN/m³ para pavimentação, sendo que o projetista tem a possibilidade de utilizar ou não o adicional de 2 kN/m³ para recapeamento do pavimento;
- Elementos de Proteção: Barreiras New Jersey, guarda-rodas, guarda-corpos. Esses elementos devem ser capazes de suportar as ações excepcionais provenientes de colisões de veículos, portanto, normalmente são de concreto armado e, se assim forem, possuem como peso próprio 25 kN/m³.

Ainda segundo Souza (2015) são ações permanentes que devem ser levadas em consideração no tabuleiro de uma ponte:

- Força de protensão: em todas as estruturas que são protendidas, a força de protensão deve ser determinada pela ANBT (2014) nº 6118;
- Deslocamentos de fundações: Deslocamentos provenientes da natureza do terreno que induzam a efeitos apreciáveis na estrutura devem ser levados em consideração;
- Fluência: a ABNT (2014) nº 6118 determina que as estruturas devem ser calculadas para suportar o estado limite de deformações excessivas. Isso para que suportem as deformações provenientes de cargas de longa duração sobre a estrutura, que é o fenômeno da fluência;
- Retração: a ABNT (2014) nº 6118 estabelece parâmetros para a retração do concreto. A Norma também cita que a retração do concreto depende da umidade relativa do ambiente, consistência do concreto no lançamento e espessura fictícia da peça.

3.1.2 Ações Variáveis: Cargas móveis

A ABNT (2013) nº 7188 define três coeficientes de majoração para cargas as cargas móveis. São ele o coeficiente de impacto vertical (CIV), coeficiente do número de faixas (CNF), e o coeficiente de impacto adicional (CIA). O CIV deve ser aplicado a qualquer carga aplicada

na estrutura que possua vão menor do que 200m, se este for o caso, então um estudo específico deverá ser feito para a amplificação dinâmica e definição do coeficiente. O CNF deve ser aplicado nas cargas das estruturas que estão paralelas ao sentido de tráfego, ou seja, não deve ser aplicado a lajes e transversinas. Apenas os esforços das cargas móveis na região das juntas estruturais e extremidades da obra deverão ser majorados pelo CIA, a região será delimitada por uma distância horizontal de 5,0m para cada lado da junta ou descontinuidade estrutural.

3.1.2.1 Coeficiente de Impacto Vertical:

O Coeficiente de impacto vertical depende do tipo de estrutura projetada. O quadro 3 contém as informações estabelecidas pela ABNT (2013) nº7188.

Quadro 3 – Coeficiente de Impacto Vertical

Tipo de estrutura	CIV	
Estruturas com vão menor do que 10 m	1,35	
Estruturas com vão entre 10 m e 200 m	1+1,06*(20 /(LIV+50))	

(Fonte: Adaptado de ABNT nº7188, 2013)

Onde, LIV é o vão em metros para o cálculo CIV, conforme o tipo da estrutura. Para estruturas de vão isostático o LIV é a média aritmética dos vãos nos casos de vãos contínuos. Para estruturas em balanço, o LIV é o comprimento do próprio balanço.

3.1.2.2 Coeficiente do número de faixas:

O CNF deve ser aplicado apenas nas estruturas paralelas à estrutura, e é definido pela equação 1.

$$CNF = 1 - 0.05 * (n - 2) > 0.9$$
 (Equação 1)

Onde, n é o número (inteiro) de faixas de tráfego rodoviário a serem carregadas sobre um tabuleiro transversalmente contínuo. Acostamento e faixas de segurança não são faixas de tráfego da rodovia.

3.1.2.3 Coeficiente de Impacto adicional:

O CIA deve ser adotado como 1,25 para obras de concreto ou obras mistas (concretoaço). Para obras em aço o CIA deve ser adotado como 1,15. A ABNT (2013) nº7188 não determina um coeficiente de impacto adicional para obras confeccionadas em estruturas de madeira.

A carga final da estrutura se dará através do produto dos coeficientes de majoração com as cargas características como apresentado nas equações 2 e 3:

$$Q = P * CIV * CNF * CIA$$
 (Equação 2)

$$q = p * CIV * CNF * CIA$$
 (Equação 3)

Onde:

Q é a carga concentrada em kN majorada pelos coeficientes de ponderação. q é a carga distribuída em kN/m² quadrado majorada pelos coeficientes de ponderação.

3.1.2.4 Trem tipo TB-450

As cargas móveis podem ocupar qualquer posição sobre o tabuleiro, e, portanto, é necessário encontrar a posição que gere as maiores solicitações em cada uma das seções de cálculo para o dimensionamento. Para o levantamento das cargas móveis, a ABNT (2013) nº 7188 item 5.1 estabelece um trem-tipo, que é um modelo de carga móvel, o "TB-450". O trem-tipo é o carregamento de cálculo levando-se em consideração a geometria da seção transversal da ponte, como, por exemplo, o número e espaçamento das longarinas sobre o tabuleiro (ARAÚJO, 1999).

O trem-tipo teórico considera dois tipos de carregamentos, um proveniente de um veículo teórico, e outro que é chamado de carga de multidão. O trem-tipo suposto, pode ocupar qualquer posição na direção longitudinal da ponte. Lança-se mão de linhas de influência e diagramas que permitam encontrar as solicitações de maior grandeza da estrutura (ARAÚJO, 1999).

Para o levantamento das cargas móveis atuantes em uma ponte deve-se recorrer à recomendação da ABNT (2013) nº7188 item 5.1 que define quais são as cargas que possuem posição variável. Para isso, a norma estabelece um trem-tipo, que é um modelo de carga móvel, o "TB-450". O trem-tipo estabelecido pela norma é um veículo de 450 kN com seis rodas, três eixos de carga afastados entre si em 1,5m, com área de ocupação de 18 m², esse veículo possui uma carga concentrada característica "P" de 75 kN em cada uma das rodas, e uma carga uniformemente distribuída característica constante "p" de 5 kN/m².

A disposição das cargas do trem-tipo pode ser ilustrada pela figura 9.

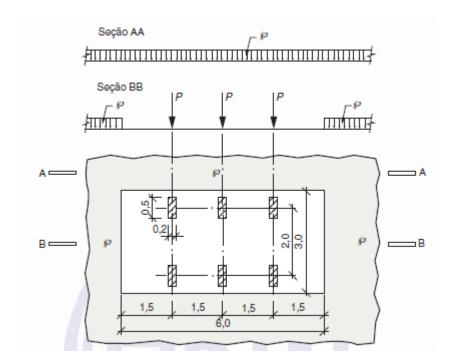


Figura 9 - Disposição do trem-tipo sobre a pista de rodagem

(Fonte: ABNT n°7188, 2013)

3.1.3 Cargas móveis: Efeitos dinâmicos

O efeito dinâmico das cargas móveis deve ser analisado pela teoria da dinâmica das estruturas. Entretanto, é possível assimilar o efeito dinâmico através de um coeficiente de Impacto "φ" estabelecido pela (ABNT nº 7187, 2003). Para as obras rodoviárias o valor do coeficiente é dado pela Equação 4.

$$\phi = 1,4 - 0,07 * l \ge 1$$
 (Equação 4)

Onde, l é o vão é o comprimento de cada vão teórico do elemento carregado, qualquer que seja o sistema estrutural, em metros. No caso de vãos desiguais, em que o menor vão seja igual ou superior a 70% do maior, permite-se considerar um vão ideal equivalente à média aritmética dos vãos teóricos. No caso de vigas em balanço, l é tomado igual a duas vezes o seu comprimento. Não deve ser considerado o impacto na determinação do empuxo de terra provocado pelas cargas móveis, no cálculo de fundações e nos passeios das pontes rodoviárias.

3.1.4 Cargas móveis: Forças horizontais

A ABNT (2013) nº 7188 define dois tipos de ações horizontais principais a serem analisadas, a primeira é referente às forças provenientes devido a frenagem e aceleração aplicadas no nível do pavimento. A segunda deve ser considerada para obras em curvas horizontais, pois é proveniente da força centrífuga. Ambas devem ser consideradas na posição mais desfavorável sobre o tabuleiro. As Forças horizontais devido a aceleração e frenagem são apresentadas na equação 5.

$$Hf = 0.25 * B * L * CNF \ge 135 \text{ kN}$$
 (Equação 5)

Onde, B é a largura efetiva, expressa em metros (m), da carga distribuída de 5 kN/m². E L é o comprimento concomitante da carga distribuída, expresso em metros.

As forças horizontais devido a força centrífuga possuem duas recomendações. A ABNT (2013) nº 7188 estabelece que raios menores do que 200m, a força centrífuga (Hfc) deve ser 2,4*P, para raios maiores do que 1500m Hfc deve ser considerada zero, e por fim, para raios entre, ou iguais a, 200m e 1500m a força centrífuga deve ser Hfc=480*P/R, onde R é o raio da

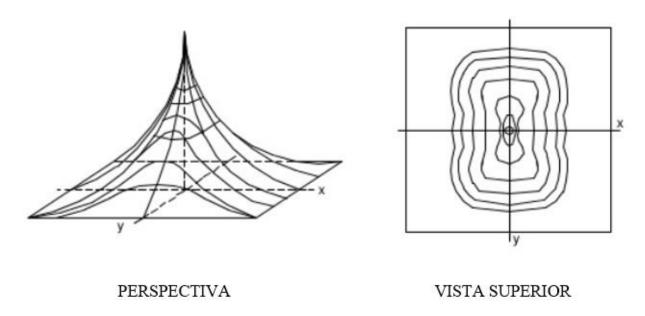
curva horizontal no eixo da obra, expresso em metros. A ABNT (2013) nº 7187 estabelece que o valor característico da força centrífuga deve ser uma fração do trem-tipo escolhido. Esta fração é resultado do produto de um coeficiente "C", que deve ser tomado como 0,25 para pontes com curva inferior a 300 m de raio e 75/R para raios superiores. A NBR 7187 (2003) já inclui o efeito dinâmico das cargas móveis.

3.1.5 Ações excepcionais

As ações excepcionais são caracterizadas por ações de curta duração e com baixíssima probabilidade de ocorrência. Nunes (2017) cita como sendo ações excepcionais em pontes:

- Colisões de veículos;
- Explosões;
- Fenômenos naturais como enchentes, ventos e sismos.

Além dos coeficientes adicionais para as cargas móveis citados no tópico 3.1.2, a ABNT (2013) nº 7188 estabelece cargas acidentais para o impacto de veículos. A norma estabelece que os dispositivos de contenção (guarda-rodas, barreiras New Jersey e meio-fio) devem suportar a uma carga horizontal de 100 kN. Já para os guarda-corpos a norma prevê uma carga horizontal transversal linearmente distribuída de 2 kN/m.


3.2 MECÂNICA ESTRUTURAL

O modelo de cálculo dos tabuleiros pode seguir várias vertentes, desde as mais clássicas como os métodos de Engesser-Courbon, Leonhardt e Guyon-Massonet, como métodos mais sofisticados como os computacionais embasados no método dos deslocamentos, elementos finitos, grelhas planas ou Analogia de Grelhas (NUNES, 2017).

3.2.1 Cálculo das lajes

O cálculo das lajes de uma ponte é baseado na teoria das placas. Em pontes, a principal solicitação é consequente das cargas móveis, ação direta das rodas dos veículos no pavimento da laje. Para se obter as maiores solicitações pode-se utilizar o auxílio das superfícies de influência, que é uma extensão do conceito de linhas influência para um espaço tridimensional. A figura 10 representa a superfície de contato de um carregamento genérico em uma laje (SPERNAU, 2013).

Figura 10 - Superfícies de Influência

(Fonte: Adaptado de Spernau, 2013)

Através das equações de equilíbrio, da teoria da elasticidade, Lei de Hooke, e fazendo as operações matemáticas necessárias, a Teoria das Placas possui uma equação diferencial de quarta ordem que rege a teoria das placas chamada equação de Lagrange (Equação 6) (PINHEIRO, 2007).

$$\frac{\partial^4 w}{\partial x^4} + 2 * \frac{\partial^4 w}{\partial x^2 y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{p}{D}$$
 (Equação 6)

Onde:

w é a função que representa os deslocamentos verticais;

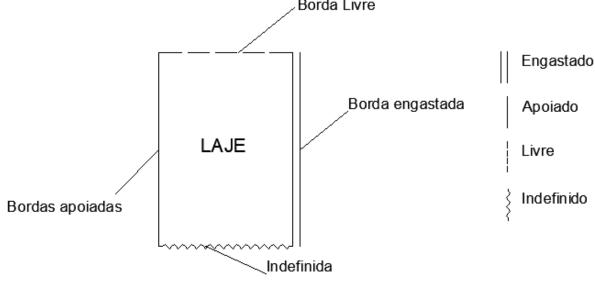
p é a carga total uniformemente distribuída;

D é a rigidez da placa à flexão;

E é o módulo de elasticidade;

h é a espessura da placa;

v é o coeficiente de Poisson.


Em geral, não possível determinar de forma exata, uma solução para tal equação diferencial, ainda que sejam satisfeitas as condições de contorno. Para contornar este problema, lança-se mão de soluções numéricas e tabelas de cálculo. Para pontes, as tabelas mais conhecidas são do alemão Hubert Rusch (SPERNAU, 2013).

3.2.2 Tabelas de Rusch

As tabelas de H. Rusch foram desenvolvidas para o trem-tipo da norma alemã DIN-1072. As normas brasileiras de cargas rodoviárias foram adotadas com carregamentos de mesma geometria da norma alemã para que as tabelas de Rusch pudessem ser utilizadas com as NBR. As tabelas de Rusch permitem determinar as solicitações em lajes através de condições de apoio pré-estabelecidas, são elas apoio simples, engaste perfeito, bordo livre e indefinido. A opção indefinida se aplica quando a relação ly/lx é muito grande e uma dimensão da placa é muito maior que a outra. A figura 11 ilustra como são convenções das tabelas de Rusch para os apoios das lajes (ARAÚJO, 1999).

Borda Livre

Figura 11 - Convenção de apoios de lajes Tabelas de Rusch

3.2.2.1 Momento Fletor decorrente das cargas móveis

Para o cálculo de momento fletor decorrente das cargas móveis pelas tabelas de Rusch, utiliza-se a equação 7 que leva em consideração o peso da roda do veículo, o carregamento de multidão nas laterais do veículo e o carregamento de multidão na frente e atrás do veículo, além de possuir um coeficiente de majoração de impacto (SPERNAU, 2013).

$$M_q = \emptyset (Q * Ml + q1 * Mp + q2 * Mp')$$
 (Equação 7)

Onde:

Ø é o coeficiente de impacto, que é proveniente do produto dos coeficientes CIV, CNF e CIA;

Q é o peso de uma roda do veículo estabelecido pela norma ABNT (2013) nº 7188 como 75 kN/Roda;

q1 é a carga móvel distribuída na frente e atrás do veículo que preconizado pela norma ABNT (2013) nº 7188 como 5 kN/m²;

q2 é a carga móvel distribuída nas laterais do veículo que preconizado pela norma ABNT (2013) nº 7188 como 5 kN/m²;;

Ml, Mp e Mp' são coeficientes retirados das tabelas de Rusch que dependem da geometria da laje e da geometria do carregamento.

Para encontrar os coeficientes Ml, Mp e Mp' é necessário encontrar três relações entre a geometria do carregamento e geometria da laje. As equações 8,9,10 e 11 são as relações utilizadas nas tabelas de Rusch.

$$Lx/a$$
 (Equação 9)

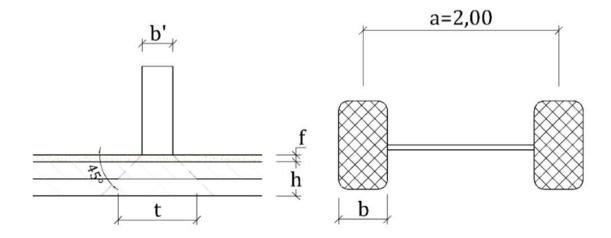
$$t = b' + 2.f + h (Equação 11)$$

Em que:

Ly é o vão da laje na direção "y";

Lx-é o vão da laje na direção "x";

a é o espaçamento entre o eixo das rodas do veículo tipo, preconizado pela norma ABNT (2013) nº 7188 como a=2 m;


b' é a largura corrigida da roda a ser utilizada nas tabelas de Rüsch;

f é a espessura média de pavimento sob o eixo geométrico da roda;

h - é a espessura da laje sob o eixo geométrico da roda.

A figura 12 ilustra as geometrias que devem ser encontradas para as relações necessárias às Tabelas de Rusch. Nota-se que t é uma propagação até a superfície média da laje adotando o espalhamento das cargas com 45°.

Figura 12 - Projeção da Roda no eixo da Laje

(Fonte: Nunes, 2017)

3.2.2.2 Momento Fletor decorrente das cargas permanentes

Para o cálculo do momento fletor decorrente das cargas permanentes também é possível utilizar as tabelas de Rusch, conforme a equação 12.

$$Mg = K.g.Lx^2$$
 (Equação 12)

Em que:

Lx é o vão da laje na direção "x";

Mg é o momento fletor devido a carga permanente;

K é um coeficiente obtido pelas tabelas de Rusch;

g é a carga permanente, expressa em kN/m², que vai depender da geometria do tabuleiro escolhido.

3.2.2.3 Correção do momento fletor para lajes contínuas

As tabelas de Rusch foram elaboradas em esquemas estáticos de lajes isoladas, delimitadas por longarinas e transversinas (NUNES, 2017). Existindo a continuidade das lajes, faz-se necessário corrigir os momentos fletores a fim de evitar a superarmação dos elementos e compatibilizar as armaduras. Existem várias metodologias para a correção dos momentos fletores em lajes, a ABNT (2014) nº6118 estabelece um modelo de compatibilização de momentos fletores que pode ser utilizado, o modelo segue os seguintes parâmetros:

- Momento fletor negativo: É o máximo entre a média aritmética dos momentos de borda "Mb" e 0,8*X1, onde X1 é o maior dos momentos fletores de borda:
- Momento Fletor positivo: Quando o momento negativo de borda é minimizado, consequentemente o momento fletor positivo no centro da placa aumenta, neste caso, o novo momento fletor no centro da placa será Mf = M₀ + (X₁+X₂)/2, onde, Mf é o momento compatibilizado, M₀ é o momento sem a compatibilização e X₁ e X₂ são os momentos de borda das lajes solidarias. Caso, a compatibilização de momentos fletores de borda ocasione na diminuição dos momentos fletores do centro da placa, então, deve-se ser mantido o momento fletor original.

A figura 13 ilustra como é o modelo estabelecido pela ABNT (2014) nº 6118.

Figura 13 - Modelo de compatibilização de momentos fletores em lajes centrais

(Fonte: Souza⁷, 2016)

Spernau (2013) trás um modelo de cálculo embasado na NB2/61 bem mais simples para a compatibilização dos momentos fletores de borda e momentos positivos no centro das lajes. O autor determina para a correção do momento negativo de borda, a equação 13. E para a compatibilização do momento positivo no centro da placa, a equação 14.

$$\frac{1}{2} maior \ M_0 \leq M_b \leq \begin{cases} \frac{2}{3} maior \ M_0 \\ \frac{3}{4} menor \ M_0 \\ mom. \ armadura \ simples \end{cases}$$
 (Equação 13)

⁷ SOUZA, Edson Florentino de. (2016). Notas de Aula: Concreto Armado I. Disciplina do curso de graduação de Engenharia Civil. COECI/UTFPR.

$$M^+ = M_0 - 0.6 * M_b$$
 (Equação 14)

Em que:

M0 como sendo o momento positivo no meio da placa;

Mb o momento negativo de borda;

M+ o momento positivo no centro da placa compatibilizado.

Taguti (2002) também traz um modelo de correção para a compatibilização dos momentos fletores. O autor, traz para a correção dos momentos, um coeficiente "α" para a correção dos momentos decorrentes das cargas móveis, que são os principais carregamentos em pontes. A correção apresentada pelo autor só é válida para vãos abaixo de 20 metros. A equação 15 apresenta o cálculo para o coeficiente "α", e a equação 16 apresenta o cálculo para a correção do momento fletor de cálculo.

$$\alpha = \frac{1,2}{1 + 0.01 * Lx} * \alpha_0$$
 (Equação 15)

$$Md = \gamma_g * Mg + \alpha * \gamma_q * Mq$$
 (Equação 16)

Em que:

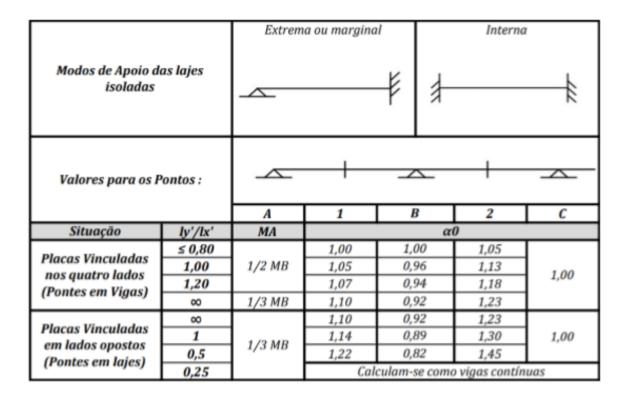
 α é o coeficiente de continuidade das lajes final;

 α 0 é o coeficiente de continuidade das lajes inicial, obtido pelo quadro XX;

lx é o vão da laje na direção x;

Md é o momento de cálculo;

Mg é o momento fletor devido à carga permanente;


 γg é o Coeficiente de majoração das ações permanentes;

Mq é o momento fletor devido à carga móvel;

 γq é o coeficiente de majoração das ações variáveis.

M+ o momento positivo no centro da placa compatibilizado.

A quadro 4 apresenta os valores de " α 0" para o modelo de compatibilização apresentado por Taguti (2002).

Quadro 4 - Valores de Taguti (2002) para o Coeficiente α 0

(Fonte: Adaptado Taguti, 2002)

3.2.3 Cálculo das vigas longarinas

Os métodos de cálculo para o tabuleiro de pontes de divide em dois conjuntos, que são métodos simplificados e métodos computacionais. Souza (2015) cita três métodos simplificados para o cálculo de tabuleiros:

- Método de Engesser-Courbon;
- Método de Leonhardt;
- Método de Guyon-Massonet;

Para métodos computacionais, Souza (2015) cita:

- Método de Grelhas Planas;
- Método de Analogia de Grelhas;
- Método dos Deslocamentos;

• Método dos elementos finitos;

3.2.3.1 Método de Engesser-Courbon

O método de Engesser-Courbon é baseado na teoria das gralhas e permite determinar, de forma aproximada, o modo como a cargas se distribuem sobre um tabuleiro monolítico (SOUZA, 2015). O método considera que as transversinas possuem rigidez infinita, uma vez que o vão da transversina é muito pequeno em relação ao vão das vigas principais, e que as transversinas possuem mesma ordem de grandeza das longarinas. Dessa forma, as flechas das vigas principais ficam condicionadas a uma relação linear, idêntica à da hipótese de seção deformada plana usada na teoria técnica da flexão composta (SPERNAU, 2013).

Respeitando o comportamento elástico-linear das estruturas, pequenas deformações, seções planas e princípio de Saint-Venant, segundo Souza (2015) é possível:

- Transformar o tabuleiro monolítico em uma malha ortogonal constituída por longarinas, vigas longitudinais, e transversinas, vigas perpendiculares ao eixo da ponte;
- Considerar as que transversinas estão simplesmente apoiadas nas longarinas e são consideradas infinitamente rígidas à flexão;
- Desprezar a resistência à torção das transversinas e longarinas;

O princípio matemático da teoria de Engesser-Courbon é embasado na equação XX (SPERNAU, 2013). Considerando-se uma carga concentrada "P", aplicada com excentricidade "e", em relação ao centro de gravidade da grelha, a carga atuante sobre uma viga qualquer (i) segue equação 17:

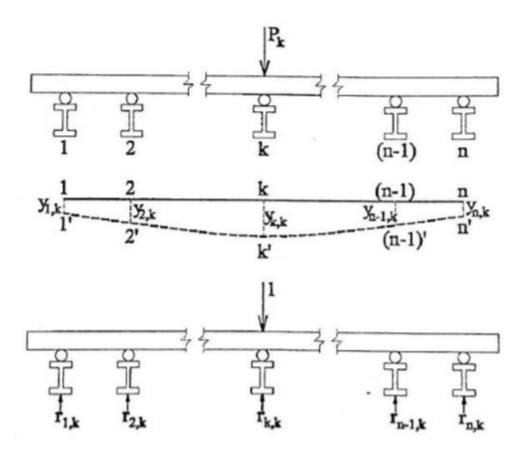
$$P_i = \frac{P}{n} \pm \frac{P * e}{\sum x^2} * x_i$$
 (Equação 17)

Em que:

Pi é a carga atuante na viga genérica;

P é o valor da carga concentrada atuante na grelha;

n é a quantidade de vigas principais;


e é a excentricidade da carga, medida a partir do centro de gravidade das vigas principais;

xi é a distância de uma viga principal genérica ao centro de gravidade das vigas principais;

3.2.3.2 Método de Leonhardt

Existem casos que as transversinas não podem ser consideradas de rigidez infinita, dada a sua deformabilidade. Nestes casos, Leonhardt em 1940 elaborou um método que se baseia nas deformações elásticas para se obter as linhas de influência da reação das longarinas. O esquema estático das cargas pode ser ilustrado pela figura 14.

Figura 14 - Esquema genérico de deformabilidade das transversinas pelo método de Leonhardt

(Fonte: Spernau, 2013)

Nota-se no esquema a não linearidade das deformações yi,j das vigas principais e das transversinas. Leonhardt elaborou tabelas com coeficientes de distribuição transversal de cargas em grelhas planas. O método só é válido se seguir as hipóteses:

• Longarinas com momento de inércia constante em toda sua extensão;

- Longarinas simplesmente apoiadas em toda sua extensão;
- Transversinas são apoiadas nas longarinas;
- Despreza-se o efeito de torção das longarinas;
- Transversinas igualmente espaçadas.

Inicialmente, as tabelas de Leonhardt foram desenvolvidas para uma transversina no meio do vão. Caso a longarina possua mais de uma transversina sobre ela apoiada, então devese utilizar um coeficiente "k" apresentado para corrigir a inércia da transversina no quadro 5. A correção da inércia se dá pela equação 18 (SPERNAU, 2013).

Quadro 5 - Coeficiente k método de Leonhardt

Nº de transversinas igualmente espaçadas	Coeficiente k
1 a 2	1
3 a 4	1,6
5 ou mais	2

(Fonte: Adaptado Spernau, 2013)

$$\bar{J}_{eq} = k * \bar{J}$$
 (Equação 18)

Em que:

 \bar{J}_{eq} é a inércia equivalente da transversina corrigida;

k é o coeficiente adimensional de correção;

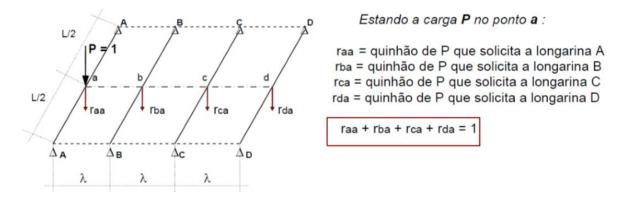
 \bar{J} é a inércia de cada transversina calculada como seção T. Pode ser calculada também como seção retangular, mas, neste caso, fornece valores mais conservadores.

Um dos parâmetros de entrada das tabelas de Leonhardt é o grau de rigidez da grelha, conforme a equação 19. O grau de rigidez da grelha determina a eficiência do conjunto das transversinas na direção transversal das cargas (NUNES, 2017).

$$\zeta = \frac{\bar{J}_{eq}}{\bar{J}} * \left(\frac{l}{2*a}\right)^3$$
 (Equação 19)

Onde:

 \bar{J}_{eq} é a inércia equivalente da transversina corrigida;


 \bar{I} é a inércia de cada transversina;

l é o vão das vigas principais, consideradas simplesmente apoiadas;

a é a distância do espaçamento entre centros de vigas principais.

Leonhardt elaborou várias tabelas em função do número de longarinas e do grau de rigidez das grelhas para se obter os coeficientes de repartição transversal ri,j, onde "i" corresponde a viga da seção de cálculo e "j" a posição da carga "P" aplicada. A figura 15 representa um exemplo de grelha e seus respectivos coeficientes de repartição.

Figura 15 - Exemplo de Grelha e seus respectivos coeficientes de repartição

(Fonte: Nunes [2017] apud Antonio Neto [20--])

De posse das tabelas de Leonhardt, e sabendo obter os coeficientes ri,j deve-se elaborar as linhas de influência transversais (LIT) para cada uma das vigas. Nota-se que as linhas de influência transversais não são lineares como no método de Engesser-Courbon, sendo esta a principal diferença entre os métodos.

3.2.4 Cálculo das vigas transversinas

É possível calcular as vigas transversinas do tabuleiro através dos coeficientes de distribuição transversal obtidos da solução de uma grelha plana das tabelas de Leonhardt. Para se determinar as linhas de influência da viga transversina, Spernau (2013) apresenta um modelo de cálculo, que é utilizado neste trabalho. Considera-se uma seção transversal genérica Si(x) apresentada na figura 16.

Figura 16 - Esquema de distribuição transversal das cargas em uma transversina

(Fonte: Adaptado de Spernau, 2013)

Considere:

Px como sendo uma carga unitária atuando em xp;

ζ i forças atuantes até a seção analisada;

x distância do início até o centro geométrico da grelha na seção Si(x);

ri,j coeficientes de distribuição transversal.

Os coeficientes de distribuição transversal determinam a ordenada em x da linha do esforço correspondente a seção. Para encontrar os coeficientes finais de cálculo de momento fletor, basta utilizar as equações XX e XX. Para encontrar os coeficientes finais de cálculo de esforço cortante, basta utilizar as equações XX e XX.

Equações dos coeficientes finais de momento fletor 20 e 21:

Se Px à direita
$$\rightarrow M_{\bar{x}x} = \sum_{1}^{i} r_{h,x} * \zeta_h$$
 (Equação 20)

Se Px à esquerda
$$\rightarrow M_{\bar{x}x} = \sum_{1}^{i} r_{h,x} * \zeta_h - (\bar{x} - x_p)$$
 (Equação 21)

Onde:

 $M_{\bar{x}x}$ é o coeficiente que multiplicado pelo carregamento irá gerar o carregamento de esforço de momento fletor;

 $r_{h,x}$ é o coeficiente de distribuição transversal obtido das tabelas de Leonhardt;

 ζ_h é o carregamento à esquerda da seção analisada;

 \bar{x} é a distância do inicio até o centro geométrico da grelha na seção Si(x);

 x_p é a distância do início até o ponto de aplicação de Px.

Equações dos coeficientes finais esforço cortante 22 e 23:

Se Px à direita
$$\rightarrow V_{\bar{x}x} = \sum_{1}^{i} r_{h,x}$$
 (Equação 22)

Se Px à esquerda
$$\rightarrow V_{\bar{x}x} = \sum_{1}^{i} r_{h,x} - 1$$
 (Equação 23)

Onde:

 $V_{\bar{x}x}$ é o coeficiente que multiplicado pelo carregamento irá gerar o carregamento de esforço cortante;

 $r_{h,x}$ é o coeficiente de distribuição transversal obtido das tabelas de Leonhardt;

3.3 NORMAS

São normas vigentes a serem consultados no dimensionamento de Obras de Arte construídas nas rodovias estaduais do Paraná:

- ABNT NBR 12655/2015 Concreto de cimento Portland Preparo, controle e recebimento;
- ABNT NBR 6118/2014 Projeto de estruturas de concreto Procedimento;
- ABNT NBR 7188/2013 Carga móvel rodoviária e de pedestres em pontes, viadutos, passarelas e outras estruturas;
- ABNT NBR 6122/2010 Projeto e execução de fundações;
- ABNT NBR 7480/2007 Aço destinado a armaduras para estruturas de concreto armado Especificação;
- ABNT NBR 7187/2003 Projeto de pontes de concreto armado e de concreto protendido Procedimento;
- ABNT NBR 8681/2003 Ações e segurança nas estruturas;
- ABNT NBR 6123/1988 Forças devido ao vento em edificações Procedimento (versão corrigida 2:2013);
- ABNT NBR 10839/1989 Execução de obras de arte especiais em concreto armado e protendido Procedimento;

A ABNT (2013) nº 8681 estabelece combinações de cálculo para encontrar as solicitações de maior grandeza em que a estrutura possa estar sujeita. A segurança da estrutura deve ser verificada em duas situações diferentes, são eles o estado limite último e estado limite de serviço.

As combinações de estado limite de serviço (ELS) são utilizadas para verificação do uso normal da construção. Nas combinações de serviço são consideradas todas as ações permanentes, inclusive as deformações impostas permanentes, e as ações variáveis correspondentes a cada um dos tipos de combinações. As combinações de serviço são separadas em quase permanentes, raras e frequentes.

As combinações de estado limite último (ELU) é utilizada para verificar a segurança quanto a paralização total ou parcial da construção. As combinações de estado limite último são divididas em normais, especiais ou de construção, e excepcionais.

Os coeficientes utilizados para as combinações de cálculo no dimensionamento estrutural dos elementos de uma AOE são apresentados no quadro 6.

Quadro 6 - Coeficientes de combinação de ações

Coeficiente	Tipo	Valor
γ д	Ações Permanentes (Grandes Pontes)	1,35 – Favorável 1,0 – Desfavorável
γ _q	Ações variáveis em geral	1,5
γq	Ação do vento	1,4
Ψ 0	Ação do vento	0,6
Ψ1	Ação do vento	0,3
Ψ 2	Ação do vento	0
Ψ 0	Cargas móveis e seus efeitos dinâmicos (pontes rodoviárias)	0,7
Ψ1	Cargas móveis e seus efeitos dinâmicos (pontes rodoviárias)	0,5
Ψ 2	Cargas móveis e seus efeitos dinâmicos (pontes rodoviárias)	0,3

(Fonte: Adaptado de ABNT (2003) nº8681)

3.4 MATERIAIS E MÉTODOS

Este trabalho tem como premissa o comparativo de resultados de soluções estruturais em concreto armado para um projeto. O projeto escolhido é referente a obra de arte especial que está inserida na licitação do tipo Concorrência Pública 265/2017. A obra total possui valor estimado em R\$36.717.085,54 (trinta e seis milhões setecentos e dezessete mil e oitenta e cinco reais e cinquenta e quatro centavos) segundo o órgão⁸, e o subitem 5 "OBRA DE ARTE ESPECIAIS - TRINCHEIRA (C=24,00, L=19,50, H=5,50)" possui um valor estimado de R\$2.642.525,11 (dois milhões seiscentos e quarenta e dois mil quinhentos e vinte e cinco reais e onze centavos). A obra consiste em execução dos serviços para ampliação da capacidade de tráfego da rodovia PRC 466, trecho: entroncamento PR 460 - BR 277 (Guarapuava); subtrecho: entroncamento Rod. Mun. Palmeirinha - entroncamento BR 277 (Guarapuava), numa extensão de 3,467 km.

Será utilizado para este os cálculos deste trabalho, o projeto arquitetônico da OAE publicado para a licitação (ANEXO A). Sendo assim este trabalho não irá discutir questões como quantidade faixas de rolamento, fluxo de veículos e pessoas ou mesmo a estética da OAE escolhida.

O trabalho exige um estudo inicial do comportamento das estruturas em concreto armado e estruturas de obras de arte especiais. Portanto é parte integrante deste trabalho uma revisão bibliográfica pautada nos conhecimentos do dimensionamento de pontes, projetos de pontes e composições unitárias de preços.

Os estudos necessários para o anteprojeto, bem como os estudos geométricos, geotécnicos, hidrológicos, topográficos e complementares não são contemplados neste projeto, pois é utilizado o projeto arquitetônico já idealizado pelo projetista desta OAE.

Este trabalho tem como objetivos a comparação de resultados de diferentes soluções estruturais para o tabuleiro de uma ponte em concreto armado. Para tanto, segue quatro etapas principais, são elas:

-

⁸ Disponível em < http://www.comprasparana.pr.gov.br/ >. Acesso em 31/11/2018.

- I. Revisão Bibliográfica: com foco em obras conhecimentos do dimensionamento de pontes, projetos de pontes e composições unitárias de preços;
- II. Dimensionamento de Estruturas (Tabuleiros) compatíveis com o projeto arquitetônico;
- III. Levantamento dos quantitativos de materiais e serviços necessário para execução de cada um dos tabuleiros dimensionados;
- IV. Comparativo de resultados encontrados no item III para encontrar qual é o tabuleiro mais econômico.

O fluxograma apresentado na figura 17 ilustra de maneira mais detalhada as etapas do projeto.

REVISÃO BIBLIOGRÁFICA ESTUDOS DO ESTUDO PROJETO DIMENSIONAMENTO DE ARQUITÔNICO ESCOLHIDO **PONTES** DIMENSIONAMENTO DE ESTRUTURAS EM CONCRETO ARMADO DIMENSIONAMENTO DE DIMENSIONAMENTO DE LAJES LONGARINAS LEVANTAMENTO DOS QUANTITATIVOS DE MATERIAIS E SERVIÇOS ANÁLISE DOS TABULEIROS E COMPARATIVO DOS RESULTADOS

Figura 17 – Fluxograma de etapas do projeto

(Fonte: o autor)

Os preços unitários dos serviços utilizados para os estudos deste trabalho, foram retirados do orçamento da licitação do DER-PR para a obra (ANEXO B)

3.5 ETAPAS DO DIMENSIONAMENTO

O dimensionamento das estruturas em concreto será dimensionado conforme a seguir:

Lajes:

- I. Levantamentos dos carregamentos permanentes através de planilhas eletrônicas e do software FTOOL para lajes em balanço;
- II. Levantamento das solicitações de momento fletor devido as cargas móveis e permanentes através do software T.Rusch 1.0;
- III. Cálculo de armaduras e seções através de planilhas eletrônicas;
- IV. Cálculo do quantitativo de materiais através de planilhas eletrônicas com base nas C.P.U. do DER-PR;
- V. Análise de resultados através de planilhas eletrônicas;

Longarinas:

- I. Levantamentos dos carregamentos permanentes do método de Engesser-Courbon;
- II. Levantamento dos carregamentos devido a cargas móveis através do método de Engesser-Courbon;
- III. Cálculo de armaduras e seções através de planilhas eletrônicas;
- IV. Cálculo do quantitativo de materiais através de planilhas eletrônicas com base nas C.P.U. do DER-PR;
- V. Análise de resultados através de planilhas eletrônicas;

3.6 SOFTWARES UTILIZADOS

Neste trabalho, foram utilizados os seguintes softwares listados:

- Microsoft Excel 2018 Planilhas eletrônicas de cálculo:
- AutoCAD 2018 Para elaboração de gráficos e desenhos técnicos;
- FOOL 2017 Para obter resultados e diagramas de cálculo;
- Aplicativo DUALONG Para obter os Momentos Fletores de tabuleiros com duas longarinas;

• T. Rusch 1.0 – Para obter os coeficientes das tabelas de Rusch e diagramas de lajes.

Os softwares Microsoft Excel e AutoCAD são ferramentas muito difundidas entre os pesquisadores de Engenharia Civil, portanto não é necessária uma descrição sobre suas aplicações.

3.6.1 T.Rusch 1.0

O software T. Rusch 1.0 é um aplicativo *freeware* para o cálculo de esforços em lajes de pontes pelo método de Rusch. O software permite:

- Exibição da tabela de Rüsch e interpolação de suas constantes utilizadas;
- Cálculo dos esforços a partir do trem-tipo TB-450 ou TB-240 de acordo com a NBR 7188:2013;
- Diagramas de momentos;
- Memória de cálculo em formato HTML;
- Opção para consultar todas as tabelas presentes no livro de Rüsch.

Para utilizar o software é necessário configuras unidades das dimensões, esforços e cargas e selecionar o Trem-Tipo. É necessário também insertar as incógnitas Lx, Ly, t, Direção do tráfego, Vinculações e coeficiente de impacto e carga permanente. A figura 18 apresenta o Layout do software.

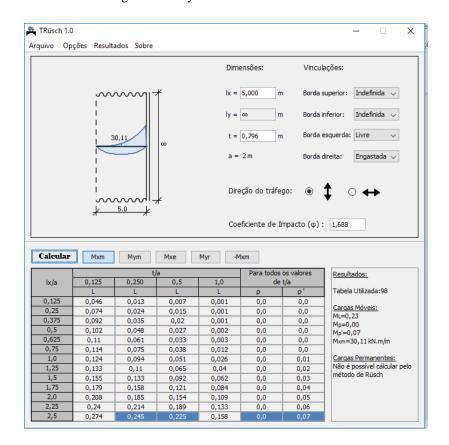


Figura 18 - Layout T.Rusch 1.0

(Fonte: print screen da tela do Layout do software T.Rusch 1.0)

3.6.2 FTOOL V4.0

O software FTOOL é bem difundido para fins educacionais nos cursos de Engenharia Civil. Sua última versão permite encontrar as linhas de influência de esforços de diversos trens tipos, e por isso foi uma ferramenta extremamente útil para este trabalho.

O software FTOOL foi desenvolvido pela Pontíficia Universidade Católica do Rio de Janeiro. Inicialmente desenvolvido para uso em sala de aula, mas evoluiu para uma ferramenta frequentemente utilizada em projetos estruturais profissionais. Uma edição avançada, com uma licença comercial, foi, portanto, liberada para satisfazer as necessidades dos projetistas estruturais, mantendo a edição básica gratuita (FTOOL⁹). O software permite encontrar diagramas de esforços axiais, cortantes, momento fletor, linhas de influência e deformações de diversos tipos de estruturas.

⁹ Disponível em < https://www.ftool.com.br/Ftool/site/about >. Acesso em 12/11/2018

Para este trabalho, o software foi utilizado para verificar os diagramas de esforços cortante, momento fletor e linhas de influência das estruturas. A figura 19 apresenta um layout do software.

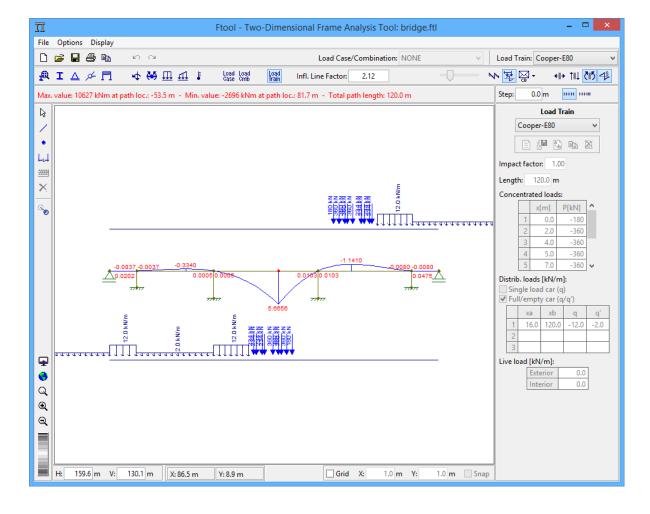


Figura 19 - Layout FTOOL V4.0

(Fonte: FTOOL⁶)

3.6.3 Planilhas eletrônicas

As planilhas eletrônicas foram desenvolvidas pelo autor de forma a absorver as informações coletadas dos softwares FTOOL V4.0 e T.Rusch 1.0. Dessa formas foram elaboradas para calcular as taxas de armadura com base em parâmetros que deviam ser inseridos pelo usuário, bem como o seção do elemento e diâmetro do vergalhão a ser utilizado.

Foram elaboradas duas planilhas para o cálculo de lajes. A primeira (APÊNDICE B) é responsável pela taxa de armadura pela seção. Leva em consideração todos os parâmetros estabelecidos pelas normas vigentes. A planilha foi elaborada para possuir uma tolerância da armadura efetiva entre 95 e 110% da armadura calculada, isto para que barras de mesmo diâmetro fossem reutilizadas de uma seção para outra, diminuindo assim a taxa de armadura.

A segunda planilha (APÊNDICE C) foi elaborada para o cálculo de armaduras totais. Esta planilha leva em consideração se existe compatibilização de armaduras entre seções e a ancoragem das armaduras. Também, leva em consideração quais são as maiores taxas de armaduras em uma mesma seção, como por exemplo nos bordos em que há momento resultante de myr e mye.

Para o cálculo das longarinas foram elaboradas duas planilhas que calculam taxa de armadura por seção e calcula quantidade de aço. A primeira planilha calcula a armadura longitudinal das longarinas (APÊNDICE D). Esta planilha foi subdividida para calcular 22 seções de 1 metro, haja visto que todas as longarinas de todos os tabuleiros são longarinas do tipo viga contínua. Para utilização desta planilha basta apenas inserir as solicitações que são geradas pelo software FTOOL e inserir qual o diâmetro do vergalhão deve ser utilizado.

A segunda planilha (APÊNDICE E) calcula a armadura transversal das vigas longarinas. Basta inserir qual o diâmetro e espaçamento das barras que serão utilizadas. Além de inserir os esforços que são resultados dos diagramas do software FTOOL V4.0.

A planilhas levam em consideração:

- Contribuição da seção T de concreto conforme estabelece a normativa ABNT (2014) nº6118;
- Utilização de apenas um diâmetro de barras para o cálculo de taxa de armaduras longitudinais;
- Bielas de concreto comprimidas com 38°;
- Armadura transversal calculada com estribos simples (2 ramos) ou dupla (4 ramos);
- Armadura efetiva entre 95 e 110% da armadura calculada.

4 ESTUDO DE CASO

4.1 DEFINIÇÃO DO PROBLEMA

Encontrar a solução estrutural mais econômica e mais adequada para diferentes obras é umas das dificuldades dos projetistas de OAE. Este trabalho consiste no comparativo de soluções estruturais. Entretanto, irá se limitar a calcular o tabuleiro (lajes e vigas) da ponte. O trabalho prioriza o comparativo de diferentes soluções estruturais de tabuleiro para uma mesma ponte. Portanto, não serão analisadas a mesoestrutura e infraestrutura da ponte.

4.2 DELIMITAÇÃO DO TEMA

Este trabalho se limitou a:

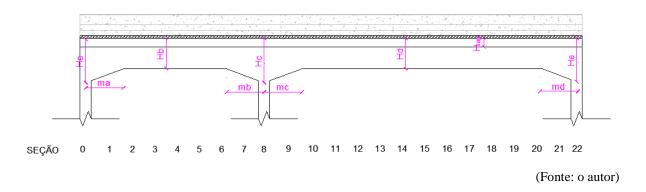
- Dimensionamento de diferentes soluções estruturais para o tabuleiro de um projeto de ponte, não analisando mesoestrutura e infraestrutura.
- Dimensionamento de lajes através do método das Tabelas de Rusch;
- Dimensionamento das vigas longarinas através do método de Engesser-Courbon;
- Dimensionamento de estruturas de concreto armado através de planilhas eletrônicas;
- Dimensionamento estático do comportamento das estruturas quanto as solicitações de cargas permanentes e móveis. Não sendo analisado o dimensionamento dinâmico da estrutura quanto a ventos, e deformações de terreno;
- Utilizou o banco de dados do DER-PR para análise dos valores totais das obras.

4.3 PARÂMETROS COMUNS A TODOS OS TABULEIROS

No dimensionamento de estruturas, faz-se necessário a escolha de alguns parâmetros por conta do projetista, bem como o arranjo das armaduras ou a seção de uma viga. Esses parâmetros irão influenciar diretamente no resultado final dos elementos dimensionados.

Para todas as lajes foram adotados os seguintes parâmetros comuns a todas as lajes dimensionadas deste projeto.

- Espessura pavimento e = 11,50 cm. Parâmetro adotado conforme projeto de pavimentação do projeto original;
- Superfície de contato do pneu A = 20cm e B =50cm. Parâmetro adotado conforme ABNT (2013) nº7188;
- Distância dos eixos das rodas dos veículos do trem-tipo a = 2 m. Parâmetro adotado conforme ABNT (2013) nº7188;
- Carga móvel por roda P =75 kN. Parâmetro adotado conforme ABNT (2013) nº7188;
- Carga móvel distribuída (carga de multidão) Q = 5 kN/m². Parâmetro adotado conforme ABNT (2013) nº7188;


São também listados os materiais utilizados para o dimensionamento dos elementos:

- Resistência característica do concreto: C30 = fck 30 MPa;
- Coeficiente de minoração da resistência do concreto yd=1,4;
- Agregado graúdo de maior dimensão: Brita 1 com diâmetro máximo de 19 mm e do tipo gnaisse (αe=1,00);
- Resistência característica do aço: CA-50 = 500 Mpa;
- Coeficiente de minoração da resistência do aço γd=1,15;

Para a compatibilização dos momentos fletores foi utilizado o método apresentado pela ABNT (2014) nº 6118. Haja visto que o mesmo é o mais conservador entra os três métodos pesquisados neste trabalho.

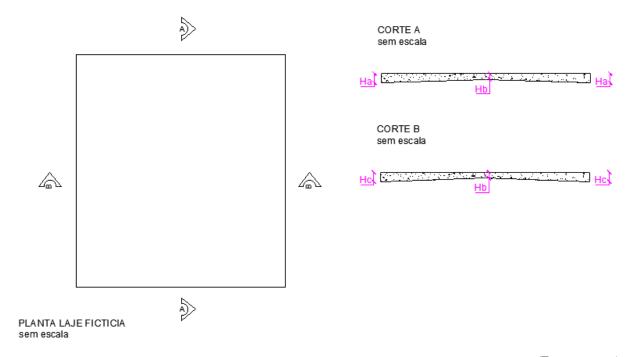
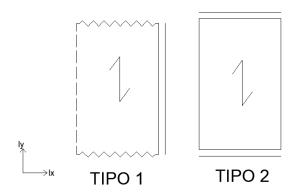

Para encontrar uma solução mais econômica das vigas dimensionadas, foi utilizado a redução da seção transversal das vigas no centro dos tramos. Isto é possível devido ao comportamento das vigas T mediante as solicitações de momento fletor positivo, que é preponderante nos vãos intermediários. A figura 20 ilustra a redução da seção das longarinas em um corte longitudinal fictício.

Figura 20 – Longarinas com seção reduzida com mísulas

Também foi utilizado o artifício da redução das seções para as lajes. Em geral os maiores esforços se apresentam nos engastes das lajes, e portanto, este foi o local de aumento das seções. Como a laje possui 4 bordas e 4 possíveis espessuras para os engastes, foi padronizado um valor de espessura para o centro da placa e outro para as bordas que são paralelas, isso facilita a compreensão do projeto. A figura 21 ilustra o modelo de seções das lajes utilizados nos tabuleiros.

Figura 21 - Modelo de seções para lajes



4.4 TABULEIRO A

4.4.1 Cálculo das lajes

A primeira solução a ser dimensionada é de um tabuleiro com duas longarinas. Para o cálculo das solicitações das lajes foi utilizado o software T.Rusch e o software FTOOL. Para o levantar o carregamento das longarinas foi utilizado o método de Engesser-Courbon, e para as solicitações foram utilizados os diagramas do software FTOOL. O dimensionamento das seções e das taxas de armadura foi feito através de planilhas eletrônicas. As lajes desta solução foram divididas em dois tipos, a figura 22 ilustra como os dois tipos de lajes podem ser encontradas nas tabelas de Rusch.

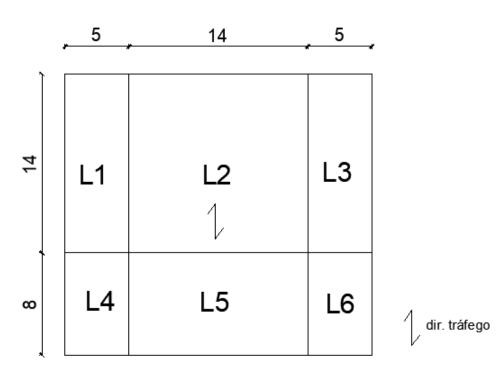
Figura 22 - Tipos de lajes convenção de Rusch Tabuleiro A

(Fonte: o autor)

O coeficiente de adicional de impacto, CIA, influencia consideravelmente no dimensionamento das armaduras longitudinais. Portanto, nas lajes que não são afetadas por esse coeficiente, ele foi dispensado. Entretanto, para o tabuleiro A, devido o projeto geométrico de estradas dividir as pistas de rolamento com duas com barreiras *New* Jersey, todas as lajes são influenciadas pelo CIA. São listados os tipos de lajes para esta solução:

- Tipo 1: Possui 2 bordos indefinidos em ly. Em lx, possui 1 bordo engastado na laje central e 1 bordo livre. Direção de fluxo em ly e **possui** influência do CIA;
- Tipo 2: Possui 2 bordos engastados em ly e duas bordas apoiadas nas longarinas em lx. Direção de fluxo em ly e **possui** influência do CIA.

Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro 7.


Quadro 7 - Tabuleiro A - Coeficientes de majoração cargas móveis Tabuleiro A

Coeficiente majoração									
	Laje Tipo 1 e 2								
Coeficiente	φ	Observação							
CIV	1,350	=1+1,06*(20 /(LIV+50))							
CIA	1,250	= 1,25 (p/ C.A)							
CNF	-	Não se aplca p/ lajes e transversinas							
φ = CIA* CIV * CNF	1,688								

(Fonte: o autor)

A figura 23 apresenta a planta do tabuleiro, a separação é feita com base nas dimensões lx e ly e no tipo da laje. As lajes L1, L3, L4 e L6 são do tipo 1, e as lajes L2 e L5 são lajes do tipo 2. Como o tabuleiro é simétrico e possui carregamentos simétricos, L1=L3 e L4=L6.

Figura 23 - Planta do Tabuleiro A

(Fonte: o autor)

Os dados de entrada utilizados nas tabelas de Rusch são apresentados no quadro 8.

Quadro 8 - Entradas Tabelas de Rusch Tabuleiro A

ENTRADAS SOFTWARE T RUSCH										
LAJE		Dimensões		Lin. Média	Parân	netros	Direção fluxo			
	Ly (m)	Lx (m)	Ly/Lx	t (cm)	t/a	Lx/a	Ix ou ly			
L1=L3	14,000	5,000	2,800	79,623	39,811	2,500	ly			
L2	14,000	14,000	1,000	79,623	39,811	7,000	ly			
L4=L6	8,000	5,000	1,600	79,623	39,811	2,500	ly			
L5	8,000	14,000	0,571	79,623	39,811	7,000	ly			

Os resultados encontrados, e apresentados no memorial de cálculo deste trabalho, das incógnitas: seção de concreto (espessura da laje), tipo (por tabelas de Rusch) e armadura total são apresentados no quadro 9. Para o cálculo das solicitações permanentes nas lajes do TIPO 1, foi utilizado o software FTOOL, para as outras solicitações tanto permanentes quanto variáveis, foram utilizadas as Tabelas de Rusch através do T. Rusch 1.0.

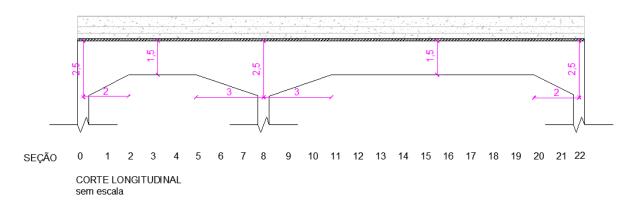
Quadro 9 - Resumo de resultados lajes - Tabuleiro A

				h laje			Asw,adot				
Laje	Tipo	Sup	Inf	Dir	Esq	Meio	TOTAL				
		cm	cm	cm	cm	cm	kg				
L1	TIPO 1	40,0	40,0	40,0	25,0	25,0	5622,4				
L2	TIPO 2	40,0	40,0	40,0	40,0	30,0	12007,35				
L3	TIPO 1	40,0	40,0	40,0	25,0	25,0	5622,4				
L4	TIPO 1	40,0	40,0	40,0	25,0	32,5	3082,2				
L5	TIPO 2	40,0	40,0	40,0	40,0	30,0	4378,7				
L6	TIPO 1	40,0	40,0	40,0	25,0	32,5	3082,2				
	Total aço (kg) 33795,2										

4.4.2 Cálculo das Longarinas

Para o cálculo das longarinas do tabuleiro A, foi utilizada a teoria de Engesser-Courbon conforme recomendação de Spernau (2013). O trem tipo foi posicionado sobre as vigas de forma a encontrar as maiores solicitações das vigas.

Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro 10.


Quadro 10 - Coeficiente de majoração das cargas móveis para longarinas- Tabuleiro A

Coeficiente majoração									
	VIGAS								
Coeficiente	φ	Observação							
CIV	1,350	=1+1,06*(20 /(LIV+50))							
CIA	1,250	= 1,25 (p/ C.A)							
CNF	0,900	=1-0,05*(n-2)>0,9							
φ = CIA* CIV * CNF	1,519								

(Fonte: o autor)

O corte longitudinal das longarinas V1 e V2 é representado pela figura 24.

Figura 24 - Corte Longitudinal Longarinas - Tabuleiro A

(Fonte: o autor)

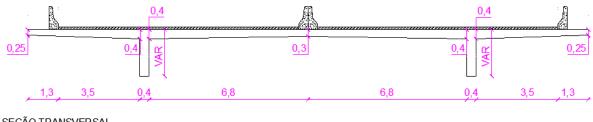
O resumo das solicitações e armaduras longitudinais está apresentado no quadro 11 e os resultados transversais estão expostos no quadro 12.

Quadro 11 -Resumo de resultados longitudinais Longarinas V1=V2 - Tabuleiro A

	ARMADURA CALCULADA											
				LONGITUD	INAL							
		posi	itiva									
seção	Msd kNcm	Asw cm²/m	qnt	Ф mm	Msd kNcm	Asw cm²/m	qnt	Ф mm				
0	1004109,0	108,0	22,0	25,0	125513,6	-14,7	3,0	25,0				
1	642629,7	88,4	18,0	25,0	80328,7	-9,8	2,0	25,0				
2	361479,2	63,8	13,0	25,0	127288,0	-24,5	5,0	25,0				
3	361479,2	63,8	13,0	25,0	191519,7	-34,4	7,0	25,0				
4	361479,2	63,8	13,0	25,0	282006,1	-54,0	11,0	25,0				
5	361479,2	63,8	13,0	25,0	406271,9	-78,5	16,0	25,0				
6	539987,5	78,5	16,0	25,0	551913,5	-83,4	17,0	25,0				
7	754197,4	93,3	19,0	25,0	720466,9	-93,3	19,0	25,0				
8	1004109,0	108,0	22,0	25,0	944161,7	-103,1	21,0	25,0				
9	754197,4	96,5	12,0	32,0	558685,4	-68,7	14,0	25,0				
10	539987,5	80,4	10,0	32,0	237852,5	-34,4	7,0	25,0				
11	361479,2	64,3	8,0	32,0	107949,0	-19,6	4,0	25,0				
12	508092,0	96,5	12,0	32,0	95205,1	-16,1	8,0	16,0				
13	707630,4	128,7	16,0	32,0	85630,2	-14,1	7,0	16,0				
14	642629,7	152,8	18,0	25,0	76057,5	-12,1	6,0	16,0				
15	956994,6	176,9	22,0	32,0	66484,8	-12,1	6,0	16,0				
16	998720,2	185,0	23,0	32,0	56912,1	-10,1	5,0	16,0				
17	980411,1	176,9	22,0	32,0	47337,2	-8,0	4,0	16,0				
18	899224,1	160,8	20,0	32,0	45184,9	-8,0	4,0	16,0				
19	769973,9	136,7	17,0	32,0	45184,9	-8,0	4,0	16,0				
20	580274,4	104,6	13,0	32,0	45184,9	-8,0	4,0	16,0				
21	642629,7	88,5	11,0	32,0	80328,7	-10,1	5,0	16,0				
22	1004109,0	104,6	13,0	32,0	125513,6	-12,1	6,0	16,0				

Quadro 12 - Armadura Transversal Longarinas - Tabuleiro A

		ARMADUR	A CALCU	ILAD	Α				
		ES	TRIBOS						
	Vsd	Asw	Arranjo						
seção	kN	cm²/m	ramos	Φ	mm	c/	cm		
0,0	2378,5	20,1	4,0	Φ	16,0	c/	18,0		
1,0	1890,2	20,1	4,0	Φ	16,0	c/	18,0		
2,0	1332,6	18,3	2,0	Φ	16,0	c/	11,0		
3,0	1197,6	18,3	2,0	Φ	16,0	c/	11,0		
4,0	1612,3	24,1	4,0	Φ	16,0	c/	15,0		
5,0	2105,4	30,2	4,0	Φ	16,0	c/	12,0		
6,0	2735,1	32,9	4,0	Ф	16,0	c/	11,0		
7,0	3291,4	32,9	4,0	Φ	16,0	c/	11,0		
8,0	4688,8	40,2	4,0	Φ	16,0	c/	9,0		
9,0	4264,6	40,2	4,0	Ф	16,0	c/	9,0		
10,0	3829,8	45,2	4,0	Ф	16,0	c/	8,0		
11,0	3387,4	51,7	4,0	Φ	16,0	c/	7,0		
12,0	2937,2	40,2	4,0	Φ	16,0	c/	9,0		
13,0	2483,0	36,2	4,0	Φ	16,0	c/	10,0		
14,0	2027,0	30,2	4,0	Φ	16,0	c/	12,0		
15,0	1692,8	25,9	4,0	Ф	16,0	c/	14,0		
16,0	1117,9	16,8	2,0	Φ	16,0	c/	12,0		
17,0	1251,6	18,3	2,0	Ф	16,0	c/	11,0		
18,0	1699,9	24,1	4,0	Φ	16,0	c/	15,0		
19,0	2166,7	30,2	4,0	Ф	16,0	c/	12,0		
20,0	2650,9	40,2	4,0	Ф	16,0	c/	9,0		
21,0	3151,4	36,2	4,0	Ф	16,0	c/	10,0		
22,0	3666,8	30,2	4,0	Φ	16,0	c/	12,0		


O quantitativo total de aço das vigas está apresentado no quadro 13.

Quadro 13 - Quantitativo de aço Longarinas - Tabuleiro A

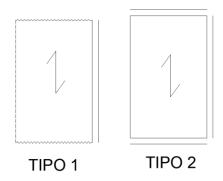
QUANTITATIVO AÇO									
ARMADURA LONGITUDINAL	3.800,5	kg							
ARMADURA TRANSVERSAL	379,94	kg							
TOTAL / VIGA	4180,42	kg							
TOTAL	8360,83	kg							

A seção transversal adotada após os cálculos de lajes e vigas está representada na figura

Figura 25 - Seção Transversal Tabuleiro A

SEÇÃO TRANSVERSAL sem escala

25.


(Fonte: o autor)

4.5 TABULEIRO B

4.5.1 Cálculo das lajes

A solução dada pelo tabuleiro B é de ponte sobre três longarinas sem transversinas. Para o cálculo das solicitações das lajes foi utilizado o software T.Rusch e o software FTOOL. Para o levantar o carregamento das longarinas foi utilizado o método de Engesser-Courbon, e para as solicitações foram utilizados os diagramas do software FTOOL. O dimensionamento das seções e das taxas de armadura foi feito através de planilhas eletrônicas. As lajes desta solução foram divididas em dois tipos, a figura 27 ilustra como os dois tipos de lajes podem ser encontradas nas tabelas de Rusch.

Figura 26 — Tipos de lajes convenção de Rusch Tabuleiro B

O coeficiente de adicional de impacto, CIA, influencia consideravelmente no dimensionamento das armaduras longitudinais. Portanto, nas lajes que não são afetadas por esse coeficiente, ele foi dispensado. Entretanto, para o tabuleiro A, devido o projeto geométrico de estradas dividir as pistas de rolamento com duas com barreiras *New* Jersey, todas as lajes são influenciadas pelo CIA. São listados os tipos de lajes para esta solução:

- Tipo 1: Possui 2 bordos indefinidos em ly. Em lx, possui 1 bordo engastado na laje central e 1 bordo livre. Direção de fluxo em ly e possui influência do CIA;
- Tipo 2: Possui 2 bordos engastados em ly, 1 borda engastada em lx e 1 borda apoiada em lx. Direção de fluxo em ly e **possui** influência do CIA.

Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro XX.

Quadro 14 - Coeficientes de majoração cargas móveis Tabuleiro B

Coeficiente majoração									
Laje Tipo 1 e 2									
Coeficiente	φ	Observação							
CIV	1,350	=1+1,06*(20 /(LIV+50))							
CIA	1,250	= 1,25 (p/ C.A)							
CNF	ı	Não se aplca p/ lajes e transversinas							
φ = CIA* CIV * CNF	1,688								

A figura XX apresenta a planta do tabuleiro, a separação é feita com base nas dimensões lx e ly e no tipo da laje. As lajes L1, L4, L5 e L8 são do tipo 1, e as lajes L2, L3, L6 e L7 são lajes do tipo 2. Como o tabuleiro é simétrico e possui carregamentos simétricos, L1=L4, L5=L8, L2=L3 e L6=L7.

L1 L2 L3 L4

L5 L6 L7 L8

Figura 27 - Planta do Tabuleiro B

(Fonte: o autor)

dir. tráfego

Os dados de entrada utilizados nas tabelas de Rusch são apresentados no quadro XX.

Ouadro 15 - Entradas Tabelas de Rusch - Tabuleiro B

ENTRADAS SOFTWARE T RUSCH										
LAJE	Dimensões			Lin. Média	Parân	Direção fluxo				
	Ly (m)	Lx (m)	Ly/Lx	t (cm)	t/a	Lx/a	Ix ou ly			
L1=L4	14,000	4,000	3,500	79,623	39,811	2,000	ly			
L2=L3	14,000	8,000	1,750	79,623	39,811	4,000	ly			
L5=L8	8,000	4,000	2,000	79,623	39,811	2,000	ly			
L6=L7	8,000	8,000	1,000	79,623	39,811	4,000	ly			

Os resultados encontrados, e apresentados no memorial de cálculo deste trabalho, das incógnitas: seção de concreto (espessura da laje), tipo (por tabelas de Rusch) e armadura total são apresentados no quadro 16. Para o cálculo das solicitações permanentes nas lajes do TIPO 1, foi utilizado o software FTOOL, para as outras solicitações tanto permanentes quanto variáveis, foram utilizadas as Tabelas de Rusch através do software T. Rusch 1.0.

Quadro 16 - Resumo de resultados lajes tabuleiro B

			h laje								
Laje	Tipo	Sup	Inf	Dir	Esq	Meio	TOTAL				
		cm	cm	cm	cm	cm	kg				
L1	TIPO 1	30,0	30,0	40,0	25,0	32,5	3331,1				
L2	TIPO 2	30,0	30,0	30,0	30,0	25,0	1741,89				
L3	TIPO 1	30,0	30,0	30,0	30,0	25,0	1741,9				
L4	TIPO 1	30,0	30,0	40,0	25,0	32,5	3331,1				
L5	TIPO 2	30,0	30,0	40,0	25,0	32,5	1864,5				
L6	TIPO 2	30,0	30,0	30,0	30,0	25,0	1083,2				
L7	TIPO 2	30,0	30,0	30,0	30,0	25,0	1083,2				
L8	TIPO 2	30,0	30,0	40,0	25,0	32,5	1864,5				
	Total aço (kg) 16041,3										

(Fonte: o autor)

4.5.2 Cálculo das Longarinas

Para o cálculo das longarinas do tabuleiro B, foi utilizada a teoria de Engesser-Courbon conforme recomendação de Spernau (2013). O trem tipo foi posicionado sobre as vigas de forma a encontrar as maiores solicitações das vigas.

Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro 17.

Quadro 17 - Coeficiente de majoração das cargas móveis para longarinas- Tabuleiro B

Coeficiente majoração									
	VIGAS								
Coeficiente	φ	Observação							
CIV	1,350	=1+1,06*(20 /(LIV+50))							
CIA	1,250	= 1,25 (p/ C.A)							
CNF	0,900	=1-0,05*(n-2)>0,9							
φ = CIA* CIV * CNF	1,519								

O corte longitudinal das longarinas é representado pela figura 28.

sem escala

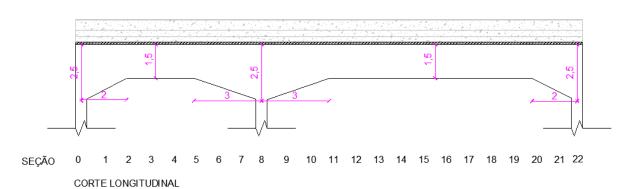


Figura 28 - Corte Longitudinal Longarinas - Tabuleiro B

(Fonte: o autor)

O resumo das solicitações e armaduras longitudinais está apresentado no quadro 18 e os resultados transversais estão expostos no quadro 19.

Quadro 18 -Resumo de resultados longitudinais Longarinas - Tabuleiro B

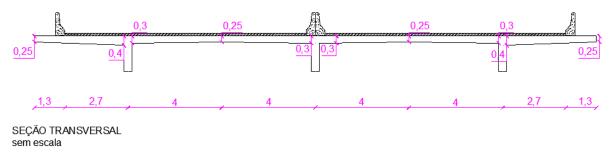
	ARMADURA CALCULADA V1=V3										
				LONGITUDI	NAL						
		posi	tiva		negativa						
seção	Msd kNcm	Asw cm²/m	qnt	Ф mm	Msd kNcm	Asw cm²/m	qnt	Ф mm			
0	988419,8	103,1	21,0	25,0	109824,4	-11,0	9,0	12,5			
1	632588,6	83,4	17,0	25,0	70287,6	-8,6	7,0	12,5			
2	355831,1	63,8	13,0	25,0	50178,0	-8,6	7,0	12,5			
3	355831,1	63,8	13,0	25,0	116106,9	-19,6	16,0	12,5			
4	355831,1	63,8	13,0	25,0	221220,9	-40,2	5,0	32,0			
5	355831,1	63,8	13,0	25,0	375191,2	-72,4	9,0	32,0			
6	531550,2	78,5	16,0	25,0	567648,8	-96,5	12,0	32,0			
7	742413,1	93,3	19,0	25,0	799711,6	-112,6	14,0	32,0			
8	988419,8	103,1	21,0	25,0	1094326,3	-128,7	16,0	32,0			
9	742413,1	93,3	19,0	25,0	639138,1	-80,4	10,0	32,0			
10	531550,2	78,5	16,0	25,0	254429,7	-40,2	5,0	32,0			
11	355831,1	64,3	8,0	32,0	39536,8	-6,1	5,0	12,5			
12	525522,3	96,5	12,0	32,0	39536,8	-6,1	5,0	12,5			
13	752757,9	136,7	17,0	32,0	39536,8	-6,1	5,0	12,5			
14	632588,6	168,9	17,0	25,0	39536,8	-6,1	5,0	12,5			
15	1028533,1	185,0	23,0	32,0	39536,8	-6,1	5,0	12,5			
16	1071192,9	193,0	24,0	32,0	39536,8	-6,1	5,0	12,5			
17	1047239,9	193,0	24,0	32,0	39536,8	-6,1	5,0	12,5			
18	954922,5	176,9	22,0	32,0	39536,8	-6,1	5,0	12,5			
19	802910,0	144,8	18,0	32,0	39536,8	-6,1	5,0	12,5			
20	586106,1	104,6	13,0	32,0	39536,8	-6,1	5,0	12,5			
21	632588,6	88,5	11,0	32,0	70287,6	-8,6	7,0	12,5			
22	988419,8	104,6	13,0	32,0	109824,4	-11,0	9,0	12,5			

	ARMADURA CALCULADA V2									
				LONGITUDI	NAL					
		posi	itiva		negativa					
seção	Msd kNcm	Asw cm²/m	qnt	Ф mm	Msd kNcm	Asw cm²/m	qnt	Ф mm		
0	988419,8	103,1	21,0	25,0	109824,4	-11,0	9,0	12,5		
1	632588,6	83,4	17,0	25,0	70287,6	-8,6	7,0	12,5		
2	355831,1	63,8	13,0	25,0	39536,8	-6,1	5,0	12,5		
3	355831,1	63,8	13,0	25,0	59677,8	-9,8	8,0	12,5		
4	355831,1	63,8	13,0	25,0	144844,5	-24,1	3,0	32,0		
5	355831,1	63,8	13,0	25,0	278865,3	-48,3	6,0	32,0		
6	531550,2	78,5	16,0	25,0	451368,7	-72,4	9,0	32,0		
7	742413,1	93,3	19,0	25,0	663370,3	-88,5	11,0	32,0		
8	988419,8	103,1	21,0	25,0	935315,4	-104,6	13,0	32,0		
9	742413,1	93,3	19,0	25,0	543156,1	-72,4	9,0	32,0		
10	531550,2	78,5	16,0	25,0	211038,2	-32,2	4,0	32,0		
11	355831,1	64,3	8,0	32,0	39536,8	-6,1	5,0	12,5		
12	402433,0	72,4	9,0	32,0	39536,8	-6,1	5,0	12,5		
13	594159,4	104,6	13,0	32,0	39536,8	-6,1	5,0	12,5		
14	632588,6	136,7	17,0	25,0	39536,8	-6,1	5,0	12,5		
15	823852,7	152,8	19,0	32,0	39536,8	-6,1	5,0	12,5		
16	859536,9	160,8	20,0	32,0	39536,8	-6,1	5,0	12,5		
17	841238,2	152,8	19,0	32,0	39536,8	-6,1	5,0	12,5		
18	768273,4	136,7	17,0	32,0	39536,8	-6,1	5,0	12,5		
19	643901,4	120,6	15,0	32,0	39536,8	-6,1	5,0	12,5		
20	355831,1	64,3	8,0	32,0	39536,8	-6,1	5,0	12,5		
21	632588,6	88,5	11,0	32,0	70287,6	-8,6	7,0	12,5		
22	988419,8	104,6	13,0	32,0	109824,4	-11,0	9,0	12,5		

Quadro 19 - Armadura Transversal Longarinas - Tabuleiro B

	ARMADURA CALCULADA V1=V3								
		ES	TRIBOS						
	Vsd	Asw	Asw Arro			jo			
seção	kN	cm²/m	ramos	Φ	mm	c/	cm		
0,0	2192,9	20,1	4,0	Φ	16,0	c/	18,0		
1,0	1514,8	15,5	2,0	Φ	16,0	c/	13,0		
2,0	933,4	13,4	2,0	Φ	16,0	c/	15,0		
3,0	1062,5	15,5	2,0	Φ	16,0	c/	13,0		
4,0	1705,4	25,1	2,0	Φ	16,0	c/	8,0		
5,0	2349,7	36,2	4,0	Φ	16,0	c/	10,0		
6,0	2994,4	32,9	4,0	Φ	16,0	c/	11,0		
7,0	3635,1	36,2	4,0	Φ	16,0	c/	10,0		
8,0	5316,1	45,2	4,0	Φ	16,0	c/	8,0		
9,0	4776,9	45,2	4,0	Φ	16,0	c/	8,0		
10,0	4227,8	51,7	4,0	Φ	16,0	c/	7,0		
11,0	3685,2	51,7	4,0	Φ	16,0	c/	7,0		
12,0	3253,8	45,2	4,0	Φ	16,0	c/	8,0		
13,0	2689,8	40,2	4,0	Φ	16,0	c/	9,0		
14,0	2124,8	32,9	4,0	Φ	16,0	c/	11,0		
15,0	1560,4	22,6	4,0	Φ	16,0	c/	16,0		
16,0	998,4	14,4	2,0	Φ	16,0	c/	14,0		
17,0	1074,1	15,5	2,0	Φ	16,0	c/	13,0		
18,0	1574,1	25,1	2,0	Φ	16,0	c/	8,0		
19,0	2148,1	33,5	2,0	Φ	16,0	c/	6,0		
20,0	2733,4	40,2	4,0	Φ	16,0	c/	9,0		
21,0	3328,8	36,2	4,0	Φ	16,0	c/	10,0		
22,0	4076,3	32,9	4,0	Φ	16,0	c/	11,0		

	ARMADURA CALCULADA V2								
		ES	TRIBOS						
	Vsd	Asw	Arranjo						
seção	kN	cm²/m	ramos	Φ	mm	c/	cm		
0,0	1430,0	12,6	2,0	Φ	16,0	c/	16,0		
1,0	888,2	10,1	2,0	Φ	16,0	c/	20,0		
2,0	438,6	6,1	2,0	Φ	12,5	c/	20,0		
3,0	833,0	12,3	2,0	Φ	12,5	c/	10,0		
4,0	1341,4	18,3	2,0	Φ	16,0	c/	11,0		
5,0	1855,2	27,8	4,0	Φ	16,0	c/	13,0		
6,0	2376,5	27,8	4,0	Φ	16,0	c/	13,0		
7,0	2914,1	27,8	4,0	Φ	16,0	c/	13,0		
8,0	4378,3	36,2	4,0	Φ	16,0	c/	10,0		
9,0	3888,3	36,2	4,0	Φ	16,0	c/	10,0		
10,0	3396,0	40,2	4,0	Φ	16,0	c/	9,0		
11,0	2916,7	45,2	4,0	Φ	16,0	c/	8,0		
12,0	2554,0	36,2	4,0	Φ	16,0	c/	10,0		
13,0	2063,3	30,2	4,0	Φ	16,0	c/	12,0		
14,0	1575,2	24,1	4,0	Φ	16,0	c/	15,0		
15,0	1068,1	15,5	2,0	Φ	16,0	c/	13,0		
16,0	610,9	9,4	2,0	Φ	12,5	c/	13,0		
17,0	650,9	9,4	2,0	Φ	12,5	c/	13,0		
18,0	1070,7	15,5	2,0	Φ	16,0	c/	13,0		
19,0	1560,8	22,3	2,0	Φ	16,0	c/	9,0		
20,0	2059,5	28,7	2,0	Φ	16,0	c/	7,0		
21,0	2566,1	28,7	2,0	Φ	16,0	c/	7,0		
22,0	3223,5	28,7	2,0	Φ	16,0	c/	7,0		


O quantitativo total de aço das vigas está apresentado no quadro 20.

Quadro 20 - Quantitativo de aço Longarinas - Tabuleiro B

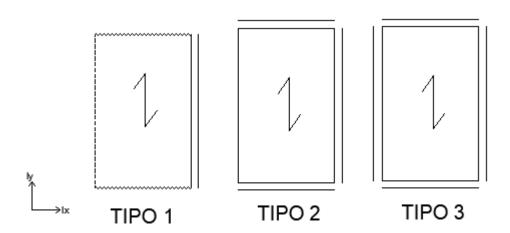
QUANTITATIVO AÇO V1	QUANTITATIVO AÇO V1=V3								
ARMADURA LONGITUDINAL	3.911,5	kg							
ARMADURA TRANSVERSAL	337,46	kg							
TOTAL / VIGA	4248,92	kg							
TOTAL	8497,85	kg							
QUANTITATIVO AÇO \	/2								
ARMADURA LONGITUDINAL	3.457,9	kg							
ARMADURA TRANSVERSAL	284,49	kg							
TOTAL / VIGA	3742,39	kg							
TOTAL	3742,39	kg							
TOTAL	12240,24	kg							

A seção transversal adotada após os cálculos de lajes e vigas está representada na figura

Figura 29 - Seção Transversal Tabuleiro B

(Fonte: o autor)

4.6 TABULEIRO C


29.

4.6.1 Cálculo das lajes

A solução escolhida para o tabuleiro C é a de ponte sobre 4 longarinas sem transversinas. Para o cálculo das solicitações das lajes foi utilizado o software T.Rusch e o software FTOOL.

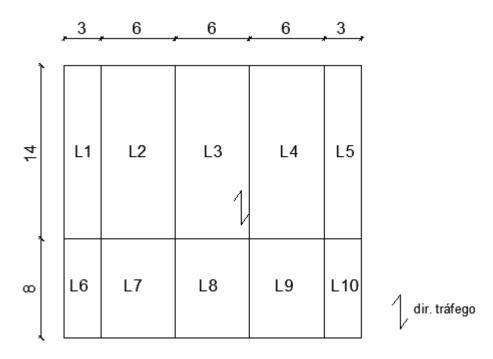
Para o levantar o carregamento das longarinas foi utilizado o método de Engesser-Courbon, e para as solicitações foram utilizados os diagramas do software FTOOL. O dimensionamento das seções e das taxas de armadura foi feito através de planilhas eletrônicas. As lajes desta solução foram divididas em três tipos, a figura 30 ilustra como os dois tipos de lajes podem ser encontradas nas tabelas de Rusch.

Figura 30 — Tipos de lajes convenção de Rusch Tabuleiro C

(Fonte: o autor)

O coeficiente de adicional de impacto, CIA, influencia consideravelmente no dimensionamento das armaduras longitudinais. Portanto, nas lajes que não são afetadas por esse coeficiente, ele foi dispensado. Entretanto, para o tabuleiro A, devido o projeto geométrico de estradas dividir as pistas de rolamento com duas com barreiras *New* Jersey, todas as lajes são influenciadas pelo CIA. São listados os tipos de lajes para esta solução:

- Tipo 1: Possui 2 bordos indefinidos em ly. Em lx, possui 1 bordo engastado na laje central e 1 bordo livre. Direção de fluxo em ly e possui influência do CIA;
- Tipo 2: Possui 2 bordos engastados em ly, 1 borda engastada em lx e 1 borda apoiada em lx. Direção de fluxo em ly e **não possui** influência do CIA;
- Tipo 3: Possui todos os bordos engastados. Direção do fluxo em ly. Possui influência do CIA.


Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro 21.

Quadro 21 - Coeficientes de majoração cargas móveis Tabuleiro C

Coeficiente majoração								
Laje Tipo 1 e 3								
Coeficiente	φ	Observação						
CIV	1,350	=1+1,06*(20 /(LIV+50))						
CIA	1,250	= 1,25 (p/ C.A)						
CNF	-	Não se aplca p/ lajes e transversinas						
φ = CIA* CIV * CNF	1,688							
	Laj	e Tipo 2						
Coeficiente	φ	Observação						
CIV	1,350	=1+1,06*(20 /(LIV+50))						
CIA	0,000	= 1,25 (p/ C.A)						
CNF	-	Não se aplca p/ lajes e transversinas						
φ = CIA* CIV * CNF	1,350							

A figura 31 apresenta a planta do tabuleiro, a separação é feita com base nas dimensões lx e ly e no tipo da laje. As lajes L1, L5, L6 e L10 são do tipo 1, as lajes L2, L4, L7 e L9 são lajes do tipo 2 e as lajes L3 e L8 são do tipo 3. Como o tabuleiro é simétrico e possui carregamentos simétricos, L1=L5, L2=L4, L6=L10 e L7=L9.

Figura 31 - Planta do Tabuleiro C

Os dados de entrada utilizados nas tabelas de Rusch são apresentados no quadro 22.

Quadro 22 - Entradas Tabelas de Rusch - Tabuleiro C

	ENTRADAS SOFTWARE T RUSCH									
LAJE		Dimensões		Lin. Média	Parâr	netros	Direção fluxo			
LAJL	Ly (m)	Lx (m)	Ly/Lx	t (cm)	t/a	Lx/a	lx ou ly			
L1=L5	14,000	3,000	4,667	79,623	39,811	1,500	ly			
L2=L4	14,000	6,000	2,333	79,623	39,811	3,000	ly			
L3	14,000	6,000	2,333	79,623	39,811	3,000	ly			
L6=L10	8,000	3,000	2,667	79,623	39,811	1,500	ly			
L7=L9	8,000	6,000	1,333	79,623	39,811	3,000	ly			
L8	8,000	6,000	1,333	79,623	39,811	3,000	ly			

(Fonte: o autor)

Os resultados encontrados, e apresentados no memorial de cálculo deste trabalho, das incógnitas: seção de concreto (espessura da laje), tipo (por tabelas de Rusch) e armadura total são apresentados no quadro 23. Para o cálculo das solicitações permanentes nas lajes do TIPO

1, foi utilizado o software FTOOL, para as outras solicitações tanto permanentes quanto variáveis, foram utilizadas as Tabelas de Rusch através do software T. Rusch 1.0.

Quadro 23 - Resumo de resultados lajes tabuleiro C

				h laje			Asw,adot
Laje	Tipo	Sup	Inf	Dir	Esq	Meio	TOTAL
		cm	cm	cm	cm	cm	kg
L1	TIPO 1	25,0	25,0	25,0	25,0	25,0	858,1
L2	TIPO 2	30,0	30,0	30,0	30,0	25,0	3384,60
L3	TIPO 3	30,0	30,0	30,0	30,0	25,0	5159,5
L4	TIPO 2	30,0	30,0	30,0	30,0	25,0	3384,6
L5	TIPO 1	25,0	25,0	25,0	25,0	25,0	858,1
L6	TIPO 1	25,0	25,0	25,0	25,0	25,0	557,3
L7	TIPO 2	30,0	30,0	30,0	30,0	25,0	2208,7
L8	TIPO 3	30,0	30,0	30,0	30,0	25,0	4362,5
L9	TIPO 2	30,0	30,0	30,0	30,0	25,0	2208,7
L10	TIPO 1	25,0	25,0	25,0	25,0	25,0	557,3
					_		
				T	otal ac	o (kg)	23539,5

(Fonte: o autor)

4.6.2 Cálculo das Longarinas

Para o cálculo das longarinas do tabuleiro A, foi utilizada a teoria de Engesser-Courbon conforme recomendação de Spernau (2013). O trem tipo foi posicionado sobre as vigas de forma a encontrar as maiores solicitações das vigas.

Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro 24.

Quadro 24 - Coeficiente de majoração das cargas móveis para longarinas- Tabuleiro C

	Coeficiente majoração						
VIGAS							
Coeficiente	φ	Observação					
CIV	1,350	=1+1,06*(20 /(LIV+50))					
CIA	1,250	= 1,25 (p/ C.A)					
CNF	0,900	=1-0,05*(n-2)>0,9					
φ = CIA* CIV * CNF	1,519						

SEÇÃO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

CORTE LONGITUDINAL sem escala

Figura 32 - Corte Longitudinal Longarinas - Tabuleiro C

O resumo das solicitações e armaduras longitudinais está apresentado no quadro 25 e os resultados transversais estão expostos no quadro 26.

Quadro 25 -Resumo de resultados longitudinais Longarinas - Tabuleiro C

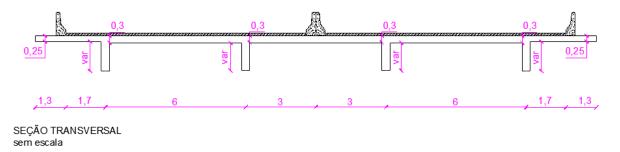
				NGITUDIN	ADA V1=V	-		
		posi		A CHODIN	10.	neg	ativa	
seção	Msd	Asw	1174	Φ	Msd	Asw	anva	Φ
	kNcm	cm²/m	qnt	mm	kNcm	cm²/m	qnt	mm
0	632588,6	83,4	17,0	25,0	70287,6	-8,6	7,0	12,5
1	355831,1	63,8	13,0	25,0	39536,8	-6,1	5,0	12,5
2	355831,1	63,8	13,0	25,0	40628,1	-7,4	6,0	12,5
3	355831,1	63,8	13,0	25,0	92646,8	-16,0	13,0	12,5
4	355831,1	63,8	13,0	25,0	175007,8	-32,2	4,0	32,0
5	355831,1	63,8	13,0	25,0	295194,9	-56,3	7,0	32,0
6	439297,7	68,7	14,0	25,0	445159,3	-80,4	10,0	32,0
7	531550,2	78,5	16,0	25,0	625991,3	-112,6	14,0	32,0
8	988419,8	103,1	21,0	25,0	858302,9	-96,5	12,0	32,0
9	742413,1	93,3	19,0	25,0	501396,7	-64,3	8,0	32,0
10	531550,2	78,5	16,0	25,0	200712,2	-32,2	4,0	32,0
11	355831,1	64,3	8,0	32,0	39536,8	-6,1	5,0	12,5
12	410161,4	72,4	9,0	32,0	39536,8	-6,1	5,0	12,5
13	587847,0	104,6	13,0	32,0	39536,8	-6,1	5,0	12,5
14	355831,1	128,7	13,0	25,0	39536,8	-6,1	5,0	12,5
15	802978,8	144,8	18,0	32,0	39536,8	-6,1	5,0	12,5
16	836155,0	152,8	19,0	32,0	39536,8	-6,1	5,0	12,5
17	817458,3	152,8	19,0	32,0	39536,8	-6,1	5,0	12,5
18	745617,7	136,7	17,0	32,0	39536,8	-6,1	5,0	12,5
19	626367,0	112,6	14,0	32,0	39536,8	-6,1	5,0	12,5
20	457152,6	80,4	10,0	32,0	39536,8	-6,1	5,0	12,5
21	355831,1	64,3	8,0	32,0	2052/0	-6,1	5,0	12,5
			0,0	32,0	39536,8	-0,1	5,0	12,3
22	632588,6	88,5	11,0	32,0	70287,6	-8,6	7,0	
22		88,5	11,0	32,0		-8,6		
22		88,5	11,0 ARMADUR	32,0	70287,6 ADA V2=V	-8,6		
	632588,6	88,5 , posi	11,0 ARMADURA LC	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3	-8,6 3 nege		12,5
22 seção	632588,6 Msd	posi Asw	11,0 ARMADURA LC	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 IAL Msd	-8,6 3 nego	7,0	12,5
seção	632588,6 Msd kNcm	posi Asw cm²/m	11,0 ARMADUR, LO tiva qnt	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 NAL Msd kNcm	-8,6 3 nego Asw cm²/m	7,0 ativa	12,5 Ф mm
seção 0	Msd kNcm 632588,6	posi Asw cm²/m 83,4	11,0 ARMADUR, LC tiva qnt 17,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V: NAL Msd kNcm 70287,6	-8,6 nego Asw cm²/m -8,6	7,0 ativa qnt 7,0	Ф мм 12,5
seção 0 1	Msd kNcm 632588,6 355831,1	88,5 posi Asw cm²/m 83,4 63,8	11,0 ARMADUR. LC tiva qnt 17,0 13,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V: HAL Msd kNcm 70287,6 39536,8	-8,6 3 nega Asw cm²/m -8,6 -6,1	7,0 afiva qnt 7,0 5,0	Ф мт 12,5 12,5
seção 0 1 2	Msd kNcm 632588,6 355831,1 355831,1	98,5 posi Asw cm²/m 83,4 63,8 63,8	11,0 ARMADUR. LC tiva qnt 17,0 13,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 NAL Msd kNcm 70287,6 39536,8 39536,8	-8,6 3 nega Asw cm²/m -8,6 -6,1 -6,1	7,0 ativa qnt 7,0 5,0 5,0	Ф мт 12,5 12,5
seção 0 1 2 3	Msd kNcm 632588,6 355831,1 355831,1 355831,1	98,5 posi Asw cm²/m 83,4 63,8 63,8 63,8	11,0 ARMADUR. LO tiva qnt 17,0 13,0 13,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 NAL Msd kNcm 70287,6 39536,8 39536,8 58206,1	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8	7,0 afiva qnt 7,0 5,0 5,0 8,0	Ф mm 12,5 12,5 12,5 12,5
seção 0 1 2 3 4	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1	posi Asw cm²/m 83,4 63,8 63,8 63,8	11,0 ARMADURA LC tiva qnt 17,0 13,0 13,0 13,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 AL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1	7,0 qnt 7,0 5,0 5,0 8,0 3,0	Ф mm 12,5 12,5 12,5 12,5 32,0
seção 0 1 2 3 4 5	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1	98,5 posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8	11,0 ARMADURA LC tiva qnt 17,0 13,0 13,0 13,0 13,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 AL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2	7,0 qnt 7,0 5,0 5,0 8,0 3,0 5,0	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0
seção 0 1 2 3 4 5	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 68,7	11,0 ARMADURA LO fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 AL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3	7,0 qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0	Ф mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0
seção 0 1 2 3 4 5 6 7	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2	88,5 posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 63,8 78,5	11,0 ARMADURA LC fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 VAL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0	Ф mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0
seção 0 1 2 3 4 5 6 7	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8	88,5 posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 103,1	11,0 ARMADURA LC fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 NAL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -88,5	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0 11,0	Ф mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 32,0
seção 0 1 2 3 4 5 6 7 8	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1	88,5 posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 103,1 93,3	11,0 ARMADURA LC fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 NAL Msd KNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6	-8,6 Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -88,5 -56,3	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0 11,0 7,0	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 32,0 32,0
seção 0 1 2 3 4 5 6 7 8 9 10	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 98419,8 742413,1 531550,2	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 78,5 103,1 93,3 78,5	11,0 ARMADURA LC tiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0	32,0 A CALCUL PNGITUDIN Ф mm 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,	70287,6 ADA V2=V3 IAL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -88,5 -56,3 -24,1	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0 11,0 7,0 3,0	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0
seção 0 1 2 3 4 5 6 7 8	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1 531550,2 355831,1	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 63,8 63,8	11,0 ARMADURA LC tiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 IAL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -88,5 -56,3 -24,1 -6,1	7,0 afiva qnt 7,0 5,0 8,0 3,0 5,0 8,0 11,0 11,0 7,0 3,0 5,0	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 32,0 32,0 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1 531550,2 355831,1 355831,1	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 78,5 103,1 93,3 78,5	11,0 ARMADURA LC tiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0	32,0 A CALCUL PNGITUDIN Ф mm 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,	70287,6 ADA V2=V3 AL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8 39536,8	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -88,5 -56,3 -24,1 -6,1 -6,1	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0 11,0 7,0 3,0	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 32,0 12,5 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11 12	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1 531550,2 355831,1 495122,7	88,5 posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 68,7 78,5 103,1 93,3 78,5 64,3 64,3	11,0 ARMADURA LO fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0 8,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 IAL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -88,5 -56,3 -24,1 -6,1	7,0 qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0 11,0 7,0 3,0 5,0 5,0	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 12,5 12,5 12,5 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11 12 13	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1 531550,2 355831,1 355831,1	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,7 78,5 103,1 93,3 78,5 64,3 64,3 88,5	11,0 ARMADURA LO fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0 8,0 11,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 AL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8 39536,8 39536,8	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -88,5 -56,3 -24,1 -6,1 -6,1 -6,1 -6,1	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 811,0 11,0 7,0 3,0 5,0 5,0 5,0 5,0 5,0	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 12,5 12,5 12,5 12,5 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1 531550,2 355831,1 495122,7 355831,1	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 63,8 64,3 78,5 103,1 93,3 78,5 64,3 64,3 88,5 112,6	11,0 ARMADURA LO fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0 8,0 11,0 13,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 AL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8 39536,8 39536,8 39536,8	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -56,3 -24,1 -6,1 -6,1 -6,1 -6,1 -6,1	7,0 afiva qnt 7,0 5,0 8,0 3,0 5,0 8,0 11,0 11,0 7,0 3,0 5,0 5,0 5,0 5,0 5,0 5,0	12,5 mm 12,5 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 12,5 12,5 12,5 12,5 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1 531550,2 355831,1 495122,7 355831,1 682994,5	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 63,8 64,3 78,5 103,1 93,3 78,5 64,3 64,3 88,5 112,6 120,6	11,0 ARMADURA LC fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0 8,0 11,0 13,0 11,0 15,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 Nat Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -56,3 -24,1 -6,1 -6,1 -6,1 -6,1 -6,1	7,0 afiva qnt 7,0 5,0 8,0 3,0 5,0 8,0 11,0 11,0 7,0 3,0 5,0 5,0 5,0 5,0 5,0 5,0 5	12,5 mm 12,5 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 12,5 12,5 12,5 12,5 12,5 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1 531550,2 355831,1 495122,7 355831,1 682994,5 712181,7	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 63,8 64,3 78,5 103,1 93,3 78,5 64,3 88,5 112,6 120,6 128,7	11,0 ARMADURA LC fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0 8,0 11,0 13,0 15,0 16,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 AL	-8,6 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -56,3 -24,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6,1	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0 7,0 3,0 5,0 5,0 5,0 5,0 5,0 5,0 5	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 12,5 12,5 12,5 12,5 12,5 12,5 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 988419,8 742413,1 531550,2 355831,1 495122,7 355831,1 682994,5 712181,7 696783,8	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 63,8 63,8	11,0 ARMADURA LC fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0 8,0 11,0 13,0 15,0 16,0 16,0 16,0	32,0 A CALCUL NGITUDIN	70287,6 ADA V2=V3 Nac Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 3 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -56,3 -24,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0 7,0 3,0 5,0 5,0 5,0 5,0 5,0 5,0 5	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 12,5 12,5 12,5 12,5 12,5 12,5 12,5 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 984419,8 742413,1 531550,2 355831,1 495122,7 355831,1 682994,5 712181,7 696783,8 635994,3	posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 63,8 64,3 78,5 103,1 93,3 78,5 64,3 88,5 112,6 120,6 128,7 112,6	11,0 ARMADURA LC fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0 8,0 11,0 13,0 15,0 16,0 16,0 14,0 14,0	32,0 A CALCUL PNGITUDIN	70287,6 ADA V2=V3 NAL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 3 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -56,3 -24,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 11,0 7,0 3,0 5,0 5,0 5,0 5,0 5,0 5,0 5	12,5 mm 12,5 12,5 12,5 12,5 32,0 32,0 32,0 32,0 32,0 12,5 12,5 12,5 12,5 12,5 12,5 12,5 12,5
seção 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Msd kNcm 632588,6 355831,1 355831,1 355831,1 355831,1 355831,1 355831,1 439297,7 531550,2 984419,8 742413,1 531550,2 355831,1 495122,7 355831,1 682994,5 712181,7 696783,8 635994,3 533756,7	88,5 posi Asw cm²/m 83,4 63,8 63,8 63,8 63,8 63,8 63,8 64,3 78,5 103,1 93,3 78,5 64,3 64,3 88,5 112,6 120,6 128,7 112,6 96,5	11,0 ARMADURA LC fiva qnt 17,0 13,0 13,0 13,0 13,0 14,0 16,0 21,0 19,0 16,0 8,0 8,0 11,0 13,0 15,0 16,0 14,0 12,0	32,0 A CALCUL PNGITUDIN Pmm 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,	70287,6 ADA V2=V3 NAL Msd kNcm 70287,6 39536,8 39536,8 58206,1 128390,5 236403,3 374213,9 542584,6 756862,6 440356,6 172114,9 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 3 nego Asw cm²/m -8,6 -6,1 -6,1 -9,8 -24,1 -40,2 -64,3 -88,5 -56,3 -24,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6,1 -6	7,0 afiva qnt 7,0 5,0 5,0 8,0 3,0 5,0 8,0 11,0 7,0 3,0 5,0 5,0 5,0 5,0 5,0 5,0 5	12,5

Quadro 26 - Armadura Transversal Longarinas - Tabuleiro C

ARMADURA CALCULADA V1=V4							
			ESTR	IBOS			
	Vsd	Asw			Arranjo		
seção	kN	cm²/m	ramos	Φ	mm	c/	cm
0,0	1709,9	18,3	2,0	Ф	16,0	c/	11,0
1,0	1180,4	18,3	2,0	θ	16,0	c/	11,0
2,0	727,2	11,2	2,0	Ф	16,0	c/	18,0
3,0	847,0	12,6	2,0	Ф	16,0	c/	16,0
4,0	1345,6	20,1	2,0	Ф	16,0	c/	10,0
5,0	1845,6	27,8	4,0	Ф	16,0	c/	13,0
6,0	2347,1	32,9	4,0	Ф	16,0	c/	11,0
7,0	2847,1	32,9	4,0	Ф	16,0	c/	11,0
8,0	4169,7	36,2	4,0	Ф	16,0	c/	10,0
9,0	3743,4	36,2	4,0	Φ	16,0	c/	10,0
10,0	3310,0	40,2	4,0	Φ	16,0	c/	9,0
11,0	2871,9	40,2	4,0	Φ	16,0	c/	9,0
12,0	2431,0	32,9	4,0	Φ	16,0	c/	11,0
13,0	1988,8	30,2	4,0	Φ	16,0	c/	12,0
14,0	1546,7	22,3	2,0	Φ	16,0	c/	9,0
15,0	1106,1	16,8	2,0	Φ	16,0	c/	12,0
16,0	668,4	10,1	2,0	Ф	16,0	c/	20,0
17,0	902,5	14,4	2,0	Ф	16,0	c/	14,0
18,0	1340,6	20,1	2,0	Ф	16,0	c/	10,0
19,0	1789,2	25,1	2,0	Ф	16,0	c/	8,0
20,0	2247,5	32,9	4,0	Ф	16,0	c/	11,0
21,0	2714,6	40,2	4,0	Ф	16,0	c/	9,0
22,0	3189,5	32,9	4,0	Φ	16,0	c/	11,0
		ARMA	ADURA CA		V2=V3		
	Ved	I		IBOS			
seção	Vsd	Asw	ESTR	IBOS	Arranjo		
seção	Vsd kN	I				c/	cm
seção 0,0		Asw	ESTR	IBOS	Arranjo	c/	cm
	kN 1340,5 858,1	Asw cm²/m	ramos	Ф Ф	Arranjo mm		
0,0 1,0 2,0	kN 1340,5 858,1 465,3	Asw cm²/m 14,4 11,8 7,2	ramos 2,0	Ф Ф	Arranjo mm	c/	14,0
0,0	kN 1340,5 858,1 465,3 732,8	Asw cm²/m 14,4 11,8 7,2 11,2	ramos 2,0 2,0	Ф Ф	Arranjo mm 16,0 16,0	c/	14,0 17,0 17,0 11,0
0,0 1,0 2,0 3,0 4,0	kN 1340,5 858,1 465,3 732,8 1190,7	Asw cm²/m 14,4 11,8 7,2 11,2 18,3	ramos 2,0 2,0 2,0 2,0 2,0 2,0 2,0	ф Ф Ф Ф Ф	Arranjo mm 16,0 16,0 12,5 12,5 16,0	c/ c/	14,0 17,0 17,0 11,0
0,0 1,0 2,0 3,0 4,0 5,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1	2,0 2,0 2,0 2,0 2,0 2,0 4,0	ф Ф Ф Ф	Arranjo mm 16,0 16,0 12,5 12,5 16,0 16,0	c/ c/ c/	14,0 17,0 17,0 11,0 11,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9	2,0 2,0 2,0 2,0 2,0 2,0 4,0 4,0	ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2	2,0 2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9	2,0 2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 36,2	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 36,2 32,9	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0 10,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9 1876,5	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 36,2 32,9 27,8	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0 10,0 11,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9 1876,5 1449,8	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 32,9 27,8 22,6	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0 10,0 11,0 13,0 16,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9 1876,5 1449,8 1024,9	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 32,9 27,8 22,6 15,5	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 2,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0 10,0 11,0 13,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9 1876,5 1449,8 1024,9 602,6	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 32,9 27,8 22,6 15,5 9,4	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 2,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/ c/ c/ c/	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0 10,0 11,0 13,0 16,0 13,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9 1876,5 1449,8 1024,9 602,6 609,1	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 36,2 36,2 36,2 37,8 22,6 15,5 9,4 9,4	ESTR ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c	14,0 17,0 17,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0 10,0 11,0 13,0 13,0 13,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9 1876,5 1449,8 1024,9 602,6 609,1 970,3	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 36,2 36,2 37,8 22,6 15,5 9,4 9,4 13,4	## Company of Company	Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c	14,0 17,0 17,0 11,0 11,0 11,0 15,0 14,0 12,0 10,0 10,0 10,0 11,0 13,0 13,0 13,0 13,0 15,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9 1876,5 1449,8 1024,9 602,6 609,1 970,3 1400,4	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 36,2 36,2 37,8 22,6 15,5 9,4 9,4 13,4 20,1	2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 2,0 2,0 2,0 2,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c	14,0 17,0 17,0 11,0 11,0 11,0 15,0 14,0 12,0 10,0 10,0 10,0 11,0 13,0 13,0 13,0 15,0 10,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0	kN 1340,5 858,1 465,3 732,8 1190,7 1651,8 2115,4 2579,3 3857,9 3437,9 3014,1 2601,6 2303,9 1876,5 1449,8 1024,9 602,6 609,1 970,3	Asw cm²/m 14,4 11,8 7,2 11,2 18,3 24,1 25,9 30,2 32,9 36,2 36,2 36,2 36,2 36,2 37,8 22,6 15,5 9,4 9,4 13,4	## Company of Company	Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ	Arranjo mm 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c	14,0 17,0 17,0 11,0 11,0 11,0 15,0 14,0 12,0 11,0 10,0 10,0 11,0 13,0 13,0 13,0 15,0

O quantitativo total de aço das vigas está apresentado no quadro 27.

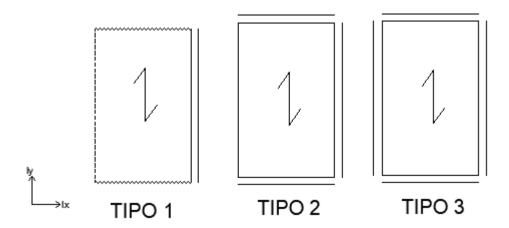
Quadro 27 - Quantitativo de aço Longarinas - Tabuleiro C


QUANTITATIVO AÇO V1	=V4	
ARMADURA LONGITUDINAL	3.182,3	kg
ARMADURA TRANSVERSAL	303,35	kg
TOTAL / VIGA	3485,61	kg
TOTAL	6971,22	kg
QUANTITATIVO AÇO V	/2	
ARMADURA LONGITUDINAL	2.903,6	kg
ARMADURA TRANSVERSAL	275,85	kg
TOTAL / VIGA	3179,48	kg
TOTAL	6358,96	kg
TOTAL	13330,18	kg

(Fonte: o autor)

A seção transversal adotada após os cálculos de lajes e vigas está representada na figura

Figura 33 - Seção Transversal Tabuleiro C


33.

4.7.1 Cálculo das lajes

A última solução de tabuleiro sobre vigas apresentada neste trabalho, é a solução do tabuleiro D. Nesta solução estrutural, o viaduto é dimensionado como ponte sobre cinco vigas longarinas sem transversinas. Para o cálculo das solicitações das lajes foi utilizado o software T.Rusch e o software FTOOL. Para o levantar o carregamento das longarinas foi utilizado o método de Engesser-Courbon, e para as solicitações foram utilizados os diagramas do software FTOOL. O dimensionamento das seções e das taxas de armadura foi feito através de planilhas eletrônicas. As lajes desta solução foram divididas em três tipos, a figura 34 ilustra como os dois tipos de lajes podem ser encontradas nas tabelas de Rusch.

Figura 34 — Tipos de lajes convenção de Rusch Tabuleiro D

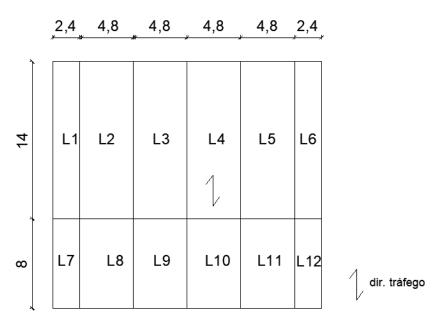
(Fonte: o autor)

O coeficiente de adicional de impacto, CIA, influencia consideravelmente no dimensionamento das armaduras longitudinais. Portanto, nas lajes que não são afetadas por esse coeficiente, ele foi dispensado. Entretanto, para o tabuleiro A, devido o projeto geométrico de estradas dividir as pistas de rolamento com duas com barreiras *New* Jersey, todas as lajes são influenciadas pelo CIA. São listados os tipos de lajes para esta solução:

 Tipo 1: Possui 2 bordos indefinidos em ly. Em lx, possui 1 bordo engastado na laje central e 1 bordo livre. Direção de fluxo em ly e possui influência do CIA;

- Tipo 2: Possui 2 bordos engastados em ly, 1 borda engastada em lx e 1 borda apoiada em lx. Direção de fluxo em ly e **não possui** influência do CIA;
- Tipo 3: Possui todos os bordos engastados. Direção do fluxo em ly. Possui influência do CIA.

Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro 28.


Quadro 28 - Coeficientes de majoração cargas móveis Tabuleiro D

Coeficiente majoração								
Laje Tipo 1 e 3								
Coeficiente	φ	Observação						
CIV	1,350	=1+1,06*(20 /(LIV+50))						
CIA	1,250	= 1,25 (p/ C.A)						
CNF	-	Não se aplca p/ lajes e transversinas						
φ = CIA* CIV * CNF	1,688							
	Laj	e Tipo 2						
Coeficiente	φ	Observação						
CIV	1,350	=1+1,06*(20 /(LIV+50))						
CIA	0,000	= 1,25 (p/ C.A)						
CNF	I	Não se aplca p/ lajes e transversinas						
φ = CIA* CIV * CNF	1,350							

(Fonte: o autor)

A figura 35 apresenta a planta do tabuleiro, a separação é feita com base nas dimensões lx e ly e no tipo da laje. As lajes L1, L6, L7 e L12 são do tipo 1, as lajes L2, L5, L8 e L11 são lajes do tipo 2 e as lajes L3, L4, L9 e L10 são do tipo 3. Como o tabuleiro é simétrico e possui carregamentos simétricos, L1=L6, L2=L5, L3=L4, L7=L12, L8=L11, L9=10.

Figura 35 - Planta do Tabuleiro D

Os dados de entrada utilizados nas tabelas de Rusch são apresentados no quadro 29.

Quadro 29 - Entradas Tabelas de Rusch - Tabuleiro D

	ENTRADAS SOFTWARE T RUSCH						
LAJE	Dimensões		Lin. Média Parâmetros			Direção fluxo	
LAJL	Ly (m)	Lx (m)	Ly / Lx	t (cm)	t/a	Lx/a	lx ou ly
L1=L6	14,000	2,400	5,833	79,623	39,811	1,200	ly
L2=L5	14,000	4,800	2,917	79,623	39,811	2,400	ly
L3=L4	14,000	4,800	2,917	79,623	39,811	2,400	ly
L7=L12	8,000	2,400	3,333	79,623	39,811	1,200	ly
L8=L11	8,000	4,800	1,667	79,623	39,811	2,400	ly
L9=L10	8,000	4,800	1,667	79,623	39,811	2,400	ly

(Fonte: o autor)

Os resultados encontrados, e apresentados no memorial de cálculo deste trabalho, das incógnitas: seção de concreto (espessura da laje), tipo (por tabelas de Rusch) e armadura total são apresentados no quadro 30. Para o cálculo das solicitações permanentes nas lajes do TIPO 1, foi utilizado o software FTOOL, para as outras solicitações tanto permanentes quanto variáveis, foram utilizadas as Tabelas de Rusch através do software T. Rusch 1.0.

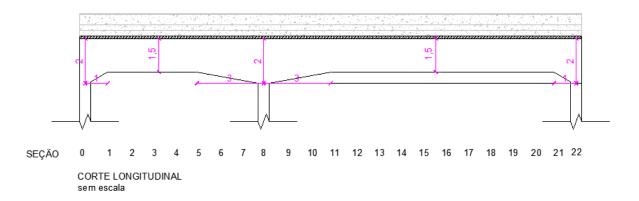
Quadro 30 - Resumo de resultados lajes tabuleiro D

				h laje			Asw,adot
Laje	Tipo	Sup	Inf	Dir	Esq	Meio	TOTAL
		cm	cm	cm	cm	cm	kg
L1	TIPO 1	25,0	25,0	40,0	25,0	32,5	1336,9
L2	TIPO 2	30,0	30,0	30,0	30,0	30,0	1782,22
L3	TIPO 3	30,0	30,0	30,0	30,0	30,0	2053,7
L4	TIPO 3	30,0	30,0	30,0	30,0	30,0	2053,7
L5	TIPO 2	30,0	30,0	30,0	30,0	30,0	1782,2
L6	TIPO 1	25,0	25,0	40,0	25,0	32,5	1336,9
L7	TIPO 1	30,0	30,0	30,0	25,0	27,5	865,5
L8	TIPO 2	30,0	30,0	30,0	30,0	30,0	1062,8
L9	TIPO 3	30,0	30,0	30,0	30,0	30,0	2791,5
L10	TIPO 3	30,0	30,0	30,0	30,0	30,0	2791,5
L11	TIPO 2	30,0	30,0	30,0	30,0	30,0	1062,8
L12	TIPO 1	30,0	30,0	30,0	25,0	27,5	865,5
							10705.0
				I	otal aç	o (kg)	19785,2

4.7.2 Cálculo das Longarinas

Para o cálculo das longarinas do tabuleiro A, foi utilizada a teoria de Engesser-Courbon conforme recomendação de Spernau (2013). O trem tipo foi posicionado sobre as vigas de forma a encontrar as maiores solicitações das vigas.

Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro 31.


Quadro 31 - Coeficiente de majoração das cargas móveis para longarinas- Tabuleiro D

Coeficiente majoração					
VIGAS					
Coeficiente	φ	Observação			
CIV	1,350	=1+1,06*(20 /(LIV+50))			
CIA	1,250	= 1,25 (p/ C.A)			
CNF	0,900	=1-0,05*(n-2)>0,9			
φ = CIA* CIV * CNF	1,519				

(Fonte: o autor)

O corte longitudinal das longarinas é representado pela figura 36.

Figura 36 - Corte Longitudinal Longarinas - Tabuleiro D

O resumo das solicitações e armaduras longitudinais está apresentado no quadro 32 e os resultados transversais estão expostos no quadro 33.

Quadro 32 -Resumo de resultados longitudinais Longarinas - Tabuleiro D

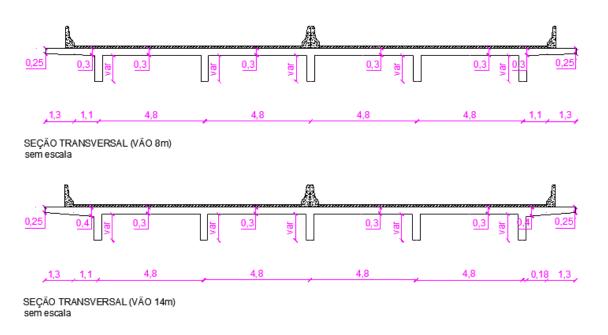
			ARMADUR.	NGITUDIN				
		posi	_		negativa			
seção	Msd kNcm	Asw cm²/m	qnt	Ф mm	Msd kNcm	Asw cm²/m	qnt	Ф mm
0	632588.6	83,4	17,0	25,0	70287,6	-8,6	7,0	12,5
1	355831,1	63,8	13,0	25,0	39536,8	-7,4	6,0	12,5
2	355831,1	63,8	13,0	25,0	39536,8	-7,4	6,0	12,5
3	355831,1	63,8	13,0	25,0	73549,3	-12,3	10,0	12,5
4	355831,1	63,8	13,0	25,0	140380,9	-24,1	3,0	32,0
5	355831,1	63,8	13,0	25,0	238351,4	-48,3	6,0	32,0
6	355831.1	63,8	13,0	25,0	360844.5	-72,4	9,0	32,0
7	484325,7	73,6	15,0	25,0	508575,7	-88,5	11,0	32,0
8	632588,6	83,4	17,0	25,0	695860,5	-104,6	13,0	32,0
9	484325,7	73,6	15,0	25,0	406402,7	-64,3	8,0	32,0
10	355831,1	63,8	13,0	25,0	168513,2	-32,2	4,0	32,0
11	355831,1	64,3	8,0	32,0	39536,8	-7,4	6,0	12,5
12	355831,1	64,3	8,0	32,0	39536,8	-7,4	6,0	12,5
13	478879,8	88,5	11,0	32,0	39536,8	-7,4	6,0	12,5
14	355831,1	104,6	13,0	25,0	39536,8	-7,4	6,0	12,5
15	654325,9	120,6	15,0	32,0	39536,8	-7,4	6,0	12,5
16	681477,1	120,6	15,0	32,0	39536,8	-7,4	6,0	12,5
17	666252.2	120,6	15,0	32,0	39536,8	-7,4	6,0	12.5
18	607526,6	112,6	14,0	32,0	39536,8	-7,4	6,0	12,5
19	510836,2	96,5	12,0	32,0	39536,8	-7,4	6,0	12,5
20	372940,2	72,4	9,0	32,0	39536,8	-7,4	6,0	12,5
21	355831,1	64,3	8,0	32,0	39536,8	-7,4	6,0	12,5
22	632588,6	88,5	11,0	32,0	70287,6	-8,6	7,0	12,5
		-	RMADUR	A CALCUI	ADA V2=V	4		
			LC	NGITUDIN	IAL			
		posi	tiva			nego	ativa	
seção	Msd	Asw	ant	Ф	Msd	Asw	ant	Φ
	kNcm	cm²/m	qnt	mm		2/	qnt	
0	632588,6	00.4			kNcm	cm²/m		mm
1		83,4	17,0	25,0	70287,6	-8,6	7,0	
•	355831,1	63,8	17,0 13,0	25,0 25,0				12,5
2	355831,1	63,8 63,8	13,0 13,0	25,0 25,0	70287,6 39536,8 39536,8	-8,6 -7,4 -7,4	7,0 6,0 6,0	12,5 12,5 12,5
3	355831,1 355831,1	63,8 63,8 63,8	13,0 13,0 13,0	25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5	-8,6 -7,4 -7,4 -8,6	7,0 6,0 6,0 7,0	12,5 12,5 12,5 12,5
2 3 4	355831,1 355831,1 355831,1	63,8 63,8 63,8 63,8	13,0 13,0 13,0 13,0	25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6	-8,6 -7,4 -7,4 -8,6 -19,6	7,0 6,0 6,0 7,0 4,0	12,5 12,5 12,5 12,5 25,0
2 3 4 5	355831,1 355831,1 355831,1 355831,1	63,8 63,8 63,8 63,8 63,8	13,0 13,0 13,0 13,0 13,0	25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3	7,0 6,0 6,0 7,0 4,0 8,0	12,5 12,5 12,5 12,5 25,0 25,0
2 3 4 5 6	355831,1 355831,1 355831,1 355831,1 355831,1	63,8 63,8 63,8 63,8 63,8 63,8	13,0 13,0 13,0 13,0 13,0 13,0	25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9	7,0 6,0 6,0 7,0 4,0 8,0 12,0	12,5 12,5 12,5 12,5 25,0 25,0 25,0
2 3 4 5 6 7	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7	63,8 63,8 63,8 63,8 63,8 63,8 73,6	13,0 13,0 13,0 13,0 13,0 13,0 15,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6	7,0 6,0 6,0 7,0 4,0 8,0 12,0	12,5 12,5 12,5 12,5 25,0 25,0 25,0 25,0
2 3 4 5 6 7 8	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0	12,5 12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0
2 3 4 5 6 7 8	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0	12,5 12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0
2 3 4 5 6 7 8 9	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0 13,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0	12,5 12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 25,0
2 3 4 5 6 7 8 9	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8 64,3	13,0 13,0 13,0 13,0 13,0 13,0 15,0 15,0 15,0 13,0 8,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0	12,5 12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 25,0 2
2 3 4 5 6 7 8 9 10 11	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8 64,3	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0 13,0 8,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 25,0 2
2 3 4 5 6 7 8 9 10 11 12	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8 64,3 80,4	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0 13,0 8,0 8,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 6,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 25,0 12,5 12,5
2 3 4 5 6 7 8 9 10 11 12 13	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6 355831,1	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 64,3 64,3 80,4 96,5	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0 13,0 8,0 8,0 10,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 6,0 6,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 25,0 2
2 3 4 5 6 7 8 9 10 11 12 13 14	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6 355831,1 579772,0	63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 64,3 64,3 80,4 96,5	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0 13,0 8,0 10,0 13,0 13,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0 6,0 6,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 12,5 12,5 12,5 12,5 12,5 12,5
2 3 4 5 6 7 8 9 10 11 12 13 14 15	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6 355831,1 579772,0 604410,4	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 64,3 64,3 80,4 96,5 104,6	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0 13,0 8,0 8,0 10,0 13,0 13,0 14,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0 6,0 6,0 6,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 12,5 12,5 12,5 12,5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6 355831,1 579772,0 604410,4 591263,1	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8 64,3 64,3 104,6	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0 13,0 8,0 8,0 10,0 13,0 14,0 13,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 12,5 12,5 12,5 12,5 12,5 12,5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6 355831,1 579772,0 604410,4 591263,1 539556,4	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8 64,3 64,3 104,6 112,6 104,6 96,5	13,0 13,0 13,0 13,0 13,0 13,0 15,0 15,0 15,0 13,0 8,0 10,0 13,0 14,0 13,0 12,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 12,5 12,5 12,5 12,5 12,5 12,5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6 355831,1 579772,0 604410,4 591263,1 539556,4 4453097,1	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8 64,3 64,3 80,4 96,5 104,6 112,6 104,6 96,5 80,4	13,0 13,0 13,0 13,0 13,0 13,0 15,0 15,0 15,0 13,0 8,0 8,0 10,0 13,0 13,0 14,0 13,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 12,5 12,5 12,5 12,5 12,5 12,5 12,5 12,5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6 355831,1 579772,0 604410,4 591263,1 539556,4 4453097,1 355831,1	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8 64,3 64,3 80,4 96,5 104,6 112,6 104,6 96,5 80,4 64,3	13,0 13,0 13,0 13,0 13,0 13,0 15,0 17,0 15,0 13,0 8,0 8,0 10,0 13,0 13,0 14,0 13,0 12,0 10,0 8,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 25,0 12,5 12,5 12,5 12,5 12,5 12,5 12,5 12,5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	355831,1 355831,1 355831,1 355831,1 355831,1 484325,7 632588,6 484325,7 355831,1 355831,1 421254,6 355831,1 579772,0 604410,4 591263,1 539556,4 4453097,1	63,8 63,8 63,8 63,8 63,8 63,8 73,6 83,4 73,6 63,8 64,3 64,3 80,4 96,5 104,6 112,6 104,6 96,5 80,4	13,0 13,0 13,0 13,0 13,0 13,0 15,0 15,0 15,0 13,0 8,0 8,0 10,0 13,0 13,0 14,0 13,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0	70287,6 39536,8 39536,8 52524,5 111922,6 202461,9 317521,4 457721,1 635367,2 369975,4 144950,5 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8 39536,8	-8,6 -7,4 -7,4 -8,6 -19,6 -39,3 -58,9 -73,6 -93,3 -58,9 -29,5 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4 -7,4	7,0 6,0 6,0 7,0 4,0 8,0 12,0 15,0 19,0 12,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0	12,5 12,5 12,5 25,0 25,0 25,0 25,0 25,0 25,0 25,0 2

	ARMADURA CALCULADA V3								
	LONGITUDINAL								
		posi	itiva			nego	ativa		
seção	Msd kNcm	Asw cm²/m	qnt	Ф mm	Msd kNcm	Asw cm²/m	qnt	Ф mm	
0	632588,6	83,4	17,0	25,0	70287,6	-8,6	7,0	12,5	
1	355831,1	63,8	13,0	25,0	39536,8	-7,4	6,0	12,5	
2	355831,1	63,8	13,0	25,0	39536,8	-7,4	6,0	12,5	
3	355831,1	63,8	13,0	25,0	39536,8	-7,4	6,0	12,5	
4	355831,1	63,8	13,0	25,0	83206,8	-14,7	3,0	25,0	
5	355831,1	63,8	13,0	25,0	166244,2	-29,5	6,0	25,0	
6	355831,1	63,8	13,0	25,0	273804,1	-54,0	11,0	25,0	
7	484325,7	73,6	15,0	25,0	406502,0	-63,8	13,0	25,0	
8	632588,6	83,4	17,0	25,0	576587,0	-83,4	17,0	25,0	
9	484325,7	73,6	15,0	25,0	334541,5	-54,0	11,0	25,0	
10	355831,1	63,8	13,0	25,0	129231,5	-24,5	5,0	25,0	
11	355831,1	64,3	8,0	32,0	39536,8	-7,4	6,0	12,5	
12	355831,1	64,3	8,0	32,0	39536,8	-7,4	6,0	12,5	
13	361620,1	64,3	8,0	32,0	39536,8	-7,4	6,0	12,5	
14	355831,1	80,4	13,0	25,0	39536,8	-7,4	6,0	12,5	
15	502605,1	88,5	11,0	32,0	39536,8	-7,4	6,0	12,5	
16	524580,4	96,5	12,0	32,0	39536,8	-7,4	6,0	12,5	
17	513636,0	96,5	12,0	32,0	39536,8	-7,4	6,0	12,5	
18	469447,1	88,5	11,0	32,0	39536,8	-7,4	6,0	12,5	
19	393025,2	72,4	9,0	32,0	39536,8	-7,4	6,0	12,5	
20	355831,1	64,3	8,0	32,0	39536,8	-7,4	6,0	12,5	
21	355831,1	64,3	8,0	32,0	39536,8	-7,4	6,0	12,5	
22	632588,6	88,5	11,0	32,0	70287,6	-8,6	7,0	12,5	

Quadro 33 - Armadura Transversal Longarinas - Tabuleiro D

ARMADURA CALCULADA V1=V5 ESTRIBOS							
	Vsd	Asw			Arranjo		
seção	kN	cm²/m	ramos	Ф	mm	c/	cm
0,0	1463,7	15,5	2,0	Φ	16,0	c/	13,0
1,0	964,6	13,4	2,0	Ф	16,0	c/	15,0
2,0	594,5	10,1	2,0	Ф	16,0	c/	20,0
3,0	675,1	10,1	2,0	Ф	16,0	c/	20,0
4,0	1084,7	15,5	2,0	Φ	16,0	c/	13,0
5,0	1495,1	22,3	2,0	Ф	16,0	c/	9,0
6,0	1905,6	25,1	2,0	Ф	16,0	c/	8,0
7,0	2313,3	25,9	4,0	Φ	16,0	c/	14,0
8,0	3382,0	27,8	4,0	Φ	16,0	c/	13,0
9,0	3039,3	30,2	4,0	Ф	16,0	c/	12,0
10,0	2690,2	30,2	4,0	Ф	16,0	c/	12,0
11,0	2336,6	32,9	4,0	Ф	16,0	c/	11,0
12,0	1979,8	27,8	4,0	Ф	16,0	c/	13,0
13,0	1621,0	25,1	2,0	Ф	16,0	c/	8,0
14,0	1261,5	18,3	2,0	Ф	16,0	c/	11,0
15,0	902,2	13,4	2,0	Φ	16,0	c/	15,0
16,0	544,4	10,1	2,0	Ф	16,0	c/	20,0
17,0	735,8	10,6	2,0	Ф	16,0	c/	19,0
18,0	1093,2	16,8	2,0	Φ	16,0	c/	12,0
19,0	1458,5	20,1	2,0	Ф	16,0	c/	10,0
20,0	1831,0	25,9	4,0	Ф	16,0	c/	14,0
21,0	2209,8	32,9	4,0	Ф	16,0	c/	11,0
22,0	1917,5	20,1	4,0	Ф	16,0	c/	18,0
		ARMA	ADURA CA	LCULADA	V2=V4		
ESTRIBOS							
	1	ı	ESTR	IBOS			
secão	Vsd	Asw	ESTR	IBOS	Arranjo		
seção	Vsd kN	Asw cm²/m	ramos	IBOS Φ	Arranjo mm	c/	cm
seção 0,0	kN 1218,3					c/	
	kN	cm²/m	ramos	Ф	mm 16,0 16,0		cm 15,0
0,0 1,0 2,0	kN 1218,3 783,8 437,1	cm²/m 13,4 11,8 6,8	2,0 2,0 2,0	Ф Ф Ф	mm 16,0 16,0 12,5	c/ c/	15,0 17,0 18,0
0,0 1,0 2,0 3,0	kN 1218,3 783,8 437,1 653,5	cm²/m 13,4 11,8 6,8 10,2	2,0 2,0 2,0 2,0 2,0	ф Ф Ф	mm 16,0 16,0 12,5 12,5	c/ c/ c/	15,0 17,0 18,0 12,0
0,0 1,0 2,0 3,0 4,0	kN 1218,3 783,8 437,1 653,5 1068,6	cm²/m 13,4 11,8 6,8 10,2 16,8	ramos 2,0 2,0 2,0 2,0 2,0 2,0 2,0	ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0	c/ c/ c/ c/	15,0 17,0 18,0 12,0
0,0 1,0 2,0 3,0 4,0 5,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6	ramos 2,0 2,0 2,0 2,0 2,0 4,0	Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0	c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8	2,0 2,0 2,0 2,0 2,0 2,0 2,0 4,0 4,0	Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0	c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 27,8	ramos 2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0	Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 27,8 36,2	ramos 2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 27,8 36,2 36,2	ramos 2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 27,8 36,2 36,2 40,2	ramos 2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0	Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 9,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 27,8 36,2 36,2 40,2 36,2	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 13,0 10,0 9,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 27,8 36,2 36,2 40,2 36,2 30,2	ramos 2,0 2,0 2,0 2,0 2,0 4,0 4,0 4,0	Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 9,0 10,0 12,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1 1708,1	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 27,8 36,2 36,2 40,2 36,2 30,2 24,1	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0	Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 9,0 10,0 12,0 15,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1 1708,1 1325,2	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 36,2 36,2 40,2 36,2 30,2 24,1 20,1	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 9,0 10,0 12,0 15,0 18,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1 1708,1 1325,2 943,3	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 36,2 36,2 36,2 30,2 24,1 20,1 13,4	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 10,0 10,0 12,0 15,0 15,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1 1708,1 1325,2 943,3 563,1	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 36,2 36,2 40,2 36,2 30,2 24,1 20,1 13,4 8,2	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 2,0 2,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c/ c/ c/ c/ c/ c/ c/ c/ c/ c/ c/	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 10,0 12,0 15,0 15,0 15,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1 1708,1 1325,2 943,3 563,1 546,1	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 36,2 40,2 36,2 40,2 36,2 40,1 20,1 13,4 8,2 8,2	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 2,0 2,0 2,0 2,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 10,0 12,0 15,0 15,0 15,0 15,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1 1708,1 1325,2 943,3 563,1 546,1 864,9	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 36,2 36,2 40,2 36,2 30,2 24,1 20,1 13,4 8,2 8,2 13,4	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 10,0 12,0 15,0 15,0 15,0 15,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1 1708,1 1325,2 943,3 563,1 546,1 864,9 1251,4	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 36,2 36,2 40,2 36,2 30,2 24,1 20,1 13,4 8,2 8,2 13,4 18,3	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 10,0 10,0 15,0 15,0 15,0 15
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0	kN 1218,3 783,8 437,1 653,5 1068,6 1485,6 1903,8 2321,1 3462,5 3088,6 2710,7 2343,7 2091,1 1708,1 1325,2 943,3 563,1 546,1 864,9	cm²/m 13,4 11,8 6,8 10,2 16,8 22,6 27,8 36,2 36,2 40,2 36,2 30,2 24,1 20,1 13,4 8,2 8,2 13,4	ramos 2,0 2,0 2,0 2,0 4,0 4,0 4,0 4,0 4,0 4,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0	ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	mm 16,0 16,0 12,5 12,5 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16,0	c/ c	15,0 17,0 18,0 12,0 12,0 16,0 13,0 10,0 10,0 10,0 12,0 15,0 15,0 15,0 15,0

	ARMADURA CALCULADA V3						
			ESTR	IBOS			
	Vsd	Asw	Asw Arranjo				
seção	kN	cm²/m	ramos	Ф	mm	c/	cm
0,0	937,7	10,2	2,0	Φ	12,5	c/	12,0
1,0	553,4	8,2	2,0	Ф	12,5	c/	15,0
2,0	255,3	6,1	2,0	Ф	12,5	c/	20,0
3,0	576,9	8,8	2,0	Ф	12,5	c/	14,0
4,0	942,7	14,4	2,0	Ф	16,0	c/	14,0
5,0	1310,9	20,1	2,0	Ф	16,0	c/	10,0
6,0	1682,6	25,1	2,0	Ф	16,0	c/	8,0
7,0	2056,6	25,1	2,0	Ф	16,0	c/	8,0
8,0	3124,9	36,2	4,0	Ф	16,0	c/	10,0
9,0	2767,5	36,2	4,0	Ф	16,0	c/	10,0
10,0	2408,9	36,2	4,0	Ф	16,0	c/	10,0
11,0	2063,8	30,2	4,0	Ф	16,0	c/	12,0
12,0	1835,4	25,9	4,0	Ф	16,0	c/	14,0
13,0	1478,6	20,1	2,0	Ф	16,0	c/	10,0
14,0	1123,6	15,5	2,0	Ф	16,0	c/	13,0
15,0	770,9	11,2	2,0	Ф	16,0	c/	18,0
16,0	421,1	6,1	2,0	Ф	12,5	c/	20,0
17,0	390,7	6,1	2,0	Ф	12,5	c/	20,0
18,0	680,3	9,4	2,0	Ф	12,5	c/	13,0
19,0	1036,5	15,5	2,0	Ф	16,0	c/	13,0
20,0	1397,7	20,1	2,0	Ф	16,0	c/	10,0
21,0	1763,4	25,1	2,0	Ф	16,0	c/	8,0
22,0	2276,9	25,1	2,0	Ф	16,0	c/	8,0

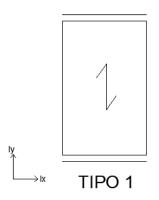

O quantitativo total de aço das vigas está apresentado no quadro 34.

Quadro 34 - Quantitativo de aço Longarinas - Tabuleiro D

ARMADURA CALCULADA	ARMADURA CALCULADA V1=V5						
ARMADURA LONGITUDINAL	2.892,9	kg					
ARMADURA TRANSVERSAL	267,60	kg					
TOTAL / VIGA	3160,49	kg					
TOTAL	6320,99	kg					
ARMADURA CALCULADA	/2=V4						
ARMADURA LONGITUDINAL	2.690,8	kg					
ARMADURA TRANSVERSAL	279,05	kg					
TOTAL / VIGA	2969,83	kg					
TOTAL	5939,67	kg					
ARMADURA CALCULADA	4 V3						
ARMADURA LONGITUDINAL	2.526,2	kg					
ARMADURA TRANSVERSAL	213,28	kg					
TOTAL / VIGA	3179,48	kg					
TOTAL	3179,48	kg					
TOTAL	15440,14	kg					

A seção transversal adotada após os cálculos de lajes e vigas está representada na figura 37.

Figura 37 - Seção Transversal Tabuleiro D



4.8 TABULEIRO E

4.8.1 Cálculo das lajes

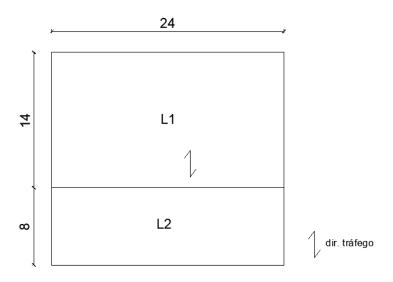
A solução do tabuleiro E é de ponte sobre lajes e sem vigas, conforme recomendação de Leonhardt (1982) para pontes com menos de 20 metros. Para o cálculo das solicitações das lajes foi utilizado o software T.Rusch e o software FTOOL. O dimensionamento das seções e das taxas de armadura foi feito através de planilhas eletrônicas. As duas lajes desta solução são de um tipo, a figura 38 ilustra com a laje pode ser encontrada nas tabelas de Rusch.

Figura 38 - Tipos de lajes convenção de Rusch Tabuleiro E

O coeficiente de adicional de impacto, CIA, influencia consideravelmente no dimensionamento das armaduras longitudinais. Portanto, nas lajes que não são afetadas por esse coeficiente, ele foi dispensado. Entretanto, para o tabuleiro A, devido o projeto geométrico de estradas dividir as pistas de rolamento com duas com barreiras *New* Jersey, todas as lajes são influenciadas pelo CIA. São listados os tipos de lajes para esta solução:

• Tipo 1: Possui 2 bordos livres em ly e dois bordos engastados em lx. Direção de fluxo em ly e **possui** influência do CIA;

Os coeficientes adicionais para os carregamentos móveis são mostrados no quadro 35.


Quadro 35 - Coeficientes de majoração cargas móveis Tabuleiro E

Coeficiente majoração					
Coeficiente	φ	Observação			
CIV	1,350	=1+1,06*(20 /(LIV+50))			
CIA	1,250	= 1,25 (p/ C.A)			
CNF	-	Não se aplica p/ lajes e transversinas			
φ = CIA* CIV * CNF	1,688				

(Fonte: o autor)

A figura 39 apresenta a planta do tabuleiro, a separação é feita com base nas dimensões lx e ly e no tipo da laje.

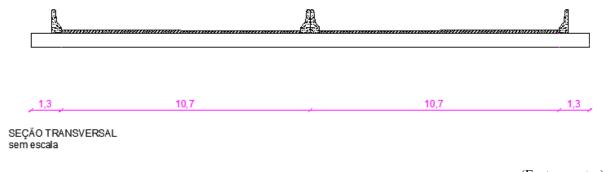
Figura 39 - Planta do Tabuleiro E

Os dados de entrada utilizados nas tabelas de Rusch são apresentados no quadro 36.

Quadro 36 - Entradas Tabelas de Rusch - Tabuleiro E

		ENTRA	DAS SOFTW	ARE T RUSC	CH		
LAJE		Dimensões		Lin. Média	Parân	netros	Direção fluxo
LAJE	Ly (m)	Lx (m)	Ly / Lx	t (cm)	t/a	Lx/a	lx ou ly
L1	14,000	24,000	0,583	114,623	57,311	12,000	ly
L2	8,000	24,000	0,333	114,623	57,311	12,000	ly

(Fonte: o autor)


Os resultados encontrados, e apresentados no memorial de cálculo deste trabalho, das incógnitas: seção de concreto (espessura da laje), tipo (por tabelas de Rusch) e armadura total são apresentados no quadro 37. Para o cálculo das solicitações permanentes nas lajes do TIPO 1, foi utilizado o software FTOOL, para as outras solicitações tanto permanentes quanto variáveis, foram utilizadas as Tabelas de Rusch através do software T. Rusch 1.0.

Quadro 37 - Resumo de resultados lajes tabuleiro E

				h laje			Asw,adot
Laje	Tipo	Sup	Inf	Dir	Esq	Meio	TOTAL
		cm	cm	cm	cm	cm	kg
L1	TIPO 1	60,0	60,0	60,0	60,0	60,0	25381,7
L2	TIPO 2	60,0	60,0	60,0	60,0	60,0	15013,75
	•	•		•	•		
				T	otal aç	o (kg)	40395,5

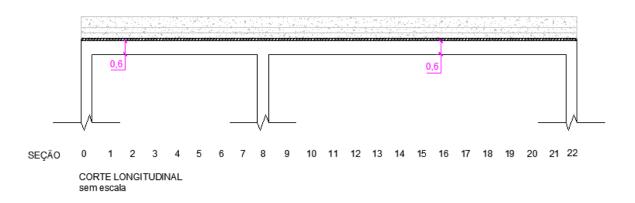

A seção transversal adotada após os cálculos de lajes e vigas está representada na figura 40 e a seção longitudinal é apresentada na figura 41.

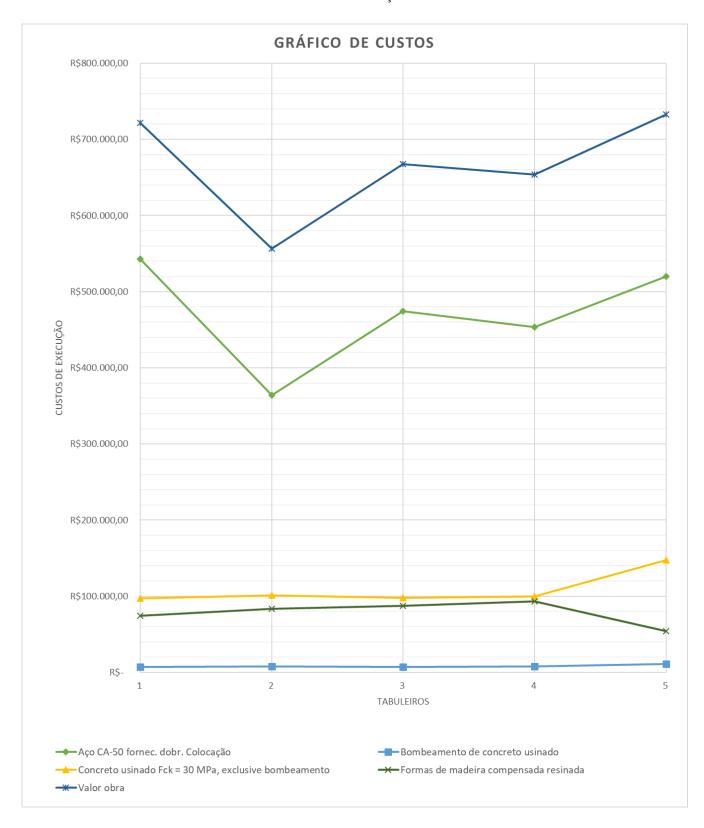
Figura 40 - Seção Transversal Tabuleiro E

(Fonte: o autor)

Figura 41 - Seção Longitudinal Tabuleiro E

5 RESULTADOS

Este trabalho possui grande quantidade de informações que podem ser analisadas. Primeiramente, pode-se dar analisar orçamento elaborado com base nas composições unitárias do DER-PR para a obra Data base: 20/09/2017 (Sem desoneração).


Quadro 38 - Orçamento para tabuleiros

		ORÇA	MENT	O			-
ITEM	CÓD. DER- PR	DESCRIÇÃO DO SERVIÇO	UND	QNT	PREÇO Unitário	VALOR TOTAL	% TOTAL OBRA
	DER-PR			UND	R\$	R\$	abc
TABUI	LEIRO A					R\$ 721.829,28	
1	730000	Aço CA-50 fornec. dobr. colocação	kg	42.156,03	R\$ 12,87	R\$ 542.548,11	75,16%
2	792330	Concreto usinado Fck = 30 MPa,	m3	209,70	R\$ 464,71	R\$ 97.449,69	13,50%
3	711000	Formas de madeira compensada	m2	795,35	R\$ 93,43	R\$ 74.309,55	10,29%
4	795890	Bombeamento de concreto	m3	209,70	R\$ 35,87	R\$ 7.521,94	1,04%
TABUI	LEIRO B					R\$ 556.366,62	
1	730000	Aço CA-50 fornec. dobr. colocação	kg	28.281,54	R\$ 12,87	R\$ 363.983,42	65,42%
2	795890	Concreto usinado Fck = 30 MPa,	m3	217,20	R\$ 464,71	R\$ 100.935,01	18,14%
3	792330	Formas de madeira compensada	m2	895,40	R\$ 93,43	R\$ 83.657,22	15,04%
4	711000	Bombeamento de concreto	m3	217,20	R\$ 35,87	R\$ 7.790,96	1,40%
TABUI	LEIRO C					R\$ 667.159,02	
1	730000	Aço CA-50 fornec. dobr. colocação	kg	36.869,68	R\$ 12,87	R\$ 474.512,78	71,12%
2	792330	Concreto usinado Fck = 30 MPa,	m3	210,20	R\$ 464,71	R\$ 97.682,04	14,64%
3	711000	Formas de madeira compensada	m2	935,72	R\$ 93,43	R\$ 87.424,32	13,10%
4	795890	Bombeamento de concreto	m3	210,20	R\$ 35,87	R\$ 7.539,87	1,13%
TABUI	LEIRO D					R\$ 653.785,48	
1	730000	Aço CA-50 fornec. dobr. colocação	kg	35.225,34	R\$ 12,87	R\$ 453.350,13	69,34%
2	795890	Concreto usinado Fck = 30 MPa,	m3	214,45	R\$ 464,71	R\$ 99.658,61	15,24%
3	792330	Formas de madeira compensada	m2	996,30	R\$ 93,43	R\$ 93.084,31	14,24%
4	711000	Bombeamento de concreto	m3	214,45	R\$ 35,87	R\$ 7.692,44	1,18%
TABUI	LEIRO E					R\$ 732.962,21	
1	730000	Aço CA-50 fornec. dobr. colocação	kg	40.395,50	R\$ 12,87	R\$ 519.890,09	70,93%
2	795890	Concreto usinado Fck = 30 MPa,	m3	316,80	R\$ 464,71	R\$ 147.220,13	20,09%
3	792330	Formas de madeira compensada	m2	583,20	R\$ 93,43	R\$ 54.488,38	7,43%
4	711000	Bombeamento de concreto	m3	316,80	R\$ 35,87	R\$ 11.363,62	1,55%

(Fonte: o autor)

Pode-se observar no dimensionamento que a armadura está na faixa A da curva ABC de todas as soluções estruturais, flutuando entre 65,42 e 75,16% do custo total da obra. Pode-se observar no gráfico 1 que a baixa taxa de armadura utilizada no tabuleiro B, é fator predominante para colocá-lo como tabuleiro mais econômico entre os estudados.

Gráfico 1 - Custos de Produção dos Tabuleiros

O concreto usinado e as fôrmas de madeira resinada estão com percentuais parecidos em todas as situações exceto da solução de ponte sobre laje, tabuleiro E, onde existe uma economia de fôrmas que pode ser visto no gráfico 2.

QUANTITATIVO DE MATERIAIS 1.050,0 1.000,0 950,0 900,0 850,0 800,0 750,0 700,0 650,0 600,0 QUANTIDADES 550,0 500,0 450,0 400,0 350,0 300,0 250,0 200,0 150,0 100,0 50,0 0,0 **TABULEIROS** Aço CA-50 fornec. dobr. Colocação (ton) - Concreto Usinado Fck = 30 Mpa e bombeamento (m3) Formas de madeira compensada resinada (m2)

Gráfico 2 - Quantitativo de Materiais

O bombeamento de concreto não supera a marca de 2% do valor da obra em nenhum dos casos, para os tabuleiros com vigas o bombeamento de concreto custa em média R\$7.636,30 (sete mil seiscentos e trinta e seis reais e trinta centavos) ou cerca de 1,19% da obra em média. Para o tabuleiro E, que é o tabuleiro que utiliza mais concreto armado, o bombeamento de concreto é 1,55%, cerca de R\$11.363,62 (onze mil trezentos e sessenta e três reais e sessenta e dois centavos).

Desta maneira, pode-se observar que do ponto de vista econômico, o tabuleiro B é o mais econômico com cerca de 32% de economia comparado ao tabuleiro E, que é a solução escolhida para o dimensionamento da OAE.

Do ponto de vista do consumo de materiais, o tabuleiro E é a solução que apresenta maior consumo de concreto e menor consumo de fôrmas. A solução estrutural que apresenta maiores taxas de armadura é o tabuleiro A, isso se dá pelos grandes vãos dimensionados para as lajes, principalmente pelo vão central que possui uma laje com vão de 14m no centro, que é onde se concentram as cargas principais.

Do ponto de vista do dimensionamento das longarinas, quanto maior o número de longarinas menor a taxa de armadura longitudinal das seções, o que já era esperado, haja visto que grelhas com mais vigas tem maiores distribuição das cargas. Embora o tabuleiro B seja o tabuleiro com menor quantidade de aço, este tabuleiro é tabuleiro que possui as vigas com maiores picos de taxas de armadura positiva e negativa, tendo picos maiores do que o tabuleiro A que é o tabuleiro sobre vigas com maior taxa de armaduras. Disso, pode-se observar que a economia das armaduras se dá do fato do maior número de vigas aliviar as solicitações das lajes.

Quando são analisadas as taxas de armadura transversal das longarinas, pode-se observar que o as vigas do tabuleiro B são as vigas com maior taxa de armadura transversal entre as analisadas. E que as vigas do tabuleiro D são as com menor taxa de armadura, isso porque o tabuleiro D possui maior repartição transversal das cargas entre as vigas.

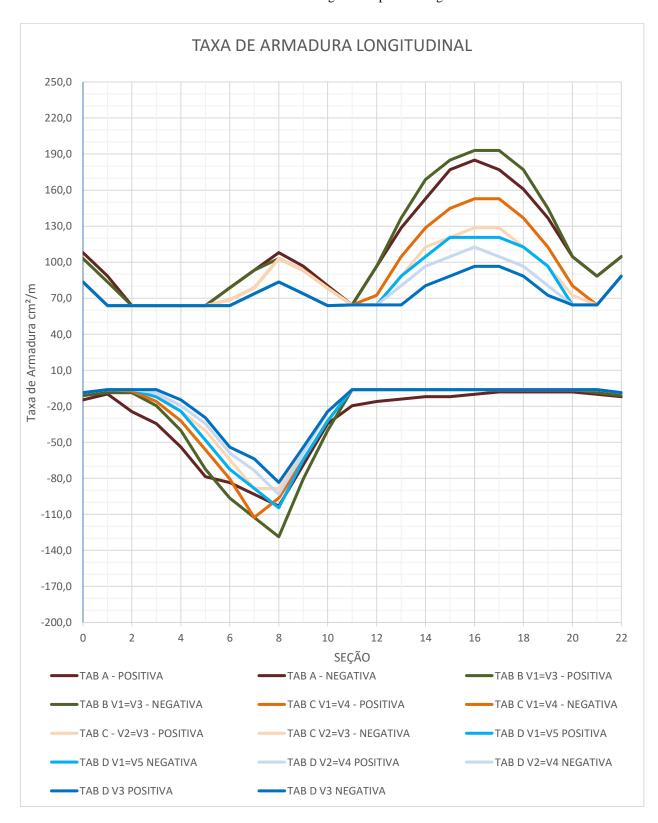
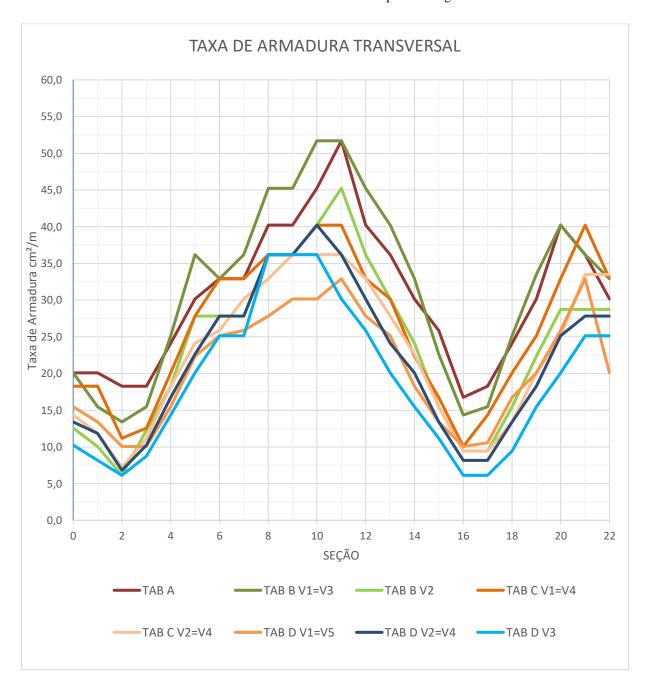



Gráfico 4 - Taxa de armadura transversal para as longarinas

O quadro 39 mostra a quantidade de armadura dimensionada nas lajes e nas longarinas de cada um dos tabuleiros.

AN	ÁLISE ARMA	DURA	AS VIGAS E	LAJES
ITEM	ELEMENTO	UND	QNT	%
			UND	
TABUI	EIRO A		OND	
_	,	l.o.	22.705.00	00 1707
1	vigas	kg	33.795,20	80,17%
2	lajes	kg	8.360,83	19,83%
TABUI	EIRO B			
1	vigas	kg	16.041,30	56,72%
2	lajes	kg	12.240,24	43,28%
TABUI	EIRO C			
1	vigas	kg	23.539,50	63,85%
2	lajes	kg	13.330,18	36,15%
TABUI	EIRO D			
1	vigas	kg	19.785,20	56,17%
2	lajes	kg	15.440,14	43,83%
TABUI	EIRO E			
1	lajes	kg	40.395,50	100,00%
2	vigas	kg	=	0,00%

Por fim, o peso próprio do tabuleiro é fator importante para o cálculo da mesoestrutura, dessa forma, o quadro 40 apresenta o peso próprio de cada uma das estruturas de concreto, sem considerar pavimento, barreiras New Jersey e guarda corpo, haja visto, que isso é fator comum a todos os tabuleiros e não faz diferença no comparativo das estruturas.

Quadro 40 – Peso Próprio das estruturas

	ANÁ	LISE PESO	PRÓPRIO	
ELEMENTO	UND	QNT	PESO / M³ kN/m³	QNT
		UND		UND
		TABULEIRO) A	
peso proprio	m³	209,70	25	5.242,50
		TABULEIRO) B	
peso proprio	m³	217,20	25	5.430,00
		TABULEIRO	С	
peso proprio	m³	210,20	25	5.255,00
		TABULEIRO) D	
peso proprio	m³	214,45	25	5.361,33
		TABULEIRO) E	
peso proprio	т³	316,80	25	7.920,00

6 CONCLUSÕES

Após análise do dimensionamento dos 5 tabuleiros e dos resultados apresentados neste trabalho, é possível concluir o formato ponte sobre vigas é viável para o viaduto analisado. Em virtude aos gráficos de taxas de armaduras apresentados neste trabalho é possível verificar que as pontes sobre vigas são mais econômicas do ponto de vista do uso de concreto e do uso de armaduras. A solução sobre lajes para este viaduto se mostra mais econômica do ponto de vista das fôrmas.

A facilidade ou dificuldade da montagem de cada uma das estruturas não é analisada neste trabalho, embora o dimensionamento das armaduras seja feito de forma a reutilizar as armaduras de uma seção para outra. Dessa forma, não se pode concluir o quanto cada uma das estruturas é mais viável do ponto de vista produtividade da obra.

As estruturas de grelhas se mostraram mais leves do que a estrutura de ponte em laje, o que consequentemente irá influenciar na redução das armaduras e seções da mesoestrutura e infraestrutura.

Por fim, a comparação de diferentes soluções estruturais para um mesmo problema faz com que o projetista chegue em uma solução ideal para seu projeto. Se mostrando assim, importante o estudo de todas as alternativas estruturais que possam estar à mão do engenheiro de projetos.

SUGESTÕES PARA TRABALHOS FUTUROS

O estudo de pontes em concreto armado é muito rico e tem grande campo de atuação no Brasil, portanto inúmeros estudos podem ser desenvolvidos nesta área. Para o tema específico abordado neste trabalho, seguem sugestões a futuros trabalhos:

- Analisar a nova mesoestrutura que deve ser dimensionada para cada um dos tabuleiros apresentados neste trabalho e verificar qual é a melhor solução;
- Analisar mais tipos de tabuleiros, bem como tabuleiros com transversinas ou maior número de longarinas;

- Comparar os resultados deste trabalho com resultados obtidos por métodos computacionais, bem como método dos elementos finitos;
- Desenvolver programação em software que calcule os diagramas de momento fletor pelo método de Engesser-Courbon para mais do que duas longarinas, seguindo o trabalho de Souza (2015);
- Analisar a influência da ação dinâmica das estruturas dimensionadas, bem como com a ação do vento, em software de modelagem tridimensional;
- Analisar o mesmo viaduto alterando soluções estruturais em diferentes materiais, que não, concreto armado. Bem como, concreto protendido e estrutura metálica.
- Modelar a emissão de ruído de tráfego em função da capacidade de trânsito da ponte, conforme critérios das legislações de poluição sonora ambiental.

REFERÊNCIAS

ARAÚJO, D. d. (1999). *Projeto de ponte em concreto armado com duas longarinas*. Goiânia - GO: Universidade Federal de Goiás.

CORDEIRO, J. (2014). Aparelhos de apoio em pontes vida útil e procedimentos de substituição. *Dissertação (Mestrado)*. Lisboa, Portugal: Instituto Superior de Engenharia de Lisboa.

CREA-PR. (2010). Ética e cultura profissional nº8. Curitiba -PR: CREA-PR.

DNIT, D. N. (2016). *Manual de manutenção de Obras de Arte Especiais - OAEs*. Departamento Nacional de Infraestrutura de Transportes.

FERNANDES e CORREIA. (2017). Uma introdução ao estudo das pontes em viga. *Cadernos de Graduação*. *V4*(1), pp. 115-138.

FORTE, L. A. (2014). Dimensionamento e análise de diferentes propostas de longarinas para pontes de concreto armado. *Trabalho de Conclusão de Curso*. Universidade Federal de Santa Catarina.

LEONHARDT, F. (1982). Construções de Concreto: Principios básicos da construção de pontes de concreto. Vol.6. Rio de Janeiro: Editora Interciência Ltda.

MARCHETTI, O. (2008). Pontes de Concreto Armado. São Paulo: Bluncher.

MENDONÇA, G. K. (2012). Infraestrutura Urbana: Uma investigação sobre Pontes em São Paulo. São Paulo: USP.

NBR 6118, A. (2014). Projeto de estruturas de concreto. Rio de Janeiro, RJ, Brasil: Associação Brasileira de Normas Técnicas.

NBR 6123, A. (1988). Forças devidas ao vento em edificações. Rio de Janeiro, RJ, Brasil: Associação Brasileira de Normas técnicas.

NBR 7187, A. (2003). Projeto de pontes de concreto armado e de concreto protendido - Procedimento. Rio de Janeiro, RJ, Brasil: Associação Brasileira de Normas Técnicas.

NBR 7188. (2013). Carga móvel rodoviária e de pedestres em pontes, viadutos, passarelas e outras estruturas. Rio de Janeiro, RJ, Brasil: Associação Brasileira de Normas técnicas.

NBR 8681, A. (2013). Açõe e segurança nas estruturas - Procedimento. Rio de Janeiro, RJ, Brasil: Associação Brasileira de Normas Técnicas.

NBR 8800, A. (2008). Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios. Rio de Janeiro, RJ, Brasil: Associação Brasileira de Normas Técnicas.

NUNES, J. d. (2017). Pontes de concreto armados: Seção transversal com múltipls vigas longarinas. Palhoça - SC: Universidade do Sul de Santa Catarina.

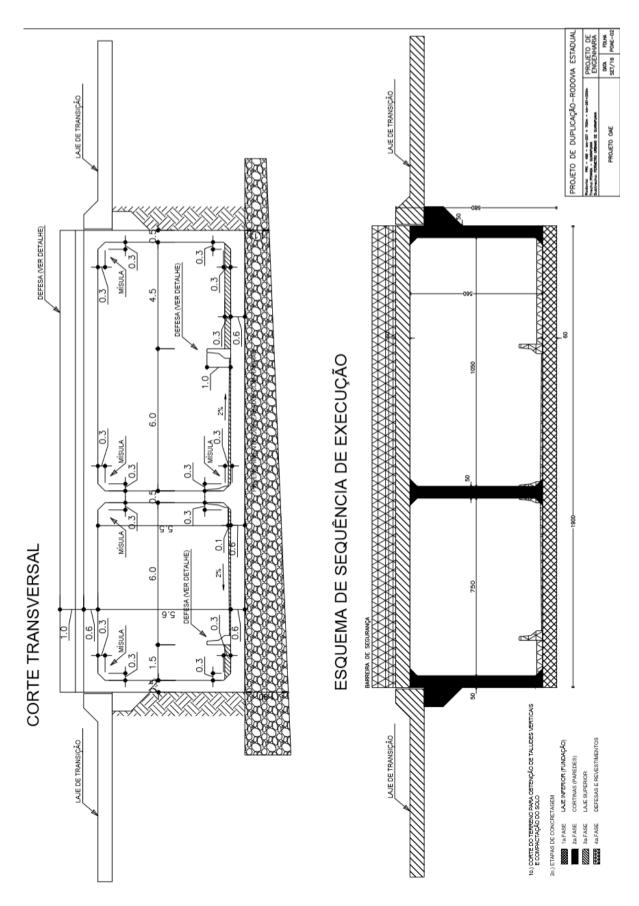
O'CONNOR, C. (1976). *Pontes-superestruturas*. Rio de Janeiro: Livros Técnicos e Científicos.

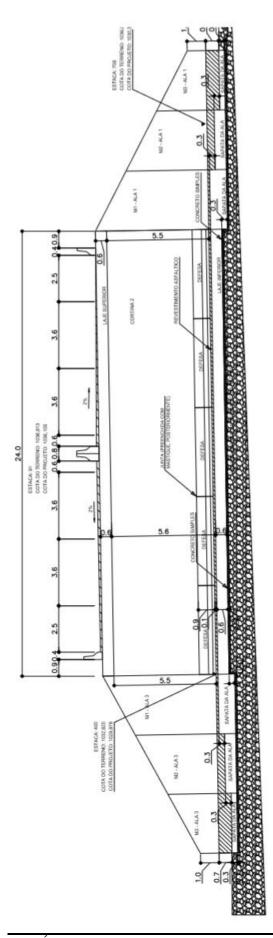
PINHEIRO, L. M. (2007). Fundamentos do concreto e projeto de edifícios . São Carlos - SP: Departamento de Estruturas - UNIVERSIDADE DE SÃO PAULO.

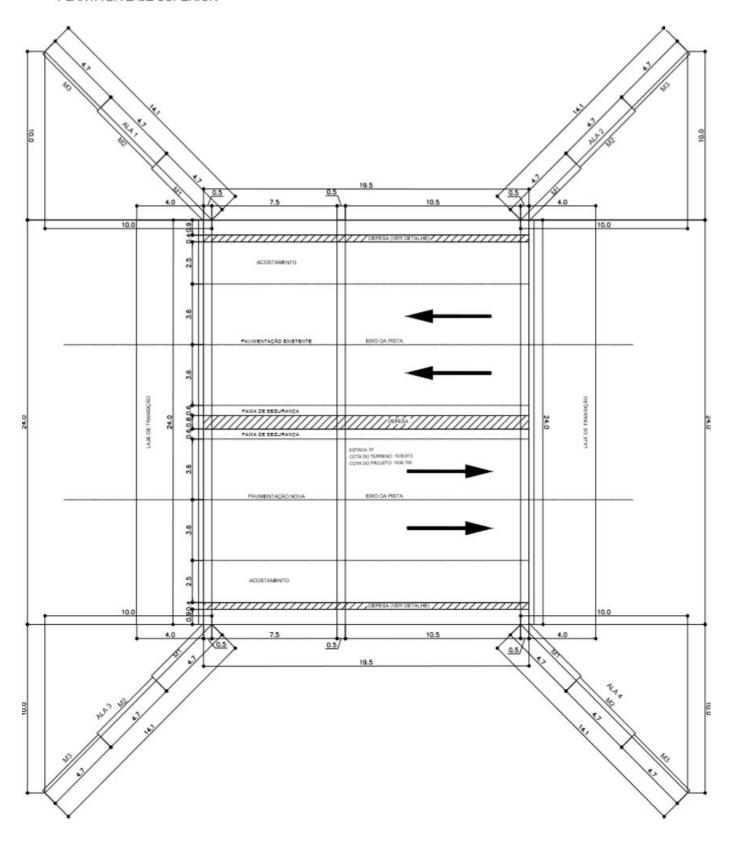
SINAPI. (2014). Manual de metodologias e conceitos. Caixa Econômica Federal.

SORIANO e MASCIA. (2009). Estruturas mistas em madeira-concreto: uma técnica racional para pontes de estradas vicinais. *Ciência Rural*, pp. 1260-1269.

SOUZA e MOTA. (2004). Dimensionamento estrutural de uma ponte em concreto armado. *Trabalho de Conclusão de Curso*. Universidade Estadual do Norte Fluminense.


SOUZA, C. F. (2015). Análise da distribuição de momentos fletores em pontes bi-apoiadas. *Dissetação*. Universidade Federeal de Santa Catarina.


SPERNAU, W. (2013). Notas de Aula: Pontes ECV-5260. *Disciplina do Curso de graduação de Engenharia Civil*. ECV/CTV/UFSC.


STUCCHI, F. (2006). Notas de aula Pontes e Grandes Estruturas. *Notas de aula Pontes e Grandes Estruturas*. São Paulo, SP, Brasil: Universidade de São Paulo.

VITÓRIO, A. (2002). *Pontes rodoviárias: fundamentos, conservação e gestão*. CREA-PE - Conselho Regional de Engenharia Arquitetura e Agronomia de Pernambuco.

ANEXOS

ANEXO B - C.P.U. de OAE

Retirado do orçamento DER-PR Concorrência Pública 265/2017

DERPR - Departamento de Estradas de Rodagem do Paraná Diretoria Técnica - Coordenadoria de Custo e Orçamento Orçamento Sintético

Setor : DER/DT/CCO - COORD.DE CUSTOS E ORCAMENTO

Valores expressos em Reais (R\$)

Orçamento : 5990-4/2017 Rodovia : PRC-466

Trecho : Entroncamento PR-460 / BR-277 (Guarapuava)

Subtrecho : Entroncamento Rod. Mun.Palmeirinha - Entroncamento BR-277 (Guarapuava)

Extensão : 3,467 km Data Base: 20/09/2017 (Sem desoneração)

05 - OBRA DE ARTE ESPECIAIS - TRINCHEIRA (C=24,00, L=19,50, H=5,50)

			_	
05	04	 	-	

Código	Descrição do Serviço	Unid.	Quantidade	Preço Unitário	Preço Total
730000	Aço CA-50 fornec. dobr. colocação	kg	112.172,310	12,87	1.443.657,62
795890	Bombeamento de concreto usinado	m3	1.291,100	35,87	46.311,75
401000	Compactação de aterros 100% PN (A)	m3	5.298,800	4,66	24.692,40
792340	Concreto magro usinado, exclusive bombeamento	m3	163,380	399,37	65.249,07
792330	Concreto usinado Fck = 30 MPa, exclusive	m3	1.127,720	464,71	524.062,76
	bombeamento				
746100	Enrocamento pedra de mão jogada	m3	1.307,040	129,08	168.712,72
701100	Escavação 1a. cat. p/galerias celulares	m3	5.730,000	8,30	47.559,00
712200	Escoramento de galerías celulares	m3	187,000	62,18	11.627,66
711000	Formas de madeira compensada resinada	m2	2.914,200	93,43	272.273,70
793625	Reaterro e apiloamento mecânico com material de	m3	431,200	36,96	15.937,15
	jazida (DMT=2,50km)				
793615	Transporte de material de escavação em 1a. cat.	m3	5.298,800	2,74	14.518,71
	200-400m para corpo de aterro			-	-

Total do Sub-grupo: 2.634.602,54

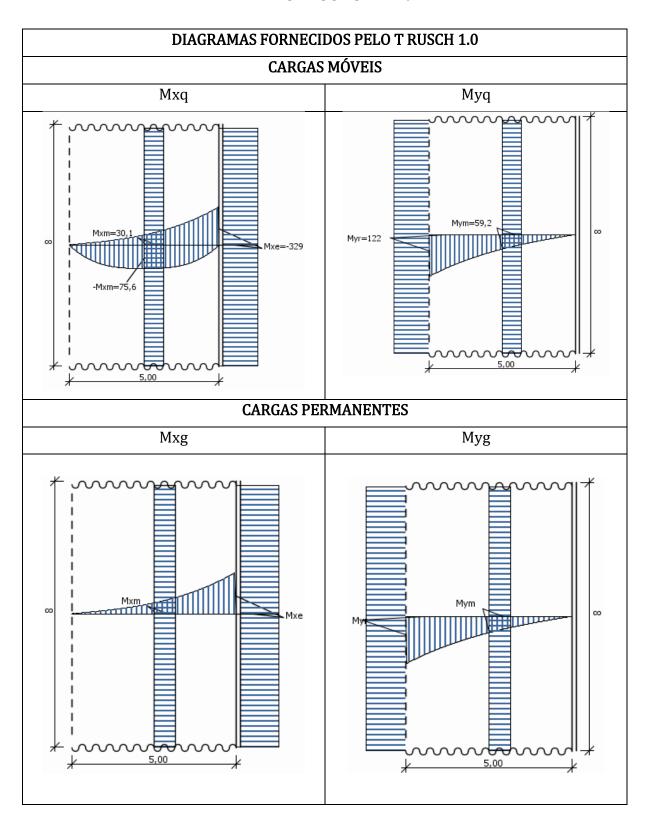
05.02 - Iluminação da Trincheira

Código	Descrição do Serviço	Unid.	Quantidade	Preço Unitário	Preço Total
792985	Fornec. e instalação de cabo de cobre 16mm	m	110,000	10,15	1.116,50
792995	Fornec. e instalação de cabo de cobre 25mm	ш	110,000	15,95	1.754,50
792915	Fornec. e instalação de eletroduto de PVC flexível corrugado 32mm	В	120,000	2,42	290,40
792925	Fornec. e instalação de luminária fechada para iluminação pública, com reator de partida rápida, com lâmpada a vapor de mercúrio 250 W	ud	6,000	562,74	3.376,44
792965	Fornec, e instalação de terminal de pressão reforçado para conexão de cabo de cobre de 16mm²	ud	6,000	5,88	35,28
792975	Fornec, e instalação de terminal de pressão reforçado para conexão de cabo de cobre de 25mm²	ud	6,000	6,58	39,48
792945	Fornecimento e instalação de entrada de energia elétrica aérea monofásica 50A, com poste e cabeamento, caixa de proteção para medidor e aterramento	ud	1,000	1.309,97	1.309,97

Total do Sub-grupo: 7.922,57

Total do Grupo: 2.642.525,11

APÊNDICES

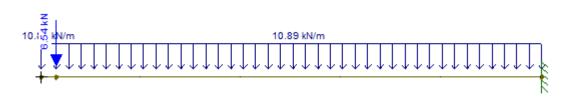

MATERIAS

MA ⁻	TERIAIS	
CONCRETO	C30	
Agregado	Brita 1	
Tipo de Agr.	gnaisse	
Yc =	1,4	
fck =	3,00	KN/cm²
fcd =	0,21	KN/cm²
fctk,sup =	0,38	KN/cm²
ae =	1,00	
ai =	0,875	
Eci =	3067,00	KN/cm²
Ecs =	2684,00	KN/cm²
dmax,ag =	19,00	mm
AÇO	CA-50	
γs =	1,15	
γyk =	50	KN/cm²
Yyd =	43,48	KN/cm²
Eaço =	21000	KN/cm²

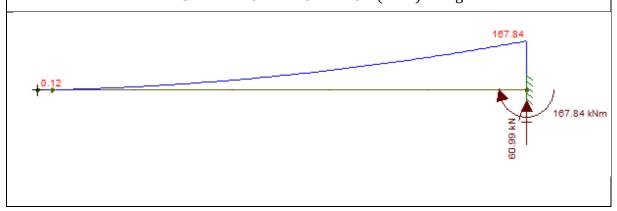
TABULEIRO A

Cálculo das lajes

CÁLCULO L1=L3



CARGAS PERMANENTES


Lev	rantamento Cargas Permanen	tes		
Elemento	Tipo carregamento	carga		braço (m)
Barreira New Jersey	Concentrado	6,54	kN/m	0,15
	subtotal	6,54	kN/m	
Pavimento	Distribuído	2,76	kN/m²	
Laje + mísulas	Distribuído	8,13	kN/m²	
	subtotal	10,89	kN/m²	

DIAGRAMAS FTOOL

DIAGRAMA DE CORPO LIVRE

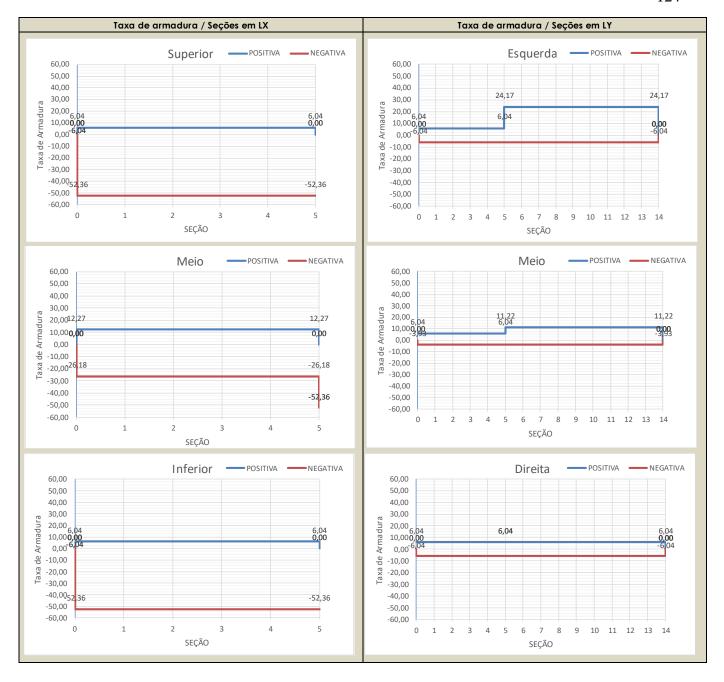
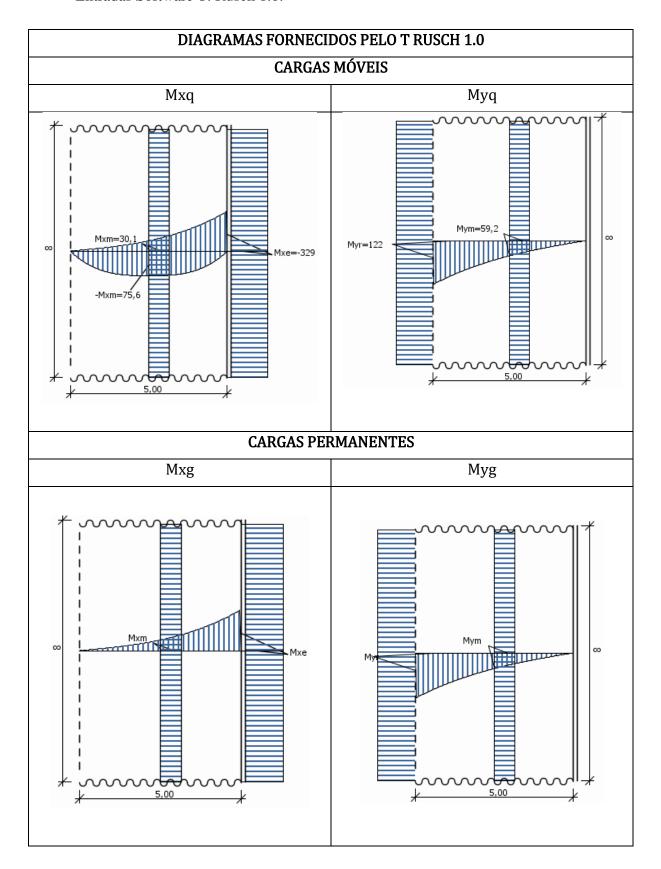


DIAGRAMA MOMENTO FLETOR (kNm) - Mxg

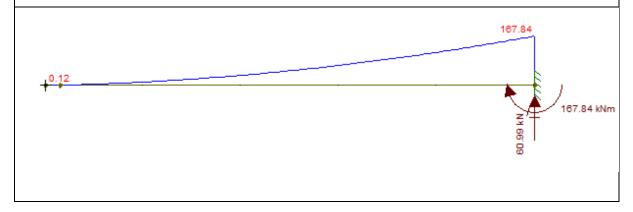


						MEN	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINAL	CÁLCULC	ARMADL	RA LONG	ITUDINAL										
Borda	_			Superior	or		II	Inferior			Direita	ta			Esquerda	ō		V	Meio do vão	0	
Direção	0		ΙX		Γλ		ΙX		LΥ	ΙX		ΓY		ΙX		Γλ		ΓX		Ľ	
Seção	•		Мхе	Mxe	Mye Mye	e Wxe	Мхе	Муе	Муе	Мхе	Мхе	Муе	Муе	Мхе	Mxe N	Mye M	Муе	Mxm		Mym	
Momento	t p		Positivo	negativ ₍ Pc	Positivo negative Positivo negativ	utive Positivo	o negati	negative Positivo	negative Positivo	Positivo	negative Positivo	ositivo	negative Positivo	ositivo n	negative Positivo	sitivo neg	ative Pos	itivo neg	negative Positivo negative Positivo negative	ivo neg	ative
Armação	go		0.0000	000000000000000000000000000000000000000		_			0.000	oi.o	o di di di	0	7000	0	The second of th	700	o de la companya de l	2000	0	000	7
Descrição	Simbolo	Simbolo Grandeza	ndioiii.	econdo de	COLIGATING		nd securic	d second	riiicipa	rincipa	s pdioi.iii	econdada	aconiad r	n cipa r	nacipal ser	nad section	חומל	חלום	ndag		2010
Base Viga	hw	ш	100	100	100 100	001 C	100	100	100	100	100	100	100	100	100	100	100	100	100 100		100
Altura Total	h	ш	40	40	40 40	40	40	40	40	40	40	40	40	25	25	25 2	25	25	25 25		25
Altura útil laje	р	шo	37	36	36 37	37	36	36	37	37	36,5	36	35	22	21,5	20,5	20 21	21,875 2	21,5 20,75		20
p-q	d'	cm	3	4	4 3	3	4	4	3	3	3,5	4	5	3	3,5	4,5	5 3,	3,125	3,5 4,25	5:	5
cobrimento nominal	С	cm	2,5	2,5	2,5 2,5	5 2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5 2,5		2,5
Arm. Transversal	₽	mm	0	10	10 0	0	10	10	0	0	0	10	20	0	0	10 2	20	0	0 12	12,5	20
Mom. Ações Perm.	Msg	kNcm/m	0	0	0 0	0	0	0	0	0	16784	0	0	0	16784	0	0	0 16	16784 0		0
Mom. Cargas móveis	Msq	kNcm/m	0	0	0 0	0	0	0	0	0	32900	0	0	0	0 13	12200	0 7.	7560 30	3010 5920		0
coef. Cargas móveis	φ		1,688	1,688	1,688 1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	9′1 889′1	1,688	1,688	1,688		1,688
Mom. Cálc (Comb.Crífica)	Msd	kNcm/m	0,0	0,0	0,0 0,0	0,0	0′0	0'0	0'0	0,0	66134,0	0,0	0,0	0,0	6784,0 18	0′00881	0,0	11340,0 212	21299,0 8880,0		0'0
Coef. Resistência Conc.	Kc		-	-	-	-	-	-	-	-	2,014	-	-	-	2,754 2	2,296	- 4,	4,220 2,	2,170 4,849	49	
Cálculo	βх				-	•	1	1	•		0,407	-		-	0,281 0	0,347	- 0,	0,175 0,	0,371 0,151	51	
Coef. Resistência aço	Ks		-	1	-	-	-		-	-	0,027	-		-	0,026 0	0,027	- 0	0,025 0,	0,027 0,024	24	,
Arm. Mínima	As, mín	cm²/m	900'9	900'9	900'9 00'9	00'9 0	900'9	900'9	900'9	00'9	900'9	900'9	900'9	3,75	3,75	3,75 3,	3,75 3	3,75 3	3,75 3,75		3,75
Arm. Calculada	As,calc		900'9	9,00	900'9 00'9	00'9 0	900'9	900'9	900'9	900'9	49,77	900'9	900'9	3,75	20,23	23,84 3,	3,75	12,82	26,76 10,47		3,75
Arm. Máxima	4% Ac	cm²	160	160	160 160	091 0	160	160	160	160	160	160	160	100	100	100	100	100	00	100	001
Verificação	max e mín		οk	ok	ok ok	ok	ok	ò	ok	ok	ok	ok	ok	ok	ok	ok o	ok	ok	ok ok		¥
		Φ	θ	θ	Φ Φ	Φ	θ	θ	Φ	Φ	θ	θ	θ	θ	Φ	Φ	Φ	Φ	Ф		θ
Arrange and cineral	**************************************	mm	10	10	10 10	10	10	10	10	10	20	10	10	10	20	20 1	10 1	12,5	20 1	. 01	10
	יינע סחקיינע	/ o	/o	/o	c/ c/	/o /	c/	/o	/o	/o	/o	/o	/o	c/	c/	c/ c	c/	c/	/> />		c/
		cm	13	13	13 13	13	13	13	13	13	9	13	13	20	15	13 2	20	10	12 7	;	20
Arm. Total	As, efet	cm²/m	6,04	6,04	6,04 6,04	4 6,04	6,04	6,04	6,04	6,04	52,36	6,04	6,04	3,93	20,94 2	24,17 3,	3,93	12,27	26,18 11,22		3,93
Verif. Tx Armadura	efet > 9	efet > 95%calc	ok	ok	ok ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok c	ok	ok	ok ok		Ą
Verif. Tx Armadura	efet > 1	efet > 110%calc	ok	ok	ok ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok o	ok	ok	ok ok		ok W
Verif. Armadura	Afiva ou D	Ativa ou Distribuição	As, dist	As,dist A	As,dist As,dist	list As,dist	st As,dist	As,dist	As,dist	As,dist	As,ativa	As,dist	As, dist	As,dist A	As,ativa As,ativa		As,dist As,	ativa As,a	As,ativa As,ativa As,ativa		As, dist

14.00 14.0	1																				
Part	DIMENSOES LAJE	2,00	Ε							QUA	NTITATIV	O DE A	္ပ								
Figure Part Part		14,00	Ε										•								
1							ARMA	DURA PO:	SITIVA							ARMADL	JRA NEGA	ATIVA			
Fig. 10 Fig.		SEÇÃO					P.	SIÇÃO EN	××					-		POSI	ÇÃO EM	×			
Second interpretation Seco		EM Y		00,00	∢	0,00	0,00	4	5,00	5,00	4	5,00	0,00	∢	0,00	0,00	+	0,00	0,00	⋖	2,00
Part			-	θ 8	<u>ن</u>	E S	9 2	ν	E	θ 8	/ o	E 3	θ 8	ر ا	E S	e 2		E 2	θ 8	ر رن	E
The complication of the complex of			generimento	00,0	0.00	_	0,01	500.00	13,00	00,00	0.00	30,0	0,00	0.00	8,0	0,01		3,00	-	200.00	9,00
Compositivitido Compositi		SUP	comp.total+ancoragem/m		00,00			4353,85			0,00			00'0			00'0		-	0473,08	
Mile Paso (Ng) Complements Complemen			comp.distribuição		00,00			00'0			00,00			00,00			00'00			00'00	
Participation Completion			peso (kg)		00'00			00'0			00,00			00'0			00'00			00'00	
Methodistreated 100			arranjo	00'0	/o	_	12,50	/o	13,00	00'0	/o	00,00	00'00	/S	00,00	20,00		12,00	20,00	/o	900'9
Meto Comp.lobit-intecrogen/min Color			comprimento		00,00			500,00			00,00			00'00			00'00			200,000	
Protection of the compositation in the compositat	×	MEIO	comp.total+ancoragem/m		00'00			5825,00			00'00			00,00			00'00		ı	00,0500	
No. Comp. blobichencorogen/mineration Comp. blobichencorogen			comp.distribuição		14,00			14,00			14,00			14,00			14,00			14,00	
Figure Completification Co			peso (kg)		00'00			805,71			00,00			00'00			00'00		()	489,36	
No. Compitinent Compileration Compile			arranjo	00'0	/o		10,00	/>	13,00	00'0	/\to	00,00	00'00	/o	00,00	10,00	/\tau	13,00	20,00	/o	900'9
No. Completificaciogen/m Completificaci			comprimento		00,00			500,000			00'00			00'00			00'00			200,000	
SEÇÃA PRODUCTION PRODUCT		Ā	comp.total+ancoragem/m		00'00			4353,85			00,00			00'00			00'00		ı	0473,08	
SECÁC COMO A SODO A A SODO A A SODO A A SODO A A SODO A A SODO A A SODO A A SODO A A SODO A A SODO A A SODO A A SODO A A SODO A SOD			comp.distribuição		00'00			00'00			00,00			00,00			00'00			00,00	
Figure Posicio Entrol Posicio Ent			peso (kg)		00,00			00'00			00,00			00'00			00'00			00'00	
Seção Parisidado Parisida							ARMA	DURA PO	SITIVA							ARMADL	JRA NEGA	ATIVA			
FMX FMX		SEÇÃO					PO	SIÇÃO EN	٧ ٨							POSI	ÇÃO EM	~			
Fig. Action Fig. Fig.		EM X		00'0	4	5,00	5,00	٧	14,00	14,00	٧	14,00	00'00	Α	00'00	0,00		14,00	14,00	٧	14,00
FSQ complication Complication				0	' 2	E	θ	/ o	сш	0	/ o	СШ	0	/၁	СШ	θ		c _B	0	/ o	E
ESQ			arranjo	10,00	/\to		20,00	c/	13,00	00,00	c/	00,00	00,00	c/	00,00			13,00	00,00	/o	0,00
E5Q comp.t/lateIrlanticr/acgem/m 44% 15 I S Mark 7811.54 Mark 600 0.00 10769/23 Mark 1000 0.00			comprimento		500,000			900,006			00,00			00,00		1	1400,00			00,00	
Comp. distribuição 5,00		ESQ	comp.total+ancoragem/m		4496,1	2		7811,54			00,00			00,00		10	0769,23			00'00	
Math Page (kg) 140,28			comp.distribuição		5,00			2,00			2,00			00,00			00,00			00,00	
MEIO Per omptimento DIN MEIO Computimento MEIO Computimento DIN MEIO Computimento Computimento Computimento Computimento Computimento DIN MEIO Computimento Computation			peso (kg)		140,28			89'896			00'00			00'0			00'00			00'00	
MEIO computation of compu			arranjo	10,00	c/		10,00	/o	7,00	00'0	/o	00'00	00'00	/S	00'00	_		20,00	00'00	/o	00'00
MEIO comp.total+ancoragem/m in figuration (a) meto) 4380,7 meto) 13546,15 meto) 0.00 meto)			comprimento		500,000			900,006			00,00			00'00		l	1400,00			00'00	
DIR comp.distribuição 0.00 0.00 0.00 0.00 5.00 <th>۲,</th> <th>MEIO</th> <th>comp.total+ancoragem/m</th> <td></td> <td>4380,7;</td> <td></td> <td></td> <td>13546,15</td> <td></td> <td></td> <td>00'00</td> <td></td> <td></td> <td>00'00</td> <td></td> <td>7</td> <td>000'000</td> <td></td> <td></td> <td>00'00</td> <td></td>	۲,	MEIO	comp.total+ancoragem/m		4380,7;			13546,15			00'00			00'00		7	000'000			00'00	
The composition The compo			comp.distribuição		00'00			00'0			00'00			2,00			2,00			2,00	
A compriment 1,0,00 c/ 13,00 c/			peso (kg)		00'00			00'00			00,00			00'00			218,40			00'00	
DIR comp.tiotal+ancoragem/n 4496.15 7176,92 0,00 0,00 1400,00 1400,00 A comp.distributcace RESUMO ARMADURA PESO+10% (kg) 3707.76 PESO+10% (kg) 3707.76 PESO+10% (kg) 1914,62			arranjo	10,00	/o	13,00	10,00	/o	13,00	00'00	/\to	00'00	00'00	/\to	00'00	10,00	/\to	13,00	00'00	/\to	00'00
DIR comp.total+ancoragem/n 4496.15 7176,92 0.00 0.00 10769.23 10769.23 x comp.distribuição 0.00 <th></th> <th></th> <th>comprimento</th> <th></th> <th>500,000</th> <th></th> <th></th> <th>900,006</th> <th></th> <th></th> <th>00,00</th> <th></th> <th></th> <th>00'00</th> <th></th> <th></th> <th>1400,00</th> <th></th> <th></th> <th>00'0</th> <th></th>			comprimento		500,000			900,006			00,00			00'00			1400,00			00'0	
RESUMO ARMADURA ©000 0,000 0		DIR	comp.total+ancoragem/m		4496,1	2		7176,92			00'00			00'00		10	0769,23			00'00	
RESUMO ARMADURA 0.00			comp.distribuição		00'00			00'0			00'00			00'00			00'00			00'00	
RESUMO ARMADURA PESO +10 % (kg) PESO +10 % (kg) TOTAL			peso (kg)		00,00			00'00			00,00			00'00			00'00			00'0	
PESO +10 % (kg) PESO +10 % (kg) TOTAL	R	RESUMO A	IRMADURA																		
PESO + 10 % (kg) TOTAL	NEGATIVA	PES		7,76																	
	POSITIVA	PES		4,62																	
				2,38																	

Entradas Software T. Rusch 1.0:

CARGAS PERMANENTES


Lev	vantamento Cargas Permanen	tes		
Elemento	Tipo carregamento	carga		braço (m)
Barreira New Jersey	Concentrado	6,54	kN/m	0,15
	subtotal	6,54	kN/m	
Pavimento	Distribuído	2,76	kN/m²	
Laje + mísulas	Distribuído	8,13	kN/m²	
	subtotal	10,89	kN/m²	

DIAGRAMAS FTOOL

DIAGRAMA DE CORPO LIVRE

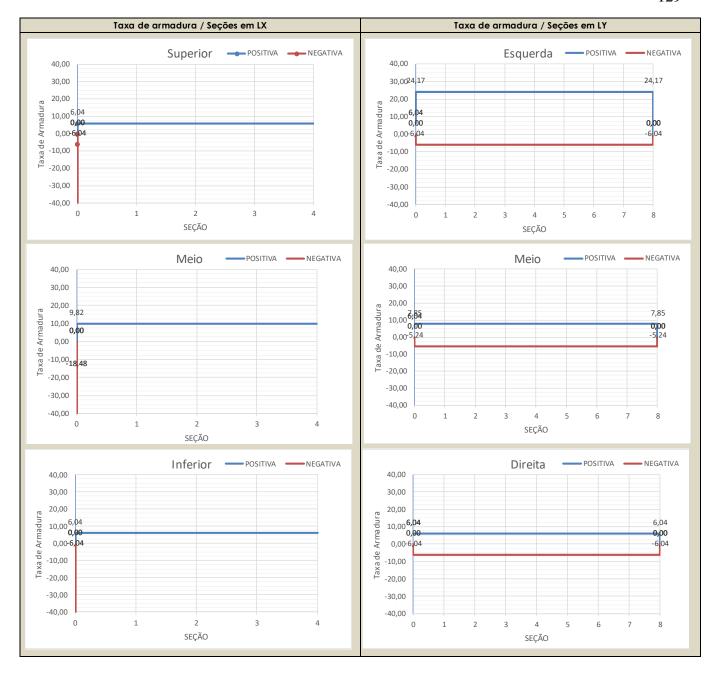
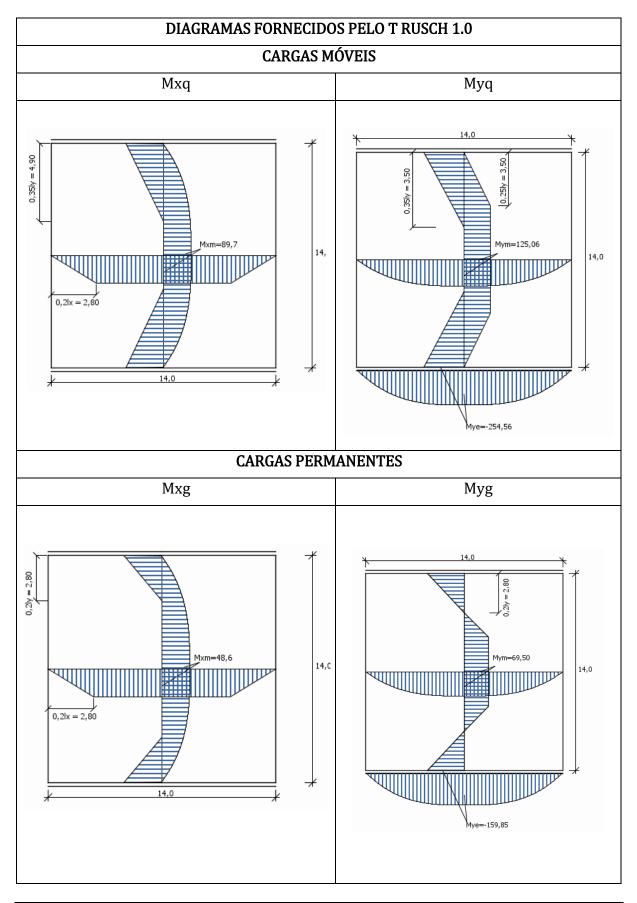


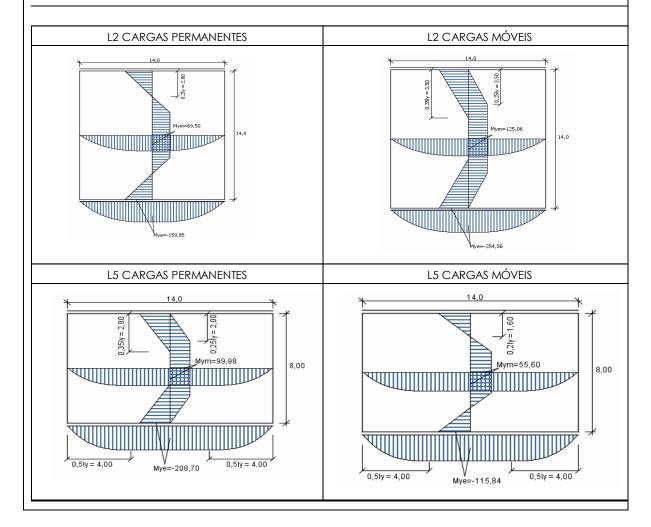
DIAGRAMA MOMENTO FLETOR (kNm) - Mxg



National Subject National Plane Nati	ā																				
Signature Sign	DIMENSOES LAJ		Ε							QUA	VITATIV	/O DE A	0								
Sinchy Complete control co	λ1	8.00	E E										•								
Figure Particle							ARM,	DURA PO	SITIVA							ARMAD	URA NEG	ATIVA			
No. No.	O NO NO MANO	SEÇÃO					PC	SIÇÃO E	×w							POS	IÇÃO EM	×			
Complemental com		EM Y		00'0			00'0	٧	5,00	5,00	٧	5,00	00'0	۷	00'0	00'0	٧	00'0	00'0	A	5,00
Complication Comp				θ		-	θ	/ o	сш	θ	د/	СЩ	θ	/o	СШ	θ	د/	сш	θ	c/	E
Comp distribution Comp			arranjo	00'00			10,00	/o		00,00	c/	00,00	00,00	c/	00,00	10,00	/\to	13,00	20,00	c/	9,00
Mile Completioniscogeni/m 2.00 4.523.83 A. A. A. A. A. A. A. A			comprimento		00,00			500,00			00'00			00'00			00'00			500,000	
		SUP	comp.total+ancoragem/m		00'00			4353,85			00,00			00'00			00'00		1	10473,08	
Mile Proteoticy Mile Proteoticy Mile Mi			comp.distribuição		00,00			00'0			00'00			00'0			00'00			00'00	
Michael Mic			peso (kg)		00,00			00'00			00,00			00'00			00'00			00,00	
Net			arranjo	00'0	/O		10,00	/o	13,00	00'00	/o	00'0	00'00	/o	00'0	20,00	/\tag{C}	17,00	20,00	/o	900'9
Methodistributicine 0.00			comprimento		00,00			500,00			00,00			00'0			00'00			500,000	
No. Paper (kg) No. No.	Ľ	MEIO	comp.total+ancoragem/m		00,00			7075,00			00'0			00'0			00'00			10211,76	
No. Comp. industrience organicy Comp. industrience organicy			comp.distribuição		8,00			8,00			8,00			8,00			8,00			8,00	
No. Composition Composi			peso (kg)		00'0			353,18			00,00			00'00			00'00			2026,01	
MECOMPINIMENTO 0.00			arranjo	00'00	/o		10,00	/o	13,00	00'0	/o	00'00	00'00	/o	00'00	10,00	/o	13,00	20,00	/>	9,00
NF			comprimento		00,00			500,000			00,00			00'00			00'00			500,000	
SEÇÃO COMP distribuíção OM ARAMADIRA NGEZATIVA ARAMADIRA NGEZATIVA </th <th></th> <th>INF</th> <th>comp.total+ancoragem/m</th> <th></th> <th>00'0</th> <th></th> <th></th> <th>4353,85</th> <th></th> <th></th> <th>00,00</th> <th></th> <th></th> <th>00'00</th> <th></th> <th></th> <th>00'00</th> <th></th> <th></th> <th>10473,08</th> <th></th>		INF	comp.total+ancoragem/m		00'0			4353,85			00,00			00'00			00'00			10473,08	
SEÇÃO FACE PROPORTION			comp.distribuição		00'0			00'0			00,00			00'00			00,00			00,00	
SEÇÃO Para Prosição ENA Pro			peso (kg)		00'00			00'0			00,00			00'0			00'00			00'00	
Seção Paris Par							ARM,	NDURA PO	SITIVA							ARMAD	URA NEG	ATIVA			
FMX FMX		SEÇÃO					PC	SIÇÃO E	W Y							POS	IÇÃO EM	>			
This complication This complete		EM X		0,00		5,00	5,00	∢	8,00	8,00	4	8,00	0,00	∢	0,00	00,00	∢	8,00	8,00	4	8,00
FSQ comptiment Comptimen				0				/ o	ш	0	/ o	Е	θ	/ o	Е	0	د/	СШ	0	/ o	CB
KEQ comp.tinento \$500.00 \$156.15 \$0.00 \$0.00 \$158.55			arranjo	10,00	_			/o		0,00	c/	00,00	00,00	c/	00,00		/\tag{c}	13,00	00,00	c/	00'00
FSQ			comprimento		500,0	0		300,000			00'00			00'00			800,00			00'00	
MEIO comp.distribuição 5.00 5.00 5.00 5.00 6.00 </th <th></th> <th>ESQ</th> <th>comp.total+ancoragem/m</th> <th></th> <th>4496,</th> <th>15</th> <th></th> <th>3196,15</th> <th></th> <th></th> <th>00'00</th> <th></th> <th></th> <th>00'00</th> <th></th> <th></th> <th>6153,85</th> <th></th> <th></th> <th>00'00</th> <th></th>		ESQ	comp.total+ancoragem/m		4496,	15		3196,15			00'00			00'00			6153,85			00'00	
Metor Peso (Ne2) 10,000 c/g 13,000 c/g 10,000 c/g			comp.distribuição		5,00			2,00			2,00			00'0			00'00			00'00	
MEIO comptimento 10,00 comptimento 10,00 comptimento 10,00 comptimento 10,00 10,00 10,00 0.			peso (kg)		140,2	8		396,32			00'0			00'0			00'00			00'00	
MEIO comp.tidistibilidgo 500,00 300,001 0.00 0.00 0.00 0.00 500 0.00 500 0.00 500 0.00 500 0.00 500 0.00 500 0.00 0			arranjo	10,00				/>	10,00	00'00	/S	00'00	00'00	/>	00'00	10,00	/\to	15,00	00'00	/\tag{C}	00'00
MEIO comp. fold! + ancoragem/in Light A380, Table A380, Ta			comprimento		500,0	0		300,000			00'00			00'0			800,00			00'00	
Comp.distribuição Com	<u>\</u>	MEIO	comp.total+ancoragem/m		4380,	17		3406,15			00'0			00'0			5333,33			00'00	
Peso (kg) Pes			comp.distribuição		00,00			00'00			00,00			5,00			2,00			2,00	
A compriment 10,00 c/ 13,00 c/			peso (kg)		00,00			00'00			00,00			00'00			166,40			00'00	
DIR comp.inento comp.foldI+ancoragem/m 4496,15 2561,54 0.00 0.00 60.00 6153.85 1 x comp.distribuição 0,00 0,0			arranjo	10,00	_			/o	13,00	00'0	/o	00'0	00'00	/o	00'0	10,00	/\tag{C}	13,00	00'00	/>	00'00
DIR FESUMO ARMADURA TFSO +107 (kg) comp.distribuição Comp.distribuição 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00			comprimento		500,0	0		300,000			00,00			00'00			800,00			00'00	
comp.distribuição 0,00		DIR	comp.total+ancoragem/m		4496,	15		2561,54			00'00			00'00			6153,85			00'00	
RESUMO ARMADURA 0,00 <t< th=""><th></th><th></th><th>comp.distribuição</th><th></th><th>00,00</th><th></th><th></th><th>00'00</th><th></th><th></th><th>00'00</th><th></th><th></th><th>00'00</th><th></th><th></th><th>00'00</th><th></th><th></th><th>00'00</th><th></th></t<>			comp.distribuição		00,00			00'00			00'00			00'00			00'00			00'00	
RESUMO ARMADURA PESO +10 % (kg) PESO +10 % (kg) TOTAL			peso (kg)		00'00			00'00			00'00			00'0			00'00			00'00	
PESO +10 % (kg) PESO +10 % (kg) TOTAL		RESUMO A	ARMADURA																		
PESO +10 % (kg) TOTAL	NEGATIVA	PES		92,41																	
	POSITIVA	PES		62'68																	
				82,20	_																

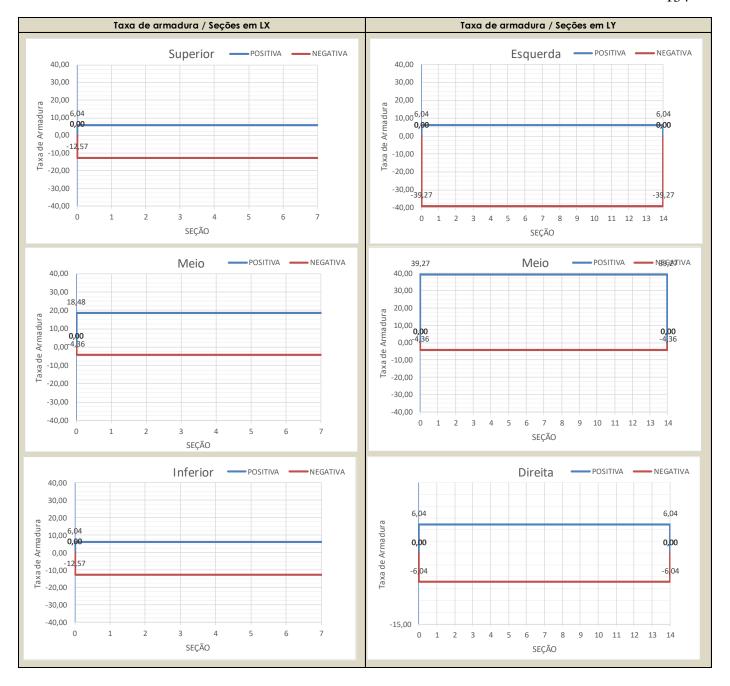
						×	IEMORIA	. DE CÁL	CULO AR	MADURA	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINAL	DINAL										
Borda				Superior	ior			Inferior				Direita				Esquerda	ρp			Meio do vão	vão	
Direção	ō.		rx	×	Γλ		Ľ		LΥ		Ľ		LΥ		Ľ		Γλ		Ľ		LY	
Seção	o		Мхе	Мхе	Mye	Mye	Mxe M	Mxe N	Mye	Mye N	Mxe Mx	Mxe N	Mye	Mye	Mxe	Mxe /	Mye	Муе	Mxm		Mym	۶
Momento	ıto		Positivo	negative	Positivo negative Positivo neg	gativ	sitivo neg	negative Positivo	itivo ne	gativePo	negative Positivo negative Positivo	ativePos	itivo ne	gativePc	sitivo ne	negative Positivo negative Positivo negative Positivo negative Positivo negative	sitivo ne	gativePc	sitivo ne	agativ ₀ P	ositivo n	egative
Armação	ão		Dricoing) parious	000	0.00	000		70		0	000	700	700	0	Dringing		700	000000000000000000000000000000000000000	000000000000000000000000000000000000000	7000	7
Descrição	Simbolo	Simbolo Grandeza	riiricipa	secondo		ncipa Lili	nec pdipi	secondo sec	secondor incipa		riincipa reconad seconad riincipa	ndin	on de se	בטומק	ncipa ri	ec pdpu		בחומל	ncipa L	s pdipili	Scorida Scorid	econde
Base Viga	wq	шɔ	100	100	1000	100	1 001	1 001	. 001	100	100	1 00 1	1 001	100	100	100	100	100	100	100	100	100
Altura Total	ч	шo	40	40	40	40	40 ,	40	40	40	40 4	40	40	40	25	25	25	25	32,5	32,5	32,5	32,5
Altura útil laje	р	cm	37	36	36	37	37	36	36	37	37 36	36,5	36	35	22	21,5	20,5	20	29,5	29	28,5	27,5
p-q	٩.	wo	3	4	4	3	3	4	4	3	3 3,	3,5	4	5	3	3,5	4,5	5	3	3,5	4	5
cobrimento nominal	2	wo	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5 2,	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Arm. Transversal	₽	шш	0	10	10	0	0	10	10	0	0	0	10	20	0	0	10	20	0	0	10	20
Mom. Ações Perm.	Msg	kNcm/m	0	0	0	0	0	0	0	0	0 167	16784	0	0	0 1	16784	0	0	0 1	16784	0	0
Mom. Cargas móveis	bsw	kNcm/m	0	0	0	0	0	0	0	0	0 329	32900	0	0	0	0	12200	0	0952	3010	5920	0
coef. Cargas móveis	ф		1,688	1,688	9′1 889′1	1 88	1,1	1,688	1,688	1,688	9′1 889′1	1,688	1 889′	1 889′	1 889′1	1,688	1,688	1 889′1	. 889′1	1,688	1,688	1,688
Mom. Cálc (Comb.Crífica)	psw	kNcm/m	0'0	0,0	0,0	0,0	0,0	0,0	0,0	0'0	0,0	66134,0	0,0	0'0	0,0	16784,0 18	18300,0	0,0	11340,0 21	3 0'66212	0,0888	0,0
Coef. Resistência Conc.	Kc			-	-	-	-	-	-	-	- 2,C	2,014	-	-	-	2,754 2	2,296	- 2	7,674	3,949	9,147	-
Cálculo	хθ			-		1	1	-	1	1	- 0,4	0,407	1	1) -	0,281 0	0,347	-	0,093	0,188	7.70,0	i.
Coef. Resistência aço	Ks		-	-	-	-	-	-	-	-	0,0	0,027	-	1) -	0,026 0	0,027	-	0,024 (0,025	0,024	1
Arm. Mínima	As,mín	cm²/m	00'9	900'9	9 00′9	9 00′9	9 00'9	9 00′9	9 00′9	00′9	900'9	9 00′9	9 00′9	00'9	3,75	3,75	3,75	3,75	4,88	4,88	4,88	4,88
Arm. Calculada	As,calc		900'9	9,00	9 00′9	9 00′9	6,00	9 00′9	9 00′9	9 00′9	6,00 49,	49,77 6	9 00′9	00′9	3,75 2	20,23	23,84	3,75	9,18	18,27	7,40	4,88
Arm. Máxima	4% Ac	cm²	160	160	160	1 09 1	1 60	1 60	160	160	160	1 60	1 091	160	100	100	100	100	130	130	130	130
Verificação	max e mín		ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ò
		Φ	Ф	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Ф	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Ф	θ
Arranio das armadiiras	\$0 00 aV	mm	10	10	10	10	10	10	10	10	10 2	20	10	10	10	20	20	10	10	20	10	10
	5	c/	c/	c/	c/	c/	c/ (c/	c/	c/	c/ c	c/	c/	c/	c/	c/	c/	c/	c/	c/	c/	c/
		cm	13	13	13	13	13	13	13	13	13 6	9	13	13	20	15	13	20	8	17	10	15
Arm. Total	As,efet	cm²/m	6,04	6,04	6,04 6	6,04 6	6,04 6,	6,04 6	6,04	6,04	6,04 52,	52,36 6	6,04	6,04	3,93 2	20,94 2	24,17	3,93	9,82	18,48	7,85	5,24
Verif. Tx Armadura	efet > 9	efet > 95%calc	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ò
Verif. Tx Armadura	efet > 1	efet > 110%calc	ok	ok	ok	ok	ok	ok	ok	ok	ok o	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
Verif. Armadura	Ativa ou D	Ativa ou Distribuição As,dist	As, dist	As, dist	As,dist As,	dist	As,dist As,	As,dist As	As,dist A:	As,dist A	As,dist As,ativa		As,dist As	As,dist A	As,dist As	As,ativa As,ativa		s,dist As	ativa A	As,dist As,ativa As,ativa As,ativa As,dist	s,ativa	As,dist

CÁLCULO L2

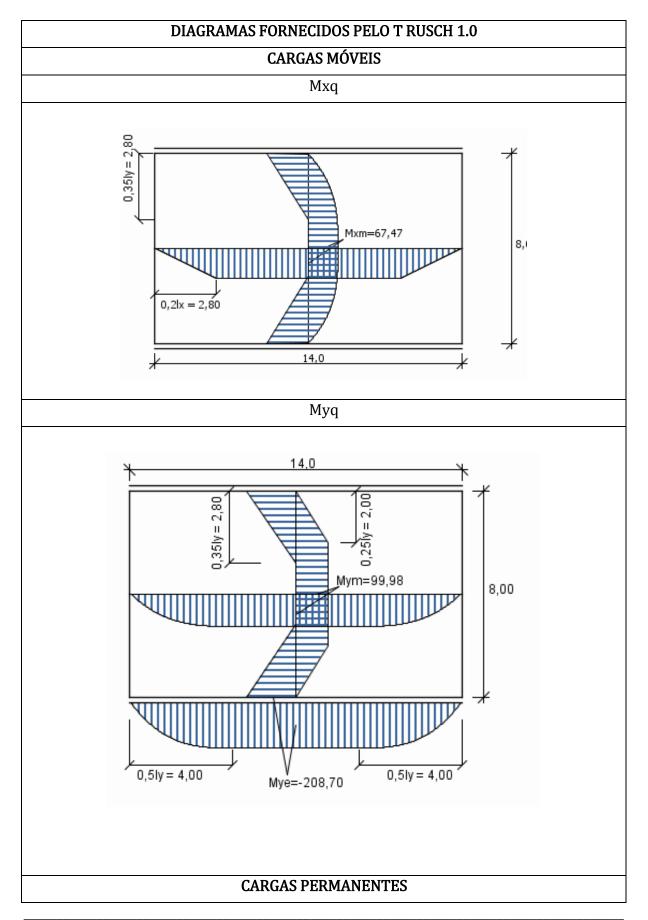


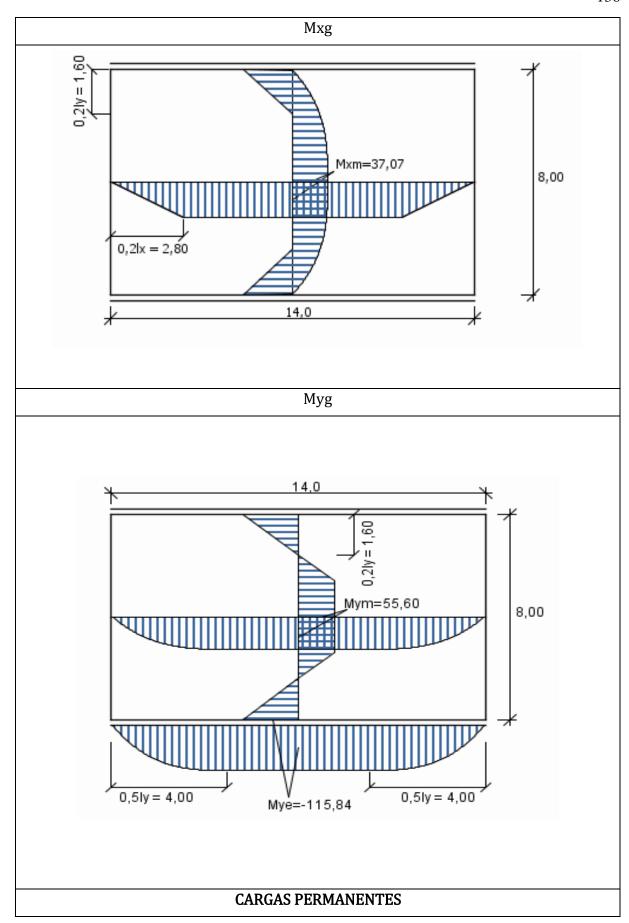
CARGAS PERMANENTES

	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	0,93	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	8,13	kN/m²
	subtotal	11,82	kN/m²


COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

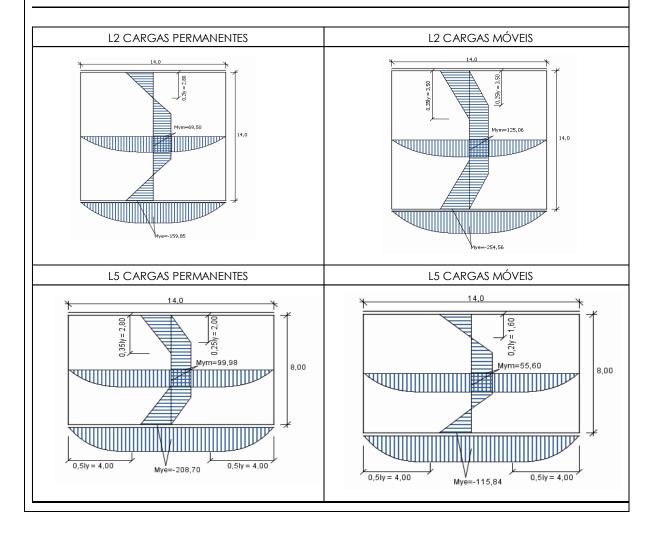
			COMP	ATIBILIZAÇ	ÃO DE MO	MENTOS FLETC	RES		
		L	.2	L	.5				
Tipo			Mom.Flet.		Mom.Flet.				
Momento	Simbolo	Borda	kNm	Borda	kNm		Mom. Com	patibilizado	
NEGATIVO	mye	Inferior	597,6375	Superior	469,434	Mxr =	533,54		
POSITIVO	mym	meio	281,415	meio	233,37	mym L2 =	345,52	mym L5 =	297,47



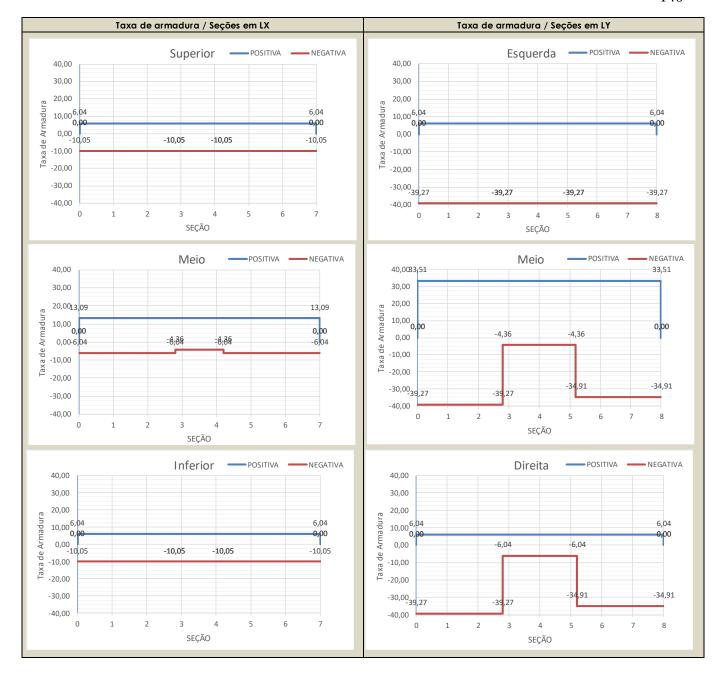

						MEMO	RIAL DE C	ALCULO:	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINAL	RA LONG	TUDINAL										
Borda				Superior			Infe	nferior			Direita	ō			Esquerda	٥		×	Meio do vão	ão	
Direção	0		ΓX		Lλ	1	ΓX	Γλ	,	ΓX		Γλ		ΙX		Γλ		ΙX		Γλ	
Seção	0		Мхе	Mxe M	Mye Mye	Мхе	Мхе	Муе	Муе	Mxe	Мхе	Муе	Муе	Mxe	Mxe /	Mye M	Муе	Mxm		Mym	
Momento	t		Positivo r	egativePosi	Positivo negative Positivo negative	vePositivo		negativ Positivo	negative Positivo	ositivon	negative Positivo negative Positivo	ositivo n.	egativ _e P _e		negativ Positivo	sitivo neg	gativePos	negative Positivo negative Positivo negative	ativePos	itivo ne	gative
Armação	ão		oricoir C				000	000	orio circ	0.00	000000000000000000000000000000000000000	700	7000	0	3	The state of the s	7 C	0	000	700	2
Descrição	Simbolo	Simbolo Grandeza	pdoulle bdo	econdosec econdosec	diad Lincoln		Seconda	Seconda	D C C C C C C C C C C C C C C C C C C C	D C C C C C C C C C C C C C C C C C C C	b do	S COLOCE		pdioli	nd ou	nechoung nechoung		pdio	ndin	on de se	מכומכ
Base Viga	hw	шo	100	1 00 1	100 100	100	100	100	100	100	100	100	100	100	100	100	1 001	1 001	100	1 001	100
Altura Total	h	шɔ	40	40 4	40 40	40	40	40	40	40	40	40	40	40	40	40 4	40	30 3	30 3	30	30
Altura útil laje	Р	шɔ	37	34,7 3	36,5	37	34,7	36	36,5	37	37	36	36	37	37	36 3	36 2	26,5	27 2.	24,5	26
p-y	ď,	шɔ	3	5,3	4 3,5	3	5,3	4	3,5	3	3	4	4	3	3	4	4 3	3,5	3 2	5,5	4
cobrimento nominal	၁	шɔ	2,5	2,5	2,5 2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5 2.	2,5	2,5	2,5
Arm. Transversal	₽	шш	0	20	0 01	0	20	10	0	0	0	10	10	0	0	10	01	0 0	0	20	10
Mom. Ações Perm.	Msg	kNcm/m	0	4860 (0 15985	0 9	4860	0	15985	0	0	0	0	0	0	0	0 48	4860 (69 0	0569	0
Mom. Cargas móveis	Msq	kNcm/m	0	0268	0 25456	0	0268	0	25456	0	0	0	0	0	0	0	58 0	0268	0 12.	12506	0
coef. Cargas móveis	ф		1,688	9′1 889′1	1,688 1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	9′1 889′1	1,688 1,4	9′1 889′1	9′1 889′1	1,688	1,688
Aom. Cálc (Comb.Crífica)	Msd	kNcm/m	0,0	0 0'51881	0,0 54169,0	0'0	18315,0	0,0	53354	0,0	0,0	0,0	0'0	0,0	0,0	0,0	0,0 200	20016,0 0,	0,0	34502	0,0
Coef. Resistência Conc.	Kc		1	6,574	- 2,459	1	6,574	1	2,497	1	1	-	-	-	-	-	- 3,5	3,508	- 1,	1,740	
Cálculo	βх			0,109	- 0,320	1	0,109	ı	0,314	ı	1	ı	i.	1	1	1	- 0,;	0,214	- 0,	0,491	
Coef. Resistência aço	Ks		-	0,024	- 0,026	-	0,024	1	0,026	1	-	-	-	-	-	-	- 0)	0,025	γο -	0,029	1
Arm. Mínima	As, mín	cm²/m	00'9	9 00'9	00'9 00'9	900'9	00′9	900'9	900'9	900'9	00′9	900'9	900'9	00'9	9 00′9	9 00'9	6,00 4,	4,50 4,3	4,50 4,	4,50	4,50
Arm. Calculada	As,calc		900'9	12,69 6,	6,00 39,14	9,00	12,69	900'9	38,46	900'9	900'9	900'9	900'9	00'9	9 00′9	9 00′9	900 19	19,00 4,	4,50 40	40,30	4,50
Arm. Máxima	4% Ac	cm²	160	160	160 160	160	160	160	160	160	160	160	160	160	160	160	160	120 12	120 13	120	120
Verificação	max e mín		ok	ok	ok ok	ok	ok	ok	ok	ok	ok	ok	ò	ok	ok V	ok	ok	ok c	ok	ok	Ą
		Φ	Φ	Φ	Ф	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Ф	Ф	Φ	Ф	Ф	Ф	Ф	Φ	Φ
the state of the s	*****	mm	10	16	10 20	10	16	10	20	10	10	10	10	10	10	10 1	10 2	20 1	10 2	20	10
	, et	/o	/o	c/ c	c/ c/	/o	/o	/o	/o	/o	/o	/o	/o	/o	/o	c/ c	c/ c	c/ c	c/ c	c/	c/
		шɔ	13	1 91	13 8	13	16	13	8	13	13	13	13	13	13	13	13	17 1	18	8	18
Arm. Total	As, efet	cm²/m	6,04	12,57 6,	6,04 39,27	6,04	12,57	6,04	39,27	6,04	6,04	6,04	6,04	6,04	6,04	6,04 6,	6,04 18	18,48 4,3	4,36 39	39,27	4,36
Verif. Tx Armadura	efet > 9	efet > 95%calc	ok	ok	ok ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok c	ok	ok	Ą
Verif. Tx Armadura	efet > 1	efet > 110%calc	ok	ok	ok ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok c	ok	ok	k
Verif. Armadura	Ativa on D	Afiva ou Distribuição	As,dist A	As,ativa As,	As,dist As,ativa	a As,dist	As,ativa	As,dist	As,ativa	As,dist ,	As,dist ,	As,dist /	As,dist /	As,dist A	As,dist A	As,dist As,	As,dist As,c	As,ativa As,	As,dist As,c	As,ativa As	As,dist

Note that building in the part of the pa	2																				
14.00 Control backs Cont	LX LX		E							QUA	NTITATIV	O DE AC	8								
Standard	<u> </u>	14.00																			
Figure Provincial							ARMA	DURA POS	SITIVA							ARMADU	IRA NEGAI	IIVA			
Fig. 10 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 3		SEÇÃO					P	SIÇÃO EN	×v							POSI	ÇÃO EM X				
Note	DIREÇAO ARMAÇAO	EM Y		0,00		0,00	0,00	۷	14,00	14,00	٧	14,00	00'0	٧	0,00	00'0			4,00		14,00
Continuence				Đ			Φ	/o	cm	θ	/ o	cm	θ	/ c /	cm	Φ			Φ	/ o	cm
Compositionistication Comp			arranjo	00'00			10,00	/o	13,00	00,00	/o	0,00	0,00	c/	0,00	16,00			00,00	c/	0,00
No. Compositionise concept with the compositionise of the comp			comprimento		0,00			1400,00			00'00			00'00		-	1400,00			00′0	
Compositionistication Compositionistication Compositionistication Compositionistication Compositionistication Compositionisticationistic Compositio		SUP	comp.total+ancoragem/m		0,00			11276,92			00'00			00'00		8	3750,00			00'0	
Miles Protection Continue			comp.distribuição		0,00			0,00			00'00			4,90			4,90		,	4,90	
Mail			peso (kg)		0,00			00'00			0,00			00,00			673,14			00'0	
Metho complication Complication			arranjo	00'0			20,00	/>	13,00	00,00	/\tag{c}	00'00	00,00	/o	00'00	10,00			00,00	/o	00'00
Meto Comp.lotels-incorgenify Meto M			comprimento		0,00			1400,00			0,00			00'0			400,00			00'0	
Particular Par	ĭ	MEIO	comp.total+ancoragem/m		0,00			9011,76			00'00			00,00		7	81,777			00'0	
No.			comp.distribuição		14,0	0		14,00			14,00			4,20			4,20			4,20	
Main compiniments 0.00 0			peso (kg)		0,00	_		3128,88			00'00			00'00		.,	203,84			00'0	
Mathematical parameter Mathematical parame			arranjo	00'0			10,00	/'S		00,00	/\(\)	00'00	00,00	/o	00,00	-	-		0,00	/o	00'00
NF comp.bloid+cnicorgogen/m 0.00 0.			comprimento		0,00			1400,00			00'00			00,00			400,00		-	00′0	
Secretary Compositivity		Ŋ	comp.total+ancoragem/m		0,00	-		11276,92			0,00			00'00		3	3750,00			00'0	
SEÇÃO Face (kg) COO CO			comp.distribuição		0,00			0,00			0,00			4,90			4,90			4,90	
SEÇÃO SEÇÃO EN Y POSTO GOO A 14,00 14,00 A 14,00			peso (kg)		0,00			0,00			0,00			00,00			673,14			00'0	
SEÇÃO A 0.00 A 14.00 14.00 A 14.00 14.00 A 14.00 14.00 A 14.00 15.00 A 14.00 A							ARMA	DURA POS	SITIVA							ARMADU	IRA NEGAI	IVA			
FM x A comportination A co	i	SECÃO					2	SICÃO EN	*							POSI	CÃO EM Y				
This complete This complet	DIREÇÃO ARMAÇÃO	EM X		0,0		00'0	00'0	4	14,00	14,00	٨	14,00	00'0	4	00'0	00'0	4	8,	4,00		14,00
FSQ Comp.inlentic Comp.				Ð	/o		θ	/o	cm	0	/ o	cm	0	/ o	cm	0		ca	0	ر '	cm
ESQ			arranjo	00'0			10,00	/>	13,00	00'00	/	00'00	00'00	/>	00,00	20,00			00'00	/o	00'00
E5Q comp.liateIncacegem/m 0.00 11726,92 0.00			comprimento		0,00			1400,00			00,00			00,00			1400,00			00'0	
Comp. distribuição 0.00		ESQ	comp.total+ancoragem/m	_	0,00			11276,92			00'00			00'00		1.	7500,00			00′0	
Methodic Methodic			comp.distribuição		0,00			00'00			00'00			00'00			00'00			00'0	
MEIO composition of the compo			(ga) osad		0,00	-		0,00			00'00			00'00			00'00			00′0	
MEIO computation computation MEIO computation computat			arranjo	00'00			20,00	/>		00'00	/\tag{2}	00,00	00,00	/o	00'00					/o	00'00
MEIO comp.total+ancoragem/m in figuration (a) comp.distribuição (a) comp.distribuição (b) comp.distribuição (b) comp.distribuição (b) comp.distribuição (b) comp.distribuição (comp.distribuição (b) comp.distribuição (comp.distribuição (c			comprimento		0,00			1400,00			00'00			00'00			1400,00			00′0	
14.00 14.	۲	MEIO	comp.total+ancoragem/m	_	0,00			19150,00			00'00			00'00		7	81,777,			00′0	
Page (kg) Pag			comp.distribuição		14,0	C		14,00			14,00			14,00			14,00			4,00	
This comptiment Comptiment			peso (kg)		0,00			6648,88			00'00			00'00			679,47)	00'0	
DIR comp.tiotal+ancoragem/n 0.00 1400,00 0.00 1400,00			arranjo	00'0			10,00	/>	13,00	00'00	/	00'00	00,00	/>	00'00	10,00			00'00		00'00
DIR comp.total+ancoragem/n 0.00 11276,92 0.00 0.00 10769,23 x comp.distribuição 0.00			comprimento		0,00			1400,00			00'00			00'00			1400,00			00'0	
comp.distribuição 0,00		DIR	comp.total+ancoragem/m	_	0,00			11276,92			00'00			00'00		1(0769,23			00'0	
Peso (kg) 0,00 0,			comp.distribuição		0,00			0,00			0,00			00,00			00'00			00'0	
RESUMO ARMADURA PESO +10 % (kg) PESO +10 % (kg) TOTAL			peso (kg)		0,00			00'00			00'00			00'00			00'00)	00'0	
PESO +10 % (kg) PESO +10 % (kg) TOTAL		RESUMO A	RMADURA																		
PESO +10 % (kg) TOTAL	NEGATIVA	Sad		29,58																	
	POSITIVA	Sad		77,76																	
				107,35	Г																

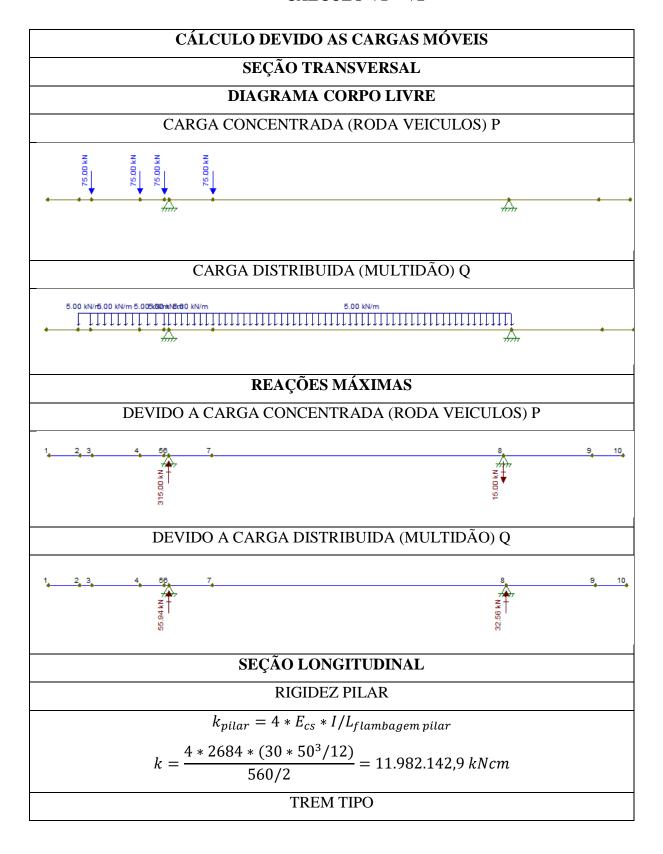
CÁLCULO L5

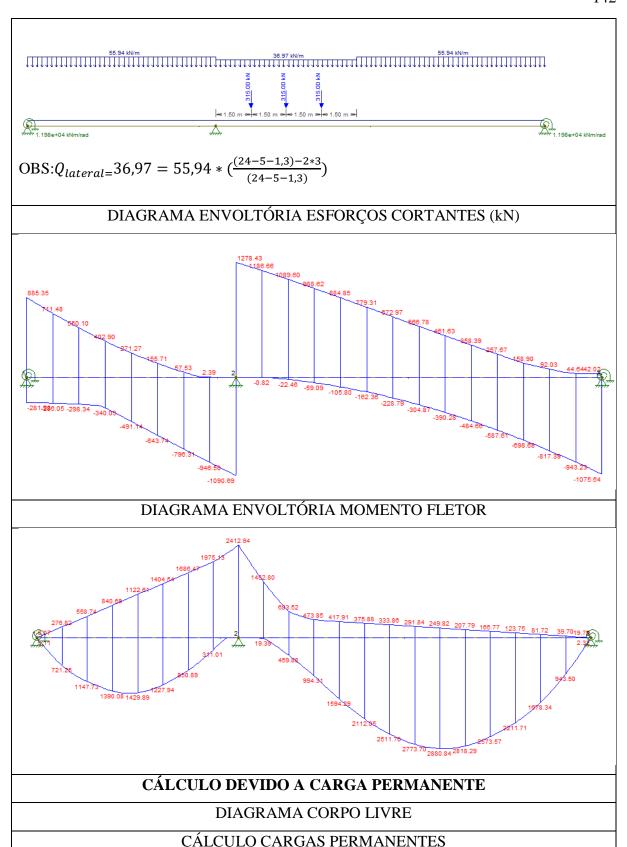


	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	0,93	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	8,13	kN/m²
	subtotal	11,82	kN/m²

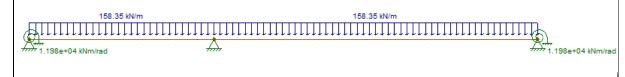

COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

ı				COMP	ATIBILIZAÇ	ÃO DE MO	MENTOS FLETC	RES		
			L	.2	L	.5				
	Tipo			Mom.Flet.		Mom.Flet.				
	Momento	Simbolo	Borda	kNm	Borda	kNm		Mom. Comp	patibilizado	
	NEGATIVO	mye	Inferior	597,6375	Superior	469,434	Mxr =	533,54		
	POSITIVO	mym	meio	281,415	meio	233,37	mym L2 =	345,52	mym L5 =	297,47

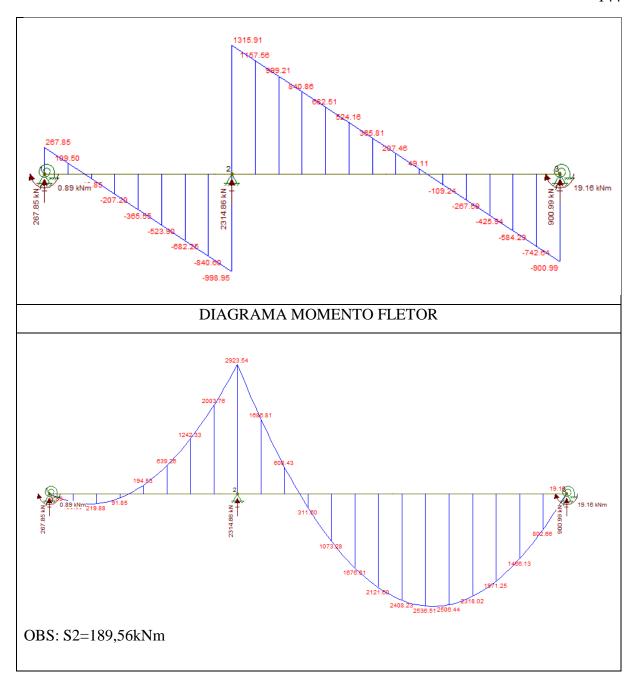



							MEMORI	AL DE CA	VICULO.	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINAI	A LONG	TUDINAL	1									
Borda	_			Superior	rior			Inferior	ō			Direita	ō			Esquerda	da			Meio do vão	vão	
Direção	į,		Ľ	×	ΓY	>	Ľ		ΓY		Ľ		ΓY		Ľ		Lλ		Ľ		Γ	
Şeção	c		Мхе	Mxe	Муе	Муе	Мхе	Mxe	Муе	Муе	Mxe	Mxe	Муе	Муе	Mxe	Mxe	Mye /	Mye	Mxm		Mym	
Momento	ıţo		Positivo	Positivo negative Positivo negativ	Positivo	~	Positivo n	negativ _e Positivo		negative Positivo		negative Positivo	ositivo n	negativeP	Positivo n	negativ _e Positivo		gativePc	negative Positivo negative Positivo negative	gativePc	ositivo n	egativa
Armação	ão		oi.o		2		0.00	0	70	The state of the s	0	3	70	0	0	0	7000		0	0	7000	70
Descrição	Simbolo	Simbolo Grandeza	riiicipa	secondo	secondo		riii cipa si	econdada.	econida	nincipul r	ndio III	s pdinili	acorida s	acon ad a	nuciba L	ac ndou	ac nundae	COLIGA	חובו	ncipd 36	aconida a	
Base Viga	þw	ш	100	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Altura Total	ч	cm	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	30	30	30	30
Altura útil laje	ъ	cm	37	34,7	36	36,5	37	34,7	36	36,5	37	37	36	36	37	37	36	36	27	27	25,7	26
p-q	۵.	cm	3	2'3	4	3,5	3	5,3	4	3,5	3	3	4	4	3	3	4	4	3	3	4,3	4
cobrimento nominal	υ	cm	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Arm. Transversal	₽	mm	0	20	10	0	0	20	10	0	0	0	10	10	0	0	10	10	0	0	10	10
Mom. Ações Perm.	Msg	kNcm/m	0'0	0'2028	0′0	11584,0	0,0	3707,0	0,0	11584,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	3707,0	0,0	0,0955	0,0
Mom. Cargas móveis	Wsd	kNcm/m	0'0	0,747,0	0′0	20870,0	0′0	6747,0	0′0	20870,0	0,0	0,0	0,0	0,0	0,0	0′0	0,0	9 00	6747,0	6 0'0	0′8666	0'0
coef. Cargas móveis	ф		1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1 889′1	1 889	1,688	. 889′1	1,688	1,688
Mom. Cálc (Comb.Crífica)	Wsd	kNcm/m	0,0	13827,5	0'0	53354,0	0,0	13827,5	0	46943,4	0	0	0	0	0	0	0	0	5125	0 29	29747,0	0,0
Coef. Resistência Conc.	Kc		-	802'8	-	2,497	-	8,708	-	2,838	-	-	-	1	-	-	-	- 4	4,820	-	2,220	,
Cálculo	хβ		i	180′0	i.	0,314	i i	0,081	1	0,271		1	1	1	1		1) -	0,152	-	198'0	i.
Coef. Resistência aço	Ks		-	0,024	-	0,026	-	0,024	-	0,026	-	-	-	-	-	-	-) -	0,024	-	0,027	-
Arm. Mínima	As, mín	cm²/m	900'9	00'9	900'9	900'9	900'9	900'9	900'9	900'9	900'9	00'9	00'9	900'9	00′9	00'9	9 00′9	. 00′9	4,50	4,50	4,50	4,50
Arm. Calculada	As,calc		900'9	74'6	900'9	38,46	900'9	9,47	900'9	33,18	900'9	00'9	00'9	00′9	900'9	00'9	9 00′9	1 00′9	13,72	4,50	31,12	4,50
Arm. Máxima	4% Ac	cm²	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	120	120	120	120
Verificação	max e mín		ok	ok	ok	ok	ok	ok	ok	ok	ok	ok V	ok V	ok	ok	ok	ok	ok V	ok	ok	ok	ok
		θ	θ	θ	Φ	θ	θ	θ	θ	θ	Φ	θ	θ	θ	Φ	Ф	Φ	θ	θ	θ	θ	Φ
יכיייס ייסטייס	70 70	mm	10	91	10	20	10	16	10	20	10	10	10	10	10	10	10	10	10	10	16	10
	5	/ o	c/	c/	c/	c/	/o	c/	c/	/o	c/	/o	/o	c/	c/	/o	/o	c/	c/	c/	c/	c/
		cm	13	20	13	8	13	20	13	6	13	13	13	13	13	13	13	13	9	18	9	18
Arm. Total	As, efet	cm²/m	6,04	10,05	6,04	39,27	6,04	10,05	6,04	34,91	6,04	6,04	6,04	6,04	6,04	6,04	6,04	6,04	3,09	4,36	33,51	4,36
Verif. Tx Armadura	efet > {	efet > 95%calc	ok	ok	ok	ok	ok	ok V	ok	ok	ok	ok V	ok Yo	ok	ok	ok	ok	ok V	ok	ok	ok	ok
Verif. Tx Armadura	efet > 1	efet > 110%calc	ş	ð	ŏ	ş	ð	쓩	å	ò	o X	쓩	쓩	å	ok	ð	ě	ð	o X	ð	Ą	ð
Verif. Armadura	Ativa ou E	Ativa ou Distribuição As, clist As, cativa As, clist As, cativ	As,dist	As,ativa	As,dist	As,ativa	As,dist A	As,ativa	As,dist As,ativa		As,dist /	As,dist /	As,dist /	As,dist ,	As,dist /	As,dist A	As,dist A	As,dist As	As,ativa A	As,dist As	As,ativa /	As, dist

No. 10 10 10 10 10 10 10 10	DIMENSÕES IA IE																				
1	X		ε							QUA	NTITATIV	O DE AÇ	8								
Figure Part Part	λΊ	8,00	ε																		
Section Sect							ARMA	DURA POS	SITIVA							ARMADU	RA NEGA	TIVA			
This continue conti	DIREÇÃO ARMAÇÃO	SEÇÃO		'	L	-	2	SIÇÃO EN	××					-		POSIC	ÇÃO EM >	<u> </u>	-	-	
Second building Second bu		-		ò	+	+	8, e	ړ ک	00',	8, e	۵ ک	00',	8, 6	ن ه	2,80	7,80 e		4,20	4,20 e	ن ∢	00,7
Completionistic Completion			arranjo	ő		-	10,00	(c)	13,00	00'0	j)	00,00	16,00	, 'o	+	16,00	1	+	16,00		20,00
Mathematic particularies 100 1			comprimento		0,0	C		700,007			00'00			280,00		-	40,00		-	00,08	
Compositionistic comp		SUP	comp.total+ancoragem/m	۶	0,0	0		5892,31			00,00			1680,00		7	700,00			00′089	
Particular Pa			comp.distribuição		0,0	0		0,00			00,00			00'00			00'00			00'0	
Note that the consideration Continue C			peso (kg)		0,0	0		00'00			00'00			00'00			00'00			00'0	
New Figure Proceediments Control Cont			arranjo	0,0			10,00	/>	13,00	00'00	/o	00,00		/o	13,00	10,00		18,00		c/	13,00
No. Comp distributione organism Mail Comp distributione Comp			comprimento		0,0	0		700,00			00,00			280,00		_	40,00			00,08	
Participation Signature	\(\)	MEIO	comp.total+ancoragem/m	L	0,0	0		12766,67			00'00			2493,59		9	536,75		2	493,59	
No. Para (No. Para (No.			comp.distribuição		8,0	0		8,00			8,00			8,00			8,00			8,00	
Main of the composition Main of the comp			peso (kg)		0,0	0		637,31			00,00			124,48			31,79			24,48	
No. Compicinentic Composinic Michigan Compicinent Composinic Michigan Compicinent Composinic Michigan Compicinent Composinic Michigan Compicinent Composinic Michigan Compicine Michiga			arranjo	ó			10,00	/>	13,00	00,00	/ɔ	00,00	16,00	/>	20,00	16,00			16,00		20,00
No. Compositionicaciagew/m Compositioni			comprimento		0,0	0		700,000			00'00			280,00		ı	40,00			00'08	
SEÇÃO PERO (SEQÍ) COORDINA PARA ADMINISTRAÇÃO COORDINA		Ŗ	comp.total+ancoragem/m	۶	0,0	0		5892,31			00'00			1680,00		7	00,007		1	00'089	
Secolo Fig. Secolo Sec			comp.distribuição		0,0	C		0,00			00'00			00'00			00,00			00'00	
Figure Part Part			peso (kg)		0,0	C		00,00			00'00			00'00			00,00			00'0	
Security Security							ARMA	DURA POS	SITIVA							ARMADU	RA NEGA	TIVA			
FMX March March		SEÇÃO					S	SIÇÃO EN	۷ ۸							POSIÇ	ÇÃO EM Y				
Fig. 64 A complete A comp	DIREÇAO ARMAÇAO	EW X		ò			00'0	۷	8,00	8,00	٧	8,00	00'0	٧	2,80	2,80		5,20	5,20	۷	8,00
Complication Com				Ŭ			θ	/ o	СШ	θ	/ o	cm	θ	/ o	СШ	θ		СШ	0	/ o	СШ
FSQ comp.tinent.cagem/m Comp.tinent.c			arranjo	0,0			10,00	c/	13,00	00,00	/o	0,00	20,00	/o		20,00			20,00	c/	8,00
ESQ comp.lotal+ancorgem/m 0.00 6661.54 0.00 4556.25 3000.00 4575.00 4275.00 ARIO comp. lotal plant local comp. comp. climate local comp. climate local c			comprimento		0,0	С		800,00			00'00			280,00		2	240,00		,	00,089	
Comp. distribuição 0.00 c. 0.00		ESQ	comp.total+ancoragem/m	٤	0,0	С		6661,54			00,00		•	4556,25		36	000'000		4	375,00	
Methodic Methodic			comp.distribuição		0,0	С		00'00			00'00			2,80			2,80			2,80	
MEIO comportinento 0.00			peso (kg)		0,0	0		00'00			00'00			316,39		2	208,32		,	03,80	
MEIO computentent MEIO computententent MEIO computententententententententententententent			arranjo	0'(0			16,00	/>	900'9	00'00	/>	00,00	20,00	/>		10,00			20,00	/>	00′6
MEIO comp. distribuição 1.00 1.00 1.00 1.00 1.00 1.10			comprimento		0,0	0		800,00			00'00			280,00		N	240,00			00'08	
A comp.distribuição 7.00 7.00 7.00 7.00 1.40	۲	MEIO	comp.total+ancoragem/m	۶	0,0	C		15093,33			00'00			5108,33		-1	416,67		4	530,56	
This base (kg) Light Li			comp.distribuição		7,0	0		7,00			7,00			1,40			1,40			1,40	
This comparison Comparison			peso (kg)		0,0	0		1658,76			00,00			177,36			-12,38			57,30	
DIR comp.tiotal+ancoragem/m 0.00 800.00 0.00 507.08 240.00 280.00 KESUMO ARMADURA 0.00 0.00 0.00 0.00 0.00 2.80 2.80 2.80 FISO +10 % (kg) 2082.64 0.00 0.00 0.00 352.27 -13,33 312,15 TOTAL 4378,71 4378,71			arranjo	0,0			10,00	/>	13,00	00,00	/o	00,00	20,00	/o	8,00	10,00			20,00	/o	00′6
DIR comp.total+ancoragem/n Line			comprimento		0,0	C		800,00			00'00			280,00		2	240,00			00,089	
comp.distribuição 0,00 0,00 2,80		DIR	comp.total+ancoragem/m	٤	0,0	0		6661,54			00'00			5073,08		'-	762,82		4	495,30	
RESUMO ARMADURA. 0.00 0.00 0.00 352,27 -13,33 312,15 RESUMO ARMADURA. PESO +10 % (kg) 2082,64 2296,07 TOTAL 4378,71			comp.distribuição		0,0	0		0,00			00,00			2,80			2,80			2,80	
RESUMO ARMADURA PESO +10 % (kg) 2082.64 PESO +10 % (kg) 2296.07 TOTAL 4378,71			peso (kg)		0,0	0		00'00			00'00			352,27			-13,33			12,15	
PESO +10 % (kg) 2082,64 PESO +10 % (kg) 2296,07 TOTAL 4378,71		RESUMO A	ARMADURA																		
PESO +10 % (kg) 22%6,07 TOTAL 4378,71	NEGATIVA	PES		082,64																	
4378,71	POSITIVA	PES		296,07																	
				378,71																	



CÁLCULO V1 = V2



Levantamento Carga	s Permanente	s					
Número de longarinas (nºL)	2	und					
Número de Transversinas(nºT)	0	und					
Dimensão OAE							
Longitudinal (A)	22	m					
Transversal (B)	24	m					
Distância entre eixos longarinas	14	m					
Qnt Vigas New Jersey seção trans	4	und					
Nº Faixas Rolamento	4	und					
Seção Transv. Influência (B/nºL)	12	m					
Dimensão vigas (estimativa)							
base (bw)	35	cm					
altura (h)	200	cm					
Levantamento Ca	Levantamento Cargas /Área						
Elemento	carga						
Barreira New Jersey	1,09	kN/m²					
Pavimento	2,76	kN/m²					
Laje + mísulas	8,13	kN/m²					
Vigas (estimado)	1,22	kN/m²					
subtotal	13,20	kN/m²					
Levantamento C	argas / m	•					
Carregamento linear	158,35	kN/m					

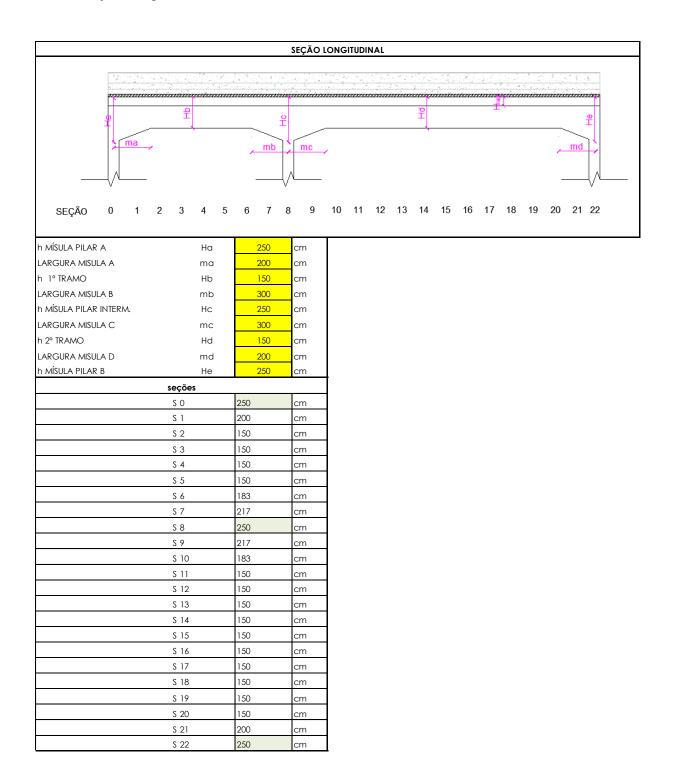


DIAGRAMA ESFORÇO CORTANTE

Não são apresentadas todas as memórias de cálculo das longarinas, entretanto, todos os resultados substanciais estão apresentados no corpo deste trabalho.

Como exemplo, para o tabuleiro A são apresentadas todas as planilhas de cálculos.

Seção Aná	ilise		0	.0	1	,0	2	.0
Moment								
Descrição	Simbolo	Grandeza	Positivo	negativo	Positivo	negativo	Positivo	negativo
Base Viga	bw	cm	40,0	40,0	40,0	40,0	40,0	40,0
Base Viga T	bf	cm	320,0	40,0	320,0	40,0	320,0	40,0
Altura Total	h	cm	250,0	250,0	200,0	200,0	150,0	150,0
Altura laje colaborante	hf	cm	32,5	32,5	32,5	32,5	32,5	32,5
Altura útil viga	d	cm	225,0	244,2	180,0	194,2	135,0	144,2
h-d	ď'	cm	25,0	5,8	20,0	5,8	15,0	5,8
cobrimento nominal	С	cm	3,0	3,0	3,0	3,0	3,0	3,0
Arm. Transversal (Estimada)	Ф	mm	16,0	16,0	16,0	16,0	16,0	16,0
Mom. Ações Perm.	Msg	kNcm/m	90,0	0,0	18.956,0	0,0	21.988,0	0,0
Mom. Cargas móveis	Msq	kNcm/m	500,0	600,0	72.125,0	27.682,0	114.773,0	55.874,0
coef. Cargas móveis	φ		1,5	1,5	1,5	1,5	1,5	1,5
Mom. Cálc (Comb.Crítica)	Msd	kNcm/m	1.004.109,0	125.513,6	642.629,7	80.328,7	361.479,2	127.288,0
Cálculo seção T	βxf		0,2	0,2	0,2	0,2	0,3	0,3
Cálculo seção T	kcf		4,1	4,6	3,4	3,7	2,6	2,8
Cálculo seção T	Kca		16,1	19,0	16,1	18,8	16,1	6,5
Cálculo seção T	βхα		0,0	0,0	0,0	0,0	0,0	0,0
Cálc T Verificação	βχα	-βxf	<	<	<	<	<	<
	M0	kNcm/m	0,0	0,0	0,0	0,0	0,0	0,0
Flange	ks0		0,0	0,0	0,0	0,0	0,0	0,0
	As0	cm²/m	0,0	0,0	0,0	0,0	0,0	0,0
Momento Nervura	ΔΜ	kNcm/m	1.004.109,0	125.513,6	642.629,7	80.328,7	361.479,2	127.288,0
Mom.Cálc Mínimo	md,mín	kNcm/m	1.004.109,0	125.513,6	642.629,7	80.328,7	361.479,2	45.184,9
Coef. Resistência Conc.limite	kc,lim	cm²/kN	1,9	1,9	1,9	1,9	1,9	1,9
Mom.Cálc limite	md,lim	kNcm/m	8.710.508,6	1.282.041,1	5.574.725,5	810.705,8	3.135.783,1	446.907,6
Tipo armadura	Simples	ou Dupla	Simples	Simples	Simples	Simples	Simples	Simples
Domínio de Deformação Conc	1,2,3,4		2	2	2	2	2	2
Coef. Resistência Conc.	Kc1		16,13	19,00	16,13	18,77	16,13	6,53
Cálculo	βх		0,043	0,037	0,043	0,037	0,043	0,110
Coef. Resistência aço 1	Ks1		0,023	0,023	0,023	0,023	0,023	0,024
Mom. Cálc 1	M1d	kNcm/m	1.004.109,0	125.513,6	642.629,7	80.328,7	361.479,2	127.288,0
Arm. Calculada 1	Asd1	cm²/m	104,5	12,0	83,6	9,7	62,7	21,2
Mom. Cálc 2	M2d	kNcm/m	0,0	0,0	0,0	0,0	0,0	0,0
Coef. Resistência aço 2	ks2		0,000	0,000	0,000	0,000	0,000	0,000
Arm. Calculada 2	Asd2	cm²/m	0,0	0,0	0,0	0,0	0,0	0,0
Coef. Resistência aço comp	ks'		0,000	0,000	0,000	0,000	0,000	0,000
Arm. Calculada comp	A'sd	kNcm/m	0,0	0,0	0,0	0,0	0,0	0,0
Arm. Mínima	As,mín	cm²/m	10,0	10,0	8,0	8,0	6,0	6,0
Arm. TOTAL As0+As1+As2+As'	As,calc	cm²/m	104,5	12,0	83,6	9,7	62,7	21,2
Arm. Máxima	4% Ac	cm²/m	400,0	400,0	320,0	320,0	240,0	240,0
Verificação Asw	máx e mín		ok	ok	ok	ok	ok	ok
		Φ	Φ	Ф	Φ	Φ	Φ	Φ
		mm	25,0	25,0	25,0	25,0	25,0	25,0
		qnt	22,0	3,0	18,0	2,0	13,0	5,0
Arranjo das armaduras	As,adot	camadas	4,0	1,0	3,0	1,0	2,0	1,0
		máxΦ/cam	7,0	34,0	7,0	34,0	7,0	34,0
		ahoriz	atende	atende	atende	atende	atende	atende
		dreal/dadot	106%	100%	105%	100%	105%	100%
Arm. Total	As, efet	cm²/m	108,0	14,7	88,4	9,8	63,8	24,5
Verif. Tx Armadura	efet > 9:		ok	ok	ok	ok	ok	ok
Verif. Tx Armadura	efet < 11		ok	recalc	ok	ok	ok	recalc
Verif. Armadura	Ativa ou Di		As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa
Veili. Ailliddold	A11 40 00 DI	an iboiçuo	7.5,G11¥G	7 (3) GTTY (1	7.5,011¥ U	7.0,UTTY U	7.0,011¥.0	7 G,GHY G

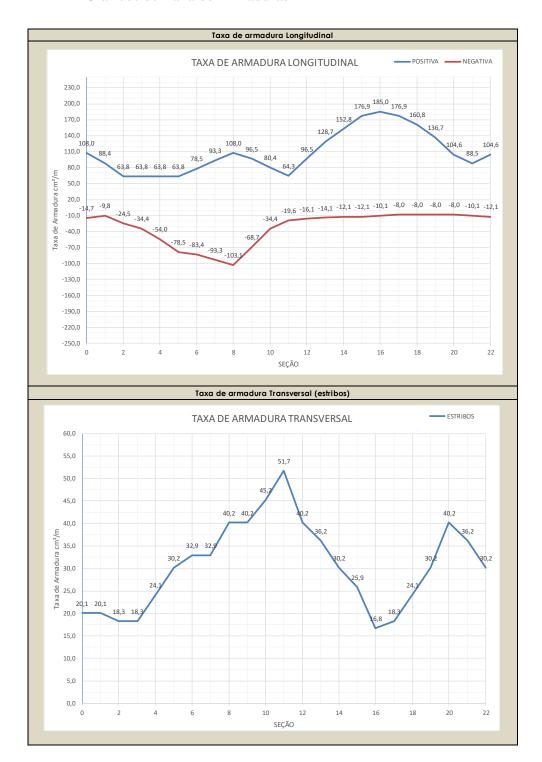
Seção Análise		0),0	1	,0	2	2,0
Momento		Positivo	negativo	Positivo	negativo	Positivo	negativo
Taxa de armadura	cm²/m	108,0	14,7	88,4	9,8	63,8	24,5
Comprimento armadura	m	1,0	1,0	1,0	1,0	1,0	1,0
Ancoragem armadura (Bordo)	cm	291,0	87,5	0,0	0,0	0,0	0,0
Qnt barras precisam ancoragem	und	9,0	0,0	0,0	0,0	0,0	0,0
Ancoragem armadura (Lb)	cm	85,3	101,2	87,2	83,8	84,0	95,3
Comprimento Total Aço	m	93,7	5,6	18,0	2,0	13,0	5,0
Qnt kg aço	kg	368,2	22,1	70,7	7,9	51,1	19,7
Qnt kg aço + 10%	kg	405,1	24,3	77,8	8,6	56,2	21,6
		-					
Quantitativo de aço	kg	3.800,5	1				
Quantitativo de ARAME (1%)	kg	38.0	1				

3	,0	4	,0	5	,0	6	,0	7	,0	8	,0
Positivo	negativo										
40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0
320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0
150,0	150,0	150,0	150,0	150,0	150,0	183,3	183,3	216,7	216,7	250,0	250,0
32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
135,0	144,2	135,0	144,2	135,0	144,2	165,0	177,5	195,0	210,8	225,0	244,2
15,0	5,8	15,0	5,8	15,0	5,8	18,3	5,8	21,7	5,8	25,0	5,8
3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
9.185,0	0,0	0,0	19.453,0	0,0	63.926,0	0,0	124.233,0	0,0	200.376,0	0,0	292.354,0
139.008,0	84.069,0	142.989,0	112.261,0	122.794,0	140.454,0	95.089,0	168.647,0	31.101,0	197.513,0	0,0	241.200,0
1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
361.479,2	191.519,7	361.479,2	282.006,1	361.479,2	406.271,9	539.987,5	551.913,5	754.197,4	720.466,9	1.004.109,0	944.161,7
0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2
2,6	2,8	2,6	2,8	2,6	2,8	3,2	3,4	3,7	4,1	4,1	4,6
16,1	4,3	16,1	2,9	16,1	2,0	16,1	2,3	16,1	2,5	16,1	2,5
0,0	0,1	0,0	0,1	0,0	0,2	0,0	0,1	0,0	0,1	0,0	0,1
<	<	<	<	<	<	<	<	<	<	<	<
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
361.479,2	191.519,7	361.479,2	282.006,1	361.479,2	406.271,9	539.987,5	551.913,5	754.197,4	720.466,9	1.004.109,0	944.161,7
361.479,2	45.184,9	361.479,2	45.184,9	361.479,2	45.184,9	539.987,5	67.498,4	754.197,4	94.274,7	1.004.109,0	125.513,6
1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
3.135.783,1	446.907,6	3.135.783,1	446.907,6	3.135.783,1	446.907,6	4.684.317,9	677.491,2	6.542.559,8	955.869,0	8.710.508,6	1.282.041,1
Simples	Simples										
2	2	2	3	2	3	2	3	2	3	2	3
16,13	4,34	16,13	2,95	16,13	2,05	16,13	2,28	16,13	2,47	16,13	2,53
0,043	0,170	0,043	0,260	0,043	0,399	0,043	0,349	0,043	0,319	0,043	0,310
0,023	0,025	0,023	0,026	0,023	0,027	0,023	0,027	0,023	0,026	0,023	0,026
361.479,2	191.519,7	361.479,2	282.006,1	361.479,2	406.271,9	539.987,5	551.913,5	754.197,4	720.466,9	1.004.109,0	944.161,7
62,7	32,8	62,7	50,2	62,7	77,1	76,6	83,1	90,5	90,1	104,5	101,5
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
6,0	6,0	6,0	6,0	6,0	6,0	7,3	7,3	8,7	8,7	10,0	10,0
62,7	32,8	62,7	50,2	62,7	77,1	76,6	83,1	90,5	90,1	104,5	101,5
240,0	240,0	240,0	240,0	240,0	240,0	293,3	293,3	346,7	346,7	400,0	400,0
ok	ok										
Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Ф	Φ	Ф
25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0
13,0	7,0	13,0	11,0	13,0	16,0	16,0	17,0	19,0	19,0	22,0	21,0
2,0	1,0	2,0	1,0	2,0	1,0	3,0	1,0	3,0	1,0	4,0	1,0
7,0	34,0	7,0	34,0	7,0	34,0	7,0	34,0	7,0	34,0	7,0	34,0
atende	atende										
105%	100%	105%	100%	105%	100%	105%	100%	106%	100%	106%	100%
63,8	34,4	63,8	54,0	63,8	78,5	78,5	83,4	93,3	93,3	108,0	103,1
ok	ok										
ok	ok										
As,ativa	As,ativa										
L									<u> </u>	·	

3	,0	4	,0	5	,0	6	,0	7	', 0	8	,0
Positivo	negativo	Positivo	negativo								
63,8	34,4	63,8	54,0	63,8	78,5	78,5	83,4	93,3	93,3	108,0	103,1
1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	5,0	0,0	1,0	0,0	2,0	4,7	14,0
84,0	86,5	84,0	88,7	84,0	84,0	84,6	82,8	85,0	85,4	85,3	83,7
13,0	7,0	13,0	11,0	13,0	20,2	16,0	17,8	19,0	20,7	26,0	32,7
51,1	27,5	51,1	43,2	51,1	79,4	62,9	70,1	74,7	81,4	102,1	128,6
56,2	30,3	56,2	47,6	56,2	87,3	69,2	77,1	82,1	89,5	112,4	141,5

9,	,0	10),0	11	,0	12	2,0	13	3,0	14	l,0
Positivo	negativo										
40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0
320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0
216,7	216,7	183,3	183,3	150,0	150,0	150,0	150,0	150,0	150,0	150,0	150,0
32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
195,0	210,8	165,0	177,5	135,0	144,2	135,0	144,6	135,0	144,6	135,0	144,6
21,7	5,8	18,3	5,8	15,0	5,8	15,0	5,4	15,0	5,4	15,0	5,4
3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
0,0	168.681,0	0,0	60.843,0	31.160,0	0,0	107.328,0	0,0	167.661,0	0,0	212.169,0	0,0
1.939,0	145.280,0	45.986,0	68.352,0	94.431,0	47.385,0	159.429,0	41.791,0	211.265,0	37.588,0	251.170,0	33.386,0
1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
754.197,4	558.685,4	539.987,5	237.852,5	361.479,2	107.949,0	508.092,0	95.205,1	707.630,4	85.630,2	858.624,8	76.057,5
0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
3,7	4,1	3,2	3,4	2,6	2,8	2,6	2,8	2,6	2,8	2,6	2,8
16,1	3,2	16,1	5,3	16,1	7,7	11,5	8,8	8,2	9,8	6,8	11,0
0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
<	<	<	<	<	<	<	<	<	<	<	<
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
754.197,4	558.685,4	539.987,5	237.852,5	361.479,2	107.949,0	508.092,0	95.205,1	707.630,4	85.630,2	858.624,8	76.057,5
754.197,4	94.274,7	539.987,5	67.498,4	361.479,2	45.184,9	361.479,2	45.184,9	361.479,2	45.184,9	361.479,2	45.184,9
1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
6.542.559,8	955.869,0	4.684.317,9	677.491,2	3.135.783,1	446.907,6	3.135.783,1	449.702,3	3.135.783,1	449.702,3	3.135.783,1	449.702,3
Simples	Simples										
2	2	2	2	2	2	2	2	2	2	2	2
16,13	3,18	16,13	5,30	16,13	7,70	11,48	8,78	8,24	9,77	6,79	11,00
0,043	0,238	0,043	0,137	0,043	0,093	0,061	0,081	0,086	0,072	0,105	0,064
0,023	0,025	0,023	0,024	0,023	0,024	0,024	0,024	0,024	0,024	0,024	0,024
754.197,4	558.685,4	539.987,5	237.852,5	361.479,2	107.949,0	508.092,0	95.205,1	707.630,4	85.630,2	858.624,8	76.057,5
90,5	67,4	76,6	32,6	62,7	17,9	88,7	15,6	124,9	14,0	152,7	12,4
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8,7	8,7	7,3	7,3	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0
90,5	67,4	76,6	32,6	62,7	17,9	88,7	15,6	124,9	14,0	152,7	12,4
346,7	346,7	293,3	293,3	240,0	240,0	240,0	240,0	240,0	240,0	240,0	240,0
ok	ok										
Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ
32,0	25,0	32,0	25,0	32,0	25,0	32,0	16,0	32,0	16,0	32,0	16,0
12,0	14,0	10,0	7,0	8,0	4,0	12,0	8,0	16,0	7,0	19,0	6,0
2,0	1,0	2,0	1,0	2,0	1,0	2,0	1,0	3,0	1,0	4,0	1,0
6,0	34,0	6,0	34,0	6,0	34,0	6,0	43,0	6,0	43,0	6,0	43,0
atende	atende										
107%	100%	106%	100%	105%	100%	105%	100%	103%	100%	101%	100%
96,5	68,7	80,4	34,4	64,3	19,6	96,5	16,1	128,7	14,1	152,8	12,1
ok	ok										
ok	ok										
As,ativa	As,ativa										

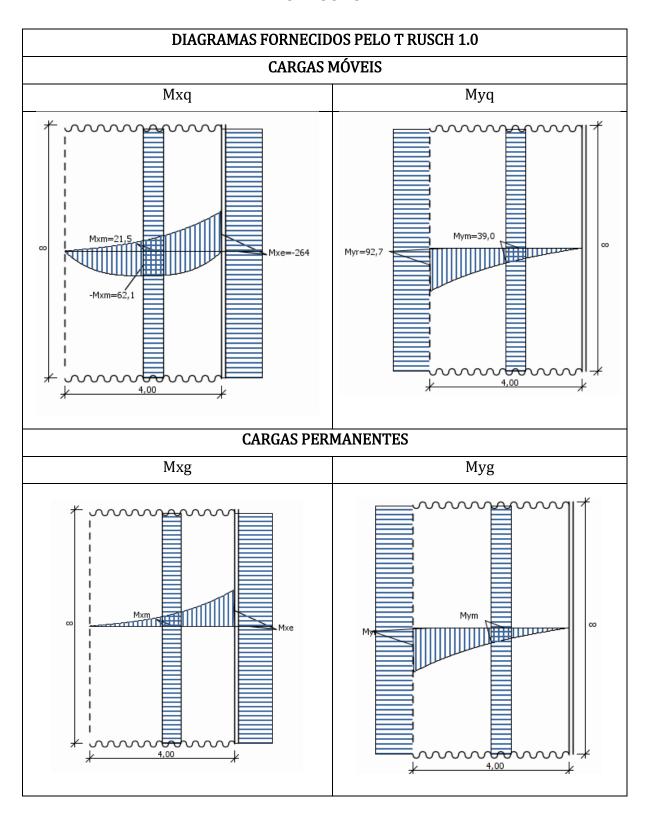
9	,0	10	0,0	11	1,0	12	2,0	13	3,0	14	1,0
Positivo	negativo										
96,5	68,7	80,4	34,4	64,3	19,6	96,5	16,1	128,7	14,1	152,8	12,1
1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	7,0	0,0	3,0	0,0	0,7	4,0	1,0	4,0	1,0	3,0	0,0
112,6	84,1	110,9	86,9	108,4	90,6	114,8	54,3	108,8	53,0	105,7	51,3
12,0	19,9	10,0	9,6	8,0	4,7	16,6	8,5	20,4	7,5	22,2	6,0
74,9	78,2	62,4	37,8	49,9	18,3	103,5	13,4	127,0	11,8	138,3	9,4
82,4	86,0	68,6	41,5	54,9	20,1	113,9	14,8	139,7	13,0	152,2	10,4


15	. 0	16	. 0	17	7,0	10	3,0	10	2,0	20	0,0	21	1,0		2,0
13	5,0	10	i,u	17	,0	10	,,,	- 17	,,0	20	,,0	21	,,,		2,0
Positivo	negativo														
40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0
320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0
150,0	150,0	150,0	150,0	150,0	150,0	150,0	150,0	150,0	150,0	150,0	150,0	200,0	200,0	250,0	250,0
32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
135,0	144,6	135,0	144,6	135,0	144,6	135,0	144,6	135,0	144,6	135,0	144,6	180,0	194,6	225,0	244,6
15,0	5,4	15,0	5,4	15,0	5,4	15,0	5,4	15,0	5,4	15,0	5,4	20,0	5,4	25,0	5,4
3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
240.823,0	0,0	253.651,0	0,0	250.644,0	0,0	231.802,0	0,0	197.125,0	0,0	146.613,0	0,0	80.266,0	0,0	0,0	1.918,0
	29.184,0	288.084,0	24.982,0	281.829,0	20.779,0	257.357,0	16.577,0	221.171,0	12.375,0		8.172,0	94.350,0	3.970,0	237,0	1.978,0
277.370,0										167.834,0					
1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
956.994,6	66.484,8	998.720,2	56.912,1	980.411,1	47.337,2	899.224,1	45.184,9	769.973,9	45.184,9	580.274,4	45.184,9	642.629,7	80.328,7	1.004.109,0	125.513,6
0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2
2,6	2,8	2,6	2,8	2,6	2,8	2,6	2,8	2,6	2,8	2,6	2,8	3,4	3,7	4,1	4,6
6,1	12,6	5,8	14,7	5,9	17,7	6,5	18,5	7,6	18,5	10,1	18,5	16,1	18,9	16,1	19,1
0,1	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
956.994,6	66.484,8	998.720,2	56.912,1	980.411,1	47.337,2	899.224,1	45.184,9	769.973,9	45.184,9	580.274,4	45.184,9	642.629,7	80.328,7	1.004.109,0	125.513,6
361.479,2	45.184,9	361.479,2	45.184,9	361.479,2	45.184,9	361.479,2	45.184,9	361.479,2	45.184,9	361.479,2	45.184,9	642.629,7	80.328,7	1.004.109,0	125.513,6
1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
3.135.783,1	449.702,3	3.135.783,1	449.702,3	3.135.783,1	449.702,3	3.135.783,1	449.702,3	3.135.783,1	449.702,3	3.135.783,1	449.702,3	5.574.725,5	814.468,3	8.710.508,6	1.286.771,4
Simples	Simples														
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
6,09	12,58	5,84	14,70	5,95	17,67	6,49	18,51	7,57	18,51	10,05	18,51	16,13	18,86	16,13	19,07
0,118	0,056	0,124	0,048	0,121	0,039	0,111	0,038	0,094	0,038	0,070	0,038	0,043	0,037	0,043	0,037
0,024	0,024	0,024	0,023	0,024	0,023	0,024	0,023	0,024	0,023	0,024	0,023	0,023	0,023	0,023	0,023
956.994,6	66.484,8	998.720,2	56.912,1	980.411,1	47.337,2	899.224,1	45.184,9	769.973,9	45.184,9	580.274,4	45.184,9	642.629,7	80.328,7	1.004.109,0	125.513,6
171,1	10,8	179,0	9,2	175,5	7,7	160,3	7,3	136,3	7,3	101,7	7,3	83,6	9,6	104,5	12,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	8,0	8,0	10,0	10,0
171,1	10,8	179,0	9,2	175,5	7,7	160,3	7,3	136,3	7,3	101,7	7,3	83,6	9,6	104,5	12,0
240,0	240,0	240,0	240,0	240,0	240,0	240,0	240,0	240,0	240,0	240,0	240,0	320,0	320,0	400,0	400,0
ok	ok														
Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ
32,0	16,0	32,0	16,0	32,0	16,0	32,0	16,0	32,0	16,0	32,0	16,0	32,0	16,0	32,0	16,0
22,0	6,0	23,0	5,0	22,0	4,0	20,0	4,0	17,0	4,0	13,0	4,0	11,0	5,0	13,0	6,0
4,0	1,0	4,0	1,0	4,0	1,0	4,0	1,0	3,0	1,0	3,0	1,0	2,0	1,0	3,0	1,0
6,0	43,0	6,0	43,0	6,0	43,0	6,0	43,0	6,0	43,0	6,0	43,0	6,0	43,0	6,0	43,0
atende	atende														
101%	100%	101%	100%	101%	100%	101%	100%	103%	100%	103%	100%	106%	100%	106%	100%
176,9	12,1	185,0	10,1	176,9	8,0	160,8	8,0	136,7	8,0	104,6	8,0	88,5	10,1	104,6	12,1
ok	ok														
ok	recalc	ok	ok	ok	ok	ok	recalc	ok	recalc	ok	recalc	ok	ok	ok	ok
As,ativa	As,ativa														

18	5,0	16	0,8	17	7,0	18	В,О	19	0,9	20	0,0	21	٥,١	22	2,0
Positivo	negativo														
176,9	12,1	185,0	10,1	176,9	8,0	160,8	8,0	136,7	8,0	104,6	8,0	88,5	10,1	104,6	12,1
1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	396,6	108,8
0,0	1,0	1,0	0,0	2,0	0,0	3,0	0,0	4,0	0,0	2,0	0,0	0,0	1,0	2,0	1,0
109,2	58,9	109,1	57,5	106,4	55,5	106,0	58,2	105,9	58,2	108,5	58,2	111,8	55,1	105,7	53,2
22,0	6,6	24,1	5,0	24,1	4,0	23,2	4,0	21,2	4,0	15,2	4,0	11,0	5,6	66,7	13,1
137,3	10,3	150,3	7,9	150,6	6,3	144,6	6,3	132,5	6,3	94,7	6,3	68,6	8,7	416,0	20,5
151,0	11,4	165,4	8,6	165,6	6,9	159,1	6,9	145,8	6,9	104,1	6,9	75,5	9,6	457,6	22,6

8			C	-	c c	C	0,7	Cu	
secao Analise	IIIse		O,O	U,U	2,0	3,0	4,0	3,0	0,0
Cortante. Ações Perm.	Vsg	ΚN	6'292	5'661	6'89	207,2	9′598	6'875	682,3
Cortante Cargas móveis	Vsq	ΚN	885,4	5′11′2	550,1	402,9	491,1	2′819	796,3
coef. Cargas móveis	ф		5′1	1,5	5′1	1,5	5′1	5'1	1,5
Cortante Cálc (Comb.Crífica)	ρsΛ	ΚN	2.378,5	1.890,2	1.332,6	1.197,6	1.612,3	2.105,4	2.735,1
Inclinação Bielas comprimidas	θ	۰	38,0	38,0	38,0	38,0	38,0	38,0	38,0
Compressão Concreto	Vrd2	ĸ	4.689,9	3.746,6	2.803,3	2.803,3	2.803,3	2.803,3	3.417,3
	Vc0	ĸ	0,1	0,1	1,0	1,0	0,1	0,1	0,1
	Vc1	ĸN	0′0	0′0	0'0	0,0	0'0	0′0	0,0
Cálculo Armadura	Asw	cm²/m	20,0	6'61	18,8	16,9	22,7	29,6	31,6
	Vsd,mín	ĸ	547,0	437,0	327,0	327,0	327,0	326,9	398,6
	As,mín	cm²/m	4,6	4,6	4,6	4,6	4,6	4,6	4,6
	₽	mm	0′91	0′91	0'91	16,0	0'91	0'91	0'91
	0	c/	/၁	/>	/2	/2	/>	/>	/>
Arm. Transversal	s	cm	0′81	0′81	0′11	0,11	0'51	12,0	0,11
	ıaı	ramos	4,0	4,0	2,0	2,0	4,0	0′4	4,0
	Asw,efet	cm²/m	20,1	20,1	18,3	18,3	24,1	30,2	32,9
Verificação se As efet > 95%*calc	et > 95%*calo	•	yo	ok	ok	ok	ok	ok	ok
Verificação se As efet<110%calc	iet <110%cald	:	ok						
Qnt aço	Asw	kg/m	0′11	18,8	6'2	2,9	15,7	12'21	17,8
Qnt aço + 10 %	Asw	kg/m	12,1	20,7	8,6	8,6	17,3	17,3	9'61
Qnt TOTAL AÇO	379,94	kg							

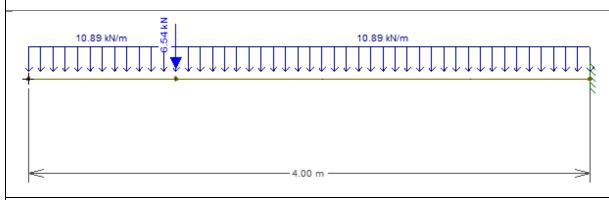
14,0	365,8	673,0	1,5	2.027,0	38,0	2.686,7	0,1	0,0	29,8	313,4	4,6	16,0	c/	12,0	4,0	30,2	ok	ok	15,7	17,3
				2		2														
13,0	524,2	8'644	5′1	2.483,0	38,0	2.738,1	1,0	0′0	35,8	319,3	4,6	0′91	/၁	0′01	4,0	36,2	уо	ok	15,7	17,3
12,0	682,5	884,9	1,5	2.937,2	38,0	2.789,4	0,1	0′0	41,5	325,3	4,6	16,0	/S	0′6	4,0	40,2	ok	ok	15,7	17,3
11,0	840,9	9′886	1,5	3.387,4	38,0	2.789,4	0,1	0'0	47,9	325,3	4,6	16,0	/>	2,0	4,0	51,7	ok	ok	15,7	17,3
10,0	999,2	0′680′1	1,5	3.829,8	38,0	3.447,9	0,1	0′0	43,8	402,1	4,6	16,0	/S	8,0	4,0	45,2	ok	ok	17,8	9'61
0′6	1.157,6	1.186,0	1,5	4.264,6	38,0	4.106,5	0,1	0,0	41,0	478,9	4,6	16,0	/S	0′6	4,0	40,2	ok	ok	19,9	21,9
8,0	1.315,9	1.278,4	5′1	4.688,8	38,0	4.689,9	0,1	0'0	39,4	546,9	4,6	16,0	/2	0′6	0'4	40,2	уо	ok	22,0	24,2
2,0	840,7	946,6	1,5	3.291,4	38,0	4.075,8	0,1	0′0	31,9	475,3	4,6	16,0	/>	0,11	4,0	32,9	₹	₹	19,9	21,9


22,0	0′106	9′5/0′1	5′1	8'999'8	38,0	4.713,6	1,0	0′0	2'08	2'649'	9'4	0′91	/>	12,0	0′4	30,2	уо	уо	0′11	12,1
21,0	742,6	943,2	1,5	3.151,4	38,0	3.777,2	0,1	0′0	32,9	440,5	4,6	16,0	/o	0′01	4,0	36,2	ok	ok	18,8	20,7
20,0	584,3	817,4	1,5	2.650,9	38,0	2.738,1	0,1	0′0	38,2	319,3	4,6	0′91	/2	0′6	4,0	40,2	yo	ok	15,7	17,3
0,91	425,9	2'869	1,5	2.166,7	38,0	2.738,1	0,1	0'0	31,2	319,3	4,6	0′91	/2	12,0	4,0	30,2	ok	ok	15,7	17,3
18,0	267,6	9′285	1,5	6'669'1	38,0	2.686,7	0,1	0,0	25,0	313,4	4,6	16,0	/o	15,0	4,0	24,1	ok	ok	15,7	17,3
0,71	109,2	484,7	1,5	1.251,6	38,0	2.686,7	0,1	0,0	18,4	313,4	4,6	0′91	/ C	0,11	2,0	18,3	ok	ok	6'2	8,6
16,0	1,94	461,6	1,5	1.117,9	38,0	2.686,7	0,1	0,1	16,4	313,4	4,6	0′91	/o	12,0	2,0	16,8	ok	ok	6'2	8,6
15,0	297,5	8'995	1,5	1.692,8	38,0	2.686,7	1,0	0′0	24,9	313,4	9,4	0'91	/>	14,0	4,0	25,9	уо	уо	15,7	17,3

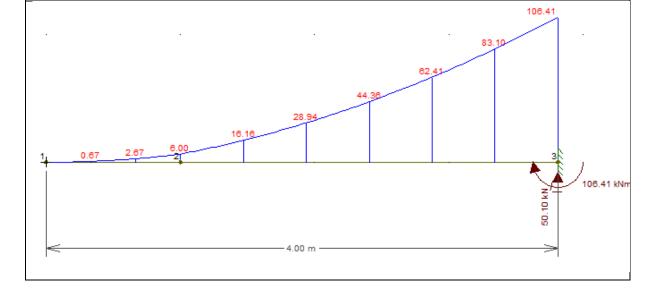
TABULEIRO B

Cálculo das lajes

CÁLCULO L1=L4



CAD	CAC	DEDI	/ A N	FNTFS
I AK	(TA 🔨	PHKN	ЛΑΝ	HNIH >


Le	vantamento Cargas Permanen	tes		
Elemento	Tipo carregamento	carga		braço (m)
Barreira New Jersey	Concentrado	6,54	kN/m	0,15
	subtotal	6,54	kN/m	
Pavimento	Distribuído	2,76	kN/m²	
Laje + mísulas	Distribuído	8,13	kN/m²	
	subtotal	10,89	kN/m²	

DIAGRAMAS FTOOL

DIAGRAMA DE CORPO LIVRE

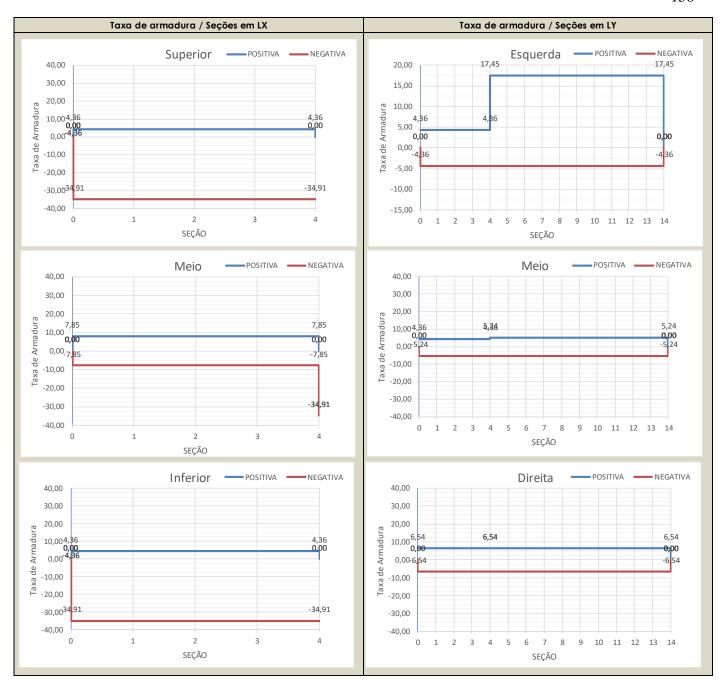
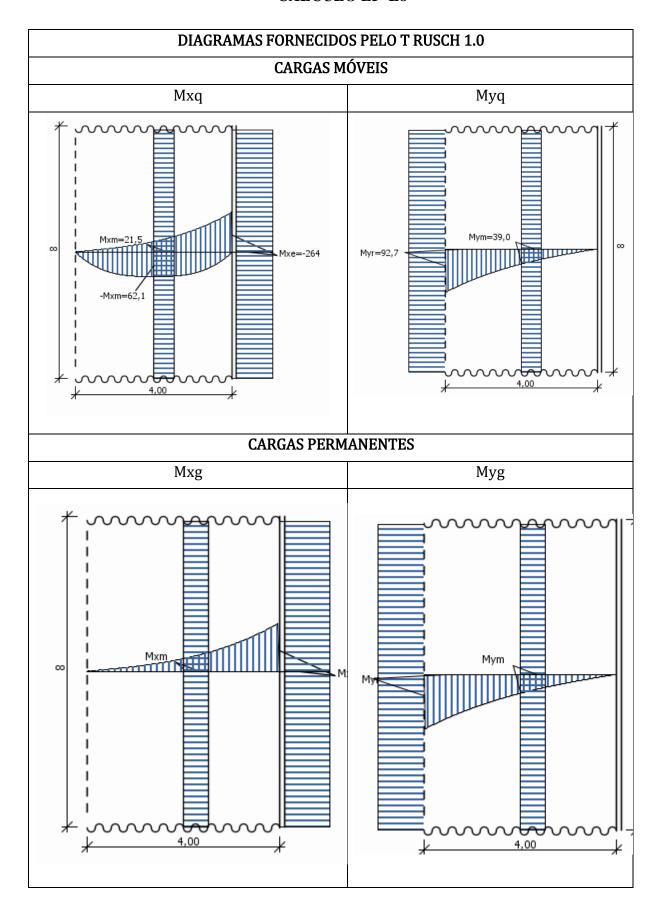


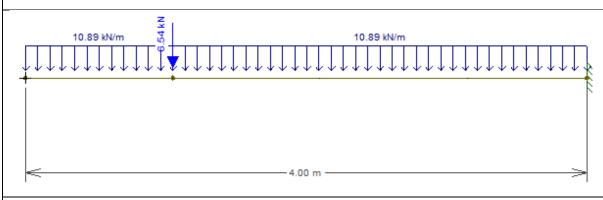
DIAGRAMA MOMENTO FLETOR (kNm) - Mxg



							MEMORIA	L DE CÁ	CULO A	RMADUR.	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINAL	IDINAL										
Borda				Superior	rior			Inferior	¥			Direita	1			Esquerda	ō			Meio do vão	vão	
Direção	io		ΙX	×	ΓY		ΙX		ΓY		rx		Γλ		Ľ		Γλ		Ľ		ΓY	
Seção	0		Мхе	Мхе	Mye	Mye	Mxe //	Mxe //	Mye	Mye	Mxe N	Wxe /	Mye 1	Mye	Mxe	Mxe /	Mye N	Муе	Mxm		Mym	_
Momento	to		Positivo	negative	Positivo negative Positivo neg	egative Positivo	sitivo ne	negativePositivo	sitivo ne	agative Pc	negative Positivo negative Positivo negative Positivo	yativ(Po	sitivo ne	gativePc	ositivo ne	negative Positivo negative Positivo negative Positivo negative	sitivo neg	gativ	sitivo ne	gativePe	sitivo ne	egative
Armação	ãο		Dringing	Sparios	a cioniza de la	Odiodi	Odiod	y carroos	70000	Dringing	Dring Control of Contr	Odio	os podrioos	and pour loos	o di o di		Sport	Dail	Daio		000000000000000000000000000000000000000	0
Descrição	Simbolo	Simbolo Grandeza	Fillicipa	secondo	secondar	nucipa ri	ricipa se	condese	Condo		ncipa riii	ndin.	econdo se	conde	ncipa L	ncipa sec	condesec	unagriii	pdibu	nciba se	condese	Scondo
Base Viga	wq	сш	100	001	100	100	100	100	100	100	1001	00	100	100	100	100	1 001	001	100	100	100	100
Altura Total	٩	сш	30	90	30	30	30	30	30	30	40	40	40	40	25	25	25	25	32,5	32,5	32,5	32,5
Altura útil laje	Р	сш	27	56	26	27	27	26	26	27	37 3	36,5	36	35	22	21,5	20,5	20	29,5	29,5	28,5	28,5
p-q	۵,	cm	3	4	4	3	3	4	4	3	3 3	3,5	4	5	3	3,5	4,5	5	3	3	4	4
cobrimento nominal	υ	cm	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Arm. Transversal	₽	шш	0	01	10	0	0	10	10	0	0	0	10	20	0	0	10	20	0	0	10	10
Mom. Ações Perm.	Msg	kNcm/m	0	0	0	0	0	0	0	0	0 10	10641	0	0	0	0641	0	0	0	6241	0	0
Mom. Cargas móveis	Wsd	kNcm/m	0	0	0	0	0	0	0	0	0 26	26400	0	0	0	6 0	9270	9 0	6210	2150	3900	0
coef. Cargas móveis	9		1,688	889′1	1,688	1,688	1,688	1 889′	1,688	1,688	1,688	1,688	1 889′1	889′1	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688
Mom. Cálc (Comb.Crífica)	Wsd	kNcm/m	0,0	0'0	0,0	0,0	0'0	0,0	0,0	0,0	0'0	50241,0	0,0	0,0	0,0	10641,0 13	3905,0	0,0	9315,0 8	9466,0 5	2850,0	0,0
Coef. Resistência Conc.	Kc		-	-	-	-	-	-	-	-	- 2,	2,652	-	-	-	4,344 3	3,022	- 6	9,342	9,193	13,885	1
Cálculo	βх			-				-			- 0,	0,293			-	0,169 0	0,253	- 0	0,076 (0,077	0,050	
Coef. Resistência aço	Ks		-	-	-	-	-	-	-	-	- 0,	0,026	-	-	- (0,025 0	0,026	0 -	0,024 (0,024 (0,023	-
Arm. Mínima	As,mín	cm²/m	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50	9 00′9	9' 00'9	00′9	9,00	3,75	3,75	3,75 3	3,75	4,88	4,88	4,88	4,88
Arm. Calculada	As,calc		4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50	6,00 35	35,86	00′9	9,00	3,75	12,21	17,35 3	3,75	7,49	7,61	4,88	4,88
Arm. Máxima	4% Ac	cm²	120	120	120	120	120	120	120	120	160	160	160	160	100	100	100	100	130	130	130	130
Verificação	max e mín		ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
		θ	Ф	θ	θ	θ	θ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	θ	Φ	Φ	Φ	Φ
مرين لمرين مدل وزمديه	† C C C C C	mm	10	10	10	10	10	10	10	10	10	20	10	10	10	20	20	10	10	10	10	10
Single das dilipidas	opp 's	/o	/o	/o	/o	/o	/o	c/	/o	/o	c/ (c/	c/	c/	c/	/o	c/ '	c/	c/	c/	/o	c/
		cm	18	18	18	18	18	18	18	18	12	6	12	12	20	25	18	20	10	10	15	15
Arm. Total	As,efet	cm²/m	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36	6,54 34	34,91	6,54	6,54	3,93	12,57	17,45 3	3,93	7,85	7,85	5,24	5,24
Verif. Tx Armadura	efet > \$	efet > 95%calc	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
Verif. Tx Armadura	efet > 1	efet > 110%calc	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
Verif. Armadura	Ativa ou D	Ativa ou Distribuição	As,dist	As,dist	As,dist /	As,dist A	As,dist A	As,dist A	As,dist A	As,dist A	As,dist As,o	As,ativa A	As,dist A	As,dist A	As,dist 🗛	As,ativa As,	As,ativa As	As,dist As,	As,ativa As	As,ativa As,ativa		As, dist

No. 100	7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.																				
14.00 1.			E							Allo	NITATIV	O DE A	0								
Fig. Part) }								
Note							ARM	DURA PO	SITIVA							ARMAD	URA NEG	ATIVA			
No.		EÇÃO					PC	SIÇÃO EA	×w							POS	SIÇÃO EN	١X			
No. of the complement of the		EM Y		00'0	∢	00'0	00'0	٧	4,00	4,00	٧	4,00	00'0	٧	00'0	00'0	۷	00'0	00'0	٧	4,00
Complication Comp				0	ν	E	0	/ o	сш	θ	۵/	сш	θ	/ o	СШ	θ	/ o	cm	θ	/ o	cB
Completion conception Completion conception Completion Complet			arranjo	00,00	'C		10,00	/o	18,00	00'00)	00'00	00,00	/o	00,00	10,00	/o	18,00	20,00	/o	00'6
No. Complementarial No.			comprimento		00,00			400,00			00,00			00,00			00,00			400,00	
Particularian Particularia		SUP	comp.total+ancoragem/m		00'0			2588,89			00,00			00'00			00,00			5863,89	
Mail			comp. distri buição		00,00			0,00			0,00			0,00			0,00			0,00	
Mile Complication of the complete Comp			peso (kg)		00'0	_		00'0			00'00			00'00			00'00			00'00	
Microprimento Compitenento Com			arranjo	00'00	/O	00'00	10,00	/>	18,00	00'0	/o	00'00	00'00	/o	00'0	10,00	/\tag{2}	10,00	20,00	/>	00'6
Note Comp. Indextinational particle Comp. Indextinational p			comprimento		00'0			400,00			00'00			00'00			00'00			400,00	
Protection of compositivity closes 14,00		MEIO	comp.total+ancoragem/m		00,00			4660,00			00'00			00'00			00'00			5790,56	
Main complication			comp.distribuição		14,00)		14,00			14,00			14,00			14,00			14,00	
Main			peso (kg)		00,00			407,10			00'00			00'00			00'00			2010,48	
No. Compositionate)			arranjo	00'0	/o		10,00	/o	18,00	00'00	\o	00'00	00'0	/o	00,00	10,00	/o	18,00		/o	00′6
NF comp distribuciose Composition Comp distribuciose Composition Comp distribuciose Composition Composition Comp distribuciose Comp dis			comprimento		00'0			400,00			00,00			00'00			00'0			400,00	
SEÇÃO Pero (kg) 0.00		IN	comp.total+ancoragem/m		00'0			2588,89			00,00			00'00			00'00			5863,89	
SEÇÃO ATRANCUISA DESTINA FOSTIGA DE NATIONALIA POSITIVA ATRANCUISA DE NATIONALIA POSITIVA ATRANCUISA DE NATIONALIA POSITIVA ATRANCUISA DE NATIONALIA PLECATIVA ATRANCUISA DE NATIONALIA PLECATIVA ATRANCUISA DE NATIONALIA PLECATIVA ATRANCUISA DE NATIONALIA PLECATIVA PLANCULAR PLA			comp.distribuição		00'0			00'0			00'00			00'00			00'00			00,00	
SEÇÃO FAME A LINE			peso (kg)		00'0			00'00			00,00			00'00			00,00			00'00	
Sec Al							ARM.	DURA PO	SITIVA							ARMAD	URA NEG	ATIVA			
FM x Main and Ma		EÇÃO					PC	SIÇÃO EA	۸ ۲							POS	SIÇÃO EM	۲,			
Main and mathematical mathema		EM X		00'0	∢	4,00		4	14,00	14,00	∢	14,00	00'00	∢	00'0	00'0	4	14,00	14,00	∢	14,00
The completion of the compl				θ	د/	cm	θ	/o	cm	θ	/o	cm	θ	/o	cm	Φ	/ o	cm	Φ	/ o	cm
ESQ comprimento 265.11 6197.22 0.00 0.00 1400.00 1000 0.00 RESO comp. idiati buição 4.00 4.00 4.00 0.00 0.00 7777.78 0.00 MEIO comp. distribuição 4.00 4.00 0			arranjo	10,00				/o		00,00	/o	00,00	00,00	c/	00,00	10,00	/o	18,00	00'00	c/	0,00
ESQ comp.tolaticaccogem/m £636,11 6197,22 0.00 0.00 7777,78 0.00 comp.distribuição 4.00 4.00 0.00 </th <th></th> <th></th> <th>comprimento</th> <th></th> <th>400,0</th> <th>0.</th> <th></th> <th>1000,00</th> <th></th> <th></th> <th>00'00</th> <th></th> <th></th> <th>00'0</th> <th></th> <th></th> <th>1400,00</th> <th></th> <th></th> <th>00'00</th> <th></th>			comprimento		400,0	0.		1000,00			00'00			00'0			1400,00			00'00	
Comp. distribuição 4.00		ESQ	comp.total+ancoragem/m		2636,	11		6197,22			00,00			00'00			87,7777			00'00	
Mathematical materials Mathematical mater			comp.distribuição		4,00	-		4,00			4,00			00'00			00'00			00'00	
MEIO MeIO comprimento MEIO comprimento MEIO comprimento MEIO comprimento MEIO comprimento modification mento ment			peso (kg)		92'89	0		614,76			00'00			00'00			00'00			0,00	
MEIO Part International Par			arranjo	10,00		18,00		/o	15,00	00,00	/o	00,00	00,00	c/	00,00	10,00	/o	15,00	00'0	c/	00'00
MEIO comp.dial+ancoragem/m location final forms of the following person (string forms) and the follow			comprimento		400,0	0.		1000,00			00'00			00'0			1400,00			00'00	
Long comp. distribuic a co		MEIO	comp.total+ancoragem/m		2608,	33		6923,33			00'00			00'00			9333,33			00'00	
DIR comp. diranjo 0.00			comp.distribuição		00'0			00'00			00,00			4,00			4,00			4,00	
A compriment 10,00 c/ 12,00 10,00 c/ 12,00 12			peso (kg)		00'0			00'0			00'00			00'0			232,96			00'00	
DIR comp. fid1+ an conformation 400,00 1000,00 0,00 1400,00 1400,00 1400,00 1400,00 1400,00 1400,00 1400,00 11666,67 1 10 110,00 0,00			arranjo	10,00		12,00		/o	12,00	00'0	/>	00'00	00'00	/>	00'0	10,00	/o	12,00	00'0	/	00'00
DIR comp.total+ancoragem/m 3954,17 8608,33 0,00 0,00 11666,67 1 RESUMO ARMADURA comp. clistribuição 0,00			comprimento		400,0	0.		1000,00			00'00			00'00			1400,00			00'00	
RESUMO ARMADURA Comp. dishribuição 0.00 </th <th></th> <th>DIR</th> <th>comp.total+ancoragem/m</th> <th></th> <th>3954,</th> <th>17</th> <th></th> <th>8608,33</th> <th></th> <th></th> <th>00'00</th> <th></th> <th></th> <th>00'00</th> <th></th> <th></th> <th>11666,67</th> <th></th> <th></th> <th>00'00</th> <th></th>		DIR	comp.total+ancoragem/m		3954,	17		8608,33			00'00			00'00			11666,67			00'00	
RESUMO ARMADURA 0.00			comp.distribuição		00'0			00'00			00'00			00'00			00'00			00'00	
RESUMO ARMADURA PESO +10 % (kg) PESO +10 % (kg) TOTAL			peso (kg)		00'00			00'0			00,00			00'00			00'00			00'0	
PESO +10 % (kg) PESO +10 % (kg) TOTAL	RES	SUMO A	RMADURA																		
PESO +10 % (kg) TOTAL	NEGATIVA	PES		43,44																	
	POSITIVA	PES		92,66																	
-				31, 10	_																

CÁLCULO L5=L8



CARG	2AS	PERM	(AN	ENTE	75

Lev	vantamento Cargas Permanen	tes		
Elemento	Tipo carregamento	carga		braço (m)
Barreira New Jersey	Concentrado	6,54	kN/m	0,15
	subtotal	6,54	kN/m	
Pavimento	Distribuído	2,76	kN/m²	
Laje + mísulas	Distribuído	8,13	kN/m²	
	subtotal	10,89	kN/m²	

DIAGRAMAS FTOOL

DIAGRAMA DE CORPO LIVRE

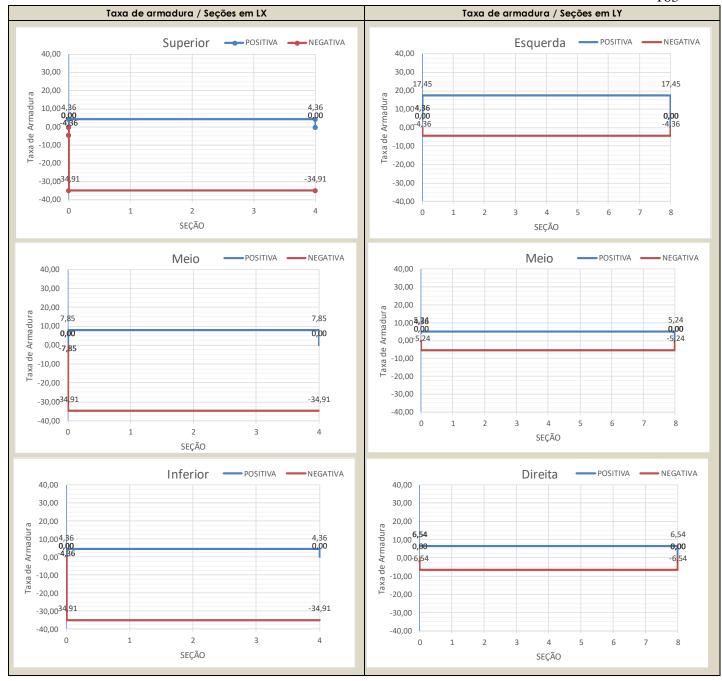
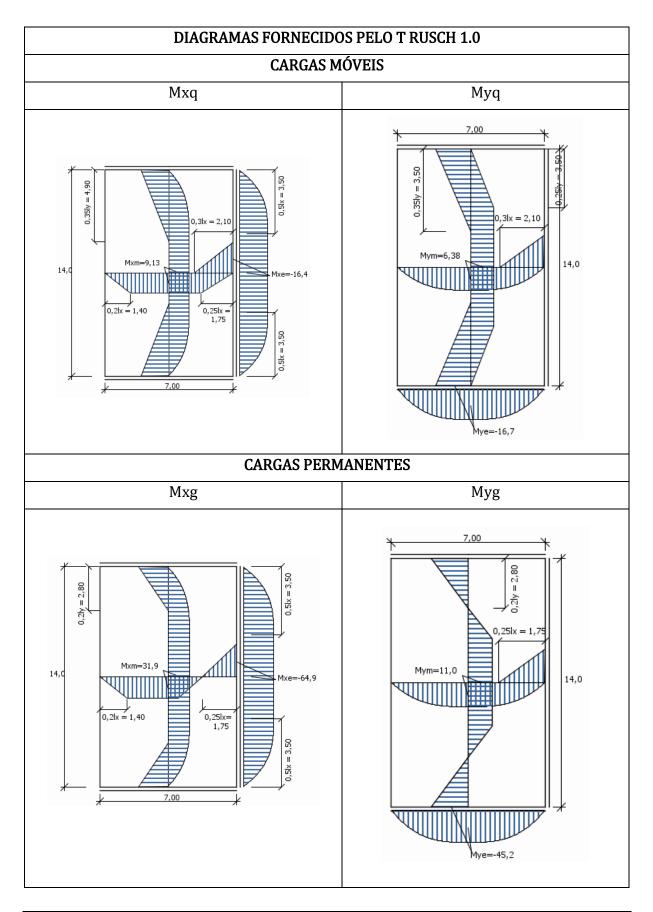
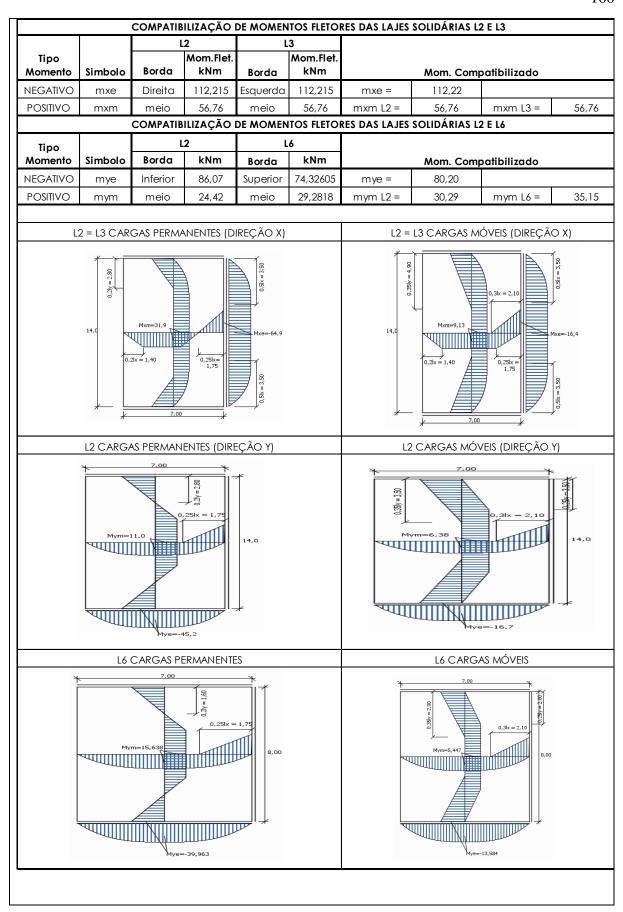


DIAGRAMA MOMENTO FLETOR (kNm) - Mxg

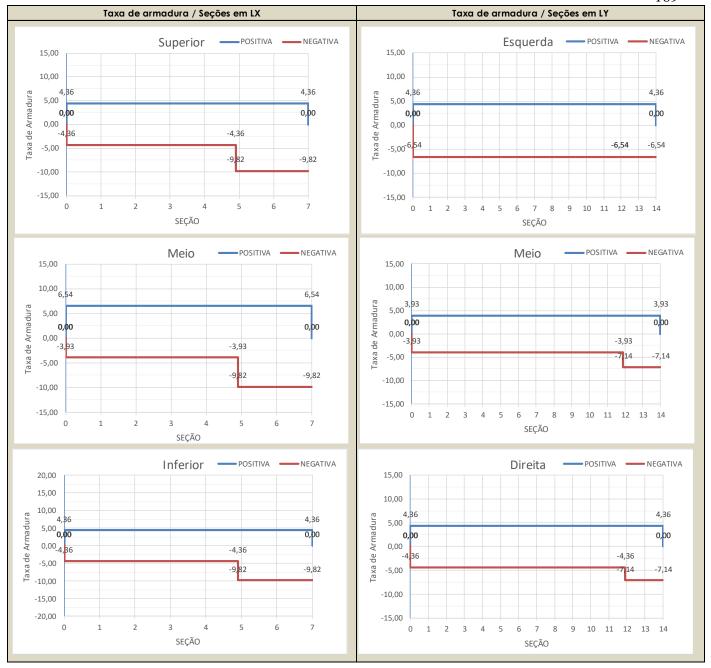


							MEMORIA	IL DE CÁI	CULO A	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINA	\ LONGIT	UDINAL									
Borda				Superior	rior			Inferior	¥			Direita				Esquerda	ğ		Ň	Meio do vão	0
Direção	0		Ľ	J	Ιλ		×		Lλ		Ľ		۲		Ľ		Ľ		ĭ		Γ
Seção	_		Мхе	Мхе	Муе	Mye	Wxe //	Mxe //	Mye	Mye	Mxe /	Mxe N	Mye ^	Mye /	Mxe //	Mxe //	Mye ^	Mye	Mxm		Mym
Momento	4		Positivo	negative	Positivo negative Positivo negative	negative Pc	Positivo ne	negativePositivo		negative Positivo		negative	Positivo neg	negativ Po	Positivo ne	negativePositivo	sitivo ne	negative Positivo negative Positivo negative	ivo neg	ativePosit	ivo neg
Armação	, jo		ori C	2		7				0	0			700	0	3	7000		o is	000	
Descrição	Simbolo	Grandeza	riincipa	secondo		7	ncipal se	coridose	CUIIGGEI	ncipa ri	rincipa	ndipulia	on do se	Condo	riincipa	rincipa se	condese	Condo Fillin	npa riin		nad sect
Base Viga	рм	шo	100	100	100	100	100	100	100	100	100	1 001	. 001	100	100	100	100	001	00 001	00 001	001 001
Altura Total	h	cm	30	30	30	30	30	30	30	30	40	40	40	40	25	25	25	25 32	32,5 32	32,5 32,5	,5 32,5
Altura útil laje	Р	шɔ	27	26	26	27	27	26	26	27	37	36,5	36	35	22	21,5	20,5	20 29,	5	29,5 28,5	,5 28,5
p-q	۵.	шɔ	3	4	4	3	3	4	4	3	3	3,5	4	5	3	3,5	4,5	5 3	3 3	3 4	4
cobrimento nominal	c	uɔ	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5		2,5 2,5	5 2,5
Arm. Transversal	₽	шш	0	10	10	0	0	10	10	0	0	0	10	20	0	0	10	20 0		0 10	01 0
Mom. Ações Perm.	Msg	kNcm/m	0	0	0	0	0	0	0	0	0 10	10641	0	0	0 1	10641	0	0 0) 6241	41 0	0
Mom. Cargas móveis	Msq	kNcm/m	0	0	0	0	0	0	0	0	0 26	26400	0	0	0	0	9270	0 62	6210 213	2150 3900	0 00
coef. Cargas móveis	ф		1,688	1,688	1,688	1,688	1 889′1	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	9,1 889,1	9,1 888,1	1,688	88 1,688
Mom. Cálc (Comb.Crífica)	Msd	kNcm/m	0'0	0,0	0′0	0,0	0′0	0,0	0,0	0'0	0,0	50241,0	0,0	0,0	0,0	10641,0 13	13905,0	0,0	9315,0 946	9466,0 5850,0	0,0 0,0
Coef. Resistência Conc.	Kc		-		-		-	1	-	-	- 2	2,652	-	-	- 4	4,344	3,022	- 9,342		9,193 13,885	. 385
Cálculo	βх		-					-	-	-	O -	0,293	-		J -	0,169 0	0,253	0,0	0,076 0,077	0,050	- 09
Coef. Resistência aço	Ks		-	-	-	-	-	1	-	-	0 -	0,026	-	-	0 -	0,025 C	0,026	- 0,024		0,024 0,023	23 -
Arm. Mínima	As, mín	cm²/m	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50	6,00	9 00′9	9 00′9	9,00	3,75	3,75	3,75	3,75 4,88		4,88 4,88	38 4,88
Arm. Calculada	As,calc		4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50	6,00	35,86 6	9 00′9	9,00	3,75	12,21	17,35	3,75 7,49	19' 7,61	61 4,88	38 4,88
Arm. Máxima	4% Ac	cm²	120	120	120	120	120	120	120	120	160	160	160	160	100	100	100	100	130 13	130 130	0 130
Verificação	max e mín		ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok o	ok ok	k ok
		θ	θ	θ	θ	θ	θ	Φ	θ	θ	θ	θ	θ	θ	θ	θ	θ	Φ Φ		Φ	Φ
Arrania das armandaras	†0 PC 8 V	mm	10	10	10	10	10	10	10	10	10	20	10	10	10	20	20	10	10 10	01 01	01 0
	5	/ o	c/	/o	/o	c/	/ ₂	c/	c/	c/	c/	c/	c/	c/	c/	c/	c/	/> />	/ c/	:/ c/	/o /
		cm	18	18	18	18	18	18	18	18	12	6	12	12	20	25	18	20 10	10 10	10 15	5 15
Arm. Total	As, efet	cm²/m	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36	6,54 3	34,91 6	6,54	6,54	3,93	12,57	17,45	3,93 7,85		7,85 5,24	5,24
Verif. Tx Armadura	efet > \$	efet > 95%calc	ok	ok V	οk	ok	ok W	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok ok	k ok
Verif. Tx Armadura	efet > 1	efet > 110%calc	ok	ok	ok V	ok	ok W	ok	ok	ok	ok Yo	ok	ok	ok	ok	ok	ok	ok	ok o	ok ok	k ok
Verif. Armadura	Ativa ou D	Ativa ou Distribuição As,dist	As,dist	As,dist	As,dist	As,dist A	As,dist A	As,dist A	As,dist A	As,dist A	As,dist As,ativa		As,dist As	As,dist A	As, dist As	As,ativa As,ativa		As,dist As,a	tiva As,a	As,ativa As,ativa As,ativa	tiva As,dist

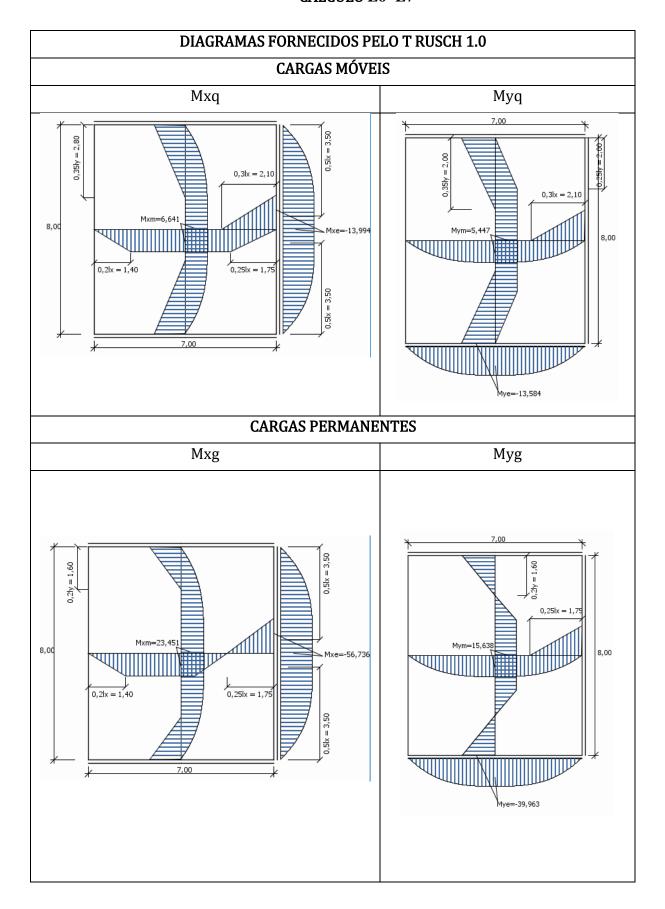
																				Ī
DIMENSOES LAJE	400								5	COA 30 CVITATITAALIC	2	ç								
≦ ≥	00'	E 8							Š		,)								
;	0,00					ARMADL	ARMADURA POSITIVA	TIVA							ARMADUR	ARMADURA NEGATIVA	TIVA			
	SECÃO					POSIC	POSIÇÃO EM X	×							POSIÇ	POSIÇÃO EM X	J			
DIREÇAO ARMAÇAO	EM Y		00'0	∢	00'0	0,00	۷	4,00	4,00	∢	4,00	0,00	∢	0,00	0,00	Φ	00'0	00'0	4	4,00
			Φ	/o	cm	Φ	/ o	cm	θ	/ o	cm	Φ	/ o	cm	Φ	c/ (cm	Φ	c/	cm
		arranjo	00'00	/o	00,00	10,00		18,00	00,00		00'00	00'00	/o	00,00	10,00		18,00	20,00		00′6
		comprimento		00,00		7	400,00			00,00			00,00		_	00'00		4	400,00	
	SUP	comp.total+ancoragem/m		00'00		2	2588,89			00'00			00'00			00'0		35	5863,89	
		comp.distribuição		00'00			00'00			00'00			00'00			00'0			00'00	
		peso (kg)		00'00			00'00			00'00			00'00)	00'00)	00,00	
		arranjo	00'0	/	00'00	10,00	/>	18,00	00'00	/	00'00	00'00	/>	00,00	10,00	c/ 10	10,00	20,00	/>	00'6
		comprimento		00,00		7	400,00			00'00			00'00			00'0		4	400,00	
×	MEIO	comp.total+ancoragem/m		00'00		4	4660,00			00'00			00'00			00'0		57	5790,56	
		comp.distribuição		8,00			8,00			8,00			8,00		~	8,00			8,00	
		peso (kg)		00'00			232,63			00'00			00'00			00'0		11	1148,85	
		arranjo	00'00	/o	00,00	10,00	-	18,00	00,00		00,00	00'00	/o	0,00	10,00		18,00	20,00		00′6
		comprimento		00,00		7	400,00			00,00			00'00			00'00		4	400,00	
	INF	comp.total+ancoragem/m		00,00		2	2588,89			00'00			00'00			00'0		25	5863,89	
		comp.distribuição		00'00			00'00			00'00			00'00			00'0			00'0	
		peso (kg)		00,00			00,00			00'00			00'00			00'0			00'0	
						ARMADL	ARMADURA POSITIVA	TIVA							ARMADUR	ARMADURA NEGATIVA	TIVA			
(200	SEÇÃO					POSIC	POSIÇÃO EM Y	*							POSIÇ	POSIÇÃO EM Y				
	EM X		00'0	٧	4,00	4,00	٧	8,00	8,00	٧	8,00	00'0	٧	00'00	00'00	8 Y	8,00	8,00	٧	8,00
			θ	c/	cm	Φ	/ o	cm	θ	/ o	cm	θ	c/	cm	Φ	c/		θ	/o	cm
		arranjo	10,00	c/	18,00	20,00		18,00	00,00		0,00	0,00	c/	00,00	10,00	c/ 18	18,00	00,00		00'00
		comprimento		400,00		7	400,00			00'00			00'00		8	800,008			00'0	
	ESQ	comp.total+ancoragem/m		2636,11		2	2863,89			00'00			00'00		44	4444,44)	00'00	
		comp.distribuição		4,00			4,00			4,00			00'00)	00'0)	00'00	
		peso (kg)		65,80		. 1	284,10			00,00			00,00			00,00			00,00	
		arranjo	10,00	c/	18,00	10,00	/ ₂	15,00	00,00		00,00	00,00	c/	0,00	10,00	c/ 1	15,00	00,00		00,00
		comprimento		400,00		7	400,00			00'00			00,00		8	800,008			00'00	
۲,	MEIO	comp.total+ancoragem/m		2608,33		2	2923,33			00,00			00,00		53	5333,33		,	00,00	
		comp.distribuição		00'00			00'00			00'00			4,00		,	4,00		,	4,00	
		peso (kg)		00'00			00'00			00'00			00'00		1:	133,12)	00'00	
		arranjo	10,00	/	12,00	10,00	/S	12,00	00'00	/\cap	00'00	00'00	/\cap	00,00	10,00	c/ 13	12,00	00'00	/o	00'00
		comprimento		400,00		7	400,00			00'00			00'00		8	800,008			00'0	
	DIR	comp.total+ancoragem/m		3954,17		3	3608,33			00'00			00'00		99	29'9999			00'00	
		comp.distribuição		00'00			00'00			00'00			00'00			00'00			00'00	
		peso (kg)		00'00			00,00			00'00			00'00			00'00)	00'00	
R	RESUMO A	RESUMO ARMADURA																		
NEGATIVA	PES	PESO +10 % (kg) 1281,97	76′1																	
POSITIVA	PES	PESO +10 % (kg) 582,52	,52																	
	1	TOTAL 1864,49	1,49																	


CÁLCULO L2=L3

CARGAS PERMANENTES

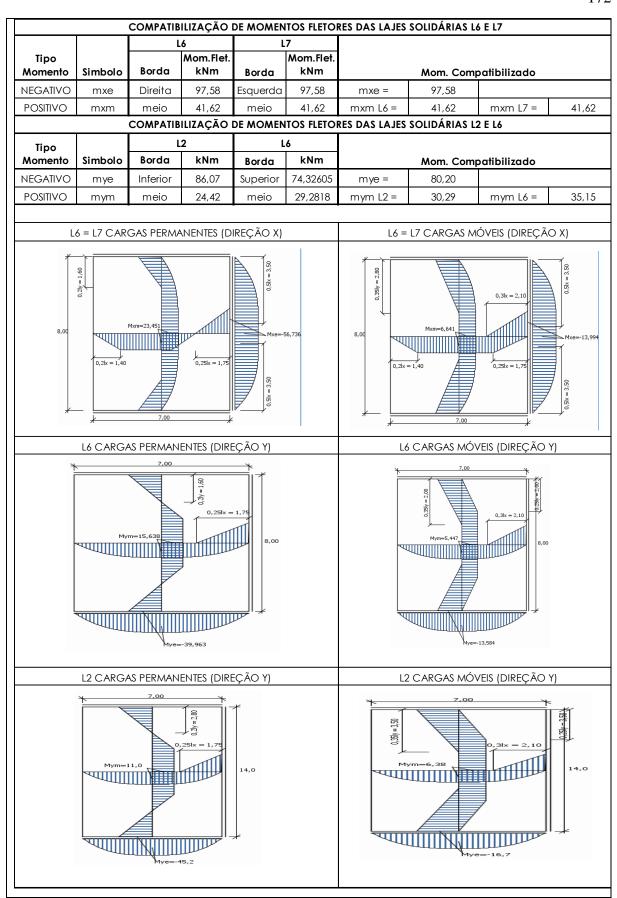

	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	0,93	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	8,13	kN/m²
	subtotal	11,82	kN/m²

COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

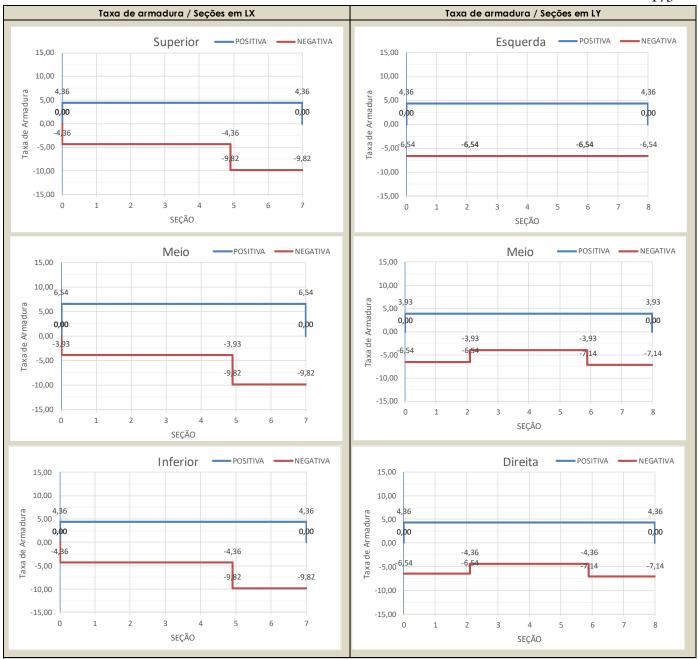


						1	WEMORIA	L DE CÁL	CULO A	RMADURA	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINAI	DINAL									
Borda	8			Superior	rior			Inferior				Direita				Esquerda	7		Me	Meio do vão	
Direção	ão		Ľ	Ž	ΓY		ĭ		Γ		×		Lλ	H	Ľ		Ιλ		ΙX		Γλ
Seção	0		Мхе	Мхе	Mye	Mye	Wxe V	Wxe V	Mye //	Mye /	Mxe M	Mxe M	Mye M	Mye	Mxe N	Mxe M	Mye My	Mye	Mxm		Mym
Momento	ıto		Positivo	negative	Positivo negative Positivo negativ		Positivo neg	negativePositivo	sitivo ne	negative Positivo	sitivo neg	negativdPositivo	itivo neg	negative Pos	Positivo neg	negativePositivo		ativ Posit	negative Positivo negative Positivo negative	tive Positi	vo nega
Armação	άο		Dringing) (Call 100)		-	Dai o di o di o di o di	V V C	0000	i C	Francis and provided			O C	0	o di	000	Oring	i dia		000
Descrição	Simbolo	Simbolo Grandeza		seconda.	secondar secondar	_		colladae	on idd FI.	ndioill	ncipa riii	ndin	niud sec	חומל	lcipd riii	ac ndo	nidd secr	חומל רוווינ	npd Fillion	nd second	idd secol
Base Viga	wq	сш	100	100	100	100	100	1 00 1	100	100	100	100	100	1 001	1 001	1 001	00 001	001 001	001 00	001 0	100
Altura Total	ح	сш	30	30	30	30	30	30	30	30	30 3	30 3	30 3	30	30	30	30 30	0 25	5 25	25	25
Altura útil laje	σ	cm	27	26	26	27	27	26	26	27	27 2	27 2	26 2	26	27	27 2	26 26	6 22	2 22	21	21
P-4	. ₀	ш	3	4	4	3	е	4	4	3	8	3	4	4	3	3	4	3	8	4	4
cobrimento nominal	υ	сш	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5 2,5	.5 2,5	5 2,5	2,5	2,5
Arm. Transversal	ŧ	шш	0	10	10	0	0	10	10	0	0	0	10 1	10	0	0	10 10	10 0	0	10	10
Mom. Ações Perm.	Msg	kNcm/m	0	3190	0	4520	0 3	3190	7 0	4520	0	6490	0 11	1100	0	0	0 0	3190	0 06	1100	0 0
Mom. Cargas móveis	Msq	kNcm/m	0	913	0	1670	6 0	913	0	1670	0 16	1640	0 16	1670	0	0	0 0	613	3 0	869	0
coef. Cargas móveis	ф		1,688	1,688	1,688	1,688	1,688	1 889′1	1 889′1	1,688	9′1 889′1	1,688	9′1 889′1	1,688	,1 889,)°1 889′	39'1 889'	39'1 889'	889'1 889'1	889′1 8	889′1 8
Mom. Cálc (Comb.Crífica)	psw (kNcm/m	0,0	4559,5	0,0	7025,0	0,0	4559,5	0,0	8020,0	0,0	122,0 0	0'0	3605,0	0,0	0′0	0,0 0,0	0'9299	0'0 0'9.	3029,0	0′0 0′
Coef. Resistência Conc.	Kc		-	14,826	-	10,377	- 1	14,826	6 -	060′6	- 6,4	6,555	- 18.	18,752		-	-	- 8,527	27 -	14,559	- 69
Cálculo	æ		ı	0,047	i	0,068	0	0,047	J -	0,078	- 0	0,109	- 0٬۲	0,037	1	1	1	0,083	83	0,048	8
Coef. Resistência aço	Ks		-	0,023	-	0,024	0 -	0,023) -	0,024)′0 -	0,024	- 0'ر	0,023	-	-	-	- 0,024	24 -	0,023	3 -
Arm. Mínima	As,mín	cm²/m	4,50	4,50	4,50	4,50	4,50	4,50 4	4,50	4,50	4,50 4,	4,50 4,	4,50 4,	4,50 4	4,50 4	4,50 4.	4,50 4,50	3,75	3,75	3,75	3,75
Arm. Calculada	As,calc		4,50	4,50	4,50	6,15	4,50	4,50 4	4,50	7,05	4,50 9,	9,91 4,	4,50 4,	4,50 4	4,50 4	4,50 4.	4,50 4,50	50 6,14	3,75	3,75	3,75
Arm. Máxima	4% Ac	cm²	120	120	120	120	120	120	120	120	120	120 13	120 1:	120	120	120	120 12	120 100	100	100	100
Verificação	max e mín		ok	ok	ò	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok ok	k ok	k	ok	Ą
		Φ	Ф	Ф	Ф	Ф	Φ	Φ	Φ	Φ	Ф	Ф	Ф	Φ	Φ	Φ	Ф	Ф	Ф	Ф	Φ
مرينان وهيد	70 0	mm	10	10	10	10	10	10	10	10	10 1	10 01	10	10	10	10 01	10 10	10 10	0 10	10	10
	ָהָ הַלְּי	/o	/o	/o	/o	/o	/o	c/	c/	/o	c/ c	c/ c	c/ c	c/	/S	o / /ɔ	/> />	/> /:	/> /	/o	/o
		cm	18	18	18	12	18	18	18	11	18	8 1	1 8	18	18	18	31 81	18 12	2 20	20	20
Arm. Total	As,efet	cm²/m	4,36	4,36	4,36	6,54	4,36	4,36 4	4,36	7,14	4,36 9,	9,82 4,	4,36 4,	4,36 4	4,36 4	4,36 4.	4,36 4,36	36 6,54	54 3,93	3 3,93	3,93
Verif. Ix Armadura	efet >	efet > 95%calc	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok o	ok ok	k ok	k ok	ok	ok
Verif. Ix Armadura	efet > 1	efet > 110%calc	ok	ok	ķ	ok	ok	ok	ok	ok	ok	ok	ok	ok W	ok	ok O	ok ok	k ok	k ok	ok	γo
Verif. Armadura	Ativa ou [Ativa ou Distribuição		As,dist As,ativa	As,dist A	As,ativa A	As,dist As,	As,ativa As	As,dist As	As,ativa A	As,dist As,o	As,ativa As,	As,dist As,c	As,ativa As	As,dist As	As,dist As,	As,dist As,o	As,dist As,ativa	tiva As,dist	st As,ativa	va As,dist

×	2,00	Ε																		
Ιλ	14,00	E																		
						AR	ARMADURA POSITIVA	POSITIVA							ARMAD	ARMADURA NEGATIVA	ATIVA			
DIDECÃO ABMACÃO	SEÇÃO						POSIÇÃO EM X	EM X							POS	POSIÇÃO EM X	×			
	EM Y		0	00'0	Α (0	0,00 0,00	Φ 0	2,00	2,00	∢	7,00	0,00	۷	00'0	0,00	4	4,90	4,90	⋖	2,00
					c/ c	cm Ф	/o	сш	θ	/ o	cm	θ	c/	сш	θ	c/	сш	θ	c/	E
		arranjo	0	00'0		0,00 10,00		18,00	00'00	/o	00'00	00,00	c/	00'0	10,00		18,00	10,00	/o	8,00
		comprimento		S	00′0		700,00	0(00,00			00,00			490,00			210,00	
	SUP	comp.total+ancoragem/m	u /	O	00′0		4255,56	99		00'0			00'00			2493,06		3	3291,67	
		comp.distribuição		0	00'00		00'0	_		00,00			4,90			4,90			4,90	
		peso (kg)		0	001		00'0			00'0			00'00			76,23			100,65	
1		arranjo	0	00,00	┝	00,00 10,00	/o oc	18,00	00,00	/o	0,00	00'00	/\tag{C}	00'00	10,00	/o	20,00	10,00	/ɔ	8,00
		comprimento	<u> </u>	0	00'		700,00	0		00'0			00'00			490,00			210,00	
ĭ	MEIO	comp.total+ancoragem/m	E/	0	00,		6383,33	33		00,00			00,00			2202,50		m	3310,00	
		comp.distribuição		1	4,00		14,00	C		14,00			4,20			4,20			4,20	
		peso (kg)		0	00'00		557,65	5		00'0			00'00			57,72			86,75	
1		arranjo	0	00,00		00,00 10,00	/o oc	18,00	00,00	/o	00'00	00'0	/o	00'0	10,00	/o	18,00	10,00	/o	8,00
		comprimento		0	00′1		700,00	0		00,00			00,00			490,00			210,00	
	Ä	comp.total+ancoragem/m	u/	0	00'		4255,56	26		00'0			00'00			2493,06		8	3291,67	
		comp.distribuição		0	00'1		00'0			00'0			4,90			4,90			4,90	
		peso (kg)		0	001		00'0	_		00'0			00'00			76,23			100,65	
						AR	ARMADURA POSITIVA	POSITIVA							ARMAD	ARMADURA NEGATIVA	ATIVA			
	SECÃO						POSIÇÃO EM Y	EM Y							POS	POSIÇÃO EM Y	>			
DIREÇAO ARMAÇAO	EM X		0	00'0) V	00'0 00'0	Φ 0	14,00	14,00	۷	14,00	0,00	∢	00'0	0,00	4	11,90	11,90	∢	14,00
				Φ	c/ c	cm Ф	/o	cm	θ	/o	cm	θ	/ o	шɔ	θ	/ o	cm	Φ	/ o	cm
		arranjo	0	00'0	c/ 0,	00'00 10'00	/o oc	18,00	00'00	/>	00'00	00'0	/\to	00′0	10,00	/\to	12,00	10,00	/>	12,00
		comprimento		0	00'00		1400,00	00		00'0			00'00			1190,00			210,00	
	ESQ	comp.total+ancoragem/m	۳/	0	00'00		8144,44	44		00'0			00'00			29'9166		2	2041,67	
		comp.distribuição		0	00′1		00'00			00'00			00,00			00'00			00'0	
		peso (kg)		0	00′0		00'00			00'00			00'00			00'00			00'00	
		arranjo	0	00'00		00'00 10'00	/o oc	20,00	00'00	/>	00'00	00'0	/\to	00'0	10,00	/o	20,00	10,00	/o	11,00
		comprimento		0	00′0		1400,00	OC		00,00			00,00			1190,00		,	210,00	
٦,	MEIO	comp.total+ancoragem/m	u/	S	00′0		7330,00	00		00,00			00,00			5815,00		2	2362,27	
		comp.distribuição		7	,000		7,00	(7,00			4,90			4,90			4,90	
		peso (kg)		0	00′0		320,17	7		00'0			00'00			177,80			72,23	
		arranjo	0	00'00		00,00 10,00	/o oc	18,00	00'00	/\to	00'00	00'0	/\to	00'0	10,00	/\to	18,00	10,00	/o	11,00
		comprimento		0	00′0		1400,00	00		00'0			00'00			1190,00			00,019	
	DIR	comp.total+ancoragem/m	u/	S	00′0		8144,44	44		00'0			00'00			6494,44		2	2343,94	
		comp.distribuição		0	00'0		00'0			00'0			2,10			2,10			2,10	
		peso (kg)		S	00'00		00'0			00'00			00'00			85,10			30,71	
7	RESUMO A	RESUMO ARMADURA																		
NEGATIVA	PES	PESO +10 % (kg)	864,07																	
POSITIVA	PES	PESO +10 % (kg)	877,82																	
		TOTAL	1741,89	_																
]																

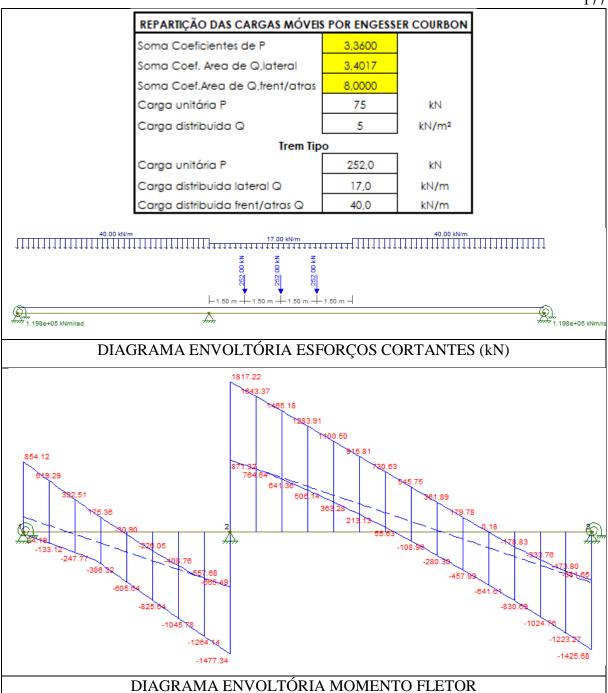

CÁLCULO L6=L7

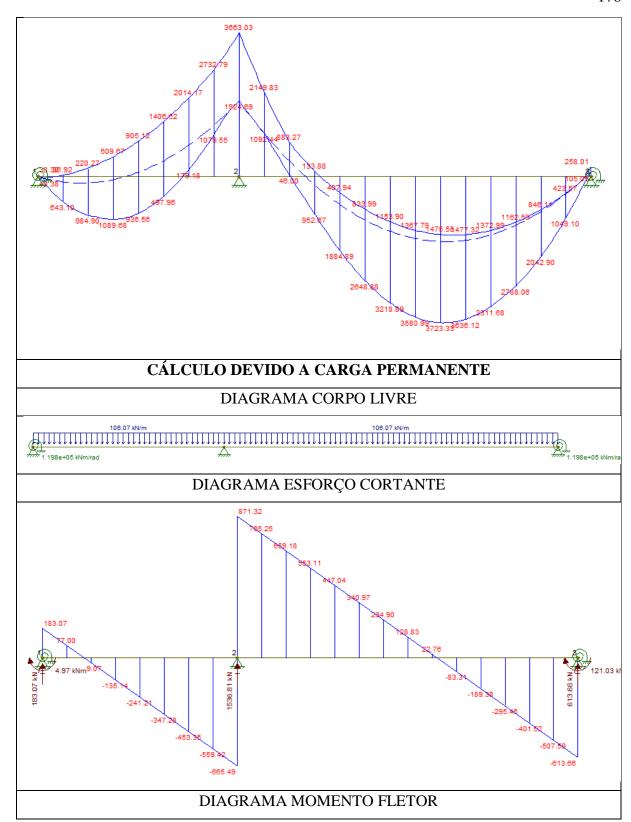
CARGAS PERMANENTES

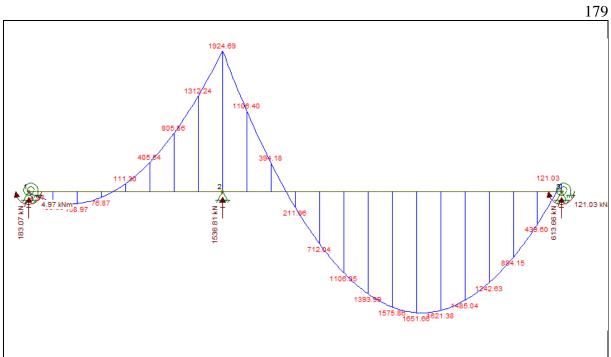

	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	0,93	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	8,13	kN/m²
	subtotal	11,82	kN/m²

COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

						1	AEMORIA	L DE CÁL	CULO AF	RMADURA	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINAL	DINAL									
Borda				Superior	rior			Inferior				Direita			Es	Esquerda			Meio	Meio do vão	
Direção	io		Ľ	~	ΓY		×		۲۸		×		ΓY		Ľ		Γλ		ΙX	Lλ	_
Seção	0		Мхе	Мхе	Муе	Mye	Wxe N	Mxe N	Mye /	Mye	Mxe M:	Мхе Муе	e Mye	е Мхе	Wxe	Муе	е Муе		Mxm	W	Mym
Momento	oto .		Positivo	negative	Positivo negative Positivo negative	egativ Pc	sitivo ne	gativePo	sitivo ne	gativ Pc	Positivo negativ	ativePosit	ivo nega	tiv Positi	vo nega	tivePositi	vo negati	iv Positivo	negativ	Positivo	negative
Armação	ĝο		Principa) Parios		ri Ori Dri	Principal Cec		, DO O	O. O	Principal Bring	o di	000	iodé Princi	Pripo	000	Specifical and Artificial and Artifi	Dringing	Prioring	Courses	Sections
Descrição	Simbolo	Simbolo Grandeza	r III Icipa	secollad.	Secondary	pdo	ndbu se	on Iddae	001100	ndio!!!	משב	nd seco	ומל אפרטו			bd secon	ומר אברחו	ad Lillicip	Lillicipi	Secondar I	secondo
Base Viga	μq	сш	100	100	100	100	. 001	1 001	100	100	100	100 100	001 0	100	100	100	100	100	100	100	100
Altura Total	٩	cu	30	30	30	30	30	30	30	30	30 3	30 30	30	30	30	30	30	25	25	25	25
Altura útil laje	σ	cm	27	26	26	27	27	26	26	27	27 2	27 26	5 26	27	27	26	26	22	22	21	21
p-q	ď.	cm	3	4	4	3	3	4	4	3	3	3 4	4	3	3	4	4	3	3	4	4
cobrimento nominal	υ	cm	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5 2,5	5 2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Arm. Transversal	₽	mm	0	10	10	0	0	10	10	0	0	0 10	01 0	0	0	10	10	0	0	10	10
Mom. Ações Perm.	Msg	kNcm/m	0	2345,1	0	3996,3	0 23	2345,1	0 38	3996,3	0 567	5673,6 0	1563,8	0 8	0	0	0	2345,1	0	1563,8	0
Mom. Cargas móveis	Msq	kNcm/m	0	664,1	0	1358,4	9 0	664,1	0 13	1358,4	0 139	1399,4 0	544,7	0 2	0	0	0	664,1	0	544,7	0
coef. Cargas móveis	ф		1,688	1,688	1,688	1,688	1 889′	1,688	1 889′	1,688	9′1 889′	1,688 1,688	1,688	8 1,688	8 1,688	889′1 8	1,688	1,688	1,688	1,688	1,688
Mom. Cálc (Comb.Crífica)	Msd	kNcm/m	0,0	3341,3	0,0	6033,9	0,0	3341,3 (0,0	8020,0	0,0	9758,0 0,0	2380,9	0,0 6,1	0'0	0,0	0,0	4162,0	0,0	3029,0	0,0
Coef. Resistência Conc.	Kc		-	20,232		12,082	- 20	20,232	5 -	060'6	- 7,4	7,471	28,393	64	1	1	1	11,629		14,559	
Cálculo	хβ		ı	0,034	1	0,058	0 -	0,034	J -	0,078	ס'0 -	960'0	0,024	-	1	1	1	090′0	ı	0,048	i.
Coef. Resistência aço	Ks		-	0,023	-	0,024	0 -	0,023	- C	0,024	יר –	0,024	0,023	3	1	-	-	0,024	-	0,023	-
Arm. Mínima	As,mín	cm²/m	4,50	4,50	4,50	4,50	4,50	4,50 4	4,50	4,50	4,50 4,	4,50 4,50	0 4,50	0 4,50	4,50	0 4,50	0 4,50	3,75	3,75	3,75	3,75
Arm. Calculada	As,calc		4,50	4,50	4,50	5,26	4,50 4	4,50 4	4,50	7,05	4,50 8,	8,64 4,50	0 4,50	0 4,50	4,50	4,50	0 4,50	4,46	3,75	3,75	3,75
Arm. Máxima	4% Ac	cm²	120	120	120	120	120	120	120	120	120 13	120 120	0 120	120	120	120	120	100	100	100	100
Verificação	max e mín		ok	ok	ok	ok	ok V	ok	ok	ok	ok	ok ok	, ok	ò	ò	ok	ok	ò	ò	ok	ok K
		θ	Ф	θ	θ	Φ	θ	Φ	Φ	θ	Ф	Ф	Φ	θ	θ	θ	Φ	θ	θ	Φ	θ
Arrania act cineary	700	mm	10	10	10	10	10	10	10	10	10	01 01	01 0	10	10	10	10	10	10	10	10
	, cc	/ o	c/	c/	c/	/o	/o	c/	c/	c/	c/ c	c/ c/	, c/	/o	/o	/o	/o	/o	/o	c/	/o
		cm	18	18	18	12	18	18	18	11	18 81	8 18	3 18	18	18	18	18	12	20	20	20
Arm. Total	As,efet	cm²/m	4,36	4,36	4,36	6,54	4,36	4,36 4	4,36	7,14	4,36 9,4	9,82 4,36	4,36	4,36	4,36	4,36	4,36	6,54	3,93	3,93	3,93
Verif. Tx Armadura	efet > {	efet > 95%calc	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	, ok	ò	ò	ok	ok	ò	ò	ok	ò
Verif. Tx Armadura	efet > 1	efet > 110%calc	ok	ok	ok I	recalc	ok	ok W	ok	ok	ok rec	recalc ok	yo ok	ok	ok	ok	ok	recalc	ø	ok	Ą
Verif. Armadura	Ativa ou E	Ativa ou Distribuição As, dist As, ativa As, dist As, ati	As,dist	As,ativa	As,dist 🗡	۸۵	As,dist As,	As,ativa As	As,dist As,ativa		As,dist As,ativa		As,dist As,ativa	va As,dist	st As,dist	st As,dist	ist As,dist	t As,ativa		As,dist As,ativa	As,dist

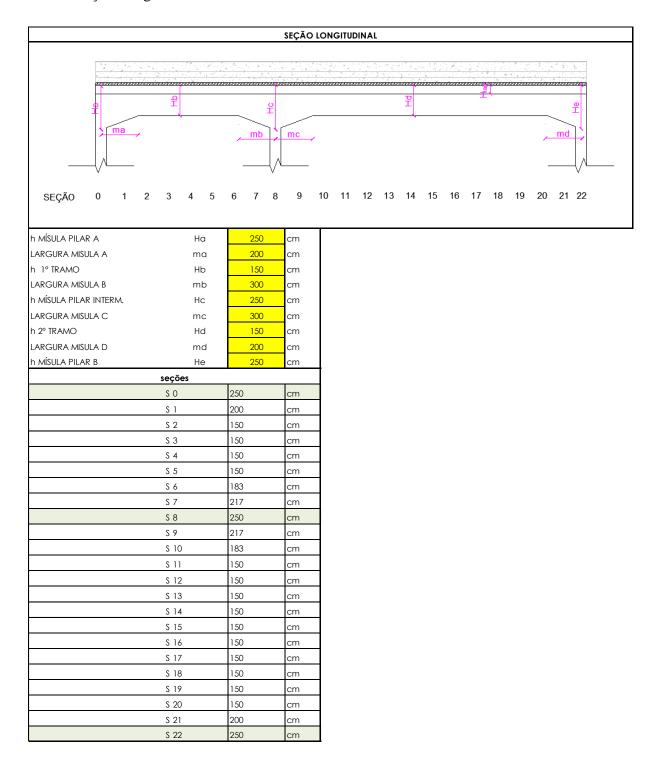

14 10 10 10 10 10 10 10			-																		
1	DIMENSOES LAJE		£							5	VITATITA	7	ç								
State Stat	.	00'/	E							X	<u> </u>	200	,								
Section Sect	ΓĄ	8,00	E																		
No. Strict Stri							ARWA	DURA POS	SITIVA							ARMADU	JRA NEG	ATIVA			
No. of the problem No. of	DIREÇÃO ARMAÇÃO	SEÇÃO EM V		8	•	8	ğ	SIÇAO EN	×	9	-	8	8	-	6	Posi	ÇAO EM	×	8		8
Particular Par				θ,	τ '	8, E	δ Φ	ı v	8, 8	ξ θ	τ 'υ	8 5	§ 0	τ `υ	8 5	ξ 0	τ τ	, E	Ç O	τ `υ	8, 8
Complicationacygenery Complicationacygene			arranjo	00,00	/o	00'0	10,00	c/	18,00	00'0	, /o	00'0	00,00	· /ɔ	00'0	10,00	· /ɔ	18,00	10,00	· /ɔ	8,00
Mail Compositionistaçies Compositioni			comprimento		00'00			700,007			00,00			00,00			490,00			210,00	
Comp distribution Com		SUP	comp.total+ancoragem/m		00'00			4255,56			00'0			00,00		2	2493,06			791,67	
No. Composition Composi			comp.distribuição		00'00			00,00			00'00			2,80			2,80			2,80	
Here complete conceptency in the complete conceptency in			peso (kg)		00'0			00,00			00,00			00,00			43,56			57,51	
Meio Compidente Compiden			arranjo	00'00	/>	00'0	10,00	/\to	18,00	00,00	/o	00'0	00'0	/o	00'0	10,00	/o	20,00	10,00	/>	8,00
Meto Comp. blobl-sincerogem/mine Comp. blob sincerogem/mine Com			comprimento		0,00			700,007			00'00			00,00			490,00			210,00	
Protection distribuição Comp distribuição	×	MEIO	comp.total+ancoragem/m		0,00			6383,33			00,00			0,00		2	2202,50			310,00	
Main of the pass (kg) Main			comp.distribuição		8,00			8,00			8,00			2,40			2,40			2,40	
Mathematical Math			peso (kg)		0,00			318,66			00'0			00,00			32,98			49,57	
No. Complicationic general Complication Com	•		arranjo	00,00	/'S	00'00	10,00	/o	18,00	00,00	/>	00'00	00,00	/>	00'0	10,00	/ɔ	18,00	10,00	/o	8,00
NF			comprimento		00'00			700,007			00'00			00,00		,	490,00			210,00	
SEÇÃA PRODUCTOR PRODUCT		Ā	comp.total+ancoragem/m		00'00			4255,56			00'00			00,00		2	2493,06		(,)	791,67	
SEÇÃO AMAMOLIA MOSITIVA AMAMO			comp. distribuição		00'00			00,00			00'00			2,80			2,80			2,80	
SEÇÃO Marie Posição EMATEMENTO POSIÇÃO EMA			peso (kg)		00'00			00,00			00'00			00,00			43,56			57,51	
Seção Parisidado Parisid							ARMA	DURA PO!	SITIVA							ARMADU	JRA NEG,	ATIVA			
FMX FMX	C NO A MAN	SEÇÃO					PO	SIÇÃO EN	۱ ۲							POSI	ÇÃO EM	,			
Fig. Compitionistic Grant Compitionistic Grant Compitionist Grant Compitionistic		EM×		0,00	٧	0,00	00'00	٧	8,00	8,00	٧	8,00	00'0	٧	2,10	2,10	٧	5,90	5,90	٧	8,00
FSQ complication Complication				θ	/ o	E C	θ	/ o	сш	θ	د/	cm	ө	۲	cm	θ	ν'	E C	θ	د/	E C
ESA Comp.tinento Comp.tinento			arranjo	00,00	/ɔ	0,00	10,00	/o	18,00	00,00	/o	00,00	-	/o	12,00	\dashv	/o	12,00	-	/o	12,00
ESQ comp.bfold+ancoragem/m 0.00 4811.11 0.00 4811.11 0.00 270.83 316.647 2041.57 comp.distribuição 0.00			comprimento		00'00			800,00			00,00			210,00			380,00			210,00	
Comp. distribuição 0,00		ESQ	comp.total+ancoragem/m		0,00			4811,11			00,00			2370,83		6)	3166,67			041,67	
Peso (kg) Pes			comp. distribuição		0,00			00,00			0,00			2,10			2,10			2,10	
MEIO comprimento 0.00 comprimento 0.00 comprimento 0.00 comprimento 0.00 comprimento 0.00 comprimento 0.00 <th< th=""><th></th><th></th><th>peso (kg)</th><th></th><th>00'00</th><th></th><th></th><th>00,00</th><th></th><th></th><th>00'00</th><th></th><th></th><th>31,07</th><th></th><th></th><th>41,50</th><th></th><th></th><th>26,75</th><th></th></th<>			peso (kg)		00'00			00,00			00'00			31,07			41,50			26,75	
MEIO computation of composition of computation of compu			arranjo	00,00	/ɔ	00'00	10,00	/ɔ	20,00	00,00	/o	00,00	_	\ <u>'</u>	12,00	_	/)	20,00	-	/o	11,00
MEIO comp. ideal funcoragem/m 0.00 4330.00 0.00 7.00 2.151.67 1655.00 2862.27 comp. distribuição 7.00 7.00 7.00 7.00 7.00 7.00 2.80 <t< th=""><th></th><th></th><th>comprimento</th><th></th><th>00'00</th><th></th><th></th><th>800,00</th><th></th><th></th><th>00,00</th><th></th><th></th><th>210,00</th><th></th><th></th><th>380,00</th><th></th><th></th><th>210,00</th><th></th></t<>			comprimento		00'00			800,00			00,00			210,00			380,00			210,00	
A comp.distribuição 7.00 7.00 7.00 7.00 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 4.1.27	Ľ	MEIO	comp.total+ancoragem/m		0,00			4330,00			0,00		•	2151,67		1	1655,00			362,27	
The complete The composition The composit			comp.distribuição		7,00			7,00			7,00			2,80			2,80			2,80	
A compriment			peso (kg)		00'00			189,13			00,00			37,59			28,92			41,27	
DIR comp.linento 0.00 800,00 0.00 210,00 380,00 380,00 KESUMO ALISHT buição 0.00 4811,11 0.00 2133.33 1902,78 1902,78 KESUMO ALISH BUIÇÃO 0.00 0,00 0,00 2,10 2,10 2,10 TESUMO ARMADURA ALISM PESO +10 % (kg) 575.40 575.40 4.493 4.493 4.493 TOTAI 1083.19 1083.19 1083.19 4.811,11 0.00 0.00 2.10 24,93 4.493			arranjo	00'00	/>	00'0	10,00	/>	18,00	00'00	/	00'00	10,00	/S	12,00	10,00	/>	18,00	10,00	/\cap -	11,00
DIR comp.lotal+ancoagem/m 0.00 4811,11 0.00 2135,33 1902,78 1902,78 x comp.distribuição 0.00 0.00 0.00 2.10			comprimento		00'00			800,00			00'00			210,00		.,	380,00			210,00	
comp.distribuição 0.00 0.00 2.10		DIR	comp.total+ancoragem/m		00'0			4811,11			00'00			2133,33		1	1902,78			343,94	
RESUMO ARMADURA 0.00 0.00 27.96 24.93 PESO +10 % (kg) 575.40 PESO +10 % (kg) 507.79 Annual Peso +10 % (kg) 507.79			comp. distribuição		00'00			00,00			00'00			2,10			2,10			2,10	
RESUMO ARMADURA PESO +10 % (kg) PESO +10 % (kg) TOTAL			peso (kg)		00'00			00,00			00'00			27,96			24,93			30,71	
PESO +10 % (kg) PESO +10 % (kg) TOTAL		RESUMO A	ARMADURA																		
PESO +10 % (kg) TOTAL	NEGATIVA	PES		,40																	
TOTAL	POSITIVA	PES		.79																	
				3,19																	

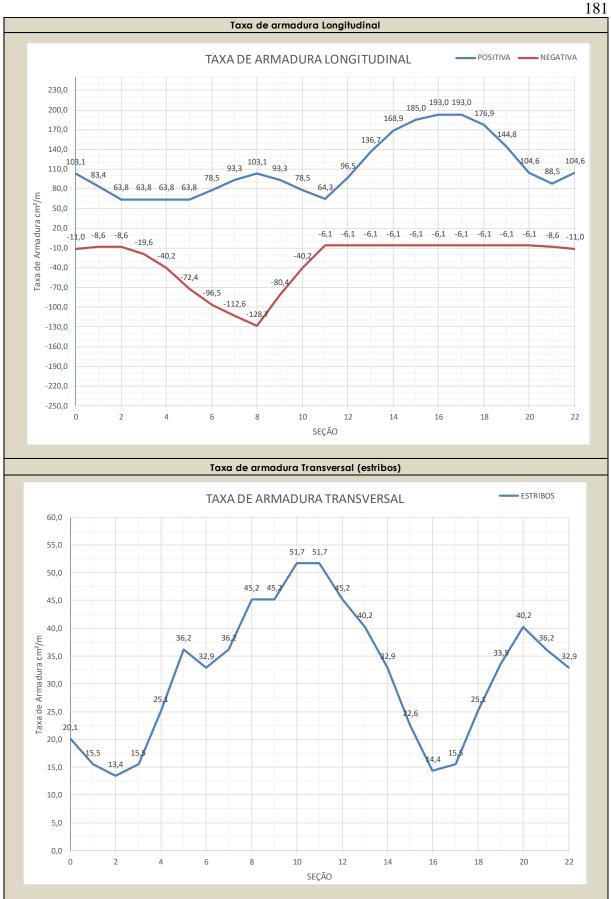



Cálculo das Longarinas

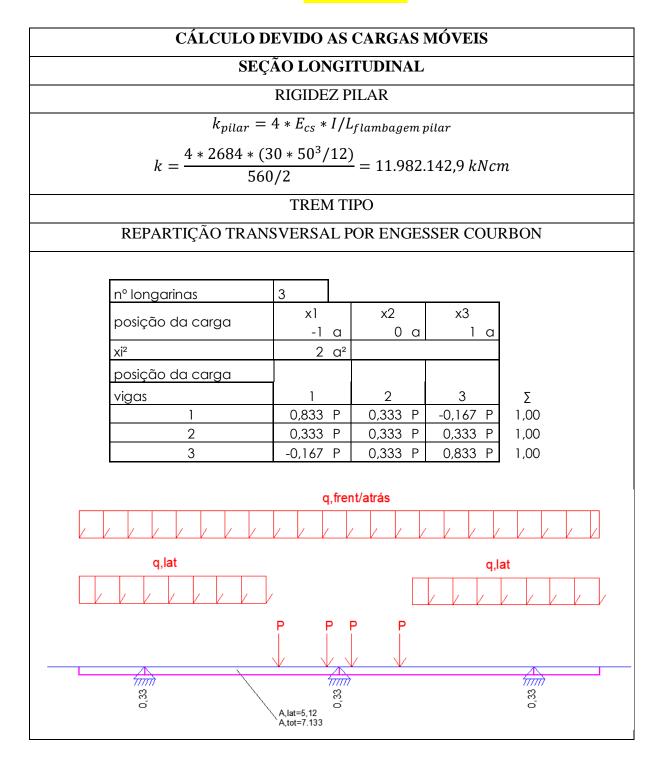
CÁLCULO V1 = V3

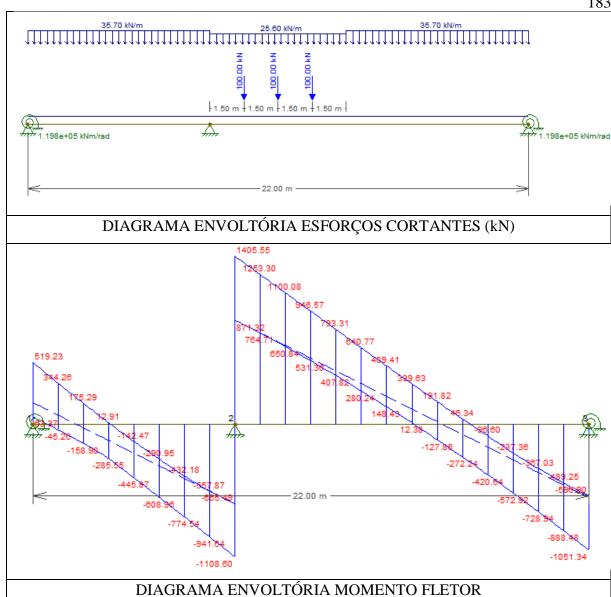
	CÁLCULO I	DEVIDO AS	CARGAS	MÓVEIS	
	SEC	ÇÃO LONGI	TUDINAL		
		RIGIDEZ F	PILAR		
	$k_{pilar} =$	$4*E_{cs}*I/I$	flambagem į	oilar	
	$k = \frac{4 * 2684 * (}{56}$	$30 * 50^3 / 12$	<u>)</u> = 11.982.	142,9 <i>kNc</i> 1	m
		TREM T	IPO		
	REPARTIÇÃO TRAN	ISVERSAL I	POR ENGES	SSER COU	RBON
	nº longarinas	3			
	posição da carga	x1 -1 a	x2 0 a	x3 1 a	
	xi²	2 a ²	0 0	ı d	
	posição da carga				
	vigas	1	2	3	Σ
	1 2	0,833 P 0,333 P	0,333 P 0,333 P	-0,167 P 0,333 P	1,00 1,00
	3	-0,167 P	0,333 P	0,833 P	1,00
VIGA V	′1=V3				
		q,frent/a	atrás		
		/ / /	/ / /	/	
		q,lat			
				/	
P	0,83 0,83 0,83 0,68 0,68	A,lat=3,4017 A,tot=8			21.0

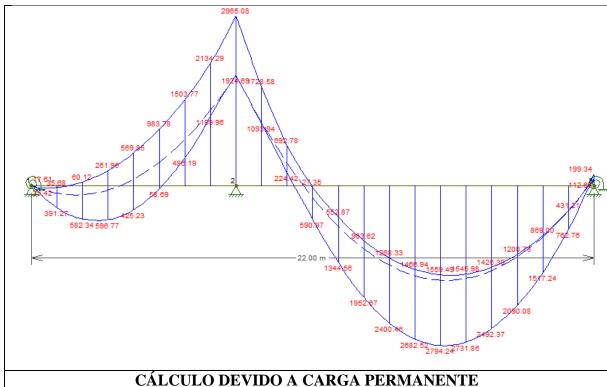




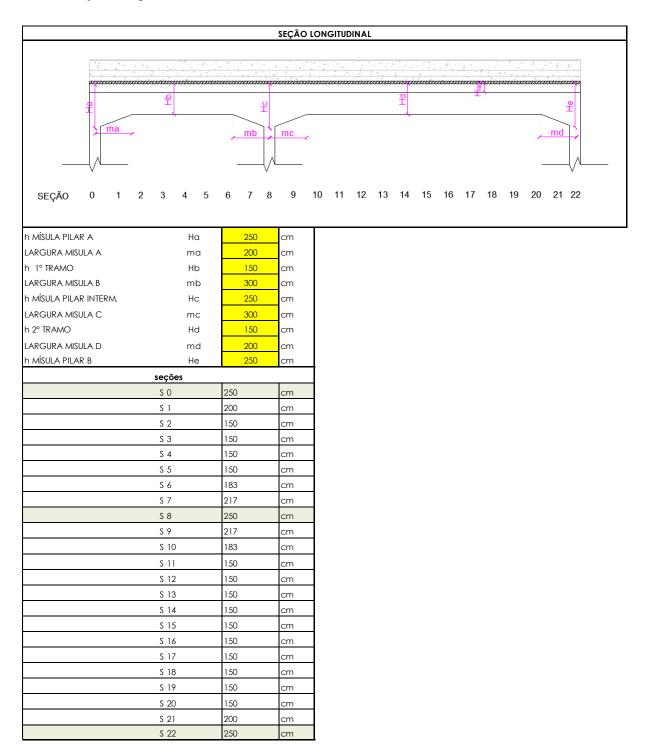
Não são apresentadas todas as memórias de cálculo das longarinas, entretanto, todos os resultados substanciais estão apresentados no corpo deste trabalho.

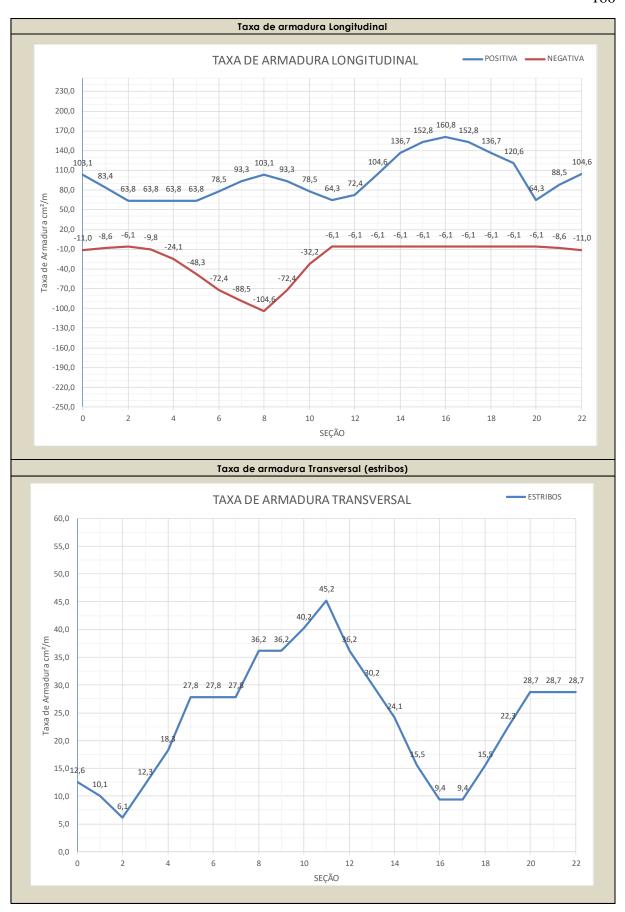

Seção Longitudinal:




Gráficos de Taxa de Armaduras:

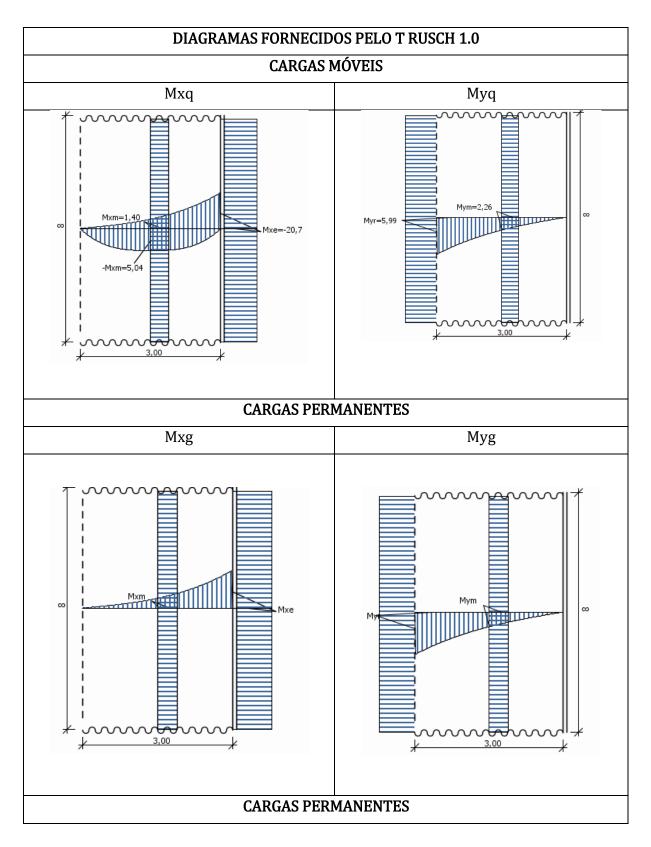
CÁLCULO V2





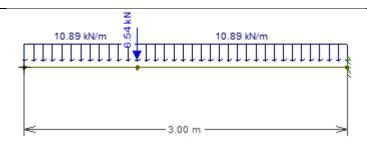
DEVIDO AS VIGAS POSSUIREM CARREGAMENTOS SIMÉTRICOS E AS VIGAS SEREM ESPAÇADAS SIMETRICAMENTE, PARA O CARREGAMENTO PERMANENTE, POR ENGESSER COURBON, OS DIAGRAMAS SÃO IDÊNTICOS PARA TODAS AS VIGAS DESTE TABULEIRO.

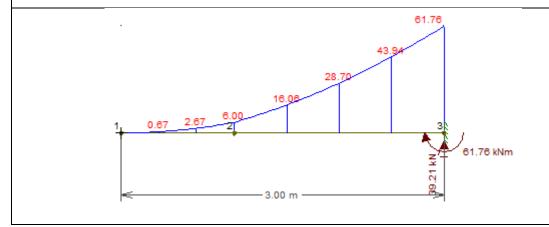
Não são apresentadas todas as memórias de cálculo das longarinas. Apenas os resultados no corpo deste trabalho.


Gráficos de Taxa de Armaduras

TABULEIRO C

Cálculo das lajes


CÁLCULO L1=L5


Lev	antamento Cargas Permanen	tes		
Elemento	Tipo carregamento	carga		braço (m)
Barreira New Jersey	Concentrado	6,54	kN/m	1,05
	subtotal	6,54	kN/m	
Pavimento	Distribuído	2,76	kN/m²	
Laje + mísulas	Distribuído	8,13	kN/m²	
	subtotal	10,89	kN/m²	

DIAGRAMAS FTOOL

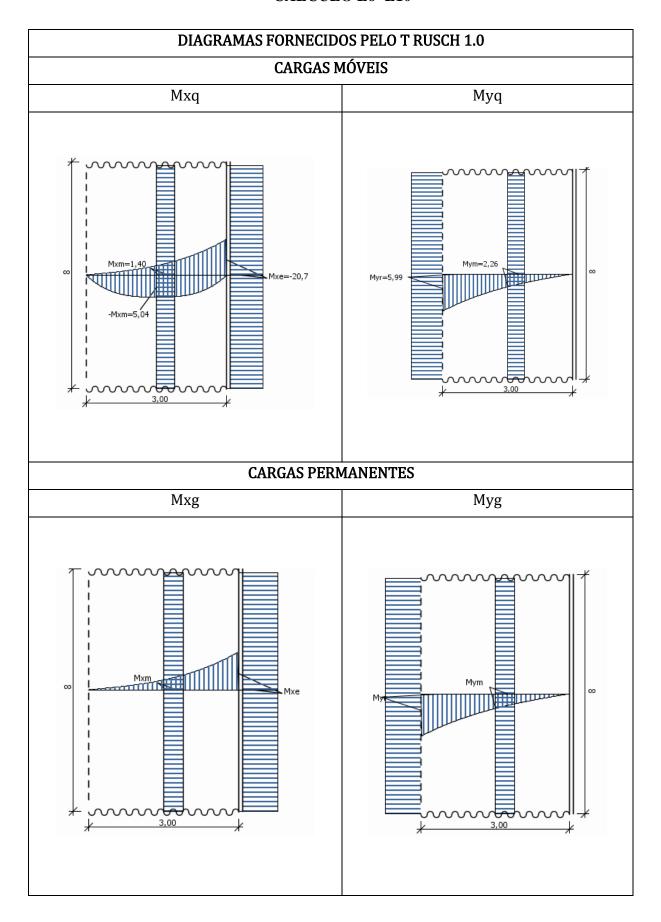
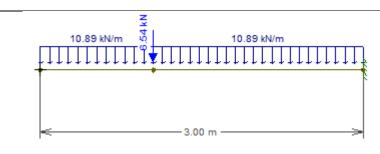
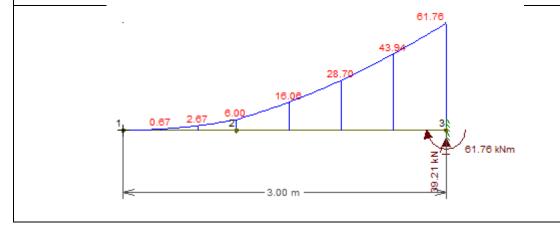

DIAGRAMA DE CORPO LIVRE

DIAGRAMA MOMENTO FLETOR (kNm) - Mxg

CÁLCULO L6=L10



CARGAS PERMANENTES


Lev	vantamento Cargas Permanen	tes		
Elemento	Tipo carregamento	carga		braço (m)
Barreira New Jersey	Concentrado	6,54	kN/m	0,15
	subtotal	6,54	kN/m	
Pavimento	Distribuído	2,76	kN/m²	
Laje + mísulas	Distribuído	8,13	kN/m²	
	subtotal	10,89	kN/m²	

DIAGRAMAS FTOOL

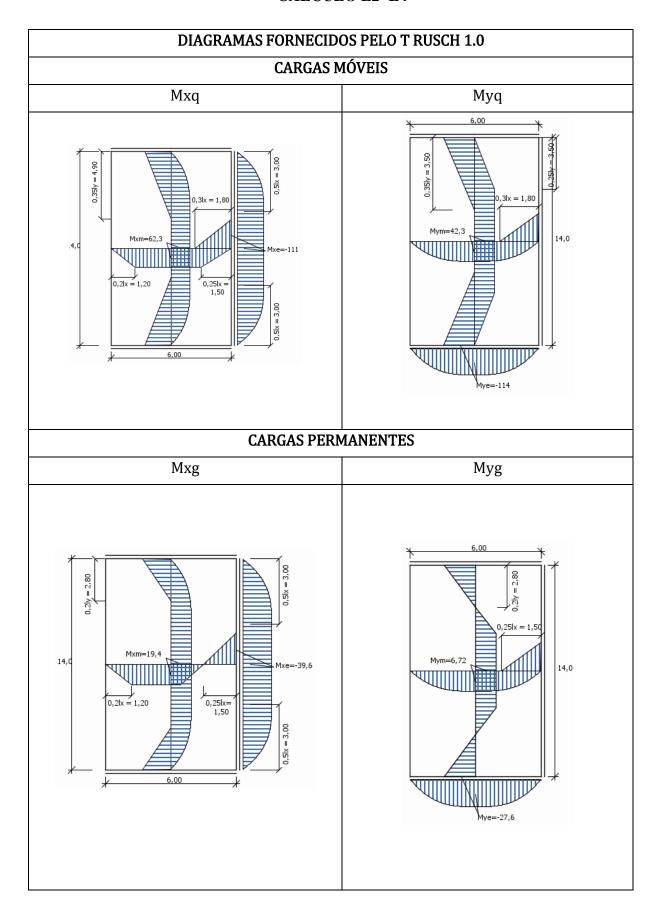
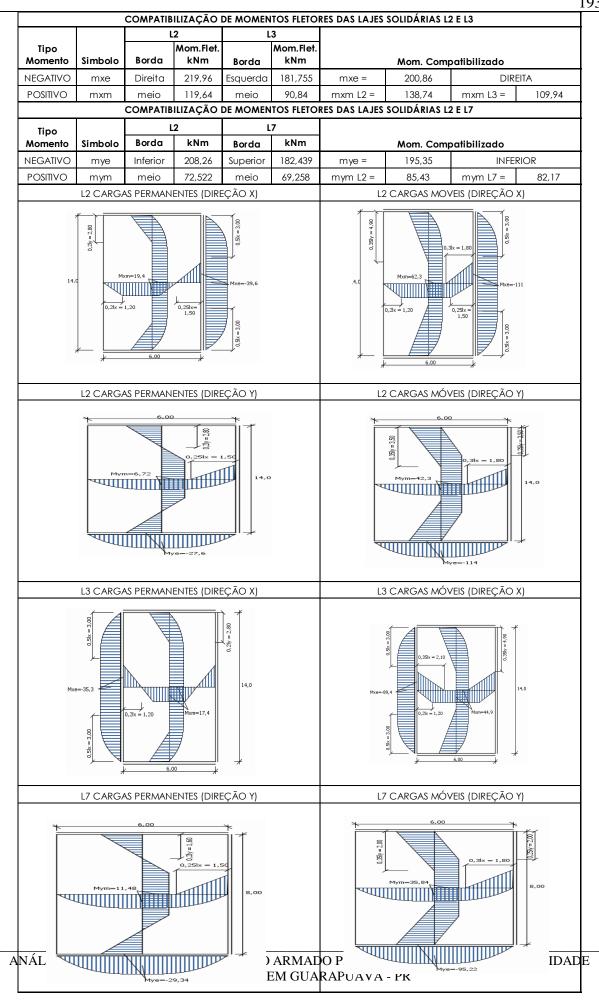
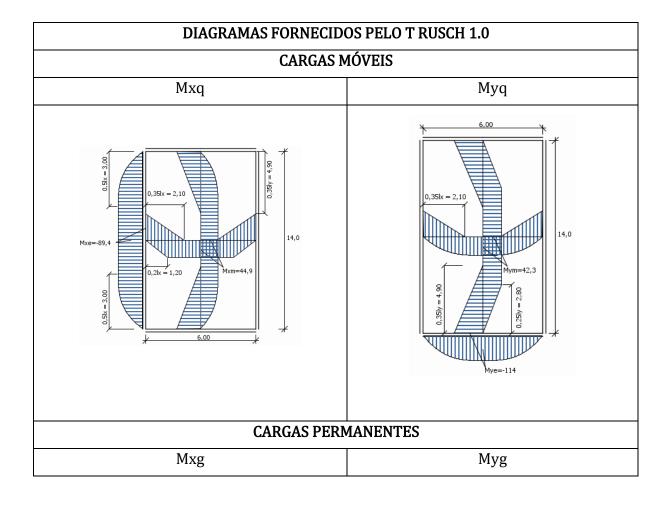
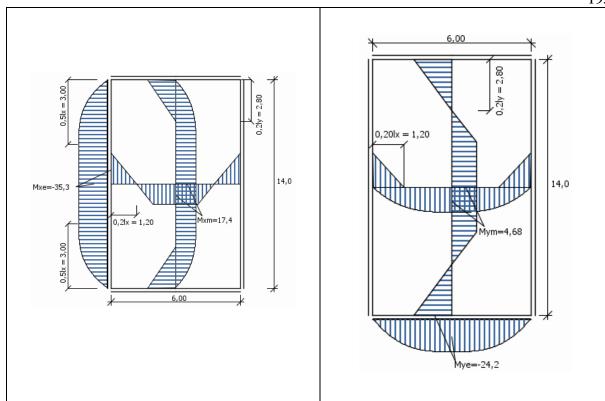

DIAGRAMA DE CORPO LIVRE

DIAGRAMA MOMENTO FLETOR (kNm) - Mxg

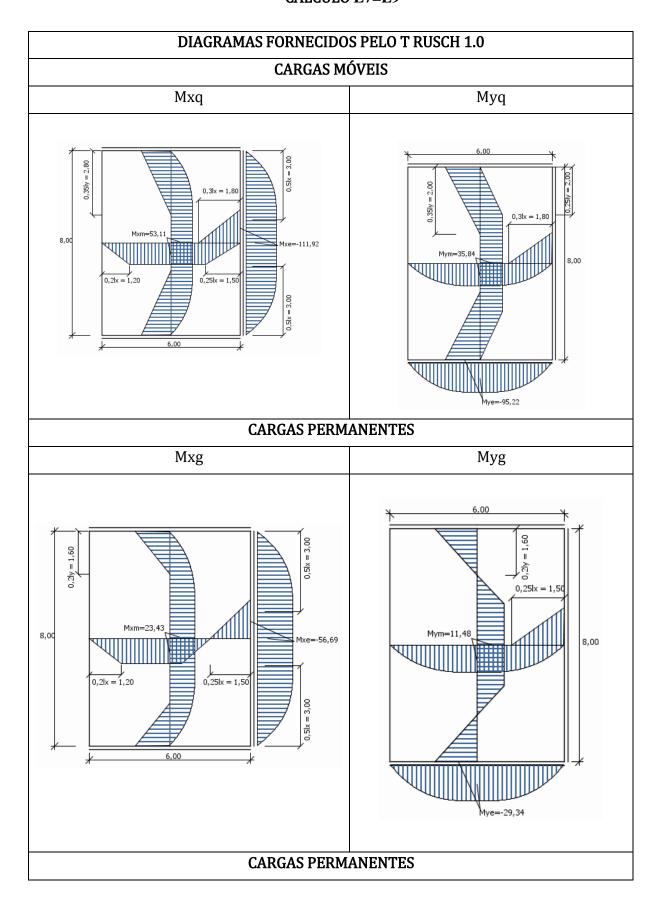

CÁLCULO L2=L4


CARGAS PERMANENTES


	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	_	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	6,88	kN/m²
	subtotal	9,64	kN/m²

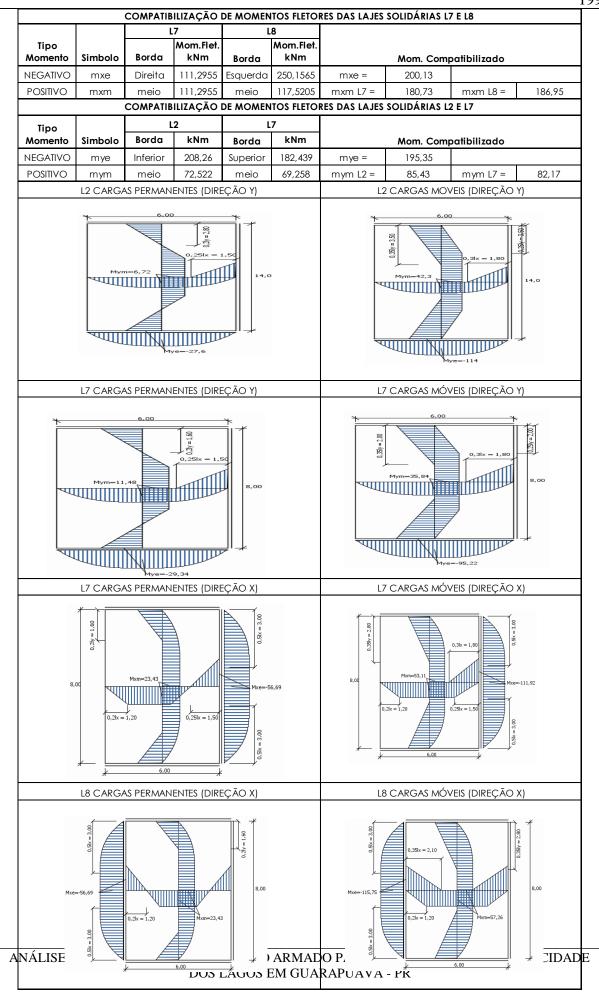
COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

CÁLCULO L3

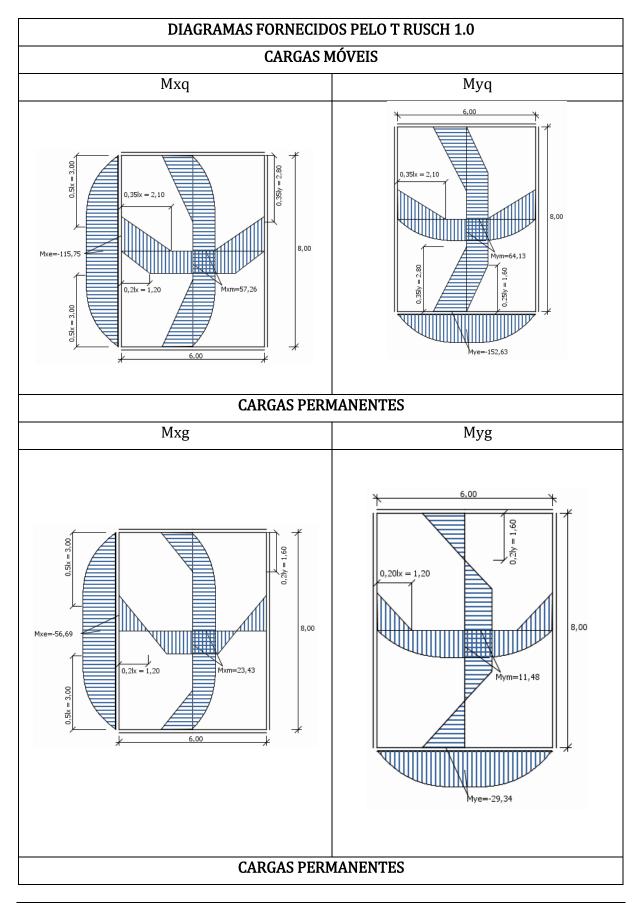


CARGAS PERMANENTES

	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
		0.10	
Barreira New Jersey	Concentrado convertido em distribuido	2,18	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	6,88	kN/m²
	subtotal	11,81	kN/m²


COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

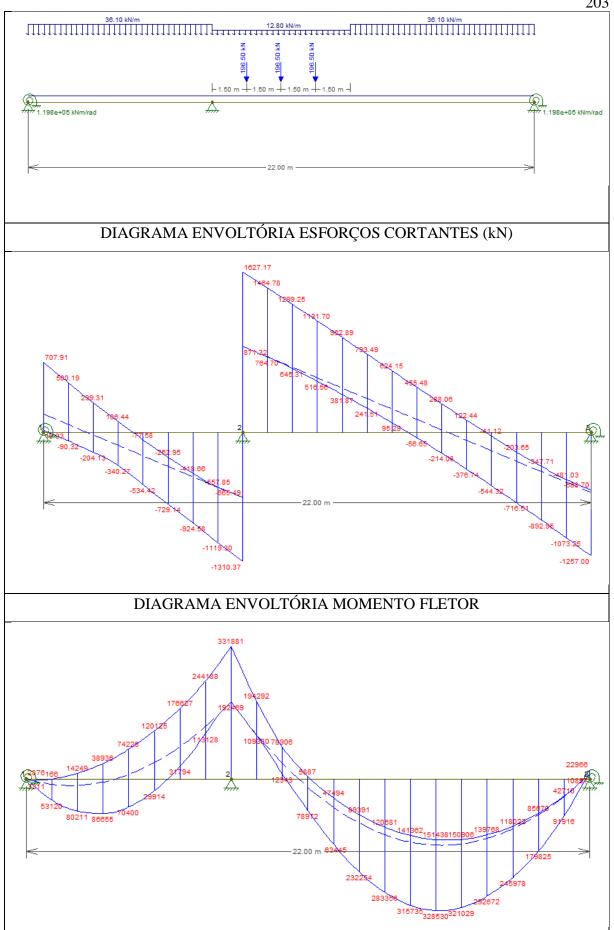
CÁLCULO L7=L9

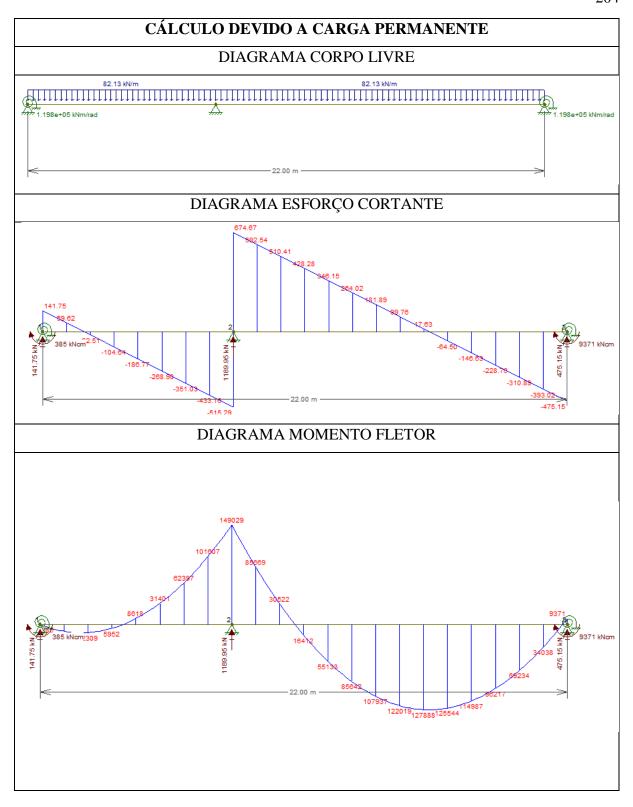


	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	-	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	6,88	kN/m²
	subtotal	9,64	kN/m²

COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

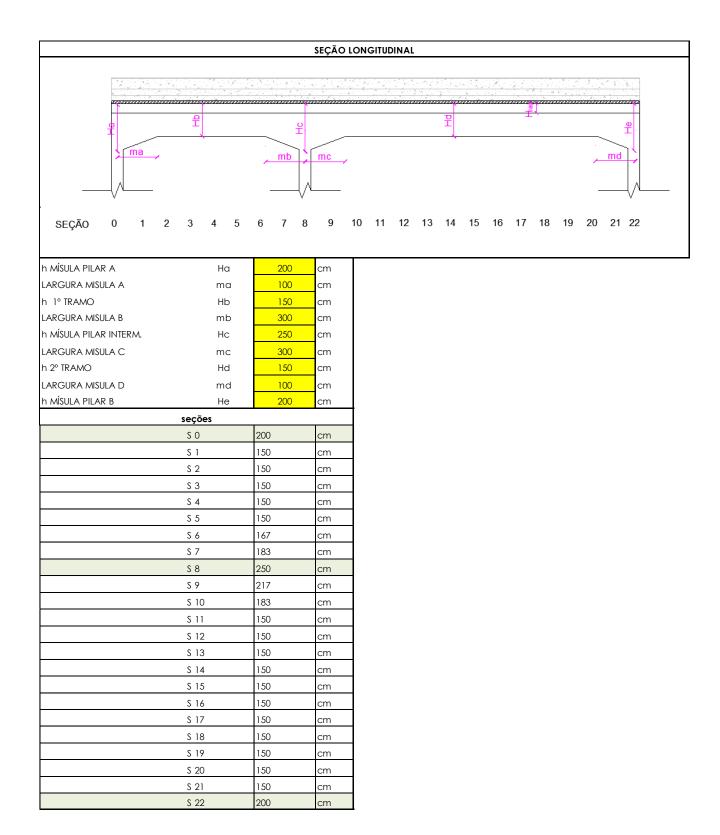
CÁLCULO L8

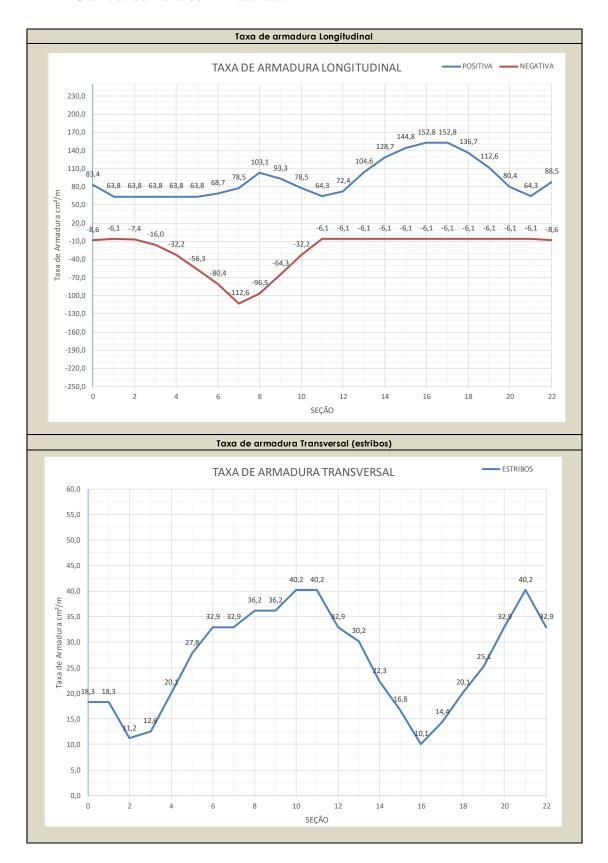

	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	2,18	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	6,88	kN/m²
	subtotal	11,81	kN/m²


COMPATIBILIZAÇÃO DE MOMENTOS FLETORES	

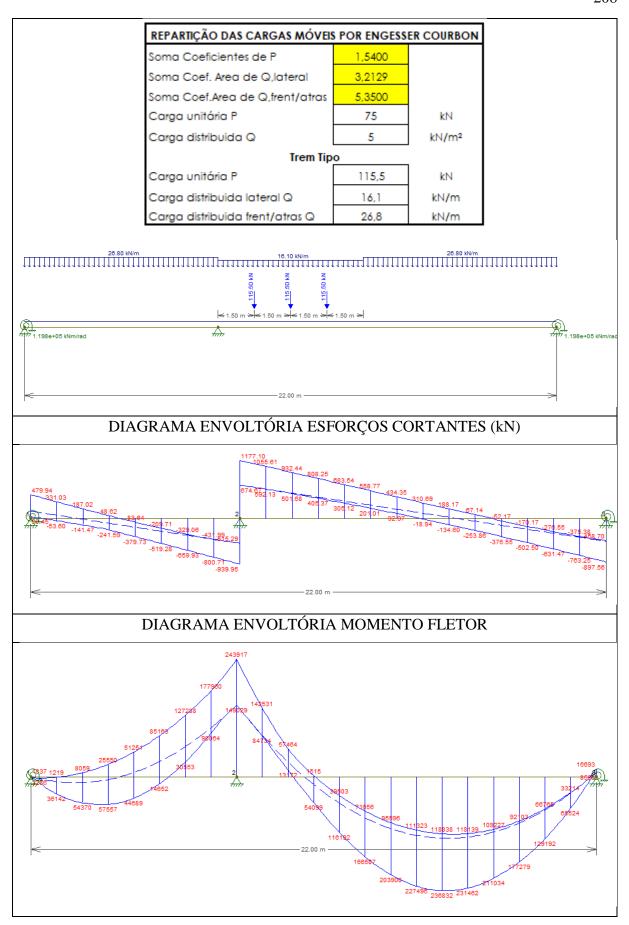
Cálculo das Longarinas

V1=V4


CÁLCU	LO DEVIDO			EIS	
	SEÇÃO LO				
	RIGID	EZ PILAR			
k_{pi}	$lar = 4 * E_{cs}$	$*I/L_{flamb}$	agem pilar		
4 * 268	$4*(30*50^3)$	³ /12)			
k =	$\frac{4*(30*50^3)}{560/2}$	$\frac{7}{1} = 11$	1.982.142,9	9 kNcm	
	TRE	M TIPO			
REPARTIÇÃO T			NCECCED	COLIDAO	NT
KEFAKTIÇAU I	KANS VERS	AL POR E	NGESSEK	COURDO	11
n° longarinas	4				
posição da carga	x1 -1,5 a	x2 -0,5 a	x3 0,5 a	x4 1,5 a	
Xİ ²	5 a²	-0,5 G	0,5 G	1,5 G	
posição da carga					
vigas	1	2	3	4	Σ
1	0,700 P	0,400 P	0,100 P	-0,200 P	1,00
2	0,400 P	0,300 P		0,100 P	1,00
3 4	0,100 P	0,200 P	0,300 P	0,400 P	1,00
4	-0,200 P	0,100 P	0,400 P	0,700 P	1,00
VIGA V1=V4		,frent/atrás			
	<u></u>	,nentatias			
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>
	q,lat		q,l	at	
D D D					
P					
\downarrow \downarrow \downarrow		,	.	2	
			<u> </u>		
0,78	4	//	uu	111111	
	\	A,lat=2,556 A,tot=7.225			

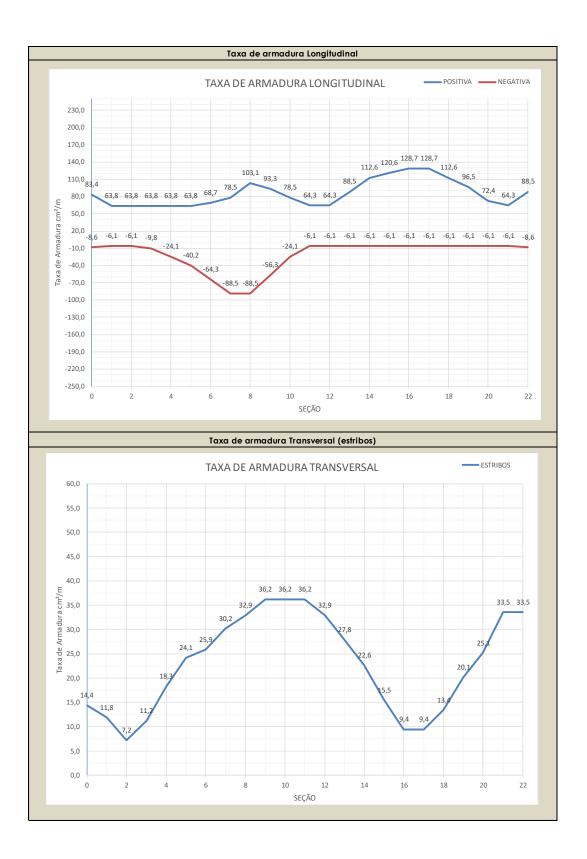


Não são apresentadas todas as memórias de cálculo das longarinas, entretanto, todos os resultados substanciais estão apresentados no corpo deste trabalho.


Todas as longarinas deste tabuleiro possuem mesma seção longitudinal

Gráficos de Taxa de Armaduras:

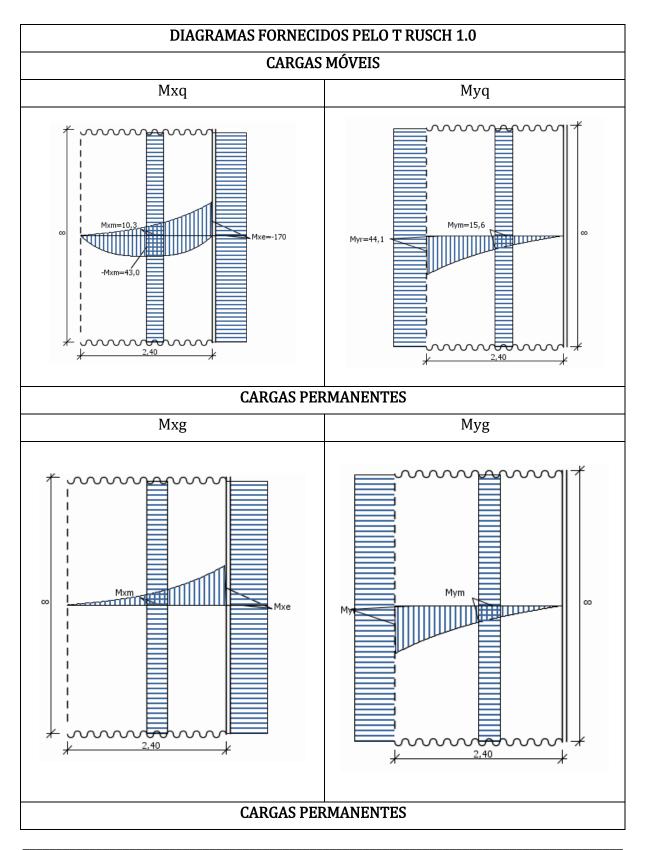
CÁLCULO DEVIDO AS CARGAS MÓVEIS SEÇÃO LONGITUDINAL RIGIDEZ PILAR $k_{pilar} = 4 * E_{cs} * I/L_{flambagem\ pilar}$ $k = \frac{4 * 2684 * (30 * 50^3/12)}{560/2} = 11.982.142,9 \text{ kNcm}$ TREM TIPO REPARTIÇÃO TRANSVERSAL POR ENGESSER COURBON nº longarinas x1 х2 хЗ х4 posição da carga -1,5 a -0,5 a 0,5 a 1,5 a 5 a² posição da carga 3 Σ 0,700 P -0,200 P 0,400 P 0,100 P 1,00 2 0,400 P 0,300 P 0,200 P 0,100 P 1,00 0,100 P 0,200 P 0,300 P 0,400 P 1,00 -0,200 P 0,100 P 0,400 P 0,700 P 1,00 VIGA V3=V4 q,frent/atrás q,lat q,lat A,lat=3,2129 A,tot=5,35



CÁLCULO DEVIDO A CARGA PERMANENTE

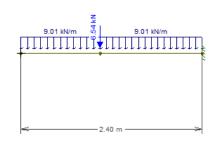
DEVIDO AS VIGAS POSSUIREM CARREGAMENTOS SIMÉTRICOS E AS VIGAS SEREM ESPAÇADAS SIMETRICAMENTE, PARA O CARREGAMENTO PERMANENTE, POR ENGESSER COURBON, OS DIAGRAMAS SÃO IDÊNTICOS PARA TODAS AS VIGAS DESTE TABULEIRO.

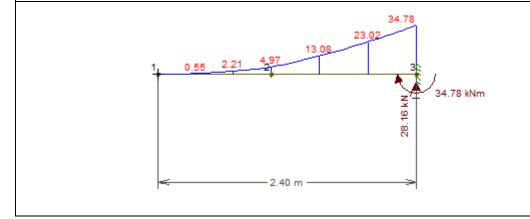
Não são apresentadas todas as memórias de cálculo das longarinas, entretanto, todos os resultados substanciais estão apresentados no corpo deste trabalho.


Gráficos de Taxa de Armaduras:

TABULEIRO D

Cálculo das lajes


CÁLCULO L1=L6


Levantamento Cargas Permanentes				
Elemento	Tipo carregamento	braço (m)		
Barreira New Jersey	Concentrado	6,54	kN/m	1,05
	subtotal	6,54	kN/m	
Pavimento	Distribuído	2,76	kN/m²	
Laje + mísulas	Distribuído	6,25	kN/m²	
	subtotal	9,01	kN/m²	

DIAGRAMAS FTOOL

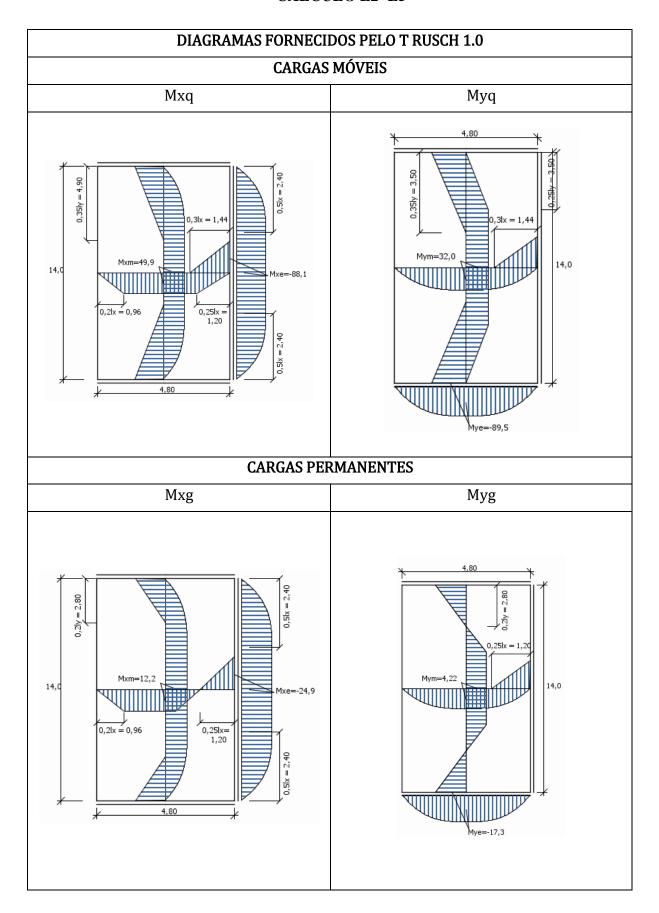
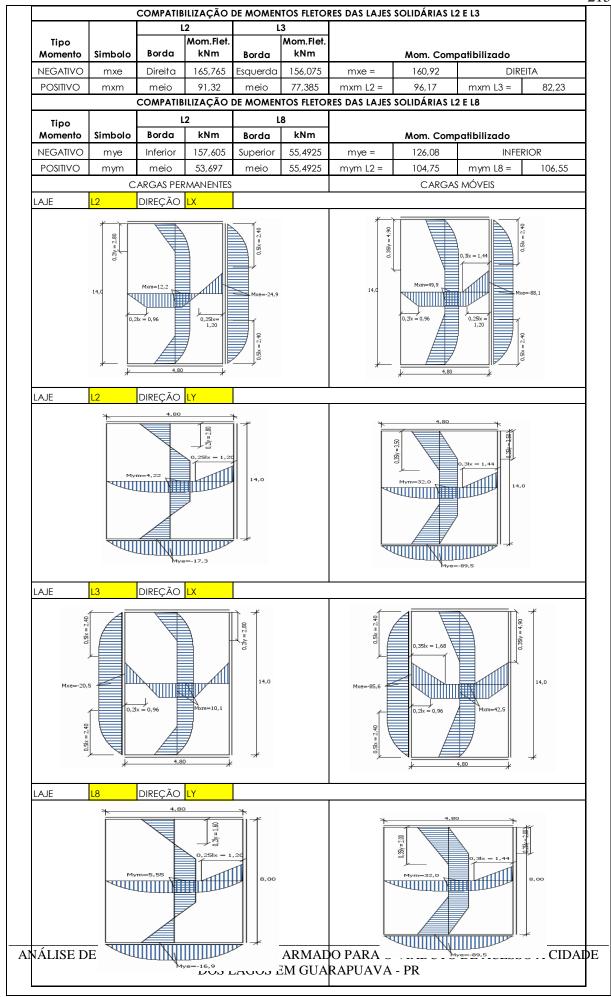
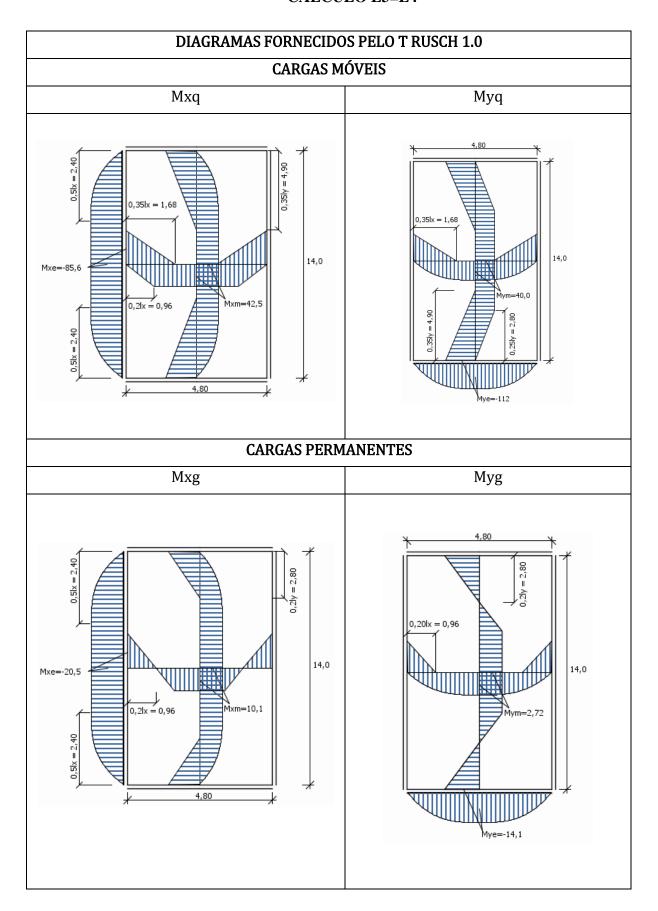

DIAGRAMA DE CORPO LIVRE

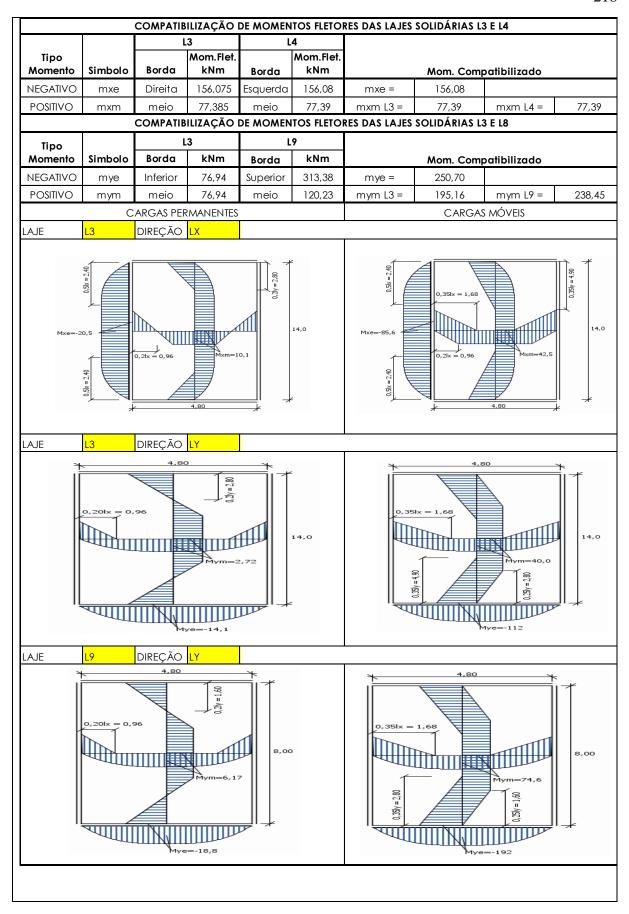
DIAGRAMA MOMENTO FLETOR (kNm) - Mxg

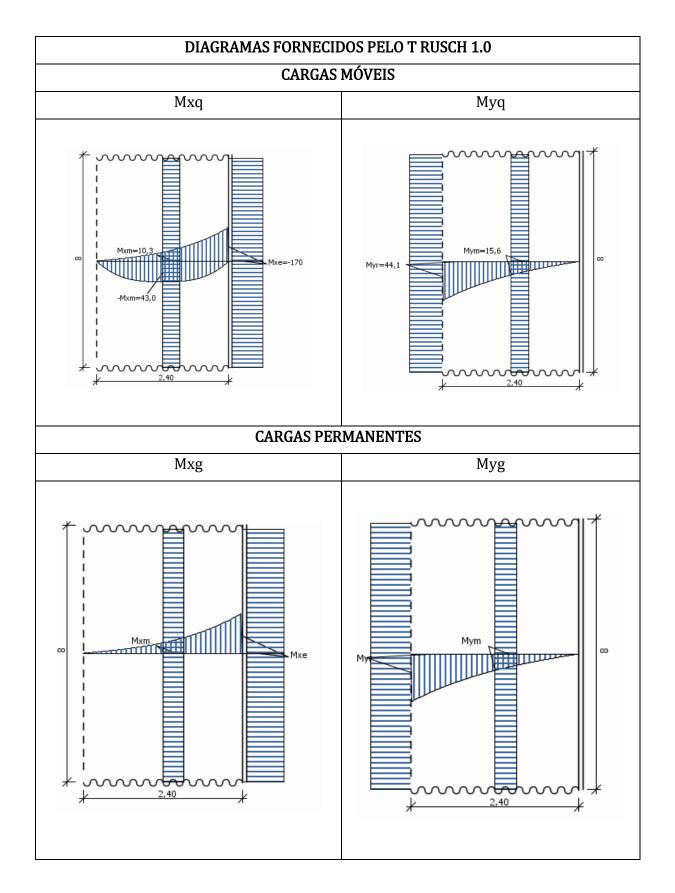

CÁLCULO L2=L5


CARGAS PERMANENTES

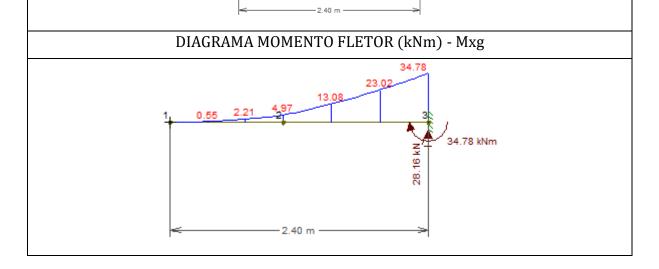
Levantamento Cargas Permanentes					
Elemento	Elemento Tipo carregamento				
Parraira Novy Jarray	Concentrado convertido em distribuido		kN1/m2		
Barreira New Jersey Pavimento	Distribuído	2,76	kN/m² kN/m²		
Laje + mísulas	Distribuído	6,88	kN/m²		
	subtotal	9,64	kN/m²		

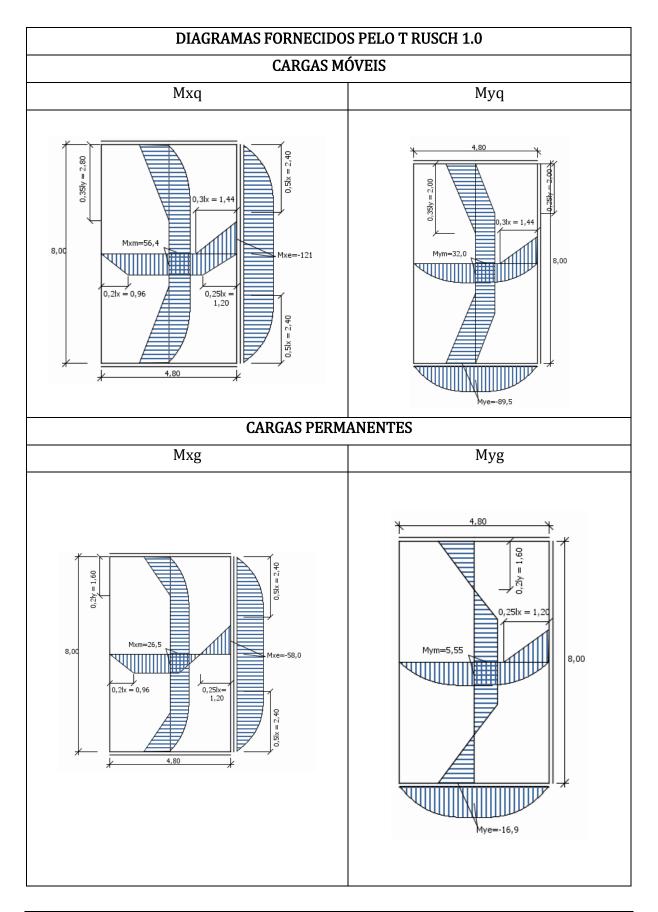
COMPATIBLIZAÇÃO DE MOMENTO FLETOR


CÁLCULO L3=L4

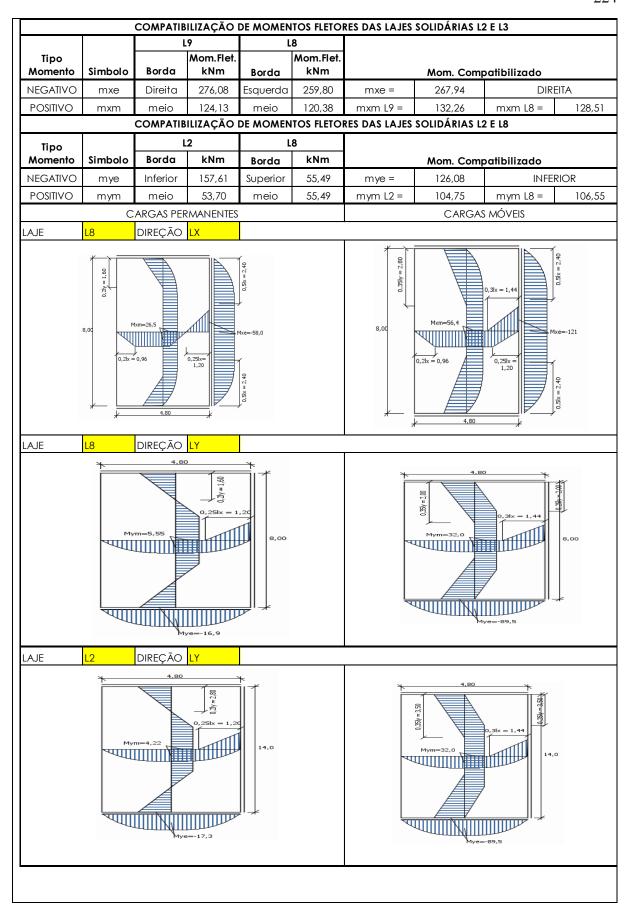

CARGAS PERMANENTES

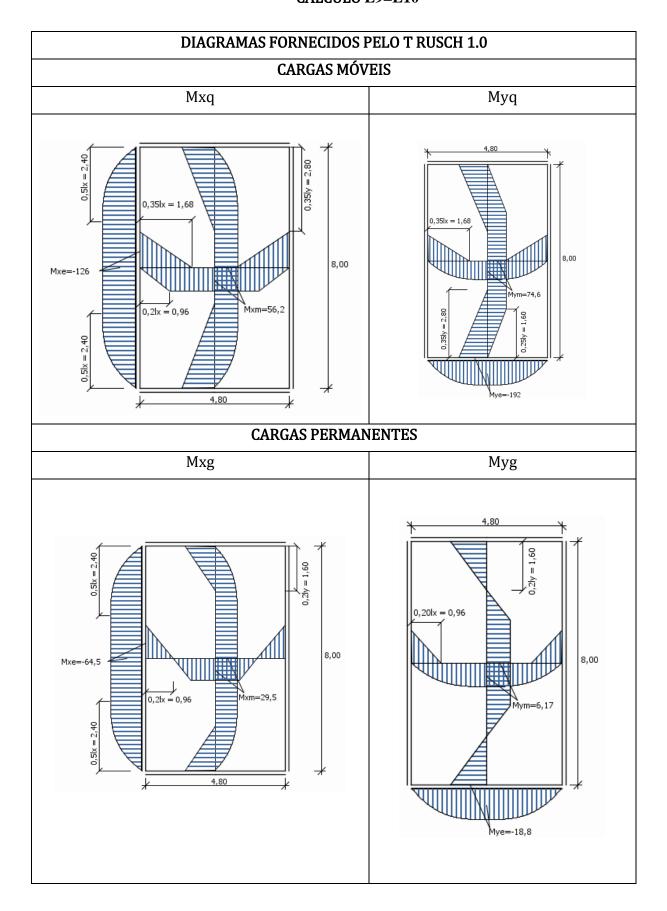
Levantamento Cargas Permanentes					
Elemento	Elemento Tipo carregamento				
Damaira Navy Jamay		1.00	Lah I /mm 2		
Barreira New Jersey	Concentrado convertido em distribuido	1,09	kN/m²		
Pavimento	Distribuído	2,76	kN/m²		
Laje + mísulas	Distribuído	6,88	kN/m²		
	subtotal	10,72	kN/m²		


COMPATIBILIZAÇÃO DE MOMENTOS FLETORES


CÁLCULO L7=L12

221 **CARGAS PERMANENTES Levantamento Cargas Permanentes** Tipo carregamento **Elemento** braço carga (m) 6,54 1,05 Barreira New Jersey Concentrado kN/m subtotal 6,54 kN/m Distribuído 2,76 Pavimento kN/m² Laje + mísulas Distribuído 6,25 kN/m^2 subtotal 9,01 kN/m² DIAGRAMAS FTOOL DIAGRAMA DE CORPO LIVRE 9.01 kN/m 9.01 kN/m


CÁLCULO L8=L11


CARGAS PERMANENTES

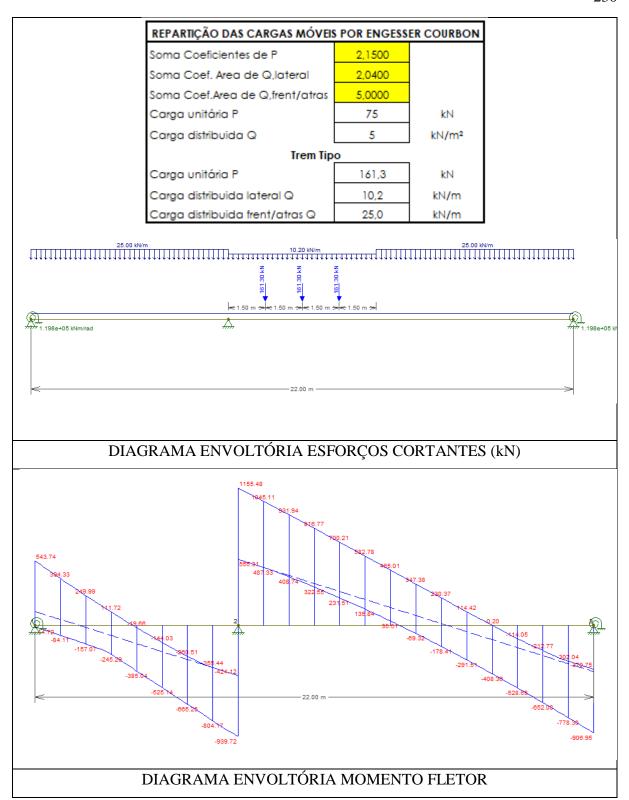
Levantamento Cargas Permanentes					
Elemento	nto Tipo carregamento				
Barreira New Jersey	Concentrado convertido em distribuido	-	kN/m²		
Pavimento	Distribuído	2,76	kN/m²		
Laje + mísulas	Distribuído	6,88	kN/m²		
	subtotal	9,64	kN/m²		

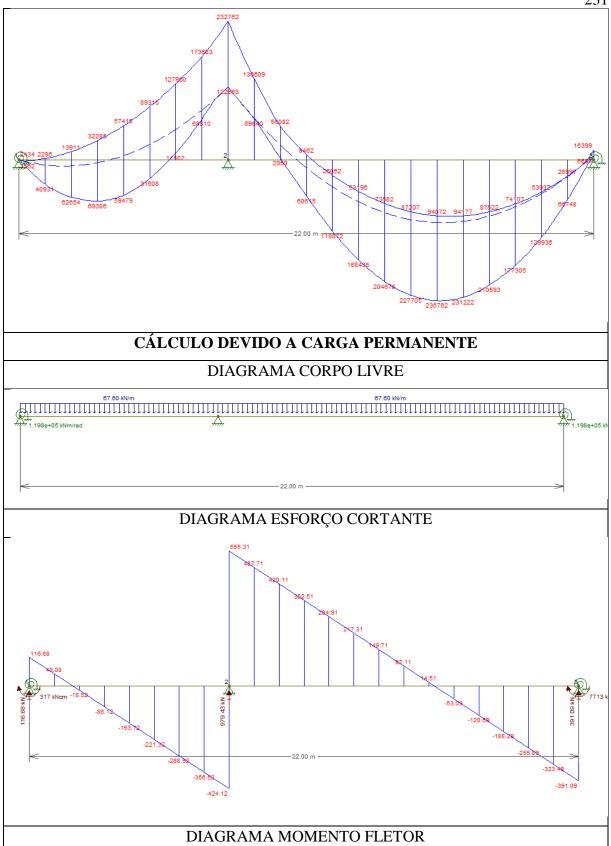
COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

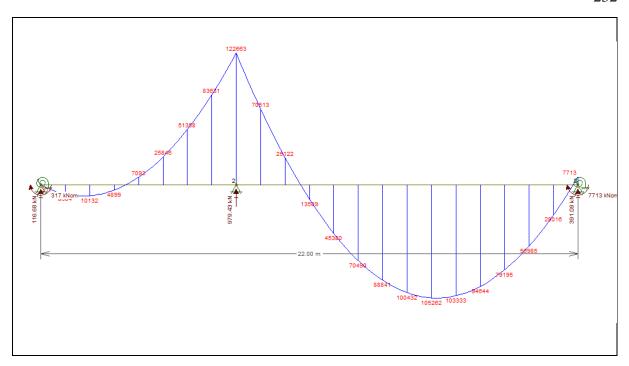
CÁLCULO L9=L10

CARGAS PERMANENTES

Levantamento Cargas Permanentes					
Elemento	Tipo carregamento	carga			
Barreira New Jersey	Concentrado convertido em distribuido	1,36	kN/m²		
Pavimento	Distribuído	2,76	kN/m²		
Laje + mísulas	Distribuído	6,88	kN/m²		
	subtotal	11,00	kN/m²		

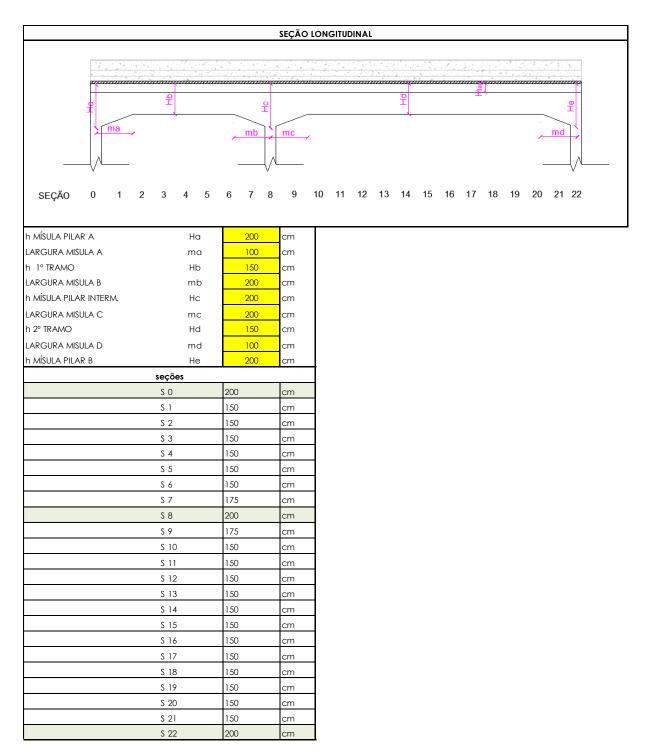

COMPATIBILIZAÇÃO DE MOMENTOS FLETORES

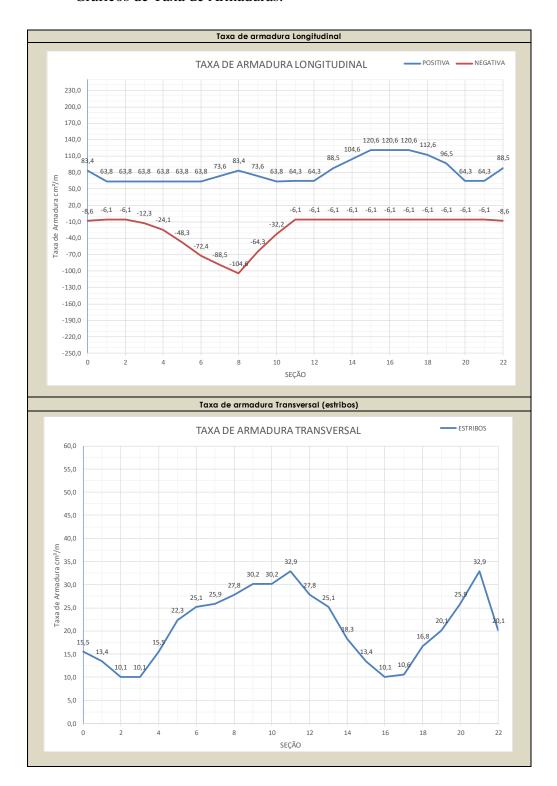



Cálculo das Longarinas

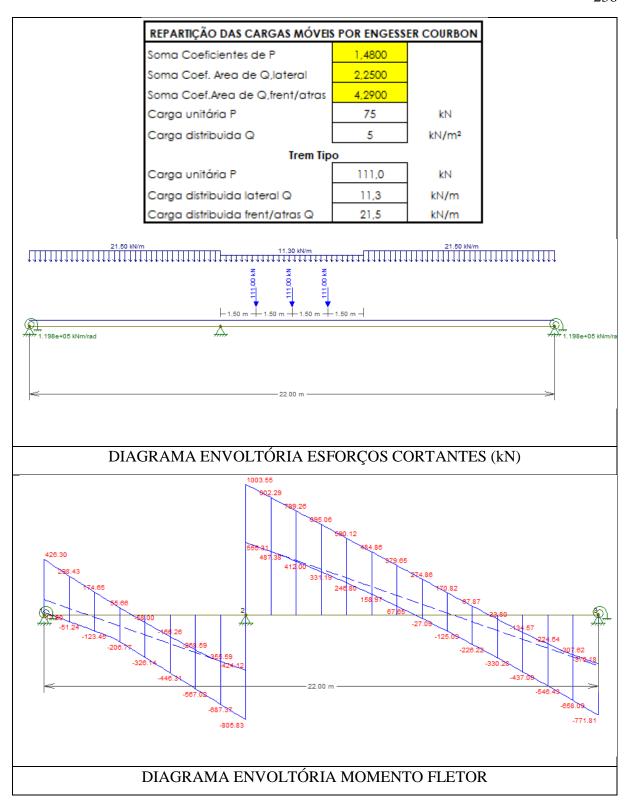
V1=V5

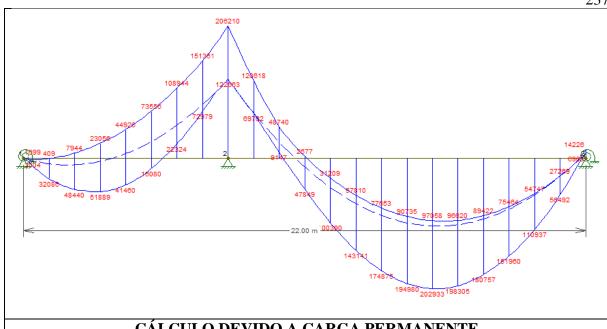
	SEÇÃO	LONGI	TUDINA	L		
	RI	GIDEZ P	ILAR			
	$\overline{k_{pilar} = 4 *}$	$E_{cs} * I/L$	flambagen	ı pilar		
$k = \frac{4 * 2}{}$	2684 * (30 · 560/2	* 50 ³ /12)	· = 11.98	2.142,9 <i>ki</i>	Ncm	
		TREM TI	PO			
REPARTIÇÃ	O TRANSV	ERSAL P	OR ENGI	ESSER CO	OURBON	
n° longarinas	5					
posição da carga	xl	x2	х3	x4	x5	
xi ²	-2 a	-la	0 a 1	а	2 a	
oosição da carga	10 d-					
vigas	1 1	2	3	4	5	Σ
1	0,6 P	0,4 P	0,2 P	0,0 P	-0,2 P	1,00
2	0,4 P	0,3 P	0,2 P	0,1 P	0,0 P	1,00
3	0,2 P	0,2 P	0,2 P	0,2 P	0,2 P	1,00
<u>4</u> 5	0,0 P -0,2 P	0,1 P	0,2 P	0,3 P 0,4 P	0,4 P 0,6 P	1,00 1,00
/IGA V1=V5			•			
		q,fren	t/atrás			
		q,lat				
		/ / /				
P P P	P					
		0.2				0 2
0,64	म्मुगो •	A, lat= A, tot=		ııııı		ııııı





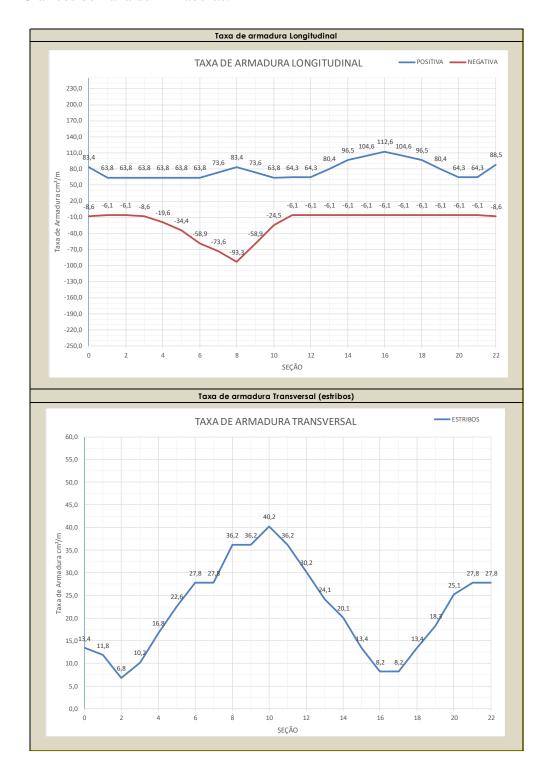
Não são apresentadas todas as memórias de cálculo das longarinas, entretanto, todos os resultados substanciais estão apresentados no corpo deste trabalho.


Todas as longarinas deste tabuleiro possuem mesma seção longitudinal

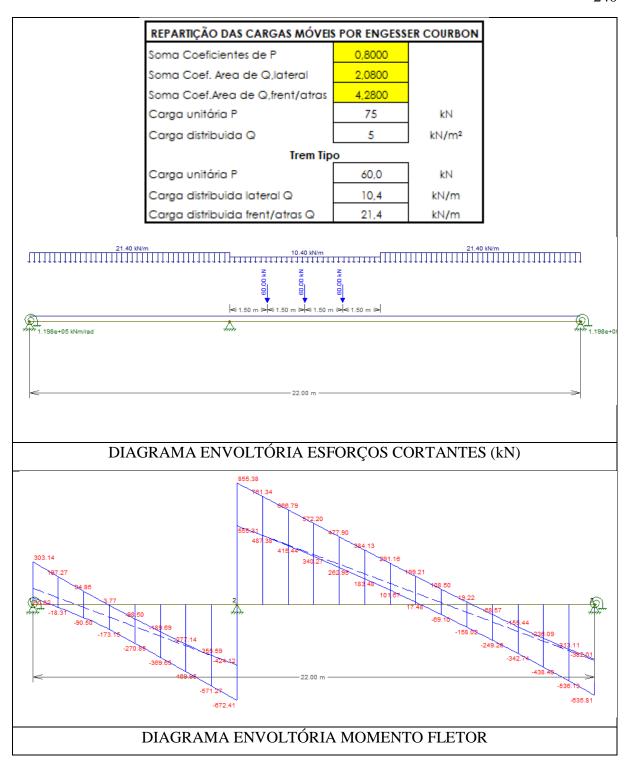


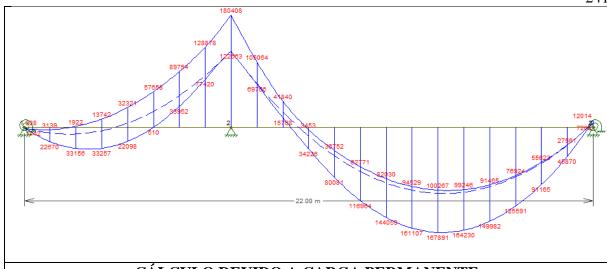
Gráficos de Taxa de Armaduras:

CÁLCULO DEVIDO AS CARGAS MÓVEIS SEÇÃO LONGITUDINAL RIGIDEZ PILAR $k_{pilar} = 4 * E_{cs} * I/L_{flambagem\ pilar}$ $k = \frac{4 * 2684 * (30 * 50^3/12)}{560/2} = 11.982.142,9 \text{ kNcm}$ TREM TIPO REPARTIÇÃO TRANSVERSAL POR ENGESSER COURBON nº longarinas posição da carga -2 a -1 a 0 a 1 2 a 10 a² posição da carga vigas 0,4 P 0,6 P 0,2 P 0,0 P -0,2 P 1,00 0,4 P 0,1 P 0,3 P 0,2 P 0,0 P 1,00 3 0,2 P 0,2 P 0,2 P 0,2 P 0,2 P 1,00 0,1 P 0,2 P 0,3 P 0,0 P 0,4 P 1,00 -0,2 P 0,0 P 0,2 P 0,4 P 0,6 P 5 1,00 VIGA V2=V4 q,frent/atrás q,lat q,lat Si way



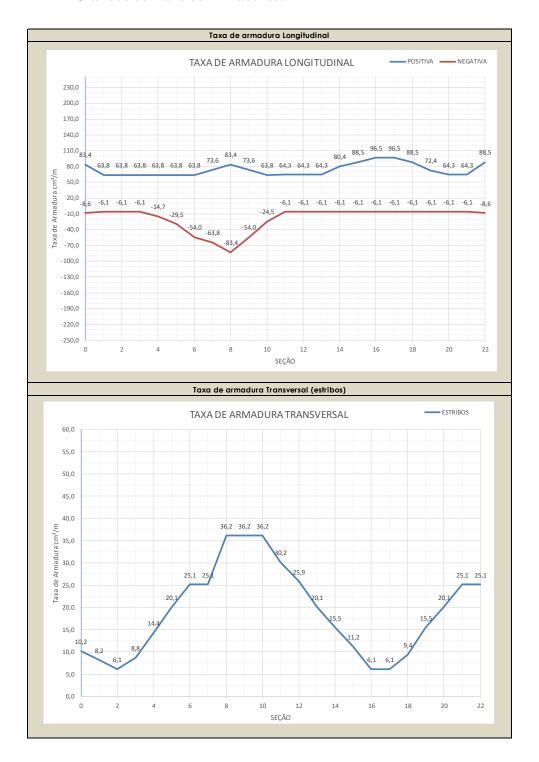
CÁLCULO DEVIDO A CARGA PERMANENTE


DEVIDO AS VIGAS POSSUIREM CARREGAMENTOS SIMÉTRICOS E AS VIGAS SEREM ESPAÇADAS SIMETRICAMENTE, PARA O CARREGAMENTO PERMANENTE, POR ENGESSER COURBON, OS DIAGRAMAS SÃO IDÊNTICOS PARA TODAS AS VIGAS DESTE TABULEIRO.


Não são apresentadas todas as memórias de cálculo das longarinas, entretanto, todos os resultados substanciais estão apresentados no corpo deste trabalho.

Gráficos de Taxa de Armaduras:

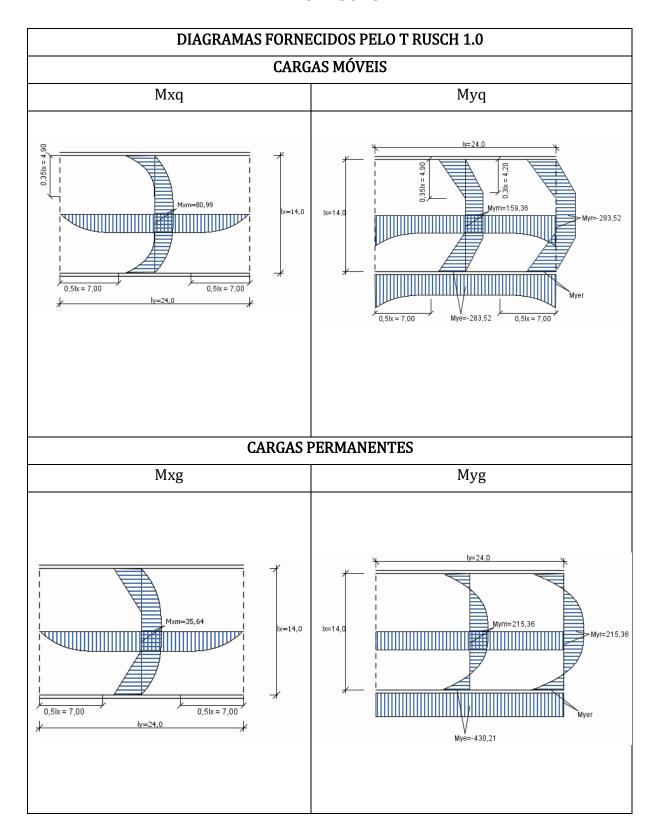
CÁLCULO DEVIDO AS CARGAS MÓVEIS SEÇÃO LONGITUDINAL RIGIDEZ PILAR $k_{pilar} = 4 * E_{cs} * I/L_{flambagem\ pilar}$ $k = \frac{4 * 2684 * (30 * 50^3/12)}{560/2} = 11.982.142,9 \text{ kNcm}$ TREM TIPO REPARTIÇÃO TRANSVERSAL POR ENGESSER COURBON nº longarinas 5 x1 x2 x4 х5 posição da carga -1 a 0 a 1 -2 a 2 a 10 a² posição da carga 3 vigas Σ 0,6 P 0,4 P 0,0 P 0,2 P -0,2 P 1,00 0,4 P 0,3 P 0,2 P 0,1 P 0,0 P 1,00 0,2 P 3 0,2 P 0,2 P 0,2 P 0,2 P 1,00 0,0 P 0,1 P 0,2 P 0,3 P 0,4 P 1,00 5 -0,2 P 0,0 P 0,2 P 0,4 P 0,6 P 1,00 VIGA V3 q,frent/atrás min nyi) nym) प्रथाो A, lat= 2, 08 A. tot= 4.28



CÁLCULO DEVIDO A CARGA PERMANENTE

DEVIDO AS VIGAS POSSUIREM CARREGAMENTOS SIMÉTRICOS E AS VIGAS SEREM ESPAÇADAS SIMETRICAMENTE, PARA O CARREGAMENTO PERMANENTE, POR ENGESSER COURBON, OS DIAGRAMAS SÃO IDÊNTICOS PARA TODAS AS VIGAS DESTE TABULEIRO.

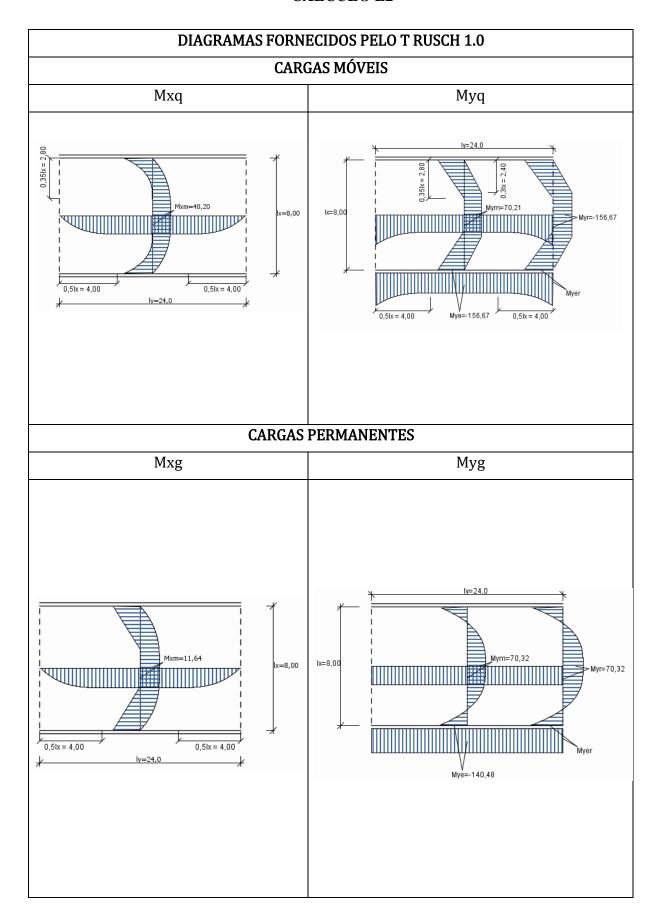
Não são apresentadas todas as memórias de cálculo das longarinas, entretanto, todos os resultados substanciais estão apresentados no corpo deste trabalho.


Gráficos de Taxa de Armaduras:

TABULEIRO E

Cálculo das lajes

CÁLCULO L1



CARGAS PERMANENTES

	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	1,09	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	22,50	kN/m²
	subtotal	26,35	kN/m²

COMPATIBILIZAÇÃO DE MOMENTO FLETOR

CÁLCULO L2

CARGAS PERMANENTES

	Levantamento Cargas Permanentes		
Elemento	Tipo carregamento	carga	
Barreira New Jersey	Concentrado convertido em distribuido	1,09	kN/m²
Pavimento	Distribuído	2,76	kN/m²
Laje + mísulas	Distribuído	22,50	kN/m²
	subtotal	26,35	kN/m²

COMPATIBILIZAÇÃO DE MOMENTO FLETOR

PLANILHA ELETRÔNICA – TAXA DE ARMADURA POR SEÇÕES DE LAJES

							MEMORI,	MEMORIAL DE CÁLCULO ARMADURA LONGITUDINAL	CULO AR	MADURA	LONGITUE	INAL									
Borda	_			Superior	rior			Inferior				Direita			Esqu	Esquerda			Meio do vão	vão	
Direção	io			ΙX	ΓY		Ľ		Lλ		Ľ		ΓY	1	×	λī	>	Ľ		ΓY	
Seção	0		Мхе	Мхе	Муе	Муе	Mxe	Mxe N	Mye	Mye M	Mxe Mxe	(e Mye	Mye	Mxe	Мхе	Муе	Муе	Mxm	E	Mym	5
Momento	ıto		Positivo	negativ	Positivor	negativeF	ositivo ne	Positivo negativa Positivo negativa Positivo negativa Positivo	sitivo neg	gative Pos	itivo nega	negativ Positivo		Positivo	negative Positivo negative Positivo negative Positivo negative negative	Positivo	negative	Positivo	negative	ositivo	egativ
Armação	ão		o io		7000			700		0	0.00	000		orio di		000	0000	000000000000000000000000000000000000000	0000	3000	, Podino
Descrição	Simbolo	Simbolo Grandeza	dom	secondo	secondo.	pdiolill		aconida sec	חוממליווו	ndioi	ndioi	indes pdi	idd secollic	drillicipu	ndioiii.	secondo	second	ndom	pdiolill	econidad econidad	secoriae
Base Viga	wq	сш	100	100	100	100	100	1 00 1	1 001	1 00 1	00 10	100 100	100	100	100	100	100	100	100	100	100
Altura Total	r	СШ	09	09	09	09	09	09	09	9 09	09 09	09 (09	09	09	09	09	09	09	09	09
Altura útil laje	ס	ш	56,875	54,375	55,625	56,25	56,875 5	54,375 55	55,625 56	56,25 56,	56,875 56,875	375 55	55,625	56,875	56,875	55	55,625	56,875	56,875	55,25	55,625
p-q	۵.	ca	3,125	5,625	4,375	3,75	3,125	5,625 4,	4,375 3,	3,75 3,	3,125 3,125	25 5	4,375	3,125	3,125	5	4,375	3,125	3,125	4,75	4,375
cobrimento nominal	2	сш	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5 2,5	5 2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Arm. Transversal	₽	шш	0	25	12,5	0	0	25 1	12,5	0	0 0	12,5	12,5	0	0	12,5	12,5	0	0	12,5	12,5
Mom. Ações Perm.	Msg	kNcm/m	0	1164	0	14048	0	1164	0 14	14048	0 0	7032	0 7	0	0	7032	0	1164	0	7032	0
Mom. Cargas móveis	Wsd	kNcm/m	0	4020	0	15667	0	4020	0 15	15667	0 0	15667	0 2	0	0	19951	0	4020	0	7021	0
coef. Cargas móveis	ф		1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	1,688	889'1 88	1,688	1,688	1,688	889′1	1,688	1,688	1,688	1,688	1,688
Mom. Cálc (Comb.Crífica)	psw	kNcm/m	0'0	7194,0	0'0	80485,1	0'0	7194,0	0,0	80485,1 0	0'0 0'0	62139	0'0 6'	0'0	0'0	0'21999	0'0	7601,4	0'0	49170,9	0'0
Coef. Resistência Conc.	Kc		-	41,099	-	3,931	7 -	41,099	- 3;	3,931	-	4,868		-	-	1,541	-	42,555	-	6,208	-
Cálculo	쯄		í	0,017	i	0,189	-	0,017	- 0,	0,189	1	0,150	- 0	•		0,162	i	910′0	i	0,116	ï
Coef. Resistência aço	Ks		1	0,023		0,025	-	0,023	ή0 -	0,025		0,024	- +	-		0,025	1	0,023		0,024	
Arm. Mínima	As,mín	cm²/m	00'6	00'6	00'6	00'6	00'6	6 00′6	6 00′6	6 00′6	00'6 00'6	00'6 00	00'6	00'6	00'6	00'6	00'6	00'6	00'6	00′6	00'6
Arm. Calculada	As,calc		00'6	00'6	00'6	35,60	00'6	6 00'6	9,00	35,60 9,	00'6 00'6	00 27,64	4 9,00	00'6	00'6	29,78	00'6	00'6	00'6	21,46	00'6
Arm. Máxima	4% Ac	cm²	240	240	240	240	240	240 2	240 2	240 2	240 240	0 240	240	240	240	240	240	240	240	240	240
Verificação	max e mín		ok	ok	ok	ok	ok	ok	ok	ok	ok ok	k ok	ø	ok	ok	ok	ok	ok	ok	ok	ok
		θ	Φ	Φ	θ	θ	Φ	Φ	θ	θ	Ф	Φ	θ	Φ	θ	Φ	Φ	Φ	θ	θ	Ф
A ciacia	† C C C C C C C C C C C C C C C C C C C	mm	12,5	12,5	12,5	25	12,5	12,5	12,5	25 1:	2,5 12,5	,5 25	12,5	12,5	12,5	25	12,5	12,5	12,5	20	12,5
	opp'sk	/ o	/)	/o	/o	/o	/o	c/	c/ (c/ o	/> />	/o /	/o	/o	/o	/၁	c/	/o	/o	/o	/o
		cm	13	13	13	13	13	13	13	13	13 13	3 18	13	13	13	91	13	13	13	15	13
Arm. Total	As,efet	cm²/m	9,44	9,44	9,44	37,76	9,44	9,44 9	9,44 37	37,76 9.	9,44 9,44	14 27,27	9,44	9,44	9,44	30,68	9,44	9,44	9,44	20,94	9,44
Verif. Tx Armadura	efet > \$	efet > 95%calc	ok	ok	ķ	ok	ok	ok	ok o	ok	ok ok	k ok	Ą	ok	ø	ok	òk	ok	γ	ok	òk
Verif. Tx Armadura	efet < 1	efet < 110%calc	ok	ok	ok	ok	ok	ok	ok	ok	ok ok	k ok	ø	ok	ok	ok	ok	ok	ok	ok	ok
Verif. Armadura	Ativa ou D	Ativa ou Distribuição As,dist	As,dist	As,ativa	As, dist	As,ativa	As,dist As	As,ativa As	As,dist As,o	As,ativa As,	As,dist As,dist	dist As,ativa	va As,dist	As,dist	As, dist	As,ativa	As,dist	As,ativa	As, dist	As,ativa	As,dist

SÃO MOMENTOS COMPATIBILIZADOS

PLANILHA ELETRÔNICA – QUANTITATIVO DE AÇO NAS LAJES

APÊNDICE C – MODELO QUANTITATIVO AÇO LAJES

Column C	200																				
1	DIMENSOES LAJ									((
STATE STAT	Y	24,00	E							۵ ۵	NII AII	VO DE A	S S								
Part	5	9,00	E				ARMA	DURA PO	SITIVA							ARMAD	URA NEG	ATIVA			
Fig.	2	SECÃO					8	SIÇÃO EN	××							Pos	IÇÃO EM	×			
Note	DIREÇAO ARMAÇAO	EM Y		0,00	4	00'0	00'0	۷	24,00	24,00	⋖	24,00	0,00	4	00'0	00'0	4	24,00	24,00	4	24,00
Provincia Prov				θ	/o	cm	θ	/ o	сш	θ	/ o	cm	θ	/o	сш	θ	/o	cm	θ	/ o	сш
Compositionistic compositionis compositionistic compositionistic compositionistic compositionistic compositionistic composi			arranjo	00'00	/>	00'00	12,50	/>	13,00	00'00	/>	00'00	00'00	/\to	00'0	12,50	/>	13,00	00'00	/o	00'0
No. Compositionistic continue conti			comprimento		00'00			2400,00			00,00			00'00			2400,00			00'00	
Proceediation in the conceptiment of the co		SUP	comp.total+ancoragem/m		00'00			19096,15			00,00			00,00			18461,54			00'00	
Mail			comp.distribuição		00'00			00'0			00'00			2,80			2,80			2,80	
No. Complete micropieron			peso (kg)		00'00			00'0			00'00			00'00			510,72			00'00	
Meio Compitionenic Signature Sign			arranjo	00,00	/o	00'00	12,50	/o	13,00	00'00	/o	00,00	00'00	/o	00'0	12,50	/>	13,00	00'00	/>	00'00
MEIO			comprimento		00,00			2400,00			00'00			00'00			2400,00			0,00	
The composition Fig. Fig	ĭ	MEIO	comp.total+ancoragem/m		00'00			19096,15			00'00			00'00			18461,54			0,00	
Miles Pasio (kg) 150/36			comp.distribuição		8,00			8,00			8,00			2,40			2,40			2,40	
Figure Complication Complicat			peso (kg)		00'00			1509,36			00'00			00'00			437,76			00'00	
Mail Complicationic congenity Mail			arranjo	00'00	/>	00'00	12,50	/>	13,00	00'00	/o	00,00	00'00	/o	00'0	12,50	/>	13,00	00,00	/2	0,00
NF			comprimento		00'00			2400,00			00'00			00'00			2400,00			00'00	
SEÇÃA PRODECIDIDA COMPOSITION COMPO		Ā	comp.total+ancoragem/m		00'00			19096,15			00'00			00'00			18461,54			00'00	
State Patient Patie			comp.distribuição		00'00			00'0			00'00			2,80			2,80			2,80	
SEÇÃO LANO			peso (kg)		00'00			00'00			00,00			00'00			510,72			00'00	
SEÇÃO Para Posição EM Y Posição EM X Posição EM Y Posição EM X Posiç							ARMA	DURA PO.	SITIVA							ARMAD	URA NEG	ATIVA			
FMX Marchitan DECÃO ABMACÃO	SEÇÃO					8	SIÇÃO EN	٧X							POS	IÇÃO EM	١ ٢				
Mail	טעלעשאע טעלפא	EM X		0,00	٧	00'00	00'0	٧	8,00	8,00	٧	8,00	00'0	٧	2,40	2,40	٧	5,55	5,55	A	8,00
Fig. Complication Complicatio				θ	/ o	E	θ	/ o	E	θ	/ o	сш	θ	/ o	E	θ	/ o	СШ	θ	c/	E
FSQ comptinent Comptinen			arranjo	00,00	/o	00,00	25,00	/o	16,00	00,00	/o	0,00	25,00	/o	13,00	12,50	/o	13,00	25,00	c/	13,00
FSQ comp.total+anocagem/in 0.00 1.5			comprimento		00,00			800,00			00,00			240,00			315,00			245,00	
Comp. distribuição 7,00 C/2 Comp. distribuição 7,00 C/2 C		ESQ	comp.total+ancoragem/m		00'00			6031,25			00,00			2995,19			519,23			3033,65	
Peeco (kg) Pe			comp.distribuição		7,00			2,00			2,00			4,00			4,00			4,00	
MEIO comprimento MEIO MEIO comprimento MEIO MEIO comprimento MEIO			peso (kg)		00'00			1659,20			00'00			470,84			20,52			476,89	
MEIO comptimento €000 €13.33 €100 €13.33 €100 €13.33 €100 €13.33 €13.33 €15.03 <th></th> <th></th> <th>arranjo</th> <td>00'00</td> <td>/></td> <td>00'00</td> <td>20,00</td> <td>/o</td> <td>15,00</td> <td>00'00</td> <td>c/</td> <td>0,00</td> <td>25,00</td> <td>/o</td> <td>13,00</td> <td>12,50</td> <td>/o</td> <td>13,00</td> <td>25,00</td> <td>/o</td> <td>13,00</td>			arranjo	00'00	/>	00'00	20,00	/o	15,00	00'00	c/	0,00	25,00	/o	13,00	12,50	/o	13,00	25,00	/o	13,00
MEIO comp.diateIncocqem/m 0.00 6213.33 0.00 10.00 </td <th></th> <th></th> <th>comprimento</th> <td></td> <td>00'00</td> <td></td> <td></td> <td>800,00</td> <td></td> <td></td> <td>00,00</td> <td></td> <td></td> <td>240,00</td> <td></td> <td></td> <td>315,00</td> <td></td> <td></td> <td>245,00</td> <td></td>			comprimento		00'00			800,00			00,00			240,00			315,00			245,00	
Comp.distribuição 10,00 15,40,91 10,00 10,00 15,40,91 10,00 10,00 15,40,91 10,00	۲	MEIO	comp.total+ancoragem/m		00'00			6213,33			00'00			2995,19			519,23			3033,65	
Peso (kg) Pes			comp.distribuição		10,00			10,00			10,00			16,00			16,00			16,00	
DIR comprimento 0.00 0.00 comprimento 0.00			peso (kg)		00'00			1540,91			00,00			1883,38			82,08			1907,56	
DIR comprinento 0.00 800,00 0.00 240,00 315,00 315,00 Comp. total +an corage m/n 0.00 534,11 0.00 2995,19 519,23 519,23 RESUMO ARMADURA FES 0+10 % (kg) 7268,73 1474,84 0.00 4,00 4,00 4,00 PES 0+10 % (kg) 7268,73 20,52 20,52 20,52 20,52 TOTAL 13453.03			arranjo	00,00	/>	00'0	25,00	/o	18,00	00'00	/o	00'0	25,00	/o	13,00	12,50	/o	13,00	25,00	/>	13,00
DIR comp.total+ancoragem/m 0.00 5361,11 0.00 2995,19 519,23 17,			comprimento		00'00			800,00			00'00			240,00			315,00			245,00	
comp.distribuição 7,00 7,00 7,00 4,00 <th></th> <th>DIR</th> <th>comp.total+ancoragem/m</th> <th></th> <th>00'00</th> <th></th> <th></th> <th>5361,11</th> <th></th> <th></th> <th>00,00</th> <th></th> <th></th> <th>2995,19</th> <th></th> <th></th> <th>519,23</th> <th></th> <th></th> <th>3033,65</th> <th></th>		DIR	comp.total+ancoragem/m		00'00			5361,11			00,00			2995,19			519,23			3033,65	
RESUMO ARMADURA C)CO 1474/84 0,00 470/84 20.52 RESUMO ARMADURA PESO +10 % (kg) 7268.73 PESO +10 % (kg) 6184.31 TOTAL 1345.303			comp.distribuição		7,00			2,00			2,00			4,00			4,00			4,00	
RESUMO ARMADURA PESO +10 % (kg) PESO +10 % (kg) PESO +10 % (kg) PESO +10 % (kg) PESO +			peso (kg)		00'00			1474,84			00'00			470,84			20,52			476,89	
PESO +10 % (kg) PESO +10 % (kg) TOTAL		RESUMO A																			
PESO +10 % (kg) TOTAL	NEGATIVA	PE		3,73																	
	POSITIVA	PE		4,31																	
			TOTAL 1345	3,03																	

APÊNDICE D – MODELO TAXA ARMADURA LONGITUDUDINAL DAS LONGARINAS

Seção Aná	ilise		0	0	1	.0	2	.0	3	.0
Moment						,•				
Descrição	Simbolo	Grandeza	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo
Base Viga	bw	cm	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0
Base Viga T	bf	cm	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0
Altura Total	h	cm	170,0	170,0	162,5	162,5	155,0	155,0	147,5	147,5
Altura laje colaborante	hf	cm	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
Altura útil viga	d	cm	153,0	164,2	146,3	156,7	139,5	149,2	132,8	141,7
h-d	ď'	cm	17,0	5,8	16,3	5,8	15,5	5,8	14,8	5,8
cobrimento nominal	С	cm	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Arm. Transversal (Estimada)	Φŧ	mm	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
Mom. Ações Perm.	Msg	kNcm/m	90,0	0,0	18.956,0	0,0	21.988,0	0,0	9.185,0	0,0
Mom. Cargas móveis	Msq	kNcm/m	500,0	600,0	72.125,0	27.682,0	114.773,0	55.874,0	139.008,0	84.069,0
coef. Cargas móveis	φ		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Mom. Cálc (Comb.Crítica)	Msd	kNcm/m	464.300,0	58.037,5	424.236,0	63.063,1	385.979,5	127.288,0	349.530,3	191.519,7
Cálculo seção T	βxf		0,3	0,2	0,3	0,3	0,3	0,3	0,3	0,3
Cálculo seção T	kcf		2,9	3,2	2,8	3,0	2,7	2,8	2,6	2,8
Cálculo seção T	Kca		16,1	18,6	16,1	15,6	16,1	7,0	16,1	4,2
Cálculo seção T	βχα		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
Cálc T Verificação	βха :	>βxf	<	<	<	<	<	<	<	<
	M0	kNcm/m	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Flange	ks0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	As0	cm²/m	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Momento Nervura	ΔΜ	kNcm/m	464.300,0	58.037,5	424.236,0	63.063,1	385.979,5	127.288,0	349.530,3	191.519,7
Mom.Cálc Mínimo	md,mín	kNcm/m	464.300,0	58.037,5	424.236,0	53.029,5	385.979,5	48.247,4	349.530,3	43.691,3
Coef. Resistência Conc.limite	kc,lim	cm²/kN	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Mom.Cálc limite	md,lim	kNcm/m	4.027.739,2	579.522,4	3.680.189,9	527.775,6	3.348.319,5	478.448,3	3.032.128,0	431.540,6
Tipo armadura	Simples	ou Dupla	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples
Domínio de Deformação Conc	1,2,3,4		2	2	2	2	2	2	2	2
Coef. Resistência Conc.	Kc1		16,13	18,57	16,13	15,56	16,13	6,99	16,13	4,19
Cálculo	βx		0,043	0,038	0,043	0,045	0,043	0,102	0,043	0,176
Coef. Resistência aço 1	Ks1		0,023	0,023	0,023	0,023	0,023	0,024	0,023	0,025
Mom. Cálc 1	M1d	kNcm/m	464.300,0	58.037,5	424.236,0	63.063,1	385.979,5	127.288,0	349.530,3	191.519,7
Arm. Calculada 1	Asd1	cm²/m	71,0	8,3	67,9	9,4	64,8	20,5	61,6	33,5
Mom. Cálc 2	M2d	kNcm/m	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Coef. Resistência aço 2	ks2		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Arm. Calculada 2	Asd2	cm²/m	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Coef. Resistência aço comp	ks'		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Arm. Calculada comp	A'sd	kNcm/m	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Arm. Mínima	As,mín	cm²/m	6,8	6,8	6,5	6,5	6,2	6,2	5,9	5,9
Arm. TOTAL As0+As1+As2+As'	As,calc	cm²/m	71,0	8,3	67,9	9,4	64,8	20,5	61,6	33,5
Arm. Máxima	4% Ac	cm²/m	272,0	272,0	260,0	260,0	248,0	248,0	236,0	236,0
Verificação Asw	máx e mín		ok	ok	ok	ok	ok	ok	ok	ok
		Ф	Φ	Φ	Ф	Φ	Ф	Ф	Ф	Φ
		mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0
		qnt	15,0	2,0	14,0	2,0	14,0	5,0	13,0	7,0
Arranjo das armaduras	As,adot	camadas	3,0	1,0	2,0	1,0	2,0	1,0	2,0	1,0
		máxΦ/cam	7,0	34,0	7,0	34,0	7,0	34,0	7,0	34,0
		ahoriz	atende	atende	atende	atende	atende	atende	atende	atende
		dreal/dadot	104%	100%	106%	100%	105%	100%	105%	100%
Arm. Total	As,efet	cm²/m	73,6	9,8	68,7	9,8	68,7	24,5	63,8	34,4
Verif. Tx Armadura	efet > 9	5%calc	ok	ok	ok	ok	ok	ok	ok	ok
Verif. Tx Armadura	efet < 11	10%calc	ok	recalc	ok	ok	ok	recalc	ok	ok
Verif. Armadura	Ativa ou Di	istribuição	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa

Seção Análise		0	,0	1	,0	2	,0	3	,0
Momento		Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo
Taxa de armadura	cm²/m	73,6	9,8	68,7	9,8	68,7	24,5	63,8	34,4
Comprimento armadura	m	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ancoragem armadura (Bordo)	cm	211,0	87,5	0,0	0,0	0,0	0,0	0,0	0,0
Qnt barras precisam ancoragem	und	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Ancoragem armadura (Lb)	cm	85,5	98,1	83,5	85,9	87,5	98,9	85,4	84,7
Comprimento Total Aço	m	47,5	3,8	14,0	2,0	14,0	5,0	13,0	7,0
Qnt kg aço	kg	186,7	14,7	55,0	7,9	55,0	19,7	51,1	27,5
Qnt kg aço + 10%	kg	205,4	16,2	60,5	8,6	60,5	21,6	56,2	30,3

4	,0	5	,0	6	,0	7	,0	8	,0	9	,0	10),0
Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo
40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0
320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0
140,0	140,0	155,0	155,0	170,0	170,0	185,0	185,0	200,0	200,0	191,4	191,4	182,9	182,9
32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
126,0	134,2	139,5	149,2	153,0	164,2	166,5	179,2	180,0	194,2	172,3	185,6	164,6	177,0
14,0	5,8	15,5	5,8	17,0	5,8	18,5	5,8	20,0	5,8	19,1	5,8	18,3	5,8
3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
0,0	19.453,0	0,0	63.926,0	0,0	124.233,0	0,0	200.376,0	0,0	292.354,0	0,0	168.681,0	0,0	60.843,0
142.989,0	112.261,0	122.794,0	140.454,0	95.089,0	168.647,0	31.101,0	197.513,0	0,0	241.200,0	1.939,0	145.280,0	45.986,0	68.352,0
1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
325.746,8	282.006,1	385.979,5	406.271,9	464.300,0	551.913,5	549.850,1	720.466,9	642.629,7	944.161,7	588.727,5	558.685,4	537.186,0	237.852,5
0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
2,5	2,6	2,7	2,8	2,9	3,2	3,2	3,4	3,4	3,7	3,4	3,7	3,2	3,4
15,6	2,6	16,1	2,2	16,1	2,0	16,1	1,8	16,1	1,6	16,1	2,5	16,1	5,3
0,0	0,1	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,1	0,0	0,1
<	<	<	<	<	<	<	<	<	>	<	<	<	<
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
325.746,8	282.006,1	385.979,5	406.271,9	464.300,0	551.913,5	549.850,1	720.466,9	642.629,7	944.161,7	588.727,5	558.685,4	537.186,0	237.852,5
314.888,6	39.361,1	385.979,5	48.247,4	464.300,0	58.037,5	549.850,1	68.731,3	642.629,7	80.328,7	588.727,5	73.590,9	537.186,0	67.148,2
1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
2.731.615,5	387.052,5	3.348.319,5	478.448,3	4.027.739,2	579.522,4	4.769.874,5	690.275,0	5.574.725,5	810.705,8	5.107.131,2	740.703,1	4.660.015,4	673.860,6
Simples	Simples	Simples	Simples	Simples	Simples	Simples	Dupla	Simples	Dupla	Simples	Simples	Simples	Simples
2	3	2	3	2	3	2	4	2	4	2	3	2	2
15,60	2,55	16,13	2,19	16,13	1,95	16,13	1,78	16,13	1,60	16,13	2,47	16,13	5,27
0,045	0,306	0,043	0,367	0,043	0,423	0,043	0,476	0,043	0,551	0,043	0,319	0,043	0,138
0,023	0,026	0,023	0,027	0,023	0,028	0,023	0,028	0,023	0,030	0,023	0,026	0,023	0,024
325.746,8	282.006,1	385.979,5	406.271,9	464.300,0	551.913,5	549.850,1	690.275,0	642.629,7	810.705,8	588.727,5	558.685,4	537.186,0	237.852,5
60,5	55,1	64,8	73,4	71,0	93,1	77,3	109,4	83,6	123,2	80,0	79,4	76,4	32,7
0,0	0,0	0,0	0,0	0,0	0,0	0,0	30.192,0	0,0	133.455,9	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,023	0,000	0,023	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	4,0	0,0	16,2	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,023	0,000	0,023	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	4,0	0,0	16,2	0,0	0,0	0,0	0,0
5,6	5,6	6,2	6,2	6,8	6,8	7,4	7,4	8,0	8,0	7,7	7,7	7,3	7,3
60,5	55,1	64,8	73,4	71,0	93,1	77,3	117,4	83,6	155,7	80,0	79,4	76,4	32,7
224,0	224,0	248,0	248,0	272,0	272,0	296,0	296,0	320,0	320,0	306,3	306,3	292,6	292,6
ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ
25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	32,0	25,0	32,0	25,0
13,0	12,0	14,0	15,0	15,0	19,0	16,0	24,0	18,0	32,0	10,0	17,0	10,0	7,0
2,0	1,0	2,0	1,0	3,0	1,0	3,0	1,0	3,0	1,0	2,0	1,0	2,0	1,0
7,0	34,0	7,0	34,0	7,0	34,0	7,0	34,0	7,0	34,0	6,0	34,0	6,0	34,0
atende	atende	atende	atende	atende	atende	atende	atende	atende	atende	atende	at ende	atende	atende
105%	100%	105%	100%	104%	100%	105%	100%	105%	100%	106%	100%	106%	100%
63,8	58,9	68,7	73,6	73,6	93,3	78,5	117,8	88,4	157,1	80,4	83,4	80,4	34,4
ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
As,ativa	As,ativ a	As,ativa	As,ativa										

4	1,0	5	,0	6	,0	7	7,0	8	3,0	9	,0	10	0,0
Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo
63,8	58,9	68,7	73,6	73,6	93,3	78,5	117,8	88,4	157,1	80,4	83,4	80,4	34,4
1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	3,0	0,0	4,0	0,0	5,0	3,2	30,0	0,0	10,0	0,0	3,0
87,0	88,2	87,5	82,7	85,5	82,7	83,8	82,8	87,2	83,2	106,2	86,7	111,2	86,7
13,0	12,0	14,0	17,5	15,0	22,3	16,0	28,1	20,8	57,0	10,0	25,7	10,0	9,6
51,1	47,2	55,0	68,7	59,0	87,7	62,9	110,6	81,8	223,9	62,4	100,9	62,4	37,7
56,2	51,9	60,5	75,6	64,8	96,4	69,2	121,6	90,0	246,3	68,6	111,0	68,6	41,5

11	,0	12	2,0	13	3,0	14	1,0	15	5,0	16	5,0
Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo
40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0
320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0
174,3	174,3	165,7	165,7	157,1	157,1	148,6	148,6	140,0	140,0	144,3	144,3
32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
156,9	168,4	149,1	159,9	141,4	151,3	133,7	142,7	126,0	134,2	129,9	138,4
17,4	5,8	16,6	5,8	15,7	5,8	14,9	5,8	14,0	5,8	14,4	5,8
3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
31.160,0	0,0	107.328,0	0,0	167.661,0	0,0	212.169,0	0,0	240.823,0	0,0	253.651,0	0,0
94.431,0	47.385,0	159.429,0	41.791,0	211.265,0	37.588,0	251.170,0	33.386,0	277.370,0	29.184,0	288.084,0	24.982,0
1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
488.005,2	107.949,0	508.092,0	95.205,1	707.630,4	85.630,2	858.624,8	76.057,5	956.994,6	66.484,8	998.720,2	56.912,1
0,3	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
3,2	3,2	2,8	3,2	2,8	2,9	2,6	2,8	2,5	2,6	2,5	2,7
16,1	10,5	14,0	10,7	9,0	10,7	6,7	10,7	5,3	10,8	5,4	13,5
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0
<	<	<	<	<	<	<	<	<	<	<	<
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
488.005,2	107.949,0	508.092,0	95.205,1	707.630,4	85.630,2	858.624,8	76.057,5	956.994,6	66.484,8	998.720,2	56.912,1
488.005,2	61.000,6	441.185,0	55.148,1	396.725,5	49.590,7	354.626,7	44.328,3	314.888,6	39.361,1	334.462,5	41.807,8
1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
4.233.378,3	610.178,4	3.827.219,7	549.656,5	3.441.539,7	492.294,9	3.076.338,3	438.093,5	2.731.615,5	387.052,5	2.901.417,1	412.178,0
Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples
2	2	2	2	2	2	2	2	2	2	2	2
16,13	10,51	14,01	10,74	9,05	10,69	6,66	10,71	5,31	10,83	5,40	13,47
0,043	0,067	0,050	0,066	0,078	0,066	0,108	0,066	0,137	0,065	0,134	0,052
0,023	0,024	0,023	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,023
488.005,2	107.949,0	508.092,0	95.205,1	707.630,4	85.630,2	858.624,8	76.057,5	956.994,6	66.484,8	998.720,2	56.912,1
72,8	15,1	80,0	14,1	118,8	13,4	154,3	12,6	184,8	11,7	186,9	9,7
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
7,0	7,0	6,6	6,6	6,3	6,3	5,9	5,9	5,6	5,6	5,8	5,8
72,8	15,1	80,0	14,1	118,8	13,4	154,3	12,6	184,8	11,7	186,9	9,7
278,9	278,9	265,1	265,1	251,4	251,4	237,7	237,7	224,0	224,0	230,9	230,9
ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
Φ	Ф	Φ	Ф	Φ	Φ	Φ	Ф	Ф	Ф	Φ	Φ
32,0	25,0	32,0	25,0	32,0	25,0	32,0	25,0	32,0	25,0	32,0	25,0
10,0	4,0	10,0	3,0	15,0	3,0	20,0	3,0	23,0	3,0	24,0	2,0
2,0		2,0	1,0	3,0	1,0	4,0	1,0	4,0	1,0		
	1,0	_						,		4,0	1,0
6,0	34,0	6,0	34,0	6,0	34,0	6,0	34,0	6,0	34,0	6,0	34,0
atende	atende	atende	atende	atende	atende	atende	atende	atende	atende	atende	atende
106%	100%	105%	100%	103%	100%	101%	100%	100%	100%	100%	100%
80,4	19,6	80,4	14,7	120,6	14,7	160,8	14,7	185,0	14,7	193,0	9,8
ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
recalc	recalc	ok	ok	ok	recalc	ok	recalc	ok	recalc	ok	ok
As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa

11	,0	12	2,0	13	3,0	14	1,0	15	5,0	10	6,0
Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo
80,4	19,6	80,4	14,7	120,6	14,7	160,8	14,7	185,0	14,7	193,0	9,8
1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	1,0	0,0	0,0	5,0	0,0	5,0	0,0	0,0	1,0	1,0	0,0
116,6	106,9	106,2	86,4	107,2	90,9	110,1	96,5	105,7	103,8	109,0	83,9
10,0	5,1	10,0	3,0	20,4	3,0	25,5	3,0	23,0	4,0	25,1	2,0
62,4	19,9	62,4	11,8	127,1	11,8	159,1	11,8	143,5	15,9	156,6	7,9
68,6	21,9	68,6	13,0	139,8	13,0	175,1	13,0	157,9	17,5	172,2	8,6

17	,0	18	3,0	19	,0	20),0	21	,0	22	,0
Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo
40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0
320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0	320,0	40,0
148,6	148,6	152,9	152,9	157,1	157,1	161,4	161,4	165,7	165,7	170,0	170,0
32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
133,7	142,7	137,6	147,0	141,4	151,3	145,3	155,6	149,1	159,9	153,0	164,2
14,9	5,8	15,3	5,8	15,7	5,8	16,1	5,8	16,6	5,8	17,0	5,8
3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
250.644,0	0,0	231.802,0	0,0	197.125,0	0,0	146.613,0	0,0	80.266,0	0,0	0,0	1.918,0
281.829,0	20.779,0	257.357,0	16.577,0	221.171,0	12.375,0	167.834,0	8.172,0	94.350,0	3.970,0	237,0	1.978,0
1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
980.411,1	47.337,2	899.224,1	46.922,6	769.973,9	49.590,7	580.274,4	52.332,5	441.185,0	55.148,1	464.300,0	58.037,5
0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2
2,6	2,8	2,7	2,8	2,8	2,9	2,8	2,9	2,8	3,2	2,9	3,2
5,8	17,2	6,7	18,4	8,3	18,5	11,6	18,5	16,1	18,5	16,1	18,6
0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
<	<	<	<	<	<	<	<	<	<	<	<
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
980.411,1	47.337,2	899.224,1	46.922,6	769.973,9	49.590,7	580.274,4	52.332,5	441.185,0	55.148,1	464.300,0	58.037,5
354.626,7	44.328,3	375.381,0	46.922,6	396.725,5	49.590,7	418.660,2	52.332,5	441.185,0	55.148,1	464.300,0	58.037,5
1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
3.076.338,3	438.093,5	3.256.379,2	464.799,2	3.441.539,7	492.294,9	3.631.819,9	520.580,7	3.827.219,7	549.656,5	4.027.739,2	579.522,4
Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples	Simples
2	2	2	2	2	2	2	2	2	2	2	2
5,84	17,21	6,74	18,42	8,31	18,46	11,64	18,50	16,13	18,54	16,13	18,57
0,124	0,041	0,106	0,038	0,085	0,038	0,060	0,038	0,043	0,038	0,043	0,038
0,024	0,023	0,024	0,023	0,024	0,023	0,024	0,023	0,023	0,023	0,023	0,023
980.411,1	47.337,2	899.224,1	46.922,6	769.973,9	49.590,7	580.274,4	52.332,5	441.185,0	55.148,1	464.300,0	58.037,5
177,4	7,8	157,0	7,5	129,7	7,7	94,1	7,9	69,2	8,1	71,0	8,3
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
5,9	5,9	6,1	6,1	6,3	6,3	6,5	6,5	6,6	6,6	6,8	6,8
177,4	7,8	157,0	7,5	129,7	7,7	94,1	7,9	69,2	8,1	71,0	8,3
237,7	237,7	244,6	244,6	251,4	251,4	258,3	258,3	265,1	265,1	272,0	272,0
ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
Φ	Φ	Ф	Φ	Φ	Φ	Φ	Φ	Φ	Ф	Φ	Φ
32,0	25,0	32,0	25,0	32,0	25,0	32,0	25,0	32,0	25,0	32,0	25,0
23,0	2,0	20,0	2,0	17,0	2,0	12,0	2,0	9,0	2,0	9,0	2,0
4,0	1,0	4,0	1,0	3,0	1,0	2,0	1,0	2,0	1,0	2,0	1,0
6,0	34,0	6,0	34,0	6,0	34,0	6,0	34,0	6,0	34,0	6,0	34,0
atende	atende	atende	atende	atende	atende	atende	atende	atende	atende	atende	atende
101%	100%	101%	100%	103%	100%	105%	100%	105%	100%	105%	100%
185,0	9,8	160,8	9,8	136,7	9,8	96,5	9,8	72,4	9,8	72,4	9,8
ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
ok	recalc	ok	recalc	ok	recalc	ok	recalc	ok	recalc	ok	recalc
As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa	As,ativa

17	7,0	18	3,0	19	7,0	20	0,0	21	1,0	22	2,0
Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo	Positivo	negativo
185,0	9,8	160,8	9,8	136,7	9,8	96,5	9,8	72,4	9,8	72,4	9,8
1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	316,6	170,0
3,0	0,0	3,0	0,0	5,0	0,0	3,0	0,0	0,0	0,0	0,0	0,0
110,1	104,5	108,2	108,7	111,4	105,8	108,3	103,1	110,4	100,5	107,6	98,1
26,3	2,0	23,2	2,0	22,6	2,0	15,2	2,0	9,0	2,0	37,5	5,4
164,1	7,9	145,1	7,9	140,8	7,9	95,1	7,9	56,2	7,9	234,0	21,2
180,5	8,6	159,6	8,6	154,9	8,6	104,7	8,6	61,8	8,6	257,4	23,3

APÊNDICE E – MODELO TAXA DE ARMADURA TRANSVERSAL NAS LONGARINAS

Seção Análise		0,0	1,0	2,0	3,0	4,0	
Cortante. Ações Perm.	Vsg	kN	267,9	199,5	58,9	207,2	365,6
Cortante Cargas móveis	Vsq	kN	885,4	711,5	550,1	402,9	491,1
coef. Cargas móveis	φ		1,5	1,5	1,5	1,5	1,5
Cortante Cálc (Comb.Crítica)	Vsd	kN	2.378,5	1.890,2	1.332,6	1.197,6	1.612,3
Inclinação Bielas comprimidas	θ	٥	38,0	38,0	38,0	38,0	38,0
Compressão Concreto	Vrd2	kN	3.153,9	3.050,2	2.902,0	2.753,9	2.605,7
Cálculo Armadura	Vc0	kN	0,1	0,1	0,1	0,1	0,1
	Vc1	kN	0,0	0,0	0,0	0,0	0,0
	Asw	cm²/m	29,8	24,4	18,1	17,2	24,4
	Vsd,mín	kN	367,8	355,8	338,5	321,2	303,9
	As,mín	cm²/m	4,6	4,6	4,6	4,6	4,6
Arm. Transversal	Φŧ	mm	16,0	16,0	16,0	16,0	16,0
	c/		c/	c/	c/	c/	c/
	s	cm	12,5	14,0	11,0	11,0	15,0
	ramos		4,0	4,0	2,0	2,0	4,0
	Asw,efet	cm²/m	29,0	25,9	18,3	18,3	24,1
Verificação se As efet > 95%*calc		ok	ok	ok	ok	ok	
Verificação se As efet <110%calc		ok	ok	ok	ok	ok	
Qnt aço	Asw	kg/m	8,5	16,5	8,0	7,8	15,1
Qnt aço + 10 %	Asw	kg/m	9,3	18,1	8,8	8,5	16,6

5,0	6,0	7,0	8,0	9,0	10,0
523,9	682,3	840,7	1.315,9	1.157,6	999,2
613,7	796,3	946,6	1.278,4	1.186,0	1.089,0
1,5	1,5	1,5	1,5	1,5	1,5
2.105,4	2.735,1	3.291,4	4.688,8	4.264,6	3.829,8
38,0	38,0	38,0	38,0	38,0	38,0
2.902,0	3.153,9	3.450,2	3.746,6	3.607,9	3.438,5
0,1	0,1	0,1	0,1	0,1	0,1
0,0	0,0	0,0	0,0	0,0	0,0
28,6	34,2	37,6	49,4	46,6	43,9
338,5	367,8	402,4	436,9	420,7	401,0
4,6	4,6	4,6	4,6	4,6	4,6
16,0	16,0	16,0	16,0	16,0	16,0
c/	c/	c/	c/	c/	c/
13,0	11,0	10,0	7,0	8,0	8,0
4,0	4,0	4,0	4,0	4,0	4,0
27,8	32,9	36,2	51,7	45,2	45,2
ok	ok	ok	ok	ok	ok
ok	ok	ok	ok	ok	ok
16,0	17,0	17,9	18,8	18,3	17,8
17,6	18,7	19,7	20,7	20,1	19,5

11,0	12,0	13,0	14,0	15,0	16,0
840,9	682,5	524,2	365,8	297,5	49,1
988,6	884,9	779,3	673,0	566,8	461,6
1,5	1,5	1,5	1,5	1,5	1,5
3.387,4	2.937,2	2.483,0	2.027,0	1.692,8	1.117,9
38,0	38,0	38,0	38,0	38,0	38,0
3.269,2	3.099,9	2.879,2	2.658,5	2.489,2	2.573,8
0,1	0,1	0,1	0,1	0,1	0,1
0,0	0,0	0,0	0,0	0,0	0,0
40,9	37,4	34,0	30,1	26,8	17,1
381,3	361,5	335,8	310,1	290,3	300,2
4,6	4,6	4,6	4,6	4,6	4,6
16,0	16,0	16,0	16,0	16,0	16,0
c/	c/	c/	c/	c/	c/
9,0	10,0	10,0	11,0	13,0	12,0
4,0	4,0	4,0	4,0	4,0	2,0
40,2	36,2	36,2	32,9	27,8	16,8
ok	ok	ok	ok	ok	ok
ok	ok	ok	ok	ok	ok
17,2	16,7	16,1	15,6	15,1	7,7
18,9	18,4	17,8	17,2	16,6	8,4
17,0	18,0	19,0	20,0	21,0	22,0
109,2	267,6	425,9	584,3	742,6	901,0
484,7	587,6	698,7	817,4	943,2	1.075,6
1,5	1,5	1,5	1,5	1,5	1,5
1.251,6	1.699,9	2.166,7	2.650,9	3.151,4	3.666,8
38,0	38,0	38,0	38,0	38,0	38,0
2.658,5	2.743,2	2.879,2	3.015,2	3.099,9	3.184,5
0,1	0,1	0,1	0,1	0,1	0,1
0,0	0,0	0,0	0,0	0,0	0,0
18,6	24,4	29,7	34,7	40,1	45,4
310,1	319,9	335,8	351,7	361,5	371,4
4,6	4,6	4,6	4,6	4,6	4,6
16,0	16,0	16,0	16,0	16,0	16,0
c/	c/	c/	c/	c/	c/
11,0	15,0	12,0	10,0	9,0	8,0
2,0	4,0	4,0	4,0	4,0	4,0
18,3	24,1	30,2	36,2	40,2	45,2
ok	ok	ok	ok	ok	ok
ok	ok	ok	ok	ok	ok
7,8	15,9	16,1	16,4	16,7	8,5
8,6	17,5	17,8	18,1	18,4	9,3